1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 struct pagevec lru_lazyfree_movetail;
69 #ifdef CONFIG_SMP
70 struct pagevec activate_page;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
74 .lock = INIT_LOCAL_LOCK(lock),
75 };
76
77 /*
78 * This path almost never happens for VM activity - pages are normally
79 * freed via pagevecs. But it gets used by networking.
80 */
__page_cache_release(struct page * page)81 static void __page_cache_release(struct page *page)
82 {
83 if (PageLRU(page)) {
84 pg_data_t *pgdat = page_pgdat(page);
85 struct lruvec *lruvec;
86 unsigned long flags;
87
88 spin_lock_irqsave(&pgdat->lru_lock, flags);
89 lruvec = mem_cgroup_page_lruvec(page, pgdat);
90 VM_BUG_ON_PAGE(!PageLRU(page), page);
91 __ClearPageLRU(page);
92 del_page_from_lru_list(page, lruvec, page_off_lru(page));
93 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
94 }
95 __ClearPageWaiters(page);
96 }
97
__put_single_page(struct page * page)98 static void __put_single_page(struct page *page)
99 {
100 __page_cache_release(page);
101 mem_cgroup_uncharge(page);
102 free_unref_page(page);
103 }
104
__put_compound_page(struct page * page)105 static void __put_compound_page(struct page *page)
106 {
107 /*
108 * __page_cache_release() is supposed to be called for thp, not for
109 * hugetlb. This is because hugetlb page does never have PageLRU set
110 * (it's never listed to any LRU lists) and no memcg routines should
111 * be called for hugetlb (it has a separate hugetlb_cgroup.)
112 */
113 if (!PageHuge(page))
114 __page_cache_release(page);
115 destroy_compound_page(page);
116 }
117
__put_page(struct page * page)118 void __put_page(struct page *page)
119 {
120 if (is_zone_device_page(page)) {
121 put_dev_pagemap(page->pgmap);
122
123 /*
124 * The page belongs to the device that created pgmap. Do
125 * not return it to page allocator.
126 */
127 return;
128 }
129
130 if (unlikely(PageCompound(page)))
131 __put_compound_page(page);
132 else
133 __put_single_page(page);
134 }
135 EXPORT_SYMBOL(__put_page);
136
137 /**
138 * put_pages_list() - release a list of pages
139 * @pages: list of pages threaded on page->lru
140 *
141 * Release a list of pages which are strung together on page.lru. Currently
142 * used by read_cache_pages() and related error recovery code.
143 */
put_pages_list(struct list_head * pages)144 void put_pages_list(struct list_head *pages)
145 {
146 while (!list_empty(pages)) {
147 struct page *victim;
148
149 victim = lru_to_page(pages);
150 list_del(&victim->lru);
151 put_page(victim);
152 }
153 }
154 EXPORT_SYMBOL(put_pages_list);
155
156 /*
157 * get_kernel_pages() - pin kernel pages in memory
158 * @kiov: An array of struct kvec structures
159 * @nr_segs: number of segments to pin
160 * @write: pinning for read/write, currently ignored
161 * @pages: array that receives pointers to the pages pinned.
162 * Should be at least nr_segs long.
163 *
164 * Returns number of pages pinned. This may be fewer than the number
165 * requested. If nr_pages is 0 or negative, returns 0. If no pages
166 * were pinned, returns -errno. Each page returned must be released
167 * with a put_page() call when it is finished with.
168 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)169 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
170 struct page **pages)
171 {
172 int seg;
173
174 for (seg = 0; seg < nr_segs; seg++) {
175 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
176 return seg;
177
178 pages[seg] = kmap_to_page(kiov[seg].iov_base);
179 get_page(pages[seg]);
180 }
181
182 return seg;
183 }
184 EXPORT_SYMBOL_GPL(get_kernel_pages);
185
186 /*
187 * get_kernel_page() - pin a kernel page in memory
188 * @start: starting kernel address
189 * @write: pinning for read/write, currently ignored
190 * @pages: array that receives pointer to the page pinned.
191 * Must be at least nr_segs long.
192 *
193 * Returns 1 if page is pinned. If the page was not pinned, returns
194 * -errno. The page returned must be released with a put_page() call
195 * when it is finished with.
196 */
get_kernel_page(unsigned long start,int write,struct page ** pages)197 int get_kernel_page(unsigned long start, int write, struct page **pages)
198 {
199 const struct kvec kiov = {
200 .iov_base = (void *)start,
201 .iov_len = PAGE_SIZE
202 };
203
204 return get_kernel_pages(&kiov, 1, write, pages);
205 }
206 EXPORT_SYMBOL_GPL(get_kernel_page);
207
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)208 static void pagevec_lru_move_fn(struct pagevec *pvec,
209 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
210 void *arg)
211 {
212 int i;
213 struct pglist_data *pgdat = NULL;
214 struct lruvec *lruvec;
215 unsigned long flags = 0;
216
217 for (i = 0; i < pagevec_count(pvec); i++) {
218 struct page *page = pvec->pages[i];
219 struct pglist_data *pagepgdat = page_pgdat(page);
220
221 if (pagepgdat != pgdat) {
222 if (pgdat)
223 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
224 pgdat = pagepgdat;
225 spin_lock_irqsave(&pgdat->lru_lock, flags);
226 }
227
228 lruvec = mem_cgroup_page_lruvec(page, pgdat);
229 (*move_fn)(page, lruvec, arg);
230 }
231 if (pgdat)
232 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
233 release_pages(pvec->pages, pvec->nr);
234 pagevec_reinit(pvec);
235 }
236
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)237 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
238 void *arg)
239 {
240 int *pgmoved = arg;
241
242 if (PageLRU(page) && !PageUnevictable(page)) {
243 del_page_from_lru_list(page, lruvec, page_lru(page));
244 ClearPageActive(page);
245 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
246 (*pgmoved) += thp_nr_pages(page);
247 }
248 }
249
250 /*
251 * pagevec_move_tail() must be called with IRQ disabled.
252 * Otherwise this may cause nasty races.
253 */
pagevec_move_tail(struct pagevec * pvec)254 static void pagevec_move_tail(struct pagevec *pvec)
255 {
256 int pgmoved = 0;
257
258 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
259 __count_vm_events(PGROTATED, pgmoved);
260 }
261
262 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)263 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
264 {
265 bool ret = false;
266
267 if (!pagevec_add(pvec, page) || PageCompound(page) ||
268 lru_cache_disabled())
269 ret = true;
270
271 return ret;
272 }
273
274 /*
275 * Writeback is about to end against a page which has been marked for immediate
276 * reclaim. If it still appears to be reclaimable, move it to the tail of the
277 * inactive list.
278 */
rotate_reclaimable_page(struct page * page)279 void rotate_reclaimable_page(struct page *page)
280 {
281 if (!PageLocked(page) && !PageDirty(page) &&
282 !PageUnevictable(page) && PageLRU(page)) {
283 struct pagevec *pvec;
284 unsigned long flags;
285
286 get_page(page);
287 local_lock_irqsave(&lru_rotate.lock, flags);
288 pvec = this_cpu_ptr(&lru_rotate.pvec);
289 if (pagevec_add_and_need_flush(pvec, page))
290 pagevec_move_tail(pvec);
291 local_unlock_irqrestore(&lru_rotate.lock, flags);
292 }
293 }
294
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)295 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
296 {
297 do {
298 unsigned long lrusize;
299
300 /* Record cost event */
301 if (file)
302 lruvec->file_cost += nr_pages;
303 else
304 lruvec->anon_cost += nr_pages;
305
306 /*
307 * Decay previous events
308 *
309 * Because workloads change over time (and to avoid
310 * overflow) we keep these statistics as a floating
311 * average, which ends up weighing recent refaults
312 * more than old ones.
313 */
314 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
315 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
316 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
317 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
318
319 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
320 lruvec->file_cost /= 2;
321 lruvec->anon_cost /= 2;
322 }
323 } while ((lruvec = parent_lruvec(lruvec)));
324 }
325
lru_note_cost_page(struct page * page)326 void lru_note_cost_page(struct page *page)
327 {
328 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
329 page_is_file_lru(page), thp_nr_pages(page));
330 }
331
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)332 static void __activate_page(struct page *page, struct lruvec *lruvec,
333 void *arg)
334 {
335 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
336 int lru = page_lru_base_type(page);
337 int nr_pages = thp_nr_pages(page);
338
339 del_page_from_lru_list(page, lruvec, lru);
340 SetPageActive(page);
341 lru += LRU_ACTIVE;
342 add_page_to_lru_list(page, lruvec, lru);
343 trace_mm_lru_activate(page);
344
345 __count_vm_events(PGACTIVATE, nr_pages);
346 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
347 nr_pages);
348 }
349 }
350
351 #ifdef CONFIG_SMP
activate_page_drain(int cpu)352 static void activate_page_drain(int cpu)
353 {
354 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
355
356 if (pagevec_count(pvec))
357 pagevec_lru_move_fn(pvec, __activate_page, NULL);
358 }
359
need_activate_page_drain(int cpu)360 static bool need_activate_page_drain(int cpu)
361 {
362 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
363 }
364
activate_page(struct page * page)365 static void activate_page(struct page *page)
366 {
367 page = compound_head(page);
368 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
369 struct pagevec *pvec;
370
371 local_lock(&lru_pvecs.lock);
372 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
373 get_page(page);
374 if (pagevec_add_and_need_flush(pvec, page))
375 pagevec_lru_move_fn(pvec, __activate_page, NULL);
376 local_unlock(&lru_pvecs.lock);
377 }
378 }
379
380 #else
activate_page_drain(int cpu)381 static inline void activate_page_drain(int cpu)
382 {
383 }
384
activate_page(struct page * page)385 static void activate_page(struct page *page)
386 {
387 pg_data_t *pgdat = page_pgdat(page);
388
389 page = compound_head(page);
390 spin_lock_irq(&pgdat->lru_lock);
391 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
392 spin_unlock_irq(&pgdat->lru_lock);
393 }
394 #endif
395
__lru_cache_activate_page(struct page * page)396 static void __lru_cache_activate_page(struct page *page)
397 {
398 struct pagevec *pvec;
399 int i;
400
401 local_lock(&lru_pvecs.lock);
402 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
403
404 /*
405 * Search backwards on the optimistic assumption that the page being
406 * activated has just been added to this pagevec. Note that only
407 * the local pagevec is examined as a !PageLRU page could be in the
408 * process of being released, reclaimed, migrated or on a remote
409 * pagevec that is currently being drained. Furthermore, marking
410 * a remote pagevec's page PageActive potentially hits a race where
411 * a page is marked PageActive just after it is added to the inactive
412 * list causing accounting errors and BUG_ON checks to trigger.
413 */
414 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
415 struct page *pagevec_page = pvec->pages[i];
416
417 if (pagevec_page == page) {
418 SetPageActive(page);
419 break;
420 }
421 }
422
423 local_unlock(&lru_pvecs.lock);
424 }
425
426 /*
427 * Mark a page as having seen activity.
428 *
429 * inactive,unreferenced -> inactive,referenced
430 * inactive,referenced -> active,unreferenced
431 * active,unreferenced -> active,referenced
432 *
433 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
434 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
435 */
mark_page_accessed(struct page * page)436 void mark_page_accessed(struct page *page)
437 {
438 page = compound_head(page);
439
440 trace_android_vh_mark_page_accessed(page);
441 if (!PageReferenced(page)) {
442 SetPageReferenced(page);
443 } else if (PageUnevictable(page)) {
444 /*
445 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
446 * this list is never rotated or maintained, so marking an
447 * evictable page accessed has no effect.
448 */
449 } else if (!PageActive(page)) {
450 /*
451 * If the page is on the LRU, queue it for activation via
452 * lru_pvecs.activate_page. Otherwise, assume the page is on a
453 * pagevec, mark it active and it'll be moved to the active
454 * LRU on the next drain.
455 */
456 if (PageLRU(page))
457 activate_page(page);
458 else
459 __lru_cache_activate_page(page);
460 ClearPageReferenced(page);
461 workingset_activation(page);
462 }
463 if (page_is_idle(page))
464 clear_page_idle(page);
465 }
466 EXPORT_SYMBOL(mark_page_accessed);
467
468 /**
469 * lru_cache_add - add a page to a page list
470 * @page: the page to be added to the LRU.
471 *
472 * Queue the page for addition to the LRU via pagevec. The decision on whether
473 * to add the page to the [in]active [file|anon] list is deferred until the
474 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
475 * have the page added to the active list using mark_page_accessed().
476 */
lru_cache_add(struct page * page)477 void lru_cache_add(struct page *page)
478 {
479 struct pagevec *pvec;
480
481 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
482 VM_BUG_ON_PAGE(PageLRU(page), page);
483
484 get_page(page);
485 local_lock(&lru_pvecs.lock);
486 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
487 if (pagevec_add_and_need_flush(pvec, page))
488 __pagevec_lru_add(pvec);
489 local_unlock(&lru_pvecs.lock);
490 }
491 EXPORT_SYMBOL(lru_cache_add);
492
493 /**
494 * lru_cache_add_inactive_or_unevictable
495 * @page: the page to be added to LRU
496 * @vma: vma in which page is mapped for determining reclaimability
497 *
498 * Place @page on the inactive or unevictable LRU list, depending on its
499 * evictability.
500 */
__lru_cache_add_inactive_or_unevictable(struct page * page,unsigned long vma_flags)501 void __lru_cache_add_inactive_or_unevictable(struct page *page,
502 unsigned long vma_flags)
503 {
504 bool unevictable;
505
506 VM_BUG_ON_PAGE(PageLRU(page), page);
507
508 unevictable = (vma_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
509 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
510 int nr_pages = thp_nr_pages(page);
511 /*
512 * We use the irq-unsafe __mod_zone_page_stat because this
513 * counter is not modified from interrupt context, and the pte
514 * lock is held(spinlock), which implies preemption disabled.
515 */
516 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
517 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
518 }
519 lru_cache_add(page);
520 }
521
522 /*
523 * If the page can not be invalidated, it is moved to the
524 * inactive list to speed up its reclaim. It is moved to the
525 * head of the list, rather than the tail, to give the flusher
526 * threads some time to write it out, as this is much more
527 * effective than the single-page writeout from reclaim.
528 *
529 * If the page isn't page_mapped and dirty/writeback, the page
530 * could reclaim asap using PG_reclaim.
531 *
532 * 1. active, mapped page -> none
533 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
534 * 3. inactive, mapped page -> none
535 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
536 * 5. inactive, clean -> inactive, tail
537 * 6. Others -> none
538 *
539 * In 4, why it moves inactive's head, the VM expects the page would
540 * be write it out by flusher threads as this is much more effective
541 * than the single-page writeout from reclaim.
542 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)543 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
544 void *arg)
545 {
546 int lru;
547 bool active;
548 int nr_pages = thp_nr_pages(page);
549
550 if (!PageLRU(page))
551 return;
552
553 if (PageUnevictable(page))
554 return;
555
556 /* Some processes are using the page */
557 if (page_mapped(page))
558 return;
559
560 active = PageActive(page);
561 lru = page_lru_base_type(page);
562
563 del_page_from_lru_list(page, lruvec, lru + active);
564 ClearPageActive(page);
565 ClearPageReferenced(page);
566
567 if (PageWriteback(page) || PageDirty(page)) {
568 /*
569 * PG_reclaim could be raced with end_page_writeback
570 * It can make readahead confusing. But race window
571 * is _really_ small and it's non-critical problem.
572 */
573 add_page_to_lru_list(page, lruvec, lru);
574 SetPageReclaim(page);
575 } else {
576 /*
577 * The page's writeback ends up during pagevec
578 * We moves tha page into tail of inactive.
579 */
580 add_page_to_lru_list_tail(page, lruvec, lru);
581 __count_vm_events(PGROTATED, nr_pages);
582 }
583
584 if (active) {
585 __count_vm_events(PGDEACTIVATE, nr_pages);
586 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
587 nr_pages);
588 }
589 }
590
lru_deactivate_fn(struct page * page,struct lruvec * lruvec,void * arg)591 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
592 void *arg)
593 {
594 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
595 int lru = page_lru_base_type(page);
596 int nr_pages = thp_nr_pages(page);
597
598 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
599 ClearPageActive(page);
600 ClearPageReferenced(page);
601 add_page_to_lru_list(page, lruvec, lru);
602
603 __count_vm_events(PGDEACTIVATE, nr_pages);
604 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
605 nr_pages);
606 }
607 }
608
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)609 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
610 void *arg)
611 {
612 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
613 !PageSwapCache(page) && !PageUnevictable(page)) {
614 bool active = PageActive(page);
615 int nr_pages = thp_nr_pages(page);
616
617 del_page_from_lru_list(page, lruvec,
618 LRU_INACTIVE_ANON + active);
619 ClearPageActive(page);
620 ClearPageReferenced(page);
621 /*
622 * Lazyfree pages are clean anonymous pages. They have
623 * PG_swapbacked flag cleared, to distinguish them from normal
624 * anonymous pages
625 */
626 ClearPageSwapBacked(page);
627 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
628
629 __count_vm_events(PGLAZYFREE, nr_pages);
630 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
631 nr_pages);
632 }
633 }
634
lru_lazyfree_movetail_fn(struct page * page,struct lruvec * lruvec,void * arg)635 static void lru_lazyfree_movetail_fn(struct page *page, struct lruvec *lruvec,
636 void *arg)
637 {
638 bool *add_to_tail = (bool *)arg;
639
640 if (PageLRU(page) && !PageUnevictable(page) && PageSwapBacked(page) &&
641 !PageSwapCache(page)) {
642 bool active = PageActive(page);
643
644 del_page_from_lru_list(page, lruvec,
645 LRU_INACTIVE_ANON + active);
646 ClearPageActive(page);
647 ClearPageReferenced(page);
648 if (add_to_tail && *add_to_tail)
649 add_page_to_lru_list_tail(page, lruvec, LRU_INACTIVE_FILE);
650 else
651 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
652 }
653 }
654
655 /*
656 * Drain pages out of the cpu's pagevecs.
657 * Either "cpu" is the current CPU, and preemption has already been
658 * disabled; or "cpu" is being hot-unplugged, and is already dead.
659 */
lru_add_drain_cpu(int cpu)660 void lru_add_drain_cpu(int cpu)
661 {
662 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
663
664 if (pagevec_count(pvec))
665 __pagevec_lru_add(pvec);
666
667 pvec = &per_cpu(lru_rotate.pvec, cpu);
668 /* Disabling interrupts below acts as a compiler barrier. */
669 if (data_race(pagevec_count(pvec))) {
670 unsigned long flags;
671
672 /* No harm done if a racing interrupt already did this */
673 local_lock_irqsave(&lru_rotate.lock, flags);
674 pagevec_move_tail(pvec);
675 local_unlock_irqrestore(&lru_rotate.lock, flags);
676 }
677
678 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
679 if (pagevec_count(pvec))
680 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
681
682 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
683 if (pagevec_count(pvec))
684 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
685
686 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
687 if (pagevec_count(pvec))
688 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
689
690 pvec = &per_cpu(lru_pvecs.lru_lazyfree_movetail, cpu);
691 if (pagevec_count(pvec))
692 pagevec_lru_move_fn(pvec, lru_lazyfree_movetail_fn, NULL);
693
694 activate_page_drain(cpu);
695 }
696
697 /**
698 * deactivate_file_page - forcefully deactivate a file page
699 * @page: page to deactivate
700 *
701 * This function hints the VM that @page is a good reclaim candidate,
702 * for example if its invalidation fails due to the page being dirty
703 * or under writeback.
704 */
deactivate_file_page(struct page * page)705 void deactivate_file_page(struct page *page)
706 {
707 /*
708 * In a workload with many unevictable page such as mprotect,
709 * unevictable page deactivation for accelerating reclaim is pointless.
710 */
711 if (PageUnevictable(page))
712 return;
713
714 if (likely(get_page_unless_zero(page))) {
715 struct pagevec *pvec;
716
717 local_lock(&lru_pvecs.lock);
718 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
719
720 if (pagevec_add_and_need_flush(pvec, page))
721 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
722 local_unlock(&lru_pvecs.lock);
723 }
724 }
725
726 /*
727 * deactivate_page - deactivate a page
728 * @page: page to deactivate
729 *
730 * deactivate_page() moves @page to the inactive list if @page was on the active
731 * list and was not an unevictable page. This is done to accelerate the reclaim
732 * of @page.
733 */
deactivate_page(struct page * page)734 void deactivate_page(struct page *page)
735 {
736 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
737 struct pagevec *pvec;
738
739 local_lock(&lru_pvecs.lock);
740 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
741 get_page(page);
742 if (pagevec_add_and_need_flush(pvec, page))
743 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
744 local_unlock(&lru_pvecs.lock);
745 }
746 }
747
748 /**
749 * mark_page_lazyfree - make an anon page lazyfree
750 * @page: page to deactivate
751 *
752 * mark_page_lazyfree() moves @page to the inactive file list.
753 * This is done to accelerate the reclaim of @page.
754 */
mark_page_lazyfree(struct page * page)755 void mark_page_lazyfree(struct page *page)
756 {
757 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
758 !PageSwapCache(page) && !PageUnevictable(page)) {
759 struct pagevec *pvec;
760
761 local_lock(&lru_pvecs.lock);
762 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
763 get_page(page);
764 if (pagevec_add_and_need_flush(pvec, page))
765 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
766 local_unlock(&lru_pvecs.lock);
767 }
768 }
769
770 /**
771 * mark_page_lazyfree_movetail - make a swapbacked page lazyfree
772 * @page: page to deactivate
773 *
774 * mark_page_lazyfree_movetail() moves @page to the tail of inactive file list.
775 * This is done to accelerate the reclaim of @page.
776 */
mark_page_lazyfree_movetail(struct page * page,bool tail)777 void mark_page_lazyfree_movetail(struct page *page, bool tail)
778 {
779 if (PageLRU(page) && !PageUnevictable(page) && PageSwapBacked(page) &&
780 !PageSwapCache(page)) {
781 struct pagevec *pvec;
782
783 local_lock(&lru_pvecs.lock);
784 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree_movetail);
785 get_page(page);
786 if (pagevec_add_and_need_flush(pvec, page))
787 pagevec_lru_move_fn(pvec,
788 lru_lazyfree_movetail_fn, &tail);
789 local_unlock(&lru_pvecs.lock);
790 }
791 }
792
lru_add_drain(void)793 void lru_add_drain(void)
794 {
795 local_lock(&lru_pvecs.lock);
796 lru_add_drain_cpu(smp_processor_id());
797 local_unlock(&lru_pvecs.lock);
798 }
799
800 /*
801 * It's called from per-cpu workqueue context in SMP case so
802 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
803 * the same cpu. It shouldn't be a problem in !SMP case since
804 * the core is only one and the locks will disable preemption.
805 */
lru_add_and_bh_lrus_drain(void)806 static void lru_add_and_bh_lrus_drain(void)
807 {
808 local_lock(&lru_pvecs.lock);
809 lru_add_drain_cpu(smp_processor_id());
810 local_unlock(&lru_pvecs.lock);
811 invalidate_bh_lrus_cpu();
812 }
813
lru_add_drain_cpu_zone(struct zone * zone)814 void lru_add_drain_cpu_zone(struct zone *zone)
815 {
816 local_lock(&lru_pvecs.lock);
817 lru_add_drain_cpu(smp_processor_id());
818 drain_local_pages(zone);
819 local_unlock(&lru_pvecs.lock);
820 }
821
822 #ifdef CONFIG_SMP
823
824 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
825
lru_add_drain_per_cpu(struct work_struct * dummy)826 static void lru_add_drain_per_cpu(struct work_struct *dummy)
827 {
828 lru_add_and_bh_lrus_drain();
829 }
830
831 /*
832 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
833 * kworkers being shut down before our page_alloc_cpu_dead callback is
834 * executed on the offlined cpu.
835 * Calling this function with cpu hotplug locks held can actually lead
836 * to obscure indirect dependencies via WQ context.
837 */
__lru_add_drain_all(bool force_all_cpus)838 inline void __lru_add_drain_all(bool force_all_cpus)
839 {
840 /*
841 * lru_drain_gen - Global pages generation number
842 *
843 * (A) Definition: global lru_drain_gen = x implies that all generations
844 * 0 < n <= x are already *scheduled* for draining.
845 *
846 * This is an optimization for the highly-contended use case where a
847 * user space workload keeps constantly generating a flow of pages for
848 * each CPU.
849 */
850 static unsigned int lru_drain_gen;
851 static struct cpumask has_work;
852 static DEFINE_MUTEX(lock);
853 unsigned cpu, this_gen;
854
855 /*
856 * Make sure nobody triggers this path before mm_percpu_wq is fully
857 * initialized.
858 */
859 if (WARN_ON(!mm_percpu_wq))
860 return;
861
862 /*
863 * Guarantee pagevec counter stores visible by this CPU are visible to
864 * other CPUs before loading the current drain generation.
865 */
866 smp_mb();
867
868 /*
869 * (B) Locally cache global LRU draining generation number
870 *
871 * The read barrier ensures that the counter is loaded before the mutex
872 * is taken. It pairs with smp_mb() inside the mutex critical section
873 * at (D).
874 */
875 this_gen = smp_load_acquire(&lru_drain_gen);
876
877 mutex_lock(&lock);
878
879 /*
880 * (C) Exit the draining operation if a newer generation, from another
881 * lru_add_drain_all(), was already scheduled for draining. Check (A).
882 */
883 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
884 goto done;
885
886 /*
887 * (D) Increment global generation number
888 *
889 * Pairs with smp_load_acquire() at (B), outside of the critical
890 * section. Use a full memory barrier to guarantee that the new global
891 * drain generation number is stored before loading pagevec counters.
892 *
893 * This pairing must be done here, before the for_each_online_cpu loop
894 * below which drains the page vectors.
895 *
896 * Let x, y, and z represent some system CPU numbers, where x < y < z.
897 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
898 * below and has already reached CPU #y's per-cpu data. CPU #x comes
899 * along, adds some pages to its per-cpu vectors, then calls
900 * lru_add_drain_all().
901 *
902 * If the paired barrier is done at any later step, e.g. after the
903 * loop, CPU #x will just exit at (C) and miss flushing out all of its
904 * added pages.
905 */
906 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
907 smp_mb();
908
909 cpumask_clear(&has_work);
910 for_each_online_cpu(cpu) {
911 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
912
913 if (force_all_cpus ||
914 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
915 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
916 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
917 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
918 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
919 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree_movetail, cpu)) ||
920 need_activate_page_drain(cpu) ||
921 has_bh_in_lru(cpu, NULL)) {
922 INIT_WORK(work, lru_add_drain_per_cpu);
923 queue_work_on(cpu, mm_percpu_wq, work);
924 __cpumask_set_cpu(cpu, &has_work);
925 }
926 }
927
928 for_each_cpu(cpu, &has_work)
929 flush_work(&per_cpu(lru_add_drain_work, cpu));
930
931 done:
932 mutex_unlock(&lock);
933 }
934
lru_add_drain_all(void)935 void lru_add_drain_all(void)
936 {
937 __lru_add_drain_all(false);
938 }
939 #else
lru_add_drain_all(void)940 void lru_add_drain_all(void)
941 {
942 lru_add_drain();
943 }
944 #endif /* CONFIG_SMP */
945
946 static atomic_t lru_disable_count = ATOMIC_INIT(0);
947
lru_cache_disabled(void)948 bool lru_cache_disabled(void)
949 {
950 return atomic_read(&lru_disable_count) != 0;
951 }
952
lru_cache_enable(void)953 void lru_cache_enable(void)
954 {
955 atomic_dec(&lru_disable_count);
956 }
957 EXPORT_SYMBOL_GPL(lru_cache_enable);
958
959 /*
960 * lru_cache_disable() needs to be called before we start compiling
961 * a list of pages to be migrated using isolate_lru_page().
962 * It drains pages on LRU cache and then disable on all cpus until
963 * lru_cache_enable is called.
964 *
965 * Must be paired with a call to lru_cache_enable().
966 */
lru_cache_disable(void)967 void lru_cache_disable(void)
968 {
969 /*
970 * If someone is already disabled lru_cache, just return with
971 * increasing the lru_disable_count.
972 */
973 if (atomic_inc_not_zero(&lru_disable_count))
974 return;
975 #ifdef CONFIG_SMP
976 /*
977 * lru_add_drain_all in the force mode will schedule draining on
978 * all online CPUs so any calls of lru_cache_disabled wrapped by
979 * local_lock or preemption disabled would be ordered by that.
980 * The atomic operation doesn't need to have stronger ordering
981 * requirements because that is enforeced by the scheduling
982 * guarantees.
983 */
984 __lru_add_drain_all(true);
985 #else
986 lru_add_and_bh_lrus_drain();
987 #endif
988 atomic_inc(&lru_disable_count);
989 }
990 EXPORT_SYMBOL_GPL(lru_cache_disable);
991
992 /**
993 * release_pages - batched put_page()
994 * @pages: array of pages to release
995 * @nr: number of pages
996 *
997 * Decrement the reference count on all the pages in @pages. If it
998 * fell to zero, remove the page from the LRU and free it.
999 */
release_pages(struct page ** pages,int nr)1000 void release_pages(struct page **pages, int nr)
1001 {
1002 int i;
1003 LIST_HEAD(pages_to_free);
1004 struct pglist_data *locked_pgdat = NULL;
1005 struct lruvec *lruvec;
1006 unsigned long flags;
1007 unsigned int lock_batch;
1008
1009 for (i = 0; i < nr; i++) {
1010 struct page *page = pages[i];
1011
1012 /*
1013 * Make sure the IRQ-safe lock-holding time does not get
1014 * excessive with a continuous string of pages from the
1015 * same pgdat. The lock is held only if pgdat != NULL.
1016 */
1017 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
1018 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1019 locked_pgdat = NULL;
1020 }
1021
1022 page = compound_head(page);
1023 if (is_huge_zero_page(page))
1024 continue;
1025
1026 if (is_zone_device_page(page)) {
1027 if (locked_pgdat) {
1028 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
1029 flags);
1030 locked_pgdat = NULL;
1031 }
1032 /*
1033 * ZONE_DEVICE pages that return 'false' from
1034 * page_is_devmap_managed() do not require special
1035 * processing, and instead, expect a call to
1036 * put_page_testzero().
1037 */
1038 if (page_is_devmap_managed(page)) {
1039 put_devmap_managed_page(page);
1040 continue;
1041 }
1042 }
1043
1044 if (!put_page_testzero(page))
1045 continue;
1046
1047 if (PageCompound(page)) {
1048 if (locked_pgdat) {
1049 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1050 locked_pgdat = NULL;
1051 }
1052 __put_compound_page(page);
1053 continue;
1054 }
1055
1056 if (PageLRU(page)) {
1057 struct pglist_data *pgdat = page_pgdat(page);
1058
1059 if (pgdat != locked_pgdat) {
1060 if (locked_pgdat)
1061 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
1062 flags);
1063 lock_batch = 0;
1064 locked_pgdat = pgdat;
1065 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
1066 }
1067
1068 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
1069 VM_BUG_ON_PAGE(!PageLRU(page), page);
1070 __ClearPageLRU(page);
1071 del_page_from_lru_list(page, lruvec, page_off_lru(page));
1072 }
1073
1074 __ClearPageWaiters(page);
1075
1076 list_add(&page->lru, &pages_to_free);
1077 }
1078 if (locked_pgdat)
1079 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
1080
1081 mem_cgroup_uncharge_list(&pages_to_free);
1082 free_unref_page_list(&pages_to_free);
1083 }
1084 EXPORT_SYMBOL(release_pages);
1085
1086 /*
1087 * The pages which we're about to release may be in the deferred lru-addition
1088 * queues. That would prevent them from really being freed right now. That's
1089 * OK from a correctness point of view but is inefficient - those pages may be
1090 * cache-warm and we want to give them back to the page allocator ASAP.
1091 *
1092 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
1093 * and __pagevec_lru_add_active() call release_pages() directly to avoid
1094 * mutual recursion.
1095 */
__pagevec_release(struct pagevec * pvec)1096 void __pagevec_release(struct pagevec *pvec)
1097 {
1098 if (!pvec->percpu_pvec_drained) {
1099 lru_add_drain();
1100 pvec->percpu_pvec_drained = true;
1101 }
1102 release_pages(pvec->pages, pagevec_count(pvec));
1103 pagevec_reinit(pvec);
1104 }
1105 EXPORT_SYMBOL(__pagevec_release);
1106
1107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1108 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)1109 void lru_add_page_tail(struct page *page, struct page *page_tail,
1110 struct lruvec *lruvec, struct list_head *list)
1111 {
1112 VM_BUG_ON_PAGE(!PageHead(page), page);
1113 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
1114 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
1115 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
1116
1117 if (!list)
1118 SetPageLRU(page_tail);
1119
1120 if (likely(PageLRU(page)))
1121 list_add_tail(&page_tail->lru, &page->lru);
1122 else if (list) {
1123 /* page reclaim is reclaiming a huge page */
1124 get_page(page_tail);
1125 list_add_tail(&page_tail->lru, list);
1126 } else {
1127 /*
1128 * Head page has not yet been counted, as an hpage,
1129 * so we must account for each subpage individually.
1130 *
1131 * Put page_tail on the list at the correct position
1132 * so they all end up in order.
1133 */
1134 add_page_to_lru_list_tail(page_tail, lruvec,
1135 page_lru(page_tail));
1136 }
1137 }
1138 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1139
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)1140 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1141 void *arg)
1142 {
1143 enum lru_list lru;
1144 int was_unevictable = TestClearPageUnevictable(page);
1145 int nr_pages = thp_nr_pages(page);
1146
1147 VM_BUG_ON_PAGE(PageLRU(page), page);
1148
1149 /*
1150 * Page becomes evictable in two ways:
1151 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1152 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1153 * a) do PageLRU check with lock [check_move_unevictable_pages]
1154 * b) do PageLRU check before lock [clear_page_mlock]
1155 *
1156 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1157 * following strict ordering:
1158 *
1159 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1160 *
1161 * SetPageLRU() TestClearPageMlocked()
1162 * smp_mb() // explicit ordering // above provides strict
1163 * // ordering
1164 * PageMlocked() PageLRU()
1165 *
1166 *
1167 * if '#1' does not observe setting of PG_lru by '#0' and fails
1168 * isolation, the explicit barrier will make sure that page_evictable
1169 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1170 * can be reordered after PageMlocked check and can make '#1' to fail
1171 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1172 * looking at the same page) and the evictable page will be stranded
1173 * in an unevictable LRU.
1174 */
1175 SetPageLRU(page);
1176 smp_mb__after_atomic();
1177
1178 if (page_evictable(page)) {
1179 lru = page_lru(page);
1180 if (was_unevictable)
1181 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1182 } else {
1183 lru = LRU_UNEVICTABLE;
1184 ClearPageActive(page);
1185 SetPageUnevictable(page);
1186 if (!was_unevictable)
1187 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1188 }
1189
1190 add_page_to_lru_list(page, lruvec, lru);
1191 trace_mm_lru_insertion(page, lru);
1192 }
1193
1194 /*
1195 * Add the passed pages to the LRU, then drop the caller's refcount
1196 * on them. Reinitialises the caller's pagevec.
1197 */
__pagevec_lru_add(struct pagevec * pvec)1198 void __pagevec_lru_add(struct pagevec *pvec)
1199 {
1200 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1201 }
1202
1203 /**
1204 * pagevec_lookup_entries - gang pagecache lookup
1205 * @pvec: Where the resulting entries are placed
1206 * @mapping: The address_space to search
1207 * @start: The starting entry index
1208 * @nr_entries: The maximum number of pages
1209 * @indices: The cache indices corresponding to the entries in @pvec
1210 *
1211 * pagevec_lookup_entries() will search for and return a group of up
1212 * to @nr_pages pages and shadow entries in the mapping. All
1213 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1214 * reference against actual pages in @pvec.
1215 *
1216 * The search returns a group of mapping-contiguous entries with
1217 * ascending indexes. There may be holes in the indices due to
1218 * not-present entries.
1219 *
1220 * Only one subpage of a Transparent Huge Page is returned in one call:
1221 * allowing truncate_inode_pages_range() to evict the whole THP without
1222 * cycling through a pagevec of extra references.
1223 *
1224 * pagevec_lookup_entries() returns the number of entries which were
1225 * found.
1226 */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)1227 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1228 struct address_space *mapping,
1229 pgoff_t start, unsigned nr_entries,
1230 pgoff_t *indices)
1231 {
1232 pvec->nr = find_get_entries(mapping, start, nr_entries,
1233 pvec->pages, indices);
1234 return pagevec_count(pvec);
1235 }
1236
1237 /**
1238 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1239 * @pvec: The pagevec to prune
1240 *
1241 * pagevec_lookup_entries() fills both pages and exceptional radix
1242 * tree entries into the pagevec. This function prunes all
1243 * exceptionals from @pvec without leaving holes, so that it can be
1244 * passed on to page-only pagevec operations.
1245 */
pagevec_remove_exceptionals(struct pagevec * pvec)1246 void pagevec_remove_exceptionals(struct pagevec *pvec)
1247 {
1248 int i, j;
1249
1250 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1251 struct page *page = pvec->pages[i];
1252 if (!xa_is_value(page))
1253 pvec->pages[j++] = page;
1254 }
1255 pvec->nr = j;
1256 }
1257
1258 /**
1259 * pagevec_lookup_range - gang pagecache lookup
1260 * @pvec: Where the resulting pages are placed
1261 * @mapping: The address_space to search
1262 * @start: The starting page index
1263 * @end: The final page index
1264 *
1265 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1266 * pages in the mapping starting from index @start and upto index @end
1267 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1268 * reference against the pages in @pvec.
1269 *
1270 * The search returns a group of mapping-contiguous pages with ascending
1271 * indexes. There may be holes in the indices due to not-present pages. We
1272 * also update @start to index the next page for the traversal.
1273 *
1274 * pagevec_lookup_range() returns the number of pages which were found. If this
1275 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1276 * reached.
1277 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1278 unsigned pagevec_lookup_range(struct pagevec *pvec,
1279 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1280 {
1281 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1282 pvec->pages);
1283 return pagevec_count(pvec);
1284 }
1285 EXPORT_SYMBOL(pagevec_lookup_range);
1286
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1287 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1288 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1289 xa_mark_t tag)
1290 {
1291 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1292 PAGEVEC_SIZE, pvec->pages);
1293 return pagevec_count(pvec);
1294 }
1295 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1296
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned max_pages)1297 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1298 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1299 xa_mark_t tag, unsigned max_pages)
1300 {
1301 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1302 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1303 return pagevec_count(pvec);
1304 }
1305 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1306 /*
1307 * Perform any setup for the swap system
1308 */
swap_setup(void)1309 void __init swap_setup(void)
1310 {
1311 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1312
1313 /* Use a smaller cluster for small-memory machines */
1314 if (megs < 16)
1315 page_cluster = 2;
1316 else
1317 page_cluster = 3;
1318 /*
1319 * Right now other parts of the system means that we
1320 * _really_ don't want to cluster much more
1321 */
1322 }
1323
1324 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1325 void put_devmap_managed_page(struct page *page)
1326 {
1327 int count;
1328
1329 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1330 return;
1331
1332 count = page_ref_dec_return(page);
1333
1334 /*
1335 * devmap page refcounts are 1-based, rather than 0-based: if
1336 * refcount is 1, then the page is free and the refcount is
1337 * stable because nobody holds a reference on the page.
1338 */
1339 if (count == 1)
1340 free_devmap_managed_page(page);
1341 else if (!count)
1342 __put_page(page);
1343 }
1344 EXPORT_SYMBOL(put_devmap_managed_page);
1345 #endif
1346