1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51
52 #undef CREATE_TRACE_POINTS
53 #include <trace/hooks/mm.h>
54
55 /*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60 #include <asm/mman.h>
61
62 /*
63 * Shared mappings implemented 30.11.1994. It's not fully working yet,
64 * though.
65 *
66 * Shared mappings now work. 15.8.1995 Bruno.
67 *
68 * finished 'unifying' the page and buffer cache and SMP-threaded the
69 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
70 *
71 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
72 */
73
74 /*
75 * Lock ordering:
76 *
77 * ->i_mmap_rwsem (truncate_pagecache)
78 * ->private_lock (__free_pte->__set_page_dirty_buffers)
79 * ->swap_lock (exclusive_swap_page, others)
80 * ->i_pages lock
81 *
82 * ->i_mutex
83 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
84 *
85 * ->mmap_lock
86 * ->i_mmap_rwsem
87 * ->page_table_lock or pte_lock (various, mainly in memory.c)
88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 *
90 * ->mmap_lock
91 * ->lock_page (access_process_vm)
92 *
93 * ->i_mutex (generic_perform_write)
94 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
95 *
96 * bdi->wb.list_lock
97 * sb_lock (fs/fs-writeback.c)
98 * ->i_pages lock (__sync_single_inode)
99 *
100 * ->i_mmap_rwsem
101 * ->anon_vma.lock (vma_adjust)
102 *
103 * ->anon_vma.lock
104 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
105 *
106 * ->page_table_lock or pte_lock
107 * ->swap_lock (try_to_unmap_one)
108 * ->private_lock (try_to_unmap_one)
109 * ->i_pages lock (try_to_unmap_one)
110 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
111 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
112 * ->private_lock (page_remove_rmap->set_page_dirty)
113 * ->i_pages lock (page_remove_rmap->set_page_dirty)
114 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
115 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
116 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
117 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
118 * ->inode->i_lock (zap_pte_range->set_page_dirty)
119 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
120 *
121 * ->i_mmap_rwsem
122 * ->tasklist_lock (memory_failure, collect_procs_ao)
123 */
124
page_cache_delete(struct address_space * mapping,struct page * page,void * shadow)125 static void page_cache_delete(struct address_space *mapping,
126 struct page *page, void *shadow)
127 {
128 XA_STATE(xas, &mapping->i_pages, page->index);
129 unsigned int nr = 1;
130
131 mapping_set_update(&xas, mapping);
132
133 /* hugetlb pages are represented by a single entry in the xarray */
134 if (!PageHuge(page)) {
135 xas_set_order(&xas, page->index, compound_order(page));
136 nr = compound_nr(page);
137 }
138
139 VM_BUG_ON_PAGE(!PageLocked(page), page);
140 VM_BUG_ON_PAGE(PageTail(page), page);
141 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
142
143 xas_store(&xas, shadow);
144 xas_init_marks(&xas);
145
146 page->mapping = NULL;
147 /* Leave page->index set: truncation lookup relies upon it */
148
149 if (shadow) {
150 mapping->nrexceptional += nr;
151 /*
152 * Make sure the nrexceptional update is committed before
153 * the nrpages update so that final truncate racing
154 * with reclaim does not see both counters 0 at the
155 * same time and miss a shadow entry.
156 */
157 smp_wmb();
158 }
159 mapping->nrpages -= nr;
160 }
161
unaccount_page_cache_page(struct address_space * mapping,struct page * page)162 static void unaccount_page_cache_page(struct address_space *mapping,
163 struct page *page)
164 {
165 int nr;
166
167 /*
168 * if we're uptodate, flush out into the cleancache, otherwise
169 * invalidate any existing cleancache entries. We can't leave
170 * stale data around in the cleancache once our page is gone
171 */
172 if (PageUptodate(page) && PageMappedToDisk(page))
173 cleancache_put_page(page);
174 else
175 cleancache_invalidate_page(mapping, page);
176
177 VM_BUG_ON_PAGE(PageTail(page), page);
178 VM_BUG_ON_PAGE(page_mapped(page), page);
179 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
180 int mapcount;
181
182 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
183 current->comm, page_to_pfn(page));
184 dump_page(page, "still mapped when deleted");
185 dump_stack();
186 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
187
188 mapcount = page_mapcount(page);
189 if (mapping_exiting(mapping) &&
190 page_count(page) >= mapcount + 2) {
191 /*
192 * All vmas have already been torn down, so it's
193 * a good bet that actually the page is unmapped,
194 * and we'd prefer not to leak it: if we're wrong,
195 * some other bad page check should catch it later.
196 */
197 page_mapcount_reset(page);
198 page_ref_sub(page, mapcount);
199 }
200 }
201
202 /* hugetlb pages do not participate in page cache accounting. */
203 if (PageHuge(page))
204 return;
205
206 nr = thp_nr_pages(page);
207
208 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
209 if (PageSwapBacked(page)) {
210 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
211 if (PageTransHuge(page))
212 __dec_node_page_state(page, NR_SHMEM_THPS);
213 } else if (PageTransHuge(page)) {
214 __dec_node_page_state(page, NR_FILE_THPS);
215 filemap_nr_thps_dec(mapping);
216 }
217
218 /*
219 * At this point page must be either written or cleaned by
220 * truncate. Dirty page here signals a bug and loss of
221 * unwritten data.
222 *
223 * This fixes dirty accounting after removing the page entirely
224 * but leaves PageDirty set: it has no effect for truncated
225 * page and anyway will be cleared before returning page into
226 * buddy allocator.
227 */
228 if (WARN_ON_ONCE(PageDirty(page)))
229 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
230 }
231
232 /*
233 * Delete a page from the page cache and free it. Caller has to make
234 * sure the page is locked and that nobody else uses it - or that usage
235 * is safe. The caller must hold the i_pages lock.
236 */
__delete_from_page_cache(struct page * page,void * shadow)237 void __delete_from_page_cache(struct page *page, void *shadow)
238 {
239 struct address_space *mapping = page->mapping;
240
241 trace_mm_filemap_delete_from_page_cache(page);
242
243 unaccount_page_cache_page(mapping, page);
244 page_cache_delete(mapping, page, shadow);
245 }
246
page_cache_free_page(struct address_space * mapping,struct page * page)247 static void page_cache_free_page(struct address_space *mapping,
248 struct page *page)
249 {
250 void (*freepage)(struct page *);
251
252 freepage = mapping->a_ops->freepage;
253 if (freepage)
254 freepage(page);
255
256 if (PageTransHuge(page) && !PageHuge(page)) {
257 page_ref_sub(page, thp_nr_pages(page));
258 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
259 } else {
260 put_page(page);
261 }
262 }
263
264 /**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
delete_from_page_cache(struct page * page)272 void delete_from_page_cache(struct page *page)
273 {
274 struct address_space *mapping = page_mapping(page);
275 unsigned long flags;
276
277 BUG_ON(!PageLocked(page));
278 xa_lock_irqsave(&mapping->i_pages, flags);
279 __delete_from_page_cache(page, NULL);
280 xa_unlock_irqrestore(&mapping->i_pages, flags);
281
282 page_cache_free_page(mapping, page);
283 }
284 EXPORT_SYMBOL(delete_from_page_cache);
285
286 /*
287 * page_cache_delete_batch - delete several pages from page cache
288 * @mapping: the mapping to which pages belong
289 * @pvec: pagevec with pages to delete
290 *
291 * The function walks over mapping->i_pages and removes pages passed in @pvec
292 * from the mapping. The function expects @pvec to be sorted by page index
293 * and is optimised for it to be dense.
294 * It tolerates holes in @pvec (mapping entries at those indices are not
295 * modified). The function expects only THP head pages to be present in the
296 * @pvec.
297 *
298 * The function expects the i_pages lock to be held.
299 */
page_cache_delete_batch(struct address_space * mapping,struct pagevec * pvec)300 static void page_cache_delete_batch(struct address_space *mapping,
301 struct pagevec *pvec)
302 {
303 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
304 int total_pages = 0;
305 int i = 0;
306 struct page *page;
307
308 mapping_set_update(&xas, mapping);
309 xas_for_each(&xas, page, ULONG_MAX) {
310 if (i >= pagevec_count(pvec))
311 break;
312
313 /* A swap/dax/shadow entry got inserted? Skip it. */
314 if (xa_is_value(page))
315 continue;
316 /*
317 * A page got inserted in our range? Skip it. We have our
318 * pages locked so they are protected from being removed.
319 * If we see a page whose index is higher than ours, it
320 * means our page has been removed, which shouldn't be
321 * possible because we're holding the PageLock.
322 */
323 if (page != pvec->pages[i]) {
324 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
325 page);
326 continue;
327 }
328
329 WARN_ON_ONCE(!PageLocked(page));
330
331 if (page->index == xas.xa_index)
332 page->mapping = NULL;
333 /* Leave page->index set: truncation lookup relies on it */
334
335 /*
336 * Move to the next page in the vector if this is a regular
337 * page or the index is of the last sub-page of this compound
338 * page.
339 */
340 if (page->index + compound_nr(page) - 1 == xas.xa_index)
341 i++;
342 xas_store(&xas, NULL);
343 total_pages++;
344 }
345 mapping->nrpages -= total_pages;
346 }
347
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)348 void delete_from_page_cache_batch(struct address_space *mapping,
349 struct pagevec *pvec)
350 {
351 int i;
352 unsigned long flags;
353
354 if (!pagevec_count(pvec))
355 return;
356
357 xa_lock_irqsave(&mapping->i_pages, flags);
358 for (i = 0; i < pagevec_count(pvec); i++) {
359 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
360
361 unaccount_page_cache_page(mapping, pvec->pages[i]);
362 }
363 page_cache_delete_batch(mapping, pvec);
364 xa_unlock_irqrestore(&mapping->i_pages, flags);
365
366 for (i = 0; i < pagevec_count(pvec); i++)
367 page_cache_free_page(mapping, pvec->pages[i]);
368 }
369
filemap_check_errors(struct address_space * mapping)370 int filemap_check_errors(struct address_space *mapping)
371 {
372 int ret = 0;
373 /* Check for outstanding write errors */
374 if (test_bit(AS_ENOSPC, &mapping->flags) &&
375 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
376 ret = -ENOSPC;
377 if (test_bit(AS_EIO, &mapping->flags) &&
378 test_and_clear_bit(AS_EIO, &mapping->flags))
379 ret = -EIO;
380 return ret;
381 }
382 EXPORT_SYMBOL(filemap_check_errors);
383
filemap_check_and_keep_errors(struct address_space * mapping)384 static int filemap_check_and_keep_errors(struct address_space *mapping)
385 {
386 /* Check for outstanding write errors */
387 if (test_bit(AS_EIO, &mapping->flags))
388 return -EIO;
389 if (test_bit(AS_ENOSPC, &mapping->flags))
390 return -ENOSPC;
391 return 0;
392 }
393
394 /**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413 {
414 int ret;
415 struct writeback_control wbc = {
416 .sync_mode = sync_mode,
417 .nr_to_write = LONG_MAX,
418 .range_start = start,
419 .range_end = end,
420 };
421
422 if (!mapping_can_writeback(mapping) ||
423 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
424 return 0;
425
426 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
427 ret = do_writepages(mapping, &wbc);
428 wbc_detach_inode(&wbc);
429 return ret;
430 }
431
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)432 static inline int __filemap_fdatawrite(struct address_space *mapping,
433 int sync_mode)
434 {
435 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
436 }
437
filemap_fdatawrite(struct address_space * mapping)438 int filemap_fdatawrite(struct address_space *mapping)
439 {
440 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
441 }
442 EXPORT_SYMBOL(filemap_fdatawrite);
443
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)444 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
445 loff_t end)
446 {
447 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
448 }
449 EXPORT_SYMBOL(filemap_fdatawrite_range);
450
451 /**
452 * filemap_flush - mostly a non-blocking flush
453 * @mapping: target address_space
454 *
455 * This is a mostly non-blocking flush. Not suitable for data-integrity
456 * purposes - I/O may not be started against all dirty pages.
457 *
458 * Return: %0 on success, negative error code otherwise.
459 */
filemap_flush(struct address_space * mapping)460 int filemap_flush(struct address_space *mapping)
461 {
462 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
463 }
464 EXPORT_SYMBOL(filemap_flush);
465
466 /**
467 * filemap_range_has_page - check if a page exists in range.
468 * @mapping: address space within which to check
469 * @start_byte: offset in bytes where the range starts
470 * @end_byte: offset in bytes where the range ends (inclusive)
471 *
472 * Find at least one page in the range supplied, usually used to check if
473 * direct writing in this range will trigger a writeback.
474 *
475 * Return: %true if at least one page exists in the specified range,
476 * %false otherwise.
477 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)478 bool filemap_range_has_page(struct address_space *mapping,
479 loff_t start_byte, loff_t end_byte)
480 {
481 struct page *page;
482 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
483 pgoff_t max = end_byte >> PAGE_SHIFT;
484
485 if (end_byte < start_byte)
486 return false;
487
488 rcu_read_lock();
489 for (;;) {
490 page = xas_find(&xas, max);
491 if (xas_retry(&xas, page))
492 continue;
493 /* Shadow entries don't count */
494 if (xa_is_value(page))
495 continue;
496 /*
497 * We don't need to try to pin this page; we're about to
498 * release the RCU lock anyway. It is enough to know that
499 * there was a page here recently.
500 */
501 break;
502 }
503 rcu_read_unlock();
504
505 return page != NULL;
506 }
507 EXPORT_SYMBOL(filemap_range_has_page);
508
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)509 static void __filemap_fdatawait_range(struct address_space *mapping,
510 loff_t start_byte, loff_t end_byte)
511 {
512 pgoff_t index = start_byte >> PAGE_SHIFT;
513 pgoff_t end = end_byte >> PAGE_SHIFT;
514 struct pagevec pvec;
515 int nr_pages;
516
517 if (end_byte < start_byte)
518 return;
519
520 pagevec_init(&pvec);
521 while (index <= end) {
522 unsigned i;
523
524 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
525 end, PAGECACHE_TAG_WRITEBACK);
526 if (!nr_pages)
527 break;
528
529 for (i = 0; i < nr_pages; i++) {
530 struct page *page = pvec.pages[i];
531
532 wait_on_page_writeback(page);
533 ClearPageError(page);
534 }
535 pagevec_release(&pvec);
536 cond_resched();
537 }
538 }
539
540 /**
541 * filemap_fdatawait_range - wait for writeback to complete
542 * @mapping: address space structure to wait for
543 * @start_byte: offset in bytes where the range starts
544 * @end_byte: offset in bytes where the range ends (inclusive)
545 *
546 * Walk the list of under-writeback pages of the given address space
547 * in the given range and wait for all of them. Check error status of
548 * the address space and return it.
549 *
550 * Since the error status of the address space is cleared by this function,
551 * callers are responsible for checking the return value and handling and/or
552 * reporting the error.
553 *
554 * Return: error status of the address space.
555 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558 {
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563
564 /**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580 {
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
586 /**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
599 *
600 * Return: error status of the address space vs. the file->f_wb_err cursor.
601 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 struct address_space *mapping = file->f_mapping;
605
606 __filemap_fdatawait_range(mapping, start_byte, end_byte);
607 return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610
611 /**
612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613 * @mapping: address space structure to wait for
614 *
615 * Walk the list of under-writeback pages of the given address space
616 * and wait for all of them. Unlike filemap_fdatawait(), this function
617 * does not clear error status of the address space.
618 *
619 * Use this function if callers don't handle errors themselves. Expected
620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621 * fsfreeze(8)
622 *
623 * Return: error status of the address space.
624 */
filemap_fdatawait_keep_errors(struct address_space * mapping)625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631
632 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 if (dax_mapping(mapping))
636 return mapping->nrexceptional;
637
638 return mapping->nrpages;
639 }
640
641 /**
642 * filemap_write_and_wait_range - write out & wait on a file range
643 * @mapping: the address_space for the pages
644 * @lstart: offset in bytes where the range starts
645 * @lend: offset in bytes where the range ends (inclusive)
646 *
647 * Write out and wait upon file offsets lstart->lend, inclusive.
648 *
649 * Note that @lend is inclusive (describes the last byte to be written) so
650 * that this function can be used to write to the very end-of-file (end = -1).
651 *
652 * Return: error status of the address space.
653 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)654 int filemap_write_and_wait_range(struct address_space *mapping,
655 loff_t lstart, loff_t lend)
656 {
657 int err = 0;
658
659 if (mapping_needs_writeback(mapping)) {
660 err = __filemap_fdatawrite_range(mapping, lstart, lend,
661 WB_SYNC_ALL);
662 /*
663 * Even if the above returned error, the pages may be
664 * written partially (e.g. -ENOSPC), so we wait for it.
665 * But the -EIO is special case, it may indicate the worst
666 * thing (e.g. bug) happened, so we avoid waiting for it.
667 */
668 if (err != -EIO) {
669 int err2 = filemap_fdatawait_range(mapping,
670 lstart, lend);
671 if (!err)
672 err = err2;
673 } else {
674 /* Clear any previously stored errors */
675 filemap_check_errors(mapping);
676 }
677 } else {
678 err = filemap_check_errors(mapping);
679 }
680 return err;
681 }
682 EXPORT_SYMBOL(filemap_write_and_wait_range);
683
__filemap_set_wb_err(struct address_space * mapping,int err)684 void __filemap_set_wb_err(struct address_space *mapping, int err)
685 {
686 errseq_t eseq = errseq_set(&mapping->wb_err, err);
687
688 trace_filemap_set_wb_err(mapping, eseq);
689 }
690 EXPORT_SYMBOL(__filemap_set_wb_err);
691
692 /**
693 * file_check_and_advance_wb_err - report wb error (if any) that was previously
694 * and advance wb_err to current one
695 * @file: struct file on which the error is being reported
696 *
697 * When userland calls fsync (or something like nfsd does the equivalent), we
698 * want to report any writeback errors that occurred since the last fsync (or
699 * since the file was opened if there haven't been any).
700 *
701 * Grab the wb_err from the mapping. If it matches what we have in the file,
702 * then just quickly return 0. The file is all caught up.
703 *
704 * If it doesn't match, then take the mapping value, set the "seen" flag in
705 * it and try to swap it into place. If it works, or another task beat us
706 * to it with the new value, then update the f_wb_err and return the error
707 * portion. The error at this point must be reported via proper channels
708 * (a'la fsync, or NFS COMMIT operation, etc.).
709 *
710 * While we handle mapping->wb_err with atomic operations, the f_wb_err
711 * value is protected by the f_lock since we must ensure that it reflects
712 * the latest value swapped in for this file descriptor.
713 *
714 * Return: %0 on success, negative error code otherwise.
715 */
file_check_and_advance_wb_err(struct file * file)716 int file_check_and_advance_wb_err(struct file *file)
717 {
718 int err = 0;
719 errseq_t old = READ_ONCE(file->f_wb_err);
720 struct address_space *mapping = file->f_mapping;
721
722 /* Locklessly handle the common case where nothing has changed */
723 if (errseq_check(&mapping->wb_err, old)) {
724 /* Something changed, must use slow path */
725 spin_lock(&file->f_lock);
726 old = file->f_wb_err;
727 err = errseq_check_and_advance(&mapping->wb_err,
728 &file->f_wb_err);
729 trace_file_check_and_advance_wb_err(file, old);
730 spin_unlock(&file->f_lock);
731 }
732
733 /*
734 * We're mostly using this function as a drop in replacement for
735 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
736 * that the legacy code would have had on these flags.
737 */
738 clear_bit(AS_EIO, &mapping->flags);
739 clear_bit(AS_ENOSPC, &mapping->flags);
740 return err;
741 }
742 EXPORT_SYMBOL(file_check_and_advance_wb_err);
743
744 /**
745 * file_write_and_wait_range - write out & wait on a file range
746 * @file: file pointing to address_space with pages
747 * @lstart: offset in bytes where the range starts
748 * @lend: offset in bytes where the range ends (inclusive)
749 *
750 * Write out and wait upon file offsets lstart->lend, inclusive.
751 *
752 * Note that @lend is inclusive (describes the last byte to be written) so
753 * that this function can be used to write to the very end-of-file (end = -1).
754 *
755 * After writing out and waiting on the data, we check and advance the
756 * f_wb_err cursor to the latest value, and return any errors detected there.
757 *
758 * Return: %0 on success, negative error code otherwise.
759 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)760 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
761 {
762 int err = 0, err2;
763 struct address_space *mapping = file->f_mapping;
764
765 if (mapping_needs_writeback(mapping)) {
766 err = __filemap_fdatawrite_range(mapping, lstart, lend,
767 WB_SYNC_ALL);
768 /* See comment of filemap_write_and_wait() */
769 if (err != -EIO)
770 __filemap_fdatawait_range(mapping, lstart, lend);
771 }
772 err2 = file_check_and_advance_wb_err(file);
773 if (!err)
774 err = err2;
775 return err;
776 }
777 EXPORT_SYMBOL(file_write_and_wait_range);
778
779 /**
780 * replace_page_cache_page - replace a pagecache page with a new one
781 * @old: page to be replaced
782 * @new: page to replace with
783 * @gfp_mask: allocation mode
784 *
785 * This function replaces a page in the pagecache with a new one. On
786 * success it acquires the pagecache reference for the new page and
787 * drops it for the old page. Both the old and new pages must be
788 * locked. This function does not add the new page to the LRU, the
789 * caller must do that.
790 *
791 * The remove + add is atomic. This function cannot fail.
792 *
793 * Return: %0
794 */
replace_page_cache_page(struct page * old,struct page * new,gfp_t gfp_mask)795 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
796 {
797 struct address_space *mapping = old->mapping;
798 void (*freepage)(struct page *) = mapping->a_ops->freepage;
799 pgoff_t offset = old->index;
800 XA_STATE(xas, &mapping->i_pages, offset);
801 unsigned long flags;
802
803 VM_BUG_ON_PAGE(!PageLocked(old), old);
804 VM_BUG_ON_PAGE(!PageLocked(new), new);
805 VM_BUG_ON_PAGE(new->mapping, new);
806
807 get_page(new);
808 new->mapping = mapping;
809 new->index = offset;
810
811 mem_cgroup_migrate(old, new);
812
813 xas_lock_irqsave(&xas, flags);
814 xas_store(&xas, new);
815
816 old->mapping = NULL;
817 /* hugetlb pages do not participate in page cache accounting. */
818 if (!PageHuge(old))
819 __dec_lruvec_page_state(old, NR_FILE_PAGES);
820 if (!PageHuge(new))
821 __inc_lruvec_page_state(new, NR_FILE_PAGES);
822 if (PageSwapBacked(old))
823 __dec_lruvec_page_state(old, NR_SHMEM);
824 if (PageSwapBacked(new))
825 __inc_lruvec_page_state(new, NR_SHMEM);
826 xas_unlock_irqrestore(&xas, flags);
827 if (freepage)
828 freepage(old);
829 put_page(old);
830
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(replace_page_cache_page);
834
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp,void ** shadowp)835 noinline int __add_to_page_cache_locked(struct page *page,
836 struct address_space *mapping,
837 pgoff_t offset, gfp_t gfp,
838 void **shadowp)
839 {
840 XA_STATE(xas, &mapping->i_pages, offset);
841 int huge = PageHuge(page);
842 int error;
843 bool charged = false;
844
845 VM_BUG_ON_PAGE(!PageLocked(page), page);
846 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
847 mapping_set_update(&xas, mapping);
848
849 get_page(page);
850 page->mapping = mapping;
851 page->index = offset;
852
853 if (!huge) {
854 error = mem_cgroup_charge(page, current->mm, gfp);
855 if (error)
856 goto error;
857 charged = true;
858 }
859
860 gfp &= GFP_RECLAIM_MASK;
861
862 do {
863 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
864 void *entry, *old = NULL;
865
866 if (order > thp_order(page))
867 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
868 order, gfp);
869 xas_lock_irq(&xas);
870 xas_for_each_conflict(&xas, entry) {
871 old = entry;
872 if (!xa_is_value(entry)) {
873 xas_set_err(&xas, -EEXIST);
874 goto unlock;
875 }
876 }
877
878 if (old) {
879 if (shadowp)
880 *shadowp = old;
881 /* entry may have been split before we acquired lock */
882 order = xa_get_order(xas.xa, xas.xa_index);
883 if (order > thp_order(page)) {
884 xas_split(&xas, old, order);
885 xas_reset(&xas);
886 }
887 }
888
889 xas_store(&xas, page);
890 if (xas_error(&xas))
891 goto unlock;
892
893 if (old)
894 mapping->nrexceptional--;
895 mapping->nrpages++;
896
897 /* hugetlb pages do not participate in page cache accounting */
898 if (!huge)
899 __inc_lruvec_page_state(page, NR_FILE_PAGES);
900 unlock:
901 xas_unlock_irq(&xas);
902 } while (xas_nomem(&xas, gfp));
903
904 if (xas_error(&xas)) {
905 error = xas_error(&xas);
906 if (charged)
907 mem_cgroup_uncharge(page);
908 goto error;
909 }
910
911 trace_mm_filemap_add_to_page_cache(page);
912 return 0;
913 error:
914 page->mapping = NULL;
915 /* Leave page->index set: truncation relies upon it */
916 put_page(page);
917 return error;
918 }
919 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
920
921 /**
922 * add_to_page_cache_locked - add a locked page to the pagecache
923 * @page: page to add
924 * @mapping: the page's address_space
925 * @offset: page index
926 * @gfp_mask: page allocation mode
927 *
928 * This function is used to add a page to the pagecache. It must be locked.
929 * This function does not add the page to the LRU. The caller must do that.
930 *
931 * Return: %0 on success, negative error code otherwise.
932 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)933 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
934 pgoff_t offset, gfp_t gfp_mask)
935 {
936 return __add_to_page_cache_locked(page, mapping, offset,
937 gfp_mask, NULL);
938 }
939 EXPORT_SYMBOL(add_to_page_cache_locked);
940
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)941 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
942 pgoff_t offset, gfp_t gfp_mask)
943 {
944 void *shadow = NULL;
945 int ret;
946
947 __SetPageLocked(page);
948 ret = __add_to_page_cache_locked(page, mapping, offset,
949 gfp_mask, &shadow);
950 if (unlikely(ret))
951 __ClearPageLocked(page);
952 else {
953 /*
954 * The page might have been evicted from cache only
955 * recently, in which case it should be activated like
956 * any other repeatedly accessed page.
957 * The exception is pages getting rewritten; evicting other
958 * data from the working set, only to cache data that will
959 * get overwritten with something else, is a waste of memory.
960 */
961 WARN_ON_ONCE(PageActive(page));
962 if (!(gfp_mask & __GFP_WRITE) && shadow)
963 workingset_refault(page, shadow);
964 lru_cache_add(page);
965 }
966 return ret;
967 }
968 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
969
970 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)971 struct page *__page_cache_alloc(gfp_t gfp)
972 {
973 int n;
974 struct page *page;
975
976 if (cpuset_do_page_mem_spread()) {
977 unsigned int cpuset_mems_cookie;
978 do {
979 cpuset_mems_cookie = read_mems_allowed_begin();
980 n = cpuset_mem_spread_node();
981 page = __alloc_pages_node(n, gfp, 0);
982 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
983
984 return page;
985 }
986 return alloc_pages(gfp, 0);
987 }
988 EXPORT_SYMBOL(__page_cache_alloc);
989 #endif
990
991 /*
992 * In order to wait for pages to become available there must be
993 * waitqueues associated with pages. By using a hash table of
994 * waitqueues where the bucket discipline is to maintain all
995 * waiters on the same queue and wake all when any of the pages
996 * become available, and for the woken contexts to check to be
997 * sure the appropriate page became available, this saves space
998 * at a cost of "thundering herd" phenomena during rare hash
999 * collisions.
1000 */
1001 #define PAGE_WAIT_TABLE_BITS 8
1002 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1003 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1004
page_waitqueue(struct page * page)1005 static wait_queue_head_t *page_waitqueue(struct page *page)
1006 {
1007 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1008 }
1009
pagecache_init(void)1010 void __init pagecache_init(void)
1011 {
1012 int i;
1013
1014 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1015 init_waitqueue_head(&page_wait_table[i]);
1016
1017 page_writeback_init();
1018 }
1019
1020 /*
1021 * The page wait code treats the "wait->flags" somewhat unusually, because
1022 * we have multiple different kinds of waits, not just the usual "exclusive"
1023 * one.
1024 *
1025 * We have:
1026 *
1027 * (a) no special bits set:
1028 *
1029 * We're just waiting for the bit to be released, and when a waker
1030 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1031 * and remove it from the wait queue.
1032 *
1033 * Simple and straightforward.
1034 *
1035 * (b) WQ_FLAG_EXCLUSIVE:
1036 *
1037 * The waiter is waiting to get the lock, and only one waiter should
1038 * be woken up to avoid any thundering herd behavior. We'll set the
1039 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1040 *
1041 * This is the traditional exclusive wait.
1042 *
1043 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1044 *
1045 * The waiter is waiting to get the bit, and additionally wants the
1046 * lock to be transferred to it for fair lock behavior. If the lock
1047 * cannot be taken, we stop walking the wait queue without waking
1048 * the waiter.
1049 *
1050 * This is the "fair lock handoff" case, and in addition to setting
1051 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1052 * that it now has the lock.
1053 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1054 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1055 {
1056 unsigned int flags;
1057 struct wait_page_key *key = arg;
1058 struct wait_page_queue *wait_page
1059 = container_of(wait, struct wait_page_queue, wait);
1060
1061 if (!wake_page_match(wait_page, key))
1062 return 0;
1063
1064 /*
1065 * If it's a lock handoff wait, we get the bit for it, and
1066 * stop walking (and do not wake it up) if we can't.
1067 */
1068 flags = wait->flags;
1069 if (flags & WQ_FLAG_EXCLUSIVE) {
1070 if (test_bit(key->bit_nr, &key->page->flags))
1071 return -1;
1072 if (flags & WQ_FLAG_CUSTOM) {
1073 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1074 return -1;
1075 flags |= WQ_FLAG_DONE;
1076 }
1077 }
1078
1079 /*
1080 * We are holding the wait-queue lock, but the waiter that
1081 * is waiting for this will be checking the flags without
1082 * any locking.
1083 *
1084 * So update the flags atomically, and wake up the waiter
1085 * afterwards to avoid any races. This store-release pairs
1086 * with the load-acquire in wait_on_page_bit_common().
1087 */
1088 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1089 wake_up_state(wait->private, mode);
1090
1091 /*
1092 * Ok, we have successfully done what we're waiting for,
1093 * and we can unconditionally remove the wait entry.
1094 *
1095 * Note that this pairs with the "finish_wait()" in the
1096 * waiter, and has to be the absolute last thing we do.
1097 * After this list_del_init(&wait->entry) the wait entry
1098 * might be de-allocated and the process might even have
1099 * exited.
1100 */
1101 list_del_init_careful(&wait->entry);
1102 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1103 }
1104
wake_up_page_bit(struct page * page,int bit_nr)1105 static void wake_up_page_bit(struct page *page, int bit_nr)
1106 {
1107 wait_queue_head_t *q = page_waitqueue(page);
1108 struct wait_page_key key;
1109 unsigned long flags;
1110 wait_queue_entry_t bookmark;
1111
1112 key.page = page;
1113 key.bit_nr = bit_nr;
1114 key.page_match = 0;
1115
1116 bookmark.flags = 0;
1117 bookmark.private = NULL;
1118 bookmark.func = NULL;
1119 INIT_LIST_HEAD(&bookmark.entry);
1120
1121 spin_lock_irqsave(&q->lock, flags);
1122 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1123
1124 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1125 /*
1126 * Take a breather from holding the lock,
1127 * allow pages that finish wake up asynchronously
1128 * to acquire the lock and remove themselves
1129 * from wait queue
1130 */
1131 spin_unlock_irqrestore(&q->lock, flags);
1132 cpu_relax();
1133 spin_lock_irqsave(&q->lock, flags);
1134 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1135 }
1136
1137 /*
1138 * It is possible for other pages to have collided on the waitqueue
1139 * hash, so in that case check for a page match. That prevents a long-
1140 * term waiter
1141 *
1142 * It is still possible to miss a case here, when we woke page waiters
1143 * and removed them from the waitqueue, but there are still other
1144 * page waiters.
1145 */
1146 if (!waitqueue_active(q) || !key.page_match) {
1147 ClearPageWaiters(page);
1148 /*
1149 * It's possible to miss clearing Waiters here, when we woke
1150 * our page waiters, but the hashed waitqueue has waiters for
1151 * other pages on it.
1152 *
1153 * That's okay, it's a rare case. The next waker will clear it.
1154 */
1155 }
1156 spin_unlock_irqrestore(&q->lock, flags);
1157 }
1158
wake_up_page(struct page * page,int bit)1159 static void wake_up_page(struct page *page, int bit)
1160 {
1161 if (!PageWaiters(page))
1162 return;
1163 wake_up_page_bit(page, bit);
1164 }
1165
1166 /*
1167 * A choice of three behaviors for wait_on_page_bit_common():
1168 */
1169 enum behavior {
1170 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1171 * __lock_page() waiting on then setting PG_locked.
1172 */
1173 SHARED, /* Hold ref to page and check the bit when woken, like
1174 * wait_on_page_writeback() waiting on PG_writeback.
1175 */
1176 DROP, /* Drop ref to page before wait, no check when woken,
1177 * like put_and_wait_on_page_locked() on PG_locked.
1178 */
1179 };
1180
1181 /*
1182 * Attempt to check (or get) the page bit, and mark us done
1183 * if successful.
1184 */
trylock_page_bit_common(struct page * page,int bit_nr,struct wait_queue_entry * wait)1185 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1186 struct wait_queue_entry *wait)
1187 {
1188 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1189 if (test_and_set_bit(bit_nr, &page->flags))
1190 return false;
1191 } else if (test_bit(bit_nr, &page->flags))
1192 return false;
1193
1194 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1195 return true;
1196 }
1197
1198 /* How many times do we accept lock stealing from under a waiter? */
1199 int sysctl_page_lock_unfairness = 5;
1200
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,enum behavior behavior)1201 static inline __sched int wait_on_page_bit_common(wait_queue_head_t *q,
1202 struct page *page, int bit_nr, int state, enum behavior behavior)
1203 {
1204 int unfairness = sysctl_page_lock_unfairness;
1205 struct wait_page_queue wait_page;
1206 wait_queue_entry_t *wait = &wait_page.wait;
1207 bool thrashing = false;
1208 bool delayacct = false;
1209 unsigned long pflags;
1210
1211 if (bit_nr == PG_locked &&
1212 !PageUptodate(page) && PageWorkingset(page)) {
1213 if (!PageSwapBacked(page)) {
1214 delayacct_thrashing_start();
1215 delayacct = true;
1216 }
1217 psi_memstall_enter(&pflags);
1218 thrashing = true;
1219 }
1220
1221 init_wait(wait);
1222 wait->func = wake_page_function;
1223 wait_page.page = page;
1224 wait_page.bit_nr = bit_nr;
1225
1226 repeat:
1227 wait->flags = 0;
1228 if (behavior == EXCLUSIVE) {
1229 wait->flags = WQ_FLAG_EXCLUSIVE;
1230 if (--unfairness < 0)
1231 wait->flags |= WQ_FLAG_CUSTOM;
1232 }
1233
1234 /*
1235 * Do one last check whether we can get the
1236 * page bit synchronously.
1237 *
1238 * Do the SetPageWaiters() marking before that
1239 * to let any waker we _just_ missed know they
1240 * need to wake us up (otherwise they'll never
1241 * even go to the slow case that looks at the
1242 * page queue), and add ourselves to the wait
1243 * queue if we need to sleep.
1244 *
1245 * This part needs to be done under the queue
1246 * lock to avoid races.
1247 */
1248 spin_lock_irq(&q->lock);
1249 SetPageWaiters(page);
1250 if (!trylock_page_bit_common(page, bit_nr, wait))
1251 __add_wait_queue_entry_tail(q, wait);
1252 spin_unlock_irq(&q->lock);
1253
1254 /*
1255 * From now on, all the logic will be based on
1256 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1257 * see whether the page bit testing has already
1258 * been done by the wake function.
1259 *
1260 * We can drop our reference to the page.
1261 */
1262 if (behavior == DROP)
1263 put_page(page);
1264
1265 /*
1266 * Note that until the "finish_wait()", or until
1267 * we see the WQ_FLAG_WOKEN flag, we need to
1268 * be very careful with the 'wait->flags', because
1269 * we may race with a waker that sets them.
1270 */
1271 for (;;) {
1272 unsigned int flags;
1273
1274 set_current_state(state);
1275
1276 /* Loop until we've been woken or interrupted */
1277 flags = smp_load_acquire(&wait->flags);
1278 if (!(flags & WQ_FLAG_WOKEN)) {
1279 if (signal_pending_state(state, current))
1280 break;
1281
1282 io_schedule();
1283 continue;
1284 }
1285
1286 /* If we were non-exclusive, we're done */
1287 if (behavior != EXCLUSIVE)
1288 break;
1289
1290 /* If the waker got the lock for us, we're done */
1291 if (flags & WQ_FLAG_DONE)
1292 break;
1293
1294 /*
1295 * Otherwise, if we're getting the lock, we need to
1296 * try to get it ourselves.
1297 *
1298 * And if that fails, we'll have to retry this all.
1299 */
1300 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1301 goto repeat;
1302
1303 wait->flags |= WQ_FLAG_DONE;
1304 break;
1305 }
1306
1307 /*
1308 * If a signal happened, this 'finish_wait()' may remove the last
1309 * waiter from the wait-queues, but the PageWaiters bit will remain
1310 * set. That's ok. The next wakeup will take care of it, and trying
1311 * to do it here would be difficult and prone to races.
1312 */
1313 finish_wait(q, wait);
1314
1315 if (thrashing) {
1316 if (delayacct)
1317 delayacct_thrashing_end();
1318 psi_memstall_leave(&pflags);
1319 }
1320
1321 /*
1322 * NOTE! The wait->flags weren't stable until we've done the
1323 * 'finish_wait()', and we could have exited the loop above due
1324 * to a signal, and had a wakeup event happen after the signal
1325 * test but before the 'finish_wait()'.
1326 *
1327 * So only after the finish_wait() can we reliably determine
1328 * if we got woken up or not, so we can now figure out the final
1329 * return value based on that state without races.
1330 *
1331 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333 */
1334 if (behavior == EXCLUSIVE)
1335 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336
1337 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338 }
1339
wait_on_page_bit(struct page * page,int bit_nr)1340 __sched void wait_on_page_bit(struct page *page, int bit_nr)
1341 {
1342 wait_queue_head_t *q = page_waitqueue(page);
1343 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1344 }
1345 EXPORT_SYMBOL(wait_on_page_bit);
1346
wait_on_page_bit_killable(struct page * page,int bit_nr)1347 __sched int wait_on_page_bit_killable(struct page *page, int bit_nr)
1348 {
1349 wait_queue_head_t *q = page_waitqueue(page);
1350 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1351 }
1352 EXPORT_SYMBOL(wait_on_page_bit_killable);
1353
__wait_on_page_locked_async(struct page * page,struct wait_page_queue * wait,bool set)1354 static int __wait_on_page_locked_async(struct page *page,
1355 struct wait_page_queue *wait, bool set)
1356 {
1357 struct wait_queue_head *q = page_waitqueue(page);
1358 int ret = 0;
1359
1360 wait->page = page;
1361 wait->bit_nr = PG_locked;
1362
1363 spin_lock_irq(&q->lock);
1364 __add_wait_queue_entry_tail(q, &wait->wait);
1365 SetPageWaiters(page);
1366 if (set)
1367 ret = !trylock_page(page);
1368 else
1369 ret = PageLocked(page);
1370 /*
1371 * If we were succesful now, we know we're still on the
1372 * waitqueue as we're still under the lock. This means it's
1373 * safe to remove and return success, we know the callback
1374 * isn't going to trigger.
1375 */
1376 if (!ret)
1377 __remove_wait_queue(q, &wait->wait);
1378 else
1379 ret = -EIOCBQUEUED;
1380 spin_unlock_irq(&q->lock);
1381 return ret;
1382 }
1383
wait_on_page_locked_async(struct page * page,struct wait_page_queue * wait)1384 static int wait_on_page_locked_async(struct page *page,
1385 struct wait_page_queue *wait)
1386 {
1387 if (!PageLocked(page))
1388 return 0;
1389 return __wait_on_page_locked_async(compound_head(page), wait, false);
1390 }
1391
1392 /**
1393 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1394 * @page: The page to wait for.
1395 *
1396 * The caller should hold a reference on @page. They expect the page to
1397 * become unlocked relatively soon, but do not wish to hold up migration
1398 * (for example) by holding the reference while waiting for the page to
1399 * come unlocked. After this function returns, the caller should not
1400 * dereference @page.
1401 */
put_and_wait_on_page_locked(struct page * page)1402 void put_and_wait_on_page_locked(struct page *page)
1403 {
1404 wait_queue_head_t *q;
1405
1406 page = compound_head(page);
1407 q = page_waitqueue(page);
1408 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1409 }
1410
1411 /**
1412 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1413 * @page: Page defining the wait queue of interest
1414 * @waiter: Waiter to add to the queue
1415 *
1416 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1417 */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1418 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1419 {
1420 wait_queue_head_t *q = page_waitqueue(page);
1421 unsigned long flags;
1422
1423 spin_lock_irqsave(&q->lock, flags);
1424 __add_wait_queue_entry_tail(q, waiter);
1425 SetPageWaiters(page);
1426 spin_unlock_irqrestore(&q->lock, flags);
1427 }
1428 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1429
1430 #ifndef clear_bit_unlock_is_negative_byte
1431
1432 /*
1433 * PG_waiters is the high bit in the same byte as PG_lock.
1434 *
1435 * On x86 (and on many other architectures), we can clear PG_lock and
1436 * test the sign bit at the same time. But if the architecture does
1437 * not support that special operation, we just do this all by hand
1438 * instead.
1439 *
1440 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1441 * being cleared, but a memory barrier should be unnecessary since it is
1442 * in the same byte as PG_locked.
1443 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1444 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1445 {
1446 clear_bit_unlock(nr, mem);
1447 /* smp_mb__after_atomic(); */
1448 return test_bit(PG_waiters, mem);
1449 }
1450
1451 #endif
1452
1453 /**
1454 * unlock_page - unlock a locked page
1455 * @page: the page
1456 *
1457 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1458 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1459 * mechanism between PageLocked pages and PageWriteback pages is shared.
1460 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1461 *
1462 * Note that this depends on PG_waiters being the sign bit in the byte
1463 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1464 * clear the PG_locked bit and test PG_waiters at the same time fairly
1465 * portably (architectures that do LL/SC can test any bit, while x86 can
1466 * test the sign bit).
1467 */
unlock_page(struct page * page)1468 void unlock_page(struct page *page)
1469 {
1470 BUILD_BUG_ON(PG_waiters != 7);
1471 page = compound_head(page);
1472 VM_BUG_ON_PAGE(!PageLocked(page), page);
1473 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1474 wake_up_page_bit(page, PG_locked);
1475 }
1476 EXPORT_SYMBOL(unlock_page);
1477
1478 /**
1479 * end_page_writeback - end writeback against a page
1480 * @page: the page
1481 */
end_page_writeback(struct page * page)1482 void end_page_writeback(struct page *page)
1483 {
1484 /*
1485 * TestClearPageReclaim could be used here but it is an atomic
1486 * operation and overkill in this particular case. Failing to
1487 * shuffle a page marked for immediate reclaim is too mild to
1488 * justify taking an atomic operation penalty at the end of
1489 * ever page writeback.
1490 */
1491 if (PageReclaim(page)) {
1492 ClearPageReclaim(page);
1493 rotate_reclaimable_page(page);
1494 }
1495
1496 /*
1497 * Writeback does not hold a page reference of its own, relying
1498 * on truncation to wait for the clearing of PG_writeback.
1499 * But here we must make sure that the page is not freed and
1500 * reused before the wake_up_page().
1501 */
1502 get_page(page);
1503 if (!test_clear_page_writeback(page))
1504 BUG();
1505
1506 smp_mb__after_atomic();
1507 wake_up_page(page, PG_writeback);
1508 put_page(page);
1509 }
1510 EXPORT_SYMBOL(end_page_writeback);
1511
1512 /*
1513 * After completing I/O on a page, call this routine to update the page
1514 * flags appropriately
1515 */
page_endio(struct page * page,bool is_write,int err)1516 void page_endio(struct page *page, bool is_write, int err)
1517 {
1518 if (!is_write) {
1519 if (!err) {
1520 SetPageUptodate(page);
1521 } else {
1522 ClearPageUptodate(page);
1523 SetPageError(page);
1524 }
1525 unlock_page(page);
1526 } else {
1527 if (err) {
1528 struct address_space *mapping;
1529
1530 SetPageError(page);
1531 mapping = page_mapping(page);
1532 if (mapping)
1533 mapping_set_error(mapping, err);
1534 }
1535 end_page_writeback(page);
1536 }
1537 }
1538 EXPORT_SYMBOL_GPL(page_endio);
1539
1540 /**
1541 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1542 * @__page: the page to lock
1543 */
__lock_page(struct page * __page)1544 __sched void __lock_page(struct page *__page)
1545 {
1546 struct page *page = compound_head(__page);
1547 wait_queue_head_t *q = page_waitqueue(page);
1548 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1549 EXCLUSIVE);
1550 }
1551 EXPORT_SYMBOL(__lock_page);
1552
__lock_page_killable(struct page * __page)1553 __sched int __lock_page_killable(struct page *__page)
1554 {
1555 struct page *page = compound_head(__page);
1556 wait_queue_head_t *q = page_waitqueue(page);
1557 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1558 EXCLUSIVE);
1559 }
1560 EXPORT_SYMBOL_GPL(__lock_page_killable);
1561
__lock_page_async(struct page * page,struct wait_page_queue * wait)1562 __sched int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1563 {
1564 return __wait_on_page_locked_async(page, wait, true);
1565 }
1566
1567 /*
1568 * Return values:
1569 * 1 - page is locked; mmap_lock is still held.
1570 * 0 - page is not locked.
1571 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1572 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1573 * which case mmap_lock is still held.
1574 *
1575 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1576 * with the page locked and the mmap_lock unperturbed.
1577 */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1578 __sched int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1579 unsigned int flags)
1580 {
1581 if (fault_flag_allow_retry_first(flags)) {
1582 /*
1583 * CAUTION! In this case, mmap_lock is not released
1584 * even though return 0.
1585 */
1586 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1587 return 0;
1588
1589 mmap_read_unlock(mm);
1590 if (flags & FAULT_FLAG_KILLABLE)
1591 wait_on_page_locked_killable(page);
1592 else
1593 wait_on_page_locked(page);
1594 return 0;
1595 } else {
1596 if (flags & FAULT_FLAG_KILLABLE) {
1597 int ret;
1598
1599 ret = __lock_page_killable(page);
1600 if (ret) {
1601 mmap_read_unlock(mm);
1602 return 0;
1603 }
1604 } else
1605 __lock_page(page);
1606 return 1;
1607 }
1608 }
1609
1610 /**
1611 * page_cache_next_miss() - Find the next gap in the page cache.
1612 * @mapping: Mapping.
1613 * @index: Index.
1614 * @max_scan: Maximum range to search.
1615 *
1616 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1617 * gap with the lowest index.
1618 *
1619 * This function may be called under the rcu_read_lock. However, this will
1620 * not atomically search a snapshot of the cache at a single point in time.
1621 * For example, if a gap is created at index 5, then subsequently a gap is
1622 * created at index 10, page_cache_next_miss covering both indices may
1623 * return 10 if called under the rcu_read_lock.
1624 *
1625 * Return: The index of the gap if found, otherwise an index outside the
1626 * range specified (in which case 'return - index >= max_scan' will be true).
1627 * In the rare case of index wrap-around, 0 will be returned.
1628 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1629 pgoff_t page_cache_next_miss(struct address_space *mapping,
1630 pgoff_t index, unsigned long max_scan)
1631 {
1632 XA_STATE(xas, &mapping->i_pages, index);
1633
1634 while (max_scan--) {
1635 void *entry = xas_next(&xas);
1636 if (!entry || xa_is_value(entry))
1637 break;
1638 if (xas.xa_index == 0)
1639 break;
1640 }
1641
1642 return xas.xa_index;
1643 }
1644 EXPORT_SYMBOL(page_cache_next_miss);
1645
1646 /**
1647 * page_cache_prev_miss() - Find the previous gap in the page cache.
1648 * @mapping: Mapping.
1649 * @index: Index.
1650 * @max_scan: Maximum range to search.
1651 *
1652 * Search the range [max(index - max_scan + 1, 0), index] for the
1653 * gap with the highest index.
1654 *
1655 * This function may be called under the rcu_read_lock. However, this will
1656 * not atomically search a snapshot of the cache at a single point in time.
1657 * For example, if a gap is created at index 10, then subsequently a gap is
1658 * created at index 5, page_cache_prev_miss() covering both indices may
1659 * return 5 if called under the rcu_read_lock.
1660 *
1661 * Return: The index of the gap if found, otherwise an index outside the
1662 * range specified (in which case 'index - return >= max_scan' will be true).
1663 * In the rare case of wrap-around, ULONG_MAX will be returned.
1664 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1665 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1666 pgoff_t index, unsigned long max_scan)
1667 {
1668 XA_STATE(xas, &mapping->i_pages, index);
1669
1670 while (max_scan--) {
1671 void *entry = xas_prev(&xas);
1672 if (!entry || xa_is_value(entry))
1673 break;
1674 if (xas.xa_index == ULONG_MAX)
1675 break;
1676 }
1677
1678 return xas.xa_index;
1679 }
1680 EXPORT_SYMBOL(page_cache_prev_miss);
1681
1682 /**
1683 * find_get_entry - find and get a page cache entry
1684 * @mapping: the address_space to search
1685 * @index: The page cache index.
1686 *
1687 * Looks up the page cache slot at @mapping & @offset. If there is a
1688 * page cache page, the head page is returned with an increased refcount.
1689 *
1690 * If the slot holds a shadow entry of a previously evicted page, or a
1691 * swap entry from shmem/tmpfs, it is returned.
1692 *
1693 * Return: The head page or shadow entry, %NULL if nothing is found.
1694 */
find_get_entry(struct address_space * mapping,pgoff_t index)1695 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1696 {
1697 XA_STATE(xas, &mapping->i_pages, index);
1698 struct page *page;
1699
1700 rcu_read_lock();
1701 repeat:
1702 xas_reset(&xas);
1703 page = xas_load(&xas);
1704 if (xas_retry(&xas, page))
1705 goto repeat;
1706 /*
1707 * A shadow entry of a recently evicted page, or a swap entry from
1708 * shmem/tmpfs. Return it without attempting to raise page count.
1709 */
1710 if (!page || xa_is_value(page))
1711 goto out;
1712
1713 if (!page_cache_get_speculative(page))
1714 goto repeat;
1715
1716 /*
1717 * Has the page moved or been split?
1718 * This is part of the lockless pagecache protocol. See
1719 * include/linux/pagemap.h for details.
1720 */
1721 if (unlikely(page != xas_reload(&xas))) {
1722 put_page(page);
1723 goto repeat;
1724 }
1725 out:
1726 rcu_read_unlock();
1727
1728 return page;
1729 }
1730
1731 /**
1732 * find_lock_entry - Locate and lock a page cache entry.
1733 * @mapping: The address_space to search.
1734 * @index: The page cache index.
1735 *
1736 * Looks up the page at @mapping & @index. If there is a page in the
1737 * cache, the head page is returned locked and with an increased refcount.
1738 *
1739 * If the slot holds a shadow entry of a previously evicted page, or a
1740 * swap entry from shmem/tmpfs, it is returned.
1741 *
1742 * Context: May sleep.
1743 * Return: The head page or shadow entry, %NULL if nothing is found.
1744 */
find_lock_entry(struct address_space * mapping,pgoff_t index)1745 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1746 {
1747 struct page *page;
1748
1749 repeat:
1750 page = find_get_entry(mapping, index);
1751 if (page && !xa_is_value(page)) {
1752 lock_page(page);
1753 /* Has the page been truncated? */
1754 if (unlikely(page->mapping != mapping)) {
1755 unlock_page(page);
1756 put_page(page);
1757 goto repeat;
1758 }
1759 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1760 }
1761 return page;
1762 }
1763
1764 /**
1765 * pagecache_get_page - Find and get a reference to a page.
1766 * @mapping: The address_space to search.
1767 * @index: The page index.
1768 * @fgp_flags: %FGP flags modify how the page is returned.
1769 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1770 *
1771 * Looks up the page cache entry at @mapping & @index.
1772 *
1773 * @fgp_flags can be zero or more of these flags:
1774 *
1775 * * %FGP_ACCESSED - The page will be marked accessed.
1776 * * %FGP_LOCK - The page is returned locked.
1777 * * %FGP_HEAD - If the page is present and a THP, return the head page
1778 * rather than the exact page specified by the index.
1779 * * %FGP_CREAT - If no page is present then a new page is allocated using
1780 * @gfp_mask and added to the page cache and the VM's LRU list.
1781 * The page is returned locked and with an increased refcount.
1782 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1783 * page is already in cache. If the page was allocated, unlock it before
1784 * returning so the caller can do the same dance.
1785 * * %FGP_WRITE - The page will be written
1786 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1787 * * %FGP_NOWAIT - Don't get blocked by page lock
1788 *
1789 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1790 * if the %GFP flags specified for %FGP_CREAT are atomic.
1791 *
1792 * If there is a page cache page, it is returned with an increased refcount.
1793 *
1794 * Return: The found page or %NULL otherwise.
1795 */
pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1796 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1797 int fgp_flags, gfp_t gfp_mask)
1798 {
1799 struct page *page;
1800
1801 repeat:
1802 page = find_get_entry(mapping, index);
1803 if (xa_is_value(page))
1804 page = NULL;
1805
1806 trace_android_vh_pagecache_get_page(mapping, index, fgp_flags,
1807 gfp_mask, page);
1808 if (!page)
1809 goto no_page;
1810
1811 if (fgp_flags & FGP_LOCK) {
1812 if (fgp_flags & FGP_NOWAIT) {
1813 if (!trylock_page(page)) {
1814 put_page(page);
1815 return NULL;
1816 }
1817 } else {
1818 lock_page(page);
1819 }
1820
1821 /* Has the page been truncated? */
1822 if (unlikely(page->mapping != mapping)) {
1823 unlock_page(page);
1824 put_page(page);
1825 goto repeat;
1826 }
1827 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1828 }
1829
1830 if (fgp_flags & FGP_ACCESSED)
1831 mark_page_accessed(page);
1832 else if (fgp_flags & FGP_WRITE) {
1833 /* Clear idle flag for buffer write */
1834 if (page_is_idle(page))
1835 clear_page_idle(page);
1836 }
1837 if (!(fgp_flags & FGP_HEAD))
1838 page = find_subpage(page, index);
1839
1840 no_page:
1841 if (!page && (fgp_flags & FGP_CREAT)) {
1842 int err;
1843 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1844 gfp_mask |= __GFP_WRITE;
1845 if (fgp_flags & FGP_NOFS)
1846 gfp_mask &= ~__GFP_FS;
1847
1848 page = __page_cache_alloc(gfp_mask);
1849 if (!page)
1850 return NULL;
1851
1852 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1853 fgp_flags |= FGP_LOCK;
1854
1855 /* Init accessed so avoid atomic mark_page_accessed later */
1856 if (fgp_flags & FGP_ACCESSED)
1857 __SetPageReferenced(page);
1858
1859 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1860 if (unlikely(err)) {
1861 put_page(page);
1862 page = NULL;
1863 if (err == -EEXIST)
1864 goto repeat;
1865 }
1866
1867 /*
1868 * add_to_page_cache_lru locks the page, and for mmap we expect
1869 * an unlocked page.
1870 */
1871 if (page && (fgp_flags & FGP_FOR_MMAP))
1872 unlock_page(page);
1873 }
1874
1875 return page;
1876 }
1877 EXPORT_SYMBOL(pagecache_get_page);
1878
1879 /**
1880 * find_get_entries - gang pagecache lookup
1881 * @mapping: The address_space to search
1882 * @start: The starting page cache index
1883 * @nr_entries: The maximum number of entries
1884 * @entries: Where the resulting entries are placed
1885 * @indices: The cache indices corresponding to the entries in @entries
1886 *
1887 * find_get_entries() will search for and return a group of up to
1888 * @nr_entries entries in the mapping. The entries are placed at
1889 * @entries. find_get_entries() takes a reference against any actual
1890 * pages it returns.
1891 *
1892 * The search returns a group of mapping-contiguous page cache entries
1893 * with ascending indexes. There may be holes in the indices due to
1894 * not-present pages.
1895 *
1896 * Any shadow entries of evicted pages, or swap entries from
1897 * shmem/tmpfs, are included in the returned array.
1898 *
1899 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1900 * stops at that page: the caller is likely to have a better way to handle
1901 * the compound page as a whole, and then skip its extent, than repeatedly
1902 * calling find_get_entries() to return all its tails.
1903 *
1904 * Return: the number of pages and shadow entries which were found.
1905 */
find_get_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices)1906 unsigned find_get_entries(struct address_space *mapping,
1907 pgoff_t start, unsigned int nr_entries,
1908 struct page **entries, pgoff_t *indices)
1909 {
1910 XA_STATE(xas, &mapping->i_pages, start);
1911 struct page *page;
1912 unsigned int ret = 0;
1913
1914 if (!nr_entries)
1915 return 0;
1916
1917 rcu_read_lock();
1918 xas_for_each(&xas, page, ULONG_MAX) {
1919 if (xas_retry(&xas, page))
1920 continue;
1921 /*
1922 * A shadow entry of a recently evicted page, a swap
1923 * entry from shmem/tmpfs or a DAX entry. Return it
1924 * without attempting to raise page count.
1925 */
1926 if (xa_is_value(page))
1927 goto export;
1928
1929 if (!page_cache_get_speculative(page))
1930 goto retry;
1931
1932 /* Has the page moved or been split? */
1933 if (unlikely(page != xas_reload(&xas)))
1934 goto put_page;
1935
1936 /*
1937 * Terminate early on finding a THP, to allow the caller to
1938 * handle it all at once; but continue if this is hugetlbfs.
1939 */
1940 if (PageTransHuge(page) && !PageHuge(page)) {
1941 page = find_subpage(page, xas.xa_index);
1942 nr_entries = ret + 1;
1943 }
1944 export:
1945 indices[ret] = xas.xa_index;
1946 entries[ret] = page;
1947 if (++ret == nr_entries)
1948 break;
1949 continue;
1950 put_page:
1951 put_page(page);
1952 retry:
1953 xas_reset(&xas);
1954 }
1955 rcu_read_unlock();
1956 return ret;
1957 }
1958
1959 /**
1960 * find_get_pages_range - gang pagecache lookup
1961 * @mapping: The address_space to search
1962 * @start: The starting page index
1963 * @end: The final page index (inclusive)
1964 * @nr_pages: The maximum number of pages
1965 * @pages: Where the resulting pages are placed
1966 *
1967 * find_get_pages_range() will search for and return a group of up to @nr_pages
1968 * pages in the mapping starting at index @start and up to index @end
1969 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1970 * a reference against the returned pages.
1971 *
1972 * The search returns a group of mapping-contiguous pages with ascending
1973 * indexes. There may be holes in the indices due to not-present pages.
1974 * We also update @start to index the next page for the traversal.
1975 *
1976 * Return: the number of pages which were found. If this number is
1977 * smaller than @nr_pages, the end of specified range has been
1978 * reached.
1979 */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)1980 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1981 pgoff_t end, unsigned int nr_pages,
1982 struct page **pages)
1983 {
1984 XA_STATE(xas, &mapping->i_pages, *start);
1985 struct page *page;
1986 unsigned ret = 0;
1987
1988 if (unlikely(!nr_pages))
1989 return 0;
1990
1991 rcu_read_lock();
1992 xas_for_each(&xas, page, end) {
1993 if (xas_retry(&xas, page))
1994 continue;
1995 /* Skip over shadow, swap and DAX entries */
1996 if (xa_is_value(page))
1997 continue;
1998
1999 if (!page_cache_get_speculative(page))
2000 goto retry;
2001
2002 /* Has the page moved or been split? */
2003 if (unlikely(page != xas_reload(&xas)))
2004 goto put_page;
2005
2006 pages[ret] = find_subpage(page, xas.xa_index);
2007 if (++ret == nr_pages) {
2008 *start = xas.xa_index + 1;
2009 goto out;
2010 }
2011 continue;
2012 put_page:
2013 put_page(page);
2014 retry:
2015 xas_reset(&xas);
2016 }
2017
2018 /*
2019 * We come here when there is no page beyond @end. We take care to not
2020 * overflow the index @start as it confuses some of the callers. This
2021 * breaks the iteration when there is a page at index -1 but that is
2022 * already broken anyway.
2023 */
2024 if (end == (pgoff_t)-1)
2025 *start = (pgoff_t)-1;
2026 else
2027 *start = end + 1;
2028 out:
2029 rcu_read_unlock();
2030
2031 return ret;
2032 }
2033
2034 /**
2035 * find_get_pages_contig - gang contiguous pagecache lookup
2036 * @mapping: The address_space to search
2037 * @index: The starting page index
2038 * @nr_pages: The maximum number of pages
2039 * @pages: Where the resulting pages are placed
2040 *
2041 * find_get_pages_contig() works exactly like find_get_pages(), except
2042 * that the returned number of pages are guaranteed to be contiguous.
2043 *
2044 * Return: the number of pages which were found.
2045 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)2046 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2047 unsigned int nr_pages, struct page **pages)
2048 {
2049 XA_STATE(xas, &mapping->i_pages, index);
2050 struct page *page;
2051 unsigned int ret = 0;
2052
2053 if (unlikely(!nr_pages))
2054 return 0;
2055
2056 rcu_read_lock();
2057 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2058 if (xas_retry(&xas, page))
2059 continue;
2060 /*
2061 * If the entry has been swapped out, we can stop looking.
2062 * No current caller is looking for DAX entries.
2063 */
2064 if (xa_is_value(page))
2065 break;
2066
2067 if (!page_cache_get_speculative(page))
2068 goto retry;
2069
2070 /* Has the page moved or been split? */
2071 if (unlikely(page != xas_reload(&xas)))
2072 goto put_page;
2073
2074 pages[ret] = find_subpage(page, xas.xa_index);
2075 if (++ret == nr_pages)
2076 break;
2077 continue;
2078 put_page:
2079 put_page(page);
2080 retry:
2081 xas_reset(&xas);
2082 }
2083 rcu_read_unlock();
2084 return ret;
2085 }
2086 EXPORT_SYMBOL(find_get_pages_contig);
2087
2088 /**
2089 * find_get_pages_range_tag - find and return pages in given range matching @tag
2090 * @mapping: the address_space to search
2091 * @index: the starting page index
2092 * @end: The final page index (inclusive)
2093 * @tag: the tag index
2094 * @nr_pages: the maximum number of pages
2095 * @pages: where the resulting pages are placed
2096 *
2097 * Like find_get_pages, except we only return pages which are tagged with
2098 * @tag. We update @index to index the next page for the traversal.
2099 *
2100 * Return: the number of pages which were found.
2101 */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)2102 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2103 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2104 struct page **pages)
2105 {
2106 XA_STATE(xas, &mapping->i_pages, *index);
2107 struct page *page;
2108 unsigned ret = 0;
2109
2110 if (unlikely(!nr_pages))
2111 return 0;
2112
2113 rcu_read_lock();
2114 xas_for_each_marked(&xas, page, end, tag) {
2115 if (xas_retry(&xas, page))
2116 continue;
2117 /*
2118 * Shadow entries should never be tagged, but this iteration
2119 * is lockless so there is a window for page reclaim to evict
2120 * a page we saw tagged. Skip over it.
2121 */
2122 if (xa_is_value(page))
2123 continue;
2124
2125 if (!page_cache_get_speculative(page))
2126 goto retry;
2127
2128 /* Has the page moved or been split? */
2129 if (unlikely(page != xas_reload(&xas)))
2130 goto put_page;
2131
2132 pages[ret] = find_subpage(page, xas.xa_index);
2133 if (++ret == nr_pages) {
2134 *index = xas.xa_index + 1;
2135 goto out;
2136 }
2137 continue;
2138 put_page:
2139 put_page(page);
2140 retry:
2141 xas_reset(&xas);
2142 }
2143
2144 /*
2145 * We come here when we got to @end. We take care to not overflow the
2146 * index @index as it confuses some of the callers. This breaks the
2147 * iteration when there is a page at index -1 but that is already
2148 * broken anyway.
2149 */
2150 if (end == (pgoff_t)-1)
2151 *index = (pgoff_t)-1;
2152 else
2153 *index = end + 1;
2154 out:
2155 rcu_read_unlock();
2156
2157 return ret;
2158 }
2159 EXPORT_SYMBOL(find_get_pages_range_tag);
2160
2161 /*
2162 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2163 * a _large_ part of the i/o request. Imagine the worst scenario:
2164 *
2165 * ---R__________________________________________B__________
2166 * ^ reading here ^ bad block(assume 4k)
2167 *
2168 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2169 * => failing the whole request => read(R) => read(R+1) =>
2170 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2171 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2172 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2173 *
2174 * It is going insane. Fix it by quickly scaling down the readahead size.
2175 */
shrink_readahead_size_eio(struct file_ra_state * ra)2176 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2177 {
2178 ra->ra_pages /= 4;
2179 }
2180
2181 /**
2182 * generic_file_buffered_read - generic file read routine
2183 * @iocb: the iocb to read
2184 * @iter: data destination
2185 * @written: already copied
2186 *
2187 * This is a generic file read routine, and uses the
2188 * mapping->a_ops->readpage() function for the actual low-level stuff.
2189 *
2190 * This is really ugly. But the goto's actually try to clarify some
2191 * of the logic when it comes to error handling etc.
2192 *
2193 * Return:
2194 * * total number of bytes copied, including those the were already @written
2195 * * negative error code if nothing was copied
2196 */
generic_file_buffered_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t written)2197 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2198 struct iov_iter *iter, ssize_t written)
2199 {
2200 struct file *filp = iocb->ki_filp;
2201 struct address_space *mapping = filp->f_mapping;
2202 struct inode *inode = mapping->host;
2203 struct file_ra_state *ra = &filp->f_ra;
2204 loff_t *ppos = &iocb->ki_pos;
2205 pgoff_t index;
2206 pgoff_t last_index;
2207 pgoff_t prev_index;
2208 unsigned long offset; /* offset into pagecache page */
2209 unsigned int prev_offset;
2210 int error = 0;
2211
2212 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2213 return 0;
2214 if (unlikely(!iov_iter_count(iter)))
2215 return 0;
2216
2217 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2218
2219 index = *ppos >> PAGE_SHIFT;
2220 prev_index = ra->prev_pos >> PAGE_SHIFT;
2221 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2222 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2223 offset = *ppos & ~PAGE_MASK;
2224
2225 /*
2226 * If we've already successfully copied some data, then we
2227 * can no longer safely return -EIOCBQUEUED. Hence mark
2228 * an async read NOWAIT at that point.
2229 */
2230 if (written && (iocb->ki_flags & IOCB_WAITQ))
2231 iocb->ki_flags |= IOCB_NOWAIT;
2232
2233 for (;;) {
2234 struct page *page;
2235 pgoff_t end_index;
2236 loff_t isize;
2237 unsigned long nr, ret;
2238
2239 cond_resched();
2240 find_page:
2241 if (fatal_signal_pending(current)) {
2242 error = -EINTR;
2243 goto out;
2244 }
2245
2246 page = find_get_page(mapping, index);
2247 if (!page) {
2248 if (iocb->ki_flags & IOCB_NOIO)
2249 goto would_block;
2250 page_cache_sync_readahead(mapping,
2251 ra, filp,
2252 index, last_index - index);
2253 page = find_get_page(mapping, index);
2254 if (unlikely(page == NULL))
2255 goto no_cached_page;
2256 }
2257 if (PageReadahead(page)) {
2258 if (iocb->ki_flags & IOCB_NOIO) {
2259 put_page(page);
2260 goto out;
2261 }
2262 page_cache_async_readahead(mapping,
2263 ra, filp, page,
2264 index, last_index - index);
2265 }
2266 if (!PageUptodate(page)) {
2267 /*
2268 * See comment in do_read_cache_page on why
2269 * wait_on_page_locked is used to avoid unnecessarily
2270 * serialisations and why it's safe.
2271 */
2272 if (iocb->ki_flags & IOCB_WAITQ) {
2273 if (written) {
2274 put_page(page);
2275 goto out;
2276 }
2277 error = wait_on_page_locked_async(page,
2278 iocb->ki_waitq);
2279 } else {
2280 if (iocb->ki_flags & IOCB_NOWAIT) {
2281 put_page(page);
2282 goto would_block;
2283 }
2284 error = wait_on_page_locked_killable(page);
2285 }
2286 if (unlikely(error))
2287 goto readpage_error;
2288 if (PageUptodate(page))
2289 goto page_ok;
2290
2291 if (inode->i_blkbits == PAGE_SHIFT ||
2292 !mapping->a_ops->is_partially_uptodate)
2293 goto page_not_up_to_date;
2294 /* pipes can't handle partially uptodate pages */
2295 if (unlikely(iov_iter_is_pipe(iter)))
2296 goto page_not_up_to_date;
2297 if (!trylock_page(page))
2298 goto page_not_up_to_date;
2299 /* Did it get truncated before we got the lock? */
2300 if (!page->mapping)
2301 goto page_not_up_to_date_locked;
2302 if (!mapping->a_ops->is_partially_uptodate(page,
2303 offset, iter->count))
2304 goto page_not_up_to_date_locked;
2305 unlock_page(page);
2306 }
2307 page_ok:
2308 /*
2309 * i_size must be checked after we know the page is Uptodate.
2310 *
2311 * Checking i_size after the check allows us to calculate
2312 * the correct value for "nr", which means the zero-filled
2313 * part of the page is not copied back to userspace (unless
2314 * another truncate extends the file - this is desired though).
2315 */
2316
2317 isize = i_size_read(inode);
2318 end_index = (isize - 1) >> PAGE_SHIFT;
2319 if (unlikely(!isize || index > end_index)) {
2320 put_page(page);
2321 goto out;
2322 }
2323
2324 /* nr is the maximum number of bytes to copy from this page */
2325 nr = PAGE_SIZE;
2326 if (index == end_index) {
2327 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2328 if (nr <= offset) {
2329 put_page(page);
2330 goto out;
2331 }
2332 }
2333 nr = nr - offset;
2334
2335 /* If users can be writing to this page using arbitrary
2336 * virtual addresses, take care about potential aliasing
2337 * before reading the page on the kernel side.
2338 */
2339 if (mapping_writably_mapped(mapping))
2340 flush_dcache_page(page);
2341
2342 /*
2343 * When a sequential read accesses a page several times,
2344 * only mark it as accessed the first time.
2345 */
2346 if (prev_index != index || offset != prev_offset)
2347 mark_page_accessed(page);
2348 prev_index = index;
2349
2350 /*
2351 * Ok, we have the page, and it's up-to-date, so
2352 * now we can copy it to user space...
2353 */
2354
2355 ret = copy_page_to_iter(page, offset, nr, iter);
2356 offset += ret;
2357 index += offset >> PAGE_SHIFT;
2358 offset &= ~PAGE_MASK;
2359 prev_offset = offset;
2360
2361 put_page(page);
2362 written += ret;
2363 if (!iov_iter_count(iter))
2364 goto out;
2365 if (ret < nr) {
2366 error = -EFAULT;
2367 goto out;
2368 }
2369 continue;
2370
2371 page_not_up_to_date:
2372 /* Get exclusive access to the page ... */
2373 if (iocb->ki_flags & IOCB_WAITQ) {
2374 if (written) {
2375 put_page(page);
2376 goto out;
2377 }
2378 error = lock_page_async(page, iocb->ki_waitq);
2379 } else {
2380 error = lock_page_killable(page);
2381 }
2382 if (unlikely(error))
2383 goto readpage_error;
2384
2385 page_not_up_to_date_locked:
2386 /* Did it get truncated before we got the lock? */
2387 if (!page->mapping) {
2388 unlock_page(page);
2389 put_page(page);
2390 continue;
2391 }
2392
2393 /* Did somebody else fill it already? */
2394 if (PageUptodate(page)) {
2395 unlock_page(page);
2396 goto page_ok;
2397 }
2398
2399 readpage:
2400 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2401 unlock_page(page);
2402 put_page(page);
2403 goto would_block;
2404 }
2405 /*
2406 * A previous I/O error may have been due to temporary
2407 * failures, eg. multipath errors.
2408 * PG_error will be set again if readpage fails.
2409 */
2410 ClearPageError(page);
2411 /* Start the actual read. The read will unlock the page. */
2412 error = mapping->a_ops->readpage(filp, page);
2413
2414 if (unlikely(error)) {
2415 if (error == AOP_TRUNCATED_PAGE) {
2416 put_page(page);
2417 error = 0;
2418 goto find_page;
2419 }
2420 goto readpage_error;
2421 }
2422
2423 if (!PageUptodate(page)) {
2424 if (iocb->ki_flags & IOCB_WAITQ) {
2425 if (written) {
2426 put_page(page);
2427 goto out;
2428 }
2429 error = lock_page_async(page, iocb->ki_waitq);
2430 } else {
2431 error = lock_page_killable(page);
2432 }
2433
2434 if (unlikely(error))
2435 goto readpage_error;
2436 if (!PageUptodate(page)) {
2437 if (page->mapping == NULL) {
2438 /*
2439 * invalidate_mapping_pages got it
2440 */
2441 unlock_page(page);
2442 put_page(page);
2443 goto find_page;
2444 }
2445 unlock_page(page);
2446 shrink_readahead_size_eio(ra);
2447 error = -EIO;
2448 goto readpage_error;
2449 }
2450 unlock_page(page);
2451 }
2452
2453 goto page_ok;
2454
2455 readpage_error:
2456 /* UHHUH! A synchronous read error occurred. Report it */
2457 put_page(page);
2458 goto out;
2459
2460 no_cached_page:
2461 /*
2462 * Ok, it wasn't cached, so we need to create a new
2463 * page..
2464 */
2465 page = page_cache_alloc(mapping);
2466 if (!page) {
2467 error = -ENOMEM;
2468 goto out;
2469 }
2470 error = add_to_page_cache_lru(page, mapping, index,
2471 mapping_gfp_constraint(mapping, GFP_KERNEL));
2472 if (error) {
2473 put_page(page);
2474 if (error == -EEXIST) {
2475 error = 0;
2476 goto find_page;
2477 }
2478 goto out;
2479 }
2480 goto readpage;
2481 }
2482
2483 would_block:
2484 error = -EAGAIN;
2485 out:
2486 ra->prev_pos = prev_index;
2487 ra->prev_pos <<= PAGE_SHIFT;
2488 ra->prev_pos |= prev_offset;
2489
2490 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2491 file_accessed(filp);
2492 return written ? written : error;
2493 }
2494 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2495
2496 /**
2497 * generic_file_read_iter - generic filesystem read routine
2498 * @iocb: kernel I/O control block
2499 * @iter: destination for the data read
2500 *
2501 * This is the "read_iter()" routine for all filesystems
2502 * that can use the page cache directly.
2503 *
2504 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2505 * be returned when no data can be read without waiting for I/O requests
2506 * to complete; it doesn't prevent readahead.
2507 *
2508 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2509 * requests shall be made for the read or for readahead. When no data
2510 * can be read, -EAGAIN shall be returned. When readahead would be
2511 * triggered, a partial, possibly empty read shall be returned.
2512 *
2513 * Return:
2514 * * number of bytes copied, even for partial reads
2515 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2516 */
2517 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2518 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2519 {
2520 size_t count = iov_iter_count(iter);
2521 ssize_t retval = 0;
2522
2523 if (!count)
2524 goto out; /* skip atime */
2525
2526 if (iocb->ki_flags & IOCB_DIRECT) {
2527 struct file *file = iocb->ki_filp;
2528 struct address_space *mapping = file->f_mapping;
2529 struct inode *inode = mapping->host;
2530 loff_t size;
2531
2532 size = i_size_read(inode);
2533 if (iocb->ki_flags & IOCB_NOWAIT) {
2534 if (filemap_range_has_page(mapping, iocb->ki_pos,
2535 iocb->ki_pos + count - 1))
2536 return -EAGAIN;
2537 } else {
2538 retval = filemap_write_and_wait_range(mapping,
2539 iocb->ki_pos,
2540 iocb->ki_pos + count - 1);
2541 if (retval < 0)
2542 goto out;
2543 }
2544
2545 file_accessed(file);
2546
2547 retval = mapping->a_ops->direct_IO(iocb, iter);
2548 if (retval >= 0) {
2549 iocb->ki_pos += retval;
2550 count -= retval;
2551 }
2552 iov_iter_revert(iter, count - iov_iter_count(iter));
2553
2554 /*
2555 * Btrfs can have a short DIO read if we encounter
2556 * compressed extents, so if there was an error, or if
2557 * we've already read everything we wanted to, or if
2558 * there was a short read because we hit EOF, go ahead
2559 * and return. Otherwise fallthrough to buffered io for
2560 * the rest of the read. Buffered reads will not work for
2561 * DAX files, so don't bother trying.
2562 */
2563 if (retval < 0 || !count || iocb->ki_pos >= size ||
2564 IS_DAX(inode))
2565 goto out;
2566 }
2567
2568 retval = generic_file_buffered_read(iocb, iter, retval);
2569 out:
2570 return retval;
2571 }
2572 EXPORT_SYMBOL(generic_file_read_iter);
2573
2574 #ifdef CONFIG_MMU
2575 #define MMAP_LOTSAMISS (100)
2576 /*
2577 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2578 * @vmf - the vm_fault for this fault.
2579 * @page - the page to lock.
2580 * @fpin - the pointer to the file we may pin (or is already pinned).
2581 *
2582 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2583 * It differs in that it actually returns the page locked if it returns 1 and 0
2584 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2585 * will point to the pinned file and needs to be fput()'ed at a later point.
2586 */
lock_page_maybe_drop_mmap(struct vm_fault * vmf,struct page * page,struct file ** fpin)2587 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2588 struct file **fpin)
2589 {
2590 if (trylock_page(page))
2591 return 1;
2592
2593 /*
2594 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2595 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2596 * is supposed to work. We have way too many special cases..
2597 */
2598 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2599 return 0;
2600
2601 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2602 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2603 if (__lock_page_killable(page)) {
2604 /*
2605 * We didn't have the right flags to drop the mmap_lock,
2606 * but all fault_handlers only check for fatal signals
2607 * if we return VM_FAULT_RETRY, so we need to drop the
2608 * mmap_lock here and return 0 if we don't have a fpin.
2609 */
2610 if (*fpin == NULL)
2611 mmap_read_unlock(vmf->vma->vm_mm);
2612 return 0;
2613 }
2614 } else
2615 __lock_page(page);
2616 return 1;
2617 }
2618
2619
2620 /*
2621 * Synchronous readahead happens when we don't even find a page in the page
2622 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2623 * to drop the mmap sem we return the file that was pinned in order for us to do
2624 * that. If we didn't pin a file then we return NULL. The file that is
2625 * returned needs to be fput()'ed when we're done with it.
2626 */
do_sync_mmap_readahead(struct vm_fault * vmf)2627 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2628 {
2629 struct file *file = vmf->vma->vm_file;
2630 struct file_ra_state *ra = &file->f_ra;
2631 struct address_space *mapping = file->f_mapping;
2632 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2633 struct file *fpin = NULL;
2634 unsigned int mmap_miss;
2635
2636 /* If we don't want any read-ahead, don't bother */
2637 if (vmf->vma->vm_flags & VM_RAND_READ)
2638 return fpin;
2639 if (!ra->ra_pages)
2640 return fpin;
2641
2642 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2643 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2644 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2645 return fpin;
2646 }
2647
2648 /* Avoid banging the cache line if not needed */
2649 mmap_miss = READ_ONCE(ra->mmap_miss);
2650 if (mmap_miss < MMAP_LOTSAMISS * 10)
2651 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2652
2653 /*
2654 * Do we miss much more than hit in this file? If so,
2655 * stop bothering with read-ahead. It will only hurt.
2656 */
2657 if (mmap_miss > MMAP_LOTSAMISS)
2658 return fpin;
2659
2660 /*
2661 * mmap read-around
2662 */
2663 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2664 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2665 ra->size = ra->ra_pages;
2666 ra->async_size = ra->ra_pages / 4;
2667 trace_android_vh_tune_mmap_readaround(ra->ra_pages, vmf->pgoff,
2668 &ra->start, &ra->size, &ra->async_size);
2669 ractl._index = ra->start;
2670 do_page_cache_ra(&ractl, ra->size, ra->async_size);
2671 return fpin;
2672 }
2673
2674 /*
2675 * Asynchronous readahead happens when we find the page and PG_readahead,
2676 * so we want to possibly extend the readahead further. We return the file that
2677 * was pinned if we have to drop the mmap_lock in order to do IO.
2678 */
do_async_mmap_readahead(struct vm_fault * vmf,struct page * page)2679 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2680 struct page *page)
2681 {
2682 struct file *file = vmf->vma->vm_file;
2683 struct file_ra_state *ra = &file->f_ra;
2684 struct address_space *mapping = file->f_mapping;
2685 struct file *fpin = NULL;
2686 unsigned int mmap_miss;
2687 pgoff_t offset = vmf->pgoff;
2688
2689 /* If we don't want any read-ahead, don't bother */
2690 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2691 return fpin;
2692 mmap_miss = READ_ONCE(ra->mmap_miss);
2693 if (mmap_miss)
2694 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2695 if (PageReadahead(page)) {
2696 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2697 page_cache_async_readahead(mapping, ra, file,
2698 page, offset, ra->ra_pages);
2699 }
2700 return fpin;
2701 }
2702
2703 /**
2704 * filemap_fault - read in file data for page fault handling
2705 * @vmf: struct vm_fault containing details of the fault
2706 *
2707 * filemap_fault() is invoked via the vma operations vector for a
2708 * mapped memory region to read in file data during a page fault.
2709 *
2710 * The goto's are kind of ugly, but this streamlines the normal case of having
2711 * it in the page cache, and handles the special cases reasonably without
2712 * having a lot of duplicated code.
2713 *
2714 * If FAULT_FLAG_SPECULATIVE is set, this function runs with elevated vma
2715 * refcount and with mmap lock not held.
2716 * Otherwise, vma->vm_mm->mmap_lock must be held on entry.
2717 *
2718 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2719 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2720 *
2721 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2722 * has not been released.
2723 *
2724 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2725 *
2726 * Return: bitwise-OR of %VM_FAULT_ codes.
2727 */
filemap_fault(struct vm_fault * vmf)2728 vm_fault_t filemap_fault(struct vm_fault *vmf)
2729 {
2730 int error;
2731 struct file *file = vmf->vma->vm_file;
2732 struct file *fpin = NULL;
2733 struct address_space *mapping = file->f_mapping;
2734 struct file_ra_state *ra = &file->f_ra;
2735 struct inode *inode = mapping->host;
2736 pgoff_t offset = vmf->pgoff;
2737 pgoff_t max_off;
2738 struct page *page = NULL;
2739 vm_fault_t ret = 0;
2740 bool retry = false;
2741
2742 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
2743 page = find_get_page(mapping, offset);
2744 if (unlikely(!page))
2745 return VM_FAULT_RETRY;
2746
2747 if (unlikely(PageReadahead(page)))
2748 goto page_put;
2749
2750 if (!trylock_page(page))
2751 goto page_put;
2752
2753 if (unlikely(compound_head(page)->mapping != mapping))
2754 goto page_unlock;
2755 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2756 if (unlikely(!PageUptodate(page)))
2757 goto page_unlock;
2758
2759 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2760 if (unlikely(offset >= max_off))
2761 goto page_unlock;
2762
2763 /*
2764 * Update readahead mmap_miss statistic.
2765 *
2766 * Note that we are not sure if finish_fault() will
2767 * manage to complete the transaction. If it fails,
2768 * we'll come back to filemap_fault() non-speculative
2769 * case which will update mmap_miss a second time.
2770 * This is not ideal, we would prefer to guarantee the
2771 * update will happen exactly once.
2772 */
2773 if (!(vmf->vma->vm_flags & VM_RAND_READ) && ra->ra_pages) {
2774 unsigned int mmap_miss = READ_ONCE(ra->mmap_miss);
2775 if (mmap_miss)
2776 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2777 }
2778
2779 vmf->page = page;
2780 return VM_FAULT_LOCKED;
2781 page_unlock:
2782 unlock_page(page);
2783 page_put:
2784 put_page(page);
2785 return VM_FAULT_RETRY;
2786 }
2787
2788 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2789 if (unlikely(offset >= max_off))
2790 return VM_FAULT_SIGBUS;
2791
2792 trace_android_vh_filemap_fault_get_page(vmf, &page, &retry);
2793 if (unlikely(retry))
2794 goto out_retry;
2795 if (unlikely(page))
2796 goto page_ok;
2797
2798 /*
2799 * Do we have something in the page cache already?
2800 */
2801 page = find_get_page(mapping, offset);
2802 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2803 /*
2804 * We found the page, so try async readahead before
2805 * waiting for the lock.
2806 */
2807 fpin = do_async_mmap_readahead(vmf, page);
2808 } else if (!page) {
2809 /* No page in the page cache at all */
2810 count_vm_event(PGMAJFAULT);
2811 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2812 ret = VM_FAULT_MAJOR;
2813 fpin = do_sync_mmap_readahead(vmf);
2814 retry_find:
2815 page = pagecache_get_page(mapping, offset,
2816 FGP_CREAT|FGP_FOR_MMAP,
2817 vmf->gfp_mask);
2818 if (!page) {
2819 if (fpin)
2820 goto out_retry;
2821 return VM_FAULT_OOM;
2822 }
2823 }
2824
2825 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2826 goto out_retry;
2827
2828 /* Did it get truncated? */
2829 if (unlikely(compound_head(page)->mapping != mapping)) {
2830 unlock_page(page);
2831 put_page(page);
2832 goto retry_find;
2833 }
2834 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2835
2836 /*
2837 * We have a locked page in the page cache, now we need to check
2838 * that it's up-to-date. If not, it is going to be due to an error.
2839 */
2840 if (unlikely(!PageUptodate(page)))
2841 goto page_not_uptodate;
2842
2843 /*
2844 * We've made it this far and we had to drop our mmap_lock, now is the
2845 * time to return to the upper layer and have it re-find the vma and
2846 * redo the fault.
2847 */
2848 if (fpin) {
2849 unlock_page(page);
2850 goto out_retry;
2851 }
2852
2853 page_ok:
2854 /*
2855 * Found the page and have a reference on it.
2856 * We must recheck i_size under page lock.
2857 */
2858 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2859 if (unlikely(offset >= max_off)) {
2860 unlock_page(page);
2861 put_page(page);
2862 return VM_FAULT_SIGBUS;
2863 }
2864
2865 vmf->page = page;
2866 return ret | VM_FAULT_LOCKED;
2867
2868 page_not_uptodate:
2869 /*
2870 * Umm, take care of errors if the page isn't up-to-date.
2871 * Try to re-read it _once_. We do this synchronously,
2872 * because there really aren't any performance issues here
2873 * and we need to check for errors.
2874 */
2875 ClearPageError(page);
2876 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2877 error = mapping->a_ops->readpage(file, page);
2878 if (!error) {
2879 wait_on_page_locked(page);
2880 if (!PageUptodate(page))
2881 error = -EIO;
2882 }
2883 if (fpin)
2884 goto out_retry;
2885 put_page(page);
2886
2887 if (!error || error == AOP_TRUNCATED_PAGE)
2888 goto retry_find;
2889
2890 shrink_readahead_size_eio(ra);
2891 return VM_FAULT_SIGBUS;
2892
2893 out_retry:
2894 /*
2895 * We dropped the mmap_lock, we need to return to the fault handler to
2896 * re-find the vma and come back and find our hopefully still populated
2897 * page.
2898 */
2899 if (page) {
2900 trace_android_vh_filemap_fault_cache_page(vmf, page);
2901 put_page(page);
2902 }
2903 if (fpin)
2904 fput(fpin);
2905 return ret | VM_FAULT_RETRY;
2906 }
2907 EXPORT_SYMBOL(filemap_fault);
2908
filemap_map_pmd(struct vm_fault * vmf,struct page * page)2909 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
2910 {
2911 struct mm_struct *mm = vmf->vma->vm_mm;
2912
2913 /* Huge page is mapped? No need to proceed. */
2914 if (pmd_trans_huge(*vmf->pmd)) {
2915 unlock_page(page);
2916 put_page(page);
2917 return true;
2918 }
2919
2920 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
2921 vm_fault_t ret = do_set_pmd(vmf, page);
2922 if (!ret) {
2923 /* The page is mapped successfully, reference consumed. */
2924 unlock_page(page);
2925 return true;
2926 }
2927 }
2928
2929 if (pmd_none(*vmf->pmd)) {
2930 vmf->ptl = pmd_lock(mm, vmf->pmd);
2931 if (likely(pmd_none(*vmf->pmd))) {
2932 mm_inc_nr_ptes(mm);
2933 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
2934 vmf->prealloc_pte = NULL;
2935 }
2936 spin_unlock(vmf->ptl);
2937 }
2938
2939 /* See comment in handle_pte_fault() */
2940 if (pmd_devmap_trans_unstable(vmf->pmd)) {
2941 unlock_page(page);
2942 put_page(page);
2943 return true;
2944 }
2945
2946 return false;
2947 }
2948
next_uptodate_page(struct page * page,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)2949 static struct page *next_uptodate_page(struct page *page,
2950 struct address_space *mapping,
2951 struct xa_state *xas, pgoff_t end_pgoff)
2952 {
2953 unsigned long max_idx;
2954
2955 do {
2956 if (!page)
2957 return NULL;
2958 if (xas_retry(xas, page))
2959 continue;
2960 if (xa_is_value(page))
2961 continue;
2962 if (PageLocked(page))
2963 continue;
2964 if (!page_cache_get_speculative(page))
2965 continue;
2966 /* Has the page moved or been split? */
2967 if (unlikely(page != xas_reload(xas)))
2968 goto skip;
2969 if (!PageUptodate(page) || PageReadahead(page))
2970 goto skip;
2971 if (PageHWPoison(page))
2972 goto skip;
2973 if (!trylock_page(page))
2974 goto skip;
2975 if (page->mapping != mapping)
2976 goto unlock;
2977 if (!PageUptodate(page))
2978 goto unlock;
2979 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2980 if (xas->xa_index >= max_idx)
2981 goto unlock;
2982 return page;
2983 unlock:
2984 unlock_page(page);
2985 skip:
2986 put_page(page);
2987 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
2988
2989 return NULL;
2990 }
2991
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)2992 static inline struct page *first_map_page(struct address_space *mapping,
2993 struct xa_state *xas,
2994 pgoff_t end_pgoff)
2995 {
2996 return next_uptodate_page(xas_find(xas, end_pgoff),
2997 mapping, xas, end_pgoff);
2998 }
2999
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3000 static inline struct page *next_map_page(struct address_space *mapping,
3001 struct xa_state *xas,
3002 pgoff_t end_pgoff)
3003 {
3004 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3005 mapping, xas, end_pgoff);
3006 }
3007
3008 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
filemap_allow_speculation(void)3009 bool filemap_allow_speculation(void)
3010 {
3011 return true;
3012 }
3013 EXPORT_SYMBOL_GPL(filemap_allow_speculation);
3014 #endif
3015
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3016 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3017 pgoff_t start_pgoff, pgoff_t end_pgoff)
3018 {
3019 struct vm_area_struct *vma = vmf->vma;
3020 struct file *file = vma->vm_file;
3021 struct address_space *mapping = file->f_mapping;
3022 pgoff_t last_pgoff = start_pgoff;
3023 unsigned long addr;
3024 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3025 struct page *head, *page;
3026 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3027 vm_fault_t ret = (vmf->flags & FAULT_FLAG_SPECULATIVE) ?
3028 VM_FAULT_RETRY : 0;
3029
3030 rcu_read_lock();
3031 head = first_map_page(mapping, &xas, end_pgoff);
3032 if (!head)
3033 goto out;
3034
3035 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3036 filemap_map_pmd(vmf, head)) {
3037 ret = VM_FAULT_NOPAGE;
3038 goto out;
3039 }
3040
3041 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3042 if (!pte_map_lock_addr(vmf, addr)) {
3043 unlock_page(head);
3044 put_page(head);
3045 goto out;
3046 }
3047
3048 do {
3049 page = find_subpage(head, xas.xa_index);
3050 if (PageHWPoison(page))
3051 goto unlock;
3052
3053 if (mmap_miss > 0)
3054 mmap_miss--;
3055
3056 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3057 vmf->pte += xas.xa_index - last_pgoff;
3058 last_pgoff = xas.xa_index;
3059
3060 if (!pte_none(*vmf->pte))
3061 goto unlock;
3062
3063 /* We're about to handle the fault */
3064 if (vmf->address == addr)
3065 ret = VM_FAULT_NOPAGE;
3066
3067 do_set_pte(vmf, page, addr);
3068 /* no need to invalidate: a not-present page won't be cached */
3069 update_mmu_cache(vma, addr, vmf->pte);
3070 unlock_page(head);
3071 continue;
3072 unlock:
3073 unlock_page(head);
3074 put_page(head);
3075 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3076 pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 out:
3078 rcu_read_unlock();
3079 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3080 return ret;
3081 }
3082 EXPORT_SYMBOL(filemap_map_pages);
3083
filemap_page_mkwrite(struct vm_fault * vmf)3084 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3085 {
3086 struct page *page = vmf->page;
3087 struct inode *inode = file_inode(vmf->vma->vm_file);
3088 vm_fault_t ret = VM_FAULT_LOCKED;
3089
3090 sb_start_pagefault(inode->i_sb);
3091 file_update_time(vmf->vma->vm_file);
3092 lock_page(page);
3093 if (page->mapping != inode->i_mapping) {
3094 unlock_page(page);
3095 ret = VM_FAULT_NOPAGE;
3096 goto out;
3097 }
3098 /*
3099 * We mark the page dirty already here so that when freeze is in
3100 * progress, we are guaranteed that writeback during freezing will
3101 * see the dirty page and writeprotect it again.
3102 */
3103 set_page_dirty(page);
3104 wait_for_stable_page(page);
3105 out:
3106 sb_end_pagefault(inode->i_sb);
3107 return ret;
3108 }
3109
3110 const struct vm_operations_struct generic_file_vm_ops = {
3111 .fault = filemap_fault,
3112 .map_pages = filemap_map_pages,
3113 .page_mkwrite = filemap_page_mkwrite,
3114 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3115 .allow_speculation = filemap_allow_speculation,
3116 #endif
3117 };
3118
3119 /* This is used for a general mmap of a disk file */
3120
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3121 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3122 {
3123 struct address_space *mapping = file->f_mapping;
3124
3125 if (!mapping->a_ops->readpage)
3126 return -ENOEXEC;
3127 file_accessed(file);
3128 vma->vm_ops = &generic_file_vm_ops;
3129 return 0;
3130 }
3131
3132 /*
3133 * This is for filesystems which do not implement ->writepage.
3134 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3135 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3136 {
3137 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3138 return -EINVAL;
3139 return generic_file_mmap(file, vma);
3140 }
3141 #else
filemap_page_mkwrite(struct vm_fault * vmf)3142 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3143 {
3144 return VM_FAULT_SIGBUS;
3145 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3146 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3147 {
3148 return -ENOSYS;
3149 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3150 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3151 {
3152 return -ENOSYS;
3153 }
3154 #endif /* CONFIG_MMU */
3155
3156 EXPORT_SYMBOL(filemap_page_mkwrite);
3157 EXPORT_SYMBOL(generic_file_mmap);
3158 EXPORT_SYMBOL(generic_file_readonly_mmap);
3159
wait_on_page_read(struct page * page)3160 static struct page *wait_on_page_read(struct page *page)
3161 {
3162 if (!IS_ERR(page)) {
3163 wait_on_page_locked(page);
3164 if (!PageUptodate(page)) {
3165 put_page(page);
3166 page = ERR_PTR(-EIO);
3167 }
3168 }
3169 return page;
3170 }
3171
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)3172 static struct page *do_read_cache_page(struct address_space *mapping,
3173 pgoff_t index,
3174 int (*filler)(void *, struct page *),
3175 void *data,
3176 gfp_t gfp)
3177 {
3178 struct page *page;
3179 int err;
3180 repeat:
3181 page = find_get_page(mapping, index);
3182 if (!page) {
3183 page = __page_cache_alloc(gfp);
3184 if (!page)
3185 return ERR_PTR(-ENOMEM);
3186 err = add_to_page_cache_lru(page, mapping, index, gfp);
3187 if (unlikely(err)) {
3188 put_page(page);
3189 if (err == -EEXIST)
3190 goto repeat;
3191 /* Presumably ENOMEM for xarray node */
3192 return ERR_PTR(err);
3193 }
3194
3195 filler:
3196 if (filler)
3197 err = filler(data, page);
3198 else
3199 err = mapping->a_ops->readpage(data, page);
3200
3201 if (err < 0) {
3202 put_page(page);
3203 return ERR_PTR(err);
3204 }
3205
3206 page = wait_on_page_read(page);
3207 if (IS_ERR(page))
3208 return page;
3209 goto out;
3210 }
3211 if (PageUptodate(page))
3212 goto out;
3213
3214 /*
3215 * Page is not up to date and may be locked due to one of the following
3216 * case a: Page is being filled and the page lock is held
3217 * case b: Read/write error clearing the page uptodate status
3218 * case c: Truncation in progress (page locked)
3219 * case d: Reclaim in progress
3220 *
3221 * Case a, the page will be up to date when the page is unlocked.
3222 * There is no need to serialise on the page lock here as the page
3223 * is pinned so the lock gives no additional protection. Even if the
3224 * page is truncated, the data is still valid if PageUptodate as
3225 * it's a race vs truncate race.
3226 * Case b, the page will not be up to date
3227 * Case c, the page may be truncated but in itself, the data may still
3228 * be valid after IO completes as it's a read vs truncate race. The
3229 * operation must restart if the page is not uptodate on unlock but
3230 * otherwise serialising on page lock to stabilise the mapping gives
3231 * no additional guarantees to the caller as the page lock is
3232 * released before return.
3233 * Case d, similar to truncation. If reclaim holds the page lock, it
3234 * will be a race with remove_mapping that determines if the mapping
3235 * is valid on unlock but otherwise the data is valid and there is
3236 * no need to serialise with page lock.
3237 *
3238 * As the page lock gives no additional guarantee, we optimistically
3239 * wait on the page to be unlocked and check if it's up to date and
3240 * use the page if it is. Otherwise, the page lock is required to
3241 * distinguish between the different cases. The motivation is that we
3242 * avoid spurious serialisations and wakeups when multiple processes
3243 * wait on the same page for IO to complete.
3244 */
3245 wait_on_page_locked(page);
3246 if (PageUptodate(page))
3247 goto out;
3248
3249 /* Distinguish between all the cases under the safety of the lock */
3250 lock_page(page);
3251
3252 /* Case c or d, restart the operation */
3253 if (!page->mapping) {
3254 unlock_page(page);
3255 put_page(page);
3256 goto repeat;
3257 }
3258
3259 /* Someone else locked and filled the page in a very small window */
3260 if (PageUptodate(page)) {
3261 unlock_page(page);
3262 goto out;
3263 }
3264
3265 /*
3266 * A previous I/O error may have been due to temporary
3267 * failures.
3268 * Clear page error before actual read, PG_error will be
3269 * set again if read page fails.
3270 */
3271 ClearPageError(page);
3272 goto filler;
3273
3274 out:
3275 mark_page_accessed(page);
3276 return page;
3277 }
3278
3279 /**
3280 * read_cache_page - read into page cache, fill it if needed
3281 * @mapping: the page's address_space
3282 * @index: the page index
3283 * @filler: function to perform the read
3284 * @data: first arg to filler(data, page) function, often left as NULL
3285 *
3286 * Read into the page cache. If a page already exists, and PageUptodate() is
3287 * not set, try to fill the page and wait for it to become unlocked.
3288 *
3289 * If the page does not get brought uptodate, return -EIO.
3290 *
3291 * Return: up to date page on success, ERR_PTR() on failure.
3292 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)3293 struct page *read_cache_page(struct address_space *mapping,
3294 pgoff_t index,
3295 int (*filler)(void *, struct page *),
3296 void *data)
3297 {
3298 return do_read_cache_page(mapping, index, filler, data,
3299 mapping_gfp_mask(mapping));
3300 }
3301 EXPORT_SYMBOL(read_cache_page);
3302
3303 /**
3304 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3305 * @mapping: the page's address_space
3306 * @index: the page index
3307 * @gfp: the page allocator flags to use if allocating
3308 *
3309 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3310 * any new page allocations done using the specified allocation flags.
3311 *
3312 * If the page does not get brought uptodate, return -EIO.
3313 *
3314 * Return: up to date page on success, ERR_PTR() on failure.
3315 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3316 struct page *read_cache_page_gfp(struct address_space *mapping,
3317 pgoff_t index,
3318 gfp_t gfp)
3319 {
3320 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3321 }
3322 EXPORT_SYMBOL(read_cache_page_gfp);
3323
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3324 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3325 loff_t pos, unsigned len, unsigned flags,
3326 struct page **pagep, void **fsdata)
3327 {
3328 const struct address_space_operations *aops = mapping->a_ops;
3329
3330 return aops->write_begin(file, mapping, pos, len, flags,
3331 pagep, fsdata);
3332 }
3333 EXPORT_SYMBOL(pagecache_write_begin);
3334
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3335 int pagecache_write_end(struct file *file, struct address_space *mapping,
3336 loff_t pos, unsigned len, unsigned copied,
3337 struct page *page, void *fsdata)
3338 {
3339 const struct address_space_operations *aops = mapping->a_ops;
3340
3341 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3342 }
3343 EXPORT_SYMBOL(pagecache_write_end);
3344
3345 /*
3346 * Warn about a page cache invalidation failure during a direct I/O write.
3347 */
dio_warn_stale_pagecache(struct file * filp)3348 void dio_warn_stale_pagecache(struct file *filp)
3349 {
3350 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3351 char pathname[128];
3352 struct inode *inode = file_inode(filp);
3353 char *path;
3354
3355 errseq_set(&inode->i_mapping->wb_err, -EIO);
3356 if (__ratelimit(&_rs)) {
3357 path = file_path(filp, pathname, sizeof(pathname));
3358 if (IS_ERR(path))
3359 path = "(unknown)";
3360 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3361 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3362 current->comm);
3363 }
3364 }
3365
3366 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3367 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3368 {
3369 struct file *file = iocb->ki_filp;
3370 struct address_space *mapping = file->f_mapping;
3371 struct inode *inode = mapping->host;
3372 loff_t pos = iocb->ki_pos;
3373 ssize_t written;
3374 size_t write_len;
3375 pgoff_t end;
3376
3377 write_len = iov_iter_count(from);
3378 end = (pos + write_len - 1) >> PAGE_SHIFT;
3379
3380 if (iocb->ki_flags & IOCB_NOWAIT) {
3381 /* If there are pages to writeback, return */
3382 if (filemap_range_has_page(inode->i_mapping, pos,
3383 pos + write_len - 1))
3384 return -EAGAIN;
3385 } else {
3386 written = filemap_write_and_wait_range(mapping, pos,
3387 pos + write_len - 1);
3388 if (written)
3389 goto out;
3390 }
3391
3392 /*
3393 * After a write we want buffered reads to be sure to go to disk to get
3394 * the new data. We invalidate clean cached page from the region we're
3395 * about to write. We do this *before* the write so that we can return
3396 * without clobbering -EIOCBQUEUED from ->direct_IO().
3397 */
3398 written = invalidate_inode_pages2_range(mapping,
3399 pos >> PAGE_SHIFT, end);
3400 /*
3401 * If a page can not be invalidated, return 0 to fall back
3402 * to buffered write.
3403 */
3404 if (written) {
3405 if (written == -EBUSY)
3406 return 0;
3407 goto out;
3408 }
3409
3410 written = mapping->a_ops->direct_IO(iocb, from);
3411
3412 /*
3413 * Finally, try again to invalidate clean pages which might have been
3414 * cached by non-direct readahead, or faulted in by get_user_pages()
3415 * if the source of the write was an mmap'ed region of the file
3416 * we're writing. Either one is a pretty crazy thing to do,
3417 * so we don't support it 100%. If this invalidation
3418 * fails, tough, the write still worked...
3419 *
3420 * Most of the time we do not need this since dio_complete() will do
3421 * the invalidation for us. However there are some file systems that
3422 * do not end up with dio_complete() being called, so let's not break
3423 * them by removing it completely.
3424 *
3425 * Noticeable example is a blkdev_direct_IO().
3426 *
3427 * Skip invalidation for async writes or if mapping has no pages.
3428 */
3429 if (written > 0 && mapping->nrpages &&
3430 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3431 dio_warn_stale_pagecache(file);
3432
3433 if (written > 0) {
3434 pos += written;
3435 write_len -= written;
3436 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3437 i_size_write(inode, pos);
3438 mark_inode_dirty(inode);
3439 }
3440 iocb->ki_pos = pos;
3441 }
3442 iov_iter_revert(from, write_len - iov_iter_count(from));
3443 out:
3444 return written;
3445 }
3446 EXPORT_SYMBOL(generic_file_direct_write);
3447
3448 /*
3449 * Find or create a page at the given pagecache position. Return the locked
3450 * page. This function is specifically for buffered writes.
3451 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3452 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3453 pgoff_t index, unsigned flags)
3454 {
3455 struct page *page;
3456 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3457
3458 if (flags & AOP_FLAG_NOFS)
3459 fgp_flags |= FGP_NOFS;
3460
3461 page = pagecache_get_page(mapping, index, fgp_flags,
3462 mapping_gfp_mask(mapping));
3463 if (page)
3464 wait_for_stable_page(page);
3465
3466 return page;
3467 }
3468 EXPORT_SYMBOL(grab_cache_page_write_begin);
3469
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3470 ssize_t generic_perform_write(struct file *file,
3471 struct iov_iter *i, loff_t pos)
3472 {
3473 struct address_space *mapping = file->f_mapping;
3474 const struct address_space_operations *a_ops = mapping->a_ops;
3475 long status = 0;
3476 ssize_t written = 0;
3477 unsigned int flags = 0;
3478
3479 do {
3480 struct page *page;
3481 unsigned long offset; /* Offset into pagecache page */
3482 unsigned long bytes; /* Bytes to write to page */
3483 size_t copied; /* Bytes copied from user */
3484 void *fsdata = NULL;
3485
3486 offset = (pos & (PAGE_SIZE - 1));
3487 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3488 iov_iter_count(i));
3489
3490 again:
3491 /*
3492 * Bring in the user page that we will copy from _first_.
3493 * Otherwise there's a nasty deadlock on copying from the
3494 * same page as we're writing to, without it being marked
3495 * up-to-date.
3496 *
3497 * Not only is this an optimisation, but it is also required
3498 * to check that the address is actually valid, when atomic
3499 * usercopies are used, below.
3500 */
3501 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3502 status = -EFAULT;
3503 break;
3504 }
3505
3506 if (fatal_signal_pending(current)) {
3507 status = -EINTR;
3508 break;
3509 }
3510
3511 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3512 &page, &fsdata);
3513 if (unlikely(status < 0))
3514 break;
3515
3516 if (mapping_writably_mapped(mapping))
3517 flush_dcache_page(page);
3518
3519 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3520 flush_dcache_page(page);
3521
3522 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3523 page, fsdata);
3524 if (unlikely(status < 0))
3525 break;
3526 copied = status;
3527
3528 cond_resched();
3529
3530 iov_iter_advance(i, copied);
3531 if (unlikely(copied == 0)) {
3532 /*
3533 * If we were unable to copy any data at all, we must
3534 * fall back to a single segment length write.
3535 *
3536 * If we didn't fallback here, we could livelock
3537 * because not all segments in the iov can be copied at
3538 * once without a pagefault.
3539 */
3540 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3541 iov_iter_single_seg_count(i));
3542 goto again;
3543 }
3544 pos += copied;
3545 written += copied;
3546
3547 balance_dirty_pages_ratelimited(mapping);
3548 } while (iov_iter_count(i));
3549
3550 return written ? written : status;
3551 }
3552 EXPORT_SYMBOL(generic_perform_write);
3553
3554 /**
3555 * __generic_file_write_iter - write data to a file
3556 * @iocb: IO state structure (file, offset, etc.)
3557 * @from: iov_iter with data to write
3558 *
3559 * This function does all the work needed for actually writing data to a
3560 * file. It does all basic checks, removes SUID from the file, updates
3561 * modification times and calls proper subroutines depending on whether we
3562 * do direct IO or a standard buffered write.
3563 *
3564 * It expects i_mutex to be grabbed unless we work on a block device or similar
3565 * object which does not need locking at all.
3566 *
3567 * This function does *not* take care of syncing data in case of O_SYNC write.
3568 * A caller has to handle it. This is mainly due to the fact that we want to
3569 * avoid syncing under i_mutex.
3570 *
3571 * Return:
3572 * * number of bytes written, even for truncated writes
3573 * * negative error code if no data has been written at all
3574 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3575 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3576 {
3577 struct file *file = iocb->ki_filp;
3578 struct address_space * mapping = file->f_mapping;
3579 struct inode *inode = mapping->host;
3580 ssize_t written = 0;
3581 ssize_t err;
3582 ssize_t status;
3583
3584 /* We can write back this queue in page reclaim */
3585 current->backing_dev_info = inode_to_bdi(inode);
3586 err = file_remove_privs(file);
3587 if (err)
3588 goto out;
3589
3590 err = file_update_time(file);
3591 if (err)
3592 goto out;
3593
3594 if (iocb->ki_flags & IOCB_DIRECT) {
3595 loff_t pos, endbyte;
3596
3597 written = generic_file_direct_write(iocb, from);
3598 /*
3599 * If the write stopped short of completing, fall back to
3600 * buffered writes. Some filesystems do this for writes to
3601 * holes, for example. For DAX files, a buffered write will
3602 * not succeed (even if it did, DAX does not handle dirty
3603 * page-cache pages correctly).
3604 */
3605 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3606 goto out;
3607
3608 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3609 /*
3610 * If generic_perform_write() returned a synchronous error
3611 * then we want to return the number of bytes which were
3612 * direct-written, or the error code if that was zero. Note
3613 * that this differs from normal direct-io semantics, which
3614 * will return -EFOO even if some bytes were written.
3615 */
3616 if (unlikely(status < 0)) {
3617 err = status;
3618 goto out;
3619 }
3620 /*
3621 * We need to ensure that the page cache pages are written to
3622 * disk and invalidated to preserve the expected O_DIRECT
3623 * semantics.
3624 */
3625 endbyte = pos + status - 1;
3626 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3627 if (err == 0) {
3628 iocb->ki_pos = endbyte + 1;
3629 written += status;
3630 invalidate_mapping_pages(mapping,
3631 pos >> PAGE_SHIFT,
3632 endbyte >> PAGE_SHIFT);
3633 } else {
3634 /*
3635 * We don't know how much we wrote, so just return
3636 * the number of bytes which were direct-written
3637 */
3638 }
3639 } else {
3640 written = generic_perform_write(file, from, iocb->ki_pos);
3641 if (likely(written > 0))
3642 iocb->ki_pos += written;
3643 }
3644 out:
3645 current->backing_dev_info = NULL;
3646 return written ? written : err;
3647 }
3648 EXPORT_SYMBOL(__generic_file_write_iter);
3649
3650 /**
3651 * generic_file_write_iter - write data to a file
3652 * @iocb: IO state structure
3653 * @from: iov_iter with data to write
3654 *
3655 * This is a wrapper around __generic_file_write_iter() to be used by most
3656 * filesystems. It takes care of syncing the file in case of O_SYNC file
3657 * and acquires i_mutex as needed.
3658 * Return:
3659 * * negative error code if no data has been written at all of
3660 * vfs_fsync_range() failed for a synchronous write
3661 * * number of bytes written, even for truncated writes
3662 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3663 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3664 {
3665 struct file *file = iocb->ki_filp;
3666 struct inode *inode = file->f_mapping->host;
3667 ssize_t ret;
3668
3669 inode_lock(inode);
3670 ret = generic_write_checks(iocb, from);
3671 if (ret > 0)
3672 ret = __generic_file_write_iter(iocb, from);
3673 inode_unlock(inode);
3674
3675 if (ret > 0)
3676 ret = generic_write_sync(iocb, ret);
3677 return ret;
3678 }
3679 EXPORT_SYMBOL(generic_file_write_iter);
3680
3681 /**
3682 * try_to_release_page() - release old fs-specific metadata on a page
3683 *
3684 * @page: the page which the kernel is trying to free
3685 * @gfp_mask: memory allocation flags (and I/O mode)
3686 *
3687 * The address_space is to try to release any data against the page
3688 * (presumably at page->private).
3689 *
3690 * This may also be called if PG_fscache is set on a page, indicating that the
3691 * page is known to the local caching routines.
3692 *
3693 * The @gfp_mask argument specifies whether I/O may be performed to release
3694 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3695 *
3696 * Return: %1 if the release was successful, otherwise return zero.
3697 */
try_to_release_page(struct page * page,gfp_t gfp_mask)3698 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3699 {
3700 struct address_space * const mapping = page->mapping;
3701
3702 BUG_ON(!PageLocked(page));
3703 if (PageWriteback(page))
3704 return 0;
3705
3706 if (mapping && mapping->a_ops->releasepage)
3707 return mapping->a_ops->releasepage(page, gfp_mask);
3708 return try_to_free_buffers(page);
3709 }
3710
3711 EXPORT_SYMBOL(try_to_release_page);
3712