1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 * and fixed mappings
23 */
24 #define VMALLOC_START (MODULES_END)
25 #define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
26
27 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28
29 #define FIRST_USER_ADDRESS 0UL
30
31 #ifndef __ASSEMBLY__
32
33 #include <asm/cmpxchg.h>
34 #include <asm/fixmap.h>
35 #include <linux/mmdebug.h>
36 #include <linux/mm_types.h>
37 #include <linux/sched.h>
38
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
41
42 /* Set stride and tlb_level in flush_*_tlb_range */
43 #define flush_pmd_tlb_range(vma, addr, end) \
44 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
45 #define flush_pud_tlb_range(vma, addr, end) \
46 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
47 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48
49 /*
50 * Outside of a few very special situations (e.g. hibernation), we always
51 * use broadcast TLB invalidation instructions, therefore a spurious page
52 * fault on one CPU which has been handled concurrently by another CPU
53 * does not need to perform additional invalidation.
54 */
55 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
56
57 /*
58 * ZERO_PAGE is a global shared page that is always zero: used
59 * for zero-mapped memory areas etc..
60 */
61 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
62 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
63
64 #define pte_ERROR(e) \
65 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
66
67 /*
68 * Macros to convert between a physical address and its placement in a
69 * page table entry, taking care of 52-bit addresses.
70 */
71 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)72 static inline phys_addr_t __pte_to_phys(pte_t pte)
73 {
74 return (pte_val(pte) & PTE_ADDR_LOW) |
75 ((pte_val(pte) & PTE_ADDR_HIGH) << 36);
76 }
__phys_to_pte_val(phys_addr_t phys)77 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
78 {
79 return (phys | (phys >> 36)) & PTE_ADDR_MASK;
80 }
81 #else
82 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
83 #define __phys_to_pte_val(phys) (phys)
84 #endif
85
86 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
87 #define pfn_pte(pfn,prot) \
88 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
89
90 #define pte_none(pte) (!pte_val(pte))
91 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
92 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
93
94 /*
95 * The following only work if pte_present(). Undefined behaviour otherwise.
96 */
97 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
99 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
100 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
101 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
102 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
103 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
104 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
105 PTE_ATTRINDX(MT_NORMAL_TAGGED))
106
107 #define pte_cont_addr_end(addr, end) \
108 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
109 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
110 })
111
112 #define pmd_cont_addr_end(addr, end) \
113 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
114 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
115 })
116
117 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
118 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
119 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
120
121 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
122 #define pte_valid_not_user(pte) \
123 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
124 #define pte_valid_user(pte) \
125 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
126
127 /*
128 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
129 * so that we don't erroneously return false for pages that have been
130 * remapped as PROT_NONE but are yet to be flushed from the TLB.
131 * Note that we can't make any assumptions based on the state of the access
132 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
133 * TLB.
134 */
135 #define pte_accessible(mm, pte) \
136 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
137
138 /*
139 * p??_access_permitted() is true for valid user mappings (subject to the
140 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
141 * set.
142 */
143 #define pte_access_permitted(pte, write) \
144 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
145 #define pmd_access_permitted(pmd, write) \
146 (pte_access_permitted(pmd_pte(pmd), (write)))
147 #define pud_access_permitted(pud, write) \
148 (pte_access_permitted(pud_pte(pud), (write)))
149
clear_pte_bit(pte_t pte,pgprot_t prot)150 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
151 {
152 pte_val(pte) &= ~pgprot_val(prot);
153 return pte;
154 }
155
set_pte_bit(pte_t pte,pgprot_t prot)156 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
157 {
158 pte_val(pte) |= pgprot_val(prot);
159 return pte;
160 }
161
clear_pmd_bit(pmd_t pmd,pgprot_t prot)162 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
163 {
164 pmd_val(pmd) &= ~pgprot_val(prot);
165 return pmd;
166 }
167
set_pmd_bit(pmd_t pmd,pgprot_t prot)168 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
169 {
170 pmd_val(pmd) |= pgprot_val(prot);
171 return pmd;
172 }
173
pte_mkwrite(pte_t pte)174 static inline pte_t pte_mkwrite(pte_t pte)
175 {
176 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
177 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
178 return pte;
179 }
180
pte_mkclean(pte_t pte)181 static inline pte_t pte_mkclean(pte_t pte)
182 {
183 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
184 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
185
186 return pte;
187 }
188
pte_mkdirty(pte_t pte)189 static inline pte_t pte_mkdirty(pte_t pte)
190 {
191 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
192
193 if (pte_write(pte))
194 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
195
196 return pte;
197 }
198
pte_wrprotect(pte_t pte)199 static inline pte_t pte_wrprotect(pte_t pte)
200 {
201 /*
202 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
203 * clear), set the PTE_DIRTY bit.
204 */
205 if (pte_hw_dirty(pte))
206 pte = pte_mkdirty(pte);
207
208 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
209 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
210 return pte;
211 }
212
pte_mkold(pte_t pte)213 static inline pte_t pte_mkold(pte_t pte)
214 {
215 return clear_pte_bit(pte, __pgprot(PTE_AF));
216 }
217
pte_mkyoung(pte_t pte)218 static inline pte_t pte_mkyoung(pte_t pte)
219 {
220 return set_pte_bit(pte, __pgprot(PTE_AF));
221 }
222
pte_mkspecial(pte_t pte)223 static inline pte_t pte_mkspecial(pte_t pte)
224 {
225 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
226 }
227
pte_mkcont(pte_t pte)228 static inline pte_t pte_mkcont(pte_t pte)
229 {
230 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
231 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
232 }
233
pte_mknoncont(pte_t pte)234 static inline pte_t pte_mknoncont(pte_t pte)
235 {
236 return clear_pte_bit(pte, __pgprot(PTE_CONT));
237 }
238
pte_mkpresent(pte_t pte)239 static inline pte_t pte_mkpresent(pte_t pte)
240 {
241 return set_pte_bit(pte, __pgprot(PTE_VALID));
242 }
243
pmd_mkcont(pmd_t pmd)244 static inline pmd_t pmd_mkcont(pmd_t pmd)
245 {
246 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
247 }
248
pte_mkdevmap(pte_t pte)249 static inline pte_t pte_mkdevmap(pte_t pte)
250 {
251 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
252 }
253
set_pte(pte_t * ptep,pte_t pte)254 static inline void set_pte(pte_t *ptep, pte_t pte)
255 {
256 WRITE_ONCE(*ptep, pte);
257
258 /*
259 * Only if the new pte is valid and kernel, otherwise TLB maintenance
260 * or update_mmu_cache() have the necessary barriers.
261 */
262 if (pte_valid_not_user(pte)) {
263 dsb(ishst);
264 isb();
265 }
266 }
267
268 extern void __sync_icache_dcache(pte_t pteval);
269
270 /*
271 * PTE bits configuration in the presence of hardware Dirty Bit Management
272 * (PTE_WRITE == PTE_DBM):
273 *
274 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
275 * 0 0 | 1 0 0
276 * 0 1 | 1 1 0
277 * 1 0 | 1 0 1
278 * 1 1 | 0 1 x
279 *
280 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
281 * the page fault mechanism. Checking the dirty status of a pte becomes:
282 *
283 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
284 */
285
__check_racy_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)286 static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
287 pte_t pte)
288 {
289 pte_t old_pte;
290
291 if (!IS_ENABLED(CONFIG_DEBUG_VM))
292 return;
293
294 old_pte = READ_ONCE(*ptep);
295
296 if (!pte_valid(old_pte) || !pte_valid(pte))
297 return;
298 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
299 return;
300
301 /*
302 * Check for potential race with hardware updates of the pte
303 * (ptep_set_access_flags safely changes valid ptes without going
304 * through an invalid entry).
305 */
306 VM_WARN_ONCE(!pte_young(pte),
307 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
308 __func__, pte_val(old_pte), pte_val(pte));
309 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
310 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
311 __func__, pte_val(old_pte), pte_val(pte));
312 }
313
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)314 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
315 pte_t *ptep, pte_t pte)
316 {
317 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
318 __sync_icache_dcache(pte);
319
320 if (system_supports_mte() &&
321 pte_present(pte) && pte_tagged(pte) && !pte_special(pte))
322 mte_sync_tags(ptep, pte);
323
324 __check_racy_pte_update(mm, ptep, pte);
325
326 set_pte(ptep, pte);
327 }
328
329 /*
330 * Huge pte definitions.
331 */
332 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
333
334 /*
335 * Hugetlb definitions.
336 */
337 #define HUGE_MAX_HSTATE 4
338 #define HPAGE_SHIFT PMD_SHIFT
339 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
340 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
341 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
342
pgd_pte(pgd_t pgd)343 static inline pte_t pgd_pte(pgd_t pgd)
344 {
345 return __pte(pgd_val(pgd));
346 }
347
p4d_pte(p4d_t p4d)348 static inline pte_t p4d_pte(p4d_t p4d)
349 {
350 return __pte(p4d_val(p4d));
351 }
352
pud_pte(pud_t pud)353 static inline pte_t pud_pte(pud_t pud)
354 {
355 return __pte(pud_val(pud));
356 }
357
pte_pud(pte_t pte)358 static inline pud_t pte_pud(pte_t pte)
359 {
360 return __pud(pte_val(pte));
361 }
362
pud_pmd(pud_t pud)363 static inline pmd_t pud_pmd(pud_t pud)
364 {
365 return __pmd(pud_val(pud));
366 }
367
pmd_pte(pmd_t pmd)368 static inline pte_t pmd_pte(pmd_t pmd)
369 {
370 return __pte(pmd_val(pmd));
371 }
372
pte_pmd(pte_t pte)373 static inline pmd_t pte_pmd(pte_t pte)
374 {
375 return __pmd(pte_val(pte));
376 }
377
mk_pud_sect_prot(pgprot_t prot)378 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
379 {
380 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
381 }
382
mk_pmd_sect_prot(pgprot_t prot)383 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
384 {
385 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
386 }
387
388 #ifdef CONFIG_NUMA_BALANCING
389 /*
390 * See the comment in include/linux/pgtable.h
391 */
pte_protnone(pte_t pte)392 static inline int pte_protnone(pte_t pte)
393 {
394 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
395 }
396
pmd_protnone(pmd_t pmd)397 static inline int pmd_protnone(pmd_t pmd)
398 {
399 return pte_protnone(pmd_pte(pmd));
400 }
401 #endif
402
403 #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
404
pmd_present(pmd_t pmd)405 static inline int pmd_present(pmd_t pmd)
406 {
407 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
408 }
409
410 /*
411 * THP definitions.
412 */
413
414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)415 static inline int pmd_trans_huge(pmd_t pmd)
416 {
417 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
418 }
419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
420
421 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
422 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
423 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
424 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
425 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
426 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
427 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
428 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
429 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
430
pmd_mkinvalid(pmd_t pmd)431 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
432 {
433 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
434 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
435
436 return pmd;
437 }
438
439 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
440
441 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
442
443 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
444
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
447 #endif
pmd_mkdevmap(pmd_t pmd)448 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
449 {
450 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
451 }
452
453 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
454 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
455 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
456 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
457 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
458
459 #define pud_young(pud) pte_young(pud_pte(pud))
460 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
461 #define pud_write(pud) pte_write(pud_pte(pud))
462
463 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
464
465 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
466 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
467 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
468 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
469
470 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
471 #define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud))
472
473 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
474 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
475
476 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
477 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
478
479 #define __pgprot_modify(prot,mask,bits) \
480 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
481
482 #define pgprot_nx(prot) \
483 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
484
485 /*
486 * Mark the prot value as uncacheable and unbufferable.
487 */
488 #define pgprot_noncached(prot) \
489 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
490 #define pgprot_writecombine(prot) \
491 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
492 #define pgprot_device(prot) \
493 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
494 #define pgprot_tagged(prot) \
495 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
496 #define pgprot_mhp pgprot_tagged
497 /*
498 * DMA allocations for non-coherent devices use what the Arm architecture calls
499 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
500 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
501 * is intended for MMIO and thus forbids speculation, preserves access size,
502 * requires strict alignment and can also force write responses to come from the
503 * endpoint.
504 */
505 #define pgprot_dmacoherent(prot) \
506 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
507 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
508
509 /*
510 * Mark the prot value as outer cacheable and inner non-cacheable. Non-coherent
511 * devices on a system with support for a system or last level cache use these
512 * attributes to cache allocations in the system cache.
513 */
514 #define pgprot_syscached(prot) \
515 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
516 PTE_ATTRINDX(MT_NORMAL_iNC_oWB) | PTE_PXN | PTE_UXN)
517
518 #define __HAVE_PHYS_MEM_ACCESS_PROT
519 struct file;
520 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
521 unsigned long size, pgprot_t vma_prot);
522
523 #define pmd_none(pmd) (!pmd_val(pmd))
524
525 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
526 PMD_TYPE_TABLE)
527 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
528 PMD_TYPE_SECT)
529 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
530 #define pmd_bad(pmd) (!pmd_table(pmd))
531
532 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)533 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)534 static inline bool pud_table(pud_t pud) { return true; }
535 #else
536 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
537 PUD_TYPE_SECT)
538 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
539 PUD_TYPE_TABLE)
540 #endif
541
542 extern pgd_t init_pg_dir[PTRS_PER_PGD];
543 extern pgd_t init_pg_end[];
544 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
545 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
546 extern pgd_t idmap_pg_end[];
547 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
548 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
549
550 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
551
552 #ifdef CONFIG_MEMORY_HOTPLUG
553 extern int populate_range_driver_managed(u64 start, u64 size,
554 const char *resource_name);
555 extern int depopulate_range_driver_managed(u64 start, u64 size,
556 const char *resource_name);
557 #endif
558
in_swapper_pgdir(void * addr)559 static inline bool in_swapper_pgdir(void *addr)
560 {
561 return ((unsigned long)addr & PAGE_MASK) ==
562 ((unsigned long)swapper_pg_dir & PAGE_MASK);
563 }
564
set_pmd(pmd_t * pmdp,pmd_t pmd)565 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
566 {
567 #ifdef __PAGETABLE_PMD_FOLDED
568 if (in_swapper_pgdir(pmdp)) {
569 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
570 return;
571 }
572 #endif /* __PAGETABLE_PMD_FOLDED */
573
574 WRITE_ONCE(*pmdp, pmd);
575
576 if (pmd_valid(pmd)) {
577 dsb(ishst);
578 isb();
579 }
580 }
581
pmd_clear(pmd_t * pmdp)582 static inline void pmd_clear(pmd_t *pmdp)
583 {
584 set_pmd(pmdp, __pmd(0));
585 }
586
pmd_page_paddr(pmd_t pmd)587 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
588 {
589 return __pmd_to_phys(pmd);
590 }
591
pmd_page_vaddr(pmd_t pmd)592 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
593 {
594 return (unsigned long)__va(pmd_page_paddr(pmd));
595 }
596
597 /* Find an entry in the third-level page table. */
598 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
599
600 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
601 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
602 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
603
604 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
605
606 /* use ONLY for statically allocated translation tables */
607 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
608
609 /*
610 * Conversion functions: convert a page and protection to a page entry,
611 * and a page entry and page directory to the page they refer to.
612 */
613 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
614
615 #if CONFIG_PGTABLE_LEVELS > 2
616
617 #define pmd_ERROR(e) \
618 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
619
620 #define pud_none(pud) (!pud_val(pud))
621 #define pud_bad(pud) (!pud_table(pud))
622 #define pud_present(pud) pte_present(pud_pte(pud))
623 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
624 #define pud_valid(pud) pte_valid(pud_pte(pud))
625
set_pud(pud_t * pudp,pud_t pud)626 static inline void set_pud(pud_t *pudp, pud_t pud)
627 {
628 #ifdef __PAGETABLE_PUD_FOLDED
629 if (in_swapper_pgdir(pudp)) {
630 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
631 return;
632 }
633 #endif /* __PAGETABLE_PUD_FOLDED */
634
635 WRITE_ONCE(*pudp, pud);
636
637 if (pud_valid(pud)) {
638 dsb(ishst);
639 isb();
640 }
641 }
642
pud_clear(pud_t * pudp)643 static inline void pud_clear(pud_t *pudp)
644 {
645 set_pud(pudp, __pud(0));
646 }
647
pud_page_paddr(pud_t pud)648 static inline phys_addr_t pud_page_paddr(pud_t pud)
649 {
650 return __pud_to_phys(pud);
651 }
652
pud_pgtable(pud_t pud)653 static inline pmd_t *pud_pgtable(pud_t pud)
654 {
655 return (pmd_t *)__va(pud_page_paddr(pud));
656 }
657
658 /* Find an entry in the second-level page table. */
659 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
660
661 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
662 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
663 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
664
665 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
666
667 /* use ONLY for statically allocated translation tables */
668 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
669
670 #else
671
672 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
673
674 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
675 #define pmd_set_fixmap(addr) NULL
676 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
677 #define pmd_clear_fixmap()
678
679 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
680
681 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
682
683 #if CONFIG_PGTABLE_LEVELS > 3
684
685 #define pud_ERROR(e) \
686 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
687
688 #define p4d_none(p4d) (!p4d_val(p4d))
689 #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
690 #define p4d_present(p4d) (p4d_val(p4d))
691
set_p4d(p4d_t * p4dp,p4d_t p4d)692 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
693 {
694 if (in_swapper_pgdir(p4dp)) {
695 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
696 return;
697 }
698
699 WRITE_ONCE(*p4dp, p4d);
700 dsb(ishst);
701 isb();
702 }
703
p4d_clear(p4d_t * p4dp)704 static inline void p4d_clear(p4d_t *p4dp)
705 {
706 set_p4d(p4dp, __p4d(0));
707 }
708
p4d_page_paddr(p4d_t p4d)709 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
710 {
711 return __p4d_to_phys(p4d);
712 }
713
p4d_pgtable(p4d_t p4d)714 static inline pud_t *p4d_pgtable(p4d_t p4d)
715 {
716 return (pud_t *)__va(p4d_page_paddr(p4d));
717 }
718
719 /* Find an entry in the frst-level page table. */
720 #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
721
722 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
723 #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
724 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
725
726 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
727
728 /* use ONLY for statically allocated translation tables */
729 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
730
731 #else
732
733 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
734 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
735
736 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
737 #define pud_set_fixmap(addr) NULL
738 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
739 #define pud_clear_fixmap()
740
741 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
742
743 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
744
745 #define pgd_ERROR(e) \
746 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
747
748 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
749 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
750
pte_modify(pte_t pte,pgprot_t newprot)751 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
752 {
753 /*
754 * Normal and Normal-Tagged are two different memory types and indices
755 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
756 */
757 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
758 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
759 PTE_ATTRINDX_MASK;
760 /* preserve the hardware dirty information */
761 if (pte_hw_dirty(pte))
762 pte = pte_mkdirty(pte);
763 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
764 /*
765 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
766 * dirtiness again.
767 */
768 if (pte_sw_dirty(pte))
769 pte = pte_mkdirty(pte);
770 return pte;
771 }
772
pmd_modify(pmd_t pmd,pgprot_t newprot)773 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
774 {
775 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
776 }
777
778 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
779 extern int ptep_set_access_flags(struct vm_area_struct *vma,
780 unsigned long address, pte_t *ptep,
781 pte_t entry, int dirty);
782
783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
784 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)785 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmdp,
787 pmd_t entry, int dirty)
788 {
789 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
790 }
791
pud_devmap(pud_t pud)792 static inline int pud_devmap(pud_t pud)
793 {
794 return 0;
795 }
796
pgd_devmap(pgd_t pgd)797 static inline int pgd_devmap(pgd_t pgd)
798 {
799 return 0;
800 }
801 #endif
802
803 /*
804 * Atomic pte/pmd modifications.
805 */
806 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(pte_t * ptep)807 static inline int __ptep_test_and_clear_young(pte_t *ptep)
808 {
809 pte_t old_pte, pte;
810
811 pte = READ_ONCE(*ptep);
812 do {
813 old_pte = pte;
814 pte = pte_mkold(pte);
815 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
816 pte_val(old_pte), pte_val(pte));
817 } while (pte_val(pte) != pte_val(old_pte));
818
819 return pte_young(pte);
820 }
821
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)822 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
823 unsigned long address,
824 pte_t *ptep)
825 {
826 return __ptep_test_and_clear_young(ptep);
827 }
828
829 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)830 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
831 unsigned long address, pte_t *ptep)
832 {
833 int young = ptep_test_and_clear_young(vma, address, ptep);
834
835 if (young) {
836 /*
837 * We can elide the trailing DSB here since the worst that can
838 * happen is that a CPU continues to use the young entry in its
839 * TLB and we mistakenly reclaim the associated page. The
840 * window for such an event is bounded by the next
841 * context-switch, which provides a DSB to complete the TLB
842 * invalidation.
843 */
844 flush_tlb_page_nosync(vma, address);
845 }
846
847 return young;
848 }
849
850 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
851 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)852 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
853 unsigned long address,
854 pmd_t *pmdp)
855 {
856 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
857 }
858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
859
860 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)861 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
862 unsigned long address, pte_t *ptep)
863 {
864 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
865 }
866
867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
868 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)869 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
870 unsigned long address, pmd_t *pmdp)
871 {
872 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
873 }
874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
875
876 /*
877 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
878 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
879 */
880 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)881 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
882 {
883 pte_t old_pte, pte;
884
885 pte = READ_ONCE(*ptep);
886 do {
887 old_pte = pte;
888 pte = pte_wrprotect(pte);
889 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
890 pte_val(old_pte), pte_val(pte));
891 } while (pte_val(pte) != pte_val(old_pte));
892 }
893
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)896 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
897 unsigned long address, pmd_t *pmdp)
898 {
899 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
900 }
901
902 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)903 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
904 unsigned long address, pmd_t *pmdp, pmd_t pmd)
905 {
906 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
907 }
908 #endif
909
910 /*
911 * Encode and decode a swap entry:
912 * bits 0-1: present (must be zero)
913 * bits 2-7: swap type
914 * bits 8-57: swap offset
915 * bit 58: PTE_PROT_NONE (must be zero)
916 */
917 #define __SWP_TYPE_SHIFT 2
918 #define __SWP_TYPE_BITS 6
919 #define __SWP_OFFSET_BITS 50
920 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
921 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
922 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
923
924 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
925 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
926 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
927
928 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
929 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
930
931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
933 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
934 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
935
936 /*
937 * Ensure that there are not more swap files than can be encoded in the kernel
938 * PTEs.
939 */
940 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
941
942 extern int kern_addr_valid(unsigned long addr);
943
944 #ifdef CONFIG_ARM64_MTE
945
946 #define __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)947 static inline int arch_prepare_to_swap(struct page *page)
948 {
949 if (system_supports_mte())
950 return mte_save_tags(page);
951 return 0;
952 }
953
954 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)955 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
956 {
957 if (system_supports_mte())
958 mte_invalidate_tags(type, offset);
959 }
960
arch_swap_invalidate_area(int type)961 static inline void arch_swap_invalidate_area(int type)
962 {
963 if (system_supports_mte())
964 mte_invalidate_tags_area(type);
965 }
966
967 #define __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)968 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
969 {
970 if (system_supports_mte() && mte_restore_tags(entry, page))
971 set_bit(PG_mte_tagged, &page->flags);
972 }
973
974 #endif /* CONFIG_ARM64_MTE */
975
976 /*
977 * On AArch64, the cache coherency is handled via the set_pte_at() function.
978 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)979 static inline void update_mmu_cache(struct vm_area_struct *vma,
980 unsigned long addr, pte_t *ptep)
981 {
982 /*
983 * We don't do anything here, so there's a very small chance of
984 * us retaking a user fault which we just fixed up. The alternative
985 * is doing a dsb(ishst), but that penalises the fastpath.
986 */
987 }
988
989 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
990
991 #ifdef CONFIG_ARM64_PA_BITS_52
992 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
993 #else
994 #define phys_to_ttbr(addr) (addr)
995 #endif
996
997 /*
998 * On arm64 without hardware Access Flag, copying from user will fail because
999 * the pte is old and cannot be marked young. So we always end up with zeroed
1000 * page after fork() + CoW for pfn mappings. We don't always have a
1001 * hardware-managed access flag on arm64.
1002 */
arch_faults_on_old_pte(void)1003 static inline bool arch_faults_on_old_pte(void)
1004 {
1005 WARN_ON(preemptible());
1006
1007 return !cpu_has_hw_af();
1008 }
1009 #define arch_faults_on_old_pte arch_faults_on_old_pte
1010
1011 /*
1012 * Experimentally, it's cheap to set the access flag in hardware and we
1013 * benefit from prefaulting mappings as 'old' to start with.
1014 */
arch_wants_old_prefaulted_pte(void)1015 static inline bool arch_wants_old_prefaulted_pte(void)
1016 {
1017 return !arch_faults_on_old_pte();
1018 }
1019 #define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte
1020
1021 #endif /* !__ASSEMBLY__ */
1022
1023 #endif /* __ASM_PGTABLE_H */
1024