• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 
133 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134 # define RB_FORCE_8BYTE_ALIGNMENT	0
135 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
136 #else
137 # define RB_FORCE_8BYTE_ALIGNMENT	1
138 # define RB_ARCH_ALIGNMENT		8U
139 #endif
140 
141 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
142 
143 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145 
146 enum {
147 	RB_LEN_TIME_EXTEND = 8,
148 	RB_LEN_TIME_STAMP =  8,
149 };
150 
151 #define skip_time_extend(event) \
152 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 
154 #define extended_time(event) \
155 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 
rb_null_event(struct ring_buffer_event * event)157 static inline int rb_null_event(struct ring_buffer_event *event)
158 {
159 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160 }
161 
rb_event_set_padding(struct ring_buffer_event * event)162 static void rb_event_set_padding(struct ring_buffer_event *event)
163 {
164 	/* padding has a NULL time_delta */
165 	event->type_len = RINGBUF_TYPE_PADDING;
166 	event->time_delta = 0;
167 }
168 
169 static unsigned
rb_event_data_length(struct ring_buffer_event * event)170 rb_event_data_length(struct ring_buffer_event *event)
171 {
172 	unsigned length;
173 
174 	if (event->type_len)
175 		length = event->type_len * RB_ALIGNMENT;
176 	else
177 		length = event->array[0];
178 	return length + RB_EVNT_HDR_SIZE;
179 }
180 
181 /*
182  * Return the length of the given event. Will return
183  * the length of the time extend if the event is a
184  * time extend.
185  */
186 static inline unsigned
rb_event_length(struct ring_buffer_event * event)187 rb_event_length(struct ring_buffer_event *event)
188 {
189 	switch (event->type_len) {
190 	case RINGBUF_TYPE_PADDING:
191 		if (rb_null_event(event))
192 			/* undefined */
193 			return -1;
194 		return  event->array[0] + RB_EVNT_HDR_SIZE;
195 
196 	case RINGBUF_TYPE_TIME_EXTEND:
197 		return RB_LEN_TIME_EXTEND;
198 
199 	case RINGBUF_TYPE_TIME_STAMP:
200 		return RB_LEN_TIME_STAMP;
201 
202 	case RINGBUF_TYPE_DATA:
203 		return rb_event_data_length(event);
204 	default:
205 		WARN_ON_ONCE(1);
206 	}
207 	/* not hit */
208 	return 0;
209 }
210 
211 /*
212  * Return total length of time extend and data,
213  *   or just the event length for all other events.
214  */
215 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216 rb_event_ts_length(struct ring_buffer_event *event)
217 {
218 	unsigned len = 0;
219 
220 	if (extended_time(event)) {
221 		/* time extends include the data event after it */
222 		len = RB_LEN_TIME_EXTEND;
223 		event = skip_time_extend(event);
224 	}
225 	return len + rb_event_length(event);
226 }
227 
228 /**
229  * ring_buffer_event_length - return the length of the event
230  * @event: the event to get the length of
231  *
232  * Returns the size of the data load of a data event.
233  * If the event is something other than a data event, it
234  * returns the size of the event itself. With the exception
235  * of a TIME EXTEND, where it still returns the size of the
236  * data load of the data event after it.
237  */
ring_buffer_event_length(struct ring_buffer_event * event)238 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239 {
240 	unsigned length;
241 
242 	if (extended_time(event))
243 		event = skip_time_extend(event);
244 
245 	length = rb_event_length(event);
246 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 		return length;
248 	length -= RB_EVNT_HDR_SIZE;
249 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250                 length -= sizeof(event->array[0]);
251 	return length;
252 }
253 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254 
255 /* inline for ring buffer fast paths */
256 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257 rb_event_data(struct ring_buffer_event *event)
258 {
259 	if (extended_time(event))
260 		event = skip_time_extend(event);
261 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262 	/* If length is in len field, then array[0] has the data */
263 	if (event->type_len)
264 		return (void *)&event->array[0];
265 	/* Otherwise length is in array[0] and array[1] has the data */
266 	return (void *)&event->array[1];
267 }
268 
269 /**
270  * ring_buffer_event_data - return the data of the event
271  * @event: the event to get the data from
272  */
ring_buffer_event_data(struct ring_buffer_event * event)273 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 {
275 	return rb_event_data(event);
276 }
277 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278 
279 #define for_each_buffer_cpu(buffer, cpu)		\
280 	for_each_cpu(cpu, buffer->cpumask)
281 
282 #define for_each_online_buffer_cpu(buffer, cpu)		\
283 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
284 
285 #define TS_SHIFT	27
286 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
287 #define TS_DELTA_TEST	(~TS_MASK)
288 
289 /**
290  * ring_buffer_event_time_stamp - return the event's extended timestamp
291  * @event: the event to get the timestamp of
292  *
293  * Returns the extended timestamp associated with a data event.
294  * An extended time_stamp is a 64-bit timestamp represented
295  * internally in a special way that makes the best use of space
296  * contained within a ring buffer event.  This function decodes
297  * it and maps it to a straight u64 value.
298  */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)299 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
300 {
301 	u64 ts;
302 
303 	ts = event->array[0];
304 	ts <<= TS_SHIFT;
305 	ts += event->time_delta;
306 
307 	return ts;
308 }
309 
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS	(1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED	(1 << 30)
314 
315 struct buffer_data_page {
316 	u64		 time_stamp;	/* page time stamp */
317 	local_t		 commit;	/* write committed index */
318 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
319 };
320 
321 /*
322  * Note, the buffer_page list must be first. The buffer pages
323  * are allocated in cache lines, which means that each buffer
324  * page will be at the beginning of a cache line, and thus
325  * the least significant bits will be zero. We use this to
326  * add flags in the list struct pointers, to make the ring buffer
327  * lockless.
328  */
329 struct buffer_page {
330 	struct list_head list;		/* list of buffer pages */
331 	local_t		 write;		/* index for next write */
332 	unsigned	 read;		/* index for next read */
333 	local_t		 entries;	/* entries on this page */
334 	unsigned long	 real_end;	/* real end of data */
335 	struct buffer_data_page *page;	/* Actual data page */
336 };
337 
338 /*
339  * The buffer page counters, write and entries, must be reset
340  * atomically when crossing page boundaries. To synchronize this
341  * update, two counters are inserted into the number. One is
342  * the actual counter for the write position or count on the page.
343  *
344  * The other is a counter of updaters. Before an update happens
345  * the update partition of the counter is incremented. This will
346  * allow the updater to update the counter atomically.
347  *
348  * The counter is 20 bits, and the state data is 12.
349  */
350 #define RB_WRITE_MASK		0xfffff
351 #define RB_WRITE_INTCNT		(1 << 20)
352 
rb_init_page(struct buffer_data_page * bpage)353 static void rb_init_page(struct buffer_data_page *bpage)
354 {
355 	local_set(&bpage->commit, 0);
356 }
357 
rb_page_commit(struct buffer_page * bpage)358 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
359 {
360 	return local_read(&bpage->page->commit);
361 }
362 
free_buffer_page(struct buffer_page * bpage)363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365 	free_page((unsigned long)bpage->page);
366 	kfree(bpage);
367 }
368 
369 /*
370  * We need to fit the time_stamp delta into 27 bits.
371  */
test_time_stamp(u64 delta)372 static inline int test_time_stamp(u64 delta)
373 {
374 	if (delta & TS_DELTA_TEST)
375 		return 1;
376 	return 0;
377 }
378 
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380 
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383 
ring_buffer_print_page_header(struct trace_seq * s)384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386 	struct buffer_data_page field;
387 
388 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
390 			 (unsigned int)sizeof(field.time_stamp),
391 			 (unsigned int)is_signed_type(u64));
392 
393 	trace_seq_printf(s, "\tfield: local_t commit;\t"
394 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 			 (unsigned int)offsetof(typeof(field), commit),
396 			 (unsigned int)sizeof(field.commit),
397 			 (unsigned int)is_signed_type(long));
398 
399 	trace_seq_printf(s, "\tfield: int overwrite;\t"
400 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
401 			 (unsigned int)offsetof(typeof(field), commit),
402 			 1,
403 			 (unsigned int)is_signed_type(long));
404 
405 	trace_seq_printf(s, "\tfield: char data;\t"
406 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 			 (unsigned int)offsetof(typeof(field), data),
408 			 (unsigned int)BUF_PAGE_SIZE,
409 			 (unsigned int)is_signed_type(char));
410 
411 	return !trace_seq_has_overflowed(s);
412 }
413 
414 struct rb_irq_work {
415 	struct irq_work			work;
416 	wait_queue_head_t		waiters;
417 	wait_queue_head_t		full_waiters;
418 	long				wait_index;
419 	bool				waiters_pending;
420 	bool				full_waiters_pending;
421 	bool				wakeup_full;
422 };
423 
424 /*
425  * Structure to hold event state and handle nested events.
426  */
427 struct rb_event_info {
428 	u64			ts;
429 	u64			delta;
430 	u64			before;
431 	u64			after;
432 	unsigned long		length;
433 	struct buffer_page	*tail_page;
434 	int			add_timestamp;
435 };
436 
437 /*
438  * Used for the add_timestamp
439  *  NONE
440  *  EXTEND - wants a time extend
441  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
442  *  FORCE - force a full time stamp.
443  */
444 enum {
445 	RB_ADD_STAMP_NONE		= 0,
446 	RB_ADD_STAMP_EXTEND		= BIT(1),
447 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
448 	RB_ADD_STAMP_FORCE		= BIT(3)
449 };
450 /*
451  * Used for which event context the event is in.
452  *  TRANSITION = 0
453  *  NMI     = 1
454  *  IRQ     = 2
455  *  SOFTIRQ = 3
456  *  NORMAL  = 4
457  *
458  * See trace_recursive_lock() comment below for more details.
459  */
460 enum {
461 	RB_CTX_TRANSITION,
462 	RB_CTX_NMI,
463 	RB_CTX_IRQ,
464 	RB_CTX_SOFTIRQ,
465 	RB_CTX_NORMAL,
466 	RB_CTX_MAX
467 };
468 
469 #if BITS_PER_LONG == 32
470 #define RB_TIME_32
471 #endif
472 
473 /* To test on 64 bit machines */
474 //#define RB_TIME_32
475 
476 #ifdef RB_TIME_32
477 
478 struct rb_time_struct {
479 	local_t		cnt;
480 	local_t		top;
481 	local_t		bottom;
482 };
483 #else
484 #include <asm/local64.h>
485 struct rb_time_struct {
486 	local64_t	time;
487 };
488 #endif
489 typedef struct rb_time_struct rb_time_t;
490 
491 /*
492  * head_page == tail_page && head == tail then buffer is empty.
493  */
494 struct ring_buffer_per_cpu {
495 	int				cpu;
496 	atomic_t			record_disabled;
497 	atomic_t			resize_disabled;
498 	struct trace_buffer	*buffer;
499 	raw_spinlock_t			reader_lock;	/* serialize readers */
500 	arch_spinlock_t			lock;
501 	struct lock_class_key		lock_key;
502 	struct buffer_data_page		*free_page;
503 	unsigned long			nr_pages;
504 	unsigned int			current_context;
505 	struct list_head		*pages;
506 	struct buffer_page		*head_page;	/* read from head */
507 	struct buffer_page		*tail_page;	/* write to tail */
508 	struct buffer_page		*commit_page;	/* committed pages */
509 	struct buffer_page		*reader_page;
510 	unsigned long			lost_events;
511 	unsigned long			last_overrun;
512 	unsigned long			nest;
513 	local_t				entries_bytes;
514 	local_t				entries;
515 	local_t				overrun;
516 	local_t				commit_overrun;
517 	local_t				dropped_events;
518 	local_t				committing;
519 	local_t				commits;
520 	local_t				pages_touched;
521 	local_t				pages_lost;
522 	local_t				pages_read;
523 	long				last_pages_touch;
524 	size_t				shortest_full;
525 	unsigned long			read;
526 	unsigned long			read_bytes;
527 	rb_time_t			write_stamp;
528 	rb_time_t			before_stamp;
529 	u64				read_stamp;
530 	/* pages removed since last reset */
531 	unsigned long			pages_removed;
532 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
533 	long				nr_pages_to_update;
534 	struct list_head		new_pages; /* new pages to add */
535 	struct work_struct		update_pages_work;
536 	struct completion		update_done;
537 
538 	struct rb_irq_work		irq_work;
539 };
540 
541 struct trace_buffer {
542 	unsigned			flags;
543 	int				cpus;
544 	atomic_t			record_disabled;
545 	atomic_t			resizing;
546 	cpumask_var_t			cpumask;
547 
548 	struct lock_class_key		*reader_lock_key;
549 
550 	struct mutex			mutex;
551 
552 	struct ring_buffer_per_cpu	**buffers;
553 
554 	struct hlist_node		node;
555 	u64				(*clock)(void);
556 
557 	struct rb_irq_work		irq_work;
558 	bool				time_stamp_abs;
559 };
560 
561 struct ring_buffer_iter {
562 	struct ring_buffer_per_cpu	*cpu_buffer;
563 	unsigned long			head;
564 	unsigned long			next_event;
565 	struct buffer_page		*head_page;
566 	struct buffer_page		*cache_reader_page;
567 	unsigned long			cache_read;
568 	unsigned long			cache_pages_removed;
569 	u64				read_stamp;
570 	u64				page_stamp;
571 	struct ring_buffer_event	*event;
572 	int				missed_events;
573 };
574 
575 #ifdef RB_TIME_32
576 
577 /*
578  * On 32 bit machines, local64_t is very expensive. As the ring
579  * buffer doesn't need all the features of a true 64 bit atomic,
580  * on 32 bit, it uses these functions (64 still uses local64_t).
581  *
582  * For the ring buffer, 64 bit required operations for the time is
583  * the following:
584  *
585  *  - Only need 59 bits (uses 60 to make it even).
586  *  - Reads may fail if it interrupted a modification of the time stamp.
587  *      It will succeed if it did not interrupt another write even if
588  *      the read itself is interrupted by a write.
589  *      It returns whether it was successful or not.
590  *
591  *  - Writes always succeed and will overwrite other writes and writes
592  *      that were done by events interrupting the current write.
593  *
594  *  - A write followed by a read of the same time stamp will always succeed,
595  *      but may not contain the same value.
596  *
597  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
598  *      Other than that, it acts like a normal cmpxchg.
599  *
600  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
602  *
603  * The two most significant bits of each half holds a 2 bit counter (0-3).
604  * Each update will increment this counter by one.
605  * When reading the top and bottom, if the two counter bits match then the
606  *  top and bottom together make a valid 60 bit number.
607  */
608 #define RB_TIME_SHIFT	30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 
rb_time_cnt(unsigned long val)611 static inline int rb_time_cnt(unsigned long val)
612 {
613 	return (val >> RB_TIME_SHIFT) & 3;
614 }
615 
rb_time_val(unsigned long top,unsigned long bottom)616 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
617 {
618 	u64 val;
619 
620 	val = top & RB_TIME_VAL_MASK;
621 	val <<= RB_TIME_SHIFT;
622 	val |= bottom & RB_TIME_VAL_MASK;
623 
624 	return val;
625 }
626 
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)627 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
628 {
629 	unsigned long top, bottom;
630 	unsigned long c;
631 
632 	/*
633 	 * If the read is interrupted by a write, then the cnt will
634 	 * be different. Loop until both top and bottom have been read
635 	 * without interruption.
636 	 */
637 	do {
638 		c = local_read(&t->cnt);
639 		top = local_read(&t->top);
640 		bottom = local_read(&t->bottom);
641 	} while (c != local_read(&t->cnt));
642 
643 	*cnt = rb_time_cnt(top);
644 
645 	/* If top and bottom counts don't match, this interrupted a write */
646 	if (*cnt != rb_time_cnt(bottom))
647 		return false;
648 
649 	*ret = rb_time_val(top, bottom);
650 	return true;
651 }
652 
rb_time_read(rb_time_t * t,u64 * ret)653 static bool rb_time_read(rb_time_t *t, u64 *ret)
654 {
655 	unsigned long cnt;
656 
657 	return __rb_time_read(t, ret, &cnt);
658 }
659 
rb_time_val_cnt(unsigned long val,unsigned long cnt)660 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
661 {
662 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
663 }
664 
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)665 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
666 {
667 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
668 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
669 }
670 
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)671 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
672 {
673 	val = rb_time_val_cnt(val, cnt);
674 	local_set(t, val);
675 }
676 
rb_time_set(rb_time_t * t,u64 val)677 static void rb_time_set(rb_time_t *t, u64 val)
678 {
679 	unsigned long cnt, top, bottom;
680 
681 	rb_time_split(val, &top, &bottom);
682 
683 	/* Writes always succeed with a valid number even if it gets interrupted. */
684 	do {
685 		cnt = local_inc_return(&t->cnt);
686 		rb_time_val_set(&t->top, top, cnt);
687 		rb_time_val_set(&t->bottom, bottom, cnt);
688 	} while (cnt != local_read(&t->cnt));
689 }
690 
691 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)692 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
693 {
694 	unsigned long ret;
695 
696 	ret = local_cmpxchg(l, expect, set);
697 	return ret == expect;
698 }
699 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)700 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
701 {
702 	unsigned long cnt, top, bottom;
703 	unsigned long cnt2, top2, bottom2;
704 	u64 val;
705 
706 	/* Any interruptions in this function should cause a failure */
707 	cnt = local_read(&t->cnt);
708 
709 	/* The cmpxchg always fails if it interrupted an update */
710 	 if (!__rb_time_read(t, &val, &cnt2))
711 		 return false;
712 
713 	 if (val != expect)
714 		 return false;
715 
716 	 if ((cnt & 3) != cnt2)
717 		 return false;
718 
719 	 cnt2 = cnt + 1;
720 
721 	 rb_time_split(val, &top, &bottom);
722 	 top = rb_time_val_cnt(top, cnt);
723 	 bottom = rb_time_val_cnt(bottom, cnt);
724 
725 	 rb_time_split(set, &top2, &bottom2);
726 	 top2 = rb_time_val_cnt(top2, cnt2);
727 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
728 
729 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
730 		return false;
731 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
732 		return false;
733 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
734 		return false;
735 	return true;
736 }
737 
738 #else /* 64 bits */
739 
740 /* local64_t always succeeds */
741 
rb_time_read(rb_time_t * t,u64 * ret)742 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
743 {
744 	*ret = local64_read(&t->time);
745 	return true;
746 }
rb_time_set(rb_time_t * t,u64 val)747 static void rb_time_set(rb_time_t *t, u64 val)
748 {
749 	local64_set(&t->time, val);
750 }
751 
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)752 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
753 {
754 	u64 val;
755 	val = local64_cmpxchg(&t->time, expect, set);
756 	return val == expect;
757 }
758 #endif
759 
760 /**
761  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
762  * @buffer: The ring_buffer to get the number of pages from
763  * @cpu: The cpu of the ring_buffer to get the number of pages from
764  *
765  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
766  */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)767 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
768 {
769 	return buffer->buffers[cpu]->nr_pages;
770 }
771 
772 /**
773  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
774  * @buffer: The ring_buffer to get the number of pages from
775  * @cpu: The cpu of the ring_buffer to get the number of pages from
776  *
777  * Returns the number of pages that have content in the ring buffer.
778  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)779 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
780 {
781 	size_t read;
782 	size_t lost;
783 	size_t cnt;
784 
785 	read = local_read(&buffer->buffers[cpu]->pages_read);
786 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
787 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
788 
789 	if (WARN_ON_ONCE(cnt < lost))
790 		return 0;
791 
792 	cnt -= lost;
793 
794 	/* The reader can read an empty page, but not more than that */
795 	if (cnt < read) {
796 		WARN_ON_ONCE(read > cnt + 1);
797 		return 0;
798 	}
799 
800 	return cnt - read;
801 }
802 
full_hit(struct trace_buffer * buffer,int cpu,int full)803 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
804 {
805 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
806 	size_t nr_pages;
807 	size_t dirty;
808 
809 	nr_pages = cpu_buffer->nr_pages;
810 	if (!nr_pages || !full)
811 		return true;
812 
813 	/*
814 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
815 	 * that the writer is on is not counted as dirty.
816 	 * This is needed if "buffer_percent" is set to 100.
817 	 */
818 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
819 
820 	return (dirty * 100) >= (full * nr_pages);
821 }
822 
823 /*
824  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
825  *
826  * Schedules a delayed work to wake up any task that is blocked on the
827  * ring buffer waiters queue.
828  */
rb_wake_up_waiters(struct irq_work * work)829 static void rb_wake_up_waiters(struct irq_work *work)
830 {
831 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
832 
833 	wake_up_all(&rbwork->waiters);
834 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
835 		rbwork->wakeup_full = false;
836 		rbwork->full_waiters_pending = false;
837 		wake_up_all(&rbwork->full_waiters);
838 	}
839 }
840 
841 /**
842  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
843  * @buffer: The ring buffer to wake waiters on
844  *
845  * In the case of a file that represents a ring buffer is closing,
846  * it is prudent to wake up any waiters that are on this.
847  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)848 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
849 {
850 	struct ring_buffer_per_cpu *cpu_buffer;
851 	struct rb_irq_work *rbwork;
852 
853 	if (cpu == RING_BUFFER_ALL_CPUS) {
854 
855 		/* Wake up individual ones too. One level recursion */
856 		for_each_buffer_cpu(buffer, cpu)
857 			ring_buffer_wake_waiters(buffer, cpu);
858 
859 		rbwork = &buffer->irq_work;
860 	} else {
861 		cpu_buffer = buffer->buffers[cpu];
862 		rbwork = &cpu_buffer->irq_work;
863 	}
864 
865 	rbwork->wait_index++;
866 	/* make sure the waiters see the new index */
867 	smp_wmb();
868 
869 	/* This can be called in any context */
870 	irq_work_queue(&rbwork->work);
871 }
872 
873 /**
874  * ring_buffer_wait - wait for input to the ring buffer
875  * @buffer: buffer to wait on
876  * @cpu: the cpu buffer to wait on
877  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
878  *
879  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
880  * as data is added to any of the @buffer's cpu buffers. Otherwise
881  * it will wait for data to be added to a specific cpu buffer.
882  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)883 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
884 {
885 	struct ring_buffer_per_cpu *cpu_buffer;
886 	DEFINE_WAIT(wait);
887 	struct rb_irq_work *work;
888 	long wait_index;
889 	int ret = 0;
890 
891 	/*
892 	 * Depending on what the caller is waiting for, either any
893 	 * data in any cpu buffer, or a specific buffer, put the
894 	 * caller on the appropriate wait queue.
895 	 */
896 	if (cpu == RING_BUFFER_ALL_CPUS) {
897 		work = &buffer->irq_work;
898 		/* Full only makes sense on per cpu reads */
899 		full = 0;
900 	} else {
901 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
902 			return -ENODEV;
903 		cpu_buffer = buffer->buffers[cpu];
904 		work = &cpu_buffer->irq_work;
905 	}
906 
907 	wait_index = READ_ONCE(work->wait_index);
908 
909 	while (true) {
910 		if (full)
911 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
912 		else
913 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
914 
915 		/*
916 		 * The events can happen in critical sections where
917 		 * checking a work queue can cause deadlocks.
918 		 * After adding a task to the queue, this flag is set
919 		 * only to notify events to try to wake up the queue
920 		 * using irq_work.
921 		 *
922 		 * We don't clear it even if the buffer is no longer
923 		 * empty. The flag only causes the next event to run
924 		 * irq_work to do the work queue wake up. The worse
925 		 * that can happen if we race with !trace_empty() is that
926 		 * an event will cause an irq_work to try to wake up
927 		 * an empty queue.
928 		 *
929 		 * There's no reason to protect this flag either, as
930 		 * the work queue and irq_work logic will do the necessary
931 		 * synchronization for the wake ups. The only thing
932 		 * that is necessary is that the wake up happens after
933 		 * a task has been queued. It's OK for spurious wake ups.
934 		 */
935 		if (full)
936 			work->full_waiters_pending = true;
937 		else
938 			work->waiters_pending = true;
939 
940 		if (signal_pending(current)) {
941 			ret = -EINTR;
942 			break;
943 		}
944 
945 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
946 			break;
947 
948 		if (cpu != RING_BUFFER_ALL_CPUS &&
949 		    !ring_buffer_empty_cpu(buffer, cpu)) {
950 			unsigned long flags;
951 			bool pagebusy;
952 			bool done;
953 
954 			if (!full)
955 				break;
956 
957 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
958 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
959 			done = !pagebusy && full_hit(buffer, cpu, full);
960 
961 			if (!cpu_buffer->shortest_full ||
962 			    cpu_buffer->shortest_full > full)
963 				cpu_buffer->shortest_full = full;
964 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
965 			if (done)
966 				break;
967 		}
968 
969 		schedule();
970 
971 		/* Make sure to see the new wait index */
972 		smp_rmb();
973 		if (wait_index != work->wait_index)
974 			break;
975 	}
976 
977 	if (full)
978 		finish_wait(&work->full_waiters, &wait);
979 	else
980 		finish_wait(&work->waiters, &wait);
981 
982 	return ret;
983 }
984 
985 /**
986  * ring_buffer_poll_wait - poll on buffer input
987  * @buffer: buffer to wait on
988  * @cpu: the cpu buffer to wait on
989  * @filp: the file descriptor
990  * @poll_table: The poll descriptor
991  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
992  *
993  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
994  * as data is added to any of the @buffer's cpu buffers. Otherwise
995  * it will wait for data to be added to a specific cpu buffer.
996  *
997  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
998  * zero otherwise.
999  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1000 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1001 			  struct file *filp, poll_table *poll_table, int full)
1002 {
1003 	struct ring_buffer_per_cpu *cpu_buffer;
1004 	struct rb_irq_work *work;
1005 
1006 	if (cpu == RING_BUFFER_ALL_CPUS) {
1007 		work = &buffer->irq_work;
1008 		full = 0;
1009 	} else {
1010 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1011 			return EPOLLERR;
1012 
1013 		cpu_buffer = buffer->buffers[cpu];
1014 		work = &cpu_buffer->irq_work;
1015 	}
1016 
1017 	if (full) {
1018 		poll_wait(filp, &work->full_waiters, poll_table);
1019 		work->full_waiters_pending = true;
1020 		if (!cpu_buffer->shortest_full ||
1021 		    cpu_buffer->shortest_full > full)
1022 			cpu_buffer->shortest_full = full;
1023 	} else {
1024 		poll_wait(filp, &work->waiters, poll_table);
1025 		work->waiters_pending = true;
1026 	}
1027 
1028 	/*
1029 	 * There's a tight race between setting the waiters_pending and
1030 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1031 	 * is set, the next event will wake the task up, but we can get stuck
1032 	 * if there's only a single event in.
1033 	 *
1034 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1035 	 * but adding a memory barrier to all events will cause too much of a
1036 	 * performance hit in the fast path.  We only need a memory barrier when
1037 	 * the buffer goes from empty to having content.  But as this race is
1038 	 * extremely small, and it's not a problem if another event comes in, we
1039 	 * will fix it later.
1040 	 */
1041 	smp_mb();
1042 
1043 	if (full)
1044 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1045 
1046 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1047 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1048 		return EPOLLIN | EPOLLRDNORM;
1049 	return 0;
1050 }
1051 
1052 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1053 #define RB_WARN_ON(b, cond)						\
1054 	({								\
1055 		int _____ret = unlikely(cond);				\
1056 		if (_____ret) {						\
1057 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1058 				struct ring_buffer_per_cpu *__b =	\
1059 					(void *)b;			\
1060 				atomic_inc(&__b->buffer->record_disabled); \
1061 			} else						\
1062 				atomic_inc(&b->record_disabled);	\
1063 			WARN_ON(1);					\
1064 		}							\
1065 		_____ret;						\
1066 	})
1067 
1068 /* Up this if you want to test the TIME_EXTENTS and normalization */
1069 #define DEBUG_SHIFT 0
1070 
rb_time_stamp(struct trace_buffer * buffer)1071 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1072 {
1073 	u64 ts;
1074 
1075 	/* Skip retpolines :-( */
1076 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1077 		ts = trace_clock_local();
1078 	else
1079 		ts = buffer->clock();
1080 
1081 	/* shift to debug/test normalization and TIME_EXTENTS */
1082 	return ts << DEBUG_SHIFT;
1083 }
1084 
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)1085 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
1086 {
1087 	u64 time;
1088 
1089 	preempt_disable_notrace();
1090 	time = rb_time_stamp(buffer);
1091 	preempt_enable_notrace();
1092 
1093 	return time;
1094 }
1095 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1096 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1097 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1098 				      int cpu, u64 *ts)
1099 {
1100 	/* Just stupid testing the normalize function and deltas */
1101 	*ts >>= DEBUG_SHIFT;
1102 }
1103 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1104 
1105 /*
1106  * Making the ring buffer lockless makes things tricky.
1107  * Although writes only happen on the CPU that they are on,
1108  * and they only need to worry about interrupts. Reads can
1109  * happen on any CPU.
1110  *
1111  * The reader page is always off the ring buffer, but when the
1112  * reader finishes with a page, it needs to swap its page with
1113  * a new one from the buffer. The reader needs to take from
1114  * the head (writes go to the tail). But if a writer is in overwrite
1115  * mode and wraps, it must push the head page forward.
1116  *
1117  * Here lies the problem.
1118  *
1119  * The reader must be careful to replace only the head page, and
1120  * not another one. As described at the top of the file in the
1121  * ASCII art, the reader sets its old page to point to the next
1122  * page after head. It then sets the page after head to point to
1123  * the old reader page. But if the writer moves the head page
1124  * during this operation, the reader could end up with the tail.
1125  *
1126  * We use cmpxchg to help prevent this race. We also do something
1127  * special with the page before head. We set the LSB to 1.
1128  *
1129  * When the writer must push the page forward, it will clear the
1130  * bit that points to the head page, move the head, and then set
1131  * the bit that points to the new head page.
1132  *
1133  * We also don't want an interrupt coming in and moving the head
1134  * page on another writer. Thus we use the second LSB to catch
1135  * that too. Thus:
1136  *
1137  * head->list->prev->next        bit 1          bit 0
1138  *                              -------        -------
1139  * Normal page                     0              0
1140  * Points to head page             0              1
1141  * New head page                   1              0
1142  *
1143  * Note we can not trust the prev pointer of the head page, because:
1144  *
1145  * +----+       +-----+        +-----+
1146  * |    |------>|  T  |---X--->|  N  |
1147  * |    |<------|     |        |     |
1148  * +----+       +-----+        +-----+
1149  *   ^                           ^ |
1150  *   |          +-----+          | |
1151  *   +----------|  R  |----------+ |
1152  *              |     |<-----------+
1153  *              +-----+
1154  *
1155  * Key:  ---X-->  HEAD flag set in pointer
1156  *         T      Tail page
1157  *         R      Reader page
1158  *         N      Next page
1159  *
1160  * (see __rb_reserve_next() to see where this happens)
1161  *
1162  *  What the above shows is that the reader just swapped out
1163  *  the reader page with a page in the buffer, but before it
1164  *  could make the new header point back to the new page added
1165  *  it was preempted by a writer. The writer moved forward onto
1166  *  the new page added by the reader and is about to move forward
1167  *  again.
1168  *
1169  *  You can see, it is legitimate for the previous pointer of
1170  *  the head (or any page) not to point back to itself. But only
1171  *  temporarily.
1172  */
1173 
1174 #define RB_PAGE_NORMAL		0UL
1175 #define RB_PAGE_HEAD		1UL
1176 #define RB_PAGE_UPDATE		2UL
1177 
1178 
1179 #define RB_FLAG_MASK		3UL
1180 
1181 /* PAGE_MOVED is not part of the mask */
1182 #define RB_PAGE_MOVED		4UL
1183 
1184 /*
1185  * rb_list_head - remove any bit
1186  */
rb_list_head(struct list_head * list)1187 static struct list_head *rb_list_head(struct list_head *list)
1188 {
1189 	unsigned long val = (unsigned long)list;
1190 
1191 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1192 }
1193 
1194 /*
1195  * rb_is_head_page - test if the given page is the head page
1196  *
1197  * Because the reader may move the head_page pointer, we can
1198  * not trust what the head page is (it may be pointing to
1199  * the reader page). But if the next page is a header page,
1200  * its flags will be non zero.
1201  */
1202 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1203 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1204 		struct buffer_page *page, struct list_head *list)
1205 {
1206 	unsigned long val;
1207 
1208 	val = (unsigned long)list->next;
1209 
1210 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1211 		return RB_PAGE_MOVED;
1212 
1213 	return val & RB_FLAG_MASK;
1214 }
1215 
1216 /*
1217  * rb_is_reader_page
1218  *
1219  * The unique thing about the reader page, is that, if the
1220  * writer is ever on it, the previous pointer never points
1221  * back to the reader page.
1222  */
rb_is_reader_page(struct buffer_page * page)1223 static bool rb_is_reader_page(struct buffer_page *page)
1224 {
1225 	struct list_head *list = page->list.prev;
1226 
1227 	return rb_list_head(list->next) != &page->list;
1228 }
1229 
1230 /*
1231  * rb_set_list_to_head - set a list_head to be pointing to head.
1232  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1233 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1234 				struct list_head *list)
1235 {
1236 	unsigned long *ptr;
1237 
1238 	ptr = (unsigned long *)&list->next;
1239 	*ptr |= RB_PAGE_HEAD;
1240 	*ptr &= ~RB_PAGE_UPDATE;
1241 }
1242 
1243 /*
1244  * rb_head_page_activate - sets up head page
1245  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1246 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1247 {
1248 	struct buffer_page *head;
1249 
1250 	head = cpu_buffer->head_page;
1251 	if (!head)
1252 		return;
1253 
1254 	/*
1255 	 * Set the previous list pointer to have the HEAD flag.
1256 	 */
1257 	rb_set_list_to_head(cpu_buffer, head->list.prev);
1258 }
1259 
rb_list_head_clear(struct list_head * list)1260 static void rb_list_head_clear(struct list_head *list)
1261 {
1262 	unsigned long *ptr = (unsigned long *)&list->next;
1263 
1264 	*ptr &= ~RB_FLAG_MASK;
1265 }
1266 
1267 /*
1268  * rb_head_page_deactivate - clears head page ptr (for free list)
1269  */
1270 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1271 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1272 {
1273 	struct list_head *hd;
1274 
1275 	/* Go through the whole list and clear any pointers found. */
1276 	rb_list_head_clear(cpu_buffer->pages);
1277 
1278 	list_for_each(hd, cpu_buffer->pages)
1279 		rb_list_head_clear(hd);
1280 }
1281 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1282 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1283 			    struct buffer_page *head,
1284 			    struct buffer_page *prev,
1285 			    int old_flag, int new_flag)
1286 {
1287 	struct list_head *list;
1288 	unsigned long val = (unsigned long)&head->list;
1289 	unsigned long ret;
1290 
1291 	list = &prev->list;
1292 
1293 	val &= ~RB_FLAG_MASK;
1294 
1295 	ret = cmpxchg((unsigned long *)&list->next,
1296 		      val | old_flag, val | new_flag);
1297 
1298 	/* check if the reader took the page */
1299 	if ((ret & ~RB_FLAG_MASK) != val)
1300 		return RB_PAGE_MOVED;
1301 
1302 	return ret & RB_FLAG_MASK;
1303 }
1304 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1305 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1306 				   struct buffer_page *head,
1307 				   struct buffer_page *prev,
1308 				   int old_flag)
1309 {
1310 	return rb_head_page_set(cpu_buffer, head, prev,
1311 				old_flag, RB_PAGE_UPDATE);
1312 }
1313 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1314 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1315 				 struct buffer_page *head,
1316 				 struct buffer_page *prev,
1317 				 int old_flag)
1318 {
1319 	return rb_head_page_set(cpu_buffer, head, prev,
1320 				old_flag, RB_PAGE_HEAD);
1321 }
1322 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1323 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1324 				   struct buffer_page *head,
1325 				   struct buffer_page *prev,
1326 				   int old_flag)
1327 {
1328 	return rb_head_page_set(cpu_buffer, head, prev,
1329 				old_flag, RB_PAGE_NORMAL);
1330 }
1331 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1332 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1333 			       struct buffer_page **bpage)
1334 {
1335 	struct list_head *p = rb_list_head((*bpage)->list.next);
1336 
1337 	*bpage = list_entry(p, struct buffer_page, list);
1338 }
1339 
1340 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1341 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1342 {
1343 	struct buffer_page *head;
1344 	struct buffer_page *page;
1345 	struct list_head *list;
1346 	int i;
1347 
1348 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1349 		return NULL;
1350 
1351 	/* sanity check */
1352 	list = cpu_buffer->pages;
1353 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1354 		return NULL;
1355 
1356 	page = head = cpu_buffer->head_page;
1357 	/*
1358 	 * It is possible that the writer moves the header behind
1359 	 * where we started, and we miss in one loop.
1360 	 * A second loop should grab the header, but we'll do
1361 	 * three loops just because I'm paranoid.
1362 	 */
1363 	for (i = 0; i < 3; i++) {
1364 		do {
1365 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1366 				cpu_buffer->head_page = page;
1367 				return page;
1368 			}
1369 			rb_inc_page(cpu_buffer, &page);
1370 		} while (page != head);
1371 	}
1372 
1373 	RB_WARN_ON(cpu_buffer, 1);
1374 
1375 	return NULL;
1376 }
1377 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1378 static int rb_head_page_replace(struct buffer_page *old,
1379 				struct buffer_page *new)
1380 {
1381 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1382 	unsigned long val;
1383 	unsigned long ret;
1384 
1385 	val = *ptr & ~RB_FLAG_MASK;
1386 	val |= RB_PAGE_HEAD;
1387 
1388 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1389 
1390 	return ret == val;
1391 }
1392 
1393 /*
1394  * rb_tail_page_update - move the tail page forward
1395  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1396 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1397 			       struct buffer_page *tail_page,
1398 			       struct buffer_page *next_page)
1399 {
1400 	unsigned long old_entries;
1401 	unsigned long old_write;
1402 
1403 	/*
1404 	 * The tail page now needs to be moved forward.
1405 	 *
1406 	 * We need to reset the tail page, but without messing
1407 	 * with possible erasing of data brought in by interrupts
1408 	 * that have moved the tail page and are currently on it.
1409 	 *
1410 	 * We add a counter to the write field to denote this.
1411 	 */
1412 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1413 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1414 
1415 	local_inc(&cpu_buffer->pages_touched);
1416 	/*
1417 	 * Just make sure we have seen our old_write and synchronize
1418 	 * with any interrupts that come in.
1419 	 */
1420 	barrier();
1421 
1422 	/*
1423 	 * If the tail page is still the same as what we think
1424 	 * it is, then it is up to us to update the tail
1425 	 * pointer.
1426 	 */
1427 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1428 		/* Zero the write counter */
1429 		unsigned long val = old_write & ~RB_WRITE_MASK;
1430 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1431 
1432 		/*
1433 		 * This will only succeed if an interrupt did
1434 		 * not come in and change it. In which case, we
1435 		 * do not want to modify it.
1436 		 *
1437 		 * We add (void) to let the compiler know that we do not care
1438 		 * about the return value of these functions. We use the
1439 		 * cmpxchg to only update if an interrupt did not already
1440 		 * do it for us. If the cmpxchg fails, we don't care.
1441 		 */
1442 		(void)local_cmpxchg(&next_page->write, old_write, val);
1443 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1444 
1445 		/*
1446 		 * No need to worry about races with clearing out the commit.
1447 		 * it only can increment when a commit takes place. But that
1448 		 * only happens in the outer most nested commit.
1449 		 */
1450 		local_set(&next_page->page->commit, 0);
1451 
1452 		/* Again, either we update tail_page or an interrupt does */
1453 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1454 	}
1455 }
1456 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1457 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1458 			  struct buffer_page *bpage)
1459 {
1460 	unsigned long val = (unsigned long)bpage;
1461 
1462 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1463 		return 1;
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * rb_check_pages - integrity check of buffer pages
1470  * @cpu_buffer: CPU buffer with pages to test
1471  *
1472  * As a safety measure we check to make sure the data pages have not
1473  * been corrupted.
1474  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1475 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1476 {
1477 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1478 	struct list_head *tmp;
1479 
1480 	if (RB_WARN_ON(cpu_buffer,
1481 			rb_list_head(rb_list_head(head->next)->prev) != head))
1482 		return -1;
1483 
1484 	if (RB_WARN_ON(cpu_buffer,
1485 			rb_list_head(rb_list_head(head->prev)->next) != head))
1486 		return -1;
1487 
1488 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1489 		if (RB_WARN_ON(cpu_buffer,
1490 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1491 			return -1;
1492 
1493 		if (RB_WARN_ON(cpu_buffer,
1494 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1495 			return -1;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1501 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1502 {
1503 	struct buffer_page *bpage, *tmp;
1504 	bool user_thread = current->mm != NULL;
1505 	gfp_t mflags;
1506 	long i;
1507 
1508 	/*
1509 	 * Check if the available memory is there first.
1510 	 * Note, si_mem_available() only gives us a rough estimate of available
1511 	 * memory. It may not be accurate. But we don't care, we just want
1512 	 * to prevent doing any allocation when it is obvious that it is
1513 	 * not going to succeed.
1514 	 */
1515 	i = si_mem_available();
1516 	if (i < nr_pages)
1517 		return -ENOMEM;
1518 
1519 	/*
1520 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1521 	 * gracefully without invoking oom-killer and the system is not
1522 	 * destabilized.
1523 	 */
1524 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1525 
1526 	/*
1527 	 * If a user thread allocates too much, and si_mem_available()
1528 	 * reports there's enough memory, even though there is not.
1529 	 * Make sure the OOM killer kills this thread. This can happen
1530 	 * even with RETRY_MAYFAIL because another task may be doing
1531 	 * an allocation after this task has taken all memory.
1532 	 * This is the task the OOM killer needs to take out during this
1533 	 * loop, even if it was triggered by an allocation somewhere else.
1534 	 */
1535 	if (user_thread)
1536 		set_current_oom_origin();
1537 	for (i = 0; i < nr_pages; i++) {
1538 		struct page *page;
1539 
1540 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1541 				    mflags, cpu_to_node(cpu));
1542 		if (!bpage)
1543 			goto free_pages;
1544 
1545 		list_add(&bpage->list, pages);
1546 
1547 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1548 		if (!page)
1549 			goto free_pages;
1550 		bpage->page = page_address(page);
1551 		rb_init_page(bpage->page);
1552 
1553 		if (user_thread && fatal_signal_pending(current))
1554 			goto free_pages;
1555 	}
1556 	if (user_thread)
1557 		clear_current_oom_origin();
1558 
1559 	return 0;
1560 
1561 free_pages:
1562 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1563 		list_del_init(&bpage->list);
1564 		free_buffer_page(bpage);
1565 	}
1566 	if (user_thread)
1567 		clear_current_oom_origin();
1568 
1569 	return -ENOMEM;
1570 }
1571 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1572 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1573 			     unsigned long nr_pages)
1574 {
1575 	LIST_HEAD(pages);
1576 
1577 	WARN_ON(!nr_pages);
1578 
1579 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1580 		return -ENOMEM;
1581 
1582 	/*
1583 	 * The ring buffer page list is a circular list that does not
1584 	 * start and end with a list head. All page list items point to
1585 	 * other pages.
1586 	 */
1587 	cpu_buffer->pages = pages.next;
1588 	list_del(&pages);
1589 
1590 	cpu_buffer->nr_pages = nr_pages;
1591 
1592 	rb_check_pages(cpu_buffer);
1593 
1594 	return 0;
1595 }
1596 
1597 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1598 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer;
1601 	struct buffer_page *bpage;
1602 	struct page *page;
1603 	int ret;
1604 
1605 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1606 				  GFP_KERNEL, cpu_to_node(cpu));
1607 	if (!cpu_buffer)
1608 		return NULL;
1609 
1610 	cpu_buffer->cpu = cpu;
1611 	cpu_buffer->buffer = buffer;
1612 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1613 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1614 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1615 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1616 	init_completion(&cpu_buffer->update_done);
1617 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1618 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1619 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1620 
1621 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1622 			    GFP_KERNEL, cpu_to_node(cpu));
1623 	if (!bpage)
1624 		goto fail_free_buffer;
1625 
1626 	rb_check_bpage(cpu_buffer, bpage);
1627 
1628 	cpu_buffer->reader_page = bpage;
1629 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1630 	if (!page)
1631 		goto fail_free_reader;
1632 	bpage->page = page_address(page);
1633 	rb_init_page(bpage->page);
1634 
1635 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1636 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1637 
1638 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1639 	if (ret < 0)
1640 		goto fail_free_reader;
1641 
1642 	cpu_buffer->head_page
1643 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1644 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1645 
1646 	rb_head_page_activate(cpu_buffer);
1647 
1648 	return cpu_buffer;
1649 
1650  fail_free_reader:
1651 	free_buffer_page(cpu_buffer->reader_page);
1652 
1653  fail_free_buffer:
1654 	kfree(cpu_buffer);
1655 	return NULL;
1656 }
1657 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1658 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1659 {
1660 	struct list_head *head = cpu_buffer->pages;
1661 	struct buffer_page *bpage, *tmp;
1662 
1663 	irq_work_sync(&cpu_buffer->irq_work.work);
1664 
1665 	free_buffer_page(cpu_buffer->reader_page);
1666 
1667 	if (head) {
1668 		rb_head_page_deactivate(cpu_buffer);
1669 
1670 		list_for_each_entry_safe(bpage, tmp, head, list) {
1671 			list_del_init(&bpage->list);
1672 			free_buffer_page(bpage);
1673 		}
1674 		bpage = list_entry(head, struct buffer_page, list);
1675 		free_buffer_page(bpage);
1676 	}
1677 
1678 	free_page((unsigned long)cpu_buffer->free_page);
1679 
1680 	kfree(cpu_buffer);
1681 }
1682 
1683 /**
1684  * __ring_buffer_alloc - allocate a new ring_buffer
1685  * @size: the size in bytes per cpu that is needed.
1686  * @flags: attributes to set for the ring buffer.
1687  * @key: ring buffer reader_lock_key.
1688  *
1689  * Currently the only flag that is available is the RB_FL_OVERWRITE
1690  * flag. This flag means that the buffer will overwrite old data
1691  * when the buffer wraps. If this flag is not set, the buffer will
1692  * drop data when the tail hits the head.
1693  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1694 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1695 					struct lock_class_key *key)
1696 {
1697 	struct trace_buffer *buffer;
1698 	long nr_pages;
1699 	int bsize;
1700 	int cpu;
1701 	int ret;
1702 
1703 	/* keep it in its own cache line */
1704 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1705 			 GFP_KERNEL);
1706 	if (!buffer)
1707 		return NULL;
1708 
1709 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1710 		goto fail_free_buffer;
1711 
1712 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1713 	buffer->flags = flags;
1714 	buffer->clock = trace_clock_local;
1715 	buffer->reader_lock_key = key;
1716 
1717 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1718 	init_waitqueue_head(&buffer->irq_work.waiters);
1719 
1720 	/* need at least two pages */
1721 	if (nr_pages < 2)
1722 		nr_pages = 2;
1723 
1724 	buffer->cpus = nr_cpu_ids;
1725 
1726 	bsize = sizeof(void *) * nr_cpu_ids;
1727 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1728 				  GFP_KERNEL);
1729 	if (!buffer->buffers)
1730 		goto fail_free_cpumask;
1731 
1732 	cpu = raw_smp_processor_id();
1733 	cpumask_set_cpu(cpu, buffer->cpumask);
1734 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1735 	if (!buffer->buffers[cpu])
1736 		goto fail_free_buffers;
1737 
1738 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1739 	if (ret < 0)
1740 		goto fail_free_buffers;
1741 
1742 	mutex_init(&buffer->mutex);
1743 
1744 	return buffer;
1745 
1746  fail_free_buffers:
1747 	for_each_buffer_cpu(buffer, cpu) {
1748 		if (buffer->buffers[cpu])
1749 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1750 	}
1751 	kfree(buffer->buffers);
1752 
1753  fail_free_cpumask:
1754 	free_cpumask_var(buffer->cpumask);
1755 
1756  fail_free_buffer:
1757 	kfree(buffer);
1758 	return NULL;
1759 }
1760 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1761 
1762 /**
1763  * ring_buffer_free - free a ring buffer.
1764  * @buffer: the buffer to free.
1765  */
1766 void
ring_buffer_free(struct trace_buffer * buffer)1767 ring_buffer_free(struct trace_buffer *buffer)
1768 {
1769 	int cpu;
1770 
1771 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1772 
1773 	irq_work_sync(&buffer->irq_work.work);
1774 
1775 	for_each_buffer_cpu(buffer, cpu)
1776 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1777 
1778 	kfree(buffer->buffers);
1779 	free_cpumask_var(buffer->cpumask);
1780 
1781 	kfree(buffer);
1782 }
1783 EXPORT_SYMBOL_GPL(ring_buffer_free);
1784 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1785 void ring_buffer_set_clock(struct trace_buffer *buffer,
1786 			   u64 (*clock)(void))
1787 {
1788 	buffer->clock = clock;
1789 }
1790 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1791 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1792 {
1793 	buffer->time_stamp_abs = abs;
1794 }
1795 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1796 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1797 {
1798 	return buffer->time_stamp_abs;
1799 }
1800 
1801 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1802 
rb_page_entries(struct buffer_page * bpage)1803 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1804 {
1805 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1806 }
1807 
rb_page_write(struct buffer_page * bpage)1808 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1809 {
1810 	return local_read(&bpage->write) & RB_WRITE_MASK;
1811 }
1812 
1813 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1814 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1815 {
1816 	struct list_head *tail_page, *to_remove, *next_page;
1817 	struct buffer_page *to_remove_page, *tmp_iter_page;
1818 	struct buffer_page *last_page, *first_page;
1819 	unsigned long nr_removed;
1820 	unsigned long head_bit;
1821 	int page_entries;
1822 
1823 	head_bit = 0;
1824 
1825 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1826 	atomic_inc(&cpu_buffer->record_disabled);
1827 	/*
1828 	 * We don't race with the readers since we have acquired the reader
1829 	 * lock. We also don't race with writers after disabling recording.
1830 	 * This makes it easy to figure out the first and the last page to be
1831 	 * removed from the list. We unlink all the pages in between including
1832 	 * the first and last pages. This is done in a busy loop so that we
1833 	 * lose the least number of traces.
1834 	 * The pages are freed after we restart recording and unlock readers.
1835 	 */
1836 	tail_page = &cpu_buffer->tail_page->list;
1837 
1838 	/*
1839 	 * tail page might be on reader page, we remove the next page
1840 	 * from the ring buffer
1841 	 */
1842 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1843 		tail_page = rb_list_head(tail_page->next);
1844 	to_remove = tail_page;
1845 
1846 	/* start of pages to remove */
1847 	first_page = list_entry(rb_list_head(to_remove->next),
1848 				struct buffer_page, list);
1849 
1850 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1851 		to_remove = rb_list_head(to_remove)->next;
1852 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1853 	}
1854 	/* Read iterators need to reset themselves when some pages removed */
1855 	cpu_buffer->pages_removed += nr_removed;
1856 
1857 	next_page = rb_list_head(to_remove)->next;
1858 
1859 	/*
1860 	 * Now we remove all pages between tail_page and next_page.
1861 	 * Make sure that we have head_bit value preserved for the
1862 	 * next page
1863 	 */
1864 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1865 						head_bit);
1866 	next_page = rb_list_head(next_page);
1867 	next_page->prev = tail_page;
1868 
1869 	/* make sure pages points to a valid page in the ring buffer */
1870 	cpu_buffer->pages = next_page;
1871 
1872 	/* update head page */
1873 	if (head_bit)
1874 		cpu_buffer->head_page = list_entry(next_page,
1875 						struct buffer_page, list);
1876 
1877 	/* pages are removed, resume tracing and then free the pages */
1878 	atomic_dec(&cpu_buffer->record_disabled);
1879 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1880 
1881 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1882 
1883 	/* last buffer page to remove */
1884 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1885 				list);
1886 	tmp_iter_page = first_page;
1887 
1888 	do {
1889 		cond_resched();
1890 
1891 		to_remove_page = tmp_iter_page;
1892 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1893 
1894 		/* update the counters */
1895 		page_entries = rb_page_entries(to_remove_page);
1896 		if (page_entries) {
1897 			/*
1898 			 * If something was added to this page, it was full
1899 			 * since it is not the tail page. So we deduct the
1900 			 * bytes consumed in ring buffer from here.
1901 			 * Increment overrun to account for the lost events.
1902 			 */
1903 			local_add(page_entries, &cpu_buffer->overrun);
1904 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1905 			local_inc(&cpu_buffer->pages_lost);
1906 		}
1907 
1908 		/*
1909 		 * We have already removed references to this list item, just
1910 		 * free up the buffer_page and its page
1911 		 */
1912 		free_buffer_page(to_remove_page);
1913 		nr_removed--;
1914 
1915 	} while (to_remove_page != last_page);
1916 
1917 	RB_WARN_ON(cpu_buffer, nr_removed);
1918 
1919 	return nr_removed == 0;
1920 }
1921 
1922 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1923 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1924 {
1925 	struct list_head *pages = &cpu_buffer->new_pages;
1926 	int retries, success;
1927 
1928 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1929 	/*
1930 	 * We are holding the reader lock, so the reader page won't be swapped
1931 	 * in the ring buffer. Now we are racing with the writer trying to
1932 	 * move head page and the tail page.
1933 	 * We are going to adapt the reader page update process where:
1934 	 * 1. We first splice the start and end of list of new pages between
1935 	 *    the head page and its previous page.
1936 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1937 	 *    start of new pages list.
1938 	 * 3. Finally, we update the head->prev to the end of new list.
1939 	 *
1940 	 * We will try this process 10 times, to make sure that we don't keep
1941 	 * spinning.
1942 	 */
1943 	retries = 10;
1944 	success = 0;
1945 	while (retries--) {
1946 		struct list_head *head_page, *prev_page, *r;
1947 		struct list_head *last_page, *first_page;
1948 		struct list_head *head_page_with_bit;
1949 
1950 		head_page = &rb_set_head_page(cpu_buffer)->list;
1951 		if (!head_page)
1952 			break;
1953 		prev_page = head_page->prev;
1954 
1955 		first_page = pages->next;
1956 		last_page  = pages->prev;
1957 
1958 		head_page_with_bit = (struct list_head *)
1959 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1960 
1961 		last_page->next = head_page_with_bit;
1962 		first_page->prev = prev_page;
1963 
1964 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1965 
1966 		if (r == head_page_with_bit) {
1967 			/*
1968 			 * yay, we replaced the page pointer to our new list,
1969 			 * now, we just have to update to head page's prev
1970 			 * pointer to point to end of list
1971 			 */
1972 			head_page->prev = last_page;
1973 			success = 1;
1974 			break;
1975 		}
1976 	}
1977 
1978 	if (success)
1979 		INIT_LIST_HEAD(pages);
1980 	/*
1981 	 * If we weren't successful in adding in new pages, warn and stop
1982 	 * tracing
1983 	 */
1984 	RB_WARN_ON(cpu_buffer, !success);
1985 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1986 
1987 	/* free pages if they weren't inserted */
1988 	if (!success) {
1989 		struct buffer_page *bpage, *tmp;
1990 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1991 					 list) {
1992 			list_del_init(&bpage->list);
1993 			free_buffer_page(bpage);
1994 		}
1995 	}
1996 	return success;
1997 }
1998 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1999 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2000 {
2001 	int success;
2002 
2003 	if (cpu_buffer->nr_pages_to_update > 0)
2004 		success = rb_insert_pages(cpu_buffer);
2005 	else
2006 		success = rb_remove_pages(cpu_buffer,
2007 					-cpu_buffer->nr_pages_to_update);
2008 
2009 	if (success)
2010 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2011 }
2012 
update_pages_handler(struct work_struct * work)2013 static void update_pages_handler(struct work_struct *work)
2014 {
2015 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2016 			struct ring_buffer_per_cpu, update_pages_work);
2017 	rb_update_pages(cpu_buffer);
2018 	complete(&cpu_buffer->update_done);
2019 }
2020 
2021 /**
2022  * ring_buffer_resize - resize the ring buffer
2023  * @buffer: the buffer to resize.
2024  * @size: the new size.
2025  * @cpu_id: the cpu buffer to resize
2026  *
2027  * Minimum size is 2 * BUF_PAGE_SIZE.
2028  *
2029  * Returns 0 on success and < 0 on failure.
2030  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2031 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2032 			int cpu_id)
2033 {
2034 	struct ring_buffer_per_cpu *cpu_buffer;
2035 	unsigned long nr_pages;
2036 	int cpu, err;
2037 
2038 	/*
2039 	 * Always succeed at resizing a non-existent buffer:
2040 	 */
2041 	if (!buffer)
2042 		return 0;
2043 
2044 	/* Make sure the requested buffer exists */
2045 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2046 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2047 		return 0;
2048 
2049 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2050 
2051 	/* we need a minimum of two pages */
2052 	if (nr_pages < 2)
2053 		nr_pages = 2;
2054 
2055 	size = nr_pages * BUF_PAGE_SIZE;
2056 
2057 	/* prevent another thread from changing buffer sizes */
2058 	mutex_lock(&buffer->mutex);
2059 	atomic_inc(&buffer->resizing);
2060 
2061 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2062 		/*
2063 		 * Don't succeed if resizing is disabled, as a reader might be
2064 		 * manipulating the ring buffer and is expecting a sane state while
2065 		 * this is true.
2066 		 */
2067 		for_each_buffer_cpu(buffer, cpu) {
2068 			cpu_buffer = buffer->buffers[cpu];
2069 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2070 				err = -EBUSY;
2071 				goto out_err_unlock;
2072 			}
2073 		}
2074 
2075 		/* calculate the pages to update */
2076 		for_each_buffer_cpu(buffer, cpu) {
2077 			cpu_buffer = buffer->buffers[cpu];
2078 
2079 			cpu_buffer->nr_pages_to_update = nr_pages -
2080 							cpu_buffer->nr_pages;
2081 			/*
2082 			 * nothing more to do for removing pages or no update
2083 			 */
2084 			if (cpu_buffer->nr_pages_to_update <= 0)
2085 				continue;
2086 			/*
2087 			 * to add pages, make sure all new pages can be
2088 			 * allocated without receiving ENOMEM
2089 			 */
2090 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2091 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2092 						&cpu_buffer->new_pages, cpu)) {
2093 				/* not enough memory for new pages */
2094 				err = -ENOMEM;
2095 				goto out_err;
2096 			}
2097 
2098 			cond_resched();
2099 		}
2100 
2101 		get_online_cpus();
2102 		/*
2103 		 * Fire off all the required work handlers
2104 		 * We can't schedule on offline CPUs, but it's not necessary
2105 		 * since we can change their buffer sizes without any race.
2106 		 */
2107 		for_each_buffer_cpu(buffer, cpu) {
2108 			cpu_buffer = buffer->buffers[cpu];
2109 			if (!cpu_buffer->nr_pages_to_update)
2110 				continue;
2111 
2112 			/* Can't run something on an offline CPU. */
2113 			if (!cpu_online(cpu)) {
2114 				rb_update_pages(cpu_buffer);
2115 				cpu_buffer->nr_pages_to_update = 0;
2116 			} else {
2117 				schedule_work_on(cpu,
2118 						&cpu_buffer->update_pages_work);
2119 			}
2120 		}
2121 
2122 		/* wait for all the updates to complete */
2123 		for_each_buffer_cpu(buffer, cpu) {
2124 			cpu_buffer = buffer->buffers[cpu];
2125 			if (!cpu_buffer->nr_pages_to_update)
2126 				continue;
2127 
2128 			if (cpu_online(cpu))
2129 				wait_for_completion(&cpu_buffer->update_done);
2130 			cpu_buffer->nr_pages_to_update = 0;
2131 		}
2132 
2133 		put_online_cpus();
2134 	} else {
2135 		/* Make sure this CPU has been initialized */
2136 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2137 			goto out;
2138 
2139 		cpu_buffer = buffer->buffers[cpu_id];
2140 
2141 		if (nr_pages == cpu_buffer->nr_pages)
2142 			goto out;
2143 
2144 		/*
2145 		 * Don't succeed if resizing is disabled, as a reader might be
2146 		 * manipulating the ring buffer and is expecting a sane state while
2147 		 * this is true.
2148 		 */
2149 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2150 			err = -EBUSY;
2151 			goto out_err_unlock;
2152 		}
2153 
2154 		cpu_buffer->nr_pages_to_update = nr_pages -
2155 						cpu_buffer->nr_pages;
2156 
2157 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2158 		if (cpu_buffer->nr_pages_to_update > 0 &&
2159 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2160 					    &cpu_buffer->new_pages, cpu_id)) {
2161 			err = -ENOMEM;
2162 			goto out_err;
2163 		}
2164 
2165 		get_online_cpus();
2166 
2167 		/* Can't run something on an offline CPU. */
2168 		if (!cpu_online(cpu_id))
2169 			rb_update_pages(cpu_buffer);
2170 		else {
2171 			schedule_work_on(cpu_id,
2172 					 &cpu_buffer->update_pages_work);
2173 			wait_for_completion(&cpu_buffer->update_done);
2174 		}
2175 
2176 		cpu_buffer->nr_pages_to_update = 0;
2177 		put_online_cpus();
2178 	}
2179 
2180  out:
2181 	/*
2182 	 * The ring buffer resize can happen with the ring buffer
2183 	 * enabled, so that the update disturbs the tracing as little
2184 	 * as possible. But if the buffer is disabled, we do not need
2185 	 * to worry about that, and we can take the time to verify
2186 	 * that the buffer is not corrupt.
2187 	 */
2188 	if (atomic_read(&buffer->record_disabled)) {
2189 		atomic_inc(&buffer->record_disabled);
2190 		/*
2191 		 * Even though the buffer was disabled, we must make sure
2192 		 * that it is truly disabled before calling rb_check_pages.
2193 		 * There could have been a race between checking
2194 		 * record_disable and incrementing it.
2195 		 */
2196 		synchronize_rcu();
2197 		for_each_buffer_cpu(buffer, cpu) {
2198 			cpu_buffer = buffer->buffers[cpu];
2199 			rb_check_pages(cpu_buffer);
2200 		}
2201 		atomic_dec(&buffer->record_disabled);
2202 	}
2203 
2204 	atomic_dec(&buffer->resizing);
2205 	mutex_unlock(&buffer->mutex);
2206 	return 0;
2207 
2208  out_err:
2209 	for_each_buffer_cpu(buffer, cpu) {
2210 		struct buffer_page *bpage, *tmp;
2211 
2212 		cpu_buffer = buffer->buffers[cpu];
2213 		cpu_buffer->nr_pages_to_update = 0;
2214 
2215 		if (list_empty(&cpu_buffer->new_pages))
2216 			continue;
2217 
2218 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2219 					list) {
2220 			list_del_init(&bpage->list);
2221 			free_buffer_page(bpage);
2222 		}
2223 	}
2224  out_err_unlock:
2225 	atomic_dec(&buffer->resizing);
2226 	mutex_unlock(&buffer->mutex);
2227 	return err;
2228 }
2229 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2230 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2231 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2232 {
2233 	mutex_lock(&buffer->mutex);
2234 	if (val)
2235 		buffer->flags |= RB_FL_OVERWRITE;
2236 	else
2237 		buffer->flags &= ~RB_FL_OVERWRITE;
2238 	mutex_unlock(&buffer->mutex);
2239 }
2240 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2241 
__rb_page_index(struct buffer_page * bpage,unsigned index)2242 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2243 {
2244 	return bpage->page->data + index;
2245 }
2246 
2247 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2248 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2249 {
2250 	return __rb_page_index(cpu_buffer->reader_page,
2251 			       cpu_buffer->reader_page->read);
2252 }
2253 
2254 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2255 rb_iter_head_event(struct ring_buffer_iter *iter)
2256 {
2257 	struct ring_buffer_event *event;
2258 	struct buffer_page *iter_head_page = iter->head_page;
2259 	unsigned long commit;
2260 	unsigned length;
2261 
2262 	if (iter->head != iter->next_event)
2263 		return iter->event;
2264 
2265 	/*
2266 	 * When the writer goes across pages, it issues a cmpxchg which
2267 	 * is a mb(), which will synchronize with the rmb here.
2268 	 * (see rb_tail_page_update() and __rb_reserve_next())
2269 	 */
2270 	commit = rb_page_commit(iter_head_page);
2271 	smp_rmb();
2272 
2273 	/* An event needs to be at least 8 bytes in size */
2274 	if (iter->head > commit - 8)
2275 		goto reset;
2276 
2277 	event = __rb_page_index(iter_head_page, iter->head);
2278 	length = rb_event_length(event);
2279 
2280 	/*
2281 	 * READ_ONCE() doesn't work on functions and we don't want the
2282 	 * compiler doing any crazy optimizations with length.
2283 	 */
2284 	barrier();
2285 
2286 	if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2287 		/* Writer corrupted the read? */
2288 		goto reset;
2289 
2290 	memcpy(iter->event, event, length);
2291 	/*
2292 	 * If the page stamp is still the same after this rmb() then the
2293 	 * event was safely copied without the writer entering the page.
2294 	 */
2295 	smp_rmb();
2296 
2297 	/* Make sure the page didn't change since we read this */
2298 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2299 	    commit > rb_page_commit(iter_head_page))
2300 		goto reset;
2301 
2302 	iter->next_event = iter->head + length;
2303 	return iter->event;
2304  reset:
2305 	/* Reset to the beginning */
2306 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2307 	iter->head = 0;
2308 	iter->next_event = 0;
2309 	iter->missed_events = 1;
2310 	return NULL;
2311 }
2312 
2313 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2314 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2315 {
2316 	return rb_page_commit(bpage);
2317 }
2318 
2319 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2320 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2321 {
2322 	return rb_page_commit(cpu_buffer->commit_page);
2323 }
2324 
2325 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2326 rb_event_index(struct ring_buffer_event *event)
2327 {
2328 	unsigned long addr = (unsigned long)event;
2329 
2330 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2331 }
2332 
rb_inc_iter(struct ring_buffer_iter * iter)2333 static void rb_inc_iter(struct ring_buffer_iter *iter)
2334 {
2335 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2336 
2337 	/*
2338 	 * The iterator could be on the reader page (it starts there).
2339 	 * But the head could have moved, since the reader was
2340 	 * found. Check for this case and assign the iterator
2341 	 * to the head page instead of next.
2342 	 */
2343 	if (iter->head_page == cpu_buffer->reader_page)
2344 		iter->head_page = rb_set_head_page(cpu_buffer);
2345 	else
2346 		rb_inc_page(cpu_buffer, &iter->head_page);
2347 
2348 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2349 	iter->head = 0;
2350 	iter->next_event = 0;
2351 }
2352 
2353 /*
2354  * rb_handle_head_page - writer hit the head page
2355  *
2356  * Returns: +1 to retry page
2357  *           0 to continue
2358  *          -1 on error
2359  */
2360 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2361 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2362 		    struct buffer_page *tail_page,
2363 		    struct buffer_page *next_page)
2364 {
2365 	struct buffer_page *new_head;
2366 	int entries;
2367 	int type;
2368 	int ret;
2369 
2370 	entries = rb_page_entries(next_page);
2371 
2372 	/*
2373 	 * The hard part is here. We need to move the head
2374 	 * forward, and protect against both readers on
2375 	 * other CPUs and writers coming in via interrupts.
2376 	 */
2377 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2378 				       RB_PAGE_HEAD);
2379 
2380 	/*
2381 	 * type can be one of four:
2382 	 *  NORMAL - an interrupt already moved it for us
2383 	 *  HEAD   - we are the first to get here.
2384 	 *  UPDATE - we are the interrupt interrupting
2385 	 *           a current move.
2386 	 *  MOVED  - a reader on another CPU moved the next
2387 	 *           pointer to its reader page. Give up
2388 	 *           and try again.
2389 	 */
2390 
2391 	switch (type) {
2392 	case RB_PAGE_HEAD:
2393 		/*
2394 		 * We changed the head to UPDATE, thus
2395 		 * it is our responsibility to update
2396 		 * the counters.
2397 		 */
2398 		local_add(entries, &cpu_buffer->overrun);
2399 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2400 		local_inc(&cpu_buffer->pages_lost);
2401 
2402 		/*
2403 		 * The entries will be zeroed out when we move the
2404 		 * tail page.
2405 		 */
2406 
2407 		/* still more to do */
2408 		break;
2409 
2410 	case RB_PAGE_UPDATE:
2411 		/*
2412 		 * This is an interrupt that interrupt the
2413 		 * previous update. Still more to do.
2414 		 */
2415 		break;
2416 	case RB_PAGE_NORMAL:
2417 		/*
2418 		 * An interrupt came in before the update
2419 		 * and processed this for us.
2420 		 * Nothing left to do.
2421 		 */
2422 		return 1;
2423 	case RB_PAGE_MOVED:
2424 		/*
2425 		 * The reader is on another CPU and just did
2426 		 * a swap with our next_page.
2427 		 * Try again.
2428 		 */
2429 		return 1;
2430 	default:
2431 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2432 		return -1;
2433 	}
2434 
2435 	/*
2436 	 * Now that we are here, the old head pointer is
2437 	 * set to UPDATE. This will keep the reader from
2438 	 * swapping the head page with the reader page.
2439 	 * The reader (on another CPU) will spin till
2440 	 * we are finished.
2441 	 *
2442 	 * We just need to protect against interrupts
2443 	 * doing the job. We will set the next pointer
2444 	 * to HEAD. After that, we set the old pointer
2445 	 * to NORMAL, but only if it was HEAD before.
2446 	 * otherwise we are an interrupt, and only
2447 	 * want the outer most commit to reset it.
2448 	 */
2449 	new_head = next_page;
2450 	rb_inc_page(cpu_buffer, &new_head);
2451 
2452 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2453 				    RB_PAGE_NORMAL);
2454 
2455 	/*
2456 	 * Valid returns are:
2457 	 *  HEAD   - an interrupt came in and already set it.
2458 	 *  NORMAL - One of two things:
2459 	 *            1) We really set it.
2460 	 *            2) A bunch of interrupts came in and moved
2461 	 *               the page forward again.
2462 	 */
2463 	switch (ret) {
2464 	case RB_PAGE_HEAD:
2465 	case RB_PAGE_NORMAL:
2466 		/* OK */
2467 		break;
2468 	default:
2469 		RB_WARN_ON(cpu_buffer, 1);
2470 		return -1;
2471 	}
2472 
2473 	/*
2474 	 * It is possible that an interrupt came in,
2475 	 * set the head up, then more interrupts came in
2476 	 * and moved it again. When we get back here,
2477 	 * the page would have been set to NORMAL but we
2478 	 * just set it back to HEAD.
2479 	 *
2480 	 * How do you detect this? Well, if that happened
2481 	 * the tail page would have moved.
2482 	 */
2483 	if (ret == RB_PAGE_NORMAL) {
2484 		struct buffer_page *buffer_tail_page;
2485 
2486 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2487 		/*
2488 		 * If the tail had moved passed next, then we need
2489 		 * to reset the pointer.
2490 		 */
2491 		if (buffer_tail_page != tail_page &&
2492 		    buffer_tail_page != next_page)
2493 			rb_head_page_set_normal(cpu_buffer, new_head,
2494 						next_page,
2495 						RB_PAGE_HEAD);
2496 	}
2497 
2498 	/*
2499 	 * If this was the outer most commit (the one that
2500 	 * changed the original pointer from HEAD to UPDATE),
2501 	 * then it is up to us to reset it to NORMAL.
2502 	 */
2503 	if (type == RB_PAGE_HEAD) {
2504 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2505 					      tail_page,
2506 					      RB_PAGE_UPDATE);
2507 		if (RB_WARN_ON(cpu_buffer,
2508 			       ret != RB_PAGE_UPDATE))
2509 			return -1;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2516 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2517 	      unsigned long tail, struct rb_event_info *info)
2518 {
2519 	struct buffer_page *tail_page = info->tail_page;
2520 	struct ring_buffer_event *event;
2521 	unsigned long length = info->length;
2522 
2523 	/*
2524 	 * Only the event that crossed the page boundary
2525 	 * must fill the old tail_page with padding.
2526 	 */
2527 	if (tail >= BUF_PAGE_SIZE) {
2528 		/*
2529 		 * If the page was filled, then we still need
2530 		 * to update the real_end. Reset it to zero
2531 		 * and the reader will ignore it.
2532 		 */
2533 		if (tail == BUF_PAGE_SIZE)
2534 			tail_page->real_end = 0;
2535 
2536 		local_sub(length, &tail_page->write);
2537 		return;
2538 	}
2539 
2540 	event = __rb_page_index(tail_page, tail);
2541 
2542 	/*
2543 	 * Save the original length to the meta data.
2544 	 * This will be used by the reader to add lost event
2545 	 * counter.
2546 	 */
2547 	tail_page->real_end = tail;
2548 
2549 	/*
2550 	 * If this event is bigger than the minimum size, then
2551 	 * we need to be careful that we don't subtract the
2552 	 * write counter enough to allow another writer to slip
2553 	 * in on this page.
2554 	 * We put in a discarded commit instead, to make sure
2555 	 * that this space is not used again, and this space will
2556 	 * not be accounted into 'entries_bytes'.
2557 	 *
2558 	 * If we are less than the minimum size, we don't need to
2559 	 * worry about it.
2560 	 */
2561 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2562 		/* No room for any events */
2563 
2564 		/* Mark the rest of the page with padding */
2565 		rb_event_set_padding(event);
2566 
2567 		/* Make sure the padding is visible before the write update */
2568 		smp_wmb();
2569 
2570 		/* Set the write back to the previous setting */
2571 		local_sub(length, &tail_page->write);
2572 		return;
2573 	}
2574 
2575 	/* Put in a discarded event */
2576 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2577 	event->type_len = RINGBUF_TYPE_PADDING;
2578 	/* time delta must be non zero */
2579 	event->time_delta = 1;
2580 
2581 	/* account for padding bytes */
2582 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2583 
2584 	/* Make sure the padding is visible before the tail_page->write update */
2585 	smp_wmb();
2586 
2587 	/* Set write to end of buffer */
2588 	length = (tail + length) - BUF_PAGE_SIZE;
2589 	local_sub(length, &tail_page->write);
2590 }
2591 
2592 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2593 
2594 /*
2595  * This is the slow path, force gcc not to inline it.
2596  */
2597 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2598 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2599 	     unsigned long tail, struct rb_event_info *info)
2600 {
2601 	struct buffer_page *tail_page = info->tail_page;
2602 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2603 	struct trace_buffer *buffer = cpu_buffer->buffer;
2604 	struct buffer_page *next_page;
2605 	int ret;
2606 
2607 	next_page = tail_page;
2608 
2609 	rb_inc_page(cpu_buffer, &next_page);
2610 
2611 	/*
2612 	 * If for some reason, we had an interrupt storm that made
2613 	 * it all the way around the buffer, bail, and warn
2614 	 * about it.
2615 	 */
2616 	if (unlikely(next_page == commit_page)) {
2617 		local_inc(&cpu_buffer->commit_overrun);
2618 		goto out_reset;
2619 	}
2620 
2621 	/*
2622 	 * This is where the fun begins!
2623 	 *
2624 	 * We are fighting against races between a reader that
2625 	 * could be on another CPU trying to swap its reader
2626 	 * page with the buffer head.
2627 	 *
2628 	 * We are also fighting against interrupts coming in and
2629 	 * moving the head or tail on us as well.
2630 	 *
2631 	 * If the next page is the head page then we have filled
2632 	 * the buffer, unless the commit page is still on the
2633 	 * reader page.
2634 	 */
2635 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2636 
2637 		/*
2638 		 * If the commit is not on the reader page, then
2639 		 * move the header page.
2640 		 */
2641 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2642 			/*
2643 			 * If we are not in overwrite mode,
2644 			 * this is easy, just stop here.
2645 			 */
2646 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2647 				local_inc(&cpu_buffer->dropped_events);
2648 				goto out_reset;
2649 			}
2650 
2651 			ret = rb_handle_head_page(cpu_buffer,
2652 						  tail_page,
2653 						  next_page);
2654 			if (ret < 0)
2655 				goto out_reset;
2656 			if (ret)
2657 				goto out_again;
2658 		} else {
2659 			/*
2660 			 * We need to be careful here too. The
2661 			 * commit page could still be on the reader
2662 			 * page. We could have a small buffer, and
2663 			 * have filled up the buffer with events
2664 			 * from interrupts and such, and wrapped.
2665 			 *
2666 			 * Note, if the tail page is also the on the
2667 			 * reader_page, we let it move out.
2668 			 */
2669 			if (unlikely((cpu_buffer->commit_page !=
2670 				      cpu_buffer->tail_page) &&
2671 				     (cpu_buffer->commit_page ==
2672 				      cpu_buffer->reader_page))) {
2673 				local_inc(&cpu_buffer->commit_overrun);
2674 				goto out_reset;
2675 			}
2676 		}
2677 	}
2678 
2679 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2680 
2681  out_again:
2682 
2683 	rb_reset_tail(cpu_buffer, tail, info);
2684 
2685 	/* Commit what we have for now. */
2686 	rb_end_commit(cpu_buffer);
2687 	/* rb_end_commit() decs committing */
2688 	local_inc(&cpu_buffer->committing);
2689 
2690 	/* fail and let the caller try again */
2691 	return ERR_PTR(-EAGAIN);
2692 
2693  out_reset:
2694 	/* reset write */
2695 	rb_reset_tail(cpu_buffer, tail, info);
2696 
2697 	return NULL;
2698 }
2699 
2700 /* Slow path */
2701 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2702 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2703 {
2704 	if (abs)
2705 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2706 	else
2707 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2708 
2709 	/* Not the first event on the page, or not delta? */
2710 	if (abs || rb_event_index(event)) {
2711 		event->time_delta = delta & TS_MASK;
2712 		event->array[0] = delta >> TS_SHIFT;
2713 	} else {
2714 		/* nope, just zero it */
2715 		event->time_delta = 0;
2716 		event->array[0] = 0;
2717 	}
2718 
2719 	return skip_time_extend(event);
2720 }
2721 
2722 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2723 				     struct ring_buffer_event *event);
2724 
2725 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2726 static inline bool sched_clock_stable(void)
2727 {
2728 	return true;
2729 }
2730 #endif
2731 
2732 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2733 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2734 		   struct rb_event_info *info)
2735 {
2736 	u64 write_stamp;
2737 
2738 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2739 		  (unsigned long long)info->delta,
2740 		  (unsigned long long)info->ts,
2741 		  (unsigned long long)info->before,
2742 		  (unsigned long long)info->after,
2743 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2744 		  sched_clock_stable() ? "" :
2745 		  "If you just came from a suspend/resume,\n"
2746 		  "please switch to the trace global clock:\n"
2747 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2748 		  "or add trace_clock=global to the kernel command line\n");
2749 }
2750 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2751 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2752 				      struct ring_buffer_event **event,
2753 				      struct rb_event_info *info,
2754 				      u64 *delta,
2755 				      unsigned int *length)
2756 {
2757 	bool abs = info->add_timestamp &
2758 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2759 
2760 	if (unlikely(info->delta > (1ULL << 59))) {
2761 		/* did the clock go backwards */
2762 		if (info->before == info->after && info->before > info->ts) {
2763 			/* not interrupted */
2764 			static int once;
2765 
2766 			/*
2767 			 * This is possible with a recalibrating of the TSC.
2768 			 * Do not produce a call stack, but just report it.
2769 			 */
2770 			if (!once) {
2771 				once++;
2772 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2773 					info->before, info->ts);
2774 			}
2775 		} else
2776 			rb_check_timestamp(cpu_buffer, info);
2777 		if (!abs)
2778 			info->delta = 0;
2779 	}
2780 	*event = rb_add_time_stamp(*event, info->delta, abs);
2781 	*length -= RB_LEN_TIME_EXTEND;
2782 	*delta = 0;
2783 }
2784 
2785 /**
2786  * rb_update_event - update event type and data
2787  * @cpu_buffer: The per cpu buffer of the @event
2788  * @event: the event to update
2789  * @info: The info to update the @event with (contains length and delta)
2790  *
2791  * Update the type and data fields of the @event. The length
2792  * is the actual size that is written to the ring buffer,
2793  * and with this, we can determine what to place into the
2794  * data field.
2795  */
2796 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2797 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2798 		struct ring_buffer_event *event,
2799 		struct rb_event_info *info)
2800 {
2801 	unsigned length = info->length;
2802 	u64 delta = info->delta;
2803 
2804 	/*
2805 	 * If we need to add a timestamp, then we
2806 	 * add it to the start of the reserved space.
2807 	 */
2808 	if (unlikely(info->add_timestamp))
2809 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2810 
2811 	event->time_delta = delta;
2812 	length -= RB_EVNT_HDR_SIZE;
2813 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2814 		event->type_len = 0;
2815 		event->array[0] = length;
2816 	} else
2817 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2818 }
2819 
rb_calculate_event_length(unsigned length)2820 static unsigned rb_calculate_event_length(unsigned length)
2821 {
2822 	struct ring_buffer_event event; /* Used only for sizeof array */
2823 
2824 	/* zero length can cause confusions */
2825 	if (!length)
2826 		length++;
2827 
2828 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2829 		length += sizeof(event.array[0]);
2830 
2831 	length += RB_EVNT_HDR_SIZE;
2832 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2833 
2834 	/*
2835 	 * In case the time delta is larger than the 27 bits for it
2836 	 * in the header, we need to add a timestamp. If another
2837 	 * event comes in when trying to discard this one to increase
2838 	 * the length, then the timestamp will be added in the allocated
2839 	 * space of this event. If length is bigger than the size needed
2840 	 * for the TIME_EXTEND, then padding has to be used. The events
2841 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2842 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2843 	 * As length is a multiple of 4, we only need to worry if it
2844 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2845 	 */
2846 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2847 		length += RB_ALIGNMENT;
2848 
2849 	return length;
2850 }
2851 
2852 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2853 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2854 		   struct ring_buffer_event *event)
2855 {
2856 	unsigned long addr = (unsigned long)event;
2857 	unsigned long index;
2858 
2859 	index = rb_event_index(event);
2860 	addr &= PAGE_MASK;
2861 
2862 	return cpu_buffer->commit_page->page == (void *)addr &&
2863 		rb_commit_index(cpu_buffer) == index;
2864 }
2865 
rb_time_delta(struct ring_buffer_event * event)2866 static u64 rb_time_delta(struct ring_buffer_event *event)
2867 {
2868 	switch (event->type_len) {
2869 	case RINGBUF_TYPE_PADDING:
2870 		return 0;
2871 
2872 	case RINGBUF_TYPE_TIME_EXTEND:
2873 		return ring_buffer_event_time_stamp(event);
2874 
2875 	case RINGBUF_TYPE_TIME_STAMP:
2876 		return 0;
2877 
2878 	case RINGBUF_TYPE_DATA:
2879 		return event->time_delta;
2880 	default:
2881 		return 0;
2882 	}
2883 }
2884 
2885 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2886 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2887 		  struct ring_buffer_event *event)
2888 {
2889 	unsigned long new_index, old_index;
2890 	struct buffer_page *bpage;
2891 	unsigned long index;
2892 	unsigned long addr;
2893 	u64 write_stamp;
2894 	u64 delta;
2895 
2896 	new_index = rb_event_index(event);
2897 	old_index = new_index + rb_event_ts_length(event);
2898 	addr = (unsigned long)event;
2899 	addr &= PAGE_MASK;
2900 
2901 	bpage = READ_ONCE(cpu_buffer->tail_page);
2902 
2903 	delta = rb_time_delta(event);
2904 
2905 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2906 		return 0;
2907 
2908 	/* Make sure the write stamp is read before testing the location */
2909 	barrier();
2910 
2911 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2912 		unsigned long write_mask =
2913 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2914 		unsigned long event_length = rb_event_length(event);
2915 
2916 		/*
2917 		 * For the before_stamp to be different than the write_stamp
2918 		 * to make sure that the next event adds an absolute
2919 		 * value and does not rely on the saved write stamp, which
2920 		 * is now going to be bogus.
2921 		 */
2922 		rb_time_set(&cpu_buffer->before_stamp, 0);
2923 
2924 		/* Something came in, can't discard */
2925 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2926 				       write_stamp, write_stamp - delta))
2927 			return 0;
2928 
2929 		/*
2930 		 * If an event were to come in now, it would see that the
2931 		 * write_stamp and the before_stamp are different, and assume
2932 		 * that this event just added itself before updating
2933 		 * the write stamp. The interrupting event will fix the
2934 		 * write stamp for us, and use the before stamp as its delta.
2935 		 */
2936 
2937 		/*
2938 		 * This is on the tail page. It is possible that
2939 		 * a write could come in and move the tail page
2940 		 * and write to the next page. That is fine
2941 		 * because we just shorten what is on this page.
2942 		 */
2943 		old_index += write_mask;
2944 		new_index += write_mask;
2945 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2946 		if (index == old_index) {
2947 			/* update counters */
2948 			local_sub(event_length, &cpu_buffer->entries_bytes);
2949 			return 1;
2950 		}
2951 	}
2952 
2953 	/* could not discard */
2954 	return 0;
2955 }
2956 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2957 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2958 {
2959 	local_inc(&cpu_buffer->committing);
2960 	local_inc(&cpu_buffer->commits);
2961 }
2962 
2963 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2964 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2965 {
2966 	unsigned long max_count;
2967 
2968 	/*
2969 	 * We only race with interrupts and NMIs on this CPU.
2970 	 * If we own the commit event, then we can commit
2971 	 * all others that interrupted us, since the interruptions
2972 	 * are in stack format (they finish before they come
2973 	 * back to us). This allows us to do a simple loop to
2974 	 * assign the commit to the tail.
2975 	 */
2976  again:
2977 	max_count = cpu_buffer->nr_pages * 100;
2978 
2979 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2980 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2981 			return;
2982 		if (RB_WARN_ON(cpu_buffer,
2983 			       rb_is_reader_page(cpu_buffer->tail_page)))
2984 			return;
2985 		/*
2986 		 * No need for a memory barrier here, as the update
2987 		 * of the tail_page did it for this page.
2988 		 */
2989 		local_set(&cpu_buffer->commit_page->page->commit,
2990 			  rb_page_write(cpu_buffer->commit_page));
2991 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2992 		/* add barrier to keep gcc from optimizing too much */
2993 		barrier();
2994 	}
2995 	while (rb_commit_index(cpu_buffer) !=
2996 	       rb_page_write(cpu_buffer->commit_page)) {
2997 
2998 		/* Make sure the readers see the content of what is committed. */
2999 		smp_wmb();
3000 		local_set(&cpu_buffer->commit_page->page->commit,
3001 			  rb_page_write(cpu_buffer->commit_page));
3002 		RB_WARN_ON(cpu_buffer,
3003 			   local_read(&cpu_buffer->commit_page->page->commit) &
3004 			   ~RB_WRITE_MASK);
3005 		barrier();
3006 	}
3007 
3008 	/* again, keep gcc from optimizing */
3009 	barrier();
3010 
3011 	/*
3012 	 * If an interrupt came in just after the first while loop
3013 	 * and pushed the tail page forward, we will be left with
3014 	 * a dangling commit that will never go forward.
3015 	 */
3016 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3017 		goto again;
3018 }
3019 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3020 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3021 {
3022 	unsigned long commits;
3023 
3024 	if (RB_WARN_ON(cpu_buffer,
3025 		       !local_read(&cpu_buffer->committing)))
3026 		return;
3027 
3028  again:
3029 	commits = local_read(&cpu_buffer->commits);
3030 	/* synchronize with interrupts */
3031 	barrier();
3032 	if (local_read(&cpu_buffer->committing) == 1)
3033 		rb_set_commit_to_write(cpu_buffer);
3034 
3035 	local_dec(&cpu_buffer->committing);
3036 
3037 	/* synchronize with interrupts */
3038 	barrier();
3039 
3040 	/*
3041 	 * Need to account for interrupts coming in between the
3042 	 * updating of the commit page and the clearing of the
3043 	 * committing counter.
3044 	 */
3045 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3046 	    !local_read(&cpu_buffer->committing)) {
3047 		local_inc(&cpu_buffer->committing);
3048 		goto again;
3049 	}
3050 }
3051 
rb_event_discard(struct ring_buffer_event * event)3052 static inline void rb_event_discard(struct ring_buffer_event *event)
3053 {
3054 	if (extended_time(event))
3055 		event = skip_time_extend(event);
3056 
3057 	/* array[0] holds the actual length for the discarded event */
3058 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3059 	event->type_len = RINGBUF_TYPE_PADDING;
3060 	/* time delta must be non zero */
3061 	if (!event->time_delta)
3062 		event->time_delta = 1;
3063 }
3064 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3065 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3066 		      struct ring_buffer_event *event)
3067 {
3068 	local_inc(&cpu_buffer->entries);
3069 	rb_end_commit(cpu_buffer);
3070 }
3071 
3072 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3073 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3074 {
3075 	if (buffer->irq_work.waiters_pending) {
3076 		buffer->irq_work.waiters_pending = false;
3077 		/* irq_work_queue() supplies it's own memory barriers */
3078 		irq_work_queue(&buffer->irq_work.work);
3079 	}
3080 
3081 	if (cpu_buffer->irq_work.waiters_pending) {
3082 		cpu_buffer->irq_work.waiters_pending = false;
3083 		/* irq_work_queue() supplies it's own memory barriers */
3084 		irq_work_queue(&cpu_buffer->irq_work.work);
3085 	}
3086 
3087 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3088 		return;
3089 
3090 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3091 		return;
3092 
3093 	if (!cpu_buffer->irq_work.full_waiters_pending)
3094 		return;
3095 
3096 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3097 
3098 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3099 		return;
3100 
3101 	cpu_buffer->irq_work.wakeup_full = true;
3102 	cpu_buffer->irq_work.full_waiters_pending = false;
3103 	/* irq_work_queue() supplies it's own memory barriers */
3104 	irq_work_queue(&cpu_buffer->irq_work.work);
3105 }
3106 
3107 /*
3108  * The lock and unlock are done within a preempt disable section.
3109  * The current_context per_cpu variable can only be modified
3110  * by the current task between lock and unlock. But it can
3111  * be modified more than once via an interrupt. To pass this
3112  * information from the lock to the unlock without having to
3113  * access the 'in_interrupt()' functions again (which do show
3114  * a bit of overhead in something as critical as function tracing,
3115  * we use a bitmask trick.
3116  *
3117  *  bit 1 =  NMI context
3118  *  bit 2 =  IRQ context
3119  *  bit 3 =  SoftIRQ context
3120  *  bit 4 =  normal context.
3121  *
3122  * This works because this is the order of contexts that can
3123  * preempt other contexts. A SoftIRQ never preempts an IRQ
3124  * context.
3125  *
3126  * When the context is determined, the corresponding bit is
3127  * checked and set (if it was set, then a recursion of that context
3128  * happened).
3129  *
3130  * On unlock, we need to clear this bit. To do so, just subtract
3131  * 1 from the current_context and AND it to itself.
3132  *
3133  * (binary)
3134  *  101 - 1 = 100
3135  *  101 & 100 = 100 (clearing bit zero)
3136  *
3137  *  1010 - 1 = 1001
3138  *  1010 & 1001 = 1000 (clearing bit 1)
3139  *
3140  * The least significant bit can be cleared this way, and it
3141  * just so happens that it is the same bit corresponding to
3142  * the current context.
3143  *
3144  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3145  * is set when a recursion is detected at the current context, and if
3146  * the TRANSITION bit is already set, it will fail the recursion.
3147  * This is needed because there's a lag between the changing of
3148  * interrupt context and updating the preempt count. In this case,
3149  * a false positive will be found. To handle this, one extra recursion
3150  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3151  * bit is already set, then it is considered a recursion and the function
3152  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3153  *
3154  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3155  * to be cleared. Even if it wasn't the context that set it. That is,
3156  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3157  * is called before preempt_count() is updated, since the check will
3158  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3159  * NMI then comes in, it will set the NMI bit, but when the NMI code
3160  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3161  * and leave the NMI bit set. But this is fine, because the interrupt
3162  * code that set the TRANSITION bit will then clear the NMI bit when it
3163  * calls trace_recursive_unlock(). If another NMI comes in, it will
3164  * set the TRANSITION bit and continue.
3165  *
3166  * Note: The TRANSITION bit only handles a single transition between context.
3167  */
3168 
3169 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3170 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172 	unsigned int val = cpu_buffer->current_context;
3173 	unsigned long pc = preempt_count();
3174 	int bit;
3175 
3176 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3177 		bit = RB_CTX_NORMAL;
3178 	else
3179 		bit = pc & NMI_MASK ? RB_CTX_NMI :
3180 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3181 
3182 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3183 		/*
3184 		 * It is possible that this was called by transitioning
3185 		 * between interrupt context, and preempt_count() has not
3186 		 * been updated yet. In this case, use the TRANSITION bit.
3187 		 */
3188 		bit = RB_CTX_TRANSITION;
3189 		if (val & (1 << (bit + cpu_buffer->nest)))
3190 			return 1;
3191 	}
3192 
3193 	val |= (1 << (bit + cpu_buffer->nest));
3194 	cpu_buffer->current_context = val;
3195 
3196 	return 0;
3197 }
3198 
3199 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3200 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3201 {
3202 	cpu_buffer->current_context &=
3203 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3204 }
3205 
3206 /* The recursive locking above uses 5 bits */
3207 #define NESTED_BITS 5
3208 
3209 /**
3210  * ring_buffer_nest_start - Allow to trace while nested
3211  * @buffer: The ring buffer to modify
3212  *
3213  * The ring buffer has a safety mechanism to prevent recursion.
3214  * But there may be a case where a trace needs to be done while
3215  * tracing something else. In this case, calling this function
3216  * will allow this function to nest within a currently active
3217  * ring_buffer_lock_reserve().
3218  *
3219  * Call this function before calling another ring_buffer_lock_reserve() and
3220  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3221  */
ring_buffer_nest_start(struct trace_buffer * buffer)3222 void ring_buffer_nest_start(struct trace_buffer *buffer)
3223 {
3224 	struct ring_buffer_per_cpu *cpu_buffer;
3225 	int cpu;
3226 
3227 	/* Enabled by ring_buffer_nest_end() */
3228 	preempt_disable_notrace();
3229 	cpu = raw_smp_processor_id();
3230 	cpu_buffer = buffer->buffers[cpu];
3231 	/* This is the shift value for the above recursive locking */
3232 	cpu_buffer->nest += NESTED_BITS;
3233 }
3234 
3235 /**
3236  * ring_buffer_nest_end - Allow to trace while nested
3237  * @buffer: The ring buffer to modify
3238  *
3239  * Must be called after ring_buffer_nest_start() and after the
3240  * ring_buffer_unlock_commit().
3241  */
ring_buffer_nest_end(struct trace_buffer * buffer)3242 void ring_buffer_nest_end(struct trace_buffer *buffer)
3243 {
3244 	struct ring_buffer_per_cpu *cpu_buffer;
3245 	int cpu;
3246 
3247 	/* disabled by ring_buffer_nest_start() */
3248 	cpu = raw_smp_processor_id();
3249 	cpu_buffer = buffer->buffers[cpu];
3250 	/* This is the shift value for the above recursive locking */
3251 	cpu_buffer->nest -= NESTED_BITS;
3252 	preempt_enable_notrace();
3253 }
3254 
3255 /**
3256  * ring_buffer_unlock_commit - commit a reserved
3257  * @buffer: The buffer to commit to
3258  * @event: The event pointer to commit.
3259  *
3260  * This commits the data to the ring buffer, and releases any locks held.
3261  *
3262  * Must be paired with ring_buffer_lock_reserve.
3263  */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3264 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3265 			      struct ring_buffer_event *event)
3266 {
3267 	struct ring_buffer_per_cpu *cpu_buffer;
3268 	int cpu = raw_smp_processor_id();
3269 
3270 	cpu_buffer = buffer->buffers[cpu];
3271 
3272 	rb_commit(cpu_buffer, event);
3273 
3274 	rb_wakeups(buffer, cpu_buffer);
3275 
3276 	trace_recursive_unlock(cpu_buffer);
3277 
3278 	preempt_enable_notrace();
3279 
3280 	return 0;
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3283 
3284 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3285 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3286 		  struct rb_event_info *info)
3287 {
3288 	struct ring_buffer_event *event;
3289 	struct buffer_page *tail_page;
3290 	unsigned long tail, write, w;
3291 	bool a_ok;
3292 	bool b_ok;
3293 
3294 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3295 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3296 
3297  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3298 	barrier();
3299 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3300 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3301 	barrier();
3302 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3303 
3304 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3305 		info->delta = info->ts;
3306 	} else {
3307 		/*
3308 		 * If interrupting an event time update, we may need an
3309 		 * absolute timestamp.
3310 		 * Don't bother if this is the start of a new page (w == 0).
3311 		 */
3312 		if (!w) {
3313 			/* Use the sub-buffer timestamp */
3314 			info->delta = 0;
3315 		} else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3316 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3317 			info->length += RB_LEN_TIME_EXTEND;
3318 		} else {
3319 			info->delta = info->ts - info->after;
3320 			if (unlikely(test_time_stamp(info->delta))) {
3321 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3322 				info->length += RB_LEN_TIME_EXTEND;
3323 			}
3324 		}
3325 	}
3326 
3327  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3328 
3329  /*C*/	write = local_add_return(info->length, &tail_page->write);
3330 
3331 	/* set write to only the index of the write */
3332 	write &= RB_WRITE_MASK;
3333 
3334 	tail = write - info->length;
3335 
3336 	/* See if we shot pass the end of this buffer page */
3337 	if (unlikely(write > BUF_PAGE_SIZE)) {
3338 		/* before and after may now different, fix it up*/
3339 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3340 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3341 		if (a_ok && b_ok && info->before != info->after)
3342 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3343 					      info->before, info->after);
3344 		return rb_move_tail(cpu_buffer, tail, info);
3345 	}
3346 
3347 	if (likely(tail == w)) {
3348 		u64 save_before;
3349 		bool s_ok;
3350 
3351 		/* Nothing interrupted us between A and C */
3352  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3353 		barrier();
3354  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3355 		RB_WARN_ON(cpu_buffer, !s_ok);
3356 		if (likely(!(info->add_timestamp &
3357 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3358 			/* This did not interrupt any time update */
3359 			info->delta = info->ts - info->after;
3360 		else
3361 			/* Just use full timestamp for inerrupting event */
3362 			info->delta = info->ts;
3363 		barrier();
3364 		if (unlikely(info->ts != save_before)) {
3365 			/* SLOW PATH - Interrupted between C and E */
3366 
3367 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3368 			RB_WARN_ON(cpu_buffer, !a_ok);
3369 
3370 			/* Write stamp must only go forward */
3371 			if (save_before > info->after) {
3372 				/*
3373 				 * We do not care about the result, only that
3374 				 * it gets updated atomically.
3375 				 */
3376 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3377 						      info->after, save_before);
3378 			}
3379 		}
3380 	} else {
3381 		u64 ts;
3382 		/* SLOW PATH - Interrupted between A and C */
3383 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3384 		/* Was interrupted before here, write_stamp must be valid */
3385 		RB_WARN_ON(cpu_buffer, !a_ok);
3386 		ts = rb_time_stamp(cpu_buffer->buffer);
3387 		barrier();
3388  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3389 		    info->after < ts &&
3390 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3391 				    info->after, ts)) {
3392 			/* Nothing came after this event between C and E */
3393 			info->delta = ts - info->after;
3394 			info->ts = ts;
3395 		} else {
3396 			/*
3397 			 * Interrupted beween C and E:
3398 			 * Lost the previous events time stamp. Just set the
3399 			 * delta to zero, and this will be the same time as
3400 			 * the event this event interrupted. And the events that
3401 			 * came after this will still be correct (as they would
3402 			 * have built their delta on the previous event.
3403 			 */
3404 			info->delta = 0;
3405 		}
3406 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3407 	}
3408 
3409 	/*
3410 	 * If this is the first commit on the page, then it has the same
3411 	 * timestamp as the page itself.
3412 	 */
3413 	if (unlikely(!tail && !(info->add_timestamp &
3414 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3415 		info->delta = 0;
3416 
3417 	/* We reserved something on the buffer */
3418 
3419 	event = __rb_page_index(tail_page, tail);
3420 	rb_update_event(cpu_buffer, event, info);
3421 
3422 	local_inc(&tail_page->entries);
3423 
3424 	/*
3425 	 * If this is the first commit on the page, then update
3426 	 * its timestamp.
3427 	 */
3428 	if (unlikely(!tail))
3429 		tail_page->page->time_stamp = info->ts;
3430 
3431 	/* account for these added bytes */
3432 	local_add(info->length, &cpu_buffer->entries_bytes);
3433 
3434 	return event;
3435 }
3436 
3437 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3438 rb_reserve_next_event(struct trace_buffer *buffer,
3439 		      struct ring_buffer_per_cpu *cpu_buffer,
3440 		      unsigned long length)
3441 {
3442 	struct ring_buffer_event *event;
3443 	struct rb_event_info info;
3444 	int nr_loops = 0;
3445 	int add_ts_default;
3446 
3447 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
3448 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3449 	    (unlikely(in_nmi()))) {
3450 		return NULL;
3451 	}
3452 
3453 	rb_start_commit(cpu_buffer);
3454 	/* The commit page can not change after this */
3455 
3456 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3457 	/*
3458 	 * Due to the ability to swap a cpu buffer from a buffer
3459 	 * it is possible it was swapped before we committed.
3460 	 * (committing stops a swap). We check for it here and
3461 	 * if it happened, we have to fail the write.
3462 	 */
3463 	barrier();
3464 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3465 		local_dec(&cpu_buffer->committing);
3466 		local_dec(&cpu_buffer->commits);
3467 		return NULL;
3468 	}
3469 #endif
3470 
3471 	info.length = rb_calculate_event_length(length);
3472 
3473 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3474 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3475 		info.length += RB_LEN_TIME_EXTEND;
3476 		if (info.length > BUF_MAX_DATA_SIZE)
3477 			goto out_fail;
3478 	} else {
3479 		add_ts_default = RB_ADD_STAMP_NONE;
3480 	}
3481 
3482  again:
3483 	info.add_timestamp = add_ts_default;
3484 	info.delta = 0;
3485 
3486 	/*
3487 	 * We allow for interrupts to reenter here and do a trace.
3488 	 * If one does, it will cause this original code to loop
3489 	 * back here. Even with heavy interrupts happening, this
3490 	 * should only happen a few times in a row. If this happens
3491 	 * 1000 times in a row, there must be either an interrupt
3492 	 * storm or we have something buggy.
3493 	 * Bail!
3494 	 */
3495 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3496 		goto out_fail;
3497 
3498 	event = __rb_reserve_next(cpu_buffer, &info);
3499 
3500 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3501 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3502 			info.length -= RB_LEN_TIME_EXTEND;
3503 		goto again;
3504 	}
3505 
3506 	if (likely(event))
3507 		return event;
3508  out_fail:
3509 	rb_end_commit(cpu_buffer);
3510 	return NULL;
3511 }
3512 
3513 /**
3514  * ring_buffer_lock_reserve - reserve a part of the buffer
3515  * @buffer: the ring buffer to reserve from
3516  * @length: the length of the data to reserve (excluding event header)
3517  *
3518  * Returns a reserved event on the ring buffer to copy directly to.
3519  * The user of this interface will need to get the body to write into
3520  * and can use the ring_buffer_event_data() interface.
3521  *
3522  * The length is the length of the data needed, not the event length
3523  * which also includes the event header.
3524  *
3525  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3526  * If NULL is returned, then nothing has been allocated or locked.
3527  */
3528 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3529 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3530 {
3531 	struct ring_buffer_per_cpu *cpu_buffer;
3532 	struct ring_buffer_event *event;
3533 	int cpu;
3534 
3535 	/* If we are tracing schedule, we don't want to recurse */
3536 	preempt_disable_notrace();
3537 
3538 	if (unlikely(atomic_read(&buffer->record_disabled)))
3539 		goto out;
3540 
3541 	cpu = raw_smp_processor_id();
3542 
3543 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3544 		goto out;
3545 
3546 	cpu_buffer = buffer->buffers[cpu];
3547 
3548 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3549 		goto out;
3550 
3551 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3552 		goto out;
3553 
3554 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3555 		goto out;
3556 
3557 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3558 	if (!event)
3559 		goto out_unlock;
3560 
3561 	return event;
3562 
3563  out_unlock:
3564 	trace_recursive_unlock(cpu_buffer);
3565  out:
3566 	preempt_enable_notrace();
3567 	return NULL;
3568 }
3569 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3570 
3571 /*
3572  * Decrement the entries to the page that an event is on.
3573  * The event does not even need to exist, only the pointer
3574  * to the page it is on. This may only be called before the commit
3575  * takes place.
3576  */
3577 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3578 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3579 		   struct ring_buffer_event *event)
3580 {
3581 	unsigned long addr = (unsigned long)event;
3582 	struct buffer_page *bpage = cpu_buffer->commit_page;
3583 	struct buffer_page *start;
3584 
3585 	addr &= PAGE_MASK;
3586 
3587 	/* Do the likely case first */
3588 	if (likely(bpage->page == (void *)addr)) {
3589 		local_dec(&bpage->entries);
3590 		return;
3591 	}
3592 
3593 	/*
3594 	 * Because the commit page may be on the reader page we
3595 	 * start with the next page and check the end loop there.
3596 	 */
3597 	rb_inc_page(cpu_buffer, &bpage);
3598 	start = bpage;
3599 	do {
3600 		if (bpage->page == (void *)addr) {
3601 			local_dec(&bpage->entries);
3602 			return;
3603 		}
3604 		rb_inc_page(cpu_buffer, &bpage);
3605 	} while (bpage != start);
3606 
3607 	/* commit not part of this buffer?? */
3608 	RB_WARN_ON(cpu_buffer, 1);
3609 }
3610 
3611 /**
3612  * ring_buffer_commit_discard - discard an event that has not been committed
3613  * @buffer: the ring buffer
3614  * @event: non committed event to discard
3615  *
3616  * Sometimes an event that is in the ring buffer needs to be ignored.
3617  * This function lets the user discard an event in the ring buffer
3618  * and then that event will not be read later.
3619  *
3620  * This function only works if it is called before the item has been
3621  * committed. It will try to free the event from the ring buffer
3622  * if another event has not been added behind it.
3623  *
3624  * If another event has been added behind it, it will set the event
3625  * up as discarded, and perform the commit.
3626  *
3627  * If this function is called, do not call ring_buffer_unlock_commit on
3628  * the event.
3629  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3630 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3631 				struct ring_buffer_event *event)
3632 {
3633 	struct ring_buffer_per_cpu *cpu_buffer;
3634 	int cpu;
3635 
3636 	/* The event is discarded regardless */
3637 	rb_event_discard(event);
3638 
3639 	cpu = smp_processor_id();
3640 	cpu_buffer = buffer->buffers[cpu];
3641 
3642 	/*
3643 	 * This must only be called if the event has not been
3644 	 * committed yet. Thus we can assume that preemption
3645 	 * is still disabled.
3646 	 */
3647 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3648 
3649 	rb_decrement_entry(cpu_buffer, event);
3650 	if (rb_try_to_discard(cpu_buffer, event))
3651 		goto out;
3652 
3653  out:
3654 	rb_end_commit(cpu_buffer);
3655 
3656 	trace_recursive_unlock(cpu_buffer);
3657 
3658 	preempt_enable_notrace();
3659 
3660 }
3661 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3662 
3663 /**
3664  * ring_buffer_write - write data to the buffer without reserving
3665  * @buffer: The ring buffer to write to.
3666  * @length: The length of the data being written (excluding the event header)
3667  * @data: The data to write to the buffer.
3668  *
3669  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3670  * one function. If you already have the data to write to the buffer, it
3671  * may be easier to simply call this function.
3672  *
3673  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3674  * and not the length of the event which would hold the header.
3675  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3676 int ring_buffer_write(struct trace_buffer *buffer,
3677 		      unsigned long length,
3678 		      void *data)
3679 {
3680 	struct ring_buffer_per_cpu *cpu_buffer;
3681 	struct ring_buffer_event *event;
3682 	void *body;
3683 	int ret = -EBUSY;
3684 	int cpu;
3685 
3686 	preempt_disable_notrace();
3687 
3688 	if (atomic_read(&buffer->record_disabled))
3689 		goto out;
3690 
3691 	cpu = raw_smp_processor_id();
3692 
3693 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3694 		goto out;
3695 
3696 	cpu_buffer = buffer->buffers[cpu];
3697 
3698 	if (atomic_read(&cpu_buffer->record_disabled))
3699 		goto out;
3700 
3701 	if (length > BUF_MAX_DATA_SIZE)
3702 		goto out;
3703 
3704 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3705 		goto out;
3706 
3707 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3708 	if (!event)
3709 		goto out_unlock;
3710 
3711 	body = rb_event_data(event);
3712 
3713 	memcpy(body, data, length);
3714 
3715 	rb_commit(cpu_buffer, event);
3716 
3717 	rb_wakeups(buffer, cpu_buffer);
3718 
3719 	ret = 0;
3720 
3721  out_unlock:
3722 	trace_recursive_unlock(cpu_buffer);
3723 
3724  out:
3725 	preempt_enable_notrace();
3726 
3727 	return ret;
3728 }
3729 EXPORT_SYMBOL_GPL(ring_buffer_write);
3730 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3731 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3732 {
3733 	struct buffer_page *reader = cpu_buffer->reader_page;
3734 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3735 	struct buffer_page *commit = cpu_buffer->commit_page;
3736 
3737 	/* In case of error, head will be NULL */
3738 	if (unlikely(!head))
3739 		return true;
3740 
3741 	/* Reader should exhaust content in reader page */
3742 	if (reader->read != rb_page_commit(reader))
3743 		return false;
3744 
3745 	/*
3746 	 * If writers are committing on the reader page, knowing all
3747 	 * committed content has been read, the ring buffer is empty.
3748 	 */
3749 	if (commit == reader)
3750 		return true;
3751 
3752 	/*
3753 	 * If writers are committing on a page other than reader page
3754 	 * and head page, there should always be content to read.
3755 	 */
3756 	if (commit != head)
3757 		return false;
3758 
3759 	/*
3760 	 * Writers are committing on the head page, we just need
3761 	 * to care about there're committed data, and the reader will
3762 	 * swap reader page with head page when it is to read data.
3763 	 */
3764 	return rb_page_commit(commit) == 0;
3765 }
3766 
3767 /**
3768  * ring_buffer_record_disable - stop all writes into the buffer
3769  * @buffer: The ring buffer to stop writes to.
3770  *
3771  * This prevents all writes to the buffer. Any attempt to write
3772  * to the buffer after this will fail and return NULL.
3773  *
3774  * The caller should call synchronize_rcu() after this.
3775  */
ring_buffer_record_disable(struct trace_buffer * buffer)3776 void ring_buffer_record_disable(struct trace_buffer *buffer)
3777 {
3778 	atomic_inc(&buffer->record_disabled);
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3781 
3782 /**
3783  * ring_buffer_record_enable - enable writes to the buffer
3784  * @buffer: The ring buffer to enable writes
3785  *
3786  * Note, multiple disables will need the same number of enables
3787  * to truly enable the writing (much like preempt_disable).
3788  */
ring_buffer_record_enable(struct trace_buffer * buffer)3789 void ring_buffer_record_enable(struct trace_buffer *buffer)
3790 {
3791 	atomic_dec(&buffer->record_disabled);
3792 }
3793 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3794 
3795 /**
3796  * ring_buffer_record_off - stop all writes into the buffer
3797  * @buffer: The ring buffer to stop writes to.
3798  *
3799  * This prevents all writes to the buffer. Any attempt to write
3800  * to the buffer after this will fail and return NULL.
3801  *
3802  * This is different than ring_buffer_record_disable() as
3803  * it works like an on/off switch, where as the disable() version
3804  * must be paired with a enable().
3805  */
ring_buffer_record_off(struct trace_buffer * buffer)3806 void ring_buffer_record_off(struct trace_buffer *buffer)
3807 {
3808 	unsigned int rd;
3809 	unsigned int new_rd;
3810 
3811 	do {
3812 		rd = atomic_read(&buffer->record_disabled);
3813 		new_rd = rd | RB_BUFFER_OFF;
3814 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3815 }
3816 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3817 
3818 /**
3819  * ring_buffer_record_on - restart writes into the buffer
3820  * @buffer: The ring buffer to start writes to.
3821  *
3822  * This enables all writes to the buffer that was disabled by
3823  * ring_buffer_record_off().
3824  *
3825  * This is different than ring_buffer_record_enable() as
3826  * it works like an on/off switch, where as the enable() version
3827  * must be paired with a disable().
3828  */
ring_buffer_record_on(struct trace_buffer * buffer)3829 void ring_buffer_record_on(struct trace_buffer *buffer)
3830 {
3831 	unsigned int rd;
3832 	unsigned int new_rd;
3833 
3834 	do {
3835 		rd = atomic_read(&buffer->record_disabled);
3836 		new_rd = rd & ~RB_BUFFER_OFF;
3837 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3838 }
3839 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3840 
3841 /**
3842  * ring_buffer_record_is_on - return true if the ring buffer can write
3843  * @buffer: The ring buffer to see if write is enabled
3844  *
3845  * Returns true if the ring buffer is in a state that it accepts writes.
3846  */
ring_buffer_record_is_on(struct trace_buffer * buffer)3847 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3848 {
3849 	return !atomic_read(&buffer->record_disabled);
3850 }
3851 
3852 /**
3853  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3854  * @buffer: The ring buffer to see if write is set enabled
3855  *
3856  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3857  * Note that this does NOT mean it is in a writable state.
3858  *
3859  * It may return true when the ring buffer has been disabled by
3860  * ring_buffer_record_disable(), as that is a temporary disabling of
3861  * the ring buffer.
3862  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3863 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3864 {
3865 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3866 }
3867 
3868 /**
3869  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3870  * @buffer: The ring buffer to stop writes to.
3871  * @cpu: The CPU buffer to stop
3872  *
3873  * This prevents all writes to the buffer. Any attempt to write
3874  * to the buffer after this will fail and return NULL.
3875  *
3876  * The caller should call synchronize_rcu() after this.
3877  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3878 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3879 {
3880 	struct ring_buffer_per_cpu *cpu_buffer;
3881 
3882 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3883 		return;
3884 
3885 	cpu_buffer = buffer->buffers[cpu];
3886 	atomic_inc(&cpu_buffer->record_disabled);
3887 }
3888 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3889 
3890 /**
3891  * ring_buffer_record_enable_cpu - enable writes to the buffer
3892  * @buffer: The ring buffer to enable writes
3893  * @cpu: The CPU to enable.
3894  *
3895  * Note, multiple disables will need the same number of enables
3896  * to truly enable the writing (much like preempt_disable).
3897  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3898 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3899 {
3900 	struct ring_buffer_per_cpu *cpu_buffer;
3901 
3902 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3903 		return;
3904 
3905 	cpu_buffer = buffer->buffers[cpu];
3906 	atomic_dec(&cpu_buffer->record_disabled);
3907 }
3908 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3909 
3910 /*
3911  * The total entries in the ring buffer is the running counter
3912  * of entries entered into the ring buffer, minus the sum of
3913  * the entries read from the ring buffer and the number of
3914  * entries that were overwritten.
3915  */
3916 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3917 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3918 {
3919 	return local_read(&cpu_buffer->entries) -
3920 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3921 }
3922 
3923 /**
3924  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3925  * @buffer: The ring buffer
3926  * @cpu: The per CPU buffer to read from.
3927  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3928 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3929 {
3930 	unsigned long flags;
3931 	struct ring_buffer_per_cpu *cpu_buffer;
3932 	struct buffer_page *bpage;
3933 	u64 ret = 0;
3934 
3935 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3936 		return 0;
3937 
3938 	cpu_buffer = buffer->buffers[cpu];
3939 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3940 	/*
3941 	 * if the tail is on reader_page, oldest time stamp is on the reader
3942 	 * page
3943 	 */
3944 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3945 		bpage = cpu_buffer->reader_page;
3946 	else
3947 		bpage = rb_set_head_page(cpu_buffer);
3948 	if (bpage)
3949 		ret = bpage->page->time_stamp;
3950 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3951 
3952 	return ret;
3953 }
3954 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3955 
3956 /**
3957  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
3958  * @buffer: The ring buffer
3959  * @cpu: The per CPU buffer to read from.
3960  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3961 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3962 {
3963 	struct ring_buffer_per_cpu *cpu_buffer;
3964 	unsigned long ret;
3965 
3966 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3967 		return 0;
3968 
3969 	cpu_buffer = buffer->buffers[cpu];
3970 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3971 
3972 	return ret;
3973 }
3974 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3975 
3976 /**
3977  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3978  * @buffer: The ring buffer
3979  * @cpu: The per CPU buffer to get the entries from.
3980  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3981 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3982 {
3983 	struct ring_buffer_per_cpu *cpu_buffer;
3984 
3985 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3986 		return 0;
3987 
3988 	cpu_buffer = buffer->buffers[cpu];
3989 
3990 	return rb_num_of_entries(cpu_buffer);
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3993 
3994 /**
3995  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3996  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3997  * @buffer: The ring buffer
3998  * @cpu: The per CPU buffer to get the number of overruns from
3999  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4000 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4001 {
4002 	struct ring_buffer_per_cpu *cpu_buffer;
4003 	unsigned long ret;
4004 
4005 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4006 		return 0;
4007 
4008 	cpu_buffer = buffer->buffers[cpu];
4009 	ret = local_read(&cpu_buffer->overrun);
4010 
4011 	return ret;
4012 }
4013 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4014 
4015 /**
4016  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4017  * commits failing due to the buffer wrapping around while there are uncommitted
4018  * events, such as during an interrupt storm.
4019  * @buffer: The ring buffer
4020  * @cpu: The per CPU buffer to get the number of overruns from
4021  */
4022 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4023 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4024 {
4025 	struct ring_buffer_per_cpu *cpu_buffer;
4026 	unsigned long ret;
4027 
4028 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4029 		return 0;
4030 
4031 	cpu_buffer = buffer->buffers[cpu];
4032 	ret = local_read(&cpu_buffer->commit_overrun);
4033 
4034 	return ret;
4035 }
4036 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4037 
4038 /**
4039  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4040  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4041  * @buffer: The ring buffer
4042  * @cpu: The per CPU buffer to get the number of overruns from
4043  */
4044 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4045 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4046 {
4047 	struct ring_buffer_per_cpu *cpu_buffer;
4048 	unsigned long ret;
4049 
4050 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4051 		return 0;
4052 
4053 	cpu_buffer = buffer->buffers[cpu];
4054 	ret = local_read(&cpu_buffer->dropped_events);
4055 
4056 	return ret;
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4059 
4060 /**
4061  * ring_buffer_read_events_cpu - get the number of events successfully read
4062  * @buffer: The ring buffer
4063  * @cpu: The per CPU buffer to get the number of events read
4064  */
4065 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4066 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4067 {
4068 	struct ring_buffer_per_cpu *cpu_buffer;
4069 
4070 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4071 		return 0;
4072 
4073 	cpu_buffer = buffer->buffers[cpu];
4074 	return cpu_buffer->read;
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4077 
4078 /**
4079  * ring_buffer_entries - get the number of entries in a buffer
4080  * @buffer: The ring buffer
4081  *
4082  * Returns the total number of entries in the ring buffer
4083  * (all CPU entries)
4084  */
ring_buffer_entries(struct trace_buffer * buffer)4085 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4086 {
4087 	struct ring_buffer_per_cpu *cpu_buffer;
4088 	unsigned long entries = 0;
4089 	int cpu;
4090 
4091 	/* if you care about this being correct, lock the buffer */
4092 	for_each_buffer_cpu(buffer, cpu) {
4093 		cpu_buffer = buffer->buffers[cpu];
4094 		entries += rb_num_of_entries(cpu_buffer);
4095 	}
4096 
4097 	return entries;
4098 }
4099 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4100 
4101 /**
4102  * ring_buffer_overruns - get the number of overruns in buffer
4103  * @buffer: The ring buffer
4104  *
4105  * Returns the total number of overruns in the ring buffer
4106  * (all CPU entries)
4107  */
ring_buffer_overruns(struct trace_buffer * buffer)4108 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4109 {
4110 	struct ring_buffer_per_cpu *cpu_buffer;
4111 	unsigned long overruns = 0;
4112 	int cpu;
4113 
4114 	/* if you care about this being correct, lock the buffer */
4115 	for_each_buffer_cpu(buffer, cpu) {
4116 		cpu_buffer = buffer->buffers[cpu];
4117 		overruns += local_read(&cpu_buffer->overrun);
4118 	}
4119 
4120 	return overruns;
4121 }
4122 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4123 
rb_iter_reset(struct ring_buffer_iter * iter)4124 static void rb_iter_reset(struct ring_buffer_iter *iter)
4125 {
4126 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4127 
4128 	/* Iterator usage is expected to have record disabled */
4129 	iter->head_page = cpu_buffer->reader_page;
4130 	iter->head = cpu_buffer->reader_page->read;
4131 	iter->next_event = iter->head;
4132 
4133 	iter->cache_reader_page = iter->head_page;
4134 	iter->cache_read = cpu_buffer->read;
4135 	iter->cache_pages_removed = cpu_buffer->pages_removed;
4136 
4137 	if (iter->head) {
4138 		iter->read_stamp = cpu_buffer->read_stamp;
4139 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4140 	} else {
4141 		iter->read_stamp = iter->head_page->page->time_stamp;
4142 		iter->page_stamp = iter->read_stamp;
4143 	}
4144 }
4145 
4146 /**
4147  * ring_buffer_iter_reset - reset an iterator
4148  * @iter: The iterator to reset
4149  *
4150  * Resets the iterator, so that it will start from the beginning
4151  * again.
4152  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4153 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4154 {
4155 	struct ring_buffer_per_cpu *cpu_buffer;
4156 	unsigned long flags;
4157 
4158 	if (!iter)
4159 		return;
4160 
4161 	cpu_buffer = iter->cpu_buffer;
4162 
4163 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4164 	rb_iter_reset(iter);
4165 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4166 }
4167 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4168 
4169 /**
4170  * ring_buffer_iter_empty - check if an iterator has no more to read
4171  * @iter: The iterator to check
4172  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4173 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4174 {
4175 	struct ring_buffer_per_cpu *cpu_buffer;
4176 	struct buffer_page *reader;
4177 	struct buffer_page *head_page;
4178 	struct buffer_page *commit_page;
4179 	struct buffer_page *curr_commit_page;
4180 	unsigned commit;
4181 	u64 curr_commit_ts;
4182 	u64 commit_ts;
4183 
4184 	cpu_buffer = iter->cpu_buffer;
4185 	reader = cpu_buffer->reader_page;
4186 	head_page = cpu_buffer->head_page;
4187 	commit_page = cpu_buffer->commit_page;
4188 	commit_ts = commit_page->page->time_stamp;
4189 
4190 	/*
4191 	 * When the writer goes across pages, it issues a cmpxchg which
4192 	 * is a mb(), which will synchronize with the rmb here.
4193 	 * (see rb_tail_page_update())
4194 	 */
4195 	smp_rmb();
4196 	commit = rb_page_commit(commit_page);
4197 	/* We want to make sure that the commit page doesn't change */
4198 	smp_rmb();
4199 
4200 	/* Make sure commit page didn't change */
4201 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4202 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4203 
4204 	/* If the commit page changed, then there's more data */
4205 	if (curr_commit_page != commit_page ||
4206 	    curr_commit_ts != commit_ts)
4207 		return 0;
4208 
4209 	/* Still racy, as it may return a false positive, but that's OK */
4210 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4211 		(iter->head_page == reader && commit_page == head_page &&
4212 		 head_page->read == commit &&
4213 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4214 }
4215 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4216 
4217 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4218 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4219 		     struct ring_buffer_event *event)
4220 {
4221 	u64 delta;
4222 
4223 	switch (event->type_len) {
4224 	case RINGBUF_TYPE_PADDING:
4225 		return;
4226 
4227 	case RINGBUF_TYPE_TIME_EXTEND:
4228 		delta = ring_buffer_event_time_stamp(event);
4229 		cpu_buffer->read_stamp += delta;
4230 		return;
4231 
4232 	case RINGBUF_TYPE_TIME_STAMP:
4233 		delta = ring_buffer_event_time_stamp(event);
4234 		cpu_buffer->read_stamp = delta;
4235 		return;
4236 
4237 	case RINGBUF_TYPE_DATA:
4238 		cpu_buffer->read_stamp += event->time_delta;
4239 		return;
4240 
4241 	default:
4242 		RB_WARN_ON(cpu_buffer, 1);
4243 	}
4244 	return;
4245 }
4246 
4247 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4248 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4249 			  struct ring_buffer_event *event)
4250 {
4251 	u64 delta;
4252 
4253 	switch (event->type_len) {
4254 	case RINGBUF_TYPE_PADDING:
4255 		return;
4256 
4257 	case RINGBUF_TYPE_TIME_EXTEND:
4258 		delta = ring_buffer_event_time_stamp(event);
4259 		iter->read_stamp += delta;
4260 		return;
4261 
4262 	case RINGBUF_TYPE_TIME_STAMP:
4263 		delta = ring_buffer_event_time_stamp(event);
4264 		iter->read_stamp = delta;
4265 		return;
4266 
4267 	case RINGBUF_TYPE_DATA:
4268 		iter->read_stamp += event->time_delta;
4269 		return;
4270 
4271 	default:
4272 		RB_WARN_ON(iter->cpu_buffer, 1);
4273 	}
4274 	return;
4275 }
4276 
4277 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4278 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4279 {
4280 	struct buffer_page *reader = NULL;
4281 	unsigned long overwrite;
4282 	unsigned long flags;
4283 	int nr_loops = 0;
4284 	int ret;
4285 
4286 	local_irq_save(flags);
4287 	arch_spin_lock(&cpu_buffer->lock);
4288 
4289  again:
4290 	/*
4291 	 * This should normally only loop twice. But because the
4292 	 * start of the reader inserts an empty page, it causes
4293 	 * a case where we will loop three times. There should be no
4294 	 * reason to loop four times (that I know of).
4295 	 */
4296 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4297 		reader = NULL;
4298 		goto out;
4299 	}
4300 
4301 	reader = cpu_buffer->reader_page;
4302 
4303 	/* If there's more to read, return this page */
4304 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4305 		goto out;
4306 
4307 	/* Never should we have an index greater than the size */
4308 	if (RB_WARN_ON(cpu_buffer,
4309 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4310 		goto out;
4311 
4312 	/* check if we caught up to the tail */
4313 	reader = NULL;
4314 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4315 		goto out;
4316 
4317 	/* Don't bother swapping if the ring buffer is empty */
4318 	if (rb_num_of_entries(cpu_buffer) == 0)
4319 		goto out;
4320 
4321 	/*
4322 	 * Reset the reader page to size zero.
4323 	 */
4324 	local_set(&cpu_buffer->reader_page->write, 0);
4325 	local_set(&cpu_buffer->reader_page->entries, 0);
4326 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4327 	cpu_buffer->reader_page->real_end = 0;
4328 
4329  spin:
4330 	/*
4331 	 * Splice the empty reader page into the list around the head.
4332 	 */
4333 	reader = rb_set_head_page(cpu_buffer);
4334 	if (!reader)
4335 		goto out;
4336 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4337 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4338 
4339 	/*
4340 	 * cpu_buffer->pages just needs to point to the buffer, it
4341 	 *  has no specific buffer page to point to. Lets move it out
4342 	 *  of our way so we don't accidentally swap it.
4343 	 */
4344 	cpu_buffer->pages = reader->list.prev;
4345 
4346 	/* The reader page will be pointing to the new head */
4347 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4348 
4349 	/*
4350 	 * We want to make sure we read the overruns after we set up our
4351 	 * pointers to the next object. The writer side does a
4352 	 * cmpxchg to cross pages which acts as the mb on the writer
4353 	 * side. Note, the reader will constantly fail the swap
4354 	 * while the writer is updating the pointers, so this
4355 	 * guarantees that the overwrite recorded here is the one we
4356 	 * want to compare with the last_overrun.
4357 	 */
4358 	smp_mb();
4359 	overwrite = local_read(&(cpu_buffer->overrun));
4360 
4361 	/*
4362 	 * Here's the tricky part.
4363 	 *
4364 	 * We need to move the pointer past the header page.
4365 	 * But we can only do that if a writer is not currently
4366 	 * moving it. The page before the header page has the
4367 	 * flag bit '1' set if it is pointing to the page we want.
4368 	 * but if the writer is in the process of moving it
4369 	 * than it will be '2' or already moved '0'.
4370 	 */
4371 
4372 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4373 
4374 	/*
4375 	 * If we did not convert it, then we must try again.
4376 	 */
4377 	if (!ret)
4378 		goto spin;
4379 
4380 	/*
4381 	 * Yay! We succeeded in replacing the page.
4382 	 *
4383 	 * Now make the new head point back to the reader page.
4384 	 */
4385 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4386 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4387 
4388 	local_inc(&cpu_buffer->pages_read);
4389 
4390 	/* Finally update the reader page to the new head */
4391 	cpu_buffer->reader_page = reader;
4392 	cpu_buffer->reader_page->read = 0;
4393 
4394 	if (overwrite != cpu_buffer->last_overrun) {
4395 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4396 		cpu_buffer->last_overrun = overwrite;
4397 	}
4398 
4399 	goto again;
4400 
4401  out:
4402 	/* Update the read_stamp on the first event */
4403 	if (reader && reader->read == 0)
4404 		cpu_buffer->read_stamp = reader->page->time_stamp;
4405 
4406 	arch_spin_unlock(&cpu_buffer->lock);
4407 	local_irq_restore(flags);
4408 
4409 	/*
4410 	 * The writer has preempt disable, wait for it. But not forever
4411 	 * Although, 1 second is pretty much "forever"
4412 	 */
4413 #define USECS_WAIT	1000000
4414         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4415 		/* If the write is past the end of page, a writer is still updating it */
4416 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4417 			break;
4418 
4419 		udelay(1);
4420 
4421 		/* Get the latest version of the reader write value */
4422 		smp_rmb();
4423 	}
4424 
4425 	/* The writer is not moving forward? Something is wrong */
4426 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4427 		reader = NULL;
4428 
4429 	/*
4430 	 * Make sure we see any padding after the write update
4431 	 * (see rb_reset_tail()).
4432 	 *
4433 	 * In addition, a writer may be writing on the reader page
4434 	 * if the page has not been fully filled, so the read barrier
4435 	 * is also needed to make sure we see the content of what is
4436 	 * committed by the writer (see rb_set_commit_to_write()).
4437 	 */
4438 	smp_rmb();
4439 
4440 
4441 	return reader;
4442 }
4443 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4444 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4445 {
4446 	struct ring_buffer_event *event;
4447 	struct buffer_page *reader;
4448 	unsigned length;
4449 
4450 	reader = rb_get_reader_page(cpu_buffer);
4451 
4452 	/* This function should not be called when buffer is empty */
4453 	if (RB_WARN_ON(cpu_buffer, !reader))
4454 		return;
4455 
4456 	event = rb_reader_event(cpu_buffer);
4457 
4458 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4459 		cpu_buffer->read++;
4460 
4461 	rb_update_read_stamp(cpu_buffer, event);
4462 
4463 	length = rb_event_length(event);
4464 	cpu_buffer->reader_page->read += length;
4465 	cpu_buffer->read_bytes += length;
4466 }
4467 
rb_advance_iter(struct ring_buffer_iter * iter)4468 static void rb_advance_iter(struct ring_buffer_iter *iter)
4469 {
4470 	struct ring_buffer_per_cpu *cpu_buffer;
4471 
4472 	cpu_buffer = iter->cpu_buffer;
4473 
4474 	/* If head == next_event then we need to jump to the next event */
4475 	if (iter->head == iter->next_event) {
4476 		/* If the event gets overwritten again, there's nothing to do */
4477 		if (rb_iter_head_event(iter) == NULL)
4478 			return;
4479 	}
4480 
4481 	iter->head = iter->next_event;
4482 
4483 	/*
4484 	 * Check if we are at the end of the buffer.
4485 	 */
4486 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4487 		/* discarded commits can make the page empty */
4488 		if (iter->head_page == cpu_buffer->commit_page)
4489 			return;
4490 		rb_inc_iter(iter);
4491 		return;
4492 	}
4493 
4494 	rb_update_iter_read_stamp(iter, iter->event);
4495 }
4496 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4497 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4498 {
4499 	return cpu_buffer->lost_events;
4500 }
4501 
4502 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4503 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4504 	       unsigned long *lost_events)
4505 {
4506 	struct ring_buffer_event *event;
4507 	struct buffer_page *reader;
4508 	int nr_loops = 0;
4509 
4510 	if (ts)
4511 		*ts = 0;
4512  again:
4513 	/*
4514 	 * We repeat when a time extend is encountered.
4515 	 * Since the time extend is always attached to a data event,
4516 	 * we should never loop more than once.
4517 	 * (We never hit the following condition more than twice).
4518 	 */
4519 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4520 		return NULL;
4521 
4522 	reader = rb_get_reader_page(cpu_buffer);
4523 	if (!reader)
4524 		return NULL;
4525 
4526 	event = rb_reader_event(cpu_buffer);
4527 
4528 	switch (event->type_len) {
4529 	case RINGBUF_TYPE_PADDING:
4530 		if (rb_null_event(event))
4531 			RB_WARN_ON(cpu_buffer, 1);
4532 		/*
4533 		 * Because the writer could be discarding every
4534 		 * event it creates (which would probably be bad)
4535 		 * if we were to go back to "again" then we may never
4536 		 * catch up, and will trigger the warn on, or lock
4537 		 * the box. Return the padding, and we will release
4538 		 * the current locks, and try again.
4539 		 */
4540 		return event;
4541 
4542 	case RINGBUF_TYPE_TIME_EXTEND:
4543 		/* Internal data, OK to advance */
4544 		rb_advance_reader(cpu_buffer);
4545 		goto again;
4546 
4547 	case RINGBUF_TYPE_TIME_STAMP:
4548 		if (ts) {
4549 			*ts = ring_buffer_event_time_stamp(event);
4550 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4551 							 cpu_buffer->cpu, ts);
4552 		}
4553 		/* Internal data, OK to advance */
4554 		rb_advance_reader(cpu_buffer);
4555 		goto again;
4556 
4557 	case RINGBUF_TYPE_DATA:
4558 		if (ts && !(*ts)) {
4559 			*ts = cpu_buffer->read_stamp + event->time_delta;
4560 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4561 							 cpu_buffer->cpu, ts);
4562 		}
4563 		if (lost_events)
4564 			*lost_events = rb_lost_events(cpu_buffer);
4565 		return event;
4566 
4567 	default:
4568 		RB_WARN_ON(cpu_buffer, 1);
4569 	}
4570 
4571 	return NULL;
4572 }
4573 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4574 
4575 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4576 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4577 {
4578 	struct trace_buffer *buffer;
4579 	struct ring_buffer_per_cpu *cpu_buffer;
4580 	struct ring_buffer_event *event;
4581 	int nr_loops = 0;
4582 
4583 	if (ts)
4584 		*ts = 0;
4585 
4586 	cpu_buffer = iter->cpu_buffer;
4587 	buffer = cpu_buffer->buffer;
4588 
4589 	/*
4590 	 * Check if someone performed a consuming read to the buffer
4591 	 * or removed some pages from the buffer. In these cases,
4592 	 * iterator was invalidated and we need to reset it.
4593 	 */
4594 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4595 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4596 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4597 		rb_iter_reset(iter);
4598 
4599  again:
4600 	if (ring_buffer_iter_empty(iter))
4601 		return NULL;
4602 
4603 	/*
4604 	 * As the writer can mess with what the iterator is trying
4605 	 * to read, just give up if we fail to get an event after
4606 	 * three tries. The iterator is not as reliable when reading
4607 	 * the ring buffer with an active write as the consumer is.
4608 	 * Do not warn if the three failures is reached.
4609 	 */
4610 	if (++nr_loops > 3)
4611 		return NULL;
4612 
4613 	if (rb_per_cpu_empty(cpu_buffer))
4614 		return NULL;
4615 
4616 	if (iter->head >= rb_page_size(iter->head_page)) {
4617 		rb_inc_iter(iter);
4618 		goto again;
4619 	}
4620 
4621 	event = rb_iter_head_event(iter);
4622 	if (!event)
4623 		goto again;
4624 
4625 	switch (event->type_len) {
4626 	case RINGBUF_TYPE_PADDING:
4627 		if (rb_null_event(event)) {
4628 			rb_inc_iter(iter);
4629 			goto again;
4630 		}
4631 		rb_advance_iter(iter);
4632 		return event;
4633 
4634 	case RINGBUF_TYPE_TIME_EXTEND:
4635 		/* Internal data, OK to advance */
4636 		rb_advance_iter(iter);
4637 		goto again;
4638 
4639 	case RINGBUF_TYPE_TIME_STAMP:
4640 		if (ts) {
4641 			*ts = ring_buffer_event_time_stamp(event);
4642 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4643 							 cpu_buffer->cpu, ts);
4644 		}
4645 		/* Internal data, OK to advance */
4646 		rb_advance_iter(iter);
4647 		goto again;
4648 
4649 	case RINGBUF_TYPE_DATA:
4650 		if (ts && !(*ts)) {
4651 			*ts = iter->read_stamp + event->time_delta;
4652 			ring_buffer_normalize_time_stamp(buffer,
4653 							 cpu_buffer->cpu, ts);
4654 		}
4655 		return event;
4656 
4657 	default:
4658 		RB_WARN_ON(cpu_buffer, 1);
4659 	}
4660 
4661 	return NULL;
4662 }
4663 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4664 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4665 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4666 {
4667 	if (likely(!in_nmi())) {
4668 		raw_spin_lock(&cpu_buffer->reader_lock);
4669 		return true;
4670 	}
4671 
4672 	/*
4673 	 * If an NMI die dumps out the content of the ring buffer
4674 	 * trylock must be used to prevent a deadlock if the NMI
4675 	 * preempted a task that holds the ring buffer locks. If
4676 	 * we get the lock then all is fine, if not, then continue
4677 	 * to do the read, but this can corrupt the ring buffer,
4678 	 * so it must be permanently disabled from future writes.
4679 	 * Reading from NMI is a oneshot deal.
4680 	 */
4681 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4682 		return true;
4683 
4684 	/* Continue without locking, but disable the ring buffer */
4685 	atomic_inc(&cpu_buffer->record_disabled);
4686 	return false;
4687 }
4688 
4689 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4690 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4691 {
4692 	if (likely(locked))
4693 		raw_spin_unlock(&cpu_buffer->reader_lock);
4694 	return;
4695 }
4696 
4697 /**
4698  * ring_buffer_peek - peek at the next event to be read
4699  * @buffer: The ring buffer to read
4700  * @cpu: The cpu to peak at
4701  * @ts: The timestamp counter of this event.
4702  * @lost_events: a variable to store if events were lost (may be NULL)
4703  *
4704  * This will return the event that will be read next, but does
4705  * not consume the data.
4706  */
4707 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4708 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4709 		 unsigned long *lost_events)
4710 {
4711 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4712 	struct ring_buffer_event *event;
4713 	unsigned long flags;
4714 	bool dolock;
4715 
4716 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4717 		return NULL;
4718 
4719  again:
4720 	local_irq_save(flags);
4721 	dolock = rb_reader_lock(cpu_buffer);
4722 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4723 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4724 		rb_advance_reader(cpu_buffer);
4725 	rb_reader_unlock(cpu_buffer, dolock);
4726 	local_irq_restore(flags);
4727 
4728 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4729 		goto again;
4730 
4731 	return event;
4732 }
4733 
4734 /** ring_buffer_iter_dropped - report if there are dropped events
4735  * @iter: The ring buffer iterator
4736  *
4737  * Returns true if there was dropped events since the last peek.
4738  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4739 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4740 {
4741 	bool ret = iter->missed_events != 0;
4742 
4743 	iter->missed_events = 0;
4744 	return ret;
4745 }
4746 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4747 
4748 /**
4749  * ring_buffer_iter_peek - peek at the next event to be read
4750  * @iter: The ring buffer iterator
4751  * @ts: The timestamp counter of this event.
4752  *
4753  * This will return the event that will be read next, but does
4754  * not increment the iterator.
4755  */
4756 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4757 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4758 {
4759 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4760 	struct ring_buffer_event *event;
4761 	unsigned long flags;
4762 
4763  again:
4764 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4765 	event = rb_iter_peek(iter, ts);
4766 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4767 
4768 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4769 		goto again;
4770 
4771 	return event;
4772 }
4773 
4774 /**
4775  * ring_buffer_consume - return an event and consume it
4776  * @buffer: The ring buffer to get the next event from
4777  * @cpu: the cpu to read the buffer from
4778  * @ts: a variable to store the timestamp (may be NULL)
4779  * @lost_events: a variable to store if events were lost (may be NULL)
4780  *
4781  * Returns the next event in the ring buffer, and that event is consumed.
4782  * Meaning, that sequential reads will keep returning a different event,
4783  * and eventually empty the ring buffer if the producer is slower.
4784  */
4785 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4786 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4787 		    unsigned long *lost_events)
4788 {
4789 	struct ring_buffer_per_cpu *cpu_buffer;
4790 	struct ring_buffer_event *event = NULL;
4791 	unsigned long flags;
4792 	bool dolock;
4793 
4794  again:
4795 	/* might be called in atomic */
4796 	preempt_disable();
4797 
4798 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4799 		goto out;
4800 
4801 	cpu_buffer = buffer->buffers[cpu];
4802 	local_irq_save(flags);
4803 	dolock = rb_reader_lock(cpu_buffer);
4804 
4805 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4806 	if (event) {
4807 		cpu_buffer->lost_events = 0;
4808 		rb_advance_reader(cpu_buffer);
4809 	}
4810 
4811 	rb_reader_unlock(cpu_buffer, dolock);
4812 	local_irq_restore(flags);
4813 
4814  out:
4815 	preempt_enable();
4816 
4817 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4818 		goto again;
4819 
4820 	return event;
4821 }
4822 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4823 
4824 /**
4825  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4826  * @buffer: The ring buffer to read from
4827  * @cpu: The cpu buffer to iterate over
4828  * @flags: gfp flags to use for memory allocation
4829  *
4830  * This performs the initial preparations necessary to iterate
4831  * through the buffer.  Memory is allocated, buffer recording
4832  * is disabled, and the iterator pointer is returned to the caller.
4833  *
4834  * Disabling buffer recording prevents the reading from being
4835  * corrupted. This is not a consuming read, so a producer is not
4836  * expected.
4837  *
4838  * After a sequence of ring_buffer_read_prepare calls, the user is
4839  * expected to make at least one call to ring_buffer_read_prepare_sync.
4840  * Afterwards, ring_buffer_read_start is invoked to get things going
4841  * for real.
4842  *
4843  * This overall must be paired with ring_buffer_read_finish.
4844  */
4845 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4846 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4847 {
4848 	struct ring_buffer_per_cpu *cpu_buffer;
4849 	struct ring_buffer_iter *iter;
4850 
4851 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4852 		return NULL;
4853 
4854 	iter = kzalloc(sizeof(*iter), flags);
4855 	if (!iter)
4856 		return NULL;
4857 
4858 	/* Holds the entire event: data and meta data */
4859 	iter->event = kmalloc(BUF_PAGE_SIZE, flags);
4860 	if (!iter->event) {
4861 		kfree(iter);
4862 		return NULL;
4863 	}
4864 
4865 	cpu_buffer = buffer->buffers[cpu];
4866 
4867 	iter->cpu_buffer = cpu_buffer;
4868 
4869 	atomic_inc(&cpu_buffer->resize_disabled);
4870 
4871 	return iter;
4872 }
4873 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4874 
4875 /**
4876  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4877  *
4878  * All previously invoked ring_buffer_read_prepare calls to prepare
4879  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4880  * calls on those iterators are allowed.
4881  */
4882 void
ring_buffer_read_prepare_sync(void)4883 ring_buffer_read_prepare_sync(void)
4884 {
4885 	synchronize_rcu();
4886 }
4887 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4888 
4889 /**
4890  * ring_buffer_read_start - start a non consuming read of the buffer
4891  * @iter: The iterator returned by ring_buffer_read_prepare
4892  *
4893  * This finalizes the startup of an iteration through the buffer.
4894  * The iterator comes from a call to ring_buffer_read_prepare and
4895  * an intervening ring_buffer_read_prepare_sync must have been
4896  * performed.
4897  *
4898  * Must be paired with ring_buffer_read_finish.
4899  */
4900 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4901 ring_buffer_read_start(struct ring_buffer_iter *iter)
4902 {
4903 	struct ring_buffer_per_cpu *cpu_buffer;
4904 	unsigned long flags;
4905 
4906 	if (!iter)
4907 		return;
4908 
4909 	cpu_buffer = iter->cpu_buffer;
4910 
4911 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4912 	arch_spin_lock(&cpu_buffer->lock);
4913 	rb_iter_reset(iter);
4914 	arch_spin_unlock(&cpu_buffer->lock);
4915 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4916 }
4917 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4918 
4919 /**
4920  * ring_buffer_read_finish - finish reading the iterator of the buffer
4921  * @iter: The iterator retrieved by ring_buffer_start
4922  *
4923  * This re-enables the recording to the buffer, and frees the
4924  * iterator.
4925  */
4926 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4927 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4928 {
4929 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4930 	unsigned long flags;
4931 
4932 	/*
4933 	 * Ring buffer is disabled from recording, here's a good place
4934 	 * to check the integrity of the ring buffer.
4935 	 * Must prevent readers from trying to read, as the check
4936 	 * clears the HEAD page and readers require it.
4937 	 */
4938 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4939 	rb_check_pages(cpu_buffer);
4940 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4941 
4942 	atomic_dec(&cpu_buffer->resize_disabled);
4943 	kfree(iter->event);
4944 	kfree(iter);
4945 }
4946 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4947 
4948 /**
4949  * ring_buffer_iter_advance - advance the iterator to the next location
4950  * @iter: The ring buffer iterator
4951  *
4952  * Move the location of the iterator such that the next read will
4953  * be the next location of the iterator.
4954  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4955 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4956 {
4957 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4958 	unsigned long flags;
4959 
4960 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4961 
4962 	rb_advance_iter(iter);
4963 
4964 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4965 }
4966 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4967 
4968 /**
4969  * ring_buffer_size - return the size of the ring buffer (in bytes)
4970  * @buffer: The ring buffer.
4971  * @cpu: The CPU to get ring buffer size from.
4972  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4973 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4974 {
4975 	/*
4976 	 * Earlier, this method returned
4977 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4978 	 * Since the nr_pages field is now removed, we have converted this to
4979 	 * return the per cpu buffer value.
4980 	 */
4981 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4982 		return 0;
4983 
4984 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4985 }
4986 EXPORT_SYMBOL_GPL(ring_buffer_size);
4987 
rb_clear_buffer_page(struct buffer_page * page)4988 static void rb_clear_buffer_page(struct buffer_page *page)
4989 {
4990 	local_set(&page->write, 0);
4991 	local_set(&page->entries, 0);
4992 	rb_init_page(page->page);
4993 	page->read = 0;
4994 }
4995 
4996 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4997 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4998 {
4999 	struct buffer_page *page;
5000 
5001 	rb_head_page_deactivate(cpu_buffer);
5002 
5003 	cpu_buffer->head_page
5004 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5005 	rb_clear_buffer_page(cpu_buffer->head_page);
5006 	list_for_each_entry(page, cpu_buffer->pages, list) {
5007 		rb_clear_buffer_page(page);
5008 	}
5009 
5010 	cpu_buffer->tail_page = cpu_buffer->head_page;
5011 	cpu_buffer->commit_page = cpu_buffer->head_page;
5012 
5013 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5014 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5015 	rb_clear_buffer_page(cpu_buffer->reader_page);
5016 
5017 	local_set(&cpu_buffer->entries_bytes, 0);
5018 	local_set(&cpu_buffer->overrun, 0);
5019 	local_set(&cpu_buffer->commit_overrun, 0);
5020 	local_set(&cpu_buffer->dropped_events, 0);
5021 	local_set(&cpu_buffer->entries, 0);
5022 	local_set(&cpu_buffer->committing, 0);
5023 	local_set(&cpu_buffer->commits, 0);
5024 	local_set(&cpu_buffer->pages_touched, 0);
5025 	local_set(&cpu_buffer->pages_lost, 0);
5026 	local_set(&cpu_buffer->pages_read, 0);
5027 	cpu_buffer->last_pages_touch = 0;
5028 	cpu_buffer->shortest_full = 0;
5029 	cpu_buffer->read = 0;
5030 	cpu_buffer->read_bytes = 0;
5031 
5032 	rb_time_set(&cpu_buffer->write_stamp, 0);
5033 	rb_time_set(&cpu_buffer->before_stamp, 0);
5034 
5035 	cpu_buffer->lost_events = 0;
5036 	cpu_buffer->last_overrun = 0;
5037 
5038 	rb_head_page_activate(cpu_buffer);
5039 	cpu_buffer->pages_removed = 0;
5040 }
5041 
5042 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5043 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5044 {
5045 	unsigned long flags;
5046 
5047 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5048 
5049 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5050 		goto out;
5051 
5052 	arch_spin_lock(&cpu_buffer->lock);
5053 
5054 	rb_reset_cpu(cpu_buffer);
5055 
5056 	arch_spin_unlock(&cpu_buffer->lock);
5057 
5058  out:
5059 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5060 }
5061 
5062 /**
5063  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5064  * @buffer: The ring buffer to reset a per cpu buffer of
5065  * @cpu: The CPU buffer to be reset
5066  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)5067 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5068 {
5069 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5070 
5071 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5072 		return;
5073 
5074 	/* prevent another thread from changing buffer sizes */
5075 	mutex_lock(&buffer->mutex);
5076 
5077 	atomic_inc(&cpu_buffer->resize_disabled);
5078 	atomic_inc(&cpu_buffer->record_disabled);
5079 
5080 	/* Make sure all commits have finished */
5081 	synchronize_rcu();
5082 
5083 	reset_disabled_cpu_buffer(cpu_buffer);
5084 
5085 	atomic_dec(&cpu_buffer->record_disabled);
5086 	atomic_dec(&cpu_buffer->resize_disabled);
5087 
5088 	mutex_unlock(&buffer->mutex);
5089 }
5090 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5091 
5092 /* Flag to ensure proper resetting of atomic variables */
5093 #define RESET_BIT	(1 << 30)
5094 
5095 /**
5096  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5097  * @buffer: The ring buffer to reset a per cpu buffer of
5098  * @cpu: The CPU buffer to be reset
5099  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)5100 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5101 {
5102 	struct ring_buffer_per_cpu *cpu_buffer;
5103 	int cpu;
5104 
5105 	/* prevent another thread from changing buffer sizes */
5106 	mutex_lock(&buffer->mutex);
5107 
5108 	for_each_online_buffer_cpu(buffer, cpu) {
5109 		cpu_buffer = buffer->buffers[cpu];
5110 
5111 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5112 		atomic_inc(&cpu_buffer->record_disabled);
5113 	}
5114 
5115 	/* Make sure all commits have finished */
5116 	synchronize_rcu();
5117 
5118 	for_each_buffer_cpu(buffer, cpu) {
5119 		cpu_buffer = buffer->buffers[cpu];
5120 
5121 		/*
5122 		 * If a CPU came online during the synchronize_rcu(), then
5123 		 * ignore it.
5124 		 */
5125 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5126 			continue;
5127 
5128 		reset_disabled_cpu_buffer(cpu_buffer);
5129 
5130 		atomic_dec(&cpu_buffer->record_disabled);
5131 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5132 	}
5133 
5134 	mutex_unlock(&buffer->mutex);
5135 }
5136 
5137 /**
5138  * ring_buffer_reset - reset a ring buffer
5139  * @buffer: The ring buffer to reset all cpu buffers
5140  */
ring_buffer_reset(struct trace_buffer * buffer)5141 void ring_buffer_reset(struct trace_buffer *buffer)
5142 {
5143 	struct ring_buffer_per_cpu *cpu_buffer;
5144 	int cpu;
5145 
5146 	/* prevent another thread from changing buffer sizes */
5147 	mutex_lock(&buffer->mutex);
5148 
5149 	for_each_buffer_cpu(buffer, cpu) {
5150 		cpu_buffer = buffer->buffers[cpu];
5151 
5152 		atomic_inc(&cpu_buffer->resize_disabled);
5153 		atomic_inc(&cpu_buffer->record_disabled);
5154 	}
5155 
5156 	/* Make sure all commits have finished */
5157 	synchronize_rcu();
5158 
5159 	for_each_buffer_cpu(buffer, cpu) {
5160 		cpu_buffer = buffer->buffers[cpu];
5161 
5162 		reset_disabled_cpu_buffer(cpu_buffer);
5163 
5164 		atomic_dec(&cpu_buffer->record_disabled);
5165 		atomic_dec(&cpu_buffer->resize_disabled);
5166 	}
5167 
5168 	mutex_unlock(&buffer->mutex);
5169 }
5170 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5171 
5172 /**
5173  * rind_buffer_empty - is the ring buffer empty?
5174  * @buffer: The ring buffer to test
5175  */
ring_buffer_empty(struct trace_buffer * buffer)5176 bool ring_buffer_empty(struct trace_buffer *buffer)
5177 {
5178 	struct ring_buffer_per_cpu *cpu_buffer;
5179 	unsigned long flags;
5180 	bool dolock;
5181 	int cpu;
5182 	int ret;
5183 
5184 	/* yes this is racy, but if you don't like the race, lock the buffer */
5185 	for_each_buffer_cpu(buffer, cpu) {
5186 		cpu_buffer = buffer->buffers[cpu];
5187 		local_irq_save(flags);
5188 		dolock = rb_reader_lock(cpu_buffer);
5189 		ret = rb_per_cpu_empty(cpu_buffer);
5190 		rb_reader_unlock(cpu_buffer, dolock);
5191 		local_irq_restore(flags);
5192 
5193 		if (!ret)
5194 			return false;
5195 	}
5196 
5197 	return true;
5198 }
5199 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5200 
5201 /**
5202  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5203  * @buffer: The ring buffer
5204  * @cpu: The CPU buffer to test
5205  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5206 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5207 {
5208 	struct ring_buffer_per_cpu *cpu_buffer;
5209 	unsigned long flags;
5210 	bool dolock;
5211 	int ret;
5212 
5213 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5214 		return true;
5215 
5216 	cpu_buffer = buffer->buffers[cpu];
5217 	local_irq_save(flags);
5218 	dolock = rb_reader_lock(cpu_buffer);
5219 	ret = rb_per_cpu_empty(cpu_buffer);
5220 	rb_reader_unlock(cpu_buffer, dolock);
5221 	local_irq_restore(flags);
5222 
5223 	return ret;
5224 }
5225 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5226 
5227 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5228 /**
5229  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5230  * @buffer_a: One buffer to swap with
5231  * @buffer_b: The other buffer to swap with
5232  * @cpu: the CPU of the buffers to swap
5233  *
5234  * This function is useful for tracers that want to take a "snapshot"
5235  * of a CPU buffer and has another back up buffer lying around.
5236  * it is expected that the tracer handles the cpu buffer not being
5237  * used at the moment.
5238  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5239 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5240 			 struct trace_buffer *buffer_b, int cpu)
5241 {
5242 	struct ring_buffer_per_cpu *cpu_buffer_a;
5243 	struct ring_buffer_per_cpu *cpu_buffer_b;
5244 	int ret = -EINVAL;
5245 
5246 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5247 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5248 		goto out;
5249 
5250 	cpu_buffer_a = buffer_a->buffers[cpu];
5251 	cpu_buffer_b = buffer_b->buffers[cpu];
5252 
5253 	/* At least make sure the two buffers are somewhat the same */
5254 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5255 		goto out;
5256 
5257 	ret = -EAGAIN;
5258 
5259 	if (atomic_read(&buffer_a->record_disabled))
5260 		goto out;
5261 
5262 	if (atomic_read(&buffer_b->record_disabled))
5263 		goto out;
5264 
5265 	if (atomic_read(&cpu_buffer_a->record_disabled))
5266 		goto out;
5267 
5268 	if (atomic_read(&cpu_buffer_b->record_disabled))
5269 		goto out;
5270 
5271 	/*
5272 	 * We can't do a synchronize_rcu here because this
5273 	 * function can be called in atomic context.
5274 	 * Normally this will be called from the same CPU as cpu.
5275 	 * If not it's up to the caller to protect this.
5276 	 */
5277 	atomic_inc(&cpu_buffer_a->record_disabled);
5278 	atomic_inc(&cpu_buffer_b->record_disabled);
5279 
5280 	ret = -EBUSY;
5281 	if (local_read(&cpu_buffer_a->committing))
5282 		goto out_dec;
5283 	if (local_read(&cpu_buffer_b->committing))
5284 		goto out_dec;
5285 
5286 	/*
5287 	 * When resize is in progress, we cannot swap it because
5288 	 * it will mess the state of the cpu buffer.
5289 	 */
5290 	if (atomic_read(&buffer_a->resizing))
5291 		goto out_dec;
5292 	if (atomic_read(&buffer_b->resizing))
5293 		goto out_dec;
5294 
5295 	buffer_a->buffers[cpu] = cpu_buffer_b;
5296 	buffer_b->buffers[cpu] = cpu_buffer_a;
5297 
5298 	cpu_buffer_b->buffer = buffer_a;
5299 	cpu_buffer_a->buffer = buffer_b;
5300 
5301 	ret = 0;
5302 
5303 out_dec:
5304 	atomic_dec(&cpu_buffer_a->record_disabled);
5305 	atomic_dec(&cpu_buffer_b->record_disabled);
5306 out:
5307 	return ret;
5308 }
5309 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5310 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5311 
5312 /**
5313  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5314  * @buffer: the buffer to allocate for.
5315  * @cpu: the cpu buffer to allocate.
5316  *
5317  * This function is used in conjunction with ring_buffer_read_page.
5318  * When reading a full page from the ring buffer, these functions
5319  * can be used to speed up the process. The calling function should
5320  * allocate a few pages first with this function. Then when it
5321  * needs to get pages from the ring buffer, it passes the result
5322  * of this function into ring_buffer_read_page, which will swap
5323  * the page that was allocated, with the read page of the buffer.
5324  *
5325  * Returns:
5326  *  The page allocated, or ERR_PTR
5327  */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5328 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5329 {
5330 	struct ring_buffer_per_cpu *cpu_buffer;
5331 	struct buffer_data_page *bpage = NULL;
5332 	unsigned long flags;
5333 	struct page *page;
5334 
5335 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5336 		return ERR_PTR(-ENODEV);
5337 
5338 	cpu_buffer = buffer->buffers[cpu];
5339 	local_irq_save(flags);
5340 	arch_spin_lock(&cpu_buffer->lock);
5341 
5342 	if (cpu_buffer->free_page) {
5343 		bpage = cpu_buffer->free_page;
5344 		cpu_buffer->free_page = NULL;
5345 	}
5346 
5347 	arch_spin_unlock(&cpu_buffer->lock);
5348 	local_irq_restore(flags);
5349 
5350 	if (bpage)
5351 		goto out;
5352 
5353 	page = alloc_pages_node(cpu_to_node(cpu),
5354 				GFP_KERNEL | __GFP_NORETRY, 0);
5355 	if (!page)
5356 		return ERR_PTR(-ENOMEM);
5357 
5358 	bpage = page_address(page);
5359 
5360  out:
5361 	rb_init_page(bpage);
5362 
5363 	return bpage;
5364 }
5365 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5366 
5367 /**
5368  * ring_buffer_free_read_page - free an allocated read page
5369  * @buffer: the buffer the page was allocate for
5370  * @cpu: the cpu buffer the page came from
5371  * @data: the page to free
5372  *
5373  * Free a page allocated from ring_buffer_alloc_read_page.
5374  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5375 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5376 {
5377 	struct ring_buffer_per_cpu *cpu_buffer;
5378 	struct buffer_data_page *bpage = data;
5379 	struct page *page = virt_to_page(bpage);
5380 	unsigned long flags;
5381 
5382 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5383 		return;
5384 
5385 	cpu_buffer = buffer->buffers[cpu];
5386 
5387 	/* If the page is still in use someplace else, we can't reuse it */
5388 	if (page_ref_count(page) > 1)
5389 		goto out;
5390 
5391 	local_irq_save(flags);
5392 	arch_spin_lock(&cpu_buffer->lock);
5393 
5394 	if (!cpu_buffer->free_page) {
5395 		cpu_buffer->free_page = bpage;
5396 		bpage = NULL;
5397 	}
5398 
5399 	arch_spin_unlock(&cpu_buffer->lock);
5400 	local_irq_restore(flags);
5401 
5402  out:
5403 	free_page((unsigned long)bpage);
5404 }
5405 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5406 
5407 /**
5408  * ring_buffer_read_page - extract a page from the ring buffer
5409  * @buffer: buffer to extract from
5410  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5411  * @len: amount to extract
5412  * @cpu: the cpu of the buffer to extract
5413  * @full: should the extraction only happen when the page is full.
5414  *
5415  * This function will pull out a page from the ring buffer and consume it.
5416  * @data_page must be the address of the variable that was returned
5417  * from ring_buffer_alloc_read_page. This is because the page might be used
5418  * to swap with a page in the ring buffer.
5419  *
5420  * for example:
5421  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5422  *	if (IS_ERR(rpage))
5423  *		return PTR_ERR(rpage);
5424  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5425  *	if (ret >= 0)
5426  *		process_page(rpage, ret);
5427  *
5428  * When @full is set, the function will not return true unless
5429  * the writer is off the reader page.
5430  *
5431  * Note: it is up to the calling functions to handle sleeps and wakeups.
5432  *  The ring buffer can be used anywhere in the kernel and can not
5433  *  blindly call wake_up. The layer that uses the ring buffer must be
5434  *  responsible for that.
5435  *
5436  * Returns:
5437  *  >=0 if data has been transferred, returns the offset of consumed data.
5438  *  <0 if no data has been transferred.
5439  */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5440 int ring_buffer_read_page(struct trace_buffer *buffer,
5441 			  void **data_page, size_t len, int cpu, int full)
5442 {
5443 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5444 	struct ring_buffer_event *event;
5445 	struct buffer_data_page *bpage;
5446 	struct buffer_page *reader;
5447 	unsigned long missed_events;
5448 	unsigned long flags;
5449 	unsigned int commit;
5450 	unsigned int read;
5451 	u64 save_timestamp;
5452 	int ret = -1;
5453 
5454 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5455 		goto out;
5456 
5457 	/*
5458 	 * If len is not big enough to hold the page header, then
5459 	 * we can not copy anything.
5460 	 */
5461 	if (len <= BUF_PAGE_HDR_SIZE)
5462 		goto out;
5463 
5464 	len -= BUF_PAGE_HDR_SIZE;
5465 
5466 	if (!data_page)
5467 		goto out;
5468 
5469 	bpage = *data_page;
5470 	if (!bpage)
5471 		goto out;
5472 
5473 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5474 
5475 	reader = rb_get_reader_page(cpu_buffer);
5476 	if (!reader)
5477 		goto out_unlock;
5478 
5479 	event = rb_reader_event(cpu_buffer);
5480 
5481 	read = reader->read;
5482 	commit = rb_page_commit(reader);
5483 
5484 	/* Check if any events were dropped */
5485 	missed_events = cpu_buffer->lost_events;
5486 
5487 	/*
5488 	 * If this page has been partially read or
5489 	 * if len is not big enough to read the rest of the page or
5490 	 * a writer is still on the page, then
5491 	 * we must copy the data from the page to the buffer.
5492 	 * Otherwise, we can simply swap the page with the one passed in.
5493 	 */
5494 	if (read || (len < (commit - read)) ||
5495 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5496 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5497 		unsigned int rpos = read;
5498 		unsigned int pos = 0;
5499 		unsigned int size;
5500 
5501 		/*
5502 		 * If a full page is expected, this can still be returned
5503 		 * if there's been a previous partial read and the
5504 		 * rest of the page can be read and the commit page is off
5505 		 * the reader page.
5506 		 */
5507 		if (full &&
5508 		    (!read || (len < (commit - read)) ||
5509 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5510 			goto out_unlock;
5511 
5512 		if (len > (commit - read))
5513 			len = (commit - read);
5514 
5515 		/* Always keep the time extend and data together */
5516 		size = rb_event_ts_length(event);
5517 
5518 		if (len < size)
5519 			goto out_unlock;
5520 
5521 		/* save the current timestamp, since the user will need it */
5522 		save_timestamp = cpu_buffer->read_stamp;
5523 
5524 		/* Need to copy one event at a time */
5525 		do {
5526 			/* We need the size of one event, because
5527 			 * rb_advance_reader only advances by one event,
5528 			 * whereas rb_event_ts_length may include the size of
5529 			 * one or two events.
5530 			 * We have already ensured there's enough space if this
5531 			 * is a time extend. */
5532 			size = rb_event_length(event);
5533 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5534 
5535 			len -= size;
5536 
5537 			rb_advance_reader(cpu_buffer);
5538 			rpos = reader->read;
5539 			pos += size;
5540 
5541 			if (rpos >= commit)
5542 				break;
5543 
5544 			event = rb_reader_event(cpu_buffer);
5545 			/* Always keep the time extend and data together */
5546 			size = rb_event_ts_length(event);
5547 		} while (len >= size);
5548 
5549 		/* update bpage */
5550 		local_set(&bpage->commit, pos);
5551 		bpage->time_stamp = save_timestamp;
5552 
5553 		/* we copied everything to the beginning */
5554 		read = 0;
5555 	} else {
5556 		/* update the entry counter */
5557 		cpu_buffer->read += rb_page_entries(reader);
5558 		cpu_buffer->read_bytes += rb_page_commit(reader);
5559 
5560 		/* swap the pages */
5561 		rb_init_page(bpage);
5562 		bpage = reader->page;
5563 		reader->page = *data_page;
5564 		local_set(&reader->write, 0);
5565 		local_set(&reader->entries, 0);
5566 		reader->read = 0;
5567 		*data_page = bpage;
5568 
5569 		/*
5570 		 * Use the real_end for the data size,
5571 		 * This gives us a chance to store the lost events
5572 		 * on the page.
5573 		 */
5574 		if (reader->real_end)
5575 			local_set(&bpage->commit, reader->real_end);
5576 	}
5577 	ret = read;
5578 
5579 	cpu_buffer->lost_events = 0;
5580 
5581 	commit = local_read(&bpage->commit);
5582 	/*
5583 	 * Set a flag in the commit field if we lost events
5584 	 */
5585 	if (missed_events) {
5586 		/* If there is room at the end of the page to save the
5587 		 * missed events, then record it there.
5588 		 */
5589 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5590 			memcpy(&bpage->data[commit], &missed_events,
5591 			       sizeof(missed_events));
5592 			local_add(RB_MISSED_STORED, &bpage->commit);
5593 			commit += sizeof(missed_events);
5594 		}
5595 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5596 	}
5597 
5598 	/*
5599 	 * This page may be off to user land. Zero it out here.
5600 	 */
5601 	if (commit < BUF_PAGE_SIZE)
5602 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5603 
5604  out_unlock:
5605 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5606 
5607  out:
5608 	return ret;
5609 }
5610 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5611 
5612 /*
5613  * We only allocate new buffers, never free them if the CPU goes down.
5614  * If we were to free the buffer, then the user would lose any trace that was in
5615  * the buffer.
5616  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5617 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5618 {
5619 	struct trace_buffer *buffer;
5620 	long nr_pages_same;
5621 	int cpu_i;
5622 	unsigned long nr_pages;
5623 
5624 	buffer = container_of(node, struct trace_buffer, node);
5625 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5626 		return 0;
5627 
5628 	nr_pages = 0;
5629 	nr_pages_same = 1;
5630 	/* check if all cpu sizes are same */
5631 	for_each_buffer_cpu(buffer, cpu_i) {
5632 		/* fill in the size from first enabled cpu */
5633 		if (nr_pages == 0)
5634 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5635 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5636 			nr_pages_same = 0;
5637 			break;
5638 		}
5639 	}
5640 	/* allocate minimum pages, user can later expand it */
5641 	if (!nr_pages_same)
5642 		nr_pages = 2;
5643 	buffer->buffers[cpu] =
5644 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5645 	if (!buffer->buffers[cpu]) {
5646 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5647 		     cpu);
5648 		return -ENOMEM;
5649 	}
5650 	smp_wmb();
5651 	cpumask_set_cpu(cpu, buffer->cpumask);
5652 	return 0;
5653 }
5654 
5655 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5656 /*
5657  * This is a basic integrity check of the ring buffer.
5658  * Late in the boot cycle this test will run when configured in.
5659  * It will kick off a thread per CPU that will go into a loop
5660  * writing to the per cpu ring buffer various sizes of data.
5661  * Some of the data will be large items, some small.
5662  *
5663  * Another thread is created that goes into a spin, sending out
5664  * IPIs to the other CPUs to also write into the ring buffer.
5665  * this is to test the nesting ability of the buffer.
5666  *
5667  * Basic stats are recorded and reported. If something in the
5668  * ring buffer should happen that's not expected, a big warning
5669  * is displayed and all ring buffers are disabled.
5670  */
5671 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5672 
5673 struct rb_test_data {
5674 	struct trace_buffer *buffer;
5675 	unsigned long		events;
5676 	unsigned long		bytes_written;
5677 	unsigned long		bytes_alloc;
5678 	unsigned long		bytes_dropped;
5679 	unsigned long		events_nested;
5680 	unsigned long		bytes_written_nested;
5681 	unsigned long		bytes_alloc_nested;
5682 	unsigned long		bytes_dropped_nested;
5683 	int			min_size_nested;
5684 	int			max_size_nested;
5685 	int			max_size;
5686 	int			min_size;
5687 	int			cpu;
5688 	int			cnt;
5689 };
5690 
5691 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5692 
5693 /* 1 meg per cpu */
5694 #define RB_TEST_BUFFER_SIZE	1048576
5695 
5696 static char rb_string[] __initdata =
5697 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5698 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5699 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5700 
5701 static bool rb_test_started __initdata;
5702 
5703 struct rb_item {
5704 	int size;
5705 	char str[];
5706 };
5707 
rb_write_something(struct rb_test_data * data,bool nested)5708 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5709 {
5710 	struct ring_buffer_event *event;
5711 	struct rb_item *item;
5712 	bool started;
5713 	int event_len;
5714 	int size;
5715 	int len;
5716 	int cnt;
5717 
5718 	/* Have nested writes different that what is written */
5719 	cnt = data->cnt + (nested ? 27 : 0);
5720 
5721 	/* Multiply cnt by ~e, to make some unique increment */
5722 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5723 
5724 	len = size + sizeof(struct rb_item);
5725 
5726 	started = rb_test_started;
5727 	/* read rb_test_started before checking buffer enabled */
5728 	smp_rmb();
5729 
5730 	event = ring_buffer_lock_reserve(data->buffer, len);
5731 	if (!event) {
5732 		/* Ignore dropped events before test starts. */
5733 		if (started) {
5734 			if (nested)
5735 				data->bytes_dropped += len;
5736 			else
5737 				data->bytes_dropped_nested += len;
5738 		}
5739 		return len;
5740 	}
5741 
5742 	event_len = ring_buffer_event_length(event);
5743 
5744 	if (RB_WARN_ON(data->buffer, event_len < len))
5745 		goto out;
5746 
5747 	item = ring_buffer_event_data(event);
5748 	item->size = size;
5749 	memcpy(item->str, rb_string, size);
5750 
5751 	if (nested) {
5752 		data->bytes_alloc_nested += event_len;
5753 		data->bytes_written_nested += len;
5754 		data->events_nested++;
5755 		if (!data->min_size_nested || len < data->min_size_nested)
5756 			data->min_size_nested = len;
5757 		if (len > data->max_size_nested)
5758 			data->max_size_nested = len;
5759 	} else {
5760 		data->bytes_alloc += event_len;
5761 		data->bytes_written += len;
5762 		data->events++;
5763 		if (!data->min_size || len < data->min_size)
5764 			data->max_size = len;
5765 		if (len > data->max_size)
5766 			data->max_size = len;
5767 	}
5768 
5769  out:
5770 	ring_buffer_unlock_commit(data->buffer, event);
5771 
5772 	return 0;
5773 }
5774 
rb_test(void * arg)5775 static __init int rb_test(void *arg)
5776 {
5777 	struct rb_test_data *data = arg;
5778 
5779 	while (!kthread_should_stop()) {
5780 		rb_write_something(data, false);
5781 		data->cnt++;
5782 
5783 		set_current_state(TASK_INTERRUPTIBLE);
5784 		/* Now sleep between a min of 100-300us and a max of 1ms */
5785 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5786 	}
5787 
5788 	return 0;
5789 }
5790 
rb_ipi(void * ignore)5791 static __init void rb_ipi(void *ignore)
5792 {
5793 	struct rb_test_data *data;
5794 	int cpu = smp_processor_id();
5795 
5796 	data = &rb_data[cpu];
5797 	rb_write_something(data, true);
5798 }
5799 
rb_hammer_test(void * arg)5800 static __init int rb_hammer_test(void *arg)
5801 {
5802 	while (!kthread_should_stop()) {
5803 
5804 		/* Send an IPI to all cpus to write data! */
5805 		smp_call_function(rb_ipi, NULL, 1);
5806 		/* No sleep, but for non preempt, let others run */
5807 		schedule();
5808 	}
5809 
5810 	return 0;
5811 }
5812 
test_ringbuffer(void)5813 static __init int test_ringbuffer(void)
5814 {
5815 	struct task_struct *rb_hammer;
5816 	struct trace_buffer *buffer;
5817 	int cpu;
5818 	int ret = 0;
5819 
5820 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5821 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5822 		return 0;
5823 	}
5824 
5825 	pr_info("Running ring buffer tests...\n");
5826 
5827 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5828 	if (WARN_ON(!buffer))
5829 		return 0;
5830 
5831 	/* Disable buffer so that threads can't write to it yet */
5832 	ring_buffer_record_off(buffer);
5833 
5834 	for_each_online_cpu(cpu) {
5835 		rb_data[cpu].buffer = buffer;
5836 		rb_data[cpu].cpu = cpu;
5837 		rb_data[cpu].cnt = cpu;
5838 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5839 						 "rbtester/%d", cpu);
5840 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5841 			pr_cont("FAILED\n");
5842 			ret = PTR_ERR(rb_threads[cpu]);
5843 			goto out_free;
5844 		}
5845 
5846 		kthread_bind(rb_threads[cpu], cpu);
5847  		wake_up_process(rb_threads[cpu]);
5848 	}
5849 
5850 	/* Now create the rb hammer! */
5851 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5852 	if (WARN_ON(IS_ERR(rb_hammer))) {
5853 		pr_cont("FAILED\n");
5854 		ret = PTR_ERR(rb_hammer);
5855 		goto out_free;
5856 	}
5857 
5858 	ring_buffer_record_on(buffer);
5859 	/*
5860 	 * Show buffer is enabled before setting rb_test_started.
5861 	 * Yes there's a small race window where events could be
5862 	 * dropped and the thread wont catch it. But when a ring
5863 	 * buffer gets enabled, there will always be some kind of
5864 	 * delay before other CPUs see it. Thus, we don't care about
5865 	 * those dropped events. We care about events dropped after
5866 	 * the threads see that the buffer is active.
5867 	 */
5868 	smp_wmb();
5869 	rb_test_started = true;
5870 
5871 	set_current_state(TASK_INTERRUPTIBLE);
5872 	/* Just run for 10 seconds */;
5873 	schedule_timeout(10 * HZ);
5874 
5875 	kthread_stop(rb_hammer);
5876 
5877  out_free:
5878 	for_each_online_cpu(cpu) {
5879 		if (!rb_threads[cpu])
5880 			break;
5881 		kthread_stop(rb_threads[cpu]);
5882 	}
5883 	if (ret) {
5884 		ring_buffer_free(buffer);
5885 		return ret;
5886 	}
5887 
5888 	/* Report! */
5889 	pr_info("finished\n");
5890 	for_each_online_cpu(cpu) {
5891 		struct ring_buffer_event *event;
5892 		struct rb_test_data *data = &rb_data[cpu];
5893 		struct rb_item *item;
5894 		unsigned long total_events;
5895 		unsigned long total_dropped;
5896 		unsigned long total_written;
5897 		unsigned long total_alloc;
5898 		unsigned long total_read = 0;
5899 		unsigned long total_size = 0;
5900 		unsigned long total_len = 0;
5901 		unsigned long total_lost = 0;
5902 		unsigned long lost;
5903 		int big_event_size;
5904 		int small_event_size;
5905 
5906 		ret = -1;
5907 
5908 		total_events = data->events + data->events_nested;
5909 		total_written = data->bytes_written + data->bytes_written_nested;
5910 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5911 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5912 
5913 		big_event_size = data->max_size + data->max_size_nested;
5914 		small_event_size = data->min_size + data->min_size_nested;
5915 
5916 		pr_info("CPU %d:\n", cpu);
5917 		pr_info("              events:    %ld\n", total_events);
5918 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5919 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5920 		pr_info("       written bytes:    %ld\n", total_written);
5921 		pr_info("       biggest event:    %d\n", big_event_size);
5922 		pr_info("      smallest event:    %d\n", small_event_size);
5923 
5924 		if (RB_WARN_ON(buffer, total_dropped))
5925 			break;
5926 
5927 		ret = 0;
5928 
5929 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5930 			total_lost += lost;
5931 			item = ring_buffer_event_data(event);
5932 			total_len += ring_buffer_event_length(event);
5933 			total_size += item->size + sizeof(struct rb_item);
5934 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5935 				pr_info("FAILED!\n");
5936 				pr_info("buffer had: %.*s\n", item->size, item->str);
5937 				pr_info("expected:   %.*s\n", item->size, rb_string);
5938 				RB_WARN_ON(buffer, 1);
5939 				ret = -1;
5940 				break;
5941 			}
5942 			total_read++;
5943 		}
5944 		if (ret)
5945 			break;
5946 
5947 		ret = -1;
5948 
5949 		pr_info("         read events:   %ld\n", total_read);
5950 		pr_info("         lost events:   %ld\n", total_lost);
5951 		pr_info("        total events:   %ld\n", total_lost + total_read);
5952 		pr_info("  recorded len bytes:   %ld\n", total_len);
5953 		pr_info(" recorded size bytes:   %ld\n", total_size);
5954 		if (total_lost)
5955 			pr_info(" With dropped events, record len and size may not match\n"
5956 				" alloced and written from above\n");
5957 		if (!total_lost) {
5958 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5959 				       total_size != total_written))
5960 				break;
5961 		}
5962 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5963 			break;
5964 
5965 		ret = 0;
5966 	}
5967 	if (!ret)
5968 		pr_info("Ring buffer PASSED!\n");
5969 
5970 	ring_buffer_free(buffer);
5971 	return 0;
5972 }
5973 
5974 late_initcall(test_ringbuffer);
5975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5976