1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/percpu.h>
37 #include <linux/notifier.h>
38 #include <linux/cpu.h>
39 #include <linux/mutex.h>
40 #include <linux/time.h>
41 #include <linux/kernel_stat.h>
42 #include <linux/wait.h>
43 #include <linux/kthread.h>
44 #include <uapi/linux/sched/types.h>
45 #include <linux/prefetch.h>
46 #include <linux/delay.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/slab.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/sched/clock.h>
61 #include <linux/vmalloc.h>
62 #include <linux/mm.h>
63 #include <linux/kasan.h>
64 #include "../time/tick-internal.h"
65
66 #include "tree.h"
67 #include "rcu.h"
68
69 #ifdef MODULE_PARAM_PREFIX
70 #undef MODULE_PARAM_PREFIX
71 #endif
72 #define MODULE_PARAM_PREFIX "rcutree."
73
74 /* Data structures. */
75
76 /*
77 * Steal a bit from the bottom of ->dynticks for idle entry/exit
78 * control. Initially this is for TLB flushing.
79 */
80 #define RCU_DYNTICK_CTRL_MASK 0x1
81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
82
83 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
84 .dynticks_nesting = 1,
85 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
86 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
87 };
88 static struct rcu_state rcu_state = {
89 .level = { &rcu_state.node[0] },
90 .gp_state = RCU_GP_IDLE,
91 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
92 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
93 .name = RCU_NAME,
94 .abbr = RCU_ABBR,
95 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
96 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
97 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
98 };
99
100 /* Dump rcu_node combining tree at boot to verify correct setup. */
101 static bool dump_tree;
102 module_param(dump_tree, bool, 0444);
103 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
104 static bool use_softirq = true;
105 module_param(use_softirq, bool, 0444);
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117 /*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier(). When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
148 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
151 static void invoke_rcu_core(void);
152 static void rcu_report_exp_rdp(struct rcu_data *rdp);
153 static void sync_sched_exp_online_cleanup(int cpu);
154 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
155
156 /* rcuc/rcub kthread realtime priority */
157 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
158 module_param(kthread_prio, int, 0444);
159
160 /* Delay in jiffies for grace-period initialization delays, debug only. */
161
162 static int gp_preinit_delay;
163 module_param(gp_preinit_delay, int, 0444);
164 static int gp_init_delay;
165 module_param(gp_init_delay, int, 0444);
166 static int gp_cleanup_delay;
167 module_param(gp_cleanup_delay, int, 0444);
168
169 // Add delay to rcu_read_unlock() for strict grace periods.
170 static int rcu_unlock_delay;
171 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
172 module_param(rcu_unlock_delay, int, 0444);
173 #endif
174
175 /*
176 * This rcu parameter is runtime-read-only. It reflects
177 * a minimum allowed number of objects which can be cached
178 * per-CPU. Object size is equal to one page. This value
179 * can be changed at boot time.
180 */
181 static int rcu_min_cached_objs = 5;
182 module_param(rcu_min_cached_objs, int, 0444);
183
184 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)185 int rcu_get_gp_kthreads_prio(void)
186 {
187 return kthread_prio;
188 }
189 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
190
191 /*
192 * Number of grace periods between delays, normalized by the duration of
193 * the delay. The longer the delay, the more the grace periods between
194 * each delay. The reason for this normalization is that it means that,
195 * for non-zero delays, the overall slowdown of grace periods is constant
196 * regardless of the duration of the delay. This arrangement balances
197 * the need for long delays to increase some race probabilities with the
198 * need for fast grace periods to increase other race probabilities.
199 */
200 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
201
202 /*
203 * Compute the mask of online CPUs for the specified rcu_node structure.
204 * This will not be stable unless the rcu_node structure's ->lock is
205 * held, but the bit corresponding to the current CPU will be stable
206 * in most contexts.
207 */
rcu_rnp_online_cpus(struct rcu_node * rnp)208 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
209 {
210 return READ_ONCE(rnp->qsmaskinitnext);
211 }
212
213 /*
214 * Return true if an RCU grace period is in progress. The READ_ONCE()s
215 * permit this function to be invoked without holding the root rcu_node
216 * structure's ->lock, but of course results can be subject to change.
217 */
rcu_gp_in_progress(void)218 static int rcu_gp_in_progress(void)
219 {
220 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
221 }
222
223 /*
224 * Return the number of callbacks queued on the specified CPU.
225 * Handles both the nocbs and normal cases.
226 */
rcu_get_n_cbs_cpu(int cpu)227 static long rcu_get_n_cbs_cpu(int cpu)
228 {
229 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
230
231 if (rcu_segcblist_is_enabled(&rdp->cblist))
232 return rcu_segcblist_n_cbs(&rdp->cblist);
233 return 0;
234 }
235
rcu_softirq_qs(void)236 void rcu_softirq_qs(void)
237 {
238 rcu_qs();
239 rcu_preempt_deferred_qs(current);
240 }
241
242 /*
243 * Record entry into an extended quiescent state. This is only to be
244 * called when not already in an extended quiescent state, that is,
245 * RCU is watching prior to the call to this function and is no longer
246 * watching upon return.
247 */
rcu_dynticks_eqs_enter(void)248 static noinstr void rcu_dynticks_eqs_enter(void)
249 {
250 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
251 int seq;
252
253 /*
254 * CPUs seeing atomic_add_return() must see prior RCU read-side
255 * critical sections, and we also must force ordering with the
256 * next idle sojourn.
257 */
258 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
259 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
260 // RCU is no longer watching. Better be in extended quiescent state!
261 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
262 (seq & RCU_DYNTICK_CTRL_CTR));
263 /* Better not have special action (TLB flush) pending! */
264 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
265 (seq & RCU_DYNTICK_CTRL_MASK));
266 }
267
268 /*
269 * Record exit from an extended quiescent state. This is only to be
270 * called from an extended quiescent state, that is, RCU is not watching
271 * prior to the call to this function and is watching upon return.
272 */
rcu_dynticks_eqs_exit(void)273 static noinstr void rcu_dynticks_eqs_exit(void)
274 {
275 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
276 int seq;
277
278 /*
279 * CPUs seeing atomic_add_return() must see prior idle sojourns,
280 * and we also must force ordering with the next RCU read-side
281 * critical section.
282 */
283 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
284 // RCU is now watching. Better not be in an extended quiescent state!
285 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
286 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
287 !(seq & RCU_DYNTICK_CTRL_CTR));
288 if (seq & RCU_DYNTICK_CTRL_MASK) {
289 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
290 smp_mb__after_atomic(); /* _exit after clearing mask. */
291 }
292 }
293
294 /*
295 * Reset the current CPU's ->dynticks counter to indicate that the
296 * newly onlined CPU is no longer in an extended quiescent state.
297 * This will either leave the counter unchanged, or increment it
298 * to the next non-quiescent value.
299 *
300 * The non-atomic test/increment sequence works because the upper bits
301 * of the ->dynticks counter are manipulated only by the corresponding CPU,
302 * or when the corresponding CPU is offline.
303 */
rcu_dynticks_eqs_online(void)304 static void rcu_dynticks_eqs_online(void)
305 {
306 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
307
308 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
309 return;
310 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
311 }
312
313 /*
314 * Is the current CPU in an extended quiescent state?
315 *
316 * No ordering, as we are sampling CPU-local information.
317 */
rcu_dynticks_curr_cpu_in_eqs(void)318 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
319 {
320 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
321
322 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
323 }
324
325 /*
326 * Snapshot the ->dynticks counter with full ordering so as to allow
327 * stable comparison of this counter with past and future snapshots.
328 */
rcu_dynticks_snap(struct rcu_data * rdp)329 static int rcu_dynticks_snap(struct rcu_data *rdp)
330 {
331 int snap = atomic_add_return(0, &rdp->dynticks);
332
333 return snap & ~RCU_DYNTICK_CTRL_MASK;
334 }
335
336 /*
337 * Return true if the snapshot returned from rcu_dynticks_snap()
338 * indicates that RCU is in an extended quiescent state.
339 */
rcu_dynticks_in_eqs(int snap)340 static bool rcu_dynticks_in_eqs(int snap)
341 {
342 return !(snap & RCU_DYNTICK_CTRL_CTR);
343 }
344
345 /*
346 * Return true if the CPU corresponding to the specified rcu_data
347 * structure has spent some time in an extended quiescent state since
348 * rcu_dynticks_snap() returned the specified snapshot.
349 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)350 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
351 {
352 return snap != rcu_dynticks_snap(rdp);
353 }
354
355 /*
356 * Return true if the referenced integer is zero while the specified
357 * CPU remains within a single extended quiescent state.
358 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)359 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
360 {
361 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
362 int snap;
363
364 // If not quiescent, force back to earlier extended quiescent state.
365 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
366 RCU_DYNTICK_CTRL_CTR);
367
368 smp_rmb(); // Order ->dynticks and *vp reads.
369 if (READ_ONCE(*vp))
370 return false; // Non-zero, so report failure;
371 smp_rmb(); // Order *vp read and ->dynticks re-read.
372
373 // If still in the same extended quiescent state, we are good!
374 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
375 }
376
377 /*
378 * Set the special (bottom) bit of the specified CPU so that it
379 * will take special action (such as flushing its TLB) on the
380 * next exit from an extended quiescent state. Returns true if
381 * the bit was successfully set, or false if the CPU was not in
382 * an extended quiescent state.
383 */
rcu_eqs_special_set(int cpu)384 bool rcu_eqs_special_set(int cpu)
385 {
386 int old;
387 int new;
388 int new_old;
389 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
390
391 new_old = atomic_read(&rdp->dynticks);
392 do {
393 old = new_old;
394 if (old & RCU_DYNTICK_CTRL_CTR)
395 return false;
396 new = old | RCU_DYNTICK_CTRL_MASK;
397 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
398 } while (new_old != old);
399 return true;
400 }
401
402 /*
403 * Let the RCU core know that this CPU has gone through the scheduler,
404 * which is a quiescent state. This is called when the need for a
405 * quiescent state is urgent, so we burn an atomic operation and full
406 * memory barriers to let the RCU core know about it, regardless of what
407 * this CPU might (or might not) do in the near future.
408 *
409 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
410 *
411 * The caller must have disabled interrupts and must not be idle.
412 */
rcu_momentary_dyntick_idle(void)413 notrace void rcu_momentary_dyntick_idle(void)
414 {
415 int special;
416
417 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
418 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
419 &this_cpu_ptr(&rcu_data)->dynticks);
420 /* It is illegal to call this from idle state. */
421 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
422 rcu_preempt_deferred_qs(current);
423 }
424 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
425
426 /**
427 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
428 *
429 * If the current CPU is idle and running at a first-level (not nested)
430 * interrupt, or directly, from idle, return true.
431 *
432 * The caller must have at least disabled IRQs.
433 */
rcu_is_cpu_rrupt_from_idle(void)434 static int rcu_is_cpu_rrupt_from_idle(void)
435 {
436 long nesting;
437
438 /*
439 * Usually called from the tick; but also used from smp_function_call()
440 * for expedited grace periods. This latter can result in running from
441 * the idle task, instead of an actual IPI.
442 */
443 lockdep_assert_irqs_disabled();
444
445 /* Check for counter underflows */
446 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
447 "RCU dynticks_nesting counter underflow!");
448 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
449 "RCU dynticks_nmi_nesting counter underflow/zero!");
450
451 /* Are we at first interrupt nesting level? */
452 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
453 if (nesting > 1)
454 return false;
455
456 /*
457 * If we're not in an interrupt, we must be in the idle task!
458 */
459 WARN_ON_ONCE(!nesting && !is_idle_task(current));
460
461 /* Does CPU appear to be idle from an RCU standpoint? */
462 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
463 }
464
465 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
466 // Maximum callbacks per rcu_do_batch ...
467 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
468 static long blimit = DEFAULT_RCU_BLIMIT;
469 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
470 static long qhimark = DEFAULT_RCU_QHIMARK;
471 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
472 static long qlowmark = DEFAULT_RCU_QLOMARK;
473 #define DEFAULT_RCU_QOVLD_MULT 2
474 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
475 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
476 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
477
478 module_param(blimit, long, 0444);
479 module_param(qhimark, long, 0444);
480 module_param(qlowmark, long, 0444);
481 module_param(qovld, long, 0444);
482
483 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
484 static ulong jiffies_till_next_fqs = ULONG_MAX;
485 static bool rcu_kick_kthreads;
486 static int rcu_divisor = 7;
487 module_param(rcu_divisor, int, 0644);
488
489 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
490 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
491 module_param(rcu_resched_ns, long, 0644);
492
493 /*
494 * How long the grace period must be before we start recruiting
495 * quiescent-state help from rcu_note_context_switch().
496 */
497 static ulong jiffies_till_sched_qs = ULONG_MAX;
498 module_param(jiffies_till_sched_qs, ulong, 0444);
499 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
500 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
501
502 /*
503 * Make sure that we give the grace-period kthread time to detect any
504 * idle CPUs before taking active measures to force quiescent states.
505 * However, don't go below 100 milliseconds, adjusted upwards for really
506 * large systems.
507 */
adjust_jiffies_till_sched_qs(void)508 static void adjust_jiffies_till_sched_qs(void)
509 {
510 unsigned long j;
511
512 /* If jiffies_till_sched_qs was specified, respect the request. */
513 if (jiffies_till_sched_qs != ULONG_MAX) {
514 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
515 return;
516 }
517 /* Otherwise, set to third fqs scan, but bound below on large system. */
518 j = READ_ONCE(jiffies_till_first_fqs) +
519 2 * READ_ONCE(jiffies_till_next_fqs);
520 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
521 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
522 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
523 WRITE_ONCE(jiffies_to_sched_qs, j);
524 }
525
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)526 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
527 {
528 ulong j;
529 int ret = kstrtoul(val, 0, &j);
530
531 if (!ret) {
532 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
533 adjust_jiffies_till_sched_qs();
534 }
535 return ret;
536 }
537
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)538 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
539 {
540 ulong j;
541 int ret = kstrtoul(val, 0, &j);
542
543 if (!ret) {
544 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
545 adjust_jiffies_till_sched_qs();
546 }
547 return ret;
548 }
549
550 static struct kernel_param_ops first_fqs_jiffies_ops = {
551 .set = param_set_first_fqs_jiffies,
552 .get = param_get_ulong,
553 };
554
555 static struct kernel_param_ops next_fqs_jiffies_ops = {
556 .set = param_set_next_fqs_jiffies,
557 .get = param_get_ulong,
558 };
559
560 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
561 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
562 module_param(rcu_kick_kthreads, bool, 0644);
563
564 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
565 static int rcu_pending(int user);
566
567 /*
568 * Return the number of RCU GPs completed thus far for debug & stats.
569 */
rcu_get_gp_seq(void)570 unsigned long rcu_get_gp_seq(void)
571 {
572 return READ_ONCE(rcu_state.gp_seq);
573 }
574 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
575
576 /*
577 * Return the number of RCU expedited batches completed thus far for
578 * debug & stats. Odd numbers mean that a batch is in progress, even
579 * numbers mean idle. The value returned will thus be roughly double
580 * the cumulative batches since boot.
581 */
rcu_exp_batches_completed(void)582 unsigned long rcu_exp_batches_completed(void)
583 {
584 return rcu_state.expedited_sequence;
585 }
586 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
587
588 /*
589 * Return the root node of the rcu_state structure.
590 */
rcu_get_root(void)591 static struct rcu_node *rcu_get_root(void)
592 {
593 return &rcu_state.node[0];
594 }
595
596 /*
597 * Send along grace-period-related data for rcutorture diagnostics.
598 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)599 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
600 unsigned long *gp_seq)
601 {
602 switch (test_type) {
603 case RCU_FLAVOR:
604 *flags = READ_ONCE(rcu_state.gp_flags);
605 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
606 break;
607 default:
608 break;
609 }
610 }
611 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
612
613 /*
614 * Enter an RCU extended quiescent state, which can be either the
615 * idle loop or adaptive-tickless usermode execution.
616 *
617 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
618 * the possibility of usermode upcalls having messed up our count
619 * of interrupt nesting level during the prior busy period.
620 */
rcu_eqs_enter(bool user)621 static noinstr void rcu_eqs_enter(bool user)
622 {
623 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
624
625 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
626 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
627 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
628 rdp->dynticks_nesting == 0);
629 if (rdp->dynticks_nesting != 1) {
630 // RCU will still be watching, so just do accounting and leave.
631 rdp->dynticks_nesting--;
632 return;
633 }
634
635 lockdep_assert_irqs_disabled();
636 instrumentation_begin();
637 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
638 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
639 rdp = this_cpu_ptr(&rcu_data);
640 rcu_prepare_for_idle();
641 rcu_preempt_deferred_qs(current);
642
643 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
644 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
645
646 instrumentation_end();
647 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
648 // RCU is watching here ...
649 rcu_dynticks_eqs_enter();
650 // ... but is no longer watching here.
651 rcu_dynticks_task_enter();
652 }
653
654 /**
655 * rcu_idle_enter - inform RCU that current CPU is entering idle
656 *
657 * Enter idle mode, in other words, -leave- the mode in which RCU
658 * read-side critical sections can occur. (Though RCU read-side
659 * critical sections can occur in irq handlers in idle, a possibility
660 * handled by irq_enter() and irq_exit().)
661 *
662 * If you add or remove a call to rcu_idle_enter(), be sure to test with
663 * CONFIG_RCU_EQS_DEBUG=y.
664 */
rcu_idle_enter(void)665 void rcu_idle_enter(void)
666 {
667 lockdep_assert_irqs_disabled();
668 rcu_eqs_enter(false);
669 }
670 EXPORT_SYMBOL_GPL(rcu_idle_enter);
671
672 #ifdef CONFIG_NO_HZ_FULL
673 /**
674 * rcu_user_enter - inform RCU that we are resuming userspace.
675 *
676 * Enter RCU idle mode right before resuming userspace. No use of RCU
677 * is permitted between this call and rcu_user_exit(). This way the
678 * CPU doesn't need to maintain the tick for RCU maintenance purposes
679 * when the CPU runs in userspace.
680 *
681 * If you add or remove a call to rcu_user_enter(), be sure to test with
682 * CONFIG_RCU_EQS_DEBUG=y.
683 */
rcu_user_enter(void)684 noinstr void rcu_user_enter(void)
685 {
686 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
687
688 lockdep_assert_irqs_disabled();
689
690 instrumentation_begin();
691 do_nocb_deferred_wakeup(rdp);
692 instrumentation_end();
693
694 rcu_eqs_enter(true);
695 }
696 #endif /* CONFIG_NO_HZ_FULL */
697
698 /**
699 * rcu_nmi_exit - inform RCU of exit from NMI context
700 *
701 * If we are returning from the outermost NMI handler that interrupted an
702 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
703 * to let the RCU grace-period handling know that the CPU is back to
704 * being RCU-idle.
705 *
706 * If you add or remove a call to rcu_nmi_exit(), be sure to test
707 * with CONFIG_RCU_EQS_DEBUG=y.
708 */
rcu_nmi_exit(void)709 noinstr void rcu_nmi_exit(void)
710 {
711 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
712
713 instrumentation_begin();
714 /*
715 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
716 * (We are exiting an NMI handler, so RCU better be paying attention
717 * to us!)
718 */
719 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
720 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
721
722 /*
723 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
724 * leave it in non-RCU-idle state.
725 */
726 if (rdp->dynticks_nmi_nesting != 1) {
727 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
728 atomic_read(&rdp->dynticks));
729 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
730 rdp->dynticks_nmi_nesting - 2);
731 instrumentation_end();
732 return;
733 }
734
735 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
736 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
737 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
738
739 if (!in_nmi())
740 rcu_prepare_for_idle();
741
742 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
743 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
744 instrumentation_end();
745
746 // RCU is watching here ...
747 rcu_dynticks_eqs_enter();
748 // ... but is no longer watching here.
749
750 if (!in_nmi())
751 rcu_dynticks_task_enter();
752 }
753
754 /**
755 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
756 *
757 * Exit from an interrupt handler, which might possibly result in entering
758 * idle mode, in other words, leaving the mode in which read-side critical
759 * sections can occur. The caller must have disabled interrupts.
760 *
761 * This code assumes that the idle loop never does anything that might
762 * result in unbalanced calls to irq_enter() and irq_exit(). If your
763 * architecture's idle loop violates this assumption, RCU will give you what
764 * you deserve, good and hard. But very infrequently and irreproducibly.
765 *
766 * Use things like work queues to work around this limitation.
767 *
768 * You have been warned.
769 *
770 * If you add or remove a call to rcu_irq_exit(), be sure to test with
771 * CONFIG_RCU_EQS_DEBUG=y.
772 */
rcu_irq_exit(void)773 void noinstr rcu_irq_exit(void)
774 {
775 lockdep_assert_irqs_disabled();
776 rcu_nmi_exit();
777 }
778
779 /**
780 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
781 * towards in kernel preemption
782 *
783 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
784 * from RCU point of view. Invoked from return from interrupt before kernel
785 * preemption.
786 */
rcu_irq_exit_preempt(void)787 void rcu_irq_exit_preempt(void)
788 {
789 lockdep_assert_irqs_disabled();
790 rcu_nmi_exit();
791
792 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
793 "RCU dynticks_nesting counter underflow/zero!");
794 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
795 DYNTICK_IRQ_NONIDLE,
796 "Bad RCU dynticks_nmi_nesting counter\n");
797 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
798 "RCU in extended quiescent state!");
799 }
800
801 #ifdef CONFIG_PROVE_RCU
802 /**
803 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
804 */
rcu_irq_exit_check_preempt(void)805 void rcu_irq_exit_check_preempt(void)
806 {
807 lockdep_assert_irqs_disabled();
808
809 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
810 "RCU dynticks_nesting counter underflow/zero!");
811 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
812 DYNTICK_IRQ_NONIDLE,
813 "Bad RCU dynticks_nmi_nesting counter\n");
814 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
815 "RCU in extended quiescent state!");
816 }
817 #endif /* #ifdef CONFIG_PROVE_RCU */
818
819 /*
820 * Wrapper for rcu_irq_exit() where interrupts are enabled.
821 *
822 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
823 * with CONFIG_RCU_EQS_DEBUG=y.
824 */
rcu_irq_exit_irqson(void)825 void rcu_irq_exit_irqson(void)
826 {
827 unsigned long flags;
828
829 local_irq_save(flags);
830 rcu_irq_exit();
831 local_irq_restore(flags);
832 }
833
834 /*
835 * Exit an RCU extended quiescent state, which can be either the
836 * idle loop or adaptive-tickless usermode execution.
837 *
838 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
839 * allow for the possibility of usermode upcalls messing up our count of
840 * interrupt nesting level during the busy period that is just now starting.
841 */
rcu_eqs_exit(bool user)842 static void noinstr rcu_eqs_exit(bool user)
843 {
844 struct rcu_data *rdp;
845 long oldval;
846
847 lockdep_assert_irqs_disabled();
848 rdp = this_cpu_ptr(&rcu_data);
849 oldval = rdp->dynticks_nesting;
850 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
851 if (oldval) {
852 // RCU was already watching, so just do accounting and leave.
853 rdp->dynticks_nesting++;
854 return;
855 }
856 rcu_dynticks_task_exit();
857 // RCU is not watching here ...
858 rcu_dynticks_eqs_exit();
859 // ... but is watching here.
860 instrumentation_begin();
861
862 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
863 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
864
865 rcu_cleanup_after_idle();
866 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
867 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
868 WRITE_ONCE(rdp->dynticks_nesting, 1);
869 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
870 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
871 instrumentation_end();
872 }
873
874 /**
875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
876 *
877 * Exit idle mode, in other words, -enter- the mode in which RCU
878 * read-side critical sections can occur.
879 *
880 * If you add or remove a call to rcu_idle_exit(), be sure to test with
881 * CONFIG_RCU_EQS_DEBUG=y.
882 */
rcu_idle_exit(void)883 void rcu_idle_exit(void)
884 {
885 unsigned long flags;
886
887 local_irq_save(flags);
888 rcu_eqs_exit(false);
889 local_irq_restore(flags);
890 }
891 EXPORT_SYMBOL_GPL(rcu_idle_exit);
892
893 #ifdef CONFIG_NO_HZ_FULL
894 /**
895 * rcu_user_exit - inform RCU that we are exiting userspace.
896 *
897 * Exit RCU idle mode while entering the kernel because it can
898 * run a RCU read side critical section anytime.
899 *
900 * If you add or remove a call to rcu_user_exit(), be sure to test with
901 * CONFIG_RCU_EQS_DEBUG=y.
902 */
rcu_user_exit(void)903 void noinstr rcu_user_exit(void)
904 {
905 rcu_eqs_exit(1);
906 }
907
908 /**
909 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
910 *
911 * The scheduler tick is not normally enabled when CPUs enter the kernel
912 * from nohz_full userspace execution. After all, nohz_full userspace
913 * execution is an RCU quiescent state and the time executing in the kernel
914 * is quite short. Except of course when it isn't. And it is not hard to
915 * cause a large system to spend tens of seconds or even minutes looping
916 * in the kernel, which can cause a number of problems, include RCU CPU
917 * stall warnings.
918 *
919 * Therefore, if a nohz_full CPU fails to report a quiescent state
920 * in a timely manner, the RCU grace-period kthread sets that CPU's
921 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
922 * exception will invoke this function, which will turn on the scheduler
923 * tick, which will enable RCU to detect that CPU's quiescent states,
924 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
925 * The tick will be disabled once a quiescent state is reported for
926 * this CPU.
927 *
928 * Of course, in carefully tuned systems, there might never be an
929 * interrupt or exception. In that case, the RCU grace-period kthread
930 * will eventually cause one to happen. However, in less carefully
931 * controlled environments, this function allows RCU to get what it
932 * needs without creating otherwise useless interruptions.
933 */
__rcu_irq_enter_check_tick(void)934 void __rcu_irq_enter_check_tick(void)
935 {
936 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
937
938 // If we're here from NMI there's nothing to do.
939 if (in_nmi())
940 return;
941
942 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
943 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
944
945 if (!tick_nohz_full_cpu(rdp->cpu) ||
946 !READ_ONCE(rdp->rcu_urgent_qs) ||
947 READ_ONCE(rdp->rcu_forced_tick)) {
948 // RCU doesn't need nohz_full help from this CPU, or it is
949 // already getting that help.
950 return;
951 }
952
953 // We get here only when not in an extended quiescent state and
954 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
955 // already watching and (2) The fact that we are in an interrupt
956 // handler and that the rcu_node lock is an irq-disabled lock
957 // prevents self-deadlock. So we can safely recheck under the lock.
958 // Note that the nohz_full state currently cannot change.
959 raw_spin_lock_rcu_node(rdp->mynode);
960 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
961 // A nohz_full CPU is in the kernel and RCU needs a
962 // quiescent state. Turn on the tick!
963 WRITE_ONCE(rdp->rcu_forced_tick, true);
964 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
965 }
966 raw_spin_unlock_rcu_node(rdp->mynode);
967 }
968 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
969 #endif /* CONFIG_NO_HZ_FULL */
970
971 /**
972 * rcu_nmi_enter - inform RCU of entry to NMI context
973 *
974 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
975 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
976 * that the CPU is active. This implementation permits nested NMIs, as
977 * long as the nesting level does not overflow an int. (You will probably
978 * run out of stack space first.)
979 *
980 * If you add or remove a call to rcu_nmi_enter(), be sure to test
981 * with CONFIG_RCU_EQS_DEBUG=y.
982 */
rcu_nmi_enter(void)983 noinstr void rcu_nmi_enter(void)
984 {
985 long incby = 2;
986 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
987
988 /* Complain about underflow. */
989 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
990
991 /*
992 * If idle from RCU viewpoint, atomically increment ->dynticks
993 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
994 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
995 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
996 * to be in the outermost NMI handler that interrupted an RCU-idle
997 * period (observation due to Andy Lutomirski).
998 */
999 if (rcu_dynticks_curr_cpu_in_eqs()) {
1000
1001 if (!in_nmi())
1002 rcu_dynticks_task_exit();
1003
1004 // RCU is not watching here ...
1005 rcu_dynticks_eqs_exit();
1006 // ... but is watching here.
1007
1008 if (!in_nmi()) {
1009 instrumentation_begin();
1010 rcu_cleanup_after_idle();
1011 instrumentation_end();
1012 }
1013
1014 instrumentation_begin();
1015 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1016 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1017 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1018 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1019
1020 incby = 1;
1021 } else if (!in_nmi()) {
1022 instrumentation_begin();
1023 rcu_irq_enter_check_tick();
1024 } else {
1025 instrumentation_begin();
1026 }
1027
1028 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1029 rdp->dynticks_nmi_nesting,
1030 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1031 instrumentation_end();
1032 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1033 rdp->dynticks_nmi_nesting + incby);
1034 barrier();
1035 }
1036
1037 /**
1038 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1039 *
1040 * Enter an interrupt handler, which might possibly result in exiting
1041 * idle mode, in other words, entering the mode in which read-side critical
1042 * sections can occur. The caller must have disabled interrupts.
1043 *
1044 * Note that the Linux kernel is fully capable of entering an interrupt
1045 * handler that it never exits, for example when doing upcalls to user mode!
1046 * This code assumes that the idle loop never does upcalls to user mode.
1047 * If your architecture's idle loop does do upcalls to user mode (or does
1048 * anything else that results in unbalanced calls to the irq_enter() and
1049 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1050 * But very infrequently and irreproducibly.
1051 *
1052 * Use things like work queues to work around this limitation.
1053 *
1054 * You have been warned.
1055 *
1056 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1057 * CONFIG_RCU_EQS_DEBUG=y.
1058 */
rcu_irq_enter(void)1059 noinstr void rcu_irq_enter(void)
1060 {
1061 lockdep_assert_irqs_disabled();
1062 rcu_nmi_enter();
1063 }
1064
1065 /*
1066 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1067 *
1068 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1069 * with CONFIG_RCU_EQS_DEBUG=y.
1070 */
rcu_irq_enter_irqson(void)1071 void rcu_irq_enter_irqson(void)
1072 {
1073 unsigned long flags;
1074
1075 local_irq_save(flags);
1076 rcu_irq_enter();
1077 local_irq_restore(flags);
1078 }
1079
1080 /*
1081 * If any sort of urgency was applied to the current CPU (for example,
1082 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1083 * to get to a quiescent state, disable it.
1084 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1085 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1086 {
1087 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1088 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1089 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1090 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1091 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1092 WRITE_ONCE(rdp->rcu_forced_tick, false);
1093 }
1094 }
1095
1096 /**
1097 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1098 *
1099 * Return true if RCU is watching the running CPU, which means that this
1100 * CPU can safely enter RCU read-side critical sections. In other words,
1101 * if the current CPU is not in its idle loop or is in an interrupt or
1102 * NMI handler, return true.
1103 *
1104 * Make notrace because it can be called by the internal functions of
1105 * ftrace, and making this notrace removes unnecessary recursion calls.
1106 */
rcu_is_watching(void)1107 notrace bool rcu_is_watching(void)
1108 {
1109 bool ret;
1110
1111 preempt_disable_notrace();
1112 ret = !rcu_dynticks_curr_cpu_in_eqs();
1113 preempt_enable_notrace();
1114 return ret;
1115 }
1116 EXPORT_SYMBOL_GPL(rcu_is_watching);
1117
1118 /*
1119 * If a holdout task is actually running, request an urgent quiescent
1120 * state from its CPU. This is unsynchronized, so migrations can cause
1121 * the request to go to the wrong CPU. Which is OK, all that will happen
1122 * is that the CPU's next context switch will be a bit slower and next
1123 * time around this task will generate another request.
1124 */
rcu_request_urgent_qs_task(struct task_struct * t)1125 void rcu_request_urgent_qs_task(struct task_struct *t)
1126 {
1127 int cpu;
1128
1129 barrier();
1130 cpu = task_cpu(t);
1131 if (!task_curr(t))
1132 return; /* This task is not running on that CPU. */
1133 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1134 }
1135
1136 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1137
1138 /*
1139 * Is the current CPU online as far as RCU is concerned?
1140 *
1141 * Disable preemption to avoid false positives that could otherwise
1142 * happen due to the current CPU number being sampled, this task being
1143 * preempted, its old CPU being taken offline, resuming on some other CPU,
1144 * then determining that its old CPU is now offline.
1145 *
1146 * Disable checking if in an NMI handler because we cannot safely
1147 * report errors from NMI handlers anyway. In addition, it is OK to use
1148 * RCU on an offline processor during initial boot, hence the check for
1149 * rcu_scheduler_fully_active.
1150 */
rcu_lockdep_current_cpu_online(void)1151 bool rcu_lockdep_current_cpu_online(void)
1152 {
1153 struct rcu_data *rdp;
1154 struct rcu_node *rnp;
1155 bool ret = false;
1156
1157 if (in_nmi() || !rcu_scheduler_fully_active)
1158 return true;
1159 preempt_disable_notrace();
1160 rdp = this_cpu_ptr(&rcu_data);
1161 rnp = rdp->mynode;
1162 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1163 ret = true;
1164 preempt_enable_notrace();
1165 return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1168
1169 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1170
1171 /*
1172 * We are reporting a quiescent state on behalf of some other CPU, so
1173 * it is our responsibility to check for and handle potential overflow
1174 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1175 * After all, the CPU might be in deep idle state, and thus executing no
1176 * code whatsoever.
1177 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1178 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1179 {
1180 raw_lockdep_assert_held_rcu_node(rnp);
1181 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1182 rnp->gp_seq))
1183 WRITE_ONCE(rdp->gpwrap, true);
1184 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1185 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1186 }
1187
1188 /*
1189 * Snapshot the specified CPU's dynticks counter so that we can later
1190 * credit them with an implicit quiescent state. Return 1 if this CPU
1191 * is in dynticks idle mode, which is an extended quiescent state.
1192 */
dyntick_save_progress_counter(struct rcu_data * rdp)1193 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1194 {
1195 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1196 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1197 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1198 rcu_gpnum_ovf(rdp->mynode, rdp);
1199 return 1;
1200 }
1201 return 0;
1202 }
1203
1204 /*
1205 * Return true if the specified CPU has passed through a quiescent
1206 * state by virtue of being in or having passed through an dynticks
1207 * idle state since the last call to dyntick_save_progress_counter()
1208 * for this same CPU, or by virtue of having been offline.
1209 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1210 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1211 {
1212 unsigned long jtsq;
1213 bool *rnhqp;
1214 bool *ruqp;
1215 struct rcu_node *rnp = rdp->mynode;
1216
1217 /*
1218 * If the CPU passed through or entered a dynticks idle phase with
1219 * no active irq/NMI handlers, then we can safely pretend that the CPU
1220 * already acknowledged the request to pass through a quiescent
1221 * state. Either way, that CPU cannot possibly be in an RCU
1222 * read-side critical section that started before the beginning
1223 * of the current RCU grace period.
1224 */
1225 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1226 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1227 rcu_gpnum_ovf(rnp, rdp);
1228 return 1;
1229 }
1230
1231 /*
1232 * Complain if a CPU that is considered to be offline from RCU's
1233 * perspective has not yet reported a quiescent state. After all,
1234 * the offline CPU should have reported a quiescent state during
1235 * the CPU-offline process, or, failing that, by rcu_gp_init()
1236 * if it ran concurrently with either the CPU going offline or the
1237 * last task on a leaf rcu_node structure exiting its RCU read-side
1238 * critical section while all CPUs corresponding to that structure
1239 * are offline. This added warning detects bugs in any of these
1240 * code paths.
1241 *
1242 * The rcu_node structure's ->lock is held here, which excludes
1243 * the relevant portions the CPU-hotplug code, the grace-period
1244 * initialization code, and the rcu_read_unlock() code paths.
1245 *
1246 * For more detail, please refer to the "Hotplug CPU" section
1247 * of RCU's Requirements documentation.
1248 */
1249 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1250 bool onl;
1251 struct rcu_node *rnp1;
1252
1253 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1254 __func__, rnp->grplo, rnp->grphi, rnp->level,
1255 (long)rnp->gp_seq, (long)rnp->completedqs);
1256 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1257 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1258 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1259 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1260 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1261 __func__, rdp->cpu, ".o"[onl],
1262 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1263 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1264 return 1; /* Break things loose after complaining. */
1265 }
1266
1267 /*
1268 * A CPU running for an extended time within the kernel can
1269 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1270 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1271 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1272 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1273 * variable are safe because the assignments are repeated if this
1274 * CPU failed to pass through a quiescent state. This code
1275 * also checks .jiffies_resched in case jiffies_to_sched_qs
1276 * is set way high.
1277 */
1278 jtsq = READ_ONCE(jiffies_to_sched_qs);
1279 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1280 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1281 if (!READ_ONCE(*rnhqp) &&
1282 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1283 time_after(jiffies, rcu_state.jiffies_resched) ||
1284 rcu_state.cbovld)) {
1285 WRITE_ONCE(*rnhqp, true);
1286 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1287 smp_store_release(ruqp, true);
1288 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1289 WRITE_ONCE(*ruqp, true);
1290 }
1291
1292 /*
1293 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1294 * The above code handles this, but only for straight cond_resched().
1295 * And some in-kernel loops check need_resched() before calling
1296 * cond_resched(), which defeats the above code for CPUs that are
1297 * running in-kernel with scheduling-clock interrupts disabled.
1298 * So hit them over the head with the resched_cpu() hammer!
1299 */
1300 if (tick_nohz_full_cpu(rdp->cpu) &&
1301 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1302 rcu_state.cbovld)) {
1303 WRITE_ONCE(*ruqp, true);
1304 resched_cpu(rdp->cpu);
1305 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1306 }
1307
1308 /*
1309 * If more than halfway to RCU CPU stall-warning time, invoke
1310 * resched_cpu() more frequently to try to loosen things up a bit.
1311 * Also check to see if the CPU is getting hammered with interrupts,
1312 * but only once per grace period, just to keep the IPIs down to
1313 * a dull roar.
1314 */
1315 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1316 if (time_after(jiffies,
1317 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1318 resched_cpu(rdp->cpu);
1319 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1320 }
1321 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1322 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1323 (rnp->ffmask & rdp->grpmask)) {
1324 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1325 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1326 rdp->rcu_iw_pending = true;
1327 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1328 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1329 }
1330 }
1331
1332 return 0;
1333 }
1334
1335 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1336 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1337 unsigned long gp_seq_req, const char *s)
1338 {
1339 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1340 gp_seq_req, rnp->level,
1341 rnp->grplo, rnp->grphi, s);
1342 }
1343
1344 /*
1345 * rcu_start_this_gp - Request the start of a particular grace period
1346 * @rnp_start: The leaf node of the CPU from which to start.
1347 * @rdp: The rcu_data corresponding to the CPU from which to start.
1348 * @gp_seq_req: The gp_seq of the grace period to start.
1349 *
1350 * Start the specified grace period, as needed to handle newly arrived
1351 * callbacks. The required future grace periods are recorded in each
1352 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1353 * is reason to awaken the grace-period kthread.
1354 *
1355 * The caller must hold the specified rcu_node structure's ->lock, which
1356 * is why the caller is responsible for waking the grace-period kthread.
1357 *
1358 * Returns true if the GP thread needs to be awakened else false.
1359 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1360 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1361 unsigned long gp_seq_req)
1362 {
1363 bool ret = false;
1364 struct rcu_node *rnp;
1365
1366 /*
1367 * Use funnel locking to either acquire the root rcu_node
1368 * structure's lock or bail out if the need for this grace period
1369 * has already been recorded -- or if that grace period has in
1370 * fact already started. If there is already a grace period in
1371 * progress in a non-leaf node, no recording is needed because the
1372 * end of the grace period will scan the leaf rcu_node structures.
1373 * Note that rnp_start->lock must not be released.
1374 */
1375 raw_lockdep_assert_held_rcu_node(rnp_start);
1376 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1377 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1378 if (rnp != rnp_start)
1379 raw_spin_lock_rcu_node(rnp);
1380 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1381 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1382 (rnp != rnp_start &&
1383 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1384 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1385 TPS("Prestarted"));
1386 goto unlock_out;
1387 }
1388 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1389 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1390 /*
1391 * We just marked the leaf or internal node, and a
1392 * grace period is in progress, which means that
1393 * rcu_gp_cleanup() will see the marking. Bail to
1394 * reduce contention.
1395 */
1396 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1397 TPS("Startedleaf"));
1398 goto unlock_out;
1399 }
1400 if (rnp != rnp_start && rnp->parent != NULL)
1401 raw_spin_unlock_rcu_node(rnp);
1402 if (!rnp->parent)
1403 break; /* At root, and perhaps also leaf. */
1404 }
1405
1406 /* If GP already in progress, just leave, otherwise start one. */
1407 if (rcu_gp_in_progress()) {
1408 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1409 goto unlock_out;
1410 }
1411 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1412 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1413 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1414 if (!READ_ONCE(rcu_state.gp_kthread)) {
1415 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1416 goto unlock_out;
1417 }
1418 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1419 ret = true; /* Caller must wake GP kthread. */
1420 unlock_out:
1421 /* Push furthest requested GP to leaf node and rcu_data structure. */
1422 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1423 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1424 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1425 }
1426 if (rnp != rnp_start)
1427 raw_spin_unlock_rcu_node(rnp);
1428 return ret;
1429 }
1430
1431 /*
1432 * Clean up any old requests for the just-ended grace period. Also return
1433 * whether any additional grace periods have been requested.
1434 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1435 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1436 {
1437 bool needmore;
1438 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1439
1440 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1441 if (!needmore)
1442 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1443 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1444 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1445 return needmore;
1446 }
1447
1448 /*
1449 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1450 * interrupt or softirq handler, in which case we just might immediately
1451 * sleep upon return, resulting in a grace-period hang), and don't bother
1452 * awakening when there is nothing for the grace-period kthread to do
1453 * (as in several CPUs raced to awaken, we lost), and finally don't try
1454 * to awaken a kthread that has not yet been created. If all those checks
1455 * are passed, track some debug information and awaken.
1456 *
1457 * So why do the self-wakeup when in an interrupt or softirq handler
1458 * in the grace-period kthread's context? Because the kthread might have
1459 * been interrupted just as it was going to sleep, and just after the final
1460 * pre-sleep check of the awaken condition. In this case, a wakeup really
1461 * is required, and is therefore supplied.
1462 */
rcu_gp_kthread_wake(void)1463 static void rcu_gp_kthread_wake(void)
1464 {
1465 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1466
1467 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1468 !READ_ONCE(rcu_state.gp_flags) || !t)
1469 return;
1470 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1471 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1472 swake_up_one(&rcu_state.gp_wq);
1473 }
1474
1475 /*
1476 * If there is room, assign a ->gp_seq number to any callbacks on this
1477 * CPU that have not already been assigned. Also accelerate any callbacks
1478 * that were previously assigned a ->gp_seq number that has since proven
1479 * to be too conservative, which can happen if callbacks get assigned a
1480 * ->gp_seq number while RCU is idle, but with reference to a non-root
1481 * rcu_node structure. This function is idempotent, so it does not hurt
1482 * to call it repeatedly. Returns an flag saying that we should awaken
1483 * the RCU grace-period kthread.
1484 *
1485 * The caller must hold rnp->lock with interrupts disabled.
1486 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1487 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1488 {
1489 unsigned long gp_seq_req;
1490 bool ret = false;
1491
1492 rcu_lockdep_assert_cblist_protected(rdp);
1493 raw_lockdep_assert_held_rcu_node(rnp);
1494
1495 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1496 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1497 return false;
1498
1499 /*
1500 * Callbacks are often registered with incomplete grace-period
1501 * information. Something about the fact that getting exact
1502 * information requires acquiring a global lock... RCU therefore
1503 * makes a conservative estimate of the grace period number at which
1504 * a given callback will become ready to invoke. The following
1505 * code checks this estimate and improves it when possible, thus
1506 * accelerating callback invocation to an earlier grace-period
1507 * number.
1508 */
1509 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1510 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1511 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1512
1513 /* Trace depending on how much we were able to accelerate. */
1514 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1515 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1516 else
1517 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1518
1519 return ret;
1520 }
1521
1522 /*
1523 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1524 * rcu_node structure's ->lock be held. It consults the cached value
1525 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1526 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1527 * while holding the leaf rcu_node structure's ->lock.
1528 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1529 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1530 struct rcu_data *rdp)
1531 {
1532 unsigned long c;
1533 bool needwake;
1534
1535 rcu_lockdep_assert_cblist_protected(rdp);
1536 c = rcu_seq_snap(&rcu_state.gp_seq);
1537 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1538 /* Old request still live, so mark recent callbacks. */
1539 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1540 return;
1541 }
1542 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1543 needwake = rcu_accelerate_cbs(rnp, rdp);
1544 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1545 if (needwake)
1546 rcu_gp_kthread_wake();
1547 }
1548
1549 /*
1550 * Move any callbacks whose grace period has completed to the
1551 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1552 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1553 * sublist. This function is idempotent, so it does not hurt to
1554 * invoke it repeatedly. As long as it is not invoked -too- often...
1555 * Returns true if the RCU grace-period kthread needs to be awakened.
1556 *
1557 * The caller must hold rnp->lock with interrupts disabled.
1558 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1559 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1560 {
1561 rcu_lockdep_assert_cblist_protected(rdp);
1562 raw_lockdep_assert_held_rcu_node(rnp);
1563
1564 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1565 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1566 return false;
1567
1568 /*
1569 * Find all callbacks whose ->gp_seq numbers indicate that they
1570 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1571 */
1572 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1573
1574 /* Classify any remaining callbacks. */
1575 return rcu_accelerate_cbs(rnp, rdp);
1576 }
1577
1578 /*
1579 * Move and classify callbacks, but only if doing so won't require
1580 * that the RCU grace-period kthread be awakened.
1581 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1582 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1583 struct rcu_data *rdp)
1584 {
1585 rcu_lockdep_assert_cblist_protected(rdp);
1586 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1587 return;
1588 // The grace period cannot end while we hold the rcu_node lock.
1589 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1590 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1591 raw_spin_unlock_rcu_node(rnp);
1592 }
1593
1594 /*
1595 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1596 * quiescent state. This is intended to be invoked when the CPU notices
1597 * a new grace period.
1598 */
rcu_strict_gp_check_qs(void)1599 static void rcu_strict_gp_check_qs(void)
1600 {
1601 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1602 rcu_read_lock();
1603 rcu_read_unlock();
1604 }
1605 }
1606
1607 /*
1608 * Update CPU-local rcu_data state to record the beginnings and ends of
1609 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1610 * structure corresponding to the current CPU, and must have irqs disabled.
1611 * Returns true if the grace-period kthread needs to be awakened.
1612 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1613 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1614 {
1615 bool ret = false;
1616 bool need_qs;
1617 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1618 rcu_segcblist_is_offloaded(&rdp->cblist);
1619
1620 raw_lockdep_assert_held_rcu_node(rnp);
1621
1622 if (rdp->gp_seq == rnp->gp_seq)
1623 return false; /* Nothing to do. */
1624
1625 /* Handle the ends of any preceding grace periods first. */
1626 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1627 unlikely(READ_ONCE(rdp->gpwrap))) {
1628 if (!offloaded)
1629 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1630 rdp->core_needs_qs = false;
1631 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1632 } else {
1633 if (!offloaded)
1634 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1635 if (rdp->core_needs_qs)
1636 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1637 }
1638
1639 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1640 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1641 unlikely(READ_ONCE(rdp->gpwrap))) {
1642 /*
1643 * If the current grace period is waiting for this CPU,
1644 * set up to detect a quiescent state, otherwise don't
1645 * go looking for one.
1646 */
1647 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1648 need_qs = !!(rnp->qsmask & rdp->grpmask);
1649 rdp->cpu_no_qs.b.norm = need_qs;
1650 rdp->core_needs_qs = need_qs;
1651 zero_cpu_stall_ticks(rdp);
1652 }
1653 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1654 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1655 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1656 WRITE_ONCE(rdp->gpwrap, false);
1657 rcu_gpnum_ovf(rnp, rdp);
1658 return ret;
1659 }
1660
note_gp_changes(struct rcu_data * rdp)1661 static void note_gp_changes(struct rcu_data *rdp)
1662 {
1663 unsigned long flags;
1664 bool needwake;
1665 struct rcu_node *rnp;
1666
1667 local_irq_save(flags);
1668 rnp = rdp->mynode;
1669 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1670 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1671 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1672 local_irq_restore(flags);
1673 return;
1674 }
1675 needwake = __note_gp_changes(rnp, rdp);
1676 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1677 rcu_strict_gp_check_qs();
1678 if (needwake)
1679 rcu_gp_kthread_wake();
1680 }
1681
rcu_gp_slow(int delay)1682 static void rcu_gp_slow(int delay)
1683 {
1684 if (delay > 0 &&
1685 !(rcu_seq_ctr(rcu_state.gp_seq) %
1686 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1687 schedule_timeout_idle(delay);
1688 }
1689
1690 static unsigned long sleep_duration;
1691
1692 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1693 void rcu_gp_set_torture_wait(int duration)
1694 {
1695 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1696 WRITE_ONCE(sleep_duration, duration);
1697 }
1698 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1699
1700 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1701 static void rcu_gp_torture_wait(void)
1702 {
1703 unsigned long duration;
1704
1705 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1706 return;
1707 duration = xchg(&sleep_duration, 0UL);
1708 if (duration > 0) {
1709 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1710 schedule_timeout_idle(duration);
1711 pr_alert("%s: Wait complete\n", __func__);
1712 }
1713 }
1714
1715 /*
1716 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1717 * processing.
1718 */
rcu_strict_gp_boundary(void * unused)1719 static void rcu_strict_gp_boundary(void *unused)
1720 {
1721 invoke_rcu_core();
1722 }
1723
1724 /*
1725 * Initialize a new grace period. Return false if no grace period required.
1726 */
rcu_gp_init(void)1727 static bool rcu_gp_init(void)
1728 {
1729 unsigned long firstseq;
1730 unsigned long flags;
1731 unsigned long oldmask;
1732 unsigned long mask;
1733 struct rcu_data *rdp;
1734 struct rcu_node *rnp = rcu_get_root();
1735
1736 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1737 raw_spin_lock_irq_rcu_node(rnp);
1738 if (!READ_ONCE(rcu_state.gp_flags)) {
1739 /* Spurious wakeup, tell caller to go back to sleep. */
1740 raw_spin_unlock_irq_rcu_node(rnp);
1741 return false;
1742 }
1743 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1744
1745 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1746 /*
1747 * Grace period already in progress, don't start another.
1748 * Not supposed to be able to happen.
1749 */
1750 raw_spin_unlock_irq_rcu_node(rnp);
1751 return false;
1752 }
1753
1754 /* Advance to a new grace period and initialize state. */
1755 record_gp_stall_check_time();
1756 /* Record GP times before starting GP, hence rcu_seq_start(). */
1757 rcu_seq_start(&rcu_state.gp_seq);
1758 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1759 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1760 raw_spin_unlock_irq_rcu_node(rnp);
1761
1762 /*
1763 * Apply per-leaf buffered online and offline operations to
1764 * the rcu_node tree. Note that this new grace period need not
1765 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1766 * offlining path, when combined with checks in this function,
1767 * will handle CPUs that are currently going offline or that will
1768 * go offline later. Please also refer to "Hotplug CPU" section
1769 * of RCU's Requirements documentation.
1770 */
1771 rcu_state.gp_state = RCU_GP_ONOFF;
1772 rcu_for_each_leaf_node(rnp) {
1773 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1774 firstseq = READ_ONCE(rnp->ofl_seq);
1775 if (firstseq & 0x1)
1776 while (firstseq == READ_ONCE(rnp->ofl_seq))
1777 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1778 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1779 raw_spin_lock(&rcu_state.ofl_lock);
1780 raw_spin_lock_irq_rcu_node(rnp);
1781 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1782 !rnp->wait_blkd_tasks) {
1783 /* Nothing to do on this leaf rcu_node structure. */
1784 raw_spin_unlock_irq_rcu_node(rnp);
1785 raw_spin_unlock(&rcu_state.ofl_lock);
1786 continue;
1787 }
1788
1789 /* Record old state, apply changes to ->qsmaskinit field. */
1790 oldmask = rnp->qsmaskinit;
1791 rnp->qsmaskinit = rnp->qsmaskinitnext;
1792
1793 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1794 if (!oldmask != !rnp->qsmaskinit) {
1795 if (!oldmask) { /* First online CPU for rcu_node. */
1796 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1797 rcu_init_new_rnp(rnp);
1798 } else if (rcu_preempt_has_tasks(rnp)) {
1799 rnp->wait_blkd_tasks = true; /* blocked tasks */
1800 } else { /* Last offline CPU and can propagate. */
1801 rcu_cleanup_dead_rnp(rnp);
1802 }
1803 }
1804
1805 /*
1806 * If all waited-on tasks from prior grace period are
1807 * done, and if all this rcu_node structure's CPUs are
1808 * still offline, propagate up the rcu_node tree and
1809 * clear ->wait_blkd_tasks. Otherwise, if one of this
1810 * rcu_node structure's CPUs has since come back online,
1811 * simply clear ->wait_blkd_tasks.
1812 */
1813 if (rnp->wait_blkd_tasks &&
1814 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1815 rnp->wait_blkd_tasks = false;
1816 if (!rnp->qsmaskinit)
1817 rcu_cleanup_dead_rnp(rnp);
1818 }
1819
1820 raw_spin_unlock_irq_rcu_node(rnp);
1821 raw_spin_unlock(&rcu_state.ofl_lock);
1822 }
1823 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1824
1825 /*
1826 * Set the quiescent-state-needed bits in all the rcu_node
1827 * structures for all currently online CPUs in breadth-first
1828 * order, starting from the root rcu_node structure, relying on the
1829 * layout of the tree within the rcu_state.node[] array. Note that
1830 * other CPUs will access only the leaves of the hierarchy, thus
1831 * seeing that no grace period is in progress, at least until the
1832 * corresponding leaf node has been initialized.
1833 *
1834 * The grace period cannot complete until the initialization
1835 * process finishes, because this kthread handles both.
1836 */
1837 rcu_state.gp_state = RCU_GP_INIT;
1838 rcu_for_each_node_breadth_first(rnp) {
1839 rcu_gp_slow(gp_init_delay);
1840 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1841 rdp = this_cpu_ptr(&rcu_data);
1842 rcu_preempt_check_blocked_tasks(rnp);
1843 rnp->qsmask = rnp->qsmaskinit;
1844 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1845 if (rnp == rdp->mynode)
1846 (void)__note_gp_changes(rnp, rdp);
1847 rcu_preempt_boost_start_gp(rnp);
1848 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1849 rnp->level, rnp->grplo,
1850 rnp->grphi, rnp->qsmask);
1851 /* Quiescent states for tasks on any now-offline CPUs. */
1852 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1853 rnp->rcu_gp_init_mask = mask;
1854 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1856 else
1857 raw_spin_unlock_irq_rcu_node(rnp);
1858 cond_resched_tasks_rcu_qs();
1859 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860 }
1861
1862 // If strict, make all CPUs aware of new grace period.
1863 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1864 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1865
1866 return true;
1867 }
1868
1869 /*
1870 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1871 * time.
1872 */
rcu_gp_fqs_check_wake(int * gfp)1873 static bool rcu_gp_fqs_check_wake(int *gfp)
1874 {
1875 struct rcu_node *rnp = rcu_get_root();
1876
1877 // If under overload conditions, force an immediate FQS scan.
1878 if (*gfp & RCU_GP_FLAG_OVLD)
1879 return true;
1880
1881 // Someone like call_rcu() requested a force-quiescent-state scan.
1882 *gfp = READ_ONCE(rcu_state.gp_flags);
1883 if (*gfp & RCU_GP_FLAG_FQS)
1884 return true;
1885
1886 // The current grace period has completed.
1887 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1888 return true;
1889
1890 return false;
1891 }
1892
1893 /*
1894 * Do one round of quiescent-state forcing.
1895 */
rcu_gp_fqs(bool first_time)1896 static void rcu_gp_fqs(bool first_time)
1897 {
1898 struct rcu_node *rnp = rcu_get_root();
1899
1900 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1901 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1902 if (first_time) {
1903 /* Collect dyntick-idle snapshots. */
1904 force_qs_rnp(dyntick_save_progress_counter);
1905 } else {
1906 /* Handle dyntick-idle and offline CPUs. */
1907 force_qs_rnp(rcu_implicit_dynticks_qs);
1908 }
1909 /* Clear flag to prevent immediate re-entry. */
1910 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1911 raw_spin_lock_irq_rcu_node(rnp);
1912 WRITE_ONCE(rcu_state.gp_flags,
1913 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1914 raw_spin_unlock_irq_rcu_node(rnp);
1915 }
1916 }
1917
1918 /*
1919 * Loop doing repeated quiescent-state forcing until the grace period ends.
1920 */
rcu_gp_fqs_loop(void)1921 static void rcu_gp_fqs_loop(void)
1922 {
1923 bool first_gp_fqs;
1924 int gf = 0;
1925 unsigned long j;
1926 int ret;
1927 struct rcu_node *rnp = rcu_get_root();
1928
1929 first_gp_fqs = true;
1930 j = READ_ONCE(jiffies_till_first_fqs);
1931 if (rcu_state.cbovld)
1932 gf = RCU_GP_FLAG_OVLD;
1933 ret = 0;
1934 for (;;) {
1935 if (!ret) {
1936 rcu_state.jiffies_force_qs = jiffies + j;
1937 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1938 jiffies + (j ? 3 * j : 2));
1939 }
1940 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1941 TPS("fqswait"));
1942 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1943 ret = swait_event_idle_timeout_exclusive(
1944 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1945 rcu_gp_torture_wait();
1946 rcu_state.gp_state = RCU_GP_DOING_FQS;
1947 /* Locking provides needed memory barriers. */
1948 /* If grace period done, leave loop. */
1949 if (!READ_ONCE(rnp->qsmask) &&
1950 !rcu_preempt_blocked_readers_cgp(rnp))
1951 break;
1952 /* If time for quiescent-state forcing, do it. */
1953 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1954 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1955 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1956 TPS("fqsstart"));
1957 rcu_gp_fqs(first_gp_fqs);
1958 gf = 0;
1959 if (first_gp_fqs) {
1960 first_gp_fqs = false;
1961 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1962 }
1963 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1964 TPS("fqsend"));
1965 cond_resched_tasks_rcu_qs();
1966 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1967 ret = 0; /* Force full wait till next FQS. */
1968 j = READ_ONCE(jiffies_till_next_fqs);
1969 } else {
1970 /* Deal with stray signal. */
1971 cond_resched_tasks_rcu_qs();
1972 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1973 WARN_ON(signal_pending(current));
1974 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1975 TPS("fqswaitsig"));
1976 ret = 1; /* Keep old FQS timing. */
1977 j = jiffies;
1978 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1979 j = 1;
1980 else
1981 j = rcu_state.jiffies_force_qs - j;
1982 gf = 0;
1983 }
1984 }
1985 }
1986
1987 /*
1988 * Clean up after the old grace period.
1989 */
rcu_gp_cleanup(void)1990 static void rcu_gp_cleanup(void)
1991 {
1992 int cpu;
1993 bool needgp = false;
1994 unsigned long gp_duration;
1995 unsigned long new_gp_seq;
1996 bool offloaded;
1997 struct rcu_data *rdp;
1998 struct rcu_node *rnp = rcu_get_root();
1999 struct swait_queue_head *sq;
2000
2001 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2002 raw_spin_lock_irq_rcu_node(rnp);
2003 rcu_state.gp_end = jiffies;
2004 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2005 if (gp_duration > rcu_state.gp_max)
2006 rcu_state.gp_max = gp_duration;
2007
2008 /*
2009 * We know the grace period is complete, but to everyone else
2010 * it appears to still be ongoing. But it is also the case
2011 * that to everyone else it looks like there is nothing that
2012 * they can do to advance the grace period. It is therefore
2013 * safe for us to drop the lock in order to mark the grace
2014 * period as completed in all of the rcu_node structures.
2015 */
2016 raw_spin_unlock_irq_rcu_node(rnp);
2017
2018 /*
2019 * Propagate new ->gp_seq value to rcu_node structures so that
2020 * other CPUs don't have to wait until the start of the next grace
2021 * period to process their callbacks. This also avoids some nasty
2022 * RCU grace-period initialization races by forcing the end of
2023 * the current grace period to be completely recorded in all of
2024 * the rcu_node structures before the beginning of the next grace
2025 * period is recorded in any of the rcu_node structures.
2026 */
2027 new_gp_seq = rcu_state.gp_seq;
2028 rcu_seq_end(&new_gp_seq);
2029 rcu_for_each_node_breadth_first(rnp) {
2030 raw_spin_lock_irq_rcu_node(rnp);
2031 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2032 dump_blkd_tasks(rnp, 10);
2033 WARN_ON_ONCE(rnp->qsmask);
2034 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2035 rdp = this_cpu_ptr(&rcu_data);
2036 if (rnp == rdp->mynode)
2037 needgp = __note_gp_changes(rnp, rdp) || needgp;
2038 /* smp_mb() provided by prior unlock-lock pair. */
2039 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2040 // Reset overload indication for CPUs no longer overloaded
2041 if (rcu_is_leaf_node(rnp))
2042 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2043 rdp = per_cpu_ptr(&rcu_data, cpu);
2044 check_cb_ovld_locked(rdp, rnp);
2045 }
2046 sq = rcu_nocb_gp_get(rnp);
2047 raw_spin_unlock_irq_rcu_node(rnp);
2048 rcu_nocb_gp_cleanup(sq);
2049 cond_resched_tasks_rcu_qs();
2050 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2051 rcu_gp_slow(gp_cleanup_delay);
2052 }
2053 rnp = rcu_get_root();
2054 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2055
2056 /* Declare grace period done, trace first to use old GP number. */
2057 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2058 rcu_seq_end(&rcu_state.gp_seq);
2059 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2060 rcu_state.gp_state = RCU_GP_IDLE;
2061 /* Check for GP requests since above loop. */
2062 rdp = this_cpu_ptr(&rcu_data);
2063 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2064 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2065 TPS("CleanupMore"));
2066 needgp = true;
2067 }
2068 /* Advance CBs to reduce false positives below. */
2069 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2070 rcu_segcblist_is_offloaded(&rdp->cblist);
2071 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2072 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2073 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2074 trace_rcu_grace_period(rcu_state.name,
2075 rcu_state.gp_seq,
2076 TPS("newreq"));
2077 } else {
2078 WRITE_ONCE(rcu_state.gp_flags,
2079 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2080 }
2081 raw_spin_unlock_irq_rcu_node(rnp);
2082
2083 // If strict, make all CPUs aware of the end of the old grace period.
2084 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2085 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2086 }
2087
2088 /*
2089 * Body of kthread that handles grace periods.
2090 */
rcu_gp_kthread(void * unused)2091 static int __noreturn rcu_gp_kthread(void *unused)
2092 {
2093 rcu_bind_gp_kthread();
2094 for (;;) {
2095
2096 /* Handle grace-period start. */
2097 for (;;) {
2098 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2099 TPS("reqwait"));
2100 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2101 swait_event_idle_exclusive(rcu_state.gp_wq,
2102 READ_ONCE(rcu_state.gp_flags) &
2103 RCU_GP_FLAG_INIT);
2104 rcu_gp_torture_wait();
2105 rcu_state.gp_state = RCU_GP_DONE_GPS;
2106 /* Locking provides needed memory barrier. */
2107 if (rcu_gp_init())
2108 break;
2109 cond_resched_tasks_rcu_qs();
2110 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2111 WARN_ON(signal_pending(current));
2112 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2113 TPS("reqwaitsig"));
2114 }
2115
2116 /* Handle quiescent-state forcing. */
2117 rcu_gp_fqs_loop();
2118
2119 /* Handle grace-period end. */
2120 rcu_state.gp_state = RCU_GP_CLEANUP;
2121 rcu_gp_cleanup();
2122 rcu_state.gp_state = RCU_GP_CLEANED;
2123 }
2124 }
2125
2126 /*
2127 * Report a full set of quiescent states to the rcu_state data structure.
2128 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2129 * another grace period is required. Whether we wake the grace-period
2130 * kthread or it awakens itself for the next round of quiescent-state
2131 * forcing, that kthread will clean up after the just-completed grace
2132 * period. Note that the caller must hold rnp->lock, which is released
2133 * before return.
2134 */
rcu_report_qs_rsp(unsigned long flags)2135 static void rcu_report_qs_rsp(unsigned long flags)
2136 __releases(rcu_get_root()->lock)
2137 {
2138 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2139 WARN_ON_ONCE(!rcu_gp_in_progress());
2140 WRITE_ONCE(rcu_state.gp_flags,
2141 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2142 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2143 rcu_gp_kthread_wake();
2144 }
2145
2146 /*
2147 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2148 * Allows quiescent states for a group of CPUs to be reported at one go
2149 * to the specified rcu_node structure, though all the CPUs in the group
2150 * must be represented by the same rcu_node structure (which need not be a
2151 * leaf rcu_node structure, though it often will be). The gps parameter
2152 * is the grace-period snapshot, which means that the quiescent states
2153 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2154 * must be held upon entry, and it is released before return.
2155 *
2156 * As a special case, if mask is zero, the bit-already-cleared check is
2157 * disabled. This allows propagating quiescent state due to resumed tasks
2158 * during grace-period initialization.
2159 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2160 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2161 unsigned long gps, unsigned long flags)
2162 __releases(rnp->lock)
2163 {
2164 unsigned long oldmask = 0;
2165 struct rcu_node *rnp_c;
2166
2167 raw_lockdep_assert_held_rcu_node(rnp);
2168
2169 /* Walk up the rcu_node hierarchy. */
2170 for (;;) {
2171 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2172
2173 /*
2174 * Our bit has already been cleared, or the
2175 * relevant grace period is already over, so done.
2176 */
2177 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2178 return;
2179 }
2180 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2181 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2182 rcu_preempt_blocked_readers_cgp(rnp));
2183 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2184 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2185 mask, rnp->qsmask, rnp->level,
2186 rnp->grplo, rnp->grphi,
2187 !!rnp->gp_tasks);
2188 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2189
2190 /* Other bits still set at this level, so done. */
2191 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2192 return;
2193 }
2194 rnp->completedqs = rnp->gp_seq;
2195 mask = rnp->grpmask;
2196 if (rnp->parent == NULL) {
2197
2198 /* No more levels. Exit loop holding root lock. */
2199
2200 break;
2201 }
2202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2203 rnp_c = rnp;
2204 rnp = rnp->parent;
2205 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2206 oldmask = READ_ONCE(rnp_c->qsmask);
2207 }
2208
2209 /*
2210 * Get here if we are the last CPU to pass through a quiescent
2211 * state for this grace period. Invoke rcu_report_qs_rsp()
2212 * to clean up and start the next grace period if one is needed.
2213 */
2214 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2215 }
2216
2217 /*
2218 * Record a quiescent state for all tasks that were previously queued
2219 * on the specified rcu_node structure and that were blocking the current
2220 * RCU grace period. The caller must hold the corresponding rnp->lock with
2221 * irqs disabled, and this lock is released upon return, but irqs remain
2222 * disabled.
2223 */
2224 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2225 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2226 __releases(rnp->lock)
2227 {
2228 unsigned long gps;
2229 unsigned long mask;
2230 struct rcu_node *rnp_p;
2231
2232 raw_lockdep_assert_held_rcu_node(rnp);
2233 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2234 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2235 rnp->qsmask != 0) {
2236 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2237 return; /* Still need more quiescent states! */
2238 }
2239
2240 rnp->completedqs = rnp->gp_seq;
2241 rnp_p = rnp->parent;
2242 if (rnp_p == NULL) {
2243 /*
2244 * Only one rcu_node structure in the tree, so don't
2245 * try to report up to its nonexistent parent!
2246 */
2247 rcu_report_qs_rsp(flags);
2248 return;
2249 }
2250
2251 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2252 gps = rnp->gp_seq;
2253 mask = rnp->grpmask;
2254 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2255 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2256 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2257 }
2258
2259 /*
2260 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2261 * structure. This must be called from the specified CPU.
2262 */
2263 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2264 rcu_report_qs_rdp(struct rcu_data *rdp)
2265 {
2266 unsigned long flags;
2267 unsigned long mask;
2268 bool needwake = false;
2269 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2270 rcu_segcblist_is_offloaded(&rdp->cblist);
2271 struct rcu_node *rnp;
2272
2273 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2274 rnp = rdp->mynode;
2275 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2276 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2277 rdp->gpwrap) {
2278
2279 /*
2280 * The grace period in which this quiescent state was
2281 * recorded has ended, so don't report it upwards.
2282 * We will instead need a new quiescent state that lies
2283 * within the current grace period.
2284 */
2285 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2287 return;
2288 }
2289 mask = rdp->grpmask;
2290 rdp->core_needs_qs = false;
2291 if ((rnp->qsmask & mask) == 0) {
2292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2293 } else {
2294 /*
2295 * This GP can't end until cpu checks in, so all of our
2296 * callbacks can be processed during the next GP.
2297 */
2298 if (!offloaded)
2299 needwake = rcu_accelerate_cbs(rnp, rdp);
2300
2301 rcu_disable_urgency_upon_qs(rdp);
2302 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2303 /* ^^^ Released rnp->lock */
2304 if (needwake)
2305 rcu_gp_kthread_wake();
2306 }
2307 }
2308
2309 /*
2310 * Check to see if there is a new grace period of which this CPU
2311 * is not yet aware, and if so, set up local rcu_data state for it.
2312 * Otherwise, see if this CPU has just passed through its first
2313 * quiescent state for this grace period, and record that fact if so.
2314 */
2315 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2316 rcu_check_quiescent_state(struct rcu_data *rdp)
2317 {
2318 /* Check for grace-period ends and beginnings. */
2319 note_gp_changes(rdp);
2320
2321 /*
2322 * Does this CPU still need to do its part for current grace period?
2323 * If no, return and let the other CPUs do their part as well.
2324 */
2325 if (!rdp->core_needs_qs)
2326 return;
2327
2328 /*
2329 * Was there a quiescent state since the beginning of the grace
2330 * period? If no, then exit and wait for the next call.
2331 */
2332 if (rdp->cpu_no_qs.b.norm)
2333 return;
2334
2335 /*
2336 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2337 * judge of that).
2338 */
2339 rcu_report_qs_rdp(rdp);
2340 }
2341
2342 /*
2343 * Near the end of the offline process. Trace the fact that this CPU
2344 * is going offline.
2345 */
rcutree_dying_cpu(unsigned int cpu)2346 int rcutree_dying_cpu(unsigned int cpu)
2347 {
2348 bool blkd;
2349 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2350 struct rcu_node *rnp = rdp->mynode;
2351
2352 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2353 return 0;
2354
2355 blkd = !!(rnp->qsmask & rdp->grpmask);
2356 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2357 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2358 return 0;
2359 }
2360
2361 /*
2362 * All CPUs for the specified rcu_node structure have gone offline,
2363 * and all tasks that were preempted within an RCU read-side critical
2364 * section while running on one of those CPUs have since exited their RCU
2365 * read-side critical section. Some other CPU is reporting this fact with
2366 * the specified rcu_node structure's ->lock held and interrupts disabled.
2367 * This function therefore goes up the tree of rcu_node structures,
2368 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2369 * the leaf rcu_node structure's ->qsmaskinit field has already been
2370 * updated.
2371 *
2372 * This function does check that the specified rcu_node structure has
2373 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2374 * prematurely. That said, invoking it after the fact will cost you
2375 * a needless lock acquisition. So once it has done its work, don't
2376 * invoke it again.
2377 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2378 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2379 {
2380 long mask;
2381 struct rcu_node *rnp = rnp_leaf;
2382
2383 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2384 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2385 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2386 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2387 return;
2388 for (;;) {
2389 mask = rnp->grpmask;
2390 rnp = rnp->parent;
2391 if (!rnp)
2392 break;
2393 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2394 rnp->qsmaskinit &= ~mask;
2395 /* Between grace periods, so better already be zero! */
2396 WARN_ON_ONCE(rnp->qsmask);
2397 if (rnp->qsmaskinit) {
2398 raw_spin_unlock_rcu_node(rnp);
2399 /* irqs remain disabled. */
2400 return;
2401 }
2402 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2403 }
2404 }
2405
2406 /*
2407 * The CPU has been completely removed, and some other CPU is reporting
2408 * this fact from process context. Do the remainder of the cleanup.
2409 * There can only be one CPU hotplug operation at a time, so no need for
2410 * explicit locking.
2411 */
rcutree_dead_cpu(unsigned int cpu)2412 int rcutree_dead_cpu(unsigned int cpu)
2413 {
2414 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2415 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2416
2417 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2418 return 0;
2419
2420 /* Adjust any no-longer-needed kthreads. */
2421 rcu_boost_kthread_setaffinity(rnp, -1);
2422 /* Do any needed no-CB deferred wakeups from this CPU. */
2423 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2424
2425 // Stop-machine done, so allow nohz_full to disable tick.
2426 tick_dep_clear(TICK_DEP_BIT_RCU);
2427 return 0;
2428 }
2429
2430 /*
2431 * Invoke any RCU callbacks that have made it to the end of their grace
2432 * period. Thottle as specified by rdp->blimit.
2433 */
rcu_do_batch(struct rcu_data * rdp)2434 static void rcu_do_batch(struct rcu_data *rdp)
2435 {
2436 int div;
2437 unsigned long flags;
2438 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2439 rcu_segcblist_is_offloaded(&rdp->cblist);
2440 struct rcu_head *rhp;
2441 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2442 long bl, count;
2443 long pending, tlimit = 0;
2444
2445 /* If no callbacks are ready, just return. */
2446 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2447 trace_rcu_batch_start(rcu_state.name,
2448 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2449 trace_rcu_batch_end(rcu_state.name, 0,
2450 !rcu_segcblist_empty(&rdp->cblist),
2451 need_resched(), is_idle_task(current),
2452 rcu_is_callbacks_kthread());
2453 return;
2454 }
2455
2456 /*
2457 * Extract the list of ready callbacks, disabling to prevent
2458 * races with call_rcu() from interrupt handlers. Leave the
2459 * callback counts, as rcu_barrier() needs to be conservative.
2460 */
2461 local_irq_save(flags);
2462 rcu_nocb_lock(rdp);
2463 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2464 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2465 div = READ_ONCE(rcu_divisor);
2466 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2467 bl = max(rdp->blimit, pending >> div);
2468 if (in_serving_softirq() && unlikely(bl > 100)) {
2469 long rrn = READ_ONCE(rcu_resched_ns);
2470
2471 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2472 tlimit = local_clock() + rrn;
2473 }
2474 trace_rcu_batch_start(rcu_state.name,
2475 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2476 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2477 if (offloaded)
2478 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2479 rcu_nocb_unlock_irqrestore(rdp, flags);
2480
2481 /* Invoke callbacks. */
2482 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2483 rhp = rcu_cblist_dequeue(&rcl);
2484 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2485 rcu_callback_t f;
2486
2487 debug_rcu_head_unqueue(rhp);
2488
2489 rcu_lock_acquire(&rcu_callback_map);
2490 trace_rcu_invoke_callback(rcu_state.name, rhp);
2491
2492 f = rhp->func;
2493 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2494 f(rhp);
2495
2496 rcu_lock_release(&rcu_callback_map);
2497
2498 /*
2499 * Stop only if limit reached and CPU has something to do.
2500 * Note: The rcl structure counts down from zero.
2501 */
2502 if (in_serving_softirq()) {
2503 if (-rcl.len >= bl && (need_resched() ||
2504 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2505 break;
2506
2507 /*
2508 * Make sure we don't spend too much time here and deprive other
2509 * softirq vectors of CPU cycles.
2510 */
2511 if (unlikely(tlimit)) {
2512 /* only call local_clock() every 32 callbacks */
2513 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2514 continue;
2515 /* Exceeded the time limit, so leave. */
2516 break;
2517 }
2518 } else {
2519 local_bh_enable();
2520 lockdep_assert_irqs_enabled();
2521 cond_resched_tasks_rcu_qs();
2522 lockdep_assert_irqs_enabled();
2523 local_bh_disable();
2524 }
2525 }
2526
2527 local_irq_save(flags);
2528 rcu_nocb_lock(rdp);
2529 count = -rcl.len;
2530 rdp->n_cbs_invoked += count;
2531 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2532 is_idle_task(current), rcu_is_callbacks_kthread());
2533
2534 /* Update counts and requeue any remaining callbacks. */
2535 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2536 smp_mb(); /* List handling before counting for rcu_barrier(). */
2537 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2538
2539 /* Reinstate batch limit if we have worked down the excess. */
2540 count = rcu_segcblist_n_cbs(&rdp->cblist);
2541 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2542 rdp->blimit = blimit;
2543
2544 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2545 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2546 rdp->qlen_last_fqs_check = 0;
2547 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2548 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2549 rdp->qlen_last_fqs_check = count;
2550
2551 /*
2552 * The following usually indicates a double call_rcu(). To track
2553 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2554 */
2555 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2556 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2557 count != 0 && rcu_segcblist_empty(&rdp->cblist));
2558
2559 rcu_nocb_unlock_irqrestore(rdp, flags);
2560
2561 /* Re-invoke RCU core processing if there are callbacks remaining. */
2562 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2563 invoke_rcu_core();
2564 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2565 }
2566
2567 /*
2568 * This function is invoked from each scheduling-clock interrupt,
2569 * and checks to see if this CPU is in a non-context-switch quiescent
2570 * state, for example, user mode or idle loop. It also schedules RCU
2571 * core processing. If the current grace period has gone on too long,
2572 * it will ask the scheduler to manufacture a context switch for the sole
2573 * purpose of providing a providing the needed quiescent state.
2574 */
rcu_sched_clock_irq(int user)2575 void rcu_sched_clock_irq(int user)
2576 {
2577 trace_rcu_utilization(TPS("Start scheduler-tick"));
2578 lockdep_assert_irqs_disabled();
2579 raw_cpu_inc(rcu_data.ticks_this_gp);
2580 /* The load-acquire pairs with the store-release setting to true. */
2581 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2582 /* Idle and userspace execution already are quiescent states. */
2583 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2584 set_tsk_need_resched(current);
2585 set_preempt_need_resched();
2586 }
2587 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2588 }
2589 rcu_flavor_sched_clock_irq(user);
2590 if (rcu_pending(user))
2591 invoke_rcu_core();
2592 lockdep_assert_irqs_disabled();
2593
2594 trace_rcu_utilization(TPS("End scheduler-tick"));
2595 }
2596
2597 /*
2598 * Scan the leaf rcu_node structures. For each structure on which all
2599 * CPUs have reported a quiescent state and on which there are tasks
2600 * blocking the current grace period, initiate RCU priority boosting.
2601 * Otherwise, invoke the specified function to check dyntick state for
2602 * each CPU that has not yet reported a quiescent state.
2603 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2604 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2605 {
2606 int cpu;
2607 unsigned long flags;
2608 unsigned long mask;
2609 struct rcu_data *rdp;
2610 struct rcu_node *rnp;
2611
2612 rcu_state.cbovld = rcu_state.cbovldnext;
2613 rcu_state.cbovldnext = false;
2614 rcu_for_each_leaf_node(rnp) {
2615 cond_resched_tasks_rcu_qs();
2616 mask = 0;
2617 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2618 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2619 if (rnp->qsmask == 0) {
2620 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2621 /*
2622 * No point in scanning bits because they
2623 * are all zero. But we might need to
2624 * priority-boost blocked readers.
2625 */
2626 rcu_initiate_boost(rnp, flags);
2627 /* rcu_initiate_boost() releases rnp->lock */
2628 continue;
2629 }
2630 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2631 continue;
2632 }
2633 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2634 rdp = per_cpu_ptr(&rcu_data, cpu);
2635 if (f(rdp)) {
2636 mask |= rdp->grpmask;
2637 rcu_disable_urgency_upon_qs(rdp);
2638 }
2639 }
2640 if (mask != 0) {
2641 /* Idle/offline CPUs, report (releases rnp->lock). */
2642 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2643 } else {
2644 /* Nothing to do here, so just drop the lock. */
2645 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2646 }
2647 }
2648 }
2649
2650 /*
2651 * Force quiescent states on reluctant CPUs, and also detect which
2652 * CPUs are in dyntick-idle mode.
2653 */
rcu_force_quiescent_state(void)2654 void rcu_force_quiescent_state(void)
2655 {
2656 unsigned long flags;
2657 bool ret;
2658 struct rcu_node *rnp;
2659 struct rcu_node *rnp_old = NULL;
2660
2661 /* Funnel through hierarchy to reduce memory contention. */
2662 rnp = raw_cpu_read(rcu_data.mynode);
2663 for (; rnp != NULL; rnp = rnp->parent) {
2664 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2665 !raw_spin_trylock(&rnp->fqslock);
2666 if (rnp_old != NULL)
2667 raw_spin_unlock(&rnp_old->fqslock);
2668 if (ret)
2669 return;
2670 rnp_old = rnp;
2671 }
2672 /* rnp_old == rcu_get_root(), rnp == NULL. */
2673
2674 /* Reached the root of the rcu_node tree, acquire lock. */
2675 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2676 raw_spin_unlock(&rnp_old->fqslock);
2677 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2678 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2679 return; /* Someone beat us to it. */
2680 }
2681 WRITE_ONCE(rcu_state.gp_flags,
2682 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2683 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2684 rcu_gp_kthread_wake();
2685 }
2686 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2687
2688 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2689 // grace periods.
strict_work_handler(struct work_struct * work)2690 static void strict_work_handler(struct work_struct *work)
2691 {
2692 rcu_read_lock();
2693 rcu_read_unlock();
2694 }
2695
2696 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2697 static __latent_entropy void rcu_core(void)
2698 {
2699 unsigned long flags;
2700 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2701 struct rcu_node *rnp = rdp->mynode;
2702 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2703 rcu_segcblist_is_offloaded(&rdp->cblist);
2704
2705 if (cpu_is_offline(smp_processor_id()))
2706 return;
2707 trace_rcu_utilization(TPS("Start RCU core"));
2708 WARN_ON_ONCE(!rdp->beenonline);
2709
2710 /* Report any deferred quiescent states if preemption enabled. */
2711 if (!(preempt_count() & PREEMPT_MASK)) {
2712 rcu_preempt_deferred_qs(current);
2713 } else if (rcu_preempt_need_deferred_qs(current)) {
2714 set_tsk_need_resched(current);
2715 set_preempt_need_resched();
2716 }
2717
2718 /* Update RCU state based on any recent quiescent states. */
2719 rcu_check_quiescent_state(rdp);
2720
2721 /* No grace period and unregistered callbacks? */
2722 if (!rcu_gp_in_progress() &&
2723 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2724 local_irq_save(flags);
2725 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2726 rcu_accelerate_cbs_unlocked(rnp, rdp);
2727 local_irq_restore(flags);
2728 }
2729
2730 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2731
2732 /* If there are callbacks ready, invoke them. */
2733 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2734 likely(READ_ONCE(rcu_scheduler_fully_active)))
2735 rcu_do_batch(rdp);
2736
2737 /* Do any needed deferred wakeups of rcuo kthreads. */
2738 do_nocb_deferred_wakeup(rdp);
2739 trace_rcu_utilization(TPS("End RCU core"));
2740
2741 // If strict GPs, schedule an RCU reader in a clean environment.
2742 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2743 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2744 }
2745
rcu_core_si(struct softirq_action * h)2746 static void rcu_core_si(struct softirq_action *h)
2747 {
2748 rcu_core();
2749 }
2750
rcu_wake_cond(struct task_struct * t,int status)2751 static void rcu_wake_cond(struct task_struct *t, int status)
2752 {
2753 /*
2754 * If the thread is yielding, only wake it when this
2755 * is invoked from idle
2756 */
2757 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2758 wake_up_process(t);
2759 }
2760
invoke_rcu_core_kthread(void)2761 static void invoke_rcu_core_kthread(void)
2762 {
2763 struct task_struct *t;
2764 unsigned long flags;
2765
2766 local_irq_save(flags);
2767 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2768 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2769 if (t != NULL && t != current)
2770 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2771 local_irq_restore(flags);
2772 }
2773
2774 /*
2775 * Wake up this CPU's rcuc kthread to do RCU core processing.
2776 */
invoke_rcu_core(void)2777 static void invoke_rcu_core(void)
2778 {
2779 if (!cpu_online(smp_processor_id()))
2780 return;
2781 if (use_softirq)
2782 raise_softirq(RCU_SOFTIRQ);
2783 else
2784 invoke_rcu_core_kthread();
2785 }
2786
rcu_cpu_kthread_park(unsigned int cpu)2787 static void rcu_cpu_kthread_park(unsigned int cpu)
2788 {
2789 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2790 }
2791
rcu_cpu_kthread_should_run(unsigned int cpu)2792 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2793 {
2794 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2795 }
2796
2797 /*
2798 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2799 * the RCU softirq used in configurations of RCU that do not support RCU
2800 * priority boosting.
2801 */
rcu_cpu_kthread(unsigned int cpu)2802 static void rcu_cpu_kthread(unsigned int cpu)
2803 {
2804 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2805 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2806 int spincnt;
2807
2808 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2809 for (spincnt = 0; spincnt < 10; spincnt++) {
2810 local_bh_disable();
2811 *statusp = RCU_KTHREAD_RUNNING;
2812 local_irq_disable();
2813 work = *workp;
2814 *workp = 0;
2815 local_irq_enable();
2816 if (work)
2817 rcu_core();
2818 local_bh_enable();
2819 if (*workp == 0) {
2820 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2821 *statusp = RCU_KTHREAD_WAITING;
2822 return;
2823 }
2824 }
2825 *statusp = RCU_KTHREAD_YIELDING;
2826 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2827 schedule_timeout_idle(2);
2828 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2829 *statusp = RCU_KTHREAD_WAITING;
2830 }
2831
2832 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2833 .store = &rcu_data.rcu_cpu_kthread_task,
2834 .thread_should_run = rcu_cpu_kthread_should_run,
2835 .thread_fn = rcu_cpu_kthread,
2836 .thread_comm = "rcuc/%u",
2837 .setup = rcu_cpu_kthread_setup,
2838 .park = rcu_cpu_kthread_park,
2839 };
2840
2841 /*
2842 * Spawn per-CPU RCU core processing kthreads.
2843 */
rcu_spawn_core_kthreads(void)2844 static int __init rcu_spawn_core_kthreads(void)
2845 {
2846 int cpu;
2847
2848 for_each_possible_cpu(cpu)
2849 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2850 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2851 return 0;
2852 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2853 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2854 return 0;
2855 }
2856
2857 /*
2858 * Handle any core-RCU processing required by a call_rcu() invocation.
2859 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2860 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2861 unsigned long flags)
2862 {
2863 /*
2864 * If called from an extended quiescent state, invoke the RCU
2865 * core in order to force a re-evaluation of RCU's idleness.
2866 */
2867 if (!rcu_is_watching())
2868 invoke_rcu_core();
2869
2870 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2871 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2872 return;
2873
2874 /*
2875 * Force the grace period if too many callbacks or too long waiting.
2876 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2877 * if some other CPU has recently done so. Also, don't bother
2878 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2879 * is the only one waiting for a grace period to complete.
2880 */
2881 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2882 rdp->qlen_last_fqs_check + qhimark)) {
2883
2884 /* Are we ignoring a completed grace period? */
2885 note_gp_changes(rdp);
2886
2887 /* Start a new grace period if one not already started. */
2888 if (!rcu_gp_in_progress()) {
2889 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2890 } else {
2891 /* Give the grace period a kick. */
2892 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2893 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2894 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2895 rcu_force_quiescent_state();
2896 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2897 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2898 }
2899 }
2900 }
2901
2902 /*
2903 * RCU callback function to leak a callback.
2904 */
rcu_leak_callback(struct rcu_head * rhp)2905 static void rcu_leak_callback(struct rcu_head *rhp)
2906 {
2907 }
2908
2909 /*
2910 * Check and if necessary update the leaf rcu_node structure's
2911 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2912 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2913 * structure's ->lock.
2914 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2915 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2916 {
2917 raw_lockdep_assert_held_rcu_node(rnp);
2918 if (qovld_calc <= 0)
2919 return; // Early boot and wildcard value set.
2920 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2921 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2922 else
2923 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2924 }
2925
2926 /*
2927 * Check and if necessary update the leaf rcu_node structure's
2928 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2929 * number of queued RCU callbacks. No locks need be held, but the
2930 * caller must have disabled interrupts.
2931 *
2932 * Note that this function ignores the possibility that there are a lot
2933 * of callbacks all of which have already seen the end of their respective
2934 * grace periods. This omission is due to the need for no-CBs CPUs to
2935 * be holding ->nocb_lock to do this check, which is too heavy for a
2936 * common-case operation.
2937 */
check_cb_ovld(struct rcu_data * rdp)2938 static void check_cb_ovld(struct rcu_data *rdp)
2939 {
2940 struct rcu_node *const rnp = rdp->mynode;
2941
2942 if (qovld_calc <= 0 ||
2943 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2944 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2945 return; // Early boot wildcard value or already set correctly.
2946 raw_spin_lock_rcu_node(rnp);
2947 check_cb_ovld_locked(rdp, rnp);
2948 raw_spin_unlock_rcu_node(rnp);
2949 }
2950
2951 /* Helper function for call_rcu() and friends. */
2952 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2953 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2954 {
2955 unsigned long flags;
2956 struct rcu_data *rdp;
2957 bool was_alldone;
2958
2959 /* Misaligned rcu_head! */
2960 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2961
2962 if (debug_rcu_head_queue(head)) {
2963 /*
2964 * Probable double call_rcu(), so leak the callback.
2965 * Use rcu:rcu_callback trace event to find the previous
2966 * time callback was passed to __call_rcu().
2967 */
2968 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2969 head, head->func);
2970 WRITE_ONCE(head->func, rcu_leak_callback);
2971 return;
2972 }
2973 head->func = func;
2974 head->next = NULL;
2975 local_irq_save(flags);
2976 kasan_record_aux_stack(head);
2977 rdp = this_cpu_ptr(&rcu_data);
2978
2979 /* Add the callback to our list. */
2980 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2981 // This can trigger due to call_rcu() from offline CPU:
2982 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2983 WARN_ON_ONCE(!rcu_is_watching());
2984 // Very early boot, before rcu_init(). Initialize if needed
2985 // and then drop through to queue the callback.
2986 if (rcu_segcblist_empty(&rdp->cblist))
2987 rcu_segcblist_init(&rdp->cblist);
2988 }
2989
2990 check_cb_ovld(rdp);
2991 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2992 return; // Enqueued onto ->nocb_bypass, so just leave.
2993 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2994 rcu_segcblist_enqueue(&rdp->cblist, head);
2995 if (__is_kvfree_rcu_offset((unsigned long)func))
2996 trace_rcu_kvfree_callback(rcu_state.name, head,
2997 (unsigned long)func,
2998 rcu_segcblist_n_cbs(&rdp->cblist));
2999 else
3000 trace_rcu_callback(rcu_state.name, head,
3001 rcu_segcblist_n_cbs(&rdp->cblist));
3002
3003 /* Go handle any RCU core processing required. */
3004 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
3005 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
3006 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3007 } else {
3008 __call_rcu_core(rdp, head, flags);
3009 local_irq_restore(flags);
3010 }
3011 }
3012
3013 /**
3014 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3015 * @head: structure to be used for queueing the RCU updates.
3016 * @func: actual callback function to be invoked after the grace period
3017 *
3018 * The callback function will be invoked some time after a full grace
3019 * period elapses, in other words after all pre-existing RCU read-side
3020 * critical sections have completed. However, the callback function
3021 * might well execute concurrently with RCU read-side critical sections
3022 * that started after call_rcu() was invoked. RCU read-side critical
3023 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3024 * may be nested. In addition, regions of code across which interrupts,
3025 * preemption, or softirqs have been disabled also serve as RCU read-side
3026 * critical sections. This includes hardware interrupt handlers, softirq
3027 * handlers, and NMI handlers.
3028 *
3029 * Note that all CPUs must agree that the grace period extended beyond
3030 * all pre-existing RCU read-side critical section. On systems with more
3031 * than one CPU, this means that when "func()" is invoked, each CPU is
3032 * guaranteed to have executed a full memory barrier since the end of its
3033 * last RCU read-side critical section whose beginning preceded the call
3034 * to call_rcu(). It also means that each CPU executing an RCU read-side
3035 * critical section that continues beyond the start of "func()" must have
3036 * executed a memory barrier after the call_rcu() but before the beginning
3037 * of that RCU read-side critical section. Note that these guarantees
3038 * include CPUs that are offline, idle, or executing in user mode, as
3039 * well as CPUs that are executing in the kernel.
3040 *
3041 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3042 * resulting RCU callback function "func()", then both CPU A and CPU B are
3043 * guaranteed to execute a full memory barrier during the time interval
3044 * between the call to call_rcu() and the invocation of "func()" -- even
3045 * if CPU A and CPU B are the same CPU (but again only if the system has
3046 * more than one CPU).
3047 */
call_rcu(struct rcu_head * head,rcu_callback_t func)3048 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3049 {
3050 __call_rcu(head, func);
3051 }
3052 EXPORT_SYMBOL_GPL(call_rcu);
3053
3054
3055 /* Maximum number of jiffies to wait before draining a batch. */
3056 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3057 #define KFREE_N_BATCHES 2
3058 #define FREE_N_CHANNELS 2
3059
3060 /**
3061 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3062 * @nr_records: Number of active pointers in the array
3063 * @next: Next bulk object in the block chain
3064 * @records: Array of the kvfree_rcu() pointers
3065 */
3066 struct kvfree_rcu_bulk_data {
3067 unsigned long nr_records;
3068 struct kvfree_rcu_bulk_data *next;
3069 void *records[];
3070 };
3071
3072 /*
3073 * This macro defines how many entries the "records" array
3074 * will contain. It is based on the fact that the size of
3075 * kvfree_rcu_bulk_data structure becomes exactly one page.
3076 */
3077 #define KVFREE_BULK_MAX_ENTR \
3078 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3079
3080 /**
3081 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3082 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3083 * @head_free: List of kfree_rcu() objects waiting for a grace period
3084 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3085 * @krcp: Pointer to @kfree_rcu_cpu structure
3086 */
3087
3088 struct kfree_rcu_cpu_work {
3089 struct rcu_work rcu_work;
3090 struct rcu_head *head_free;
3091 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3092 struct kfree_rcu_cpu *krcp;
3093 };
3094
3095 /**
3096 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3097 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3098 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3099 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3100 * @lock: Synchronize access to this structure
3101 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3102 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3103 * @initialized: The @rcu_work fields have been initialized
3104 * @count: Number of objects for which GP not started
3105 * @bkvcache:
3106 * A simple cache list that contains objects for reuse purpose.
3107 * In order to save some per-cpu space the list is singular.
3108 * Even though it is lockless an access has to be protected by the
3109 * per-cpu lock.
3110 * @page_cache_work: A work to refill the cache when it is empty
3111 * @work_in_progress: Indicates that page_cache_work is running
3112 * @hrtimer: A hrtimer for scheduling a page_cache_work
3113 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3114 *
3115 * This is a per-CPU structure. The reason that it is not included in
3116 * the rcu_data structure is to permit this code to be extracted from
3117 * the RCU files. Such extraction could allow further optimization of
3118 * the interactions with the slab allocators.
3119 */
3120 struct kfree_rcu_cpu {
3121 struct rcu_head *head;
3122 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3123 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3124 raw_spinlock_t lock;
3125 struct delayed_work monitor_work;
3126 bool monitor_todo;
3127 bool initialized;
3128 int count;
3129
3130 struct work_struct page_cache_work;
3131 atomic_t work_in_progress;
3132 struct hrtimer hrtimer;
3133
3134 struct llist_head bkvcache;
3135 int nr_bkv_objs;
3136 };
3137
3138 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3139 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3140 };
3141
3142 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3143 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3144 {
3145 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3146 int i;
3147
3148 for (i = 0; i < bhead->nr_records; i++)
3149 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3150 #endif
3151 }
3152
3153 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3154 krc_this_cpu_lock(unsigned long *flags)
3155 {
3156 struct kfree_rcu_cpu *krcp;
3157
3158 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3159 krcp = this_cpu_ptr(&krc);
3160 raw_spin_lock(&krcp->lock);
3161
3162 return krcp;
3163 }
3164
3165 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3166 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3167 {
3168 raw_spin_unlock(&krcp->lock);
3169 local_irq_restore(flags);
3170 }
3171
3172 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3173 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3174 {
3175 if (!krcp->nr_bkv_objs)
3176 return NULL;
3177
3178 krcp->nr_bkv_objs--;
3179 return (struct kvfree_rcu_bulk_data *)
3180 llist_del_first(&krcp->bkvcache);
3181 }
3182
3183 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3184 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3185 struct kvfree_rcu_bulk_data *bnode)
3186 {
3187 // Check the limit.
3188 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3189 return false;
3190
3191 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3192 krcp->nr_bkv_objs++;
3193 return true;
3194
3195 }
3196
3197 /*
3198 * This function is invoked in workqueue context after a grace period.
3199 * It frees all the objects queued on ->bhead_free or ->head_free.
3200 */
kfree_rcu_work(struct work_struct * work)3201 static void kfree_rcu_work(struct work_struct *work)
3202 {
3203 unsigned long flags;
3204 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3205 struct rcu_head *head, *next;
3206 struct kfree_rcu_cpu *krcp;
3207 struct kfree_rcu_cpu_work *krwp;
3208 int i, j;
3209
3210 krwp = container_of(to_rcu_work(work),
3211 struct kfree_rcu_cpu_work, rcu_work);
3212 krcp = krwp->krcp;
3213
3214 raw_spin_lock_irqsave(&krcp->lock, flags);
3215 // Channels 1 and 2.
3216 for (i = 0; i < FREE_N_CHANNELS; i++) {
3217 bkvhead[i] = krwp->bkvhead_free[i];
3218 krwp->bkvhead_free[i] = NULL;
3219 }
3220
3221 // Channel 3.
3222 head = krwp->head_free;
3223 krwp->head_free = NULL;
3224 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3225
3226 // Handle two first channels.
3227 for (i = 0; i < FREE_N_CHANNELS; i++) {
3228 for (; bkvhead[i]; bkvhead[i] = bnext) {
3229 bnext = bkvhead[i]->next;
3230 debug_rcu_bhead_unqueue(bkvhead[i]);
3231
3232 rcu_lock_acquire(&rcu_callback_map);
3233 if (i == 0) { // kmalloc() / kfree().
3234 trace_rcu_invoke_kfree_bulk_callback(
3235 rcu_state.name, bkvhead[i]->nr_records,
3236 bkvhead[i]->records);
3237
3238 kfree_bulk(bkvhead[i]->nr_records,
3239 bkvhead[i]->records);
3240 } else { // vmalloc() / vfree().
3241 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3242 trace_rcu_invoke_kvfree_callback(
3243 rcu_state.name,
3244 bkvhead[i]->records[j], 0);
3245
3246 vfree(bkvhead[i]->records[j]);
3247 }
3248 }
3249 rcu_lock_release(&rcu_callback_map);
3250
3251 raw_spin_lock_irqsave(&krcp->lock, flags);
3252 if (put_cached_bnode(krcp, bkvhead[i]))
3253 bkvhead[i] = NULL;
3254 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3255
3256 if (bkvhead[i])
3257 free_page((unsigned long) bkvhead[i]);
3258
3259 cond_resched_tasks_rcu_qs();
3260 }
3261 }
3262
3263 /*
3264 * Emergency case only. It can happen under low memory
3265 * condition when an allocation gets failed, so the "bulk"
3266 * path can not be temporary maintained.
3267 */
3268 for (; head; head = next) {
3269 unsigned long offset = (unsigned long)head->func;
3270 void *ptr = (void *)head - offset;
3271
3272 next = head->next;
3273 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3274 rcu_lock_acquire(&rcu_callback_map);
3275 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3276
3277 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3278 kvfree(ptr);
3279
3280 rcu_lock_release(&rcu_callback_map);
3281 cond_resched_tasks_rcu_qs();
3282 }
3283 }
3284
3285 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3286 need_offload_krc(struct kfree_rcu_cpu *krcp)
3287 {
3288 int i;
3289
3290 for (i = 0; i < FREE_N_CHANNELS; i++)
3291 if (krcp->bkvhead[i])
3292 return true;
3293
3294 return !!krcp->head;
3295 }
3296
3297 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3298 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3299 {
3300 int i;
3301
3302 for (i = 0; i < FREE_N_CHANNELS; i++)
3303 if (krwp->bkvhead_free[i])
3304 return true;
3305
3306 return !!krwp->head_free;
3307 }
3308
3309 /*
3310 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3311 *
3312 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3313 * timeout has been reached.
3314 */
queue_kfree_rcu_work(struct kfree_rcu_cpu * krcp)3315 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3316 {
3317 struct kfree_rcu_cpu_work *krwp;
3318 bool repeat = false;
3319 int i, j;
3320
3321 lockdep_assert_held(&krcp->lock);
3322
3323 for (i = 0; i < KFREE_N_BATCHES; i++) {
3324 krwp = &(krcp->krw_arr[i]);
3325
3326 // Try to detach bulk_head or head and attach it, only when
3327 // all channels are free. Any channel is not free means at krwp
3328 // there is on-going rcu work to handle krwp's free business.
3329 if (need_wait_for_krwp_work(krwp))
3330 continue;
3331
3332 if (need_offload_krc(krcp)) {
3333 // Channel 1 corresponds to SLAB ptrs.
3334 // Channel 2 corresponds to vmalloc ptrs.
3335 for (j = 0; j < FREE_N_CHANNELS; j++) {
3336 if (!krwp->bkvhead_free[j]) {
3337 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3338 krcp->bkvhead[j] = NULL;
3339 }
3340 }
3341
3342 // Channel 3 corresponds to emergency path.
3343 if (!krwp->head_free) {
3344 krwp->head_free = krcp->head;
3345 krcp->head = NULL;
3346 }
3347
3348 WRITE_ONCE(krcp->count, 0);
3349
3350 /*
3351 * One work is per one batch, so there are three
3352 * "free channels", the batch can handle. It can
3353 * be that the work is in the pending state when
3354 * channels have been detached following by each
3355 * other.
3356 */
3357 queue_rcu_work(system_wq, &krwp->rcu_work);
3358 }
3359 }
3360
3361 // Repeat if any "free" corresponding channel is still busy.
3362 if (need_offload_krc(krcp))
3363 repeat = true;
3364
3365 return !repeat;
3366 }
3367
kfree_rcu_drain_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3368 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3369 unsigned long flags)
3370 {
3371 // Attempt to start a new batch.
3372 krcp->monitor_todo = false;
3373 if (queue_kfree_rcu_work(krcp)) {
3374 // Success! Our job is done here.
3375 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3376 return;
3377 }
3378
3379 // Previous RCU batch still in progress, try again later.
3380 krcp->monitor_todo = true;
3381 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3382 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3383 }
3384
3385 /*
3386 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3387 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3388 */
kfree_rcu_monitor(struct work_struct * work)3389 static void kfree_rcu_monitor(struct work_struct *work)
3390 {
3391 unsigned long flags;
3392 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3393 monitor_work.work);
3394
3395 raw_spin_lock_irqsave(&krcp->lock, flags);
3396 if (krcp->monitor_todo)
3397 kfree_rcu_drain_unlock(krcp, flags);
3398 else
3399 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3400 }
3401
3402 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3403 schedule_page_work_fn(struct hrtimer *t)
3404 {
3405 struct kfree_rcu_cpu *krcp =
3406 container_of(t, struct kfree_rcu_cpu, hrtimer);
3407
3408 queue_work(system_highpri_wq, &krcp->page_cache_work);
3409 return HRTIMER_NORESTART;
3410 }
3411
fill_page_cache_func(struct work_struct * work)3412 static void fill_page_cache_func(struct work_struct *work)
3413 {
3414 struct kvfree_rcu_bulk_data *bnode;
3415 struct kfree_rcu_cpu *krcp =
3416 container_of(work, struct kfree_rcu_cpu,
3417 page_cache_work);
3418 unsigned long flags;
3419 bool pushed;
3420 int i;
3421
3422 for (i = 0; i < rcu_min_cached_objs; i++) {
3423 bnode = (struct kvfree_rcu_bulk_data *)
3424 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3425
3426 if (!bnode)
3427 break;
3428
3429 raw_spin_lock_irqsave(&krcp->lock, flags);
3430 pushed = put_cached_bnode(krcp, bnode);
3431 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3432
3433 if (!pushed) {
3434 free_page((unsigned long) bnode);
3435 break;
3436 }
3437 }
3438
3439 atomic_set(&krcp->work_in_progress, 0);
3440 }
3441
3442 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3443 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3444 {
3445 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3446 !atomic_xchg(&krcp->work_in_progress, 1)) {
3447 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3448 HRTIMER_MODE_REL);
3449 krcp->hrtimer.function = schedule_page_work_fn;
3450 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3451 }
3452 }
3453
3454 static inline bool
kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu * krcp,void * ptr)3455 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3456 {
3457 struct kvfree_rcu_bulk_data *bnode;
3458 int idx;
3459
3460 if (unlikely(!krcp->initialized))
3461 return false;
3462
3463 lockdep_assert_held(&krcp->lock);
3464 idx = !!is_vmalloc_addr(ptr);
3465
3466 /* Check if a new block is required. */
3467 if (!krcp->bkvhead[idx] ||
3468 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3469 bnode = get_cached_bnode(krcp);
3470 /* Switch to emergency path. */
3471 if (!bnode)
3472 return false;
3473
3474 /* Initialize the new block. */
3475 bnode->nr_records = 0;
3476 bnode->next = krcp->bkvhead[idx];
3477
3478 /* Attach it to the head. */
3479 krcp->bkvhead[idx] = bnode;
3480 }
3481
3482 /* Finally insert. */
3483 krcp->bkvhead[idx]->records
3484 [krcp->bkvhead[idx]->nr_records++] = ptr;
3485
3486 return true;
3487 }
3488
3489 /*
3490 * Queue a request for lazy invocation of appropriate free routine after a
3491 * grace period. Please note there are three paths are maintained, two are the
3492 * main ones that use array of pointers interface and third one is emergency
3493 * one, that is used only when the main path can not be maintained temporary,
3494 * due to memory pressure.
3495 *
3496 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3497 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3498 * be free'd in workqueue context. This allows us to: batch requests together to
3499 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3500 */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3501 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3502 {
3503 unsigned long flags;
3504 struct kfree_rcu_cpu *krcp;
3505 bool success;
3506 void *ptr;
3507
3508 if (head) {
3509 ptr = (void *) head - (unsigned long) func;
3510 } else {
3511 /*
3512 * Please note there is a limitation for the head-less
3513 * variant, that is why there is a clear rule for such
3514 * objects: it can be used from might_sleep() context
3515 * only. For other places please embed an rcu_head to
3516 * your data.
3517 */
3518 might_sleep();
3519 ptr = (unsigned long *) func;
3520 }
3521
3522 krcp = krc_this_cpu_lock(&flags);
3523
3524 // Queue the object but don't yet schedule the batch.
3525 if (debug_rcu_head_queue(ptr)) {
3526 // Probable double kfree_rcu(), just leak.
3527 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3528 __func__, head);
3529
3530 // Mark as success and leave.
3531 success = true;
3532 goto unlock_return;
3533 }
3534
3535 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3536 if (!success) {
3537 run_page_cache_worker(krcp);
3538
3539 if (head == NULL)
3540 // Inline if kvfree_rcu(one_arg) call.
3541 goto unlock_return;
3542
3543 head->func = func;
3544 head->next = krcp->head;
3545 krcp->head = head;
3546 success = true;
3547 }
3548
3549 WRITE_ONCE(krcp->count, krcp->count + 1);
3550
3551 /*
3552 * The kvfree_rcu() caller considers the pointer freed at this point
3553 * and likely removes any references to it. Since the actual slab
3554 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3555 * this object (no scanning or false positives reporting).
3556 */
3557 kmemleak_ignore(ptr);
3558
3559 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3560 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3561 !krcp->monitor_todo) {
3562 krcp->monitor_todo = true;
3563 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3564 }
3565
3566 unlock_return:
3567 krc_this_cpu_unlock(krcp, flags);
3568
3569 /*
3570 * Inline kvfree() after synchronize_rcu(). We can do
3571 * it from might_sleep() context only, so the current
3572 * CPU can pass the QS state.
3573 */
3574 if (!success) {
3575 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3576 synchronize_rcu();
3577 kvfree(ptr);
3578 }
3579 }
3580 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3581
3582 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3583 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3584 {
3585 int cpu;
3586 unsigned long count = 0;
3587
3588 /* Snapshot count of all CPUs */
3589 for_each_possible_cpu(cpu) {
3590 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3591
3592 count += READ_ONCE(krcp->count);
3593 }
3594
3595 return count;
3596 }
3597
3598 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3599 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3600 {
3601 int cpu, freed = 0;
3602 unsigned long flags;
3603
3604 for_each_possible_cpu(cpu) {
3605 int count;
3606 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3607
3608 count = krcp->count;
3609 raw_spin_lock_irqsave(&krcp->lock, flags);
3610 if (krcp->monitor_todo)
3611 kfree_rcu_drain_unlock(krcp, flags);
3612 else
3613 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3614
3615 sc->nr_to_scan -= count;
3616 freed += count;
3617
3618 if (sc->nr_to_scan <= 0)
3619 break;
3620 }
3621
3622 return freed == 0 ? SHRINK_STOP : freed;
3623 }
3624
3625 static struct shrinker kfree_rcu_shrinker = {
3626 .count_objects = kfree_rcu_shrink_count,
3627 .scan_objects = kfree_rcu_shrink_scan,
3628 .batch = 0,
3629 .seeks = DEFAULT_SEEKS,
3630 };
3631
kfree_rcu_scheduler_running(void)3632 void __init kfree_rcu_scheduler_running(void)
3633 {
3634 int cpu;
3635 unsigned long flags;
3636
3637 for_each_possible_cpu(cpu) {
3638 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3639
3640 raw_spin_lock_irqsave(&krcp->lock, flags);
3641 if (!krcp->head || krcp->monitor_todo) {
3642 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3643 continue;
3644 }
3645 krcp->monitor_todo = true;
3646 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3647 KFREE_DRAIN_JIFFIES);
3648 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3649 }
3650 }
3651
3652 /*
3653 * During early boot, any blocking grace-period wait automatically
3654 * implies a grace period. Later on, this is never the case for PREEMPTION.
3655 *
3656 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3657 * blocking grace-period wait automatically implies a grace period if
3658 * there is only one CPU online at any point time during execution of
3659 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3660 * occasionally incorrectly indicate that there are multiple CPUs online
3661 * when there was in fact only one the whole time, as this just adds some
3662 * overhead: RCU still operates correctly.
3663 */
rcu_blocking_is_gp(void)3664 static int rcu_blocking_is_gp(void)
3665 {
3666 int ret;
3667
3668 if (IS_ENABLED(CONFIG_PREEMPTION))
3669 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3670 might_sleep(); /* Check for RCU read-side critical section. */
3671 preempt_disable();
3672 ret = num_online_cpus() <= 1;
3673 preempt_enable();
3674 return ret;
3675 }
3676
3677 /**
3678 * synchronize_rcu - wait until a grace period has elapsed.
3679 *
3680 * Control will return to the caller some time after a full grace
3681 * period has elapsed, in other words after all currently executing RCU
3682 * read-side critical sections have completed. Note, however, that
3683 * upon return from synchronize_rcu(), the caller might well be executing
3684 * concurrently with new RCU read-side critical sections that began while
3685 * synchronize_rcu() was waiting. RCU read-side critical sections are
3686 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3687 * In addition, regions of code across which interrupts, preemption, or
3688 * softirqs have been disabled also serve as RCU read-side critical
3689 * sections. This includes hardware interrupt handlers, softirq handlers,
3690 * and NMI handlers.
3691 *
3692 * Note that this guarantee implies further memory-ordering guarantees.
3693 * On systems with more than one CPU, when synchronize_rcu() returns,
3694 * each CPU is guaranteed to have executed a full memory barrier since
3695 * the end of its last RCU read-side critical section whose beginning
3696 * preceded the call to synchronize_rcu(). In addition, each CPU having
3697 * an RCU read-side critical section that extends beyond the return from
3698 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3699 * after the beginning of synchronize_rcu() and before the beginning of
3700 * that RCU read-side critical section. Note that these guarantees include
3701 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3702 * that are executing in the kernel.
3703 *
3704 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3705 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3706 * to have executed a full memory barrier during the execution of
3707 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3708 * again only if the system has more than one CPU).
3709 */
synchronize_rcu(void)3710 void synchronize_rcu(void)
3711 {
3712 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3713 lock_is_held(&rcu_lock_map) ||
3714 lock_is_held(&rcu_sched_lock_map),
3715 "Illegal synchronize_rcu() in RCU read-side critical section");
3716 if (rcu_blocking_is_gp())
3717 return;
3718 if (rcu_gp_is_expedited())
3719 synchronize_rcu_expedited();
3720 else
3721 wait_rcu_gp(call_rcu);
3722 }
3723 EXPORT_SYMBOL_GPL(synchronize_rcu);
3724
3725 /**
3726 * get_state_synchronize_rcu - Snapshot current RCU state
3727 *
3728 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3729 * to determine whether or not a full grace period has elapsed in the
3730 * meantime.
3731 */
get_state_synchronize_rcu(void)3732 unsigned long get_state_synchronize_rcu(void)
3733 {
3734 /*
3735 * Any prior manipulation of RCU-protected data must happen
3736 * before the load from ->gp_seq.
3737 */
3738 smp_mb(); /* ^^^ */
3739 return rcu_seq_snap(&rcu_state.gp_seq);
3740 }
3741 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3742
3743 /**
3744 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3745 *
3746 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3747 *
3748 * If a full RCU grace period has elapsed since the earlier call to
3749 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3750 * synchronize_rcu() to wait for a full grace period.
3751 *
3752 * Yes, this function does not take counter wrap into account. But
3753 * counter wrap is harmless. If the counter wraps, we have waited for
3754 * more than 2 billion grace periods (and way more on a 64-bit system!),
3755 * so waiting for one additional grace period should be just fine.
3756 */
cond_synchronize_rcu(unsigned long oldstate)3757 void cond_synchronize_rcu(unsigned long oldstate)
3758 {
3759 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3760 synchronize_rcu();
3761 else
3762 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3763 }
3764 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3765
3766 /*
3767 * Check to see if there is any immediate RCU-related work to be done by
3768 * the current CPU, returning 1 if so and zero otherwise. The checks are
3769 * in order of increasing expense: checks that can be carried out against
3770 * CPU-local state are performed first. However, we must check for CPU
3771 * stalls first, else we might not get a chance.
3772 */
rcu_pending(int user)3773 static int rcu_pending(int user)
3774 {
3775 bool gp_in_progress;
3776 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3777 struct rcu_node *rnp = rdp->mynode;
3778
3779 lockdep_assert_irqs_disabled();
3780
3781 /* Check for CPU stalls, if enabled. */
3782 check_cpu_stall(rdp);
3783
3784 /* Does this CPU need a deferred NOCB wakeup? */
3785 if (rcu_nocb_need_deferred_wakeup(rdp))
3786 return 1;
3787
3788 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3789 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3790 return 0;
3791
3792 /* Is the RCU core waiting for a quiescent state from this CPU? */
3793 gp_in_progress = rcu_gp_in_progress();
3794 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3795 return 1;
3796
3797 /* Does this CPU have callbacks ready to invoke? */
3798 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3799 return 1;
3800
3801 /* Has RCU gone idle with this CPU needing another grace period? */
3802 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3803 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3804 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3805 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3806 return 1;
3807
3808 /* Have RCU grace period completed or started? */
3809 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3810 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3811 return 1;
3812
3813 /* nothing to do */
3814 return 0;
3815 }
3816
3817 /*
3818 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3819 * the compiler is expected to optimize this away.
3820 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3821 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3822 {
3823 trace_rcu_barrier(rcu_state.name, s, cpu,
3824 atomic_read(&rcu_state.barrier_cpu_count), done);
3825 }
3826
3827 /*
3828 * RCU callback function for rcu_barrier(). If we are last, wake
3829 * up the task executing rcu_barrier().
3830 *
3831 * Note that the value of rcu_state.barrier_sequence must be captured
3832 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3833 * other CPUs might count the value down to zero before this CPU gets
3834 * around to invoking rcu_barrier_trace(), which might result in bogus
3835 * data from the next instance of rcu_barrier().
3836 */
rcu_barrier_callback(struct rcu_head * rhp)3837 static void rcu_barrier_callback(struct rcu_head *rhp)
3838 {
3839 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3840
3841 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3842 rcu_barrier_trace(TPS("LastCB"), -1, s);
3843 complete(&rcu_state.barrier_completion);
3844 } else {
3845 rcu_barrier_trace(TPS("CB"), -1, s);
3846 }
3847 }
3848
3849 /*
3850 * Called with preemption disabled, and from cross-cpu IRQ context.
3851 */
rcu_barrier_func(void * cpu_in)3852 static void rcu_barrier_func(void *cpu_in)
3853 {
3854 uintptr_t cpu = (uintptr_t)cpu_in;
3855 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3856
3857 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3858 rdp->barrier_head.func = rcu_barrier_callback;
3859 debug_rcu_head_queue(&rdp->barrier_head);
3860 rcu_nocb_lock(rdp);
3861 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3862 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3863 atomic_inc(&rcu_state.barrier_cpu_count);
3864 } else {
3865 debug_rcu_head_unqueue(&rdp->barrier_head);
3866 rcu_barrier_trace(TPS("IRQNQ"), -1,
3867 rcu_state.barrier_sequence);
3868 }
3869 rcu_nocb_unlock(rdp);
3870 }
3871
3872 /**
3873 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3874 *
3875 * Note that this primitive does not necessarily wait for an RCU grace period
3876 * to complete. For example, if there are no RCU callbacks queued anywhere
3877 * in the system, then rcu_barrier() is within its rights to return
3878 * immediately, without waiting for anything, much less an RCU grace period.
3879 */
rcu_barrier(void)3880 void rcu_barrier(void)
3881 {
3882 uintptr_t cpu;
3883 struct rcu_data *rdp;
3884 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3885
3886 rcu_barrier_trace(TPS("Begin"), -1, s);
3887
3888 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3889 mutex_lock(&rcu_state.barrier_mutex);
3890
3891 /* Did someone else do our work for us? */
3892 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3893 rcu_barrier_trace(TPS("EarlyExit"), -1,
3894 rcu_state.barrier_sequence);
3895 smp_mb(); /* caller's subsequent code after above check. */
3896 mutex_unlock(&rcu_state.barrier_mutex);
3897 return;
3898 }
3899
3900 /* Mark the start of the barrier operation. */
3901 rcu_seq_start(&rcu_state.barrier_sequence);
3902 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3903
3904 /*
3905 * Initialize the count to two rather than to zero in order
3906 * to avoid a too-soon return to zero in case of an immediate
3907 * invocation of the just-enqueued callback (or preemption of
3908 * this task). Exclude CPU-hotplug operations to ensure that no
3909 * offline non-offloaded CPU has callbacks queued.
3910 */
3911 init_completion(&rcu_state.barrier_completion);
3912 atomic_set(&rcu_state.barrier_cpu_count, 2);
3913 get_online_cpus();
3914
3915 /*
3916 * Force each CPU with callbacks to register a new callback.
3917 * When that callback is invoked, we will know that all of the
3918 * corresponding CPU's preceding callbacks have been invoked.
3919 */
3920 for_each_possible_cpu(cpu) {
3921 rdp = per_cpu_ptr(&rcu_data, cpu);
3922 if (cpu_is_offline(cpu) &&
3923 !rcu_segcblist_is_offloaded(&rdp->cblist))
3924 continue;
3925 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3926 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3927 rcu_state.barrier_sequence);
3928 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3929 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3930 cpu_is_offline(cpu)) {
3931 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3932 rcu_state.barrier_sequence);
3933 local_irq_disable();
3934 rcu_barrier_func((void *)cpu);
3935 local_irq_enable();
3936 } else if (cpu_is_offline(cpu)) {
3937 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3938 rcu_state.barrier_sequence);
3939 } else {
3940 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3941 rcu_state.barrier_sequence);
3942 }
3943 }
3944 put_online_cpus();
3945
3946 /*
3947 * Now that we have an rcu_barrier_callback() callback on each
3948 * CPU, and thus each counted, remove the initial count.
3949 */
3950 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3951 complete(&rcu_state.barrier_completion);
3952
3953 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3954 wait_for_completion(&rcu_state.barrier_completion);
3955
3956 /* Mark the end of the barrier operation. */
3957 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3958 rcu_seq_end(&rcu_state.barrier_sequence);
3959
3960 /* Other rcu_barrier() invocations can now safely proceed. */
3961 mutex_unlock(&rcu_state.barrier_mutex);
3962 }
3963 EXPORT_SYMBOL_GPL(rcu_barrier);
3964
3965 /*
3966 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3967 * first CPU in a given leaf rcu_node structure coming online. The caller
3968 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3969 * disabled.
3970 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3971 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3972 {
3973 long mask;
3974 long oldmask;
3975 struct rcu_node *rnp = rnp_leaf;
3976
3977 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3978 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3979 for (;;) {
3980 mask = rnp->grpmask;
3981 rnp = rnp->parent;
3982 if (rnp == NULL)
3983 return;
3984 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3985 oldmask = rnp->qsmaskinit;
3986 rnp->qsmaskinit |= mask;
3987 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3988 if (oldmask)
3989 return;
3990 }
3991 }
3992
3993 /*
3994 * Do boot-time initialization of a CPU's per-CPU RCU data.
3995 */
3996 static void __init
rcu_boot_init_percpu_data(int cpu)3997 rcu_boot_init_percpu_data(int cpu)
3998 {
3999 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4000
4001 /* Set up local state, ensuring consistent view of global state. */
4002 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4003 INIT_WORK(&rdp->strict_work, strict_work_handler);
4004 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4005 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4006 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4007 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4008 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4009 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4010 rdp->cpu = cpu;
4011 rcu_boot_init_nocb_percpu_data(rdp);
4012 }
4013
4014 /*
4015 * Invoked early in the CPU-online process, when pretty much all services
4016 * are available. The incoming CPU is not present.
4017 *
4018 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4019 * offline event can be happening at a given time. Note also that we can
4020 * accept some slop in the rsp->gp_seq access due to the fact that this
4021 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4022 * And any offloaded callbacks are being numbered elsewhere.
4023 */
rcutree_prepare_cpu(unsigned int cpu)4024 int rcutree_prepare_cpu(unsigned int cpu)
4025 {
4026 unsigned long flags;
4027 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4028 struct rcu_node *rnp = rcu_get_root();
4029
4030 /* Set up local state, ensuring consistent view of global state. */
4031 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4032 rdp->qlen_last_fqs_check = 0;
4033 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4034 rdp->blimit = blimit;
4035 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
4036 !rcu_segcblist_is_offloaded(&rdp->cblist))
4037 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4038 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4039 rcu_dynticks_eqs_online();
4040 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4041
4042 /*
4043 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4044 * propagation up the rcu_node tree will happen at the beginning
4045 * of the next grace period.
4046 */
4047 rnp = rdp->mynode;
4048 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4049 rdp->beenonline = true; /* We have now been online. */
4050 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4051 rdp->gp_seq_needed = rdp->gp_seq;
4052 rdp->cpu_no_qs.b.norm = true;
4053 rdp->core_needs_qs = false;
4054 rdp->rcu_iw_pending = false;
4055 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4056 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4057 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4058 rcu_prepare_kthreads(cpu);
4059 rcu_spawn_cpu_nocb_kthread(cpu);
4060
4061 return 0;
4062 }
4063
4064 /*
4065 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4066 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4067 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4068 {
4069 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4070
4071 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4072 }
4073
4074 /*
4075 * Near the end of the CPU-online process. Pretty much all services
4076 * enabled, and the CPU is now very much alive.
4077 */
rcutree_online_cpu(unsigned int cpu)4078 int rcutree_online_cpu(unsigned int cpu)
4079 {
4080 unsigned long flags;
4081 struct rcu_data *rdp;
4082 struct rcu_node *rnp;
4083
4084 rdp = per_cpu_ptr(&rcu_data, cpu);
4085 rnp = rdp->mynode;
4086 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4087 rnp->ffmask |= rdp->grpmask;
4088 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4089 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4090 return 0; /* Too early in boot for scheduler work. */
4091 sync_sched_exp_online_cleanup(cpu);
4092 rcutree_affinity_setting(cpu, -1);
4093
4094 // Stop-machine done, so allow nohz_full to disable tick.
4095 tick_dep_clear(TICK_DEP_BIT_RCU);
4096 return 0;
4097 }
4098
4099 /*
4100 * Near the beginning of the process. The CPU is still very much alive
4101 * with pretty much all services enabled.
4102 */
rcutree_offline_cpu(unsigned int cpu)4103 int rcutree_offline_cpu(unsigned int cpu)
4104 {
4105 unsigned long flags;
4106 struct rcu_data *rdp;
4107 struct rcu_node *rnp;
4108
4109 rdp = per_cpu_ptr(&rcu_data, cpu);
4110 rnp = rdp->mynode;
4111 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4112 rnp->ffmask &= ~rdp->grpmask;
4113 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4114
4115 rcutree_affinity_setting(cpu, cpu);
4116
4117 // nohz_full CPUs need the tick for stop-machine to work quickly
4118 tick_dep_set(TICK_DEP_BIT_RCU);
4119 return 0;
4120 }
4121
4122 /*
4123 * Mark the specified CPU as being online so that subsequent grace periods
4124 * (both expedited and normal) will wait on it. Note that this means that
4125 * incoming CPUs are not allowed to use RCU read-side critical sections
4126 * until this function is called. Failing to observe this restriction
4127 * will result in lockdep splats.
4128 *
4129 * Note that this function is special in that it is invoked directly
4130 * from the incoming CPU rather than from the cpuhp_step mechanism.
4131 * This is because this function must be invoked at a precise location.
4132 */
rcu_cpu_starting(unsigned int cpu)4133 void rcu_cpu_starting(unsigned int cpu)
4134 {
4135 unsigned long flags;
4136 unsigned long mask;
4137 struct rcu_data *rdp;
4138 struct rcu_node *rnp;
4139 bool newcpu;
4140
4141 rdp = per_cpu_ptr(&rcu_data, cpu);
4142 if (rdp->cpu_started)
4143 return;
4144 rdp->cpu_started = true;
4145
4146 rnp = rdp->mynode;
4147 mask = rdp->grpmask;
4148 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4149 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4150 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4151 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4152 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4153 newcpu = !(rnp->expmaskinitnext & mask);
4154 rnp->expmaskinitnext |= mask;
4155 /* Allow lockless access for expedited grace periods. */
4156 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4157 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4158 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4159 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4160 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4161 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4162 rcu_disable_urgency_upon_qs(rdp);
4163 /* Report QS -after- changing ->qsmaskinitnext! */
4164 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4165 } else {
4166 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4167 }
4168 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4169 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4170 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4171 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4172 }
4173
4174 /*
4175 * The outgoing function has no further need of RCU, so remove it from
4176 * the rcu_node tree's ->qsmaskinitnext bit masks.
4177 *
4178 * Note that this function is special in that it is invoked directly
4179 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4180 * This is because this function must be invoked at a precise location.
4181 */
rcu_report_dead(unsigned int cpu)4182 void rcu_report_dead(unsigned int cpu)
4183 {
4184 unsigned long flags;
4185 unsigned long mask;
4186 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4187 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4188
4189 /* QS for any half-done expedited grace period. */
4190 preempt_disable();
4191 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4192 preempt_enable();
4193 rcu_preempt_deferred_qs(current);
4194
4195 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4196 mask = rdp->grpmask;
4197 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4198 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4199 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4200 raw_spin_lock(&rcu_state.ofl_lock);
4201 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4202 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4203 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4204 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4205 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4206 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4207 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4208 }
4209 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4210 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4211 raw_spin_unlock(&rcu_state.ofl_lock);
4212 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4213 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4214 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4215
4216 rdp->cpu_started = false;
4217 }
4218
4219 #ifdef CONFIG_HOTPLUG_CPU
4220 /*
4221 * The outgoing CPU has just passed through the dying-idle state, and we
4222 * are being invoked from the CPU that was IPIed to continue the offline
4223 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4224 */
rcutree_migrate_callbacks(int cpu)4225 void rcutree_migrate_callbacks(int cpu)
4226 {
4227 unsigned long flags;
4228 struct rcu_data *my_rdp;
4229 struct rcu_node *my_rnp;
4230 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4231 bool needwake;
4232
4233 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4234 rcu_segcblist_empty(&rdp->cblist))
4235 return; /* No callbacks to migrate. */
4236
4237 local_irq_save(flags);
4238 my_rdp = this_cpu_ptr(&rcu_data);
4239 my_rnp = my_rdp->mynode;
4240 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4241 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4242 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4243 /* Leverage recent GPs and set GP for new callbacks. */
4244 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4245 rcu_advance_cbs(my_rnp, my_rdp);
4246 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4247 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4248 rcu_segcblist_disable(&rdp->cblist);
4249 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4250 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4251 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4252 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4253 __call_rcu_nocb_wake(my_rdp, true, flags);
4254 } else {
4255 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4256 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4257 }
4258 if (needwake)
4259 rcu_gp_kthread_wake();
4260 lockdep_assert_irqs_enabled();
4261 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4262 !rcu_segcblist_empty(&rdp->cblist),
4263 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4264 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4265 rcu_segcblist_first_cb(&rdp->cblist));
4266 }
4267 #endif
4268
4269 /*
4270 * On non-huge systems, use expedited RCU grace periods to make suspend
4271 * and hibernation run faster.
4272 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4273 static int rcu_pm_notify(struct notifier_block *self,
4274 unsigned long action, void *hcpu)
4275 {
4276 switch (action) {
4277 case PM_HIBERNATION_PREPARE:
4278 case PM_SUSPEND_PREPARE:
4279 rcu_expedite_gp();
4280 break;
4281 case PM_POST_HIBERNATION:
4282 case PM_POST_SUSPEND:
4283 rcu_unexpedite_gp();
4284 break;
4285 default:
4286 break;
4287 }
4288 return NOTIFY_OK;
4289 }
4290
4291 /*
4292 * Spawn the kthreads that handle RCU's grace periods.
4293 */
rcu_spawn_gp_kthread(void)4294 static int __init rcu_spawn_gp_kthread(void)
4295 {
4296 unsigned long flags;
4297 int kthread_prio_in = kthread_prio;
4298 struct rcu_node *rnp;
4299 struct sched_param sp;
4300 struct task_struct *t;
4301
4302 /* Force priority into range. */
4303 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4304 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4305 kthread_prio = 2;
4306 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4307 kthread_prio = 1;
4308 else if (kthread_prio < 0)
4309 kthread_prio = 0;
4310 else if (kthread_prio > 99)
4311 kthread_prio = 99;
4312
4313 if (kthread_prio != kthread_prio_in)
4314 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4315 kthread_prio, kthread_prio_in);
4316
4317 rcu_scheduler_fully_active = 1;
4318 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4319 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4320 return 0;
4321 if (kthread_prio) {
4322 sp.sched_priority = kthread_prio;
4323 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4324 }
4325 rnp = rcu_get_root();
4326 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4327 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4328 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4329 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4330 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4331 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4332 wake_up_process(t);
4333 rcu_spawn_nocb_kthreads();
4334 rcu_spawn_boost_kthreads();
4335 rcu_spawn_core_kthreads();
4336 return 0;
4337 }
4338 early_initcall(rcu_spawn_gp_kthread);
4339
4340 /*
4341 * This function is invoked towards the end of the scheduler's
4342 * initialization process. Before this is called, the idle task might
4343 * contain synchronous grace-period primitives (during which time, this idle
4344 * task is booting the system, and such primitives are no-ops). After this
4345 * function is called, any synchronous grace-period primitives are run as
4346 * expedited, with the requesting task driving the grace period forward.
4347 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4348 * runtime RCU functionality.
4349 */
rcu_scheduler_starting(void)4350 void rcu_scheduler_starting(void)
4351 {
4352 WARN_ON(num_online_cpus() != 1);
4353 WARN_ON(nr_context_switches() > 0);
4354 rcu_test_sync_prims();
4355 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4356 rcu_test_sync_prims();
4357 }
4358
4359 /*
4360 * Helper function for rcu_init() that initializes the rcu_state structure.
4361 */
rcu_init_one(void)4362 static void __init rcu_init_one(void)
4363 {
4364 static const char * const buf[] = RCU_NODE_NAME_INIT;
4365 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4366 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4367 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4368
4369 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4370 int cpustride = 1;
4371 int i;
4372 int j;
4373 struct rcu_node *rnp;
4374
4375 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4376
4377 /* Silence gcc 4.8 false positive about array index out of range. */
4378 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4379 panic("rcu_init_one: rcu_num_lvls out of range");
4380
4381 /* Initialize the level-tracking arrays. */
4382
4383 for (i = 1; i < rcu_num_lvls; i++)
4384 rcu_state.level[i] =
4385 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4386 rcu_init_levelspread(levelspread, num_rcu_lvl);
4387
4388 /* Initialize the elements themselves, starting from the leaves. */
4389
4390 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4391 cpustride *= levelspread[i];
4392 rnp = rcu_state.level[i];
4393 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4394 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4395 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4396 &rcu_node_class[i], buf[i]);
4397 raw_spin_lock_init(&rnp->fqslock);
4398 lockdep_set_class_and_name(&rnp->fqslock,
4399 &rcu_fqs_class[i], fqs[i]);
4400 rnp->gp_seq = rcu_state.gp_seq;
4401 rnp->gp_seq_needed = rcu_state.gp_seq;
4402 rnp->completedqs = rcu_state.gp_seq;
4403 rnp->qsmask = 0;
4404 rnp->qsmaskinit = 0;
4405 rnp->grplo = j * cpustride;
4406 rnp->grphi = (j + 1) * cpustride - 1;
4407 if (rnp->grphi >= nr_cpu_ids)
4408 rnp->grphi = nr_cpu_ids - 1;
4409 if (i == 0) {
4410 rnp->grpnum = 0;
4411 rnp->grpmask = 0;
4412 rnp->parent = NULL;
4413 } else {
4414 rnp->grpnum = j % levelspread[i - 1];
4415 rnp->grpmask = BIT(rnp->grpnum);
4416 rnp->parent = rcu_state.level[i - 1] +
4417 j / levelspread[i - 1];
4418 }
4419 rnp->level = i;
4420 INIT_LIST_HEAD(&rnp->blkd_tasks);
4421 rcu_init_one_nocb(rnp);
4422 init_waitqueue_head(&rnp->exp_wq[0]);
4423 init_waitqueue_head(&rnp->exp_wq[1]);
4424 init_waitqueue_head(&rnp->exp_wq[2]);
4425 init_waitqueue_head(&rnp->exp_wq[3]);
4426 spin_lock_init(&rnp->exp_lock);
4427 }
4428 }
4429
4430 init_swait_queue_head(&rcu_state.gp_wq);
4431 init_swait_queue_head(&rcu_state.expedited_wq);
4432 rnp = rcu_first_leaf_node();
4433 for_each_possible_cpu(i) {
4434 while (i > rnp->grphi)
4435 rnp++;
4436 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4437 rcu_boot_init_percpu_data(i);
4438 }
4439 }
4440
4441 /*
4442 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4443 * replace the definitions in tree.h because those are needed to size
4444 * the ->node array in the rcu_state structure.
4445 */
rcu_init_geometry(void)4446 void rcu_init_geometry(void)
4447 {
4448 ulong d;
4449 int i;
4450 static unsigned long old_nr_cpu_ids;
4451 int rcu_capacity[RCU_NUM_LVLS];
4452 static bool initialized;
4453
4454 if (initialized) {
4455 /*
4456 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4457 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4458 */
4459 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4460 return;
4461 }
4462
4463 old_nr_cpu_ids = nr_cpu_ids;
4464 initialized = true;
4465
4466 /*
4467 * Initialize any unspecified boot parameters.
4468 * The default values of jiffies_till_first_fqs and
4469 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4470 * value, which is a function of HZ, then adding one for each
4471 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4472 */
4473 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4474 if (jiffies_till_first_fqs == ULONG_MAX)
4475 jiffies_till_first_fqs = d;
4476 if (jiffies_till_next_fqs == ULONG_MAX)
4477 jiffies_till_next_fqs = d;
4478 adjust_jiffies_till_sched_qs();
4479
4480 /* If the compile-time values are accurate, just leave. */
4481 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4482 nr_cpu_ids == NR_CPUS)
4483 return;
4484 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4485 rcu_fanout_leaf, nr_cpu_ids);
4486
4487 /*
4488 * The boot-time rcu_fanout_leaf parameter must be at least two
4489 * and cannot exceed the number of bits in the rcu_node masks.
4490 * Complain and fall back to the compile-time values if this
4491 * limit is exceeded.
4492 */
4493 if (rcu_fanout_leaf < 2 ||
4494 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4495 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4496 WARN_ON(1);
4497 return;
4498 }
4499
4500 /*
4501 * Compute number of nodes that can be handled an rcu_node tree
4502 * with the given number of levels.
4503 */
4504 rcu_capacity[0] = rcu_fanout_leaf;
4505 for (i = 1; i < RCU_NUM_LVLS; i++)
4506 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4507
4508 /*
4509 * The tree must be able to accommodate the configured number of CPUs.
4510 * If this limit is exceeded, fall back to the compile-time values.
4511 */
4512 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4513 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4514 WARN_ON(1);
4515 return;
4516 }
4517
4518 /* Calculate the number of levels in the tree. */
4519 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4520 }
4521 rcu_num_lvls = i + 1;
4522
4523 /* Calculate the number of rcu_nodes at each level of the tree. */
4524 for (i = 0; i < rcu_num_lvls; i++) {
4525 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4526 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4527 }
4528
4529 /* Calculate the total number of rcu_node structures. */
4530 rcu_num_nodes = 0;
4531 for (i = 0; i < rcu_num_lvls; i++)
4532 rcu_num_nodes += num_rcu_lvl[i];
4533 }
4534
4535 /*
4536 * Dump out the structure of the rcu_node combining tree associated
4537 * with the rcu_state structure.
4538 */
rcu_dump_rcu_node_tree(void)4539 static void __init rcu_dump_rcu_node_tree(void)
4540 {
4541 int level = 0;
4542 struct rcu_node *rnp;
4543
4544 pr_info("rcu_node tree layout dump\n");
4545 pr_info(" ");
4546 rcu_for_each_node_breadth_first(rnp) {
4547 if (rnp->level != level) {
4548 pr_cont("\n");
4549 pr_info(" ");
4550 level = rnp->level;
4551 }
4552 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4553 }
4554 pr_cont("\n");
4555 }
4556
4557 struct workqueue_struct *rcu_gp_wq;
4558 struct workqueue_struct *rcu_par_gp_wq;
4559
kfree_rcu_batch_init(void)4560 static void __init kfree_rcu_batch_init(void)
4561 {
4562 int cpu;
4563 int i;
4564
4565 for_each_possible_cpu(cpu) {
4566 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4567
4568 for (i = 0; i < KFREE_N_BATCHES; i++) {
4569 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4570 krcp->krw_arr[i].krcp = krcp;
4571 }
4572
4573 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4574 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4575 krcp->initialized = true;
4576 }
4577 if (register_shrinker(&kfree_rcu_shrinker))
4578 pr_err("Failed to register kfree_rcu() shrinker!\n");
4579 }
4580
rcu_init(void)4581 void __init rcu_init(void)
4582 {
4583 int cpu;
4584
4585 rcu_early_boot_tests();
4586
4587 kfree_rcu_batch_init();
4588 rcu_bootup_announce();
4589 rcu_init_geometry();
4590 rcu_init_one();
4591 if (dump_tree)
4592 rcu_dump_rcu_node_tree();
4593 if (use_softirq)
4594 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4595
4596 /*
4597 * We don't need protection against CPU-hotplug here because
4598 * this is called early in boot, before either interrupts
4599 * or the scheduler are operational.
4600 */
4601 pm_notifier(rcu_pm_notify, 0);
4602 for_each_online_cpu(cpu) {
4603 rcutree_prepare_cpu(cpu);
4604 rcu_cpu_starting(cpu);
4605 rcutree_online_cpu(cpu);
4606 }
4607
4608 /* Create workqueue for expedited GPs and for Tree SRCU. */
4609 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4610 WARN_ON(!rcu_gp_wq);
4611 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4612 WARN_ON(!rcu_par_gp_wq);
4613 srcu_init();
4614
4615 /* Fill in default value for rcutree.qovld boot parameter. */
4616 /* -After- the rcu_node ->lock fields are initialized! */
4617 if (qovld < 0)
4618 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4619 else
4620 qovld_calc = qovld;
4621 }
4622
4623 #include "tree_stall.h"
4624 #include "tree_exp.h"
4625 #include "tree_plugin.h"
4626