1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20
21 #include <dt-bindings/pwm/pwm.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25
26 #define MAX_PWMS 1024
27
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 return radix_tree_lookup(&pwm_tree, pwm);
38 }
39
alloc_pwms(int pwm,unsigned int count)40 static int alloc_pwms(int pwm, unsigned int count)
41 {
42 unsigned int from = 0;
43 unsigned int start;
44
45 if (pwm >= MAX_PWMS)
46 return -EINVAL;
47
48 if (pwm >= 0)
49 from = pwm;
50
51 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52 count, 0);
53
54 if (pwm >= 0 && start != pwm)
55 return -EEXIST;
56
57 if (start + count > MAX_PWMS)
58 return -ENOSPC;
59
60 return start;
61 }
62
free_pwms(struct pwm_chip * chip)63 static void free_pwms(struct pwm_chip *chip)
64 {
65 unsigned int i;
66
67 for (i = 0; i < chip->npwm; i++) {
68 struct pwm_device *pwm = &chip->pwms[i];
69
70 radix_tree_delete(&pwm_tree, pwm->pwm);
71 }
72
73 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74
75 kfree(chip->pwms);
76 chip->pwms = NULL;
77 }
78
pwmchip_find_by_name(const char * name)79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
80 {
81 struct pwm_chip *chip;
82
83 if (!name)
84 return NULL;
85
86 mutex_lock(&pwm_lock);
87
88 list_for_each_entry(chip, &pwm_chips, list) {
89 const char *chip_name = dev_name(chip->dev);
90
91 if (chip_name && strcmp(chip_name, name) == 0) {
92 mutex_unlock(&pwm_lock);
93 return chip;
94 }
95 }
96
97 mutex_unlock(&pwm_lock);
98
99 return NULL;
100 }
101
pwm_device_request(struct pwm_device * pwm,const char * label)102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
103 {
104 int err;
105
106 if (test_bit(PWMF_REQUESTED, &pwm->flags))
107 return -EBUSY;
108
109 if (!try_module_get(pwm->chip->ops->owner))
110 return -ENODEV;
111
112 if (pwm->chip->ops->request) {
113 err = pwm->chip->ops->request(pwm->chip, pwm);
114 if (err) {
115 module_put(pwm->chip->ops->owner);
116 return err;
117 }
118 }
119
120 if (pwm->chip->ops->get_state) {
121 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 trace_pwm_get(pwm, &pwm->state);
123
124 if (IS_ENABLED(CONFIG_PWM_DEBUG))
125 pwm->last = pwm->state;
126 }
127
128 set_bit(PWMF_REQUESTED, &pwm->flags);
129 pwm->label = label;
130
131 return 0;
132 }
133
134 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136 {
137 struct pwm_device *pwm;
138
139 /* check, whether the driver supports a third cell for flags */
140 if (pc->of_pwm_n_cells < 3)
141 return ERR_PTR(-EINVAL);
142
143 /* flags in the third cell are optional */
144 if (args->args_count < 2)
145 return ERR_PTR(-EINVAL);
146
147 if (args->args[0] >= pc->npwm)
148 return ERR_PTR(-EINVAL);
149
150 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
151 if (IS_ERR(pwm))
152 return pwm;
153
154 pwm->args.period = args->args[1];
155 pwm->args.polarity = PWM_POLARITY_NORMAL;
156
157 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158 pwm->args.polarity = PWM_POLARITY_INVERSED;
159
160 return pwm;
161 }
162 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
163
164 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)165 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
166 {
167 struct pwm_device *pwm;
168
169 /* sanity check driver support */
170 if (pc->of_pwm_n_cells < 2)
171 return ERR_PTR(-EINVAL);
172
173 /* all cells are required */
174 if (args->args_count != pc->of_pwm_n_cells)
175 return ERR_PTR(-EINVAL);
176
177 if (args->args[0] >= pc->npwm)
178 return ERR_PTR(-EINVAL);
179
180 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
181 if (IS_ERR(pwm))
182 return pwm;
183
184 pwm->args.period = args->args[1];
185
186 return pwm;
187 }
188
of_pwmchip_add(struct pwm_chip * chip)189 static void of_pwmchip_add(struct pwm_chip *chip)
190 {
191 if (!chip->dev || !chip->dev->of_node)
192 return;
193
194 if (!chip->of_xlate) {
195 chip->of_xlate = of_pwm_simple_xlate;
196 chip->of_pwm_n_cells = 2;
197 }
198
199 of_node_get(chip->dev->of_node);
200 }
201
of_pwmchip_remove(struct pwm_chip * chip)202 static void of_pwmchip_remove(struct pwm_chip *chip)
203 {
204 if (chip->dev)
205 of_node_put(chip->dev->of_node);
206 }
207
208 /**
209 * pwm_set_chip_data() - set private chip data for a PWM
210 * @pwm: PWM device
211 * @data: pointer to chip-specific data
212 *
213 * Returns: 0 on success or a negative error code on failure.
214 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)215 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
216 {
217 if (!pwm)
218 return -EINVAL;
219
220 pwm->chip_data = data;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225
226 /**
227 * pwm_get_chip_data() - get private chip data for a PWM
228 * @pwm: PWM device
229 *
230 * Returns: A pointer to the chip-private data for the PWM device.
231 */
pwm_get_chip_data(struct pwm_device * pwm)232 void *pwm_get_chip_data(struct pwm_device *pwm)
233 {
234 return pwm ? pwm->chip_data : NULL;
235 }
236 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
237
pwm_ops_check(const struct pwm_chip * chip)238 static bool pwm_ops_check(const struct pwm_chip *chip)
239 {
240
241 const struct pwm_ops *ops = chip->ops;
242
243 /* driver supports legacy, non-atomic operation */
244 if (ops->config && ops->enable && ops->disable) {
245 if (IS_ENABLED(CONFIG_PWM_DEBUG))
246 dev_warn(chip->dev,
247 "Driver needs updating to atomic API\n");
248
249 return true;
250 }
251
252 if (!ops->apply)
253 return false;
254
255 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256 dev_warn(chip->dev,
257 "Please implement the .get_state() callback\n");
258
259 return true;
260 }
261
262 /**
263 * pwmchip_add_with_polarity() - register a new PWM chip
264 * @chip: the PWM chip to add
265 * @polarity: initial polarity of PWM channels
266 *
267 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268 * will be used. The initial polarity for all channels is specified by the
269 * @polarity parameter.
270 *
271 * Returns: 0 on success or a negative error code on failure.
272 */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)273 int pwmchip_add_with_polarity(struct pwm_chip *chip,
274 enum pwm_polarity polarity)
275 {
276 struct pwm_device *pwm;
277 unsigned int i;
278 int ret;
279
280 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
281 return -EINVAL;
282
283 if (!pwm_ops_check(chip))
284 return -EINVAL;
285
286 mutex_lock(&pwm_lock);
287
288 ret = alloc_pwms(chip->base, chip->npwm);
289 if (ret < 0)
290 goto out;
291
292 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
293 if (!chip->pwms) {
294 ret = -ENOMEM;
295 goto out;
296 }
297
298 chip->base = ret;
299
300 for (i = 0; i < chip->npwm; i++) {
301 pwm = &chip->pwms[i];
302
303 pwm->chip = chip;
304 pwm->pwm = chip->base + i;
305 pwm->hwpwm = i;
306 pwm->state.polarity = polarity;
307 pwm->state.output_type = PWM_OUTPUT_FIXED;
308
309 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
310 }
311
312 bitmap_set(allocated_pwms, chip->base, chip->npwm);
313
314 INIT_LIST_HEAD(&chip->list);
315 list_add(&chip->list, &pwm_chips);
316
317 ret = 0;
318
319 if (IS_ENABLED(CONFIG_OF))
320 of_pwmchip_add(chip);
321
322 out:
323 mutex_unlock(&pwm_lock);
324
325 if (!ret)
326 pwmchip_sysfs_export(chip);
327
328 return ret;
329 }
330 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
331
332 /**
333 * pwmchip_add() - register a new PWM chip
334 * @chip: the PWM chip to add
335 *
336 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
337 * will be used. The initial polarity for all channels is normal.
338 *
339 * Returns: 0 on success or a negative error code on failure.
340 */
pwmchip_add(struct pwm_chip * chip)341 int pwmchip_add(struct pwm_chip *chip)
342 {
343 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
344 }
345 EXPORT_SYMBOL_GPL(pwmchip_add);
346
347 /**
348 * pwmchip_remove() - remove a PWM chip
349 * @chip: the PWM chip to remove
350 *
351 * Removes a PWM chip. This function may return busy if the PWM chip provides
352 * a PWM device that is still requested.
353 *
354 * Returns: 0 on success or a negative error code on failure.
355 */
pwmchip_remove(struct pwm_chip * chip)356 int pwmchip_remove(struct pwm_chip *chip)
357 {
358 unsigned int i;
359 int ret = 0;
360
361 pwmchip_sysfs_unexport(chip);
362
363 mutex_lock(&pwm_lock);
364
365 for (i = 0; i < chip->npwm; i++) {
366 struct pwm_device *pwm = &chip->pwms[i];
367
368 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
369 ret = -EBUSY;
370 goto out;
371 }
372 }
373
374 list_del_init(&chip->list);
375
376 if (IS_ENABLED(CONFIG_OF))
377 of_pwmchip_remove(chip);
378
379 free_pwms(chip);
380
381 out:
382 mutex_unlock(&pwm_lock);
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(pwmchip_remove);
386
387 /**
388 * pwm_request() - request a PWM device
389 * @pwm: global PWM device index
390 * @label: PWM device label
391 *
392 * This function is deprecated, use pwm_get() instead.
393 *
394 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
395 * failure.
396 */
pwm_request(int pwm,const char * label)397 struct pwm_device *pwm_request(int pwm, const char *label)
398 {
399 struct pwm_device *dev;
400 int err;
401
402 if (pwm < 0 || pwm >= MAX_PWMS)
403 return ERR_PTR(-EINVAL);
404
405 mutex_lock(&pwm_lock);
406
407 dev = pwm_to_device(pwm);
408 if (!dev) {
409 dev = ERR_PTR(-EPROBE_DEFER);
410 goto out;
411 }
412
413 err = pwm_device_request(dev, label);
414 if (err < 0)
415 dev = ERR_PTR(err);
416
417 out:
418 mutex_unlock(&pwm_lock);
419
420 return dev;
421 }
422 EXPORT_SYMBOL_GPL(pwm_request);
423
424 /**
425 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
426 * @chip: PWM chip
427 * @index: per-chip index of the PWM to request
428 * @label: a literal description string of this PWM
429 *
430 * Returns: A pointer to the PWM device at the given index of the given PWM
431 * chip. A negative error code is returned if the index is not valid for the
432 * specified PWM chip or if the PWM device cannot be requested.
433 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)434 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
435 unsigned int index,
436 const char *label)
437 {
438 struct pwm_device *pwm;
439 int err;
440
441 if (!chip || index >= chip->npwm)
442 return ERR_PTR(-EINVAL);
443
444 mutex_lock(&pwm_lock);
445 pwm = &chip->pwms[index];
446
447 err = pwm_device_request(pwm, label);
448 if (err < 0)
449 pwm = ERR_PTR(err);
450
451 mutex_unlock(&pwm_lock);
452 return pwm;
453 }
454 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
455
456 /**
457 * pwm_free() - free a PWM device
458 * @pwm: PWM device
459 *
460 * This function is deprecated, use pwm_put() instead.
461 */
pwm_free(struct pwm_device * pwm)462 void pwm_free(struct pwm_device *pwm)
463 {
464 pwm_put(pwm);
465 }
466 EXPORT_SYMBOL_GPL(pwm_free);
467
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)468 static void pwm_apply_state_debug(struct pwm_device *pwm,
469 const struct pwm_state *state)
470 {
471 struct pwm_state *last = &pwm->last;
472 struct pwm_chip *chip = pwm->chip;
473 struct pwm_state s1, s2;
474 int err;
475
476 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
477 return;
478
479 /* No reasonable diagnosis possible without .get_state() */
480 if (!chip->ops->get_state)
481 return;
482
483 /*
484 * *state was just applied. Read out the hardware state and do some
485 * checks.
486 */
487
488 chip->ops->get_state(chip, pwm, &s1);
489 trace_pwm_get(pwm, &s1);
490
491 /*
492 * The lowlevel driver either ignored .polarity (which is a bug) or as
493 * best effort inverted .polarity and fixed .duty_cycle respectively.
494 * Undo this inversion and fixup for further tests.
495 */
496 if (s1.enabled && s1.polarity != state->polarity) {
497 s2.polarity = state->polarity;
498 s2.duty_cycle = s1.period - s1.duty_cycle;
499 s2.period = s1.period;
500 s2.enabled = s1.enabled;
501 } else {
502 s2 = s1;
503 }
504
505 if (s2.polarity != state->polarity &&
506 state->duty_cycle < state->period)
507 dev_warn(chip->dev, ".apply ignored .polarity\n");
508
509 if (state->enabled &&
510 last->polarity == state->polarity &&
511 last->period > s2.period &&
512 last->period <= state->period)
513 dev_warn(chip->dev,
514 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
515 state->period, s2.period, last->period);
516
517 if (state->enabled && state->period < s2.period)
518 dev_warn(chip->dev,
519 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
520 state->period, s2.period);
521
522 if (state->enabled &&
523 last->polarity == state->polarity &&
524 last->period == s2.period &&
525 last->duty_cycle > s2.duty_cycle &&
526 last->duty_cycle <= state->duty_cycle)
527 dev_warn(chip->dev,
528 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
529 state->duty_cycle, state->period,
530 s2.duty_cycle, s2.period,
531 last->duty_cycle, last->period);
532
533 if (state->enabled && state->duty_cycle < s2.duty_cycle)
534 dev_warn(chip->dev,
535 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
536 state->duty_cycle, state->period,
537 s2.duty_cycle, s2.period);
538
539 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
540 dev_warn(chip->dev,
541 "requested disabled, but yielded enabled with duty > 0\n");
542
543 /* reapply the state that the driver reported being configured. */
544 err = chip->ops->apply(chip, pwm, &s1);
545 if (err) {
546 *last = s1;
547 dev_err(chip->dev, "failed to reapply current setting\n");
548 return;
549 }
550
551 trace_pwm_apply(pwm, &s1);
552
553 chip->ops->get_state(chip, pwm, last);
554 trace_pwm_get(pwm, last);
555
556 /* reapplication of the current state should give an exact match */
557 if (s1.enabled != last->enabled ||
558 s1.polarity != last->polarity ||
559 (s1.enabled && s1.period != last->period) ||
560 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
561 dev_err(chip->dev,
562 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
563 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
564 last->enabled, last->polarity, last->duty_cycle,
565 last->period);
566 }
567 }
568
569 /**
570 * pwm_apply_state() - atomically apply a new state to a PWM device
571 * @pwm: PWM device
572 * @state: new state to apply
573 */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)574 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
575 {
576 struct pwm_chip *chip;
577 int err;
578
579 if (!pwm || !state || !state->period ||
580 state->duty_cycle > state->period)
581 return -EINVAL;
582
583 chip = pwm->chip;
584
585 if (state->period == pwm->state.period &&
586 state->duty_cycle == pwm->state.duty_cycle &&
587 state->polarity == pwm->state.polarity &&
588 state->enabled == pwm->state.enabled)
589 return 0;
590
591 if (chip->ops->apply) {
592 err = chip->ops->apply(chip, pwm, state);
593 if (err)
594 return err;
595
596 trace_pwm_apply(pwm, state);
597
598 pwm->state = *state;
599
600 /*
601 * only do this after pwm->state was applied as some
602 * implementations of .get_state depend on this
603 */
604 pwm_apply_state_debug(pwm, state);
605 } else {
606 /*
607 * FIXME: restore the initial state in case of error.
608 */
609 if (state->polarity != pwm->state.polarity) {
610 if (!chip->ops->set_polarity)
611 return -ENOTSUPP;
612
613 /*
614 * Changing the polarity of a running PWM is
615 * only allowed when the PWM driver implements
616 * ->apply().
617 */
618 if (pwm->state.enabled) {
619 chip->ops->disable(chip, pwm);
620 pwm->state.enabled = false;
621 }
622
623 err = chip->ops->set_polarity(chip, pwm,
624 state->polarity);
625 if (err)
626 return err;
627
628 pwm->state.polarity = state->polarity;
629 }
630
631 if (state->period != pwm->state.period ||
632 state->duty_cycle != pwm->state.duty_cycle) {
633 err = chip->ops->config(pwm->chip, pwm,
634 state->duty_cycle,
635 state->period);
636 if (err)
637 return err;
638
639 pwm->state.duty_cycle = state->duty_cycle;
640 pwm->state.period = state->period;
641 }
642
643 if (state->enabled != pwm->state.enabled) {
644 if (state->enabled) {
645 err = chip->ops->enable(chip, pwm);
646 if (err)
647 return err;
648 } else {
649 chip->ops->disable(chip, pwm);
650 }
651
652 pwm->state.enabled = state->enabled;
653 }
654 }
655
656 return 0;
657 }
658 EXPORT_SYMBOL_GPL(pwm_apply_state);
659
660 /**
661 * pwm_capture() - capture and report a PWM signal
662 * @pwm: PWM device
663 * @result: structure to fill with capture result
664 * @timeout: time to wait, in milliseconds, before giving up on capture
665 *
666 * Returns: 0 on success or a negative error code on failure.
667 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)668 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
669 unsigned long timeout)
670 {
671 int err;
672
673 if (!pwm || !pwm->chip->ops)
674 return -EINVAL;
675
676 if (!pwm->chip->ops->capture)
677 return -ENOSYS;
678
679 mutex_lock(&pwm_lock);
680 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
681 mutex_unlock(&pwm_lock);
682
683 return err;
684 }
685 EXPORT_SYMBOL_GPL(pwm_capture);
686
687 /**
688 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
689 * @pwm: PWM device
690 *
691 * This function will adjust the PWM config to the PWM arguments provided
692 * by the DT or PWM lookup table. This is particularly useful to adapt
693 * the bootloader config to the Linux one.
694 */
pwm_adjust_config(struct pwm_device * pwm)695 int pwm_adjust_config(struct pwm_device *pwm)
696 {
697 struct pwm_state state;
698 struct pwm_args pargs;
699
700 pwm_get_args(pwm, &pargs);
701 pwm_get_state(pwm, &state);
702
703 /*
704 * If the current period is zero it means that either the PWM driver
705 * does not support initial state retrieval or the PWM has not yet
706 * been configured.
707 *
708 * In either case, we setup the new period and polarity, and assign a
709 * duty cycle of 0.
710 */
711 if (!state.period) {
712 state.duty_cycle = 0;
713 state.period = pargs.period;
714 state.polarity = pargs.polarity;
715
716 return pwm_apply_state(pwm, &state);
717 }
718
719 /*
720 * Adjust the PWM duty cycle/period based on the period value provided
721 * in PWM args.
722 */
723 if (pargs.period != state.period) {
724 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
725
726 do_div(dutycycle, state.period);
727 state.duty_cycle = dutycycle;
728 state.period = pargs.period;
729 }
730
731 /*
732 * If the polarity changed, we should also change the duty cycle.
733 */
734 if (pargs.polarity != state.polarity) {
735 state.polarity = pargs.polarity;
736 state.duty_cycle = state.period - state.duty_cycle;
737 }
738
739 return pwm_apply_state(pwm, &state);
740 }
741 EXPORT_SYMBOL_GPL(pwm_adjust_config);
742
of_node_to_pwmchip(struct device_node * np)743 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
744 {
745 struct pwm_chip *chip;
746
747 mutex_lock(&pwm_lock);
748
749 list_for_each_entry(chip, &pwm_chips, list)
750 if (chip->dev && chip->dev->of_node == np) {
751 mutex_unlock(&pwm_lock);
752 return chip;
753 }
754
755 mutex_unlock(&pwm_lock);
756
757 return ERR_PTR(-EPROBE_DEFER);
758 }
759
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)760 static struct device_link *pwm_device_link_add(struct device *dev,
761 struct pwm_device *pwm)
762 {
763 struct device_link *dl;
764
765 if (!dev) {
766 /*
767 * No device for the PWM consumer has been provided. It may
768 * impact the PM sequence ordering: the PWM supplier may get
769 * suspended before the consumer.
770 */
771 dev_warn(pwm->chip->dev,
772 "No consumer device specified to create a link to\n");
773 return NULL;
774 }
775
776 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
777 if (!dl) {
778 dev_err(dev, "failed to create device link to %s\n",
779 dev_name(pwm->chip->dev));
780 return ERR_PTR(-EINVAL);
781 }
782
783 return dl;
784 }
785
786 /**
787 * of_pwm_get() - request a PWM via the PWM framework
788 * @dev: device for PWM consumer
789 * @np: device node to get the PWM from
790 * @con_id: consumer name
791 *
792 * Returns the PWM device parsed from the phandle and index specified in the
793 * "pwms" property of a device tree node or a negative error-code on failure.
794 * Values parsed from the device tree are stored in the returned PWM device
795 * object.
796 *
797 * If con_id is NULL, the first PWM device listed in the "pwms" property will
798 * be requested. Otherwise the "pwm-names" property is used to do a reverse
799 * lookup of the PWM index. This also means that the "pwm-names" property
800 * becomes mandatory for devices that look up the PWM device via the con_id
801 * parameter.
802 *
803 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
804 * error code on failure.
805 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)806 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
807 const char *con_id)
808 {
809 struct pwm_device *pwm = NULL;
810 struct of_phandle_args args;
811 struct device_link *dl;
812 struct pwm_chip *pc;
813 int index = 0;
814 int err;
815
816 if (con_id) {
817 index = of_property_match_string(np, "pwm-names", con_id);
818 if (index < 0)
819 return ERR_PTR(index);
820 }
821
822 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
823 &args);
824 if (err) {
825 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
826 return ERR_PTR(err);
827 }
828
829 pc = of_node_to_pwmchip(args.np);
830 if (IS_ERR(pc)) {
831 if (PTR_ERR(pc) != -EPROBE_DEFER)
832 pr_err("%s(): PWM chip not found\n", __func__);
833
834 pwm = ERR_CAST(pc);
835 goto put;
836 }
837
838 pwm = pc->of_xlate(pc, &args);
839 if (IS_ERR(pwm))
840 goto put;
841
842 dl = pwm_device_link_add(dev, pwm);
843 if (IS_ERR(dl)) {
844 /* of_xlate ended up calling pwm_request_from_chip() */
845 pwm_free(pwm);
846 pwm = ERR_CAST(dl);
847 goto put;
848 }
849
850 /*
851 * If a consumer name was not given, try to look it up from the
852 * "pwm-names" property if it exists. Otherwise use the name of
853 * the user device node.
854 */
855 if (!con_id) {
856 err = of_property_read_string_index(np, "pwm-names", index,
857 &con_id);
858 if (err < 0)
859 con_id = np->name;
860 }
861
862 pwm->label = con_id;
863
864 put:
865 of_node_put(args.np);
866
867 return pwm;
868 }
869 EXPORT_SYMBOL_GPL(of_pwm_get);
870
871 #if IS_ENABLED(CONFIG_ACPI)
device_to_pwmchip(struct device * dev)872 static struct pwm_chip *device_to_pwmchip(struct device *dev)
873 {
874 struct pwm_chip *chip;
875
876 mutex_lock(&pwm_lock);
877
878 list_for_each_entry(chip, &pwm_chips, list) {
879 struct acpi_device *adev = ACPI_COMPANION(chip->dev);
880
881 if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
882 mutex_unlock(&pwm_lock);
883 return chip;
884 }
885 }
886
887 mutex_unlock(&pwm_lock);
888
889 return ERR_PTR(-EPROBE_DEFER);
890 }
891 #endif
892
893 /**
894 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
895 * @fwnode: firmware node to get the "pwm" property from
896 *
897 * Returns the PWM device parsed from the fwnode and index specified in the
898 * "pwms" property or a negative error-code on failure.
899 * Values parsed from the device tree are stored in the returned PWM device
900 * object.
901 *
902 * This is analogous to of_pwm_get() except con_id is not yet supported.
903 * ACPI entries must look like
904 * Package () {"pwms", Package ()
905 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
906 *
907 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
908 * error code on failure.
909 */
acpi_pwm_get(struct fwnode_handle * fwnode)910 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
911 {
912 struct pwm_device *pwm = ERR_PTR(-ENODEV);
913 #if IS_ENABLED(CONFIG_ACPI)
914 struct fwnode_reference_args args;
915 struct acpi_device *acpi;
916 struct pwm_chip *chip;
917 int ret;
918
919 memset(&args, 0, sizeof(args));
920
921 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
922 if (ret < 0)
923 return ERR_PTR(ret);
924
925 acpi = to_acpi_device_node(args.fwnode);
926 if (!acpi)
927 return ERR_PTR(-EINVAL);
928
929 if (args.nargs < 2)
930 return ERR_PTR(-EPROTO);
931
932 chip = device_to_pwmchip(&acpi->dev);
933 if (IS_ERR(chip))
934 return ERR_CAST(chip);
935
936 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
937 if (IS_ERR(pwm))
938 return pwm;
939
940 pwm->args.period = args.args[1];
941 pwm->args.polarity = PWM_POLARITY_NORMAL;
942
943 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
944 pwm->args.polarity = PWM_POLARITY_INVERSED;
945 #endif
946
947 return pwm;
948 }
949
950 /**
951 * pwm_add_table() - register PWM device consumers
952 * @table: array of consumers to register
953 * @num: number of consumers in table
954 */
pwm_add_table(struct pwm_lookup * table,size_t num)955 void pwm_add_table(struct pwm_lookup *table, size_t num)
956 {
957 mutex_lock(&pwm_lookup_lock);
958
959 while (num--) {
960 list_add_tail(&table->list, &pwm_lookup_list);
961 table++;
962 }
963
964 mutex_unlock(&pwm_lookup_lock);
965 }
966
967 /**
968 * pwm_remove_table() - unregister PWM device consumers
969 * @table: array of consumers to unregister
970 * @num: number of consumers in table
971 */
pwm_remove_table(struct pwm_lookup * table,size_t num)972 void pwm_remove_table(struct pwm_lookup *table, size_t num)
973 {
974 mutex_lock(&pwm_lookup_lock);
975
976 while (num--) {
977 list_del(&table->list);
978 table++;
979 }
980
981 mutex_unlock(&pwm_lookup_lock);
982 }
983
984 /**
985 * pwm_get() - look up and request a PWM device
986 * @dev: device for PWM consumer
987 * @con_id: consumer name
988 *
989 * Lookup is first attempted using DT. If the device was not instantiated from
990 * a device tree, a PWM chip and a relative index is looked up via a table
991 * supplied by board setup code (see pwm_add_table()).
992 *
993 * Once a PWM chip has been found the specified PWM device will be requested
994 * and is ready to be used.
995 *
996 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
997 * error code on failure.
998 */
pwm_get(struct device * dev,const char * con_id)999 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1000 {
1001 const char *dev_id = dev ? dev_name(dev) : NULL;
1002 struct pwm_device *pwm;
1003 struct pwm_chip *chip;
1004 struct device_link *dl;
1005 unsigned int best = 0;
1006 struct pwm_lookup *p, *chosen = NULL;
1007 unsigned int match;
1008 int err;
1009
1010 /* look up via DT first */
1011 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1012 return of_pwm_get(dev, dev->of_node, con_id);
1013
1014 /* then lookup via ACPI */
1015 if (dev && is_acpi_node(dev->fwnode)) {
1016 pwm = acpi_pwm_get(dev->fwnode);
1017 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1018 return pwm;
1019 }
1020
1021 /*
1022 * We look up the provider in the static table typically provided by
1023 * board setup code. We first try to lookup the consumer device by
1024 * name. If the consumer device was passed in as NULL or if no match
1025 * was found, we try to find the consumer by directly looking it up
1026 * by name.
1027 *
1028 * If a match is found, the provider PWM chip is looked up by name
1029 * and a PWM device is requested using the PWM device per-chip index.
1030 *
1031 * The lookup algorithm was shamelessly taken from the clock
1032 * framework:
1033 *
1034 * We do slightly fuzzy matching here:
1035 * An entry with a NULL ID is assumed to be a wildcard.
1036 * If an entry has a device ID, it must match
1037 * If an entry has a connection ID, it must match
1038 * Then we take the most specific entry - with the following order
1039 * of precedence: dev+con > dev only > con only.
1040 */
1041 mutex_lock(&pwm_lookup_lock);
1042
1043 list_for_each_entry(p, &pwm_lookup_list, list) {
1044 match = 0;
1045
1046 if (p->dev_id) {
1047 if (!dev_id || strcmp(p->dev_id, dev_id))
1048 continue;
1049
1050 match += 2;
1051 }
1052
1053 if (p->con_id) {
1054 if (!con_id || strcmp(p->con_id, con_id))
1055 continue;
1056
1057 match += 1;
1058 }
1059
1060 if (match > best) {
1061 chosen = p;
1062
1063 if (match != 3)
1064 best = match;
1065 else
1066 break;
1067 }
1068 }
1069
1070 mutex_unlock(&pwm_lookup_lock);
1071
1072 if (!chosen)
1073 return ERR_PTR(-ENODEV);
1074
1075 chip = pwmchip_find_by_name(chosen->provider);
1076
1077 /*
1078 * If the lookup entry specifies a module, load the module and retry
1079 * the PWM chip lookup. This can be used to work around driver load
1080 * ordering issues if driver's can't be made to properly support the
1081 * deferred probe mechanism.
1082 */
1083 if (!chip && chosen->module) {
1084 err = request_module(chosen->module);
1085 if (err == 0)
1086 chip = pwmchip_find_by_name(chosen->provider);
1087 }
1088
1089 if (!chip)
1090 return ERR_PTR(-EPROBE_DEFER);
1091
1092 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1093 if (IS_ERR(pwm))
1094 return pwm;
1095
1096 dl = pwm_device_link_add(dev, pwm);
1097 if (IS_ERR(dl)) {
1098 pwm_free(pwm);
1099 return ERR_CAST(dl);
1100 }
1101
1102 pwm->args.period = chosen->period;
1103 pwm->args.polarity = chosen->polarity;
1104
1105 return pwm;
1106 }
1107 EXPORT_SYMBOL_GPL(pwm_get);
1108
1109 /**
1110 * pwm_put() - release a PWM device
1111 * @pwm: PWM device
1112 */
pwm_put(struct pwm_device * pwm)1113 void pwm_put(struct pwm_device *pwm)
1114 {
1115 if (!pwm)
1116 return;
1117
1118 mutex_lock(&pwm_lock);
1119
1120 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1121 pr_warn("PWM device already freed\n");
1122 goto out;
1123 }
1124
1125 if (pwm->chip->ops->free)
1126 pwm->chip->ops->free(pwm->chip, pwm);
1127
1128 pwm_set_chip_data(pwm, NULL);
1129 pwm->label = NULL;
1130
1131 module_put(pwm->chip->ops->owner);
1132 out:
1133 mutex_unlock(&pwm_lock);
1134 }
1135 EXPORT_SYMBOL_GPL(pwm_put);
1136
devm_pwm_release(struct device * dev,void * res)1137 static void devm_pwm_release(struct device *dev, void *res)
1138 {
1139 pwm_put(*(struct pwm_device **)res);
1140 }
1141
1142 /**
1143 * devm_pwm_get() - resource managed pwm_get()
1144 * @dev: device for PWM consumer
1145 * @con_id: consumer name
1146 *
1147 * This function performs like pwm_get() but the acquired PWM device will
1148 * automatically be released on driver detach.
1149 *
1150 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1151 * error code on failure.
1152 */
devm_pwm_get(struct device * dev,const char * con_id)1153 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1154 {
1155 struct pwm_device **ptr, *pwm;
1156
1157 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1158 if (!ptr)
1159 return ERR_PTR(-ENOMEM);
1160
1161 pwm = pwm_get(dev, con_id);
1162 if (!IS_ERR(pwm)) {
1163 *ptr = pwm;
1164 devres_add(dev, ptr);
1165 } else {
1166 devres_free(ptr);
1167 }
1168
1169 return pwm;
1170 }
1171 EXPORT_SYMBOL_GPL(devm_pwm_get);
1172
1173 /**
1174 * devm_of_pwm_get() - resource managed of_pwm_get()
1175 * @dev: device for PWM consumer
1176 * @np: device node to get the PWM from
1177 * @con_id: consumer name
1178 *
1179 * This function performs like of_pwm_get() but the acquired PWM device will
1180 * automatically be released on driver detach.
1181 *
1182 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1183 * error code on failure.
1184 */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1185 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1186 const char *con_id)
1187 {
1188 struct pwm_device **ptr, *pwm;
1189
1190 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1191 if (!ptr)
1192 return ERR_PTR(-ENOMEM);
1193
1194 pwm = of_pwm_get(dev, np, con_id);
1195 if (!IS_ERR(pwm)) {
1196 *ptr = pwm;
1197 devres_add(dev, ptr);
1198 } else {
1199 devres_free(ptr);
1200 }
1201
1202 return pwm;
1203 }
1204 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1205
1206 /**
1207 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1208 * @dev: device for PWM consumer
1209 * @fwnode: firmware node to get the PWM from
1210 * @con_id: consumer name
1211 *
1212 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1213 * acpi_pwm_get() for a detailed description.
1214 *
1215 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1216 * error code on failure.
1217 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1218 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1219 struct fwnode_handle *fwnode,
1220 const char *con_id)
1221 {
1222 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1223
1224 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1225 if (!ptr)
1226 return ERR_PTR(-ENOMEM);
1227
1228 if (is_of_node(fwnode))
1229 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1230 else if (is_acpi_node(fwnode))
1231 pwm = acpi_pwm_get(fwnode);
1232
1233 if (!IS_ERR(pwm)) {
1234 *ptr = pwm;
1235 devres_add(dev, ptr);
1236 } else {
1237 devres_free(ptr);
1238 }
1239
1240 return pwm;
1241 }
1242 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1243
devm_pwm_match(struct device * dev,void * res,void * data)1244 static int devm_pwm_match(struct device *dev, void *res, void *data)
1245 {
1246 struct pwm_device **p = res;
1247
1248 if (WARN_ON(!p || !*p))
1249 return 0;
1250
1251 return *p == data;
1252 }
1253
1254 /**
1255 * devm_pwm_put() - resource managed pwm_put()
1256 * @dev: device for PWM consumer
1257 * @pwm: PWM device
1258 *
1259 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1260 * function is usually not needed because devm-allocated resources are
1261 * automatically released on driver detach.
1262 */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)1263 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1264 {
1265 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1266 }
1267 EXPORT_SYMBOL_GPL(devm_pwm_put);
1268
1269 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1270 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1271 {
1272 unsigned int i;
1273
1274 for (i = 0; i < chip->npwm; i++) {
1275 struct pwm_device *pwm = &chip->pwms[i];
1276 struct pwm_state state;
1277
1278 pwm_get_state(pwm, &state);
1279
1280 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1281
1282 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1283 seq_puts(s, " requested");
1284
1285 if (state.enabled)
1286 seq_puts(s, " enabled");
1287
1288 seq_printf(s, " period: %llu ns", state.period);
1289 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1290 seq_printf(s, " polarity: %s",
1291 state.polarity ? "inverse" : "normal");
1292
1293 seq_puts(s, "\n");
1294 }
1295 }
1296
pwm_seq_start(struct seq_file * s,loff_t * pos)1297 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1298 {
1299 mutex_lock(&pwm_lock);
1300 s->private = "";
1301
1302 return seq_list_start(&pwm_chips, *pos);
1303 }
1304
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1305 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1306 {
1307 s->private = "\n";
1308
1309 return seq_list_next(v, &pwm_chips, pos);
1310 }
1311
pwm_seq_stop(struct seq_file * s,void * v)1312 static void pwm_seq_stop(struct seq_file *s, void *v)
1313 {
1314 mutex_unlock(&pwm_lock);
1315 }
1316
pwm_seq_show(struct seq_file * s,void * v)1317 static int pwm_seq_show(struct seq_file *s, void *v)
1318 {
1319 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1320
1321 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1322 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1323 dev_name(chip->dev), chip->npwm,
1324 (chip->npwm != 1) ? "s" : "");
1325
1326 pwm_dbg_show(chip, s);
1327
1328 return 0;
1329 }
1330
1331 static const struct seq_operations pwm_debugfs_sops = {
1332 .start = pwm_seq_start,
1333 .next = pwm_seq_next,
1334 .stop = pwm_seq_stop,
1335 .show = pwm_seq_show,
1336 };
1337
1338 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1339
pwm_debugfs_init(void)1340 static int __init pwm_debugfs_init(void)
1341 {
1342 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1343 &pwm_debugfs_fops);
1344
1345 return 0;
1346 }
1347 subsys_initcall(pwm_debugfs_init);
1348 #endif /* CONFIG_DEBUG_FS */
1349