1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
5 *
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13
14 #include "qbman-portal.h"
15
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE 0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI 0x800
25 #define QBMAN_CINH_SWP_EQCR_CI 0x840
26 #define QBMAN_CINH_SWP_EQAR 0x8c0
27 #define QBMAN_CINH_SWP_CR_RT 0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
31 #define QBMAN_CINH_SWP_DQPI 0xa00
32 #define QBMAN_CINH_SWP_DCAP 0xac0
33 #define QBMAN_CINH_SWP_SDQCR 0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
35 #define QBMAN_CINH_SWP_RCR_PI 0xc00
36 #define QBMAN_CINH_SWP_RAR 0xcc0
37 #define QBMAN_CINH_SWP_ISR 0xe00
38 #define QBMAN_CINH_SWP_IER 0xe40
39 #define QBMAN_CINH_SWP_ISDR 0xe80
40 #define QBMAN_CINH_SWP_IIR 0xec0
41
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR 0x600
47 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR 0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM 0x1600
56 #define QBMAN_CENA_SWP_RR_MEM 0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
58
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
64
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT 29
67 #define QB_SDQCR_FC_MASK 0x1
68 #define QB_SDQCR_DCT_SHIFT 24
69 #define QB_SDQCR_DCT_MASK 0x3
70 #define QB_SDQCR_TOK_SHIFT 16
71 #define QB_SDQCR_TOK_MASK 0xff
72 #define QB_SDQCR_SRC_SHIFT 0
73 #define QB_SDQCR_SRC_MASK 0xffff
74
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN 0xbb
77
78 #define QBMAN_EQCR_DCA_IDXMASK 0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
80
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
83
84 enum qbman_sdqcr_dct {
85 qbman_sdqcr_dct_null = 0,
86 qbman_sdqcr_dct_prio_ics,
87 qbman_sdqcr_dct_active_ics,
88 qbman_sdqcr_dct_active
89 };
90
91 enum qbman_sdqcr_fc {
92 qbman_sdqcr_fc_one = 0,
93 qbman_sdqcr_fc_up_to_3 = 1
94 };
95
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98 const struct qbman_eq_desc *d,
99 const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101 const struct qbman_eq_desc *d,
102 const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104 const struct qbman_eq_desc *d,
105 const struct dpaa2_fd *fd,
106 uint32_t *flags,
107 int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109 const struct qbman_eq_desc *d,
110 const struct dpaa2_fd *fd,
111 uint32_t *flags,
112 int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115 const struct qbman_eq_desc *d,
116 const struct dpaa2_fd *fd,
117 int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120 const struct qbman_eq_desc *d,
121 const struct dpaa2_fd *fd,
122 int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124 struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126 struct qbman_pull_desc *d);
127
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132 const struct qbman_release_desc *d,
133 const u64 *buffers,
134 unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136 const struct qbman_release_desc *d,
137 const u64 *buffers,
138 unsigned int num_buffers);
139
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142 const struct qbman_eq_desc *d,
143 const struct dpaa2_fd *fd)
144 = qbman_swp_enqueue_direct;
145
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147 const struct qbman_eq_desc *d,
148 const struct dpaa2_fd *fd,
149 uint32_t *flags,
150 int num_frames)
151 = qbman_swp_enqueue_multiple_direct;
152
153 int
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155 const struct qbman_eq_desc *d,
156 const struct dpaa2_fd *fd,
157 int num_frames)
158 = qbman_swp_enqueue_multiple_desc_direct;
159
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161 = qbman_swp_pull_direct;
162
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164 = qbman_swp_dqrr_next_direct;
165
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167 const struct qbman_release_desc *d,
168 const u64 *buffers,
169 unsigned int num_buffers)
170 = qbman_swp_release_direct;
171
172 /* Portal Access */
173
qbman_read_register(struct qbman_swp * p,u32 offset)174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175 {
176 return readl_relaxed(p->addr_cinh + offset);
177 }
178
qbman_write_register(struct qbman_swp * p,u32 offset,u32 value)179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180 u32 value)
181 {
182 writel_relaxed(value, p->addr_cinh + offset);
183 }
184
qbman_get_cmd(struct qbman_swp * p,u32 offset)185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186 {
187 return p->addr_cena + offset;
188 }
189
190 #define QBMAN_CINH_SWP_CFG 0xd00
191
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT 16
194 #define SWP_CFG_CPBS_SHIFT 15
195 #define SWP_CFG_WN_SHIFT 14
196 #define SWP_CFG_RPM_SHIFT 12
197 #define SWP_CFG_DCM_SHIFT 10
198 #define SWP_CFG_EPM_SHIFT 8
199 #define SWP_CFG_VPM_SHIFT 7
200 #define SWP_CFG_CPM_SHIFT 6
201 #define SWP_CFG_SD_SHIFT 5
202 #define SWP_CFG_SP_SHIFT 4
203 #define SWP_CFG_SE_SHIFT 3
204 #define SWP_CFG_DP_SHIFT 2
205 #define SWP_CFG_DE_SHIFT 1
206 #define SWP_CFG_EP_SHIFT 0
207
qbman_set_swp_cfg(u8 max_fill,u8 wn,u8 est,u8 rpm,u8 dcm,u8 epm,int sd,int sp,int se,int dp,int de,int ep)208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
209 u8 epm, int sd, int sp, int se,
210 int dp, int de, int ep)
211 {
212 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213 est << SWP_CFG_EST_SHIFT |
214 wn << SWP_CFG_WN_SHIFT |
215 rpm << SWP_CFG_RPM_SHIFT |
216 dcm << SWP_CFG_DCM_SHIFT |
217 epm << SWP_CFG_EPM_SHIFT |
218 sd << SWP_CFG_SD_SHIFT |
219 sp << SWP_CFG_SP_SHIFT |
220 se << SWP_CFG_SE_SHIFT |
221 dp << SWP_CFG_DP_SHIFT |
222 de << SWP_CFG_DE_SHIFT |
223 ep << SWP_CFG_EP_SHIFT);
224 }
225
226 #define QMAN_RT_MODE 0x00000100
227
qm_cyc_diff(u8 ringsize,u8 first,u8 last)228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229 {
230 /* 'first' is included, 'last' is excluded */
231 if (first <= last)
232 return last - first;
233 else
234 return (2 * ringsize) - (first - last);
235 }
236
237 /**
238 * qbman_swp_init() - Create a functional object representing the given
239 * QBMan portal descriptor.
240 * @d: the given qbman swp descriptor
241 *
242 * Return qbman_swp portal for success, NULL if the object cannot
243 * be created.
244 */
qbman_swp_init(const struct qbman_swp_desc * d)245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246 {
247 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248 u32 reg;
249 u32 mask_size;
250 u32 eqcr_pi;
251
252 if (!p)
253 return NULL;
254
255 spin_lock_init(&p->access_spinlock);
256
257 p->desc = d;
258 p->mc.valid_bit = QB_VALID_BIT;
259 p->sdq = 0;
260 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264 p->mr.valid_bit = QB_VALID_BIT;
265
266 atomic_set(&p->vdq.available, 1);
267 p->vdq.valid_bit = QB_VALID_BIT;
268 p->dqrr.next_idx = 0;
269 p->dqrr.valid_bit = QB_VALID_BIT;
270
271 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272 p->dqrr.dqrr_size = 4;
273 p->dqrr.reset_bug = 1;
274 } else {
275 p->dqrr.dqrr_size = 8;
276 p->dqrr.reset_bug = 0;
277 }
278
279 p->addr_cena = d->cena_bar;
280 p->addr_cinh = d->cinh_bar;
281
282 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283
284 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285 1, /* Writes Non-cacheable */
286 0, /* EQCR_CI stashing threshold */
287 3, /* RPM: RCR in array mode */
288 2, /* DCM: Discrete consumption ack */
289 2, /* EPM: EQCR in ring mode */
290 1, /* mem stashing drop enable enable */
291 1, /* mem stashing priority enable */
292 1, /* mem stashing enable */
293 1, /* dequeue stashing priority enable */
294 0, /* dequeue stashing enable enable */
295 0); /* EQCR_CI stashing priority enable */
296 } else {
297 memset(p->addr_cena, 0, 64 * 1024);
298 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299 1, /* Writes Non-cacheable */
300 1, /* EQCR_CI stashing threshold */
301 3, /* RPM: RCR in array mode */
302 2, /* DCM: Discrete consumption ack */
303 0, /* EPM: EQCR in ring mode */
304 1, /* mem stashing drop enable */
305 1, /* mem stashing priority enable */
306 1, /* mem stashing enable */
307 1, /* dequeue stashing priority enable */
308 0, /* dequeue stashing enable */
309 0); /* EQCR_CI stashing priority enable */
310 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
312 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
313 }
314
315 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317 if (!reg) {
318 pr_err("qbman: the portal is not enabled!\n");
319 kfree(p);
320 return NULL;
321 }
322
323 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326 }
327 /*
328 * SDQCR needs to be initialized to 0 when no channels are
329 * being dequeued from or else the QMan HW will indicate an
330 * error. The values that were calculated above will be
331 * applied when dequeues from a specific channel are enabled.
332 */
333 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334
335 p->eqcr.pi_ring_size = 8;
336 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337 p->eqcr.pi_ring_size = 32;
338 qbman_swp_enqueue_ptr =
339 qbman_swp_enqueue_mem_back;
340 qbman_swp_enqueue_multiple_ptr =
341 qbman_swp_enqueue_multiple_mem_back;
342 qbman_swp_enqueue_multiple_desc_ptr =
343 qbman_swp_enqueue_multiple_desc_mem_back;
344 qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346 qbman_swp_release_ptr = qbman_swp_release_mem_back;
347 }
348
349 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355 & p->eqcr.pi_ci_mask;
356 p->eqcr.available = p->eqcr.pi_ring_size;
357
358 return p;
359 }
360
361 /**
362 * qbman_swp_finish() - Create and destroy a functional object representing
363 * the given QBMan portal descriptor.
364 * @p: the qbman_swp object to be destroyed
365 */
qbman_swp_finish(struct qbman_swp * p)366 void qbman_swp_finish(struct qbman_swp *p)
367 {
368 kfree(p);
369 }
370
371 /**
372 * qbman_swp_interrupt_read_status()
373 * @p: the given software portal
374 *
375 * Return the value in the SWP_ISR register.
376 */
qbman_swp_interrupt_read_status(struct qbman_swp * p)377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378 {
379 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380 }
381
382 /**
383 * qbman_swp_interrupt_clear_status()
384 * @p: the given software portal
385 * @mask: The mask to clear in SWP_ISR register
386 */
qbman_swp_interrupt_clear_status(struct qbman_swp * p,u32 mask)387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388 {
389 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390 }
391
392 /**
393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394 * @p: the given software portal
395 *
396 * Return the value in the SWP_IER register.
397 */
qbman_swp_interrupt_get_trigger(struct qbman_swp * p)398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399 {
400 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401 }
402
403 /**
404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405 * @p: the given software portal
406 * @mask: The mask of bits to enable in SWP_IER
407 */
qbman_swp_interrupt_set_trigger(struct qbman_swp * p,u32 mask)408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409 {
410 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411 }
412
413 /**
414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415 * @p: the given software portal object
416 *
417 * Return the value in the SWP_IIR register.
418 */
qbman_swp_interrupt_get_inhibit(struct qbman_swp * p)419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420 {
421 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422 }
423
424 /**
425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426 * @p: the given software portal object
427 * @mask: The mask to set in SWP_IIR register
428 */
qbman_swp_interrupt_set_inhibit(struct qbman_swp * p,int inhibit)429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430 {
431 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432 }
433
434 /*
435 * Different management commands all use this common base layer of code to issue
436 * commands and poll for results.
437 */
438
439 /*
440 * Returns a pointer to where the caller should fill in their management command
441 * (caller should ignore the verb byte)
442 */
qbman_swp_mc_start(struct qbman_swp * p)443 void *qbman_swp_mc_start(struct qbman_swp *p)
444 {
445 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447 else
448 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449 }
450
451 /*
452 * Commits merges in the caller-supplied command verb (which should not include
453 * the valid-bit) and submits the command to hardware
454 */
qbman_swp_mc_submit(struct qbman_swp * p,void * cmd,u8 cmd_verb)455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456 {
457 u8 *v = cmd;
458
459 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460 dma_wmb();
461 *v = cmd_verb | p->mc.valid_bit;
462 } else {
463 *v = cmd_verb | p->mc.valid_bit;
464 dma_wmb();
465 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466 }
467 }
468
469 /*
470 * Checks for a completed response (returns non-NULL if only if the response
471 * is complete).
472 */
qbman_swp_mc_result(struct qbman_swp * p)473 void *qbman_swp_mc_result(struct qbman_swp *p)
474 {
475 u32 *ret, verb;
476
477 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479 /* Remove the valid-bit - command completed if the rest
480 * is non-zero.
481 */
482 verb = ret[0] & ~QB_VALID_BIT;
483 if (!verb)
484 return NULL;
485 p->mc.valid_bit ^= QB_VALID_BIT;
486 } else {
487 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488 /* Command completed if the valid bit is toggled */
489 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490 return NULL;
491 /* Command completed if the rest is non-zero */
492 verb = ret[0] & ~QB_VALID_BIT;
493 if (!verb)
494 return NULL;
495 p->mr.valid_bit ^= QB_VALID_BIT;
496 }
497
498 return ret;
499 }
500
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
502 enum qb_enqueue_commands {
503 enqueue_empty = 0,
504 enqueue_response_always = 1,
505 enqueue_rejects_to_fq = 2
506 };
507
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
512
513 /**
514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515 * default/starting state.
516 */
qbman_eq_desc_clear(struct qbman_eq_desc * d)517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518 {
519 memset(d, 0, sizeof(*d));
520 }
521
522 /**
523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524 * @d: the enqueue descriptor.
525 * @response_success: 1 = enqueue with response always; 0 = enqueue with
526 * rejections returned on a FQ.
527 */
qbman_eq_desc_set_no_orp(struct qbman_eq_desc * d,int respond_success)528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529 {
530 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531 if (respond_success)
532 d->verb |= enqueue_response_always;
533 else
534 d->verb |= enqueue_rejects_to_fq;
535 }
536
537 /*
538 * Exactly one of the following descriptor "targets" should be set. (Calling any
539 * one of these will replace the effect of any prior call to one of these.)
540 * -enqueue to a frame queue
541 * -enqueue to a queuing destination
542 */
543
544 /**
545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546 * @d: the enqueue descriptor
547 * @fqid: the id of the frame queue to be enqueued
548 */
qbman_eq_desc_set_fq(struct qbman_eq_desc * d,u32 fqid)549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550 {
551 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552 d->tgtid = cpu_to_le32(fqid);
553 }
554
555 /**
556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557 * @d: the enqueue descriptor
558 * @qdid: the id of the queuing destination to be enqueued
559 * @qd_bin: the queuing destination bin
560 * @qd_prio: the queuing destination priority
561 */
qbman_eq_desc_set_qd(struct qbman_eq_desc * d,u32 qdid,u32 qd_bin,u32 qd_prio)562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563 u32 qd_bin, u32 qd_prio)
564 {
565 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566 d->tgtid = cpu_to_le32(qdid);
567 d->qdbin = cpu_to_le16(qd_bin);
568 d->qpri = qd_prio;
569 }
570
571 #define EQAR_IDX(eqar) ((eqar) & 0x7)
572 #define EQAR_VB(eqar) ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574
575 #define QB_RT_BIT ((u32)0x100)
576 /**
577 * qbman_swp_enqueue_direct() - Issue an enqueue command
578 * @s: the software portal used for enqueue
579 * @d: the enqueue descriptor
580 * @fd: the frame descriptor to be enqueued
581 *
582 * Please note that 'fd' should only be NULL if the "action" of the
583 * descriptor is "orp_hole" or "orp_nesn".
584 *
585 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
586 */
587 static
qbman_swp_enqueue_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)588 int qbman_swp_enqueue_direct(struct qbman_swp *s,
589 const struct qbman_eq_desc *d,
590 const struct dpaa2_fd *fd)
591 {
592 int flags = 0;
593 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
594
595 if (ret >= 0)
596 ret = 0;
597 else
598 ret = -EBUSY;
599 return ret;
600 }
601
602 /**
603 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
604 * @s: the software portal used for enqueue
605 * @d: the enqueue descriptor
606 * @fd: the frame descriptor to be enqueued
607 *
608 * Please note that 'fd' should only be NULL if the "action" of the
609 * descriptor is "orp_hole" or "orp_nesn".
610 *
611 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
612 */
613 static
qbman_swp_enqueue_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)614 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
615 const struct qbman_eq_desc *d,
616 const struct dpaa2_fd *fd)
617 {
618 int flags = 0;
619 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
620
621 if (ret >= 0)
622 ret = 0;
623 else
624 ret = -EBUSY;
625 return ret;
626 }
627
628 /**
629 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
630 * using one enqueue descriptor
631 * @s: the software portal used for enqueue
632 * @d: the enqueue descriptor
633 * @fd: table pointer of frame descriptor table to be enqueued
634 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
635 * @num_frames: number of fd to be enqueued
636 *
637 * Return the number of fd enqueued, or a negative error number.
638 */
639 static
qbman_swp_enqueue_multiple_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)640 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
641 const struct qbman_eq_desc *d,
642 const struct dpaa2_fd *fd,
643 uint32_t *flags,
644 int num_frames)
645 {
646 uint32_t *p = NULL;
647 const uint32_t *cl = (uint32_t *)d;
648 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
649 int i, num_enqueued = 0;
650
651 spin_lock(&s->access_spinlock);
652 half_mask = (s->eqcr.pi_ci_mask>>1);
653 full_mask = s->eqcr.pi_ci_mask;
654
655 if (!s->eqcr.available) {
656 eqcr_ci = s->eqcr.ci;
657 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
658 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
659 s->eqcr.ci &= full_mask;
660
661 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
662 eqcr_ci, s->eqcr.ci);
663 if (!s->eqcr.available) {
664 spin_unlock(&s->access_spinlock);
665 return 0;
666 }
667 }
668
669 eqcr_pi = s->eqcr.pi;
670 num_enqueued = (s->eqcr.available < num_frames) ?
671 s->eqcr.available : num_frames;
672 s->eqcr.available -= num_enqueued;
673 /* Fill in the EQCR ring */
674 for (i = 0; i < num_enqueued; i++) {
675 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
676 /* Skip copying the verb */
677 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
678 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
679 &fd[i], sizeof(*fd));
680 eqcr_pi++;
681 }
682
683 dma_wmb();
684
685 /* Set the verb byte, have to substitute in the valid-bit */
686 eqcr_pi = s->eqcr.pi;
687 for (i = 0; i < num_enqueued; i++) {
688 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
689 p[0] = cl[0] | s->eqcr.pi_vb;
690 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
691 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
692
693 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
694 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
695 }
696 eqcr_pi++;
697 if (!(eqcr_pi & half_mask))
698 s->eqcr.pi_vb ^= QB_VALID_BIT;
699 }
700
701 /* Flush all the cacheline without load/store in between */
702 eqcr_pi = s->eqcr.pi;
703 for (i = 0; i < num_enqueued; i++)
704 eqcr_pi++;
705 s->eqcr.pi = eqcr_pi & full_mask;
706 spin_unlock(&s->access_spinlock);
707
708 return num_enqueued;
709 }
710
711 /**
712 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
713 * using one enqueue descriptor
714 * @s: the software portal used for enqueue
715 * @d: the enqueue descriptor
716 * @fd: table pointer of frame descriptor table to be enqueued
717 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
718 * @num_frames: number of fd to be enqueued
719 *
720 * Return the number of fd enqueued, or a negative error number.
721 */
722 static
qbman_swp_enqueue_multiple_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,uint32_t * flags,int num_frames)723 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
724 const struct qbman_eq_desc *d,
725 const struct dpaa2_fd *fd,
726 uint32_t *flags,
727 int num_frames)
728 {
729 uint32_t *p = NULL;
730 const uint32_t *cl = (uint32_t *)(d);
731 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
732 int i, num_enqueued = 0;
733 unsigned long irq_flags;
734
735 spin_lock_irqsave(&s->access_spinlock, irq_flags);
736
737 half_mask = (s->eqcr.pi_ci_mask>>1);
738 full_mask = s->eqcr.pi_ci_mask;
739 if (!s->eqcr.available) {
740 eqcr_ci = s->eqcr.ci;
741 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
742 s->eqcr.ci = *p & full_mask;
743 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
744 eqcr_ci, s->eqcr.ci);
745 if (!s->eqcr.available) {
746 spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
747 return 0;
748 }
749 }
750
751 eqcr_pi = s->eqcr.pi;
752 num_enqueued = (s->eqcr.available < num_frames) ?
753 s->eqcr.available : num_frames;
754 s->eqcr.available -= num_enqueued;
755 /* Fill in the EQCR ring */
756 for (i = 0; i < num_enqueued; i++) {
757 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
758 /* Skip copying the verb */
759 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
760 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
761 &fd[i], sizeof(*fd));
762 eqcr_pi++;
763 }
764
765 /* Set the verb byte, have to substitute in the valid-bit */
766 eqcr_pi = s->eqcr.pi;
767 for (i = 0; i < num_enqueued; i++) {
768 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
769 p[0] = cl[0] | s->eqcr.pi_vb;
770 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
771 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
772
773 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
774 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
775 }
776 eqcr_pi++;
777 if (!(eqcr_pi & half_mask))
778 s->eqcr.pi_vb ^= QB_VALID_BIT;
779 }
780 s->eqcr.pi = eqcr_pi & full_mask;
781
782 dma_wmb();
783 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
784 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
785 spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
786
787 return num_enqueued;
788 }
789
790 /**
791 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
792 * using multiple enqueue descriptor
793 * @s: the software portal used for enqueue
794 * @d: table of minimal enqueue descriptor
795 * @fd: table pointer of frame descriptor table to be enqueued
796 * @num_frames: number of fd to be enqueued
797 *
798 * Return the number of fd enqueued, or a negative error number.
799 */
800 static
qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)801 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
802 const struct qbman_eq_desc *d,
803 const struct dpaa2_fd *fd,
804 int num_frames)
805 {
806 uint32_t *p;
807 const uint32_t *cl;
808 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
809 int i, num_enqueued = 0;
810
811 half_mask = (s->eqcr.pi_ci_mask>>1);
812 full_mask = s->eqcr.pi_ci_mask;
813 if (!s->eqcr.available) {
814 eqcr_ci = s->eqcr.ci;
815 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
816 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
817 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
818 eqcr_ci, s->eqcr.ci);
819 if (!s->eqcr.available)
820 return 0;
821 }
822
823 eqcr_pi = s->eqcr.pi;
824 num_enqueued = (s->eqcr.available < num_frames) ?
825 s->eqcr.available : num_frames;
826 s->eqcr.available -= num_enqueued;
827 /* Fill in the EQCR ring */
828 for (i = 0; i < num_enqueued; i++) {
829 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
830 cl = (uint32_t *)(&d[i]);
831 /* Skip copying the verb */
832 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
833 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
834 &fd[i], sizeof(*fd));
835 eqcr_pi++;
836 }
837
838 dma_wmb();
839
840 /* Set the verb byte, have to substitute in the valid-bit */
841 eqcr_pi = s->eqcr.pi;
842 for (i = 0; i < num_enqueued; i++) {
843 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
844 cl = (uint32_t *)(&d[i]);
845 p[0] = cl[0] | s->eqcr.pi_vb;
846 eqcr_pi++;
847 if (!(eqcr_pi & half_mask))
848 s->eqcr.pi_vb ^= QB_VALID_BIT;
849 }
850
851 /* Flush all the cacheline without load/store in between */
852 eqcr_pi = s->eqcr.pi;
853 for (i = 0; i < num_enqueued; i++)
854 eqcr_pi++;
855 s->eqcr.pi = eqcr_pi & full_mask;
856
857 return num_enqueued;
858 }
859
860 /**
861 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
862 * using multiple enqueue descriptor
863 * @s: the software portal used for enqueue
864 * @d: table of minimal enqueue descriptor
865 * @fd: table pointer of frame descriptor table to be enqueued
866 * @num_frames: number of fd to be enqueued
867 *
868 * Return the number of fd enqueued, or a negative error number.
869 */
870 static
qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd,int num_frames)871 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
872 const struct qbman_eq_desc *d,
873 const struct dpaa2_fd *fd,
874 int num_frames)
875 {
876 uint32_t *p;
877 const uint32_t *cl;
878 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
879 int i, num_enqueued = 0;
880
881 half_mask = (s->eqcr.pi_ci_mask>>1);
882 full_mask = s->eqcr.pi_ci_mask;
883 if (!s->eqcr.available) {
884 eqcr_ci = s->eqcr.ci;
885 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
886 s->eqcr.ci = *p & full_mask;
887 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
888 eqcr_ci, s->eqcr.ci);
889 if (!s->eqcr.available)
890 return 0;
891 }
892
893 eqcr_pi = s->eqcr.pi;
894 num_enqueued = (s->eqcr.available < num_frames) ?
895 s->eqcr.available : num_frames;
896 s->eqcr.available -= num_enqueued;
897 /* Fill in the EQCR ring */
898 for (i = 0; i < num_enqueued; i++) {
899 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
900 cl = (uint32_t *)(&d[i]);
901 /* Skip copying the verb */
902 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
903 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
904 &fd[i], sizeof(*fd));
905 eqcr_pi++;
906 }
907
908 /* Set the verb byte, have to substitute in the valid-bit */
909 eqcr_pi = s->eqcr.pi;
910 for (i = 0; i < num_enqueued; i++) {
911 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
912 cl = (uint32_t *)(&d[i]);
913 p[0] = cl[0] | s->eqcr.pi_vb;
914 eqcr_pi++;
915 if (!(eqcr_pi & half_mask))
916 s->eqcr.pi_vb ^= QB_VALID_BIT;
917 }
918
919 s->eqcr.pi = eqcr_pi & full_mask;
920
921 dma_wmb();
922 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
923 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
924
925 return num_enqueued;
926 }
927
928 /* Static (push) dequeue */
929
930 /**
931 * qbman_swp_push_get() - Get the push dequeue setup
932 * @p: the software portal object
933 * @channel_idx: the channel index to query
934 * @enabled: returned boolean to show whether the push dequeue is enabled
935 * for the given channel
936 */
qbman_swp_push_get(struct qbman_swp * s,u8 channel_idx,int * enabled)937 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
938 {
939 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
940
941 WARN_ON(channel_idx > 15);
942 *enabled = src | (1 << channel_idx);
943 }
944
945 /**
946 * qbman_swp_push_set() - Enable or disable push dequeue
947 * @p: the software portal object
948 * @channel_idx: the channel index (0 to 15)
949 * @enable: enable or disable push dequeue
950 */
qbman_swp_push_set(struct qbman_swp * s,u8 channel_idx,int enable)951 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
952 {
953 u16 dqsrc;
954
955 WARN_ON(channel_idx > 15);
956 if (enable)
957 s->sdq |= 1 << channel_idx;
958 else
959 s->sdq &= ~(1 << channel_idx);
960
961 /* Read make the complete src map. If no channels are enabled
962 * the SDQCR must be 0 or else QMan will assert errors
963 */
964 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
965 if (dqsrc != 0)
966 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
967 else
968 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
969 }
970
971 #define QB_VDQCR_VERB_DCT_SHIFT 0
972 #define QB_VDQCR_VERB_DT_SHIFT 2
973 #define QB_VDQCR_VERB_RLS_SHIFT 4
974 #define QB_VDQCR_VERB_WAE_SHIFT 5
975
976 enum qb_pull_dt_e {
977 qb_pull_dt_channel,
978 qb_pull_dt_workqueue,
979 qb_pull_dt_framequeue
980 };
981
982 /**
983 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
984 * default/starting state
985 * @d: the pull dequeue descriptor to be cleared
986 */
qbman_pull_desc_clear(struct qbman_pull_desc * d)987 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
988 {
989 memset(d, 0, sizeof(*d));
990 }
991
992 /**
993 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
994 * @d: the pull dequeue descriptor to be set
995 * @storage: the pointer of the memory to store the dequeue result
996 * @storage_phys: the physical address of the storage memory
997 * @stash: to indicate whether write allocate is enabled
998 *
999 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1000 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1001 * produced to the given memory location (using the DMA address which
1002 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1003 * those writes to main-memory express a cache-warming attribute.
1004 */
qbman_pull_desc_set_storage(struct qbman_pull_desc * d,struct dpaa2_dq * storage,dma_addr_t storage_phys,int stash)1005 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1006 struct dpaa2_dq *storage,
1007 dma_addr_t storage_phys,
1008 int stash)
1009 {
1010 /* save the virtual address */
1011 d->rsp_addr_virt = (u64)(uintptr_t)storage;
1012
1013 if (!storage) {
1014 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1015 return;
1016 }
1017 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1018 if (stash)
1019 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1020 else
1021 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1022
1023 d->rsp_addr = cpu_to_le64(storage_phys);
1024 }
1025
1026 /**
1027 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1028 * @d: the pull dequeue descriptor to be set
1029 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1030 */
qbman_pull_desc_set_numframes(struct qbman_pull_desc * d,u8 numframes)1031 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1032 {
1033 d->numf = numframes - 1;
1034 }
1035
1036 /*
1037 * Exactly one of the following descriptor "actions" should be set. (Calling any
1038 * one of these will replace the effect of any prior call to one of these.)
1039 * - pull dequeue from the given frame queue (FQ)
1040 * - pull dequeue from any FQ in the given work queue (WQ)
1041 * - pull dequeue from any FQ in any WQ in the given channel
1042 */
1043
1044 /**
1045 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1046 * @fqid: the frame queue index of the given FQ
1047 */
qbman_pull_desc_set_fq(struct qbman_pull_desc * d,u32 fqid)1048 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1049 {
1050 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1051 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1052 d->dq_src = cpu_to_le32(fqid);
1053 }
1054
1055 /**
1056 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1057 * @wqid: composed of channel id and wqid within the channel
1058 * @dct: the dequeue command type
1059 */
qbman_pull_desc_set_wq(struct qbman_pull_desc * d,u32 wqid,enum qbman_pull_type_e dct)1060 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1061 enum qbman_pull_type_e dct)
1062 {
1063 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1064 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1065 d->dq_src = cpu_to_le32(wqid);
1066 }
1067
1068 /**
1069 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1070 * dequeues
1071 * @chid: the channel id to be dequeued
1072 * @dct: the dequeue command type
1073 */
qbman_pull_desc_set_channel(struct qbman_pull_desc * d,u32 chid,enum qbman_pull_type_e dct)1074 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1075 enum qbman_pull_type_e dct)
1076 {
1077 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1078 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1079 d->dq_src = cpu_to_le32(chid);
1080 }
1081
1082 /**
1083 * qbman_swp_pull_direct() - Issue the pull dequeue command
1084 * @s: the software portal object
1085 * @d: the software portal descriptor which has been configured with
1086 * the set of qbman_pull_desc_set_*() calls
1087 *
1088 * Return 0 for success, and -EBUSY if the software portal is not ready
1089 * to do pull dequeue.
1090 */
1091 static
qbman_swp_pull_direct(struct qbman_swp * s,struct qbman_pull_desc * d)1092 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1093 {
1094 struct qbman_pull_desc *p;
1095
1096 if (!atomic_dec_and_test(&s->vdq.available)) {
1097 atomic_inc(&s->vdq.available);
1098 return -EBUSY;
1099 }
1100 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1101 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1102 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1103 else
1104 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1105 p->numf = d->numf;
1106 p->tok = QMAN_DQ_TOKEN_VALID;
1107 p->dq_src = d->dq_src;
1108 p->rsp_addr = d->rsp_addr;
1109 p->rsp_addr_virt = d->rsp_addr_virt;
1110 dma_wmb();
1111 /* Set the verb byte, have to substitute in the valid-bit */
1112 p->verb = d->verb | s->vdq.valid_bit;
1113 s->vdq.valid_bit ^= QB_VALID_BIT;
1114
1115 return 0;
1116 }
1117
1118 /**
1119 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1120 * @s: the software portal object
1121 * @d: the software portal descriptor which has been configured with
1122 * the set of qbman_pull_desc_set_*() calls
1123 *
1124 * Return 0 for success, and -EBUSY if the software portal is not ready
1125 * to do pull dequeue.
1126 */
1127 static
qbman_swp_pull_mem_back(struct qbman_swp * s,struct qbman_pull_desc * d)1128 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1129 {
1130 struct qbman_pull_desc *p;
1131
1132 if (!atomic_dec_and_test(&s->vdq.available)) {
1133 atomic_inc(&s->vdq.available);
1134 return -EBUSY;
1135 }
1136 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1137 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1138 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1139 else
1140 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1141 p->numf = d->numf;
1142 p->tok = QMAN_DQ_TOKEN_VALID;
1143 p->dq_src = d->dq_src;
1144 p->rsp_addr = d->rsp_addr;
1145 p->rsp_addr_virt = d->rsp_addr_virt;
1146
1147 /* Set the verb byte, have to substitute in the valid-bit */
1148 p->verb = d->verb | s->vdq.valid_bit;
1149 s->vdq.valid_bit ^= QB_VALID_BIT;
1150 dma_wmb();
1151 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1152
1153 return 0;
1154 }
1155
1156 #define QMAN_DQRR_PI_MASK 0xf
1157
1158 /**
1159 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1160 * @s: the software portal object
1161 *
1162 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1163 * only once, so repeated calls can return a sequence of DQRR entries, without
1164 * requiring they be consumed immediately or in any particular order.
1165 */
qbman_swp_dqrr_next_direct(struct qbman_swp * s)1166 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1167 {
1168 u32 verb;
1169 u32 response_verb;
1170 u32 flags;
1171 struct dpaa2_dq *p;
1172
1173 /* Before using valid-bit to detect if something is there, we have to
1174 * handle the case of the DQRR reset bug...
1175 */
1176 if (unlikely(s->dqrr.reset_bug)) {
1177 /*
1178 * We pick up new entries by cache-inhibited producer index,
1179 * which means that a non-coherent mapping would require us to
1180 * invalidate and read *only* once that PI has indicated that
1181 * there's an entry here. The first trip around the DQRR ring
1182 * will be much less efficient than all subsequent trips around
1183 * it...
1184 */
1185 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1186 QMAN_DQRR_PI_MASK;
1187
1188 /* there are new entries if pi != next_idx */
1189 if (pi == s->dqrr.next_idx)
1190 return NULL;
1191
1192 /*
1193 * if next_idx is/was the last ring index, and 'pi' is
1194 * different, we can disable the workaround as all the ring
1195 * entries have now been DMA'd to so valid-bit checking is
1196 * repaired. Note: this logic needs to be based on next_idx
1197 * (which increments one at a time), rather than on pi (which
1198 * can burst and wrap-around between our snapshots of it).
1199 */
1200 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1201 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1202 s->dqrr.next_idx, pi);
1203 s->dqrr.reset_bug = 0;
1204 }
1205 prefetch(qbman_get_cmd(s,
1206 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1207 }
1208
1209 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1210 verb = p->dq.verb;
1211
1212 /*
1213 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1214 * in the DQRR reset bug workaround, we shouldn't need to skip these
1215 * check, because we've already determined that a new entry is available
1216 * and we've invalidated the cacheline before reading it, so the
1217 * valid-bit behaviour is repaired and should tell us what we already
1218 * knew from reading PI.
1219 */
1220 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1221 prefetch(qbman_get_cmd(s,
1222 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1223 return NULL;
1224 }
1225 /*
1226 * There's something there. Move "next_idx" attention to the next ring
1227 * entry (and prefetch it) before returning what we found.
1228 */
1229 s->dqrr.next_idx++;
1230 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1231 if (!s->dqrr.next_idx)
1232 s->dqrr.valid_bit ^= QB_VALID_BIT;
1233
1234 /*
1235 * If this is the final response to a volatile dequeue command
1236 * indicate that the vdq is available
1237 */
1238 flags = p->dq.stat;
1239 response_verb = verb & QBMAN_RESULT_MASK;
1240 if ((response_verb == QBMAN_RESULT_DQ) &&
1241 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1242 (flags & DPAA2_DQ_STAT_EXPIRED))
1243 atomic_inc(&s->vdq.available);
1244
1245 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1246
1247 return p;
1248 }
1249
1250 /**
1251 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1252 * @s: the software portal object
1253 *
1254 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1255 * only once, so repeated calls can return a sequence of DQRR entries, without
1256 * requiring they be consumed immediately or in any particular order.
1257 */
qbman_swp_dqrr_next_mem_back(struct qbman_swp * s)1258 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1259 {
1260 u32 verb;
1261 u32 response_verb;
1262 u32 flags;
1263 struct dpaa2_dq *p;
1264
1265 /* Before using valid-bit to detect if something is there, we have to
1266 * handle the case of the DQRR reset bug...
1267 */
1268 if (unlikely(s->dqrr.reset_bug)) {
1269 /*
1270 * We pick up new entries by cache-inhibited producer index,
1271 * which means that a non-coherent mapping would require us to
1272 * invalidate and read *only* once that PI has indicated that
1273 * there's an entry here. The first trip around the DQRR ring
1274 * will be much less efficient than all subsequent trips around
1275 * it...
1276 */
1277 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1278 QMAN_DQRR_PI_MASK;
1279
1280 /* there are new entries if pi != next_idx */
1281 if (pi == s->dqrr.next_idx)
1282 return NULL;
1283
1284 /*
1285 * if next_idx is/was the last ring index, and 'pi' is
1286 * different, we can disable the workaround as all the ring
1287 * entries have now been DMA'd to so valid-bit checking is
1288 * repaired. Note: this logic needs to be based on next_idx
1289 * (which increments one at a time), rather than on pi (which
1290 * can burst and wrap-around between our snapshots of it).
1291 */
1292 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1293 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1294 s->dqrr.next_idx, pi);
1295 s->dqrr.reset_bug = 0;
1296 }
1297 prefetch(qbman_get_cmd(s,
1298 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1299 }
1300
1301 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1302 verb = p->dq.verb;
1303
1304 /*
1305 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1306 * in the DQRR reset bug workaround, we shouldn't need to skip these
1307 * check, because we've already determined that a new entry is available
1308 * and we've invalidated the cacheline before reading it, so the
1309 * valid-bit behaviour is repaired and should tell us what we already
1310 * knew from reading PI.
1311 */
1312 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1313 prefetch(qbman_get_cmd(s,
1314 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1315 return NULL;
1316 }
1317 /*
1318 * There's something there. Move "next_idx" attention to the next ring
1319 * entry (and prefetch it) before returning what we found.
1320 */
1321 s->dqrr.next_idx++;
1322 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1323 if (!s->dqrr.next_idx)
1324 s->dqrr.valid_bit ^= QB_VALID_BIT;
1325
1326 /*
1327 * If this is the final response to a volatile dequeue command
1328 * indicate that the vdq is available
1329 */
1330 flags = p->dq.stat;
1331 response_verb = verb & QBMAN_RESULT_MASK;
1332 if ((response_verb == QBMAN_RESULT_DQ) &&
1333 (flags & DPAA2_DQ_STAT_VOLATILE) &&
1334 (flags & DPAA2_DQ_STAT_EXPIRED))
1335 atomic_inc(&s->vdq.available);
1336
1337 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1338
1339 return p;
1340 }
1341
1342 /**
1343 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
1344 * qbman_swp_dqrr_next().
1345 * @s: the software portal object
1346 * @dq: the DQRR entry to be consumed
1347 */
qbman_swp_dqrr_consume(struct qbman_swp * s,const struct dpaa2_dq * dq)1348 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1349 {
1350 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1351 }
1352
1353 /**
1354 * qbman_result_has_new_result() - Check and get the dequeue response from the
1355 * dq storage memory set in pull dequeue command
1356 * @s: the software portal object
1357 * @dq: the dequeue result read from the memory
1358 *
1359 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1360 * dequeue result.
1361 *
1362 * Only used for user-provided storage of dequeue results, not DQRR. For
1363 * efficiency purposes, the driver will perform any required endianness
1364 * conversion to ensure that the user's dequeue result storage is in host-endian
1365 * format. As such, once the user has called qbman_result_has_new_result() and
1366 * been returned a valid dequeue result, they should not call it again on
1367 * the same memory location (except of course if another dequeue command has
1368 * been executed to produce a new result to that location).
1369 */
qbman_result_has_new_result(struct qbman_swp * s,const struct dpaa2_dq * dq)1370 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1371 {
1372 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1373 return 0;
1374
1375 /*
1376 * Set token to be 0 so we will detect change back to 1
1377 * next time the looping is traversed. Const is cast away here
1378 * as we want users to treat the dequeue responses as read only.
1379 */
1380 ((struct dpaa2_dq *)dq)->dq.tok = 0;
1381
1382 /*
1383 * Determine whether VDQCR is available based on whether the
1384 * current result is sitting in the first storage location of
1385 * the busy command.
1386 */
1387 if (s->vdq.storage == dq) {
1388 s->vdq.storage = NULL;
1389 atomic_inc(&s->vdq.available);
1390 }
1391
1392 return 1;
1393 }
1394
1395 /**
1396 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1397 * default/starting state.
1398 */
qbman_release_desc_clear(struct qbman_release_desc * d)1399 void qbman_release_desc_clear(struct qbman_release_desc *d)
1400 {
1401 memset(d, 0, sizeof(*d));
1402 d->verb = 1 << 5; /* Release Command Valid */
1403 }
1404
1405 /**
1406 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1407 */
qbman_release_desc_set_bpid(struct qbman_release_desc * d,u16 bpid)1408 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1409 {
1410 d->bpid = cpu_to_le16(bpid);
1411 }
1412
1413 /**
1414 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1415 * interrupt source should be asserted after the release command is completed.
1416 */
qbman_release_desc_set_rcdi(struct qbman_release_desc * d,int enable)1417 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1418 {
1419 if (enable)
1420 d->verb |= 1 << 6;
1421 else
1422 d->verb &= ~(1 << 6);
1423 }
1424
1425 #define RAR_IDX(rar) ((rar) & 0x7)
1426 #define RAR_VB(rar) ((rar) & 0x80)
1427 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1428
1429 /**
1430 * qbman_swp_release_direct() - Issue a buffer release command
1431 * @s: the software portal object
1432 * @d: the release descriptor
1433 * @buffers: a pointer pointing to the buffer address to be released
1434 * @num_buffers: number of buffers to be released, must be less than 8
1435 *
1436 * Return 0 for success, -EBUSY if the release command ring is not ready.
1437 */
qbman_swp_release_direct(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1438 int qbman_swp_release_direct(struct qbman_swp *s,
1439 const struct qbman_release_desc *d,
1440 const u64 *buffers, unsigned int num_buffers)
1441 {
1442 int i;
1443 struct qbman_release_desc *p;
1444 u32 rar;
1445
1446 if (!num_buffers || (num_buffers > 7))
1447 return -EINVAL;
1448
1449 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1450 if (!RAR_SUCCESS(rar))
1451 return -EBUSY;
1452
1453 /* Start the release command */
1454 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1455
1456 /* Copy the caller's buffer pointers to the command */
1457 for (i = 0; i < num_buffers; i++)
1458 p->buf[i] = cpu_to_le64(buffers[i]);
1459 p->bpid = d->bpid;
1460
1461 /*
1462 * Set the verb byte, have to substitute in the valid-bit
1463 * and the number of buffers.
1464 */
1465 dma_wmb();
1466 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1467
1468 return 0;
1469 }
1470
1471 /**
1472 * qbman_swp_release_mem_back() - Issue a buffer release command
1473 * @s: the software portal object
1474 * @d: the release descriptor
1475 * @buffers: a pointer pointing to the buffer address to be released
1476 * @num_buffers: number of buffers to be released, must be less than 8
1477 *
1478 * Return 0 for success, -EBUSY if the release command ring is not ready.
1479 */
qbman_swp_release_mem_back(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)1480 int qbman_swp_release_mem_back(struct qbman_swp *s,
1481 const struct qbman_release_desc *d,
1482 const u64 *buffers, unsigned int num_buffers)
1483 {
1484 int i;
1485 struct qbman_release_desc *p;
1486 u32 rar;
1487
1488 if (!num_buffers || (num_buffers > 7))
1489 return -EINVAL;
1490
1491 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1492 if (!RAR_SUCCESS(rar))
1493 return -EBUSY;
1494
1495 /* Start the release command */
1496 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1497
1498 /* Copy the caller's buffer pointers to the command */
1499 for (i = 0; i < num_buffers; i++)
1500 p->buf[i] = cpu_to_le64(buffers[i]);
1501 p->bpid = d->bpid;
1502
1503 p->verb = d->verb | RAR_VB(rar) | num_buffers;
1504 dma_wmb();
1505 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1506 RAR_IDX(rar) * 4, QMAN_RT_MODE);
1507
1508 return 0;
1509 }
1510
1511 struct qbman_acquire_desc {
1512 u8 verb;
1513 u8 reserved;
1514 __le16 bpid;
1515 u8 num;
1516 u8 reserved2[59];
1517 };
1518
1519 struct qbman_acquire_rslt {
1520 u8 verb;
1521 u8 rslt;
1522 __le16 reserved;
1523 u8 num;
1524 u8 reserved2[3];
1525 __le64 buf[7];
1526 };
1527
1528 /**
1529 * qbman_swp_acquire() - Issue a buffer acquire command
1530 * @s: the software portal object
1531 * @bpid: the buffer pool index
1532 * @buffers: a pointer pointing to the acquired buffer addresses
1533 * @num_buffers: number of buffers to be acquired, must be less than 8
1534 *
1535 * Return 0 for success, or negative error code if the acquire command
1536 * fails.
1537 */
qbman_swp_acquire(struct qbman_swp * s,u16 bpid,u64 * buffers,unsigned int num_buffers)1538 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1539 unsigned int num_buffers)
1540 {
1541 struct qbman_acquire_desc *p;
1542 struct qbman_acquire_rslt *r;
1543 int i;
1544
1545 if (!num_buffers || (num_buffers > 7))
1546 return -EINVAL;
1547
1548 /* Start the management command */
1549 p = qbman_swp_mc_start(s);
1550
1551 if (!p)
1552 return -EBUSY;
1553
1554 /* Encode the caller-provided attributes */
1555 p->bpid = cpu_to_le16(bpid);
1556 p->num = num_buffers;
1557
1558 /* Complete the management command */
1559 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1560 if (unlikely(!r)) {
1561 pr_err("qbman: acquire from BPID %d failed, no response\n",
1562 bpid);
1563 return -EIO;
1564 }
1565
1566 /* Decode the outcome */
1567 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1568
1569 /* Determine success or failure */
1570 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1571 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1572 bpid, r->rslt);
1573 return -EIO;
1574 }
1575
1576 WARN_ON(r->num > num_buffers);
1577
1578 /* Copy the acquired buffers to the caller's array */
1579 for (i = 0; i < r->num; i++)
1580 buffers[i] = le64_to_cpu(r->buf[i]);
1581
1582 return (int)r->num;
1583 }
1584
1585 struct qbman_alt_fq_state_desc {
1586 u8 verb;
1587 u8 reserved[3];
1588 __le32 fqid;
1589 u8 reserved2[56];
1590 };
1591
1592 struct qbman_alt_fq_state_rslt {
1593 u8 verb;
1594 u8 rslt;
1595 u8 reserved[62];
1596 };
1597
1598 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1599
qbman_swp_alt_fq_state(struct qbman_swp * s,u32 fqid,u8 alt_fq_verb)1600 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1601 u8 alt_fq_verb)
1602 {
1603 struct qbman_alt_fq_state_desc *p;
1604 struct qbman_alt_fq_state_rslt *r;
1605
1606 /* Start the management command */
1607 p = qbman_swp_mc_start(s);
1608 if (!p)
1609 return -EBUSY;
1610
1611 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1612
1613 /* Complete the management command */
1614 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1615 if (unlikely(!r)) {
1616 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1617 alt_fq_verb);
1618 return -EIO;
1619 }
1620
1621 /* Decode the outcome */
1622 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1623
1624 /* Determine success or failure */
1625 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1626 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1627 fqid, r->verb, r->rslt);
1628 return -EIO;
1629 }
1630
1631 return 0;
1632 }
1633
1634 struct qbman_cdan_ctrl_desc {
1635 u8 verb;
1636 u8 reserved;
1637 __le16 ch;
1638 u8 we;
1639 u8 ctrl;
1640 __le16 reserved2;
1641 __le64 cdan_ctx;
1642 u8 reserved3[48];
1643
1644 };
1645
1646 struct qbman_cdan_ctrl_rslt {
1647 u8 verb;
1648 u8 rslt;
1649 __le16 ch;
1650 u8 reserved[60];
1651 };
1652
qbman_swp_CDAN_set(struct qbman_swp * s,u16 channelid,u8 we_mask,u8 cdan_en,u64 ctx)1653 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1654 u8 we_mask, u8 cdan_en,
1655 u64 ctx)
1656 {
1657 struct qbman_cdan_ctrl_desc *p = NULL;
1658 struct qbman_cdan_ctrl_rslt *r = NULL;
1659
1660 /* Start the management command */
1661 p = qbman_swp_mc_start(s);
1662 if (!p)
1663 return -EBUSY;
1664
1665 /* Encode the caller-provided attributes */
1666 p->ch = cpu_to_le16(channelid);
1667 p->we = we_mask;
1668 if (cdan_en)
1669 p->ctrl = 1;
1670 else
1671 p->ctrl = 0;
1672 p->cdan_ctx = cpu_to_le64(ctx);
1673
1674 /* Complete the management command */
1675 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1676 if (unlikely(!r)) {
1677 pr_err("qbman: wqchan config failed, no response\n");
1678 return -EIO;
1679 }
1680
1681 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1682
1683 /* Determine success or failure */
1684 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1685 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1686 channelid, r->rslt);
1687 return -EIO;
1688 }
1689
1690 return 0;
1691 }
1692
1693 #define QBMAN_RESPONSE_VERB_MASK 0x7f
1694 #define QBMAN_FQ_QUERY_NP 0x45
1695 #define QBMAN_BP_QUERY 0x32
1696
1697 struct qbman_fq_query_desc {
1698 u8 verb;
1699 u8 reserved[3];
1700 __le32 fqid;
1701 u8 reserved2[56];
1702 };
1703
qbman_fq_query_state(struct qbman_swp * s,u32 fqid,struct qbman_fq_query_np_rslt * r)1704 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1705 struct qbman_fq_query_np_rslt *r)
1706 {
1707 struct qbman_fq_query_desc *p;
1708 void *resp;
1709
1710 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1711 if (!p)
1712 return -EBUSY;
1713
1714 /* FQID is a 24 bit value */
1715 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1716 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1717 if (!resp) {
1718 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1719 fqid);
1720 return -EIO;
1721 }
1722 *r = *(struct qbman_fq_query_np_rslt *)resp;
1723 /* Decode the outcome */
1724 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1725
1726 /* Determine success or failure */
1727 if (r->rslt != QBMAN_MC_RSLT_OK) {
1728 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1729 p->fqid, r->rslt);
1730 return -EIO;
1731 }
1732
1733 return 0;
1734 }
1735
qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt * r)1736 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1737 {
1738 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1739 }
1740
qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt * r)1741 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1742 {
1743 return le32_to_cpu(r->byte_cnt);
1744 }
1745
1746 struct qbman_bp_query_desc {
1747 u8 verb;
1748 u8 reserved;
1749 __le16 bpid;
1750 u8 reserved2[60];
1751 };
1752
qbman_bp_query(struct qbman_swp * s,u16 bpid,struct qbman_bp_query_rslt * r)1753 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1754 struct qbman_bp_query_rslt *r)
1755 {
1756 struct qbman_bp_query_desc *p;
1757 void *resp;
1758
1759 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1760 if (!p)
1761 return -EBUSY;
1762
1763 p->bpid = cpu_to_le16(bpid);
1764 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1765 if (!resp) {
1766 pr_err("qbman: Query BPID %d fields failed, no response\n",
1767 bpid);
1768 return -EIO;
1769 }
1770 *r = *(struct qbman_bp_query_rslt *)resp;
1771 /* Decode the outcome */
1772 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1773
1774 /* Determine success or failure */
1775 if (r->rslt != QBMAN_MC_RSLT_OK) {
1776 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1777 bpid, r->rslt);
1778 return -EIO;
1779 }
1780
1781 return 0;
1782 }
1783
qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt * a)1784 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1785 {
1786 return le32_to_cpu(a->fill);
1787 }
1788