1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 #include <trace/hooks/sched.h>
29
30 #include <asm/irq_regs.h>
31
32 #include "tick-internal.h"
33
34 #include <trace/events/timer.h>
35
36 /*
37 * Per-CPU nohz control structure
38 */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40
tick_get_tick_sched(int cpu)41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 return &per_cpu(tick_cpu_sched, cpu);
44 }
45
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48 * The time, when the last jiffy update happened. Protected by jiffies_lock.
49 */
50 static ktime_t last_jiffies_update;
51
52 /*
53 * Must be called with interrupts disabled !
54 */
tick_do_update_jiffies64(ktime_t now)55 static void tick_do_update_jiffies64(ktime_t now)
56 {
57 unsigned long ticks = 1;
58 ktime_t delta;
59
60 /*
61 * Do a quick check without holding jiffies_lock. The READ_ONCE()
62 * pairs with the update done later in this function.
63 *
64 * This is also an intentional data race which is even safe on
65 * 32bit in theory. If there is a concurrent update then the check
66 * might give a random answer. It does not matter because if it
67 * returns then the concurrent update is already taking care, if it
68 * falls through then it will pointlessly contend on jiffies_lock.
69 *
70 * Though there is one nasty case on 32bit due to store tearing of
71 * the 64bit value. If the first 32bit store makes the quick check
72 * return on all other CPUs and the writing CPU context gets
73 * delayed to complete the second store (scheduled out on virt)
74 * then jiffies can become stale for up to ~2^32 nanoseconds
75 * without noticing. After that point all CPUs will wait for
76 * jiffies lock.
77 *
78 * OTOH, this is not any different than the situation with NOHZ=off
79 * where one CPU is responsible for updating jiffies and
80 * timekeeping. If that CPU goes out for lunch then all other CPUs
81 * will operate on stale jiffies until it decides to come back.
82 */
83 if (ktime_before(now, READ_ONCE(tick_next_period)))
84 return;
85
86 /* Reevaluate with jiffies_lock held */
87 raw_spin_lock(&jiffies_lock);
88 if (ktime_before(now, tick_next_period)) {
89 raw_spin_unlock(&jiffies_lock);
90 return;
91 }
92
93 write_seqcount_begin(&jiffies_seq);
94
95 delta = ktime_sub(now, tick_next_period);
96 if (unlikely(delta >= TICK_NSEC)) {
97 /* Slow path for long idle sleep times */
98 s64 incr = TICK_NSEC;
99
100 ticks += ktime_divns(delta, incr);
101
102 last_jiffies_update = ktime_add_ns(last_jiffies_update,
103 incr * ticks);
104 } else {
105 last_jiffies_update = ktime_add_ns(last_jiffies_update,
106 TICK_NSEC);
107 }
108
109 do_timer(ticks);
110
111 /*
112 * Keep the tick_next_period variable up to date. WRITE_ONCE()
113 * pairs with the READ_ONCE() in the lockless quick check above.
114 */
115 WRITE_ONCE(tick_next_period,
116 ktime_add_ns(last_jiffies_update, TICK_NSEC));
117
118 write_seqcount_end(&jiffies_seq);
119 raw_spin_unlock(&jiffies_lock);
120 update_wall_time();
121 }
122
123 /*
124 * Initialize and return retrieve the jiffies update.
125 */
tick_init_jiffy_update(void)126 static ktime_t tick_init_jiffy_update(void)
127 {
128 ktime_t period;
129
130 raw_spin_lock(&jiffies_lock);
131 write_seqcount_begin(&jiffies_seq);
132 /* Did we start the jiffies update yet ? */
133 if (last_jiffies_update == 0) {
134 u32 rem;
135
136 /*
137 * Ensure that the tick is aligned to a multiple of
138 * TICK_NSEC.
139 */
140 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
141 if (rem)
142 tick_next_period += TICK_NSEC - rem;
143
144 last_jiffies_update = tick_next_period;
145 }
146 period = last_jiffies_update;
147 write_seqcount_end(&jiffies_seq);
148 raw_spin_unlock(&jiffies_lock);
149 return period;
150 }
151
152 #define MAX_STALLED_JIFFIES 5
153
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)154 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
155 {
156 int cpu = smp_processor_id();
157
158 #ifdef CONFIG_NO_HZ_COMMON
159 /*
160 * Check if the do_timer duty was dropped. We don't care about
161 * concurrency: This happens only when the CPU in charge went
162 * into a long sleep. If two CPUs happen to assign themselves to
163 * this duty, then the jiffies update is still serialized by
164 * jiffies_lock.
165 *
166 * If nohz_full is enabled, this should not happen because the
167 * tick_do_timer_cpu never relinquishes.
168 */
169 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
170 #ifdef CONFIG_NO_HZ_FULL
171 WARN_ON_ONCE(tick_nohz_full_running);
172 #endif
173 tick_do_timer_cpu = cpu;
174 }
175 #endif
176
177 /* Check, if the jiffies need an update */
178 if (tick_do_timer_cpu == cpu) {
179 tick_do_update_jiffies64(now);
180 trace_android_vh_jiffies_update(NULL);
181 }
182
183 /*
184 * If jiffies update stalled for too long (timekeeper in stop_machine()
185 * or VMEXIT'ed for several msecs), force an update.
186 */
187 if (ts->last_tick_jiffies != jiffies) {
188 ts->stalled_jiffies = 0;
189 ts->last_tick_jiffies = READ_ONCE(jiffies);
190 } else {
191 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
192 tick_do_update_jiffies64(now);
193 ts->stalled_jiffies = 0;
194 ts->last_tick_jiffies = READ_ONCE(jiffies);
195 }
196 }
197
198 if (ts->inidle)
199 ts->got_idle_tick = 1;
200 }
201
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)202 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
203 {
204 #ifdef CONFIG_NO_HZ_COMMON
205 /*
206 * When we are idle and the tick is stopped, we have to touch
207 * the watchdog as we might not schedule for a really long
208 * time. This happens on complete idle SMP systems while
209 * waiting on the login prompt. We also increment the "start of
210 * idle" jiffy stamp so the idle accounting adjustment we do
211 * when we go busy again does not account too much ticks.
212 */
213 if (ts->tick_stopped) {
214 touch_softlockup_watchdog_sched();
215 if (is_idle_task(current))
216 ts->idle_jiffies++;
217 /*
218 * In case the current tick fired too early past its expected
219 * expiration, make sure we don't bypass the next clock reprogramming
220 * to the same deadline.
221 */
222 ts->next_tick = 0;
223 }
224 #endif
225 update_process_times(user_mode(regs));
226 profile_tick(CPU_PROFILING);
227 }
228 #endif
229
230 #ifdef CONFIG_NO_HZ_FULL
231 cpumask_var_t tick_nohz_full_mask;
232 bool tick_nohz_full_running;
233 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
234 static atomic_t tick_dep_mask;
235
check_tick_dependency(atomic_t * dep)236 static bool check_tick_dependency(atomic_t *dep)
237 {
238 int val = atomic_read(dep);
239
240 if (val & TICK_DEP_MASK_POSIX_TIMER) {
241 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
242 return true;
243 }
244
245 if (val & TICK_DEP_MASK_PERF_EVENTS) {
246 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
247 return true;
248 }
249
250 if (val & TICK_DEP_MASK_SCHED) {
251 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
252 return true;
253 }
254
255 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
256 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
257 return true;
258 }
259
260 if (val & TICK_DEP_MASK_RCU) {
261 trace_tick_stop(0, TICK_DEP_MASK_RCU);
262 return true;
263 }
264
265 if (val & TICK_DEP_MASK_RCU_EXP) {
266 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
267 return true;
268 }
269
270 return false;
271 }
272
can_stop_full_tick(int cpu,struct tick_sched * ts)273 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
274 {
275 lockdep_assert_irqs_disabled();
276
277 if (unlikely(!cpu_online(cpu)))
278 return false;
279
280 if (check_tick_dependency(&tick_dep_mask))
281 return false;
282
283 if (check_tick_dependency(&ts->tick_dep_mask))
284 return false;
285
286 if (check_tick_dependency(¤t->tick_dep_mask))
287 return false;
288
289 if (check_tick_dependency(¤t->signal->tick_dep_mask))
290 return false;
291
292 return true;
293 }
294
nohz_full_kick_func(struct irq_work * work)295 static void nohz_full_kick_func(struct irq_work *work)
296 {
297 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
298 }
299
300 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
301 .func = nohz_full_kick_func,
302 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
303 };
304
305 /*
306 * Kick this CPU if it's full dynticks in order to force it to
307 * re-evaluate its dependency on the tick and restart it if necessary.
308 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
309 * is NMI safe.
310 */
tick_nohz_full_kick(void)311 static void tick_nohz_full_kick(void)
312 {
313 if (!tick_nohz_full_cpu(smp_processor_id()))
314 return;
315
316 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
317 }
318
319 /*
320 * Kick the CPU if it's full dynticks in order to force it to
321 * re-evaluate its dependency on the tick and restart it if necessary.
322 */
tick_nohz_full_kick_cpu(int cpu)323 void tick_nohz_full_kick_cpu(int cpu)
324 {
325 if (!tick_nohz_full_cpu(cpu))
326 return;
327
328 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
329 }
330
331 /*
332 * Kick all full dynticks CPUs in order to force these to re-evaluate
333 * their dependency on the tick and restart it if necessary.
334 */
tick_nohz_full_kick_all(void)335 static void tick_nohz_full_kick_all(void)
336 {
337 int cpu;
338
339 if (!tick_nohz_full_running)
340 return;
341
342 preempt_disable();
343 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
344 tick_nohz_full_kick_cpu(cpu);
345 preempt_enable();
346 }
347
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)348 static void tick_nohz_dep_set_all(atomic_t *dep,
349 enum tick_dep_bits bit)
350 {
351 int prev;
352
353 prev = atomic_fetch_or(BIT(bit), dep);
354 if (!prev)
355 tick_nohz_full_kick_all();
356 }
357
358 /*
359 * Set a global tick dependency. Used by perf events that rely on freq and
360 * by unstable clock.
361 */
tick_nohz_dep_set(enum tick_dep_bits bit)362 void tick_nohz_dep_set(enum tick_dep_bits bit)
363 {
364 tick_nohz_dep_set_all(&tick_dep_mask, bit);
365 }
366
tick_nohz_dep_clear(enum tick_dep_bits bit)367 void tick_nohz_dep_clear(enum tick_dep_bits bit)
368 {
369 atomic_andnot(BIT(bit), &tick_dep_mask);
370 }
371
372 /*
373 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
374 * manage events throttling.
375 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)376 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
377 {
378 int prev;
379 struct tick_sched *ts;
380
381 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
382
383 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
384 if (!prev) {
385 preempt_disable();
386 /* Perf needs local kick that is NMI safe */
387 if (cpu == smp_processor_id()) {
388 tick_nohz_full_kick();
389 } else {
390 /* Remote irq work not NMI-safe */
391 if (!WARN_ON_ONCE(in_nmi()))
392 tick_nohz_full_kick_cpu(cpu);
393 }
394 preempt_enable();
395 }
396 }
397 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
398
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)399 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
400 {
401 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
402
403 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
404 }
405 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
406
407 /*
408 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
409 * in order to elapse per task timers.
410 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)411 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
412 {
413 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
414 if (tsk == current) {
415 preempt_disable();
416 tick_nohz_full_kick();
417 preempt_enable();
418 } else {
419 /*
420 * Some future tick_nohz_full_kick_task()
421 * should optimize this.
422 */
423 tick_nohz_full_kick_all();
424 }
425 }
426 }
427 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
428
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)429 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
430 {
431 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
432 }
433 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
434
435 /*
436 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
437 * per process timers.
438 */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)439 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
440 {
441 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
442 }
443
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)444 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
445 {
446 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
447 }
448
449 /*
450 * Re-evaluate the need for the tick as we switch the current task.
451 * It might need the tick due to per task/process properties:
452 * perf events, posix CPU timers, ...
453 */
__tick_nohz_task_switch(void)454 void __tick_nohz_task_switch(void)
455 {
456 unsigned long flags;
457 struct tick_sched *ts;
458
459 local_irq_save(flags);
460
461 if (!tick_nohz_full_cpu(smp_processor_id()))
462 goto out;
463
464 ts = this_cpu_ptr(&tick_cpu_sched);
465
466 if (ts->tick_stopped) {
467 if (atomic_read(¤t->tick_dep_mask) ||
468 atomic_read(¤t->signal->tick_dep_mask))
469 tick_nohz_full_kick();
470 }
471 out:
472 local_irq_restore(flags);
473 }
474
475 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)476 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
477 {
478 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
479 cpumask_copy(tick_nohz_full_mask, cpumask);
480 tick_nohz_full_running = true;
481 }
482
tick_nohz_cpu_hotpluggable(unsigned int cpu)483 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
484 {
485 /*
486 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
487 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
488 * CPUs. It must remain online when nohz full is enabled.
489 */
490 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
491 return false;
492 return true;
493 }
494
tick_nohz_cpu_down(unsigned int cpu)495 static int tick_nohz_cpu_down(unsigned int cpu)
496 {
497 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
498 }
499
tick_nohz_init(void)500 void __init tick_nohz_init(void)
501 {
502 int cpu, ret;
503
504 if (!tick_nohz_full_running)
505 return;
506
507 /*
508 * Full dynticks uses irq work to drive the tick rescheduling on safe
509 * locking contexts. But then we need irq work to raise its own
510 * interrupts to avoid circular dependency on the tick
511 */
512 if (!arch_irq_work_has_interrupt()) {
513 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
514 cpumask_clear(tick_nohz_full_mask);
515 tick_nohz_full_running = false;
516 return;
517 }
518
519 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
520 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
521 cpu = smp_processor_id();
522
523 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
524 pr_warn("NO_HZ: Clearing %d from nohz_full range "
525 "for timekeeping\n", cpu);
526 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
527 }
528 }
529
530 for_each_cpu(cpu, tick_nohz_full_mask)
531 context_tracking_cpu_set(cpu);
532
533 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
534 "kernel/nohz:predown", NULL,
535 tick_nohz_cpu_down);
536 WARN_ON(ret < 0);
537 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
538 cpumask_pr_args(tick_nohz_full_mask));
539 }
540 #endif
541
542 /*
543 * NOHZ - aka dynamic tick functionality
544 */
545 #ifdef CONFIG_NO_HZ_COMMON
546 /*
547 * NO HZ enabled ?
548 */
549 bool tick_nohz_enabled __read_mostly = true;
550 unsigned long tick_nohz_active __read_mostly;
551 /*
552 * Enable / Disable tickless mode
553 */
setup_tick_nohz(char * str)554 static int __init setup_tick_nohz(char *str)
555 {
556 return (kstrtobool(str, &tick_nohz_enabled) == 0);
557 }
558
559 __setup("nohz=", setup_tick_nohz);
560
tick_nohz_tick_stopped(void)561 bool tick_nohz_tick_stopped(void)
562 {
563 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
564
565 return ts->tick_stopped;
566 }
567
tick_nohz_tick_stopped_cpu(int cpu)568 bool tick_nohz_tick_stopped_cpu(int cpu)
569 {
570 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
571
572 return ts->tick_stopped;
573 }
574
575 /**
576 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
577 *
578 * Called from interrupt entry when the CPU was idle
579 *
580 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
581 * must be updated. Otherwise an interrupt handler could use a stale jiffy
582 * value. We do this unconditionally on any CPU, as we don't know whether the
583 * CPU, which has the update task assigned is in a long sleep.
584 */
tick_nohz_update_jiffies(ktime_t now)585 static void tick_nohz_update_jiffies(ktime_t now)
586 {
587 unsigned long flags;
588
589 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
590
591 local_irq_save(flags);
592 tick_do_update_jiffies64(now);
593 local_irq_restore(flags);
594
595 touch_softlockup_watchdog_sched();
596 }
597
598 /*
599 * Updates the per-CPU time idle statistics counters
600 */
601 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)602 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
603 {
604 ktime_t delta;
605
606 if (ts->idle_active) {
607 delta = ktime_sub(now, ts->idle_entrytime);
608 if (nr_iowait_cpu(cpu) > 0)
609 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
610 else
611 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
612 ts->idle_entrytime = now;
613 }
614
615 if (last_update_time)
616 *last_update_time = ktime_to_us(now);
617
618 }
619
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)620 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
621 {
622 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
623 ts->idle_active = 0;
624
625 sched_clock_idle_wakeup_event();
626 }
627
tick_nohz_start_idle(struct tick_sched * ts)628 static void tick_nohz_start_idle(struct tick_sched *ts)
629 {
630 ts->idle_entrytime = ktime_get();
631 ts->idle_active = 1;
632 sched_clock_idle_sleep_event();
633 }
634
635 /**
636 * get_cpu_idle_time_us - get the total idle time of a CPU
637 * @cpu: CPU number to query
638 * @last_update_time: variable to store update time in. Do not update
639 * counters if NULL.
640 *
641 * Return the cumulative idle time (since boot) for a given
642 * CPU, in microseconds.
643 *
644 * This time is measured via accounting rather than sampling,
645 * and is as accurate as ktime_get() is.
646 *
647 * This function returns -1 if NOHZ is not enabled.
648 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)649 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
650 {
651 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
652 ktime_t now, idle;
653
654 if (!tick_nohz_active)
655 return -1;
656
657 now = ktime_get();
658 if (last_update_time) {
659 update_ts_time_stats(cpu, ts, now, last_update_time);
660 idle = ts->idle_sleeptime;
661 } else {
662 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
663 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
664
665 idle = ktime_add(ts->idle_sleeptime, delta);
666 } else {
667 idle = ts->idle_sleeptime;
668 }
669 }
670
671 return ktime_to_us(idle);
672
673 }
674 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
675
676 /**
677 * get_cpu_iowait_time_us - get the total iowait time of a CPU
678 * @cpu: CPU number to query
679 * @last_update_time: variable to store update time in. Do not update
680 * counters if NULL.
681 *
682 * Return the cumulative iowait time (since boot) for a given
683 * CPU, in microseconds.
684 *
685 * This time is measured via accounting rather than sampling,
686 * and is as accurate as ktime_get() is.
687 *
688 * This function returns -1 if NOHZ is not enabled.
689 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)690 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
691 {
692 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
693 ktime_t now, iowait;
694
695 if (!tick_nohz_active)
696 return -1;
697
698 now = ktime_get();
699 if (last_update_time) {
700 update_ts_time_stats(cpu, ts, now, last_update_time);
701 iowait = ts->iowait_sleeptime;
702 } else {
703 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
704 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
705
706 iowait = ktime_add(ts->iowait_sleeptime, delta);
707 } else {
708 iowait = ts->iowait_sleeptime;
709 }
710 }
711
712 return ktime_to_us(iowait);
713 }
714 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
715
tick_nohz_restart(struct tick_sched * ts,ktime_t now)716 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
717 {
718 hrtimer_cancel(&ts->sched_timer);
719 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
720
721 /* Forward the time to expire in the future */
722 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
723
724 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
725 hrtimer_start_expires(&ts->sched_timer,
726 HRTIMER_MODE_ABS_PINNED_HARD);
727 } else {
728 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
729 }
730
731 /*
732 * Reset to make sure next tick stop doesn't get fooled by past
733 * cached clock deadline.
734 */
735 ts->next_tick = 0;
736 }
737
local_timer_softirq_pending(void)738 static inline bool local_timer_softirq_pending(void)
739 {
740 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
741 }
742
tick_nohz_next_event(struct tick_sched * ts,int cpu)743 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
744 {
745 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
746 unsigned long basejiff;
747 unsigned int seq;
748
749 /* Read jiffies and the time when jiffies were updated last */
750 do {
751 seq = read_seqcount_begin(&jiffies_seq);
752 basemono = last_jiffies_update;
753 basejiff = jiffies;
754 } while (read_seqcount_retry(&jiffies_seq, seq));
755 ts->last_jiffies = basejiff;
756 ts->timer_expires_base = basemono;
757
758 /*
759 * Keep the periodic tick, when RCU, architecture or irq_work
760 * requests it.
761 * Aside of that check whether the local timer softirq is
762 * pending. If so its a bad idea to call get_next_timer_interrupt()
763 * because there is an already expired timer, so it will request
764 * immeditate expiry, which rearms the hardware timer with a
765 * minimal delta which brings us back to this place
766 * immediately. Lather, rinse and repeat...
767 */
768 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
769 irq_work_needs_cpu() || local_timer_softirq_pending()) {
770 next_tick = basemono + TICK_NSEC;
771 } else {
772 /*
773 * Get the next pending timer. If high resolution
774 * timers are enabled this only takes the timer wheel
775 * timers into account. If high resolution timers are
776 * disabled this also looks at the next expiring
777 * hrtimer.
778 */
779 next_tmr = get_next_timer_interrupt(basejiff, basemono);
780 ts->next_timer = next_tmr;
781 /* Take the next rcu event into account */
782 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
783 }
784
785 /*
786 * If the tick is due in the next period, keep it ticking or
787 * force prod the timer.
788 */
789 delta = next_tick - basemono;
790 if (delta <= (u64)TICK_NSEC) {
791 /*
792 * Tell the timer code that the base is not idle, i.e. undo
793 * the effect of get_next_timer_interrupt():
794 */
795 timer_clear_idle();
796 /*
797 * We've not stopped the tick yet, and there's a timer in the
798 * next period, so no point in stopping it either, bail.
799 */
800 if (!ts->tick_stopped) {
801 ts->timer_expires = 0;
802 goto out;
803 }
804 }
805
806 /*
807 * If this CPU is the one which had the do_timer() duty last, we limit
808 * the sleep time to the timekeeping max_deferment value.
809 * Otherwise we can sleep as long as we want.
810 */
811 delta = timekeeping_max_deferment();
812 if (cpu != tick_do_timer_cpu &&
813 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
814 delta = KTIME_MAX;
815
816 /* Calculate the next expiry time */
817 if (delta < (KTIME_MAX - basemono))
818 expires = basemono + delta;
819 else
820 expires = KTIME_MAX;
821
822 ts->timer_expires = min_t(u64, expires, next_tick);
823
824 out:
825 return ts->timer_expires;
826 }
827
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)828 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
829 {
830 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
831 u64 basemono = ts->timer_expires_base;
832 u64 expires = ts->timer_expires;
833 ktime_t tick = expires;
834
835 /* Make sure we won't be trying to stop it twice in a row. */
836 ts->timer_expires_base = 0;
837
838 /*
839 * If this CPU is the one which updates jiffies, then give up
840 * the assignment and let it be taken by the CPU which runs
841 * the tick timer next, which might be this CPU as well. If we
842 * don't drop this here the jiffies might be stale and
843 * do_timer() never invoked. Keep track of the fact that it
844 * was the one which had the do_timer() duty last.
845 */
846 if (cpu == tick_do_timer_cpu) {
847 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
848 ts->do_timer_last = 1;
849 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
850 ts->do_timer_last = 0;
851 }
852
853 /* Skip reprogram of event if its not changed */
854 if (ts->tick_stopped && (expires == ts->next_tick)) {
855 /* Sanity check: make sure clockevent is actually programmed */
856 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
857 return;
858
859 WARN_ON_ONCE(1);
860 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
861 basemono, ts->next_tick, dev->next_event,
862 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
863 }
864
865 /*
866 * nohz_stop_sched_tick can be called several times before
867 * the nohz_restart_sched_tick is called. This happens when
868 * interrupts arrive which do not cause a reschedule. In the
869 * first call we save the current tick time, so we can restart
870 * the scheduler tick in nohz_restart_sched_tick.
871 */
872 if (!ts->tick_stopped) {
873 calc_load_nohz_start();
874 quiet_vmstat();
875
876 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
877 ts->tick_stopped = 1;
878 trace_tick_stop(1, TICK_DEP_MASK_NONE);
879 }
880
881 ts->next_tick = tick;
882
883 /*
884 * If the expiration time == KTIME_MAX, then we simply stop
885 * the tick timer.
886 */
887 if (unlikely(expires == KTIME_MAX)) {
888 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
889 hrtimer_cancel(&ts->sched_timer);
890 else
891 tick_program_event(KTIME_MAX, 1);
892 return;
893 }
894
895 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
896 hrtimer_start(&ts->sched_timer, tick,
897 HRTIMER_MODE_ABS_PINNED_HARD);
898 } else {
899 hrtimer_set_expires(&ts->sched_timer, tick);
900 tick_program_event(tick, 1);
901 }
902 }
903
tick_nohz_retain_tick(struct tick_sched * ts)904 static void tick_nohz_retain_tick(struct tick_sched *ts)
905 {
906 ts->timer_expires_base = 0;
907 }
908
909 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)910 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
911 {
912 if (tick_nohz_next_event(ts, cpu))
913 tick_nohz_stop_tick(ts, cpu);
914 else
915 tick_nohz_retain_tick(ts);
916 }
917 #endif /* CONFIG_NO_HZ_FULL */
918
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)919 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
920 {
921 /* Update jiffies first */
922 tick_do_update_jiffies64(now);
923
924 /*
925 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
926 * the clock forward checks in the enqueue path:
927 */
928 timer_clear_idle();
929
930 calc_load_nohz_stop();
931 touch_softlockup_watchdog_sched();
932 /*
933 * Cancel the scheduled timer and restore the tick
934 */
935 ts->tick_stopped = 0;
936 ts->idle_exittime = now;
937
938 tick_nohz_restart(ts, now);
939 }
940
tick_nohz_full_update_tick(struct tick_sched * ts)941 static void tick_nohz_full_update_tick(struct tick_sched *ts)
942 {
943 #ifdef CONFIG_NO_HZ_FULL
944 int cpu = smp_processor_id();
945
946 if (!tick_nohz_full_cpu(cpu))
947 return;
948
949 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
950 return;
951
952 if (can_stop_full_tick(cpu, ts))
953 tick_nohz_stop_sched_tick(ts, cpu);
954 else if (ts->tick_stopped)
955 tick_nohz_restart_sched_tick(ts, ktime_get());
956 #endif
957 }
958
can_stop_idle_tick(int cpu,struct tick_sched * ts)959 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
960 {
961 /*
962 * If this CPU is offline and it is the one which updates
963 * jiffies, then give up the assignment and let it be taken by
964 * the CPU which runs the tick timer next. If we don't drop
965 * this here the jiffies might be stale and do_timer() never
966 * invoked.
967 */
968 if (unlikely(!cpu_online(cpu))) {
969 if (cpu == tick_do_timer_cpu)
970 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
971 /*
972 * Make sure the CPU doesn't get fooled by obsolete tick
973 * deadline if it comes back online later.
974 */
975 ts->next_tick = 0;
976 return false;
977 }
978
979 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
980 return false;
981
982 if (need_resched())
983 return false;
984
985 if (unlikely(local_softirq_pending())) {
986 static int ratelimit;
987
988 if (ratelimit < 10 &&
989 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
990 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
991 (unsigned int) local_softirq_pending());
992 ratelimit++;
993 }
994 return false;
995 }
996
997 if (tick_nohz_full_enabled()) {
998 /*
999 * Keep the tick alive to guarantee timekeeping progression
1000 * if there are full dynticks CPUs around
1001 */
1002 if (tick_do_timer_cpu == cpu)
1003 return false;
1004
1005 /* Should not happen for nohz-full */
1006 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1007 return false;
1008 }
1009
1010 return true;
1011 }
1012
__tick_nohz_idle_stop_tick(struct tick_sched * ts)1013 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1014 {
1015 ktime_t expires;
1016 int cpu = smp_processor_id();
1017
1018 /*
1019 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1020 * tick timer expiration time is known already.
1021 */
1022 if (ts->timer_expires_base)
1023 expires = ts->timer_expires;
1024 else if (can_stop_idle_tick(cpu, ts))
1025 expires = tick_nohz_next_event(ts, cpu);
1026 else
1027 return;
1028
1029 ts->idle_calls++;
1030
1031 if (expires > 0LL) {
1032 int was_stopped = ts->tick_stopped;
1033
1034 tick_nohz_stop_tick(ts, cpu);
1035
1036 ts->idle_sleeps++;
1037 ts->idle_expires = expires;
1038
1039 if (!was_stopped && ts->tick_stopped) {
1040 ts->idle_jiffies = ts->last_jiffies;
1041 nohz_balance_enter_idle(cpu);
1042 }
1043 } else {
1044 tick_nohz_retain_tick(ts);
1045 }
1046 }
1047
1048 /**
1049 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1050 *
1051 * When the next event is more than a tick into the future, stop the idle tick
1052 */
tick_nohz_idle_stop_tick(void)1053 void tick_nohz_idle_stop_tick(void)
1054 {
1055 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1056 }
1057
tick_nohz_idle_retain_tick(void)1058 void tick_nohz_idle_retain_tick(void)
1059 {
1060 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1061 /*
1062 * Undo the effect of get_next_timer_interrupt() called from
1063 * tick_nohz_next_event().
1064 */
1065 timer_clear_idle();
1066 }
1067
1068 /**
1069 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1070 *
1071 * Called when we start the idle loop.
1072 */
tick_nohz_idle_enter(void)1073 void tick_nohz_idle_enter(void)
1074 {
1075 struct tick_sched *ts;
1076
1077 lockdep_assert_irqs_enabled();
1078
1079 local_irq_disable();
1080
1081 ts = this_cpu_ptr(&tick_cpu_sched);
1082
1083 WARN_ON_ONCE(ts->timer_expires_base);
1084
1085 ts->inidle = 1;
1086 tick_nohz_start_idle(ts);
1087
1088 local_irq_enable();
1089 }
1090
1091 /**
1092 * tick_nohz_irq_exit - update next tick event from interrupt exit
1093 *
1094 * When an interrupt fires while we are idle and it doesn't cause
1095 * a reschedule, it may still add, modify or delete a timer, enqueue
1096 * an RCU callback, etc...
1097 * So we need to re-calculate and reprogram the next tick event.
1098 */
tick_nohz_irq_exit(void)1099 void tick_nohz_irq_exit(void)
1100 {
1101 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1102
1103 if (ts->inidle)
1104 tick_nohz_start_idle(ts);
1105 else
1106 tick_nohz_full_update_tick(ts);
1107 }
1108
1109 /**
1110 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1111 */
tick_nohz_idle_got_tick(void)1112 bool tick_nohz_idle_got_tick(void)
1113 {
1114 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115
1116 if (ts->got_idle_tick) {
1117 ts->got_idle_tick = 0;
1118 return true;
1119 }
1120 return false;
1121 }
1122
1123 /**
1124 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1125 * or the tick, whatever that expires first. Note that, if the tick has been
1126 * stopped, it returns the next hrtimer.
1127 *
1128 * Called from power state control code with interrupts disabled
1129 */
tick_nohz_get_next_hrtimer(void)1130 ktime_t tick_nohz_get_next_hrtimer(void)
1131 {
1132 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1133 }
1134
1135 /**
1136 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1137 * @delta_next: duration until the next event if the tick cannot be stopped
1138 *
1139 * Called from power state control code with interrupts disabled
1140 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1141 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1142 {
1143 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1144 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1145 int cpu = smp_processor_id();
1146 /*
1147 * The idle entry time is expected to be a sufficient approximation of
1148 * the current time at this point.
1149 */
1150 ktime_t now = ts->idle_entrytime;
1151 ktime_t next_event;
1152
1153 WARN_ON_ONCE(!ts->inidle);
1154
1155 *delta_next = ktime_sub(dev->next_event, now);
1156
1157 if (!can_stop_idle_tick(cpu, ts))
1158 return *delta_next;
1159
1160 next_event = tick_nohz_next_event(ts, cpu);
1161 if (!next_event)
1162 return *delta_next;
1163
1164 /*
1165 * If the next highres timer to expire is earlier than next_event, the
1166 * idle governor needs to know that.
1167 */
1168 next_event = min_t(u64, next_event,
1169 hrtimer_next_event_without(&ts->sched_timer));
1170
1171 return ktime_sub(next_event, now);
1172 }
1173 EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
1174
1175 /**
1176 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1177 * for a particular CPU.
1178 *
1179 * Called from the schedutil frequency scaling governor in scheduler context.
1180 */
tick_nohz_get_idle_calls_cpu(int cpu)1181 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1182 {
1183 struct tick_sched *ts = tick_get_tick_sched(cpu);
1184
1185 return ts->idle_calls;
1186 }
1187 EXPORT_SYMBOL_GPL(tick_nohz_get_idle_calls_cpu);
1188
1189 /**
1190 * tick_nohz_get_idle_calls - return the current idle calls counter value
1191 *
1192 * Called from the schedutil frequency scaling governor in scheduler context.
1193 */
tick_nohz_get_idle_calls(void)1194 unsigned long tick_nohz_get_idle_calls(void)
1195 {
1196 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1197
1198 return ts->idle_calls;
1199 }
1200
tick_nohz_account_idle_ticks(struct tick_sched * ts)1201 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1202 {
1203 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1204 unsigned long ticks;
1205
1206 if (vtime_accounting_enabled_this_cpu())
1207 return;
1208 /*
1209 * We stopped the tick in idle. Update process times would miss the
1210 * time we slept as update_process_times does only a 1 tick
1211 * accounting. Enforce that this is accounted to idle !
1212 */
1213 ticks = jiffies - ts->idle_jiffies;
1214 /*
1215 * We might be one off. Do not randomly account a huge number of ticks!
1216 */
1217 if (ticks && ticks < LONG_MAX)
1218 account_idle_ticks(ticks);
1219 #endif
1220 }
1221
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1222 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1223 {
1224 tick_nohz_restart_sched_tick(ts, now);
1225 tick_nohz_account_idle_ticks(ts);
1226 }
1227
tick_nohz_idle_restart_tick(void)1228 void tick_nohz_idle_restart_tick(void)
1229 {
1230 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1231
1232 if (ts->tick_stopped)
1233 __tick_nohz_idle_restart_tick(ts, ktime_get());
1234 }
1235
1236 /**
1237 * tick_nohz_idle_exit - restart the idle tick from the idle task
1238 *
1239 * Restart the idle tick when the CPU is woken up from idle
1240 * This also exit the RCU extended quiescent state. The CPU
1241 * can use RCU again after this function is called.
1242 */
tick_nohz_idle_exit(void)1243 void tick_nohz_idle_exit(void)
1244 {
1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1246 bool idle_active, tick_stopped;
1247 ktime_t now;
1248
1249 local_irq_disable();
1250
1251 WARN_ON_ONCE(!ts->inidle);
1252 WARN_ON_ONCE(ts->timer_expires_base);
1253
1254 ts->inidle = 0;
1255 idle_active = ts->idle_active;
1256 tick_stopped = ts->tick_stopped;
1257
1258 if (idle_active || tick_stopped)
1259 now = ktime_get();
1260
1261 if (idle_active)
1262 tick_nohz_stop_idle(ts, now);
1263
1264 if (tick_stopped)
1265 __tick_nohz_idle_restart_tick(ts, now);
1266
1267 local_irq_enable();
1268 }
1269
1270 /*
1271 * The nohz low res interrupt handler
1272 */
tick_nohz_handler(struct clock_event_device * dev)1273 static void tick_nohz_handler(struct clock_event_device *dev)
1274 {
1275 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276 struct pt_regs *regs = get_irq_regs();
1277 ktime_t now = ktime_get();
1278
1279 dev->next_event = KTIME_MAX;
1280
1281 tick_sched_do_timer(ts, now);
1282 tick_sched_handle(ts, regs);
1283
1284 if (unlikely(ts->tick_stopped)) {
1285 /*
1286 * The clockevent device is not reprogrammed, so change the
1287 * clock event device to ONESHOT_STOPPED to avoid spurious
1288 * interrupts on devices which might not be truly one shot.
1289 */
1290 tick_program_event(KTIME_MAX, 1);
1291 return;
1292 }
1293
1294 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1295 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1296 }
1297
tick_nohz_activate(struct tick_sched * ts,int mode)1298 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1299 {
1300 if (!tick_nohz_enabled)
1301 return;
1302 ts->nohz_mode = mode;
1303 /* One update is enough */
1304 if (!test_and_set_bit(0, &tick_nohz_active))
1305 timers_update_nohz();
1306 }
1307
1308 /**
1309 * tick_nohz_switch_to_nohz - switch to nohz mode
1310 */
tick_nohz_switch_to_nohz(void)1311 static void tick_nohz_switch_to_nohz(void)
1312 {
1313 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1314 ktime_t next;
1315
1316 if (!tick_nohz_enabled)
1317 return;
1318
1319 if (tick_switch_to_oneshot(tick_nohz_handler))
1320 return;
1321
1322 /*
1323 * Recycle the hrtimer in ts, so we can share the
1324 * hrtimer_forward with the highres code.
1325 */
1326 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1327 /* Get the next period */
1328 next = tick_init_jiffy_update();
1329
1330 hrtimer_set_expires(&ts->sched_timer, next);
1331 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1332 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1333 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1334 }
1335
tick_nohz_irq_enter(void)1336 static inline void tick_nohz_irq_enter(void)
1337 {
1338 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1339 ktime_t now;
1340
1341 if (!ts->idle_active && !ts->tick_stopped)
1342 return;
1343 now = ktime_get();
1344 if (ts->idle_active)
1345 tick_nohz_stop_idle(ts, now);
1346 if (ts->tick_stopped)
1347 tick_nohz_update_jiffies(now);
1348 }
1349
1350 #else
1351
tick_nohz_switch_to_nohz(void)1352 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1353 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1354 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1355
1356 #endif /* CONFIG_NO_HZ_COMMON */
1357
1358 /*
1359 * Called from irq_enter to notify about the possible interruption of idle()
1360 */
tick_irq_enter(void)1361 void tick_irq_enter(void)
1362 {
1363 tick_check_oneshot_broadcast_this_cpu();
1364 tick_nohz_irq_enter();
1365 }
1366
1367 /*
1368 * High resolution timer specific code
1369 */
1370 #ifdef CONFIG_HIGH_RES_TIMERS
1371 /*
1372 * We rearm the timer until we get disabled by the idle code.
1373 * Called with interrupts disabled.
1374 */
tick_sched_timer(struct hrtimer * timer)1375 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1376 {
1377 struct tick_sched *ts =
1378 container_of(timer, struct tick_sched, sched_timer);
1379 struct pt_regs *regs = get_irq_regs();
1380 ktime_t now = ktime_get();
1381
1382 tick_sched_do_timer(ts, now);
1383
1384 /*
1385 * Do not call, when we are not in irq context and have
1386 * no valid regs pointer
1387 */
1388 if (regs)
1389 tick_sched_handle(ts, regs);
1390 else
1391 ts->next_tick = 0;
1392
1393 /* No need to reprogram if we are in idle or full dynticks mode */
1394 if (unlikely(ts->tick_stopped))
1395 return HRTIMER_NORESTART;
1396
1397 hrtimer_forward(timer, now, TICK_NSEC);
1398
1399 return HRTIMER_RESTART;
1400 }
1401
1402 static int sched_skew_tick;
1403
skew_tick(char * str)1404 static int __init skew_tick(char *str)
1405 {
1406 get_option(&str, &sched_skew_tick);
1407
1408 return 0;
1409 }
1410 early_param("skew_tick", skew_tick);
1411
1412 /**
1413 * tick_setup_sched_timer - setup the tick emulation timer
1414 */
tick_setup_sched_timer(void)1415 void tick_setup_sched_timer(void)
1416 {
1417 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1418 ktime_t now = ktime_get();
1419
1420 /*
1421 * Emulate tick processing via per-CPU hrtimers:
1422 */
1423 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1424 ts->sched_timer.function = tick_sched_timer;
1425
1426 /* Get the next period (per-CPU) */
1427 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1428
1429 /* Offset the tick to avert jiffies_lock contention. */
1430 if (sched_skew_tick) {
1431 u64 offset = TICK_NSEC >> 1;
1432 do_div(offset, num_possible_cpus());
1433 offset *= smp_processor_id();
1434 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1435 }
1436
1437 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1438 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1439 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1440 }
1441 #endif /* HIGH_RES_TIMERS */
1442
1443 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1444 void tick_cancel_sched_timer(int cpu)
1445 {
1446 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1447 ktime_t idle_sleeptime, iowait_sleeptime;
1448 unsigned long idle_calls, idle_sleeps;
1449
1450 # ifdef CONFIG_HIGH_RES_TIMERS
1451 if (ts->sched_timer.base)
1452 hrtimer_cancel(&ts->sched_timer);
1453 # endif
1454
1455 idle_sleeptime = ts->idle_sleeptime;
1456 iowait_sleeptime = ts->iowait_sleeptime;
1457 idle_calls = ts->idle_calls;
1458 idle_sleeps = ts->idle_sleeps;
1459 memset(ts, 0, sizeof(*ts));
1460 ts->idle_sleeptime = idle_sleeptime;
1461 ts->iowait_sleeptime = iowait_sleeptime;
1462 ts->idle_calls = idle_calls;
1463 ts->idle_sleeps = idle_sleeps;
1464 }
1465 #endif
1466
1467 /**
1468 * Async notification about clocksource changes
1469 */
tick_clock_notify(void)1470 void tick_clock_notify(void)
1471 {
1472 int cpu;
1473
1474 for_each_possible_cpu(cpu)
1475 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1476 }
1477
1478 /*
1479 * Async notification about clock event changes
1480 */
tick_oneshot_notify(void)1481 void tick_oneshot_notify(void)
1482 {
1483 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1484
1485 set_bit(0, &ts->check_clocks);
1486 }
1487
1488 /**
1489 * Check, if a change happened, which makes oneshot possible.
1490 *
1491 * Called cyclic from the hrtimer softirq (driven by the timer
1492 * softirq) allow_nohz signals, that we can switch into low-res nohz
1493 * mode, because high resolution timers are disabled (either compile
1494 * or runtime). Called with interrupts disabled.
1495 */
tick_check_oneshot_change(int allow_nohz)1496 int tick_check_oneshot_change(int allow_nohz)
1497 {
1498 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1499
1500 if (!test_and_clear_bit(0, &ts->check_clocks))
1501 return 0;
1502
1503 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1504 return 0;
1505
1506 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1507 return 0;
1508
1509 if (!allow_nohz)
1510 return 1;
1511
1512 tick_nohz_switch_to_nohz();
1513 return 0;
1514 }
1515