1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
touch_buffer(struct buffer_head * bh)60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
__lock_buffer(struct buffer_head * bh)67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
unlock_buffer(struct buffer_head * bh)73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
buffer_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
__wait_on_buffer(struct buffer_head * bh)120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
buffer_io_error(struct buffer_head * bh,char * msg)126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
end_buffer_write_sync(struct buffer_head * bh,int uptodate)164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL_NS(end_buffer_write_sync, ANDROID_GKI_VFS_EXPORT_ONLY);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
end_buffer_async_read(struct buffer_head * bh,int uptodate)244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
decrypt_bh(struct work_struct * work)303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate &&
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327 if (ctx) {
328 INIT_WORK(&ctx->work, decrypt_bh);
329 ctx->bh = bh;
330 fscrypt_enqueue_decrypt_work(&ctx->work);
331 return;
332 }
333 uptodate = 0;
334 }
335 end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
376 return;
377
378 still_busy:
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
392 *
393 * The page comes unlocked when it has no locked buffer_async buffers
394 * left.
395 *
396 * PageLocked prevents anyone starting new async I/O reads any of
397 * the buffers.
398 *
399 * PageWriteback is used to prevent simultaneous writeout of the same
400 * page.
401 *
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
404 */
mark_buffer_async_read(struct buffer_head * bh)405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
409 }
410
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
413 {
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
416 }
417
mark_buffer_async_write(struct buffer_head * bh)418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL_NS(mark_buffer_async_write, ANDROID_GKI_VFS_EXPORT_ONLY);
423
424
425 /*
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
431 *
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
435 *
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
445 * ->private_lock.
446 *
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
449 *
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
454 *
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
458 *
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462 * queued up.
463 *
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
471 * b_inode back.
472 */
473
474 /*
475 * The buffer's backing address_space's private_lock must be held
476 */
__remove_assoc_queue(struct buffer_head * bh)477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
482 }
483
inode_has_buffers(struct inode * inode)484 int inode_has_buffers(struct inode *inode)
485 {
486 return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
493 *
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
498 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 struct buffer_head *bh;
502 struct list_head *p;
503 int err = 0;
504
505 spin_lock(lock);
506 repeat:
507 list_for_each_prev(p, list) {
508 bh = BH_ENTRY(p);
509 if (buffer_locked(bh)) {
510 get_bh(bh);
511 spin_unlock(lock);
512 wait_on_buffer(bh);
513 if (!buffer_uptodate(bh))
514 err = -EIO;
515 brelse(bh);
516 spin_lock(lock);
517 goto repeat;
518 }
519 }
520 spin_unlock(lock);
521 return err;
522 }
523
emergency_thaw_bdev(struct super_block * sb)524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
533 *
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
535 * that I/O.
536 *
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
540 */
sync_mapping_buffers(struct address_space * mapping)541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 struct address_space *buffer_mapping = mapping->private_data;
544
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 return 0;
547
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
558 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
561 {
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 if (bh) {
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 put_bh(bh);
567 }
568 }
569
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
574
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
578 } else {
579 BUG_ON(mapping->private_data != buffer_mapping);
580 }
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
587 }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593 * dirty.
594 *
595 * If warn is true, then emit a warning if the page is not uptodate and has
596 * not been truncated.
597 *
598 * The caller must hold lock_page_memcg().
599 */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 int warn)
602 {
603 unsigned long flags;
604
605 xa_lock_irqsave(&mapping->i_pages, flags);
606 if (page->mapping) { /* Race with truncate? */
607 WARN_ON_ONCE(warn && !PageUptodate(page));
608 account_page_dirtied(page, mapping);
609 __xa_set_mark(&mapping->i_pages, page_index(page),
610 PAGECACHE_TAG_DIRTY);
611 }
612 xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617 * Add a page to the dirty page list.
618 *
619 * It is a sad fact of life that this function is called from several places
620 * deeply under spinlocking. It may not sleep.
621 *
622 * If the page has buffers, the uptodate buffers are set dirty, to preserve
623 * dirty-state coherency between the page and the buffers. It the page does
624 * not have buffers then when they are later attached they will all be set
625 * dirty.
626 *
627 * The buffers are dirtied before the page is dirtied. There's a small race
628 * window in which a writepage caller may see the page cleanness but not the
629 * buffer dirtiness. That's fine. If this code were to set the page dirty
630 * before the buffers, a concurrent writepage caller could clear the page dirty
631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632 * page on the dirty page list.
633 *
634 * We use private_lock to lock against try_to_free_buffers while using the
635 * page's buffer list. Also use this to protect against clean buffers being
636 * added to the page after it was set dirty.
637 *
638 * FIXME: may need to call ->reservepage here as well. That's rather up to the
639 * address_space though.
640 */
__set_page_dirty_buffers(struct page * page)641 int __set_page_dirty_buffers(struct page *page)
642 {
643 int newly_dirty;
644 struct address_space *mapping = page_mapping(page);
645
646 if (unlikely(!mapping))
647 return !TestSetPageDirty(page);
648
649 spin_lock(&mapping->private_lock);
650 if (page_has_buffers(page)) {
651 struct buffer_head *head = page_buffers(page);
652 struct buffer_head *bh = head;
653
654 do {
655 set_buffer_dirty(bh);
656 bh = bh->b_this_page;
657 } while (bh != head);
658 }
659 /*
660 * Lock out page->mem_cgroup migration to keep PageDirty
661 * synchronized with per-memcg dirty page counters.
662 */
663 lock_page_memcg(page);
664 newly_dirty = !TestSetPageDirty(page);
665 spin_unlock(&mapping->private_lock);
666
667 if (newly_dirty)
668 __set_page_dirty(page, mapping, 1);
669
670 unlock_page_memcg(page);
671
672 if (newly_dirty)
673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL_NS(__set_page_dirty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, REQ_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
invalidate_inode_buffers(struct inode * inode)786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->private_data;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
remove_inode_buffers(struct inode * inode)807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->private_data;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 bool retry)
841 {
842 struct buffer_head *bh, *head;
843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 long offset;
845 struct mem_cgroup *memcg, *old_memcg;
846
847 if (retry)
848 gfp |= __GFP_NOFAIL;
849
850 memcg = get_mem_cgroup_from_page(page);
851 old_memcg = set_active_memcg(memcg);
852
853 head = NULL;
854 offset = PAGE_SIZE;
855 while ((offset -= size) >= 0) {
856 bh = alloc_buffer_head(gfp);
857 if (!bh)
858 goto no_grow;
859
860 bh->b_this_page = head;
861 bh->b_blocknr = -1;
862 head = bh;
863
864 bh->b_size = size;
865
866 /* Link the buffer to its page */
867 set_bh_page(bh, page, offset);
868 }
869 out:
870 set_active_memcg(old_memcg);
871 mem_cgroup_put(memcg);
872 return head;
873 /*
874 * In case anything failed, we just free everything we got.
875 */
876 no_grow:
877 if (head) {
878 do {
879 bh = head;
880 head = head->b_this_page;
881 free_buffer_head(bh);
882 } while (head);
883 }
884
885 goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 struct buffer_head *bh, *tail;
893
894 bh = head;
895 do {
896 tail = bh;
897 bh = bh->b_this_page;
898 } while (bh);
899 tail->b_this_page = head;
900 attach_page_private(page, head);
901 }
902
blkdev_max_block(struct block_device * bdev,unsigned int size)903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 sector_t retval = ~((sector_t)0);
906 loff_t sz = i_size_read(bdev->bd_inode);
907
908 if (sz) {
909 unsigned int sizebits = blksize_bits(size);
910 retval = (sz >> sizebits);
911 }
912 return retval;
913 }
914
915 /*
916 * Initialise the state of a blockdev page's buffers.
917 */
918 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)919 init_page_buffers(struct page *page, struct block_device *bdev,
920 sector_t block, int size)
921 {
922 struct buffer_head *head = page_buffers(page);
923 struct buffer_head *bh = head;
924 int uptodate = PageUptodate(page);
925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927 do {
928 if (!buffer_mapped(bh)) {
929 bh->b_end_io = NULL;
930 bh->b_private = NULL;
931 bh->b_bdev = bdev;
932 bh->b_blocknr = block;
933 if (uptodate)
934 set_buffer_uptodate(bh);
935 if (block < end_block)
936 set_buffer_mapped(bh);
937 }
938 block++;
939 bh = bh->b_this_page;
940 } while (bh != head);
941
942 /*
943 * Caller needs to validate requested block against end of device.
944 */
945 return end_block;
946 }
947
948 /*
949 * Create the page-cache page that contains the requested block.
950 *
951 * This is used purely for blockdev mappings.
952 */
953 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)954 grow_dev_page(struct block_device *bdev, sector_t block,
955 pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 struct inode *inode = bdev->bd_inode;
958 struct page *page;
959 struct buffer_head *bh;
960 sector_t end_block;
961 int ret = 0;
962 gfp_t gfp_mask;
963
964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966 /*
967 * XXX: __getblk_slow() can not really deal with failure and
968 * will endlessly loop on improvised global reclaim. Prefer
969 * looping in the allocator rather than here, at least that
970 * code knows what it's doing.
971 */
972 gfp_mask |= __GFP_NOFAIL;
973
974 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976 BUG_ON(!PageLocked(page));
977
978 if (page_has_buffers(page)) {
979 bh = page_buffers(page);
980 if (bh->b_size == size) {
981 end_block = init_page_buffers(page, bdev,
982 (sector_t)index << sizebits,
983 size);
984 goto done;
985 }
986 if (!try_to_free_buffers(page))
987 goto failed;
988 }
989
990 /*
991 * Allocate some buffers for this page
992 */
993 bh = alloc_page_buffers(page, size, true);
994
995 /*
996 * Link the page to the buffers and initialise them. Take the
997 * lock to be atomic wrt __find_get_block(), which does not
998 * run under the page lock.
999 */
1000 spin_lock(&inode->i_mapping->private_lock);
1001 link_dev_buffers(page, bh);
1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 size);
1004 spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 unlock_page(page);
1009 put_page(page);
1010 return ret;
1011 }
1012
1013 /*
1014 * Create buffers for the specified block device block's page. If
1015 * that page was dirty, the buffers are set dirty also.
1016 */
1017 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 pgoff_t index;
1021 int sizebits;
1022
1023 sizebits = -1;
1024 do {
1025 sizebits++;
1026 } while ((size << sizebits) < PAGE_SIZE);
1027
1028 index = block >> sizebits;
1029
1030 /*
1031 * Check for a block which wants to lie outside our maximum possible
1032 * pagecache index. (this comparison is done using sector_t types).
1033 */
1034 if (unlikely(index != block >> sizebits)) {
1035 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036 "device %pg\n",
1037 __func__, (unsigned long long)block,
1038 bdev);
1039 return -EIO;
1040 }
1041
1042 /* Create a page with the proper size buffers.. */
1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045
1046 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048 unsigned size, gfp_t gfp)
1049 {
1050 /* Size must be multiple of hard sectorsize */
1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052 (size < 512 || size > PAGE_SIZE))) {
1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 size);
1055 printk(KERN_ERR "logical block size: %d\n",
1056 bdev_logical_block_size(bdev));
1057
1058 dump_stack();
1059 return NULL;
1060 }
1061
1062 for (;;) {
1063 struct buffer_head *bh;
1064 int ret;
1065
1066 bh = __find_get_block(bdev, block, size);
1067 if (bh)
1068 return bh;
1069
1070 ret = grow_buffers(bdev, block, size, gfp);
1071 if (ret < 0)
1072 return NULL;
1073 }
1074 }
1075
1076 /*
1077 * The relationship between dirty buffers and dirty pages:
1078 *
1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080 * the page is tagged dirty in the page cache.
1081 *
1082 * At all times, the dirtiness of the buffers represents the dirtiness of
1083 * subsections of the page. If the page has buffers, the page dirty bit is
1084 * merely a hint about the true dirty state.
1085 *
1086 * When a page is set dirty in its entirety, all its buffers are marked dirty
1087 * (if the page has buffers).
1088 *
1089 * When a buffer is marked dirty, its page is dirtied, but the page's other
1090 * buffers are not.
1091 *
1092 * Also. When blockdev buffers are explicitly read with bread(), they
1093 * individually become uptodate. But their backing page remains not
1094 * uptodate - even if all of its buffers are uptodate. A subsequent
1095 * block_read_full_page() against that page will discover all the uptodate
1096 * buffers, will set the page uptodate and will perform no I/O.
1097 */
1098
1099 /**
1100 * mark_buffer_dirty - mark a buffer_head as needing writeout
1101 * @bh: the buffer_head to mark dirty
1102 *
1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104 * its backing page dirty, then tag the page as dirty in the page cache
1105 * and then attach the address_space's inode to its superblock's dirty
1106 * inode list.
1107 *
1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1109 * i_pages lock and mapping->host->i_lock.
1110 */
mark_buffer_dirty(struct buffer_head * bh)1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113 WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115 trace_block_dirty_buffer(bh);
1116
1117 /*
1118 * Very *carefully* optimize the it-is-already-dirty case.
1119 *
1120 * Don't let the final "is it dirty" escape to before we
1121 * perhaps modified the buffer.
1122 */
1123 if (buffer_dirty(bh)) {
1124 smp_mb();
1125 if (buffer_dirty(bh))
1126 return;
1127 }
1128
1129 if (!test_set_buffer_dirty(bh)) {
1130 struct page *page = bh->b_page;
1131 struct address_space *mapping = NULL;
1132
1133 lock_page_memcg(page);
1134 if (!TestSetPageDirty(page)) {
1135 mapping = page_mapping(page);
1136 if (mapping)
1137 __set_page_dirty(page, mapping, 0);
1138 }
1139 unlock_page_memcg(page);
1140 if (mapping)
1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142 }
1143 }
1144 EXPORT_SYMBOL_NS(mark_buffer_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
1145
mark_buffer_write_io_error(struct buffer_head * bh)1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148 struct super_block *sb;
1149
1150 set_buffer_write_io_error(bh);
1151 /* FIXME: do we need to set this in both places? */
1152 if (bh->b_page && bh->b_page->mapping)
1153 mapping_set_error(bh->b_page->mapping, -EIO);
1154 if (bh->b_assoc_map)
1155 mapping_set_error(bh->b_assoc_map, -EIO);
1156 rcu_read_lock();
1157 sb = READ_ONCE(bh->b_bdev->bd_super);
1158 if (sb)
1159 errseq_set(&sb->s_wb_err, -EIO);
1160 rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL_NS(mark_buffer_write_io_error, ANDROID_GKI_VFS_EXPORT_ONLY);
1163
1164 /*
1165 * Decrement a buffer_head's reference count. If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1170 */
__brelse(struct buffer_head * buf)1171 void __brelse(struct buffer_head * buf)
1172 {
1173 if (atomic_read(&buf->b_count)) {
1174 put_bh(buf);
1175 return;
1176 }
1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL_NS(__brelse, ANDROID_GKI_VFS_EXPORT_ONLY);
1180
1181 /*
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1184 */
__bforget(struct buffer_head * bh)1185 void __bforget(struct buffer_head *bh)
1186 {
1187 clear_buffer_dirty(bh);
1188 if (bh->b_assoc_map) {
1189 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191 spin_lock(&buffer_mapping->private_lock);
1192 list_del_init(&bh->b_assoc_buffers);
1193 bh->b_assoc_map = NULL;
1194 spin_unlock(&buffer_mapping->private_lock);
1195 }
1196 __brelse(bh);
1197 }
1198 EXPORT_SYMBOL_NS(__bforget, ANDROID_GKI_VFS_EXPORT_ONLY);
1199
__bread_slow(struct buffer_head * bh)1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202 lock_buffer(bh);
1203 if (buffer_uptodate(bh)) {
1204 unlock_buffer(bh);
1205 return bh;
1206 } else {
1207 get_bh(bh);
1208 bh->b_end_io = end_buffer_read_sync;
1209 submit_bh(REQ_OP_READ, 0, bh);
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1213 }
1214 brelse(bh);
1215 return NULL;
1216 }
1217
1218 /*
1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1221 * refcount elevated by one when they're in an LRU. A buffer can only appear
1222 * once in a particular CPU's LRU. A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1224 *
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1227 *
1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1229 * a local interrupt disable for that.
1230 */
1231
1232 #define BH_LRU_SIZE 16
1233
1234 struct bh_lru {
1235 struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock() local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock() preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1247
check_irqs_on(void)1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251 BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254
1255 /*
1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1257 * inserted at the front, and the buffer_head at the back if any is evicted.
1258 * Or, if already in the LRU it is moved to the front.
1259 */
bh_lru_install(struct buffer_head * bh)1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262 struct buffer_head *evictee = bh;
1263 struct bh_lru *b;
1264 int i;
1265
1266 check_irqs_on();
1267 /*
1268 * the refcount of buffer_head in bh_lru prevents dropping the
1269 * attached page(i.e., try_to_free_buffers) so it could cause
1270 * failing page migration.
1271 * Skip putting upcoming bh into bh_lru until migration is done.
1272 */
1273 if (lru_cache_disabled())
1274 return;
1275
1276 bh_lru_lock();
1277
1278 b = this_cpu_ptr(&bh_lrus);
1279 for (i = 0; i < BH_LRU_SIZE; i++) {
1280 swap(evictee, b->bhs[i]);
1281 if (evictee == bh) {
1282 bh_lru_unlock();
1283 return;
1284 }
1285 }
1286
1287 get_bh(bh);
1288 bh_lru_unlock();
1289 brelse(evictee);
1290 }
1291
1292 /*
1293 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1294 */
1295 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1296 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1297 {
1298 struct buffer_head *ret = NULL;
1299 unsigned int i;
1300
1301 check_irqs_on();
1302 bh_lru_lock();
1303 for (i = 0; i < BH_LRU_SIZE; i++) {
1304 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1305
1306 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307 bh->b_size == size) {
1308 if (i) {
1309 while (i) {
1310 __this_cpu_write(bh_lrus.bhs[i],
1311 __this_cpu_read(bh_lrus.bhs[i - 1]));
1312 i--;
1313 }
1314 __this_cpu_write(bh_lrus.bhs[0], bh);
1315 }
1316 get_bh(bh);
1317 ret = bh;
1318 break;
1319 }
1320 }
1321 bh_lru_unlock();
1322 return ret;
1323 }
1324
1325 /*
1326 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1327 * it in the LRU and mark it as accessed. If it is not present then return
1328 * NULL
1329 */
1330 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335 if (bh == NULL) {
1336 /* __find_get_block_slow will mark the page accessed */
1337 bh = __find_get_block_slow(bdev, block);
1338 if (bh)
1339 bh_lru_install(bh);
1340 } else
1341 touch_buffer(bh);
1342
1343 return bh;
1344 }
1345 EXPORT_SYMBOL(__find_get_block);
1346
1347 /*
1348 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1349 * which corresponds to the passed block_device, block and size. The
1350 * returned buffer has its reference count incremented.
1351 *
1352 * __getblk_gfp() will lock up the machine if grow_dev_page's
1353 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1354 */
1355 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1356 __getblk_gfp(struct block_device *bdev, sector_t block,
1357 unsigned size, gfp_t gfp)
1358 {
1359 struct buffer_head *bh = __find_get_block(bdev, block, size);
1360
1361 might_sleep();
1362 if (bh == NULL)
1363 bh = __getblk_slow(bdev, block, size, gfp);
1364 return bh;
1365 }
1366 EXPORT_SYMBOL(__getblk_gfp);
1367
1368 /*
1369 * Do async read-ahead on a buffer..
1370 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1371 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1372 {
1373 struct buffer_head *bh = __getblk(bdev, block, size);
1374 if (likely(bh)) {
1375 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1376 brelse(bh);
1377 }
1378 }
1379 EXPORT_SYMBOL_NS(__breadahead, ANDROID_GKI_VFS_EXPORT_ONLY);
1380
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1381 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382 gfp_t gfp)
1383 {
1384 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385 if (likely(bh)) {
1386 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387 brelse(bh);
1388 }
1389 }
1390 EXPORT_SYMBOL(__breadahead_gfp);
1391
1392 /**
1393 * __bread_gfp() - reads a specified block and returns the bh
1394 * @bdev: the block_device to read from
1395 * @block: number of block
1396 * @size: size (in bytes) to read
1397 * @gfp: page allocation flag
1398 *
1399 * Reads a specified block, and returns buffer head that contains it.
1400 * The page cache can be allocated from non-movable area
1401 * not to prevent page migration if you set gfp to zero.
1402 * It returns NULL if the block was unreadable.
1403 */
1404 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1405 __bread_gfp(struct block_device *bdev, sector_t block,
1406 unsigned size, gfp_t gfp)
1407 {
1408 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409
1410 if (likely(bh) && !buffer_uptodate(bh))
1411 bh = __bread_slow(bh);
1412 return bh;
1413 }
1414 EXPORT_SYMBOL_NS(__bread_gfp, ANDROID_GKI_VFS_EXPORT_ONLY);
1415
__invalidate_bh_lrus(struct bh_lru * b)1416 static void __invalidate_bh_lrus(struct bh_lru *b)
1417 {
1418 int i;
1419
1420 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 brelse(b->bhs[i]);
1422 b->bhs[i] = NULL;
1423 }
1424 }
1425 /*
1426 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1427 * This doesn't race because it runs in each cpu either in irq
1428 * or with preempt disabled.
1429 */
invalidate_bh_lru(void * arg)1430 static void invalidate_bh_lru(void *arg)
1431 {
1432 struct bh_lru *b = &get_cpu_var(bh_lrus);
1433
1434 __invalidate_bh_lrus(b);
1435 put_cpu_var(bh_lrus);
1436 }
1437
has_bh_in_lru(int cpu,void * dummy)1438 bool has_bh_in_lru(int cpu, void *dummy)
1439 {
1440 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1441 int i;
1442
1443 for (i = 0; i < BH_LRU_SIZE; i++) {
1444 if (b->bhs[i])
1445 return true;
1446 }
1447
1448 return false;
1449 }
1450
invalidate_bh_lrus(void)1451 void invalidate_bh_lrus(void)
1452 {
1453 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1454 }
1455 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1456
1457 /*
1458 * It's called from workqueue context so we need a bh_lru_lock to close
1459 * the race with preemption/irq.
1460 */
invalidate_bh_lrus_cpu(void)1461 void invalidate_bh_lrus_cpu(void)
1462 {
1463 struct bh_lru *b;
1464
1465 bh_lru_lock();
1466 b = this_cpu_ptr(&bh_lrus);
1467 __invalidate_bh_lrus(b);
1468 bh_lru_unlock();
1469 }
1470
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1471 void set_bh_page(struct buffer_head *bh,
1472 struct page *page, unsigned long offset)
1473 {
1474 bh->b_page = page;
1475 BUG_ON(offset >= PAGE_SIZE);
1476 if (PageHighMem(page))
1477 /*
1478 * This catches illegal uses and preserves the offset:
1479 */
1480 bh->b_data = (char *)(0 + offset);
1481 else
1482 bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485
1486 /*
1487 * Called when truncating a buffer on a page completely.
1488 */
1489
1490 /* Bits that are cleared during an invalidate */
1491 #define BUFFER_FLAGS_DISCARD \
1492 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493 1 << BH_Delay | 1 << BH_Unwritten)
1494
discard_buffer(struct buffer_head * bh)1495 static void discard_buffer(struct buffer_head * bh)
1496 {
1497 unsigned long b_state, b_state_old;
1498
1499 lock_buffer(bh);
1500 clear_buffer_dirty(bh);
1501 bh->b_bdev = NULL;
1502 b_state = bh->b_state;
1503 for (;;) {
1504 b_state_old = cmpxchg(&bh->b_state, b_state,
1505 (b_state & ~BUFFER_FLAGS_DISCARD));
1506 if (b_state_old == b_state)
1507 break;
1508 b_state = b_state_old;
1509 }
1510 unlock_buffer(bh);
1511 }
1512
1513 /**
1514 * block_invalidatepage - invalidate part or all of a buffer-backed page
1515 *
1516 * @page: the page which is affected
1517 * @offset: start of the range to invalidate
1518 * @length: length of the range to invalidate
1519 *
1520 * block_invalidatepage() is called when all or part of the page has become
1521 * invalidated by a truncate operation.
1522 *
1523 * block_invalidatepage() does not have to release all buffers, but it must
1524 * ensure that no dirty buffer is left outside @offset and that no I/O
1525 * is underway against any of the blocks which are outside the truncation
1526 * point. Because the caller is about to free (and possibly reuse) those
1527 * blocks on-disk.
1528 */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1529 void block_invalidatepage(struct page *page, unsigned int offset,
1530 unsigned int length)
1531 {
1532 struct buffer_head *head, *bh, *next;
1533 unsigned int curr_off = 0;
1534 unsigned int stop = length + offset;
1535
1536 BUG_ON(!PageLocked(page));
1537 if (!page_has_buffers(page))
1538 goto out;
1539
1540 /*
1541 * Check for overflow
1542 */
1543 BUG_ON(stop > PAGE_SIZE || stop < length);
1544
1545 head = page_buffers(page);
1546 bh = head;
1547 do {
1548 unsigned int next_off = curr_off + bh->b_size;
1549 next = bh->b_this_page;
1550
1551 /*
1552 * Are we still fully in range ?
1553 */
1554 if (next_off > stop)
1555 goto out;
1556
1557 /*
1558 * is this block fully invalidated?
1559 */
1560 if (offset <= curr_off)
1561 discard_buffer(bh);
1562 curr_off = next_off;
1563 bh = next;
1564 } while (bh != head);
1565
1566 /*
1567 * We release buffers only if the entire page is being invalidated.
1568 * The get_block cached value has been unconditionally invalidated,
1569 * so real IO is not possible anymore.
1570 */
1571 if (length == PAGE_SIZE)
1572 try_to_release_page(page, 0);
1573 out:
1574 return;
1575 }
1576 EXPORT_SYMBOL_NS(block_invalidatepage, ANDROID_GKI_VFS_EXPORT_ONLY);
1577
1578
1579 /*
1580 * We attach and possibly dirty the buffers atomically wrt
1581 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1582 * is already excluded via the page lock.
1583 */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1584 void create_empty_buffers(struct page *page,
1585 unsigned long blocksize, unsigned long b_state)
1586 {
1587 struct buffer_head *bh, *head, *tail;
1588
1589 head = alloc_page_buffers(page, blocksize, true);
1590 bh = head;
1591 do {
1592 bh->b_state |= b_state;
1593 tail = bh;
1594 bh = bh->b_this_page;
1595 } while (bh);
1596 tail->b_this_page = head;
1597
1598 spin_lock(&page->mapping->private_lock);
1599 if (PageUptodate(page) || PageDirty(page)) {
1600 bh = head;
1601 do {
1602 if (PageDirty(page))
1603 set_buffer_dirty(bh);
1604 if (PageUptodate(page))
1605 set_buffer_uptodate(bh);
1606 bh = bh->b_this_page;
1607 } while (bh != head);
1608 }
1609 attach_page_private(page, head);
1610 spin_unlock(&page->mapping->private_lock);
1611 }
1612 EXPORT_SYMBOL_NS(create_empty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1613
1614 /**
1615 * clean_bdev_aliases: clean a range of buffers in block device
1616 * @bdev: Block device to clean buffers in
1617 * @block: Start of a range of blocks to clean
1618 * @len: Number of blocks to clean
1619 *
1620 * We are taking a range of blocks for data and we don't want writeback of any
1621 * buffer-cache aliases starting from return from this function and until the
1622 * moment when something will explicitly mark the buffer dirty (hopefully that
1623 * will not happen until we will free that block ;-) We don't even need to mark
1624 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1625 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1626 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1627 * would confuse anyone who might pick it with bread() afterwards...
1628 *
1629 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1630 * writeout I/O going on against recently-freed buffers. We don't wait on that
1631 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1632 * need to. That happens here.
1633 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1634 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1635 {
1636 struct inode *bd_inode = bdev->bd_inode;
1637 struct address_space *bd_mapping = bd_inode->i_mapping;
1638 struct pagevec pvec;
1639 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 pgoff_t end;
1641 int i, count;
1642 struct buffer_head *bh;
1643 struct buffer_head *head;
1644
1645 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1646 pagevec_init(&pvec);
1647 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1648 count = pagevec_count(&pvec);
1649 for (i = 0; i < count; i++) {
1650 struct page *page = pvec.pages[i];
1651
1652 if (!page_has_buffers(page))
1653 continue;
1654 /*
1655 * We use page lock instead of bd_mapping->private_lock
1656 * to pin buffers here since we can afford to sleep and
1657 * it scales better than a global spinlock lock.
1658 */
1659 lock_page(page);
1660 /* Recheck when the page is locked which pins bhs */
1661 if (!page_has_buffers(page))
1662 goto unlock_page;
1663 head = page_buffers(page);
1664 bh = head;
1665 do {
1666 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1667 goto next;
1668 if (bh->b_blocknr >= block + len)
1669 break;
1670 clear_buffer_dirty(bh);
1671 wait_on_buffer(bh);
1672 clear_buffer_req(bh);
1673 next:
1674 bh = bh->b_this_page;
1675 } while (bh != head);
1676 unlock_page:
1677 unlock_page(page);
1678 }
1679 pagevec_release(&pvec);
1680 cond_resched();
1681 /* End of range already reached? */
1682 if (index > end || !index)
1683 break;
1684 }
1685 }
1686 EXPORT_SYMBOL_NS(clean_bdev_aliases, ANDROID_GKI_VFS_EXPORT_ONLY);
1687
1688 /*
1689 * Size is a power-of-two in the range 512..PAGE_SIZE,
1690 * and the case we care about most is PAGE_SIZE.
1691 *
1692 * So this *could* possibly be written with those
1693 * constraints in mind (relevant mostly if some
1694 * architecture has a slow bit-scan instruction)
1695 */
block_size_bits(unsigned int blocksize)1696 static inline int block_size_bits(unsigned int blocksize)
1697 {
1698 return ilog2(blocksize);
1699 }
1700
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1701 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1702 {
1703 BUG_ON(!PageLocked(page));
1704
1705 if (!page_has_buffers(page))
1706 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1707 b_state);
1708 return page_buffers(page);
1709 }
1710
1711 /*
1712 * NOTE! All mapped/uptodate combinations are valid:
1713 *
1714 * Mapped Uptodate Meaning
1715 *
1716 * No No "unknown" - must do get_block()
1717 * No Yes "hole" - zero-filled
1718 * Yes No "allocated" - allocated on disk, not read in
1719 * Yes Yes "valid" - allocated and up-to-date in memory.
1720 *
1721 * "Dirty" is valid only with the last case (mapped+uptodate).
1722 */
1723
1724 /*
1725 * While block_write_full_page is writing back the dirty buffers under
1726 * the page lock, whoever dirtied the buffers may decide to clean them
1727 * again at any time. We handle that by only looking at the buffer
1728 * state inside lock_buffer().
1729 *
1730 * If block_write_full_page() is called for regular writeback
1731 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1732 * locked buffer. This only can happen if someone has written the buffer
1733 * directly, with submit_bh(). At the address_space level PageWriteback
1734 * prevents this contention from occurring.
1735 *
1736 * If block_write_full_page() is called with wbc->sync_mode ==
1737 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1738 * causes the writes to be flagged as synchronous writes.
1739 */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1740 int __block_write_full_page(struct inode *inode, struct page *page,
1741 get_block_t *get_block, struct writeback_control *wbc,
1742 bh_end_io_t *handler)
1743 {
1744 int err;
1745 sector_t block;
1746 sector_t last_block;
1747 struct buffer_head *bh, *head;
1748 unsigned int blocksize, bbits;
1749 int nr_underway = 0;
1750 int write_flags = wbc_to_write_flags(wbc);
1751
1752 head = create_page_buffers(page, inode,
1753 (1 << BH_Dirty)|(1 << BH_Uptodate));
1754
1755 /*
1756 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1757 * here, and the (potentially unmapped) buffers may become dirty at
1758 * any time. If a buffer becomes dirty here after we've inspected it
1759 * then we just miss that fact, and the page stays dirty.
1760 *
1761 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762 * handle that here by just cleaning them.
1763 */
1764
1765 bh = head;
1766 blocksize = bh->b_size;
1767 bbits = block_size_bits(blocksize);
1768
1769 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1770 last_block = (i_size_read(inode) - 1) >> bbits;
1771
1772 /*
1773 * Get all the dirty buffers mapped to disk addresses and
1774 * handle any aliases from the underlying blockdev's mapping.
1775 */
1776 do {
1777 if (block > last_block) {
1778 /*
1779 * mapped buffers outside i_size will occur, because
1780 * this page can be outside i_size when there is a
1781 * truncate in progress.
1782 */
1783 /*
1784 * The buffer was zeroed by block_write_full_page()
1785 */
1786 clear_buffer_dirty(bh);
1787 set_buffer_uptodate(bh);
1788 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1789 buffer_dirty(bh)) {
1790 WARN_ON(bh->b_size != blocksize);
1791 err = get_block(inode, block, bh, 1);
1792 if (err)
1793 goto recover;
1794 clear_buffer_delay(bh);
1795 if (buffer_new(bh)) {
1796 /* blockdev mappings never come here */
1797 clear_buffer_new(bh);
1798 clean_bdev_bh_alias(bh);
1799 }
1800 }
1801 bh = bh->b_this_page;
1802 block++;
1803 } while (bh != head);
1804
1805 do {
1806 if (!buffer_mapped(bh))
1807 continue;
1808 /*
1809 * If it's a fully non-blocking write attempt and we cannot
1810 * lock the buffer then redirty the page. Note that this can
1811 * potentially cause a busy-wait loop from writeback threads
1812 * and kswapd activity, but those code paths have their own
1813 * higher-level throttling.
1814 */
1815 if (wbc->sync_mode != WB_SYNC_NONE) {
1816 lock_buffer(bh);
1817 } else if (!trylock_buffer(bh)) {
1818 redirty_page_for_writepage(wbc, page);
1819 continue;
1820 }
1821 if (test_clear_buffer_dirty(bh)) {
1822 mark_buffer_async_write_endio(bh, handler);
1823 } else {
1824 unlock_buffer(bh);
1825 }
1826 } while ((bh = bh->b_this_page) != head);
1827
1828 /*
1829 * The page and its buffers are protected by PageWriteback(), so we can
1830 * drop the bh refcounts early.
1831 */
1832 BUG_ON(PageWriteback(page));
1833 set_page_writeback(page);
1834
1835 do {
1836 struct buffer_head *next = bh->b_this_page;
1837 if (buffer_async_write(bh)) {
1838 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1839 inode->i_write_hint, wbc);
1840 nr_underway++;
1841 }
1842 bh = next;
1843 } while (bh != head);
1844 unlock_page(page);
1845
1846 err = 0;
1847 done:
1848 if (nr_underway == 0) {
1849 /*
1850 * The page was marked dirty, but the buffers were
1851 * clean. Someone wrote them back by hand with
1852 * ll_rw_block/submit_bh. A rare case.
1853 */
1854 end_page_writeback(page);
1855
1856 /*
1857 * The page and buffer_heads can be released at any time from
1858 * here on.
1859 */
1860 }
1861 return err;
1862
1863 recover:
1864 /*
1865 * ENOSPC, or some other error. We may already have added some
1866 * blocks to the file, so we need to write these out to avoid
1867 * exposing stale data.
1868 * The page is currently locked and not marked for writeback
1869 */
1870 bh = head;
1871 /* Recovery: lock and submit the mapped buffers */
1872 do {
1873 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1874 !buffer_delay(bh)) {
1875 lock_buffer(bh);
1876 mark_buffer_async_write_endio(bh, handler);
1877 } else {
1878 /*
1879 * The buffer may have been set dirty during
1880 * attachment to a dirty page.
1881 */
1882 clear_buffer_dirty(bh);
1883 }
1884 } while ((bh = bh->b_this_page) != head);
1885 SetPageError(page);
1886 BUG_ON(PageWriteback(page));
1887 mapping_set_error(page->mapping, err);
1888 set_page_writeback(page);
1889 do {
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 clear_buffer_dirty(bh);
1893 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1894 inode->i_write_hint, wbc);
1895 nr_underway++;
1896 }
1897 bh = next;
1898 } while (bh != head);
1899 unlock_page(page);
1900 goto done;
1901 }
1902 EXPORT_SYMBOL(__block_write_full_page);
1903
1904 /*
1905 * If a page has any new buffers, zero them out here, and mark them uptodate
1906 * and dirty so they'll be written out (in order to prevent uninitialised
1907 * block data from leaking). And clear the new bit.
1908 */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1909 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1910 {
1911 unsigned int block_start, block_end;
1912 struct buffer_head *head, *bh;
1913
1914 BUG_ON(!PageLocked(page));
1915 if (!page_has_buffers(page))
1916 return;
1917
1918 bh = head = page_buffers(page);
1919 block_start = 0;
1920 do {
1921 block_end = block_start + bh->b_size;
1922
1923 if (buffer_new(bh)) {
1924 if (block_end > from && block_start < to) {
1925 if (!PageUptodate(page)) {
1926 unsigned start, size;
1927
1928 start = max(from, block_start);
1929 size = min(to, block_end) - start;
1930
1931 zero_user(page, start, size);
1932 set_buffer_uptodate(bh);
1933 }
1934
1935 clear_buffer_new(bh);
1936 mark_buffer_dirty(bh);
1937 }
1938 }
1939
1940 block_start = block_end;
1941 bh = bh->b_this_page;
1942 } while (bh != head);
1943 }
1944 EXPORT_SYMBOL_NS(page_zero_new_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1945
1946 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,struct iomap * iomap)1947 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1948 struct iomap *iomap)
1949 {
1950 loff_t offset = block << inode->i_blkbits;
1951
1952 bh->b_bdev = iomap->bdev;
1953
1954 /*
1955 * Block points to offset in file we need to map, iomap contains
1956 * the offset at which the map starts. If the map ends before the
1957 * current block, then do not map the buffer and let the caller
1958 * handle it.
1959 */
1960 BUG_ON(offset >= iomap->offset + iomap->length);
1961
1962 switch (iomap->type) {
1963 case IOMAP_HOLE:
1964 /*
1965 * If the buffer is not up to date or beyond the current EOF,
1966 * we need to mark it as new to ensure sub-block zeroing is
1967 * executed if necessary.
1968 */
1969 if (!buffer_uptodate(bh) ||
1970 (offset >= i_size_read(inode)))
1971 set_buffer_new(bh);
1972 break;
1973 case IOMAP_DELALLOC:
1974 if (!buffer_uptodate(bh) ||
1975 (offset >= i_size_read(inode)))
1976 set_buffer_new(bh);
1977 set_buffer_uptodate(bh);
1978 set_buffer_mapped(bh);
1979 set_buffer_delay(bh);
1980 break;
1981 case IOMAP_UNWRITTEN:
1982 /*
1983 * For unwritten regions, we always need to ensure that regions
1984 * in the block we are not writing to are zeroed. Mark the
1985 * buffer as new to ensure this.
1986 */
1987 set_buffer_new(bh);
1988 set_buffer_unwritten(bh);
1989 fallthrough;
1990 case IOMAP_MAPPED:
1991 if ((iomap->flags & IOMAP_F_NEW) ||
1992 offset >= i_size_read(inode))
1993 set_buffer_new(bh);
1994 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1995 inode->i_blkbits;
1996 set_buffer_mapped(bh);
1997 break;
1998 }
1999 }
2000
__block_write_begin_int(struct page * page,loff_t pos,unsigned len,get_block_t * get_block,struct iomap * iomap)2001 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2002 get_block_t *get_block, struct iomap *iomap)
2003 {
2004 unsigned from = pos & (PAGE_SIZE - 1);
2005 unsigned to = from + len;
2006 struct inode *inode = page->mapping->host;
2007 unsigned block_start, block_end;
2008 sector_t block;
2009 int err = 0;
2010 unsigned blocksize, bbits;
2011 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2012
2013 BUG_ON(!PageLocked(page));
2014 BUG_ON(from > PAGE_SIZE);
2015 BUG_ON(to > PAGE_SIZE);
2016 BUG_ON(from > to);
2017
2018 head = create_page_buffers(page, inode, 0);
2019 blocksize = head->b_size;
2020 bbits = block_size_bits(blocksize);
2021
2022 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2023
2024 for(bh = head, block_start = 0; bh != head || !block_start;
2025 block++, block_start=block_end, bh = bh->b_this_page) {
2026 block_end = block_start + blocksize;
2027 if (block_end <= from || block_start >= to) {
2028 if (PageUptodate(page)) {
2029 if (!buffer_uptodate(bh))
2030 set_buffer_uptodate(bh);
2031 }
2032 continue;
2033 }
2034 if (buffer_new(bh))
2035 clear_buffer_new(bh);
2036 if (!buffer_mapped(bh)) {
2037 WARN_ON(bh->b_size != blocksize);
2038 if (get_block) {
2039 err = get_block(inode, block, bh, 1);
2040 if (err)
2041 break;
2042 } else {
2043 iomap_to_bh(inode, block, bh, iomap);
2044 }
2045
2046 if (buffer_new(bh)) {
2047 clean_bdev_bh_alias(bh);
2048 if (PageUptodate(page)) {
2049 clear_buffer_new(bh);
2050 set_buffer_uptodate(bh);
2051 mark_buffer_dirty(bh);
2052 continue;
2053 }
2054 if (block_end > to || block_start < from)
2055 zero_user_segments(page,
2056 to, block_end,
2057 block_start, from);
2058 continue;
2059 }
2060 }
2061 if (PageUptodate(page)) {
2062 if (!buffer_uptodate(bh))
2063 set_buffer_uptodate(bh);
2064 continue;
2065 }
2066 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2067 !buffer_unwritten(bh) &&
2068 (block_start < from || block_end > to)) {
2069 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2070 *wait_bh++=bh;
2071 }
2072 }
2073 /*
2074 * If we issued read requests - let them complete.
2075 */
2076 while(wait_bh > wait) {
2077 wait_on_buffer(*--wait_bh);
2078 if (!buffer_uptodate(*wait_bh))
2079 err = -EIO;
2080 }
2081 if (unlikely(err))
2082 page_zero_new_buffers(page, from, to);
2083 return err;
2084 }
2085
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2086 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2087 get_block_t *get_block)
2088 {
2089 return __block_write_begin_int(page, pos, len, get_block, NULL);
2090 }
2091 EXPORT_SYMBOL(__block_write_begin);
2092
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2093 static int __block_commit_write(struct inode *inode, struct page *page,
2094 unsigned from, unsigned to)
2095 {
2096 unsigned block_start, block_end;
2097 int partial = 0;
2098 unsigned blocksize;
2099 struct buffer_head *bh, *head;
2100
2101 bh = head = page_buffers(page);
2102 blocksize = bh->b_size;
2103
2104 block_start = 0;
2105 do {
2106 block_end = block_start + blocksize;
2107 if (block_end <= from || block_start >= to) {
2108 if (!buffer_uptodate(bh))
2109 partial = 1;
2110 } else {
2111 set_buffer_uptodate(bh);
2112 mark_buffer_dirty(bh);
2113 }
2114 clear_buffer_new(bh);
2115
2116 block_start = block_end;
2117 bh = bh->b_this_page;
2118 } while (bh != head);
2119
2120 /*
2121 * If this is a partial write which happened to make all buffers
2122 * uptodate then we can optimize away a bogus readpage() for
2123 * the next read(). Here we 'discover' whether the page went
2124 * uptodate as a result of this (potentially partial) write.
2125 */
2126 if (!partial)
2127 SetPageUptodate(page);
2128 return 0;
2129 }
2130
2131 /*
2132 * block_write_begin takes care of the basic task of block allocation and
2133 * bringing partial write blocks uptodate first.
2134 *
2135 * The filesystem needs to handle block truncation upon failure.
2136 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)2137 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2138 unsigned flags, struct page **pagep, get_block_t *get_block)
2139 {
2140 pgoff_t index = pos >> PAGE_SHIFT;
2141 struct page *page;
2142 int status;
2143
2144 page = grab_cache_page_write_begin(mapping, index, flags);
2145 if (!page)
2146 return -ENOMEM;
2147
2148 status = __block_write_begin(page, pos, len, get_block);
2149 if (unlikely(status)) {
2150 unlock_page(page);
2151 put_page(page);
2152 page = NULL;
2153 }
2154
2155 *pagep = page;
2156 return status;
2157 }
2158 EXPORT_SYMBOL(block_write_begin);
2159
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2160 int block_write_end(struct file *file, struct address_space *mapping,
2161 loff_t pos, unsigned len, unsigned copied,
2162 struct page *page, void *fsdata)
2163 {
2164 struct inode *inode = mapping->host;
2165 unsigned start;
2166
2167 start = pos & (PAGE_SIZE - 1);
2168
2169 if (unlikely(copied < len)) {
2170 /*
2171 * The buffers that were written will now be uptodate, so we
2172 * don't have to worry about a readpage reading them and
2173 * overwriting a partial write. However if we have encountered
2174 * a short write and only partially written into a buffer, it
2175 * will not be marked uptodate, so a readpage might come in and
2176 * destroy our partial write.
2177 *
2178 * Do the simplest thing, and just treat any short write to a
2179 * non uptodate page as a zero-length write, and force the
2180 * caller to redo the whole thing.
2181 */
2182 if (!PageUptodate(page))
2183 copied = 0;
2184
2185 page_zero_new_buffers(page, start+copied, start+len);
2186 }
2187 flush_dcache_page(page);
2188
2189 /* This could be a short (even 0-length) commit */
2190 __block_commit_write(inode, page, start, start+copied);
2191
2192 return copied;
2193 }
2194 EXPORT_SYMBOL(block_write_end);
2195
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2196 int generic_write_end(struct file *file, struct address_space *mapping,
2197 loff_t pos, unsigned len, unsigned copied,
2198 struct page *page, void *fsdata)
2199 {
2200 struct inode *inode = mapping->host;
2201 loff_t old_size = inode->i_size;
2202 bool i_size_changed = false;
2203
2204 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2205
2206 /*
2207 * No need to use i_size_read() here, the i_size cannot change under us
2208 * because we hold i_rwsem.
2209 *
2210 * But it's important to update i_size while still holding page lock:
2211 * page writeout could otherwise come in and zero beyond i_size.
2212 */
2213 if (pos + copied > inode->i_size) {
2214 i_size_write(inode, pos + copied);
2215 i_size_changed = true;
2216 }
2217
2218 unlock_page(page);
2219 put_page(page);
2220
2221 if (old_size < pos)
2222 pagecache_isize_extended(inode, old_size, pos);
2223 /*
2224 * Don't mark the inode dirty under page lock. First, it unnecessarily
2225 * makes the holding time of page lock longer. Second, it forces lock
2226 * ordering of page lock and transaction start for journaling
2227 * filesystems.
2228 */
2229 if (i_size_changed)
2230 mark_inode_dirty(inode);
2231 return copied;
2232 }
2233 EXPORT_SYMBOL(generic_write_end);
2234
2235 /*
2236 * block_is_partially_uptodate checks whether buffers within a page are
2237 * uptodate or not.
2238 *
2239 * Returns true if all buffers which correspond to a file portion
2240 * we want to read are uptodate.
2241 */
block_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)2242 int block_is_partially_uptodate(struct page *page, unsigned long from,
2243 unsigned long count)
2244 {
2245 unsigned block_start, block_end, blocksize;
2246 unsigned to;
2247 struct buffer_head *bh, *head;
2248 int ret = 1;
2249
2250 if (!page_has_buffers(page))
2251 return 0;
2252
2253 head = page_buffers(page);
2254 blocksize = head->b_size;
2255 to = min_t(unsigned, PAGE_SIZE - from, count);
2256 to = from + to;
2257 if (from < blocksize && to > PAGE_SIZE - blocksize)
2258 return 0;
2259
2260 bh = head;
2261 block_start = 0;
2262 do {
2263 block_end = block_start + blocksize;
2264 if (block_end > from && block_start < to) {
2265 if (!buffer_uptodate(bh)) {
2266 ret = 0;
2267 break;
2268 }
2269 if (block_end >= to)
2270 break;
2271 }
2272 block_start = block_end;
2273 bh = bh->b_this_page;
2274 } while (bh != head);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_NS(block_is_partially_uptodate, ANDROID_GKI_VFS_EXPORT_ONLY);
2279
2280 /*
2281 * Generic "read page" function for block devices that have the normal
2282 * get_block functionality. This is most of the block device filesystems.
2283 * Reads the page asynchronously --- the unlock_buffer() and
2284 * set/clear_buffer_uptodate() functions propagate buffer state into the
2285 * page struct once IO has completed.
2286 */
block_read_full_page(struct page * page,get_block_t * get_block)2287 int block_read_full_page(struct page *page, get_block_t *get_block)
2288 {
2289 struct inode *inode = page->mapping->host;
2290 sector_t iblock, lblock;
2291 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2292 unsigned int blocksize, bbits;
2293 int nr, i;
2294 int fully_mapped = 1;
2295
2296 head = create_page_buffers(page, inode, 0);
2297 blocksize = head->b_size;
2298 bbits = block_size_bits(blocksize);
2299
2300 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2301 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2302 bh = head;
2303 nr = 0;
2304 i = 0;
2305
2306 do {
2307 if (buffer_uptodate(bh))
2308 continue;
2309
2310 if (!buffer_mapped(bh)) {
2311 int err = 0;
2312
2313 fully_mapped = 0;
2314 if (iblock < lblock) {
2315 WARN_ON(bh->b_size != blocksize);
2316 err = get_block(inode, iblock, bh, 0);
2317 if (err)
2318 SetPageError(page);
2319 }
2320 if (!buffer_mapped(bh)) {
2321 zero_user(page, i * blocksize, blocksize);
2322 if (!err)
2323 set_buffer_uptodate(bh);
2324 continue;
2325 }
2326 /*
2327 * get_block() might have updated the buffer
2328 * synchronously
2329 */
2330 if (buffer_uptodate(bh))
2331 continue;
2332 }
2333 arr[nr++] = bh;
2334 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2335
2336 if (fully_mapped)
2337 SetPageMappedToDisk(page);
2338
2339 if (!nr) {
2340 /*
2341 * All buffers are uptodate - we can set the page uptodate
2342 * as well. But not if get_block() returned an error.
2343 */
2344 if (!PageError(page))
2345 SetPageUptodate(page);
2346 unlock_page(page);
2347 return 0;
2348 }
2349
2350 /* Stage two: lock the buffers */
2351 for (i = 0; i < nr; i++) {
2352 bh = arr[i];
2353 lock_buffer(bh);
2354 mark_buffer_async_read(bh);
2355 }
2356
2357 /*
2358 * Stage 3: start the IO. Check for uptodateness
2359 * inside the buffer lock in case another process reading
2360 * the underlying blockdev brought it uptodate (the sct fix).
2361 */
2362 for (i = 0; i < nr; i++) {
2363 bh = arr[i];
2364 if (buffer_uptodate(bh))
2365 end_buffer_async_read(bh, 1);
2366 else
2367 submit_bh(REQ_OP_READ, 0, bh);
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(block_read_full_page);
2372
2373 /* utility function for filesystems that need to do work on expanding
2374 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2375 * deal with the hole.
2376 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2377 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2378 {
2379 struct address_space *mapping = inode->i_mapping;
2380 struct page *page;
2381 void *fsdata = NULL;
2382 int err;
2383
2384 err = inode_newsize_ok(inode, size);
2385 if (err)
2386 goto out;
2387
2388 err = pagecache_write_begin(NULL, mapping, size, 0,
2389 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2390 if (err)
2391 goto out;
2392
2393 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2394 BUG_ON(err > 0);
2395
2396 out:
2397 return err;
2398 }
2399 EXPORT_SYMBOL(generic_cont_expand_simple);
2400
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2401 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2402 loff_t pos, loff_t *bytes)
2403 {
2404 struct inode *inode = mapping->host;
2405 unsigned int blocksize = i_blocksize(inode);
2406 struct page *page;
2407 void *fsdata = NULL;
2408 pgoff_t index, curidx;
2409 loff_t curpos;
2410 unsigned zerofrom, offset, len;
2411 int err = 0;
2412
2413 index = pos >> PAGE_SHIFT;
2414 offset = pos & ~PAGE_MASK;
2415
2416 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2417 zerofrom = curpos & ~PAGE_MASK;
2418 if (zerofrom & (blocksize-1)) {
2419 *bytes |= (blocksize-1);
2420 (*bytes)++;
2421 }
2422 len = PAGE_SIZE - zerofrom;
2423
2424 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425 &page, &fsdata);
2426 if (err)
2427 goto out;
2428 zero_user(page, zerofrom, len);
2429 err = pagecache_write_end(file, mapping, curpos, len, len,
2430 page, fsdata);
2431 if (err < 0)
2432 goto out;
2433 BUG_ON(err != len);
2434 err = 0;
2435
2436 balance_dirty_pages_ratelimited(mapping);
2437
2438 if (fatal_signal_pending(current)) {
2439 err = -EINTR;
2440 goto out;
2441 }
2442 }
2443
2444 /* page covers the boundary, find the boundary offset */
2445 if (index == curidx) {
2446 zerofrom = curpos & ~PAGE_MASK;
2447 /* if we will expand the thing last block will be filled */
2448 if (offset <= zerofrom) {
2449 goto out;
2450 }
2451 if (zerofrom & (blocksize-1)) {
2452 *bytes |= (blocksize-1);
2453 (*bytes)++;
2454 }
2455 len = offset - zerofrom;
2456
2457 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2458 &page, &fsdata);
2459 if (err)
2460 goto out;
2461 zero_user(page, zerofrom, len);
2462 err = pagecache_write_end(file, mapping, curpos, len, len,
2463 page, fsdata);
2464 if (err < 0)
2465 goto out;
2466 BUG_ON(err != len);
2467 err = 0;
2468 }
2469 out:
2470 return err;
2471 }
2472
2473 /*
2474 * For moronic filesystems that do not allow holes in file.
2475 * We may have to extend the file.
2476 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2477 int cont_write_begin(struct file *file, struct address_space *mapping,
2478 loff_t pos, unsigned len, unsigned flags,
2479 struct page **pagep, void **fsdata,
2480 get_block_t *get_block, loff_t *bytes)
2481 {
2482 struct inode *inode = mapping->host;
2483 unsigned int blocksize = i_blocksize(inode);
2484 unsigned int zerofrom;
2485 int err;
2486
2487 err = cont_expand_zero(file, mapping, pos, bytes);
2488 if (err)
2489 return err;
2490
2491 zerofrom = *bytes & ~PAGE_MASK;
2492 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2493 *bytes |= (blocksize-1);
2494 (*bytes)++;
2495 }
2496
2497 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2498 }
2499 EXPORT_SYMBOL(cont_write_begin);
2500
block_commit_write(struct page * page,unsigned from,unsigned to)2501 int block_commit_write(struct page *page, unsigned from, unsigned to)
2502 {
2503 struct inode *inode = page->mapping->host;
2504 __block_commit_write(inode,page,from,to);
2505 return 0;
2506 }
2507 EXPORT_SYMBOL(block_commit_write);
2508
2509 /*
2510 * block_page_mkwrite() is not allowed to change the file size as it gets
2511 * called from a page fault handler when a page is first dirtied. Hence we must
2512 * be careful to check for EOF conditions here. We set the page up correctly
2513 * for a written page which means we get ENOSPC checking when writing into
2514 * holes and correct delalloc and unwritten extent mapping on filesystems that
2515 * support these features.
2516 *
2517 * We are not allowed to take the i_mutex here so we have to play games to
2518 * protect against truncate races as the page could now be beyond EOF. Because
2519 * truncate writes the inode size before removing pages, once we have the
2520 * page lock we can determine safely if the page is beyond EOF. If it is not
2521 * beyond EOF, then the page is guaranteed safe against truncation until we
2522 * unlock the page.
2523 *
2524 * Direct callers of this function should protect against filesystem freezing
2525 * using sb_start_pagefault() - sb_end_pagefault() functions.
2526 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2527 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2528 get_block_t get_block)
2529 {
2530 struct page *page = vmf->page;
2531 struct inode *inode = file_inode(vma->vm_file);
2532 unsigned long end;
2533 loff_t size;
2534 int ret;
2535
2536 lock_page(page);
2537 size = i_size_read(inode);
2538 if ((page->mapping != inode->i_mapping) ||
2539 (page_offset(page) > size)) {
2540 /* We overload EFAULT to mean page got truncated */
2541 ret = -EFAULT;
2542 goto out_unlock;
2543 }
2544
2545 /* page is wholly or partially inside EOF */
2546 if (((page->index + 1) << PAGE_SHIFT) > size)
2547 end = size & ~PAGE_MASK;
2548 else
2549 end = PAGE_SIZE;
2550
2551 ret = __block_write_begin(page, 0, end, get_block);
2552 if (!ret)
2553 ret = block_commit_write(page, 0, end);
2554
2555 if (unlikely(ret < 0))
2556 goto out_unlock;
2557 set_page_dirty(page);
2558 wait_for_stable_page(page);
2559 return 0;
2560 out_unlock:
2561 unlock_page(page);
2562 return ret;
2563 }
2564 EXPORT_SYMBOL(block_page_mkwrite);
2565
2566 /*
2567 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2568 * immediately, while under the page lock. So it needs a special end_io
2569 * handler which does not touch the bh after unlocking it.
2570 */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2571 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2572 {
2573 __end_buffer_read_notouch(bh, uptodate);
2574 }
2575
2576 /*
2577 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2578 * the page (converting it to circular linked list and taking care of page
2579 * dirty races).
2580 */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2581 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2582 {
2583 struct buffer_head *bh;
2584
2585 BUG_ON(!PageLocked(page));
2586
2587 spin_lock(&page->mapping->private_lock);
2588 bh = head;
2589 do {
2590 if (PageDirty(page))
2591 set_buffer_dirty(bh);
2592 if (!bh->b_this_page)
2593 bh->b_this_page = head;
2594 bh = bh->b_this_page;
2595 } while (bh != head);
2596 attach_page_private(page, head);
2597 spin_unlock(&page->mapping->private_lock);
2598 }
2599
2600 /*
2601 * On entry, the page is fully not uptodate.
2602 * On exit the page is fully uptodate in the areas outside (from,to)
2603 * The filesystem needs to handle block truncation upon failure.
2604 */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2605 int nobh_write_begin(struct address_space *mapping,
2606 loff_t pos, unsigned len, unsigned flags,
2607 struct page **pagep, void **fsdata,
2608 get_block_t *get_block)
2609 {
2610 struct inode *inode = mapping->host;
2611 const unsigned blkbits = inode->i_blkbits;
2612 const unsigned blocksize = 1 << blkbits;
2613 struct buffer_head *head, *bh;
2614 struct page *page;
2615 pgoff_t index;
2616 unsigned from, to;
2617 unsigned block_in_page;
2618 unsigned block_start, block_end;
2619 sector_t block_in_file;
2620 int nr_reads = 0;
2621 int ret = 0;
2622 int is_mapped_to_disk = 1;
2623
2624 index = pos >> PAGE_SHIFT;
2625 from = pos & (PAGE_SIZE - 1);
2626 to = from + len;
2627
2628 page = grab_cache_page_write_begin(mapping, index, flags);
2629 if (!page)
2630 return -ENOMEM;
2631 *pagep = page;
2632 *fsdata = NULL;
2633
2634 if (page_has_buffers(page)) {
2635 ret = __block_write_begin(page, pos, len, get_block);
2636 if (unlikely(ret))
2637 goto out_release;
2638 return ret;
2639 }
2640
2641 if (PageMappedToDisk(page))
2642 return 0;
2643
2644 /*
2645 * Allocate buffers so that we can keep track of state, and potentially
2646 * attach them to the page if an error occurs. In the common case of
2647 * no error, they will just be freed again without ever being attached
2648 * to the page (which is all OK, because we're under the page lock).
2649 *
2650 * Be careful: the buffer linked list is a NULL terminated one, rather
2651 * than the circular one we're used to.
2652 */
2653 head = alloc_page_buffers(page, blocksize, false);
2654 if (!head) {
2655 ret = -ENOMEM;
2656 goto out_release;
2657 }
2658
2659 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2660
2661 /*
2662 * We loop across all blocks in the page, whether or not they are
2663 * part of the affected region. This is so we can discover if the
2664 * page is fully mapped-to-disk.
2665 */
2666 for (block_start = 0, block_in_page = 0, bh = head;
2667 block_start < PAGE_SIZE;
2668 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2669 int create;
2670
2671 block_end = block_start + blocksize;
2672 bh->b_state = 0;
2673 create = 1;
2674 if (block_start >= to)
2675 create = 0;
2676 ret = get_block(inode, block_in_file + block_in_page,
2677 bh, create);
2678 if (ret)
2679 goto failed;
2680 if (!buffer_mapped(bh))
2681 is_mapped_to_disk = 0;
2682 if (buffer_new(bh))
2683 clean_bdev_bh_alias(bh);
2684 if (PageUptodate(page)) {
2685 set_buffer_uptodate(bh);
2686 continue;
2687 }
2688 if (buffer_new(bh) || !buffer_mapped(bh)) {
2689 zero_user_segments(page, block_start, from,
2690 to, block_end);
2691 continue;
2692 }
2693 if (buffer_uptodate(bh))
2694 continue; /* reiserfs does this */
2695 if (block_start < from || block_end > to) {
2696 lock_buffer(bh);
2697 bh->b_end_io = end_buffer_read_nobh;
2698 submit_bh(REQ_OP_READ, 0, bh);
2699 nr_reads++;
2700 }
2701 }
2702
2703 if (nr_reads) {
2704 /*
2705 * The page is locked, so these buffers are protected from
2706 * any VM or truncate activity. Hence we don't need to care
2707 * for the buffer_head refcounts.
2708 */
2709 for (bh = head; bh; bh = bh->b_this_page) {
2710 wait_on_buffer(bh);
2711 if (!buffer_uptodate(bh))
2712 ret = -EIO;
2713 }
2714 if (ret)
2715 goto failed;
2716 }
2717
2718 if (is_mapped_to_disk)
2719 SetPageMappedToDisk(page);
2720
2721 *fsdata = head; /* to be released by nobh_write_end */
2722
2723 return 0;
2724
2725 failed:
2726 BUG_ON(!ret);
2727 /*
2728 * Error recovery is a bit difficult. We need to zero out blocks that
2729 * were newly allocated, and dirty them to ensure they get written out.
2730 * Buffers need to be attached to the page at this point, otherwise
2731 * the handling of potential IO errors during writeout would be hard
2732 * (could try doing synchronous writeout, but what if that fails too?)
2733 */
2734 attach_nobh_buffers(page, head);
2735 page_zero_new_buffers(page, from, to);
2736
2737 out_release:
2738 unlock_page(page);
2739 put_page(page);
2740 *pagep = NULL;
2741
2742 return ret;
2743 }
2744 EXPORT_SYMBOL(nobh_write_begin);
2745
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2746 int nobh_write_end(struct file *file, struct address_space *mapping,
2747 loff_t pos, unsigned len, unsigned copied,
2748 struct page *page, void *fsdata)
2749 {
2750 struct inode *inode = page->mapping->host;
2751 struct buffer_head *head = fsdata;
2752 struct buffer_head *bh;
2753 BUG_ON(fsdata != NULL && page_has_buffers(page));
2754
2755 if (unlikely(copied < len) && head)
2756 attach_nobh_buffers(page, head);
2757 if (page_has_buffers(page))
2758 return generic_write_end(file, mapping, pos, len,
2759 copied, page, fsdata);
2760
2761 SetPageUptodate(page);
2762 set_page_dirty(page);
2763 if (pos+copied > inode->i_size) {
2764 i_size_write(inode, pos+copied);
2765 mark_inode_dirty(inode);
2766 }
2767
2768 unlock_page(page);
2769 put_page(page);
2770
2771 while (head) {
2772 bh = head;
2773 head = head->b_this_page;
2774 free_buffer_head(bh);
2775 }
2776
2777 return copied;
2778 }
2779 EXPORT_SYMBOL(nobh_write_end);
2780
2781 /*
2782 * nobh_writepage() - based on block_full_write_page() except
2783 * that it tries to operate without attaching bufferheads to
2784 * the page.
2785 */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2786 int nobh_writepage(struct page *page, get_block_t *get_block,
2787 struct writeback_control *wbc)
2788 {
2789 struct inode * const inode = page->mapping->host;
2790 loff_t i_size = i_size_read(inode);
2791 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2792 unsigned offset;
2793 int ret;
2794
2795 /* Is the page fully inside i_size? */
2796 if (page->index < end_index)
2797 goto out;
2798
2799 /* Is the page fully outside i_size? (truncate in progress) */
2800 offset = i_size & (PAGE_SIZE-1);
2801 if (page->index >= end_index+1 || !offset) {
2802 unlock_page(page);
2803 return 0; /* don't care */
2804 }
2805
2806 /*
2807 * The page straddles i_size. It must be zeroed out on each and every
2808 * writepage invocation because it may be mmapped. "A file is mapped
2809 * in multiples of the page size. For a file that is not a multiple of
2810 * the page size, the remaining memory is zeroed when mapped, and
2811 * writes to that region are not written out to the file."
2812 */
2813 zero_user_segment(page, offset, PAGE_SIZE);
2814 out:
2815 ret = mpage_writepage(page, get_block, wbc);
2816 if (ret == -EAGAIN)
2817 ret = __block_write_full_page(inode, page, get_block, wbc,
2818 end_buffer_async_write);
2819 return ret;
2820 }
2821 EXPORT_SYMBOL(nobh_writepage);
2822
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2823 int nobh_truncate_page(struct address_space *mapping,
2824 loff_t from, get_block_t *get_block)
2825 {
2826 pgoff_t index = from >> PAGE_SHIFT;
2827 unsigned offset = from & (PAGE_SIZE-1);
2828 unsigned blocksize;
2829 sector_t iblock;
2830 unsigned length, pos;
2831 struct inode *inode = mapping->host;
2832 struct page *page;
2833 struct buffer_head map_bh;
2834 int err;
2835
2836 blocksize = i_blocksize(inode);
2837 length = offset & (blocksize - 1);
2838
2839 /* Block boundary? Nothing to do */
2840 if (!length)
2841 return 0;
2842
2843 length = blocksize - length;
2844 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2845
2846 page = grab_cache_page(mapping, index);
2847 err = -ENOMEM;
2848 if (!page)
2849 goto out;
2850
2851 if (page_has_buffers(page)) {
2852 has_buffers:
2853 unlock_page(page);
2854 put_page(page);
2855 return block_truncate_page(mapping, from, get_block);
2856 }
2857
2858 /* Find the buffer that contains "offset" */
2859 pos = blocksize;
2860 while (offset >= pos) {
2861 iblock++;
2862 pos += blocksize;
2863 }
2864
2865 map_bh.b_size = blocksize;
2866 map_bh.b_state = 0;
2867 err = get_block(inode, iblock, &map_bh, 0);
2868 if (err)
2869 goto unlock;
2870 /* unmapped? It's a hole - nothing to do */
2871 if (!buffer_mapped(&map_bh))
2872 goto unlock;
2873
2874 /* Ok, it's mapped. Make sure it's up-to-date */
2875 if (!PageUptodate(page)) {
2876 err = mapping->a_ops->readpage(NULL, page);
2877 if (err) {
2878 put_page(page);
2879 goto out;
2880 }
2881 lock_page(page);
2882 if (!PageUptodate(page)) {
2883 err = -EIO;
2884 goto unlock;
2885 }
2886 if (page_has_buffers(page))
2887 goto has_buffers;
2888 }
2889 zero_user(page, offset, length);
2890 set_page_dirty(page);
2891 err = 0;
2892
2893 unlock:
2894 unlock_page(page);
2895 put_page(page);
2896 out:
2897 return err;
2898 }
2899 EXPORT_SYMBOL(nobh_truncate_page);
2900
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2901 int block_truncate_page(struct address_space *mapping,
2902 loff_t from, get_block_t *get_block)
2903 {
2904 pgoff_t index = from >> PAGE_SHIFT;
2905 unsigned offset = from & (PAGE_SIZE-1);
2906 unsigned blocksize;
2907 sector_t iblock;
2908 unsigned length, pos;
2909 struct inode *inode = mapping->host;
2910 struct page *page;
2911 struct buffer_head *bh;
2912 int err;
2913
2914 blocksize = i_blocksize(inode);
2915 length = offset & (blocksize - 1);
2916
2917 /* Block boundary? Nothing to do */
2918 if (!length)
2919 return 0;
2920
2921 length = blocksize - length;
2922 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2923
2924 page = grab_cache_page(mapping, index);
2925 err = -ENOMEM;
2926 if (!page)
2927 goto out;
2928
2929 if (!page_has_buffers(page))
2930 create_empty_buffers(page, blocksize, 0);
2931
2932 /* Find the buffer that contains "offset" */
2933 bh = page_buffers(page);
2934 pos = blocksize;
2935 while (offset >= pos) {
2936 bh = bh->b_this_page;
2937 iblock++;
2938 pos += blocksize;
2939 }
2940
2941 err = 0;
2942 if (!buffer_mapped(bh)) {
2943 WARN_ON(bh->b_size != blocksize);
2944 err = get_block(inode, iblock, bh, 0);
2945 if (err)
2946 goto unlock;
2947 /* unmapped? It's a hole - nothing to do */
2948 if (!buffer_mapped(bh))
2949 goto unlock;
2950 }
2951
2952 /* Ok, it's mapped. Make sure it's up-to-date */
2953 if (PageUptodate(page))
2954 set_buffer_uptodate(bh);
2955
2956 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2957 err = -EIO;
2958 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2959 wait_on_buffer(bh);
2960 /* Uhhuh. Read error. Complain and punt. */
2961 if (!buffer_uptodate(bh))
2962 goto unlock;
2963 }
2964
2965 zero_user(page, offset, length);
2966 mark_buffer_dirty(bh);
2967 err = 0;
2968
2969 unlock:
2970 unlock_page(page);
2971 put_page(page);
2972 out:
2973 return err;
2974 }
2975 EXPORT_SYMBOL(block_truncate_page);
2976
2977 /*
2978 * The generic ->writepage function for buffer-backed address_spaces
2979 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2980 int block_write_full_page(struct page *page, get_block_t *get_block,
2981 struct writeback_control *wbc)
2982 {
2983 struct inode * const inode = page->mapping->host;
2984 loff_t i_size = i_size_read(inode);
2985 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2986 unsigned offset;
2987
2988 /* Is the page fully inside i_size? */
2989 if (page->index < end_index)
2990 return __block_write_full_page(inode, page, get_block, wbc,
2991 end_buffer_async_write);
2992
2993 /* Is the page fully outside i_size? (truncate in progress) */
2994 offset = i_size & (PAGE_SIZE-1);
2995 if (page->index >= end_index+1 || !offset) {
2996 unlock_page(page);
2997 return 0; /* don't care */
2998 }
2999
3000 /*
3001 * The page straddles i_size. It must be zeroed out on each and every
3002 * writepage invocation because it may be mmapped. "A file is mapped
3003 * in multiples of the page size. For a file that is not a multiple of
3004 * the page size, the remaining memory is zeroed when mapped, and
3005 * writes to that region are not written out to the file."
3006 */
3007 zero_user_segment(page, offset, PAGE_SIZE);
3008 return __block_write_full_page(inode, page, get_block, wbc,
3009 end_buffer_async_write);
3010 }
3011 EXPORT_SYMBOL(block_write_full_page);
3012
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)3013 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3014 get_block_t *get_block)
3015 {
3016 struct inode *inode = mapping->host;
3017 struct buffer_head tmp = {
3018 .b_size = i_blocksize(inode),
3019 };
3020
3021 get_block(inode, block, &tmp, 0);
3022 return tmp.b_blocknr;
3023 }
3024 EXPORT_SYMBOL(generic_block_bmap);
3025
end_bio_bh_io_sync(struct bio * bio)3026 static void end_bio_bh_io_sync(struct bio *bio)
3027 {
3028 struct buffer_head *bh = bio->bi_private;
3029
3030 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3031 set_bit(BH_Quiet, &bh->b_state);
3032
3033 bh->b_end_io(bh, !bio->bi_status);
3034 bio_put(bio);
3035 }
3036
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)3037 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3038 enum rw_hint write_hint, struct writeback_control *wbc)
3039 {
3040 struct bio *bio;
3041
3042 BUG_ON(!buffer_locked(bh));
3043 BUG_ON(!buffer_mapped(bh));
3044 BUG_ON(!bh->b_end_io);
3045 BUG_ON(buffer_delay(bh));
3046 BUG_ON(buffer_unwritten(bh));
3047
3048 /*
3049 * Only clear out a write error when rewriting
3050 */
3051 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3052 clear_buffer_write_io_error(bh);
3053
3054 bio = bio_alloc(GFP_NOIO, 1);
3055
3056 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3057
3058 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3059 bio_set_dev(bio, bh->b_bdev);
3060 bio->bi_write_hint = write_hint;
3061
3062 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3063 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3064
3065 bio->bi_end_io = end_bio_bh_io_sync;
3066 bio->bi_private = bh;
3067
3068 if (buffer_meta(bh))
3069 op_flags |= REQ_META;
3070 if (buffer_prio(bh))
3071 op_flags |= REQ_PRIO;
3072 bio_set_op_attrs(bio, op, op_flags);
3073
3074 /* Take care of bh's that straddle the end of the device */
3075 guard_bio_eod(bio);
3076
3077 if (wbc) {
3078 wbc_init_bio(wbc, bio);
3079 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3080 }
3081
3082 submit_bio(bio);
3083 return 0;
3084 }
3085
submit_bh(int op,int op_flags,struct buffer_head * bh)3086 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3087 {
3088 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3089 }
3090 EXPORT_SYMBOL(submit_bh);
3091
3092 /**
3093 * ll_rw_block: low-level access to block devices (DEPRECATED)
3094 * @op: whether to %READ or %WRITE
3095 * @op_flags: req_flag_bits
3096 * @nr: number of &struct buffer_heads in the array
3097 * @bhs: array of pointers to &struct buffer_head
3098 *
3099 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3100 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3101 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3102 * %REQ_RAHEAD.
3103 *
3104 * This function drops any buffer that it cannot get a lock on (with the
3105 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3106 * request, and any buffer that appears to be up-to-date when doing read
3107 * request. Further it marks as clean buffers that are processed for
3108 * writing (the buffer cache won't assume that they are actually clean
3109 * until the buffer gets unlocked).
3110 *
3111 * ll_rw_block sets b_end_io to simple completion handler that marks
3112 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3113 * any waiters.
3114 *
3115 * All of the buffers must be for the same device, and must also be a
3116 * multiple of the current approved size for the device.
3117 */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3118 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3119 {
3120 int i;
3121
3122 for (i = 0; i < nr; i++) {
3123 struct buffer_head *bh = bhs[i];
3124
3125 if (!trylock_buffer(bh))
3126 continue;
3127 if (op == WRITE) {
3128 if (test_clear_buffer_dirty(bh)) {
3129 bh->b_end_io = end_buffer_write_sync;
3130 get_bh(bh);
3131 submit_bh(op, op_flags, bh);
3132 continue;
3133 }
3134 } else {
3135 if (!buffer_uptodate(bh)) {
3136 bh->b_end_io = end_buffer_read_sync;
3137 get_bh(bh);
3138 submit_bh(op, op_flags, bh);
3139 continue;
3140 }
3141 }
3142 unlock_buffer(bh);
3143 }
3144 }
3145 EXPORT_SYMBOL_NS(ll_rw_block, ANDROID_GKI_VFS_EXPORT_ONLY);
3146
write_dirty_buffer(struct buffer_head * bh,int op_flags)3147 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3148 {
3149 lock_buffer(bh);
3150 if (!test_clear_buffer_dirty(bh)) {
3151 unlock_buffer(bh);
3152 return;
3153 }
3154 bh->b_end_io = end_buffer_write_sync;
3155 get_bh(bh);
3156 submit_bh(REQ_OP_WRITE, op_flags, bh);
3157 }
3158 EXPORT_SYMBOL(write_dirty_buffer);
3159
3160 /*
3161 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3162 * and then start new I/O and then wait upon it. The caller must have a ref on
3163 * the buffer_head.
3164 */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3165 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3166 {
3167 int ret = 0;
3168
3169 WARN_ON(atomic_read(&bh->b_count) < 1);
3170 lock_buffer(bh);
3171 if (test_clear_buffer_dirty(bh)) {
3172 /*
3173 * The bh should be mapped, but it might not be if the
3174 * device was hot-removed. Not much we can do but fail the I/O.
3175 */
3176 if (!buffer_mapped(bh)) {
3177 unlock_buffer(bh);
3178 return -EIO;
3179 }
3180
3181 get_bh(bh);
3182 bh->b_end_io = end_buffer_write_sync;
3183 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3184 wait_on_buffer(bh);
3185 if (!ret && !buffer_uptodate(bh))
3186 ret = -EIO;
3187 } else {
3188 unlock_buffer(bh);
3189 }
3190 return ret;
3191 }
3192 EXPORT_SYMBOL(__sync_dirty_buffer);
3193
sync_dirty_buffer(struct buffer_head * bh)3194 int sync_dirty_buffer(struct buffer_head *bh)
3195 {
3196 return __sync_dirty_buffer(bh, REQ_SYNC);
3197 }
3198 EXPORT_SYMBOL_NS(sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3199
3200 /*
3201 * try_to_free_buffers() checks if all the buffers on this particular page
3202 * are unused, and releases them if so.
3203 *
3204 * Exclusion against try_to_free_buffers may be obtained by either
3205 * locking the page or by holding its mapping's private_lock.
3206 *
3207 * If the page is dirty but all the buffers are clean then we need to
3208 * be sure to mark the page clean as well. This is because the page
3209 * may be against a block device, and a later reattachment of buffers
3210 * to a dirty page will set *all* buffers dirty. Which would corrupt
3211 * filesystem data on the same device.
3212 *
3213 * The same applies to regular filesystem pages: if all the buffers are
3214 * clean then we set the page clean and proceed. To do that, we require
3215 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3216 * private_lock.
3217 *
3218 * try_to_free_buffers() is non-blocking.
3219 */
buffer_busy(struct buffer_head * bh)3220 static inline int buffer_busy(struct buffer_head *bh)
3221 {
3222 return atomic_read(&bh->b_count) |
3223 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3224 }
3225
3226 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3227 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3228 {
3229 struct buffer_head *head = page_buffers(page);
3230 struct buffer_head *bh;
3231
3232 bh = head;
3233 do {
3234 if (buffer_busy(bh))
3235 goto failed;
3236 bh = bh->b_this_page;
3237 } while (bh != head);
3238
3239 do {
3240 struct buffer_head *next = bh->b_this_page;
3241
3242 if (bh->b_assoc_map)
3243 __remove_assoc_queue(bh);
3244 bh = next;
3245 } while (bh != head);
3246 *buffers_to_free = head;
3247 detach_page_private(page);
3248 return 1;
3249 failed:
3250 return 0;
3251 }
3252
try_to_free_buffers(struct page * page)3253 int try_to_free_buffers(struct page *page)
3254 {
3255 struct address_space * const mapping = page->mapping;
3256 struct buffer_head *buffers_to_free = NULL;
3257 int ret = 0;
3258
3259 BUG_ON(!PageLocked(page));
3260 if (PageWriteback(page))
3261 return 0;
3262
3263 if (mapping == NULL) { /* can this still happen? */
3264 ret = drop_buffers(page, &buffers_to_free);
3265 goto out;
3266 }
3267
3268 spin_lock(&mapping->private_lock);
3269 ret = drop_buffers(page, &buffers_to_free);
3270
3271 /*
3272 * If the filesystem writes its buffers by hand (eg ext3)
3273 * then we can have clean buffers against a dirty page. We
3274 * clean the page here; otherwise the VM will never notice
3275 * that the filesystem did any IO at all.
3276 *
3277 * Also, during truncate, discard_buffer will have marked all
3278 * the page's buffers clean. We discover that here and clean
3279 * the page also.
3280 *
3281 * private_lock must be held over this entire operation in order
3282 * to synchronise against __set_page_dirty_buffers and prevent the
3283 * dirty bit from being lost.
3284 */
3285 if (ret)
3286 cancel_dirty_page(page);
3287 spin_unlock(&mapping->private_lock);
3288 out:
3289 if (buffers_to_free) {
3290 struct buffer_head *bh = buffers_to_free;
3291
3292 do {
3293 struct buffer_head *next = bh->b_this_page;
3294 free_buffer_head(bh);
3295 bh = next;
3296 } while (bh != buffers_to_free);
3297 }
3298 return ret;
3299 }
3300 EXPORT_SYMBOL(try_to_free_buffers);
3301
3302 /*
3303 * There are no bdflush tunables left. But distributions are
3304 * still running obsolete flush daemons, so we terminate them here.
3305 *
3306 * Use of bdflush() is deprecated and will be removed in a future kernel.
3307 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3308 */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3309 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3310 {
3311 static int msg_count;
3312
3313 if (!capable(CAP_SYS_ADMIN))
3314 return -EPERM;
3315
3316 if (msg_count < 5) {
3317 msg_count++;
3318 printk(KERN_INFO
3319 "warning: process `%s' used the obsolete bdflush"
3320 " system call\n", current->comm);
3321 printk(KERN_INFO "Fix your initscripts?\n");
3322 }
3323
3324 if (func == 1)
3325 do_exit(0);
3326 return 0;
3327 }
3328
3329 /*
3330 * Buffer-head allocation
3331 */
3332 static struct kmem_cache *bh_cachep __read_mostly;
3333
3334 /*
3335 * Once the number of bh's in the machine exceeds this level, we start
3336 * stripping them in writeback.
3337 */
3338 static unsigned long max_buffer_heads;
3339
3340 int buffer_heads_over_limit;
3341
3342 struct bh_accounting {
3343 int nr; /* Number of live bh's */
3344 int ratelimit; /* Limit cacheline bouncing */
3345 };
3346
3347 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3348
recalc_bh_state(void)3349 static void recalc_bh_state(void)
3350 {
3351 int i;
3352 int tot = 0;
3353
3354 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3355 return;
3356 __this_cpu_write(bh_accounting.ratelimit, 0);
3357 for_each_online_cpu(i)
3358 tot += per_cpu(bh_accounting, i).nr;
3359 buffer_heads_over_limit = (tot > max_buffer_heads);
3360 }
3361
alloc_buffer_head(gfp_t gfp_flags)3362 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3363 {
3364 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3365 if (ret) {
3366 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3367 spin_lock_init(&ret->b_uptodate_lock);
3368 preempt_disable();
3369 __this_cpu_inc(bh_accounting.nr);
3370 recalc_bh_state();
3371 preempt_enable();
3372 }
3373 return ret;
3374 }
3375 EXPORT_SYMBOL(alloc_buffer_head);
3376
free_buffer_head(struct buffer_head * bh)3377 void free_buffer_head(struct buffer_head *bh)
3378 {
3379 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3380 kmem_cache_free(bh_cachep, bh);
3381 preempt_disable();
3382 __this_cpu_dec(bh_accounting.nr);
3383 recalc_bh_state();
3384 preempt_enable();
3385 }
3386 EXPORT_SYMBOL(free_buffer_head);
3387
buffer_exit_cpu_dead(unsigned int cpu)3388 static int buffer_exit_cpu_dead(unsigned int cpu)
3389 {
3390 int i;
3391 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3392
3393 for (i = 0; i < BH_LRU_SIZE; i++) {
3394 brelse(b->bhs[i]);
3395 b->bhs[i] = NULL;
3396 }
3397 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3398 per_cpu(bh_accounting, cpu).nr = 0;
3399 return 0;
3400 }
3401
3402 /**
3403 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3404 * @bh: struct buffer_head
3405 *
3406 * Return true if the buffer is up-to-date and false,
3407 * with the buffer locked, if not.
3408 */
bh_uptodate_or_lock(struct buffer_head * bh)3409 int bh_uptodate_or_lock(struct buffer_head *bh)
3410 {
3411 if (!buffer_uptodate(bh)) {
3412 lock_buffer(bh);
3413 if (!buffer_uptodate(bh))
3414 return 0;
3415 unlock_buffer(bh);
3416 }
3417 return 1;
3418 }
3419 EXPORT_SYMBOL(bh_uptodate_or_lock);
3420
3421 /**
3422 * bh_submit_read - Submit a locked buffer for reading
3423 * @bh: struct buffer_head
3424 *
3425 * Returns zero on success and -EIO on error.
3426 */
bh_submit_read(struct buffer_head * bh)3427 int bh_submit_read(struct buffer_head *bh)
3428 {
3429 BUG_ON(!buffer_locked(bh));
3430
3431 if (buffer_uptodate(bh)) {
3432 unlock_buffer(bh);
3433 return 0;
3434 }
3435
3436 get_bh(bh);
3437 bh->b_end_io = end_buffer_read_sync;
3438 submit_bh(REQ_OP_READ, 0, bh);
3439 wait_on_buffer(bh);
3440 if (buffer_uptodate(bh))
3441 return 0;
3442 return -EIO;
3443 }
3444 EXPORT_SYMBOL(bh_submit_read);
3445
buffer_init(void)3446 void __init buffer_init(void)
3447 {
3448 unsigned long nrpages;
3449 int ret;
3450
3451 bh_cachep = kmem_cache_create("buffer_head",
3452 sizeof(struct buffer_head), 0,
3453 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3454 SLAB_MEM_SPREAD),
3455 NULL);
3456
3457 /*
3458 * Limit the bh occupancy to 10% of ZONE_NORMAL
3459 */
3460 nrpages = (nr_free_buffer_pages() * 10) / 100;
3461 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3462 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3463 NULL, buffer_exit_cpu_dead);
3464 WARN_ON(ret < 0);
3465 }
3466