• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
alloc_pwms(int pwm,unsigned int count)40 static int alloc_pwms(int pwm, unsigned int count)
41 {
42 	unsigned int from = 0;
43 	unsigned int start;
44 
45 	if (pwm >= MAX_PWMS)
46 		return -EINVAL;
47 
48 	if (pwm >= 0)
49 		from = pwm;
50 
51 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52 					   count, 0);
53 
54 	if (pwm >= 0 && start != pwm)
55 		return -EEXIST;
56 
57 	if (start + count > MAX_PWMS)
58 		return -ENOSPC;
59 
60 	return start;
61 }
62 
free_pwms(struct pwm_chip * chip)63 static void free_pwms(struct pwm_chip *chip)
64 {
65 	unsigned int i;
66 
67 	for (i = 0; i < chip->npwm; i++) {
68 		struct pwm_device *pwm = &chip->pwms[i];
69 
70 		radix_tree_delete(&pwm_tree, pwm->pwm);
71 	}
72 
73 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74 
75 	kfree(chip->pwms);
76 	chip->pwms = NULL;
77 }
78 
pwmchip_find_by_name(const char * name)79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
80 {
81 	struct pwm_chip *chip;
82 
83 	if (!name)
84 		return NULL;
85 
86 	mutex_lock(&pwm_lock);
87 
88 	list_for_each_entry(chip, &pwm_chips, list) {
89 		const char *chip_name = dev_name(chip->dev);
90 
91 		if (chip_name && strcmp(chip_name, name) == 0) {
92 			mutex_unlock(&pwm_lock);
93 			return chip;
94 		}
95 	}
96 
97 	mutex_unlock(&pwm_lock);
98 
99 	return NULL;
100 }
101 
pwm_device_request(struct pwm_device * pwm,const char * label)102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
103 {
104 	int err;
105 
106 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
107 		return -EBUSY;
108 
109 	if (!try_module_get(pwm->chip->ops->owner))
110 		return -ENODEV;
111 
112 	if (pwm->chip->ops->request) {
113 		err = pwm->chip->ops->request(pwm->chip, pwm);
114 		if (err) {
115 			module_put(pwm->chip->ops->owner);
116 			return err;
117 		}
118 	}
119 
120 	if (pwm->chip->ops->get_state) {
121 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 		trace_pwm_get(pwm, &pwm->state);
123 
124 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
125 			pwm->last = pwm->state;
126 	}
127 
128 	set_bit(PWMF_REQUESTED, &pwm->flags);
129 	pwm->label = label;
130 
131 	return 0;
132 }
133 
134 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136 {
137 	struct pwm_device *pwm;
138 
139 	/* check, whether the driver supports a third cell for flags */
140 	if (pc->of_pwm_n_cells < 3)
141 		return ERR_PTR(-EINVAL);
142 
143 	/* flags in the third cell are optional */
144 	if (args->args_count < 2)
145 		return ERR_PTR(-EINVAL);
146 
147 	if (args->args[0] >= pc->npwm)
148 		return ERR_PTR(-EINVAL);
149 
150 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
151 	if (IS_ERR(pwm))
152 		return pwm;
153 
154 	pwm->args.period = args->args[1];
155 	pwm->args.polarity = PWM_POLARITY_NORMAL;
156 
157 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158 		pwm->args.polarity = PWM_POLARITY_INVERSED;
159 
160 	return pwm;
161 }
162 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
163 
164 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)165 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
166 {
167 	struct pwm_device *pwm;
168 
169 	/* sanity check driver support */
170 	if (pc->of_pwm_n_cells < 2)
171 		return ERR_PTR(-EINVAL);
172 
173 	/* all cells are required */
174 	if (args->args_count != pc->of_pwm_n_cells)
175 		return ERR_PTR(-EINVAL);
176 
177 	if (args->args[0] >= pc->npwm)
178 		return ERR_PTR(-EINVAL);
179 
180 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
181 	if (IS_ERR(pwm))
182 		return pwm;
183 
184 	pwm->args.period = args->args[1];
185 
186 	return pwm;
187 }
188 
of_pwmchip_add(struct pwm_chip * chip)189 static void of_pwmchip_add(struct pwm_chip *chip)
190 {
191 	if (!chip->dev || !chip->dev->of_node)
192 		return;
193 
194 	if (!chip->of_xlate) {
195 		chip->of_xlate = of_pwm_simple_xlate;
196 		chip->of_pwm_n_cells = 2;
197 	}
198 
199 	of_node_get(chip->dev->of_node);
200 }
201 
of_pwmchip_remove(struct pwm_chip * chip)202 static void of_pwmchip_remove(struct pwm_chip *chip)
203 {
204 	if (chip->dev)
205 		of_node_put(chip->dev->of_node);
206 }
207 
208 /**
209  * pwm_set_chip_data() - set private chip data for a PWM
210  * @pwm: PWM device
211  * @data: pointer to chip-specific data
212  *
213  * Returns: 0 on success or a negative error code on failure.
214  */
pwm_set_chip_data(struct pwm_device * pwm,void * data)215 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
216 {
217 	if (!pwm)
218 		return -EINVAL;
219 
220 	pwm->chip_data = data;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225 
226 /**
227  * pwm_get_chip_data() - get private chip data for a PWM
228  * @pwm: PWM device
229  *
230  * Returns: A pointer to the chip-private data for the PWM device.
231  */
pwm_get_chip_data(struct pwm_device * pwm)232 void *pwm_get_chip_data(struct pwm_device *pwm)
233 {
234 	return pwm ? pwm->chip_data : NULL;
235 }
236 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
237 
pwm_ops_check(const struct pwm_chip * chip)238 static bool pwm_ops_check(const struct pwm_chip *chip)
239 {
240 
241 	const struct pwm_ops *ops = chip->ops;
242 
243 	/* driver supports legacy, non-atomic operation */
244 	if (ops->config && ops->enable && ops->disable) {
245 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
246 			dev_warn(chip->dev,
247 				 "Driver needs updating to atomic API\n");
248 
249 		return true;
250 	}
251 
252 	if (!ops->apply)
253 		return false;
254 
255 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256 		dev_warn(chip->dev,
257 			 "Please implement the .get_state() callback\n");
258 
259 	return true;
260 }
261 
262 /**
263  * pwmchip_add_with_polarity() - register a new PWM chip
264  * @chip: the PWM chip to add
265  * @polarity: initial polarity of PWM channels
266  *
267  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268  * will be used. The initial polarity for all channels is specified by the
269  * @polarity parameter.
270  *
271  * Returns: 0 on success or a negative error code on failure.
272  */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)273 int pwmchip_add_with_polarity(struct pwm_chip *chip,
274 			      enum pwm_polarity polarity)
275 {
276 	struct pwm_device *pwm;
277 	unsigned int i;
278 	int ret;
279 
280 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
281 		return -EINVAL;
282 
283 	if (!pwm_ops_check(chip))
284 		return -EINVAL;
285 
286 	mutex_lock(&pwm_lock);
287 
288 	ret = alloc_pwms(chip->base, chip->npwm);
289 	if (ret < 0)
290 		goto out;
291 
292 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
293 	if (!chip->pwms) {
294 		ret = -ENOMEM;
295 		goto out;
296 	}
297 
298 	chip->base = ret;
299 
300 	for (i = 0; i < chip->npwm; i++) {
301 		pwm = &chip->pwms[i];
302 
303 		pwm->chip = chip;
304 		pwm->pwm = chip->base + i;
305 		pwm->hwpwm = i;
306 		pwm->state.polarity = polarity;
307 		pwm->state.output_type = PWM_OUTPUT_FIXED;
308 
309 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
310 	}
311 
312 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
313 
314 	INIT_LIST_HEAD(&chip->list);
315 	list_add(&chip->list, &pwm_chips);
316 
317 	ret = 0;
318 
319 	if (IS_ENABLED(CONFIG_OF))
320 		of_pwmchip_add(chip);
321 
322 out:
323 	mutex_unlock(&pwm_lock);
324 
325 	if (!ret)
326 		pwmchip_sysfs_export(chip);
327 
328 	return ret;
329 }
330 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
331 
332 /**
333  * pwmchip_add() - register a new PWM chip
334  * @chip: the PWM chip to add
335  *
336  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
337  * will be used. The initial polarity for all channels is normal.
338  *
339  * Returns: 0 on success or a negative error code on failure.
340  */
pwmchip_add(struct pwm_chip * chip)341 int pwmchip_add(struct pwm_chip *chip)
342 {
343 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
344 }
345 EXPORT_SYMBOL_GPL(pwmchip_add);
346 
347 /**
348  * pwmchip_remove() - remove a PWM chip
349  * @chip: the PWM chip to remove
350  *
351  * Removes a PWM chip. This function may return busy if the PWM chip provides
352  * a PWM device that is still requested.
353  *
354  * Returns: 0 on success or a negative error code on failure.
355  */
pwmchip_remove(struct pwm_chip * chip)356 int pwmchip_remove(struct pwm_chip *chip)
357 {
358 	unsigned int i;
359 	int ret = 0;
360 
361 	pwmchip_sysfs_unexport(chip);
362 
363 	mutex_lock(&pwm_lock);
364 
365 	for (i = 0; i < chip->npwm; i++) {
366 		struct pwm_device *pwm = &chip->pwms[i];
367 
368 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
369 			ret = -EBUSY;
370 			goto out;
371 		}
372 	}
373 
374 	list_del_init(&chip->list);
375 
376 	if (IS_ENABLED(CONFIG_OF))
377 		of_pwmchip_remove(chip);
378 
379 	free_pwms(chip);
380 
381 out:
382 	mutex_unlock(&pwm_lock);
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(pwmchip_remove);
386 
387 /**
388  * pwm_request() - request a PWM device
389  * @pwm: global PWM device index
390  * @label: PWM device label
391  *
392  * This function is deprecated, use pwm_get() instead.
393  *
394  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
395  * failure.
396  */
pwm_request(int pwm,const char * label)397 struct pwm_device *pwm_request(int pwm, const char *label)
398 {
399 	struct pwm_device *dev;
400 	int err;
401 
402 	if (pwm < 0 || pwm >= MAX_PWMS)
403 		return ERR_PTR(-EINVAL);
404 
405 	mutex_lock(&pwm_lock);
406 
407 	dev = pwm_to_device(pwm);
408 	if (!dev) {
409 		dev = ERR_PTR(-EPROBE_DEFER);
410 		goto out;
411 	}
412 
413 	err = pwm_device_request(dev, label);
414 	if (err < 0)
415 		dev = ERR_PTR(err);
416 
417 out:
418 	mutex_unlock(&pwm_lock);
419 
420 	return dev;
421 }
422 EXPORT_SYMBOL_GPL(pwm_request);
423 
424 /**
425  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
426  * @chip: PWM chip
427  * @index: per-chip index of the PWM to request
428  * @label: a literal description string of this PWM
429  *
430  * Returns: A pointer to the PWM device at the given index of the given PWM
431  * chip. A negative error code is returned if the index is not valid for the
432  * specified PWM chip or if the PWM device cannot be requested.
433  */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)434 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
435 					 unsigned int index,
436 					 const char *label)
437 {
438 	struct pwm_device *pwm;
439 	int err;
440 
441 	if (!chip || index >= chip->npwm)
442 		return ERR_PTR(-EINVAL);
443 
444 	mutex_lock(&pwm_lock);
445 	pwm = &chip->pwms[index];
446 
447 	err = pwm_device_request(pwm, label);
448 	if (err < 0)
449 		pwm = ERR_PTR(err);
450 
451 	mutex_unlock(&pwm_lock);
452 	return pwm;
453 }
454 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
455 
456 /**
457  * pwm_free() - free a PWM device
458  * @pwm: PWM device
459  *
460  * This function is deprecated, use pwm_put() instead.
461  */
pwm_free(struct pwm_device * pwm)462 void pwm_free(struct pwm_device *pwm)
463 {
464 	pwm_put(pwm);
465 }
466 EXPORT_SYMBOL_GPL(pwm_free);
467 
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)468 static void pwm_apply_state_debug(struct pwm_device *pwm,
469 				  const struct pwm_state *state)
470 {
471 	struct pwm_state *last = &pwm->last;
472 	struct pwm_chip *chip = pwm->chip;
473 	struct pwm_state s1, s2;
474 	int err;
475 
476 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
477 		return;
478 
479 	/* No reasonable diagnosis possible without .get_state() */
480 	if (!chip->ops->get_state)
481 		return;
482 
483 	/*
484 	 * *state was just applied. Read out the hardware state and do some
485 	 * checks.
486 	 */
487 
488 	chip->ops->get_state(chip, pwm, &s1);
489 	trace_pwm_get(pwm, &s1);
490 
491 	/*
492 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
493 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
494 	 * Undo this inversion and fixup for further tests.
495 	 */
496 	if (s1.enabled && s1.polarity != state->polarity) {
497 		s2.polarity = state->polarity;
498 		s2.duty_cycle = s1.period - s1.duty_cycle;
499 		s2.period = s1.period;
500 		s2.enabled = s1.enabled;
501 	} else {
502 		s2 = s1;
503 	}
504 
505 	if (s2.polarity != state->polarity &&
506 	    state->duty_cycle < state->period)
507 		dev_warn(chip->dev, ".apply ignored .polarity\n");
508 
509 	if (state->enabled &&
510 	    last->polarity == state->polarity &&
511 	    last->period > s2.period &&
512 	    last->period <= state->period)
513 		dev_warn(chip->dev,
514 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
515 			 state->period, s2.period, last->period);
516 
517 	if (state->enabled && state->period < s2.period)
518 		dev_warn(chip->dev,
519 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
520 			 state->period, s2.period);
521 
522 	if (state->enabled &&
523 	    last->polarity == state->polarity &&
524 	    last->period == s2.period &&
525 	    last->duty_cycle > s2.duty_cycle &&
526 	    last->duty_cycle <= state->duty_cycle)
527 		dev_warn(chip->dev,
528 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
529 			 state->duty_cycle, state->period,
530 			 s2.duty_cycle, s2.period,
531 			 last->duty_cycle, last->period);
532 
533 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
534 		dev_warn(chip->dev,
535 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
536 			 state->duty_cycle, state->period,
537 			 s2.duty_cycle, s2.period);
538 
539 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
540 		dev_warn(chip->dev,
541 			 "requested disabled, but yielded enabled with duty > 0\n");
542 
543 	/* reapply the state that the driver reported being configured. */
544 	err = chip->ops->apply(chip, pwm, &s1);
545 	if (err) {
546 		*last = s1;
547 		dev_err(chip->dev, "failed to reapply current setting\n");
548 		return;
549 	}
550 
551 	trace_pwm_apply(pwm, &s1);
552 
553 	chip->ops->get_state(chip, pwm, last);
554 	trace_pwm_get(pwm, last);
555 
556 	/* reapplication of the current state should give an exact match */
557 	if (s1.enabled != last->enabled ||
558 	    s1.polarity != last->polarity ||
559 	    (s1.enabled && s1.period != last->period) ||
560 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
561 		dev_err(chip->dev,
562 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
563 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
564 			last->enabled, last->polarity, last->duty_cycle,
565 			last->period);
566 	}
567 }
568 
569 /**
570  * pwm_apply_state() - atomically apply a new state to a PWM device
571  * @pwm: PWM device
572  * @state: new state to apply
573  */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)574 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
575 {
576 	struct pwm_chip *chip;
577 	int err;
578 
579 	if (!pwm || !state || !state->period ||
580 	    state->duty_cycle > state->period)
581 		return -EINVAL;
582 
583 	chip = pwm->chip;
584 
585 	if (state->period == pwm->state.period &&
586 	    state->duty_cycle == pwm->state.duty_cycle &&
587 	    state->polarity == pwm->state.polarity &&
588 	    state->enabled == pwm->state.enabled)
589 		return 0;
590 
591 	if (chip->ops->apply) {
592 		err = chip->ops->apply(chip, pwm, state);
593 		if (err)
594 			return err;
595 
596 		trace_pwm_apply(pwm, state);
597 
598 		pwm->state = *state;
599 
600 		/*
601 		 * only do this after pwm->state was applied as some
602 		 * implementations of .get_state depend on this
603 		 */
604 		pwm_apply_state_debug(pwm, state);
605 	} else {
606 		/*
607 		 * FIXME: restore the initial state in case of error.
608 		 */
609 		if (state->polarity != pwm->state.polarity) {
610 			if (!chip->ops->set_polarity)
611 				return -ENOTSUPP;
612 
613 			/*
614 			 * Changing the polarity of a running PWM is
615 			 * only allowed when the PWM driver implements
616 			 * ->apply().
617 			 */
618 			if (pwm->state.enabled) {
619 				chip->ops->disable(chip, pwm);
620 				pwm->state.enabled = false;
621 			}
622 
623 			err = chip->ops->set_polarity(chip, pwm,
624 						      state->polarity);
625 			if (err)
626 				return err;
627 
628 			pwm->state.polarity = state->polarity;
629 		}
630 
631 		if (state->period != pwm->state.period ||
632 		    state->duty_cycle != pwm->state.duty_cycle) {
633 			err = chip->ops->config(pwm->chip, pwm,
634 						state->duty_cycle,
635 						state->period);
636 			if (err)
637 				return err;
638 
639 			pwm->state.duty_cycle = state->duty_cycle;
640 			pwm->state.period = state->period;
641 		}
642 
643 		if (state->enabled != pwm->state.enabled) {
644 			if (state->enabled) {
645 				err = chip->ops->enable(chip, pwm);
646 				if (err)
647 					return err;
648 			} else {
649 				chip->ops->disable(chip, pwm);
650 			}
651 
652 			pwm->state.enabled = state->enabled;
653 		}
654 	}
655 
656 	return 0;
657 }
658 EXPORT_SYMBOL_GPL(pwm_apply_state);
659 
660 /**
661  * pwm_capture() - capture and report a PWM signal
662  * @pwm: PWM device
663  * @result: structure to fill with capture result
664  * @timeout: time to wait, in milliseconds, before giving up on capture
665  *
666  * Returns: 0 on success or a negative error code on failure.
667  */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)668 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
669 		unsigned long timeout)
670 {
671 	int err;
672 
673 	if (!pwm || !pwm->chip->ops)
674 		return -EINVAL;
675 
676 	if (!pwm->chip->ops->capture)
677 		return -ENOSYS;
678 
679 	mutex_lock(&pwm_lock);
680 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
681 	mutex_unlock(&pwm_lock);
682 
683 	return err;
684 }
685 EXPORT_SYMBOL_GPL(pwm_capture);
686 
687 /**
688  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
689  * @pwm: PWM device
690  *
691  * This function will adjust the PWM config to the PWM arguments provided
692  * by the DT or PWM lookup table. This is particularly useful to adapt
693  * the bootloader config to the Linux one.
694  */
pwm_adjust_config(struct pwm_device * pwm)695 int pwm_adjust_config(struct pwm_device *pwm)
696 {
697 	struct pwm_state state;
698 	struct pwm_args pargs;
699 
700 	pwm_get_args(pwm, &pargs);
701 	pwm_get_state(pwm, &state);
702 
703 	/*
704 	 * If the current period is zero it means that either the PWM driver
705 	 * does not support initial state retrieval or the PWM has not yet
706 	 * been configured.
707 	 *
708 	 * In either case, we setup the new period and polarity, and assign a
709 	 * duty cycle of 0.
710 	 */
711 	if (!state.period) {
712 		state.duty_cycle = 0;
713 		state.period = pargs.period;
714 		state.polarity = pargs.polarity;
715 
716 		return pwm_apply_state(pwm, &state);
717 	}
718 
719 	/*
720 	 * Adjust the PWM duty cycle/period based on the period value provided
721 	 * in PWM args.
722 	 */
723 	if (pargs.period != state.period) {
724 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
725 
726 		do_div(dutycycle, state.period);
727 		state.duty_cycle = dutycycle;
728 		state.period = pargs.period;
729 	}
730 
731 	/*
732 	 * If the polarity changed, we should also change the duty cycle.
733 	 */
734 	if (pargs.polarity != state.polarity) {
735 		state.polarity = pargs.polarity;
736 		state.duty_cycle = state.period - state.duty_cycle;
737 	}
738 
739 	return pwm_apply_state(pwm, &state);
740 }
741 EXPORT_SYMBOL_GPL(pwm_adjust_config);
742 
of_node_to_pwmchip(struct device_node * np)743 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
744 {
745 	struct pwm_chip *chip;
746 
747 	mutex_lock(&pwm_lock);
748 
749 	list_for_each_entry(chip, &pwm_chips, list)
750 		if (chip->dev && chip->dev->of_node == np) {
751 			mutex_unlock(&pwm_lock);
752 			return chip;
753 		}
754 
755 	mutex_unlock(&pwm_lock);
756 
757 	return ERR_PTR(-EPROBE_DEFER);
758 }
759 
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)760 static struct device_link *pwm_device_link_add(struct device *dev,
761 					       struct pwm_device *pwm)
762 {
763 	struct device_link *dl;
764 
765 	if (!dev) {
766 		/*
767 		 * No device for the PWM consumer has been provided. It may
768 		 * impact the PM sequence ordering: the PWM supplier may get
769 		 * suspended before the consumer.
770 		 */
771 		dev_warn(pwm->chip->dev,
772 			 "No consumer device specified to create a link to\n");
773 		return NULL;
774 	}
775 
776 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
777 	if (!dl) {
778 		dev_err(dev, "failed to create device link to %s\n",
779 			dev_name(pwm->chip->dev));
780 		return ERR_PTR(-EINVAL);
781 	}
782 
783 	return dl;
784 }
785 
786 /**
787  * of_pwm_get() - request a PWM via the PWM framework
788  * @dev: device for PWM consumer
789  * @np: device node to get the PWM from
790  * @con_id: consumer name
791  *
792  * Returns the PWM device parsed from the phandle and index specified in the
793  * "pwms" property of a device tree node or a negative error-code on failure.
794  * Values parsed from the device tree are stored in the returned PWM device
795  * object.
796  *
797  * If con_id is NULL, the first PWM device listed in the "pwms" property will
798  * be requested. Otherwise the "pwm-names" property is used to do a reverse
799  * lookup of the PWM index. This also means that the "pwm-names" property
800  * becomes mandatory for devices that look up the PWM device via the con_id
801  * parameter.
802  *
803  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
804  * error code on failure.
805  */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)806 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
807 			      const char *con_id)
808 {
809 	struct pwm_device *pwm = NULL;
810 	struct of_phandle_args args;
811 	struct device_link *dl;
812 	struct pwm_chip *pc;
813 	int index = 0;
814 	int err;
815 
816 	if (con_id) {
817 		index = of_property_match_string(np, "pwm-names", con_id);
818 		if (index < 0)
819 			return ERR_PTR(index);
820 	}
821 
822 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
823 					 &args);
824 	if (err) {
825 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
826 		return ERR_PTR(err);
827 	}
828 
829 	pc = of_node_to_pwmchip(args.np);
830 	if (IS_ERR(pc)) {
831 		if (PTR_ERR(pc) != -EPROBE_DEFER)
832 			pr_err("%s(): PWM chip not found\n", __func__);
833 
834 		pwm = ERR_CAST(pc);
835 		goto put;
836 	}
837 
838 	pwm = pc->of_xlate(pc, &args);
839 	if (IS_ERR(pwm))
840 		goto put;
841 
842 	dl = pwm_device_link_add(dev, pwm);
843 	if (IS_ERR(dl)) {
844 		/* of_xlate ended up calling pwm_request_from_chip() */
845 		pwm_free(pwm);
846 		pwm = ERR_CAST(dl);
847 		goto put;
848 	}
849 
850 	/*
851 	 * If a consumer name was not given, try to look it up from the
852 	 * "pwm-names" property if it exists. Otherwise use the name of
853 	 * the user device node.
854 	 */
855 	if (!con_id) {
856 		err = of_property_read_string_index(np, "pwm-names", index,
857 						    &con_id);
858 		if (err < 0)
859 			con_id = np->name;
860 	}
861 
862 	pwm->label = con_id;
863 
864 put:
865 	of_node_put(args.np);
866 
867 	return pwm;
868 }
869 EXPORT_SYMBOL_GPL(of_pwm_get);
870 
871 #if IS_ENABLED(CONFIG_ACPI)
device_to_pwmchip(struct device * dev)872 static struct pwm_chip *device_to_pwmchip(struct device *dev)
873 {
874 	struct pwm_chip *chip;
875 
876 	mutex_lock(&pwm_lock);
877 
878 	list_for_each_entry(chip, &pwm_chips, list) {
879 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
880 
881 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
882 			mutex_unlock(&pwm_lock);
883 			return chip;
884 		}
885 	}
886 
887 	mutex_unlock(&pwm_lock);
888 
889 	return ERR_PTR(-EPROBE_DEFER);
890 }
891 #endif
892 
893 /**
894  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
895  * @fwnode: firmware node to get the "pwm" property from
896  *
897  * Returns the PWM device parsed from the fwnode and index specified in the
898  * "pwms" property or a negative error-code on failure.
899  * Values parsed from the device tree are stored in the returned PWM device
900  * object.
901  *
902  * This is analogous to of_pwm_get() except con_id is not yet supported.
903  * ACPI entries must look like
904  * Package () {"pwms", Package ()
905  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
906  *
907  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
908  * error code on failure.
909  */
acpi_pwm_get(struct fwnode_handle * fwnode)910 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
911 {
912 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
913 #if IS_ENABLED(CONFIG_ACPI)
914 	struct fwnode_reference_args args;
915 	struct acpi_device *acpi;
916 	struct pwm_chip *chip;
917 	int ret;
918 
919 	memset(&args, 0, sizeof(args));
920 
921 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
922 	if (ret < 0)
923 		return ERR_PTR(ret);
924 
925 	acpi = to_acpi_device_node(args.fwnode);
926 	if (!acpi)
927 		return ERR_PTR(-EINVAL);
928 
929 	if (args.nargs < 2)
930 		return ERR_PTR(-EPROTO);
931 
932 	chip = device_to_pwmchip(&acpi->dev);
933 	if (IS_ERR(chip))
934 		return ERR_CAST(chip);
935 
936 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
937 	if (IS_ERR(pwm))
938 		return pwm;
939 
940 	pwm->args.period = args.args[1];
941 	pwm->args.polarity = PWM_POLARITY_NORMAL;
942 
943 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
944 		pwm->args.polarity = PWM_POLARITY_INVERSED;
945 #endif
946 
947 	return pwm;
948 }
949 
950 /**
951  * pwm_add_table() - register PWM device consumers
952  * @table: array of consumers to register
953  * @num: number of consumers in table
954  */
pwm_add_table(struct pwm_lookup * table,size_t num)955 void pwm_add_table(struct pwm_lookup *table, size_t num)
956 {
957 	mutex_lock(&pwm_lookup_lock);
958 
959 	while (num--) {
960 		list_add_tail(&table->list, &pwm_lookup_list);
961 		table++;
962 	}
963 
964 	mutex_unlock(&pwm_lookup_lock);
965 }
966 
967 /**
968  * pwm_remove_table() - unregister PWM device consumers
969  * @table: array of consumers to unregister
970  * @num: number of consumers in table
971  */
pwm_remove_table(struct pwm_lookup * table,size_t num)972 void pwm_remove_table(struct pwm_lookup *table, size_t num)
973 {
974 	mutex_lock(&pwm_lookup_lock);
975 
976 	while (num--) {
977 		list_del(&table->list);
978 		table++;
979 	}
980 
981 	mutex_unlock(&pwm_lookup_lock);
982 }
983 
984 /**
985  * pwm_get() - look up and request a PWM device
986  * @dev: device for PWM consumer
987  * @con_id: consumer name
988  *
989  * Lookup is first attempted using DT. If the device was not instantiated from
990  * a device tree, a PWM chip and a relative index is looked up via a table
991  * supplied by board setup code (see pwm_add_table()).
992  *
993  * Once a PWM chip has been found the specified PWM device will be requested
994  * and is ready to be used.
995  *
996  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
997  * error code on failure.
998  */
pwm_get(struct device * dev,const char * con_id)999 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1000 {
1001 	const char *dev_id = dev ? dev_name(dev) : NULL;
1002 	struct pwm_device *pwm;
1003 	struct pwm_chip *chip;
1004 	struct device_link *dl;
1005 	unsigned int best = 0;
1006 	struct pwm_lookup *p, *chosen = NULL;
1007 	unsigned int match;
1008 	int err;
1009 
1010 	/* look up via DT first */
1011 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1012 		return of_pwm_get(dev, dev->of_node, con_id);
1013 
1014 	/* then lookup via ACPI */
1015 	if (dev && is_acpi_node(dev->fwnode)) {
1016 		pwm = acpi_pwm_get(dev->fwnode);
1017 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1018 			return pwm;
1019 	}
1020 
1021 	/*
1022 	 * We look up the provider in the static table typically provided by
1023 	 * board setup code. We first try to lookup the consumer device by
1024 	 * name. If the consumer device was passed in as NULL or if no match
1025 	 * was found, we try to find the consumer by directly looking it up
1026 	 * by name.
1027 	 *
1028 	 * If a match is found, the provider PWM chip is looked up by name
1029 	 * and a PWM device is requested using the PWM device per-chip index.
1030 	 *
1031 	 * The lookup algorithm was shamelessly taken from the clock
1032 	 * framework:
1033 	 *
1034 	 * We do slightly fuzzy matching here:
1035 	 *  An entry with a NULL ID is assumed to be a wildcard.
1036 	 *  If an entry has a device ID, it must match
1037 	 *  If an entry has a connection ID, it must match
1038 	 * Then we take the most specific entry - with the following order
1039 	 * of precedence: dev+con > dev only > con only.
1040 	 */
1041 	mutex_lock(&pwm_lookup_lock);
1042 
1043 	list_for_each_entry(p, &pwm_lookup_list, list) {
1044 		match = 0;
1045 
1046 		if (p->dev_id) {
1047 			if (!dev_id || strcmp(p->dev_id, dev_id))
1048 				continue;
1049 
1050 			match += 2;
1051 		}
1052 
1053 		if (p->con_id) {
1054 			if (!con_id || strcmp(p->con_id, con_id))
1055 				continue;
1056 
1057 			match += 1;
1058 		}
1059 
1060 		if (match > best) {
1061 			chosen = p;
1062 
1063 			if (match != 3)
1064 				best = match;
1065 			else
1066 				break;
1067 		}
1068 	}
1069 
1070 	mutex_unlock(&pwm_lookup_lock);
1071 
1072 	if (!chosen)
1073 		return ERR_PTR(-ENODEV);
1074 
1075 	chip = pwmchip_find_by_name(chosen->provider);
1076 
1077 	/*
1078 	 * If the lookup entry specifies a module, load the module and retry
1079 	 * the PWM chip lookup. This can be used to work around driver load
1080 	 * ordering issues if driver's can't be made to properly support the
1081 	 * deferred probe mechanism.
1082 	 */
1083 	if (!chip && chosen->module) {
1084 		err = request_module(chosen->module);
1085 		if (err == 0)
1086 			chip = pwmchip_find_by_name(chosen->provider);
1087 	}
1088 
1089 	if (!chip)
1090 		return ERR_PTR(-EPROBE_DEFER);
1091 
1092 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1093 	if (IS_ERR(pwm))
1094 		return pwm;
1095 
1096 	dl = pwm_device_link_add(dev, pwm);
1097 	if (IS_ERR(dl)) {
1098 		pwm_free(pwm);
1099 		return ERR_CAST(dl);
1100 	}
1101 
1102 	pwm->args.period = chosen->period;
1103 	pwm->args.polarity = chosen->polarity;
1104 
1105 	return pwm;
1106 }
1107 EXPORT_SYMBOL_GPL(pwm_get);
1108 
1109 /**
1110  * pwm_put() - release a PWM device
1111  * @pwm: PWM device
1112  */
pwm_put(struct pwm_device * pwm)1113 void pwm_put(struct pwm_device *pwm)
1114 {
1115 	if (!pwm)
1116 		return;
1117 
1118 	mutex_lock(&pwm_lock);
1119 
1120 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1121 		pr_warn("PWM device already freed\n");
1122 		goto out;
1123 	}
1124 
1125 	if (pwm->chip->ops->free)
1126 		pwm->chip->ops->free(pwm->chip, pwm);
1127 
1128 	pwm_set_chip_data(pwm, NULL);
1129 	pwm->label = NULL;
1130 
1131 	module_put(pwm->chip->ops->owner);
1132 out:
1133 	mutex_unlock(&pwm_lock);
1134 }
1135 EXPORT_SYMBOL_GPL(pwm_put);
1136 
devm_pwm_release(struct device * dev,void * res)1137 static void devm_pwm_release(struct device *dev, void *res)
1138 {
1139 	pwm_put(*(struct pwm_device **)res);
1140 }
1141 
1142 /**
1143  * devm_pwm_get() - resource managed pwm_get()
1144  * @dev: device for PWM consumer
1145  * @con_id: consumer name
1146  *
1147  * This function performs like pwm_get() but the acquired PWM device will
1148  * automatically be released on driver detach.
1149  *
1150  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1151  * error code on failure.
1152  */
devm_pwm_get(struct device * dev,const char * con_id)1153 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1154 {
1155 	struct pwm_device **ptr, *pwm;
1156 
1157 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1158 	if (!ptr)
1159 		return ERR_PTR(-ENOMEM);
1160 
1161 	pwm = pwm_get(dev, con_id);
1162 	if (!IS_ERR(pwm)) {
1163 		*ptr = pwm;
1164 		devres_add(dev, ptr);
1165 	} else {
1166 		devres_free(ptr);
1167 	}
1168 
1169 	return pwm;
1170 }
1171 EXPORT_SYMBOL_GPL(devm_pwm_get);
1172 
1173 /**
1174  * devm_of_pwm_get() - resource managed of_pwm_get()
1175  * @dev: device for PWM consumer
1176  * @np: device node to get the PWM from
1177  * @con_id: consumer name
1178  *
1179  * This function performs like of_pwm_get() but the acquired PWM device will
1180  * automatically be released on driver detach.
1181  *
1182  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1183  * error code on failure.
1184  */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1185 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1186 				   const char *con_id)
1187 {
1188 	struct pwm_device **ptr, *pwm;
1189 
1190 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1191 	if (!ptr)
1192 		return ERR_PTR(-ENOMEM);
1193 
1194 	pwm = of_pwm_get(dev, np, con_id);
1195 	if (!IS_ERR(pwm)) {
1196 		*ptr = pwm;
1197 		devres_add(dev, ptr);
1198 	} else {
1199 		devres_free(ptr);
1200 	}
1201 
1202 	return pwm;
1203 }
1204 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1205 
1206 /**
1207  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1208  * @dev: device for PWM consumer
1209  * @fwnode: firmware node to get the PWM from
1210  * @con_id: consumer name
1211  *
1212  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1213  * acpi_pwm_get() for a detailed description.
1214  *
1215  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1216  * error code on failure.
1217  */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1218 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1219 				       struct fwnode_handle *fwnode,
1220 				       const char *con_id)
1221 {
1222 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1223 
1224 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1225 	if (!ptr)
1226 		return ERR_PTR(-ENOMEM);
1227 
1228 	if (is_of_node(fwnode))
1229 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1230 	else if (is_acpi_node(fwnode))
1231 		pwm = acpi_pwm_get(fwnode);
1232 
1233 	if (!IS_ERR(pwm)) {
1234 		*ptr = pwm;
1235 		devres_add(dev, ptr);
1236 	} else {
1237 		devres_free(ptr);
1238 	}
1239 
1240 	return pwm;
1241 }
1242 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1243 
devm_pwm_match(struct device * dev,void * res,void * data)1244 static int devm_pwm_match(struct device *dev, void *res, void *data)
1245 {
1246 	struct pwm_device **p = res;
1247 
1248 	if (WARN_ON(!p || !*p))
1249 		return 0;
1250 
1251 	return *p == data;
1252 }
1253 
1254 /**
1255  * devm_pwm_put() - resource managed pwm_put()
1256  * @dev: device for PWM consumer
1257  * @pwm: PWM device
1258  *
1259  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1260  * function is usually not needed because devm-allocated resources are
1261  * automatically released on driver detach.
1262  */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)1263 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1264 {
1265 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1266 }
1267 EXPORT_SYMBOL_GPL(devm_pwm_put);
1268 
1269 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1270 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1271 {
1272 	unsigned int i;
1273 
1274 	for (i = 0; i < chip->npwm; i++) {
1275 		struct pwm_device *pwm = &chip->pwms[i];
1276 		struct pwm_state state;
1277 
1278 		pwm_get_state(pwm, &state);
1279 
1280 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1281 
1282 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1283 			seq_puts(s, " requested");
1284 
1285 		if (state.enabled)
1286 			seq_puts(s, " enabled");
1287 
1288 		seq_printf(s, " period: %llu ns", state.period);
1289 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1290 		seq_printf(s, " polarity: %s",
1291 			   state.polarity ? "inverse" : "normal");
1292 
1293 		seq_puts(s, "\n");
1294 	}
1295 }
1296 
pwm_seq_start(struct seq_file * s,loff_t * pos)1297 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1298 {
1299 	mutex_lock(&pwm_lock);
1300 	s->private = "";
1301 
1302 	return seq_list_start(&pwm_chips, *pos);
1303 }
1304 
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1305 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1306 {
1307 	s->private = "\n";
1308 
1309 	return seq_list_next(v, &pwm_chips, pos);
1310 }
1311 
pwm_seq_stop(struct seq_file * s,void * v)1312 static void pwm_seq_stop(struct seq_file *s, void *v)
1313 {
1314 	mutex_unlock(&pwm_lock);
1315 }
1316 
pwm_seq_show(struct seq_file * s,void * v)1317 static int pwm_seq_show(struct seq_file *s, void *v)
1318 {
1319 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1320 
1321 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1322 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1323 		   dev_name(chip->dev), chip->npwm,
1324 		   (chip->npwm != 1) ? "s" : "");
1325 
1326 	pwm_dbg_show(chip, s);
1327 
1328 	return 0;
1329 }
1330 
1331 static const struct seq_operations pwm_debugfs_sops = {
1332 	.start = pwm_seq_start,
1333 	.next = pwm_seq_next,
1334 	.stop = pwm_seq_stop,
1335 	.show = pwm_seq_show,
1336 };
1337 
1338 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1339 
pwm_debugfs_init(void)1340 static int __init pwm_debugfs_init(void)
1341 {
1342 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1343 			    &pwm_debugfs_fops);
1344 
1345 	return 0;
1346 }
1347 subsys_initcall(pwm_debugfs_init);
1348 #endif /* CONFIG_DEBUG_FS */
1349