1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 enum fib_event_type event_type, u32 dst,
76 int dst_len, struct fib_alias *fa,
77 struct netlink_ext_ack *extack)
78 {
79 struct fib_entry_notifier_info info = {
80 .info.extack = extack,
81 .dst = dst,
82 .dst_len = dst_len,
83 .fi = fa->fa_info,
84 .tos = fa->fa_tos,
85 .type = fa->fa_type,
86 .tb_id = fa->tb_id,
87 };
88 return call_fib4_notifier(nb, event_type, &info.info);
89 }
90
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)91 static int call_fib_entry_notifiers(struct net *net,
92 enum fib_event_type event_type, u32 dst,
93 int dst_len, struct fib_alias *fa,
94 struct netlink_ext_ack *extack)
95 {
96 struct fib_entry_notifier_info info = {
97 .info.extack = extack,
98 .dst = dst,
99 .dst_len = dst_len,
100 .fi = fa->fa_info,
101 .tos = fa->fa_tos,
102 .type = fa->fa_type,
103 .tb_id = fa->tb_id,
104 };
105 return call_fib4_notifiers(net, event_type, &info.info);
106 }
107
108 #define MAX_STAT_DEPTH 32
109
110 #define KEYLENGTH (8*sizeof(t_key))
111 #define KEY_MAX ((t_key)~0)
112
113 typedef unsigned int t_key;
114
115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n) ((n)->bits)
117 #define IS_LEAF(n) (!(n)->bits)
118
119 struct key_vector {
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned char slen;
124 union {
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu *tnode[0];
129 };
130 };
131
132 struct tnode {
133 struct rcu_head rcu;
134 t_key empty_children; /* KEYLENGTH bits needed */
135 t_key full_children; /* KEYLENGTH bits needed */
136 struct key_vector __rcu *parent;
137 struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140
141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE TNODE_SIZE(1)
143
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 unsigned int gets;
147 unsigned int backtrack;
148 unsigned int semantic_match_passed;
149 unsigned int semantic_match_miss;
150 unsigned int null_node_hit;
151 unsigned int resize_node_skipped;
152 };
153 #endif
154
155 struct trie_stat {
156 unsigned int totdepth;
157 unsigned int maxdepth;
158 unsigned int tnodes;
159 unsigned int leaves;
160 unsigned int nullpointers;
161 unsigned int prefixes;
162 unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164
165 struct trie {
166 struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu *stats;
169 #endif
170 };
171
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174
175 /*
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
179 */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186
tn_info(struct key_vector * kv)187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 return container_of(kv, struct tnode, kv[0]);
190 }
191
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199
200 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 if (n)
204 rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208
209 /* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
211 */
child_length(const struct key_vector * tn)212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 return (1ul << tn->bits) & ~(1ul);
215 }
216
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218
get_index(t_key key,struct key_vector * kv)219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 unsigned long index = key ^ kv->key;
222
223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 return 0;
225
226 return index >> kv->pos;
227 }
228
229 /* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
232 *
233 * Consider a node 'n' and its parent 'tp'.
234 *
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
240 * correct key path.
241 *
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
247 *
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
250 *
251 * Example:
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
256 *
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
261 *
262 * tp->pos = 22
263 * tp->bits = 3
264 * n->pos = 13
265 * n->bits = 4
266 *
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
270 *
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
274 *
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276 * for the node n.
277 *
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
280 *
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
283 *
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285 * at this point.
286 */
287
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292
__alias_free_mem(struct rcu_head * head)293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
297 }
298
alias_free_mem_rcu(struct fib_alias * fa)299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 call_rcu(&fa->rcu, __alias_free_mem);
302 }
303
304 #define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306
__node_free_rcu(struct rcu_head * head)307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 struct tnode *n = container_of(head, struct tnode, rcu);
310
311 if (!n->tn_bits)
312 kmem_cache_free(trie_leaf_kmem, n);
313 else
314 kvfree(n);
315 }
316
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318
tnode_alloc(int bits)319 static struct tnode *tnode_alloc(int bits)
320 {
321 size_t size;
322
323 /* verify bits is within bounds */
324 if (bits > TNODE_VMALLOC_MAX)
325 return NULL;
326
327 /* determine size and verify it is non-zero and didn't overflow */
328 size = TNODE_SIZE(1ul << bits);
329
330 if (size <= PAGE_SIZE)
331 return kzalloc(size, GFP_KERNEL);
332 else
333 return vzalloc(size);
334 }
335
empty_child_inc(struct key_vector * n)336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 tn_info(n)->empty_children++;
339
340 if (!tn_info(n)->empty_children)
341 tn_info(n)->full_children++;
342 }
343
empty_child_dec(struct key_vector * n)344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 if (!tn_info(n)->empty_children)
347 tn_info(n)->full_children--;
348
349 tn_info(n)->empty_children--;
350 }
351
leaf_new(t_key key,struct fib_alias * fa)352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 struct key_vector *l;
355 struct tnode *kv;
356
357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 if (!kv)
359 return NULL;
360
361 /* initialize key vector */
362 l = kv->kv;
363 l->key = key;
364 l->pos = 0;
365 l->bits = 0;
366 l->slen = fa->fa_slen;
367
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l->leaf);
370 hlist_add_head(&fa->fa_list, &l->leaf);
371
372 return l;
373 }
374
tnode_new(t_key key,int pos,int bits)375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 unsigned int shift = pos + bits;
378 struct key_vector *tn;
379 struct tnode *tnode;
380
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits || (shift > KEYLENGTH));
383
384 tnode = tnode_alloc(bits);
385 if (!tnode)
386 return NULL;
387
388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 sizeof(struct key_vector *) << bits);
390
391 if (bits == KEYLENGTH)
392 tnode->full_children = 1;
393 else
394 tnode->empty_children = 1ul << bits;
395
396 tn = tnode->kv;
397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->slen = pos;
401
402 return tn;
403 }
404
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
407 */
tnode_full(struct key_vector * tn,struct key_vector * n)408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412
413 /* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)416 static void put_child(struct key_vector *tn, unsigned long i,
417 struct key_vector *n)
418 {
419 struct key_vector *chi = get_child(tn, i);
420 int isfull, wasfull;
421
422 BUG_ON(i >= child_length(tn));
423
424 /* update emptyChildren, overflow into fullChildren */
425 if (!n && chi)
426 empty_child_inc(tn);
427 if (n && !chi)
428 empty_child_dec(tn);
429
430 /* update fullChildren */
431 wasfull = tnode_full(tn, chi);
432 isfull = tnode_full(tn, n);
433
434 if (wasfull && !isfull)
435 tn_info(tn)->full_children--;
436 else if (!wasfull && isfull)
437 tn_info(tn)->full_children++;
438
439 if (n && (tn->slen < n->slen))
440 tn->slen = n->slen;
441
442 rcu_assign_pointer(tn->tnode[i], n);
443 }
444
update_children(struct key_vector * tn)445 static void update_children(struct key_vector *tn)
446 {
447 unsigned long i;
448
449 /* update all of the child parent pointers */
450 for (i = child_length(tn); i;) {
451 struct key_vector *inode = get_child(tn, --i);
452
453 if (!inode)
454 continue;
455
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
459 */
460 if (node_parent(inode) == tn)
461 update_children(inode);
462 else
463 node_set_parent(inode, tn);
464 }
465 }
466
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 struct key_vector *n)
469 {
470 if (IS_TRIE(tp))
471 rcu_assign_pointer(tp->tnode[0], n);
472 else
473 put_child(tp, get_index(key, tp), n);
474 }
475
tnode_free_init(struct key_vector * tn)476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 tn_info(tn)->rcu.next = NULL;
479 }
480
tnode_free_append(struct key_vector * tn,struct key_vector * n)481 static inline void tnode_free_append(struct key_vector *tn,
482 struct key_vector *n)
483 {
484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487
tnode_free(struct key_vector * tn)488 static void tnode_free(struct key_vector *tn)
489 {
490 struct callback_head *head = &tn_info(tn)->rcu;
491
492 while (head) {
493 head = head->next;
494 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 node_free(tn);
496
497 tn = container_of(head, struct tnode, rcu)->kv;
498 }
499
500 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
501 tnode_free_size = 0;
502 synchronize_rcu();
503 }
504 }
505
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)506 static struct key_vector *replace(struct trie *t,
507 struct key_vector *oldtnode,
508 struct key_vector *tn)
509 {
510 struct key_vector *tp = node_parent(oldtnode);
511 unsigned long i;
512
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn, tp);
515 put_child_root(tp, tn->key, tn);
516
517 /* update all of the child parent pointers */
518 update_children(tn);
519
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode);
522
523 /* resize children now that oldtnode is freed */
524 for (i = child_length(tn); i;) {
525 struct key_vector *inode = get_child(tn, --i);
526
527 /* resize child node */
528 if (tnode_full(tn, inode))
529 tn = resize(t, inode);
530 }
531
532 return tp;
533 }
534
inflate(struct trie * t,struct key_vector * oldtnode)535 static struct key_vector *inflate(struct trie *t,
536 struct key_vector *oldtnode)
537 {
538 struct key_vector *tn;
539 unsigned long i;
540 t_key m;
541
542 pr_debug("In inflate\n");
543
544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 if (!tn)
546 goto notnode;
547
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode);
550
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
554 * nodes.
555 */
556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 struct key_vector *inode = get_child(oldtnode, --i);
558 struct key_vector *node0, *node1;
559 unsigned long j, k;
560
561 /* An empty child */
562 if (!inode)
563 continue;
564
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode, inode)) {
567 put_child(tn, get_index(inode->key, tn), inode);
568 continue;
569 }
570
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode, inode);
573
574 /* An internal node with two children */
575 if (inode->bits == 1) {
576 put_child(tn, 2 * i + 1, get_child(inode, 1));
577 put_child(tn, 2 * i, get_child(inode, 0));
578 continue;
579 }
580
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
593 * two new keys.
594 */
595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 if (!node1)
597 goto nomem;
598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599
600 tnode_free_append(tn, node1);
601 if (!node0)
602 goto nomem;
603 tnode_free_append(tn, node0);
604
605 /* populate child pointers in new nodes */
606 for (k = child_length(inode), j = k / 2; j;) {
607 put_child(node1, --j, get_child(inode, --k));
608 put_child(node0, j, get_child(inode, j));
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 }
612
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1, tn);
615 NODE_INIT_PARENT(node0, tn);
616
617 /* link parent to nodes */
618 put_child(tn, 2 * i + 1, node1);
619 put_child(tn, 2 * i, node0);
620 }
621
622 /* setup the parent pointers into and out of this node */
623 return replace(t, oldtnode, tn);
624 nomem:
625 /* all pointers should be clean so we are done */
626 tnode_free(tn);
627 notnode:
628 return NULL;
629 }
630
halve(struct trie * t,struct key_vector * oldtnode)631 static struct key_vector *halve(struct trie *t,
632 struct key_vector *oldtnode)
633 {
634 struct key_vector *tn;
635 unsigned long i;
636
637 pr_debug("In halve\n");
638
639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 if (!tn)
641 goto notnode;
642
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode);
645
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
649 * nodes.
650 */
651 for (i = child_length(oldtnode); i;) {
652 struct key_vector *node1 = get_child(oldtnode, --i);
653 struct key_vector *node0 = get_child(oldtnode, --i);
654 struct key_vector *inode;
655
656 /* At least one of the children is empty */
657 if (!node1 || !node0) {
658 put_child(tn, i / 2, node1 ? : node0);
659 continue;
660 }
661
662 /* Two nonempty children */
663 inode = tnode_new(node0->key, oldtnode->pos, 1);
664 if (!inode)
665 goto nomem;
666 tnode_free_append(tn, inode);
667
668 /* initialize pointers out of node */
669 put_child(inode, 1, node1);
670 put_child(inode, 0, node0);
671 NODE_INIT_PARENT(inode, tn);
672
673 /* link parent to node */
674 put_child(tn, i / 2, inode);
675 }
676
677 /* setup the parent pointers into and out of this node */
678 return replace(t, oldtnode, tn);
679 nomem:
680 /* all pointers should be clean so we are done */
681 tnode_free(tn);
682 notnode:
683 return NULL;
684 }
685
collapse(struct trie * t,struct key_vector * oldtnode)686 static struct key_vector *collapse(struct trie *t,
687 struct key_vector *oldtnode)
688 {
689 struct key_vector *n, *tp;
690 unsigned long i;
691
692 /* scan the tnode looking for that one child that might still exist */
693 for (n = NULL, i = child_length(oldtnode); !n && i;)
694 n = get_child(oldtnode, --i);
695
696 /* compress one level */
697 tp = node_parent(oldtnode);
698 put_child_root(tp, oldtnode->key, n);
699 node_set_parent(n, tp);
700
701 /* drop dead node */
702 node_free(oldtnode);
703
704 return tp;
705 }
706
update_suffix(struct key_vector * tn)707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 unsigned char slen = tn->pos;
710 unsigned long stride, i;
711 unsigned char slen_max;
712
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
716 */
717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
723 */
724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 struct key_vector *n = get_child(tn, i);
726
727 if (!n || (n->slen <= slen))
728 continue;
729
730 /* update stride and slen based on new value */
731 stride <<= (n->slen - slen);
732 slen = n->slen;
733 i &= ~(stride - 1);
734
735 /* stop searching if we have hit the maximum possible value */
736 if (slen >= slen_max)
737 break;
738 }
739
740 tn->slen = slen;
741
742 return slen;
743 }
744
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
750 *
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
757 *
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
764 *
765 * A clearer way to write this would be:
766 *
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
769 * tn->full_children;
770 *
771 * new_child_length = child_length(tn) * 2;
772 *
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774 * new_child_length;
775 * if (new_fill_factor >= inflate_threshold)
776 *
777 * ...and so on, tho it would mess up the while () loop.
778 *
779 * anyway,
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * inflate_threshold
782 *
783 * avoid a division:
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
786 *
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
790 *
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
795 *
796 * shorten again:
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
799 * child_length(tn)
800 *
801 */
should_inflate(struct key_vector * tp,struct key_vector * tn)802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805 unsigned long threshold = used;
806
807 /* Keep root node larger */
808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 used -= tn_info(tn)->empty_children;
810 used += tn_info(tn)->full_children;
811
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
813
814 return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816
should_halve(struct key_vector * tp,struct key_vector * tn)817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 unsigned long used = child_length(tn);
820 unsigned long threshold = used;
821
822 /* Keep root node larger */
823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 used -= tn_info(tn)->empty_children;
825
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827
828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830
should_collapse(struct key_vector * tn)831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 unsigned long used = child_length(tn);
834
835 used -= tn_info(tn)->empty_children;
836
837 /* account for bits == KEYLENGTH case */
838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 used -= KEY_MAX;
840
841 /* One child or none, time to drop us from the trie */
842 return used < 2;
843 }
844
845 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 struct key_vector *tp = node_parent(tn);
852 unsigned long cindex = get_index(tn->key, tp);
853 int max_work = MAX_WORK;
854
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn, inflate_threshold, halve_threshold);
857
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
861 */
862 BUG_ON(tn != get_child(tp, cindex));
863
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
866 */
867 while (should_inflate(tp, tn) && max_work) {
868 tp = inflate(t, tn);
869 if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 break;
874 }
875
876 max_work--;
877 tn = get_child(tp, cindex);
878 }
879
880 /* update parent in case inflate failed */
881 tp = node_parent(tn);
882
883 /* Return if at least one inflate is run */
884 if (max_work != MAX_WORK)
885 return tp;
886
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
889 */
890 while (should_halve(tp, tn) && max_work) {
891 tp = halve(t, tn);
892 if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 break;
897 }
898
899 max_work--;
900 tn = get_child(tp, cindex);
901 }
902
903 /* Only one child remains */
904 if (should_collapse(tn))
905 return collapse(t, tn);
906
907 /* update parent in case halve failed */
908 return node_parent(tn);
909 }
910
node_pull_suffix(struct key_vector * tn,unsigned char slen)911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 unsigned char node_slen = tn->slen;
914
915 while ((node_slen > tn->pos) && (node_slen > slen)) {
916 slen = update_suffix(tn);
917 if (node_slen == slen)
918 break;
919
920 tn = node_parent(tn);
921 node_slen = tn->slen;
922 }
923 }
924
node_push_suffix(struct key_vector * tn,unsigned char slen)925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 while (tn->slen < slen) {
928 tn->slen = slen;
929 tn = node_parent(tn);
930 }
931 }
932
933 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)934 static struct key_vector *fib_find_node(struct trie *t,
935 struct key_vector **tp, u32 key)
936 {
937 struct key_vector *pn, *n = t->kv;
938 unsigned long index = 0;
939
940 do {
941 pn = n;
942 n = get_child_rcu(n, index);
943
944 if (!n)
945 break;
946
947 index = get_cindex(key, n);
948
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
956 * else
957 * we know the value is cindex
958 *
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
962 */
963 if (index >= (1ul << n->bits)) {
964 n = NULL;
965 break;
966 }
967
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n));
970
971 *tp = pn;
972
973 return n;
974 }
975
976 /* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
980 */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id,bool find_first)981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 u8 tos, u32 prio, u32 tb_id,
983 bool find_first)
984 {
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036 }
1037
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 struct fib_alias *fa_match;
1041
1042 rcu_read_lock();
1043
1044 fa_match = fib_find_matching_alias(net, fri);
1045 if (!fa_match)
1046 goto out;
1047
1048 fa_match->offload = fri->offload;
1049 fa_match->trap = fri->trap;
1050
1051 out:
1052 rcu_read_unlock();
1053 }
1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1055
trie_rebalance(struct trie * t,struct key_vector * tn)1056 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1057 {
1058 while (!IS_TRIE(tn))
1059 tn = resize(t, tn);
1060 }
1061
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1062 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1063 struct fib_alias *new, t_key key)
1064 {
1065 struct key_vector *n, *l;
1066
1067 l = leaf_new(key, new);
1068 if (!l)
1069 goto noleaf;
1070
1071 /* retrieve child from parent node */
1072 n = get_child(tp, get_index(key, tp));
1073
1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1075 *
1076 * Add a new tnode here
1077 * first tnode need some special handling
1078 * leaves us in position for handling as case 3
1079 */
1080 if (n) {
1081 struct key_vector *tn;
1082
1083 tn = tnode_new(key, __fls(key ^ n->key), 1);
1084 if (!tn)
1085 goto notnode;
1086
1087 /* initialize routes out of node */
1088 NODE_INIT_PARENT(tn, tp);
1089 put_child(tn, get_index(key, tn) ^ 1, n);
1090
1091 /* start adding routes into the node */
1092 put_child_root(tp, key, tn);
1093 node_set_parent(n, tn);
1094
1095 /* parent now has a NULL spot where the leaf can go */
1096 tp = tn;
1097 }
1098
1099 /* Case 3: n is NULL, and will just insert a new leaf */
1100 node_push_suffix(tp, new->fa_slen);
1101 NODE_INIT_PARENT(l, tp);
1102 put_child_root(tp, key, l);
1103 trie_rebalance(t, tp);
1104
1105 return 0;
1106 notnode:
1107 node_free(l);
1108 noleaf:
1109 return -ENOMEM;
1110 }
1111
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1112 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1113 struct key_vector *l, struct fib_alias *new,
1114 struct fib_alias *fa, t_key key)
1115 {
1116 if (!l)
1117 return fib_insert_node(t, tp, new, key);
1118
1119 if (fa) {
1120 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1121 } else {
1122 struct fib_alias *last;
1123
1124 hlist_for_each_entry(last, &l->leaf, fa_list) {
1125 if (new->fa_slen < last->fa_slen)
1126 break;
1127 if ((new->fa_slen == last->fa_slen) &&
1128 (new->tb_id > last->tb_id))
1129 break;
1130 fa = last;
1131 }
1132
1133 if (fa)
1134 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1135 else
1136 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1137 }
1138
1139 /* if we added to the tail node then we need to update slen */
1140 if (l->slen < new->fa_slen) {
1141 l->slen = new->fa_slen;
1142 node_push_suffix(tp, new->fa_slen);
1143 }
1144
1145 return 0;
1146 }
1147
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1148 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1149 {
1150 if (plen > KEYLENGTH) {
1151 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1152 return false;
1153 }
1154
1155 if ((plen < KEYLENGTH) && (key << plen)) {
1156 NL_SET_ERR_MSG(extack,
1157 "Invalid prefix for given prefix length");
1158 return false;
1159 }
1160
1161 return true;
1162 }
1163
1164 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1165 struct key_vector *l, struct fib_alias *old);
1166
1167 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1168 int fib_table_insert(struct net *net, struct fib_table *tb,
1169 struct fib_config *cfg, struct netlink_ext_ack *extack)
1170 {
1171 struct trie *t = (struct trie *)tb->tb_data;
1172 struct fib_alias *fa, *new_fa;
1173 struct key_vector *l, *tp;
1174 u16 nlflags = NLM_F_EXCL;
1175 struct fib_info *fi;
1176 u8 plen = cfg->fc_dst_len;
1177 u8 slen = KEYLENGTH - plen;
1178 u8 tos = cfg->fc_tos;
1179 u32 key;
1180 int err;
1181
1182 key = ntohl(cfg->fc_dst);
1183
1184 if (!fib_valid_key_len(key, plen, extack))
1185 return -EINVAL;
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 fi = fib_create_info(cfg, extack);
1190 if (IS_ERR(fi)) {
1191 err = PTR_ERR(fi);
1192 goto err;
1193 }
1194
1195 l = fib_find_node(t, &tp, key);
1196 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1197 tb->tb_id, false) : NULL;
1198
1199 /* Now fa, if non-NULL, points to the first fib alias
1200 * with the same keys [prefix,tos,priority], if such key already
1201 * exists or to the node before which we will insert new one.
1202 *
1203 * If fa is NULL, we will need to allocate a new one and
1204 * insert to the tail of the section matching the suffix length
1205 * of the new alias.
1206 */
1207
1208 if (fa && fa->fa_tos == tos &&
1209 fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_first, *fa_match;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 nlflags &= ~NLM_F_EXCL;
1217
1218 /* We have 2 goals:
1219 * 1. Find exact match for type, scope, fib_info to avoid
1220 * duplicate routes
1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1222 */
1223 fa_match = NULL;
1224 fa_first = fa;
1225 hlist_for_each_entry_from(fa, fa_list) {
1226 if ((fa->fa_slen != slen) ||
1227 (fa->tb_id != tb->tb_id) ||
1228 (fa->fa_tos != tos))
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == cfg->fc_type &&
1233 fa->fa_info == fi) {
1234 fa_match = fa;
1235 break;
1236 }
1237 }
1238
1239 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1240 struct fib_info *fi_drop;
1241 u8 state;
1242
1243 nlflags |= NLM_F_REPLACE;
1244 fa = fa_first;
1245 if (fa_match) {
1246 if (fa == fa_match)
1247 err = 0;
1248 goto out;
1249 }
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (!new_fa)
1253 goto out;
1254
1255 fi_drop = fa->fa_info;
1256 new_fa->fa_tos = fa->fa_tos;
1257 new_fa->fa_info = fi;
1258 new_fa->fa_type = cfg->fc_type;
1259 state = fa->fa_state;
1260 new_fa->fa_state = state & ~FA_S_ACCESSED;
1261 new_fa->fa_slen = fa->fa_slen;
1262 new_fa->tb_id = tb->tb_id;
1263 new_fa->fa_default = -1;
1264 new_fa->offload = 0;
1265 new_fa->trap = 0;
1266
1267 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1268
1269 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1270 tb->tb_id, true) == new_fa) {
1271 enum fib_event_type fib_event;
1272
1273 fib_event = FIB_EVENT_ENTRY_REPLACE;
1274 err = call_fib_entry_notifiers(net, fib_event,
1275 key, plen,
1276 new_fa, extack);
1277 if (err) {
1278 hlist_replace_rcu(&new_fa->fa_list,
1279 &fa->fa_list);
1280 goto out_free_new_fa;
1281 }
1282 }
1283
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1286
1287 alias_free_mem_rcu(fa);
1288
1289 fib_release_info(fi_drop);
1290 if (state & FA_S_ACCESSED)
1291 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1292
1293 goto succeeded;
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
1299 if (fa_match)
1300 goto out;
1301
1302 if (cfg->fc_nlflags & NLM_F_APPEND)
1303 nlflags |= NLM_F_APPEND;
1304 else
1305 fa = fa_first;
1306 }
1307 err = -ENOENT;
1308 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309 goto out;
1310
1311 nlflags |= NLM_F_CREATE;
1312 err = -ENOBUFS;
1313 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1314 if (!new_fa)
1315 goto out;
1316
1317 new_fa->fa_info = fi;
1318 new_fa->fa_tos = tos;
1319 new_fa->fa_type = cfg->fc_type;
1320 new_fa->fa_state = 0;
1321 new_fa->fa_slen = slen;
1322 new_fa->tb_id = tb->tb_id;
1323 new_fa->fa_default = -1;
1324 new_fa->offload = 0;
1325 new_fa->trap = 0;
1326
1327 /* Insert new entry to the list. */
1328 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1329 if (err)
1330 goto out_free_new_fa;
1331
1332 /* The alias was already inserted, so the node must exist. */
1333 l = l ? l : fib_find_node(t, &tp, key);
1334 if (WARN_ON_ONCE(!l)) {
1335 err = -ENOENT;
1336 goto out_free_new_fa;
1337 }
1338
1339 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1340 new_fa) {
1341 enum fib_event_type fib_event;
1342
1343 fib_event = FIB_EVENT_ENTRY_REPLACE;
1344 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1345 new_fa, extack);
1346 if (err)
1347 goto out_remove_new_fa;
1348 }
1349
1350 if (!plen)
1351 tb->tb_num_default++;
1352
1353 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1355 &cfg->fc_nlinfo, nlflags);
1356 succeeded:
1357 return 0;
1358
1359 out_remove_new_fa:
1360 fib_remove_alias(t, tp, l, new_fa);
1361 out_free_new_fa:
1362 kmem_cache_free(fn_alias_kmem, new_fa);
1363 out:
1364 fib_release_info(fi);
1365 err:
1366 return err;
1367 }
1368
prefix_mismatch(t_key key,struct key_vector * n)1369 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1370 {
1371 t_key prefix = n->key;
1372
1373 return (key ^ prefix) & (prefix | -prefix);
1374 }
1375
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1376 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1377 const struct flowi4 *flp)
1378 {
1379 if (nhc->nhc_flags & RTNH_F_DEAD)
1380 return false;
1381
1382 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1383 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1384 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1385 return false;
1386
1387 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1388 if (flp->flowi4_oif &&
1389 flp->flowi4_oif != nhc->nhc_oif)
1390 return false;
1391 }
1392
1393 return true;
1394 }
1395
1396 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1397 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1398 struct fib_result *res, int fib_flags)
1399 {
1400 struct trie *t = (struct trie *) tb->tb_data;
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 struct trie_use_stats __percpu *stats = t->stats;
1403 #endif
1404 const t_key key = ntohl(flp->daddr);
1405 struct key_vector *n, *pn;
1406 struct fib_alias *fa;
1407 unsigned long index;
1408 t_key cindex;
1409
1410 pn = t->kv;
1411 cindex = 0;
1412
1413 n = get_child_rcu(pn, cindex);
1414 if (!n) {
1415 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1416 return -EAGAIN;
1417 }
1418
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 this_cpu_inc(stats->gets);
1421 #endif
1422
1423 /* Step 1: Travel to the longest prefix match in the trie */
1424 for (;;) {
1425 index = get_cindex(key, n);
1426
1427 /* This bit of code is a bit tricky but it combines multiple
1428 * checks into a single check. The prefix consists of the
1429 * prefix plus zeros for the "bits" in the prefix. The index
1430 * is the difference between the key and this value. From
1431 * this we can actually derive several pieces of data.
1432 * if (index >= (1ul << bits))
1433 * we have a mismatch in skip bits and failed
1434 * else
1435 * we know the value is cindex
1436 *
1437 * This check is safe even if bits == KEYLENGTH due to the
1438 * fact that we can only allocate a node with 32 bits if a
1439 * long is greater than 32 bits.
1440 */
1441 if (index >= (1ul << n->bits))
1442 break;
1443
1444 /* we have found a leaf. Prefixes have already been compared */
1445 if (IS_LEAF(n))
1446 goto found;
1447
1448 /* only record pn and cindex if we are going to be chopping
1449 * bits later. Otherwise we are just wasting cycles.
1450 */
1451 if (n->slen > n->pos) {
1452 pn = n;
1453 cindex = index;
1454 }
1455
1456 n = get_child_rcu(n, index);
1457 if (unlikely(!n))
1458 goto backtrace;
1459 }
1460
1461 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1462 for (;;) {
1463 /* record the pointer where our next node pointer is stored */
1464 struct key_vector __rcu **cptr = n->tnode;
1465
1466 /* This test verifies that none of the bits that differ
1467 * between the key and the prefix exist in the region of
1468 * the lsb and higher in the prefix.
1469 */
1470 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1471 goto backtrace;
1472
1473 /* exit out and process leaf */
1474 if (unlikely(IS_LEAF(n)))
1475 break;
1476
1477 /* Don't bother recording parent info. Since we are in
1478 * prefix match mode we will have to come back to wherever
1479 * we started this traversal anyway
1480 */
1481
1482 while ((n = rcu_dereference(*cptr)) == NULL) {
1483 backtrace:
1484 #ifdef CONFIG_IP_FIB_TRIE_STATS
1485 if (!n)
1486 this_cpu_inc(stats->null_node_hit);
1487 #endif
1488 /* If we are at cindex 0 there are no more bits for
1489 * us to strip at this level so we must ascend back
1490 * up one level to see if there are any more bits to
1491 * be stripped there.
1492 */
1493 while (!cindex) {
1494 t_key pkey = pn->key;
1495
1496 /* If we don't have a parent then there is
1497 * nothing for us to do as we do not have any
1498 * further nodes to parse.
1499 */
1500 if (IS_TRIE(pn)) {
1501 trace_fib_table_lookup(tb->tb_id, flp,
1502 NULL, -EAGAIN);
1503 return -EAGAIN;
1504 }
1505 #ifdef CONFIG_IP_FIB_TRIE_STATS
1506 this_cpu_inc(stats->backtrack);
1507 #endif
1508 /* Get Child's index */
1509 pn = node_parent_rcu(pn);
1510 cindex = get_index(pkey, pn);
1511 }
1512
1513 /* strip the least significant bit from the cindex */
1514 cindex &= cindex - 1;
1515
1516 /* grab pointer for next child node */
1517 cptr = &pn->tnode[cindex];
1518 }
1519 }
1520
1521 found:
1522 /* this line carries forward the xor from earlier in the function */
1523 index = key ^ n->key;
1524
1525 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1526 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1527 struct fib_info *fi = fa->fa_info;
1528 struct fib_nh_common *nhc;
1529 int nhsel, err;
1530
1531 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1532 if (index >= (1ul << fa->fa_slen))
1533 continue;
1534 }
1535 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1536 continue;
1537 /* Paired with WRITE_ONCE() in fib_release_info() */
1538 if (READ_ONCE(fi->fib_dead))
1539 continue;
1540 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1541 continue;
1542 fib_alias_accessed(fa);
1543 err = fib_props[fa->fa_type].error;
1544 if (unlikely(err < 0)) {
1545 out_reject:
1546 #ifdef CONFIG_IP_FIB_TRIE_STATS
1547 this_cpu_inc(stats->semantic_match_passed);
1548 #endif
1549 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1550 return err;
1551 }
1552 if (fi->fib_flags & RTNH_F_DEAD)
1553 continue;
1554
1555 if (unlikely(fi->nh)) {
1556 if (nexthop_is_blackhole(fi->nh)) {
1557 err = fib_props[RTN_BLACKHOLE].error;
1558 goto out_reject;
1559 }
1560
1561 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1562 &nhsel);
1563 if (nhc)
1564 goto set_result;
1565 goto miss;
1566 }
1567
1568 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1569 nhc = fib_info_nhc(fi, nhsel);
1570
1571 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1572 continue;
1573 set_result:
1574 if (!(fib_flags & FIB_LOOKUP_NOREF))
1575 refcount_inc(&fi->fib_clntref);
1576
1577 res->prefix = htonl(n->key);
1578 res->prefixlen = KEYLENGTH - fa->fa_slen;
1579 res->nh_sel = nhsel;
1580 res->nhc = nhc;
1581 res->type = fa->fa_type;
1582 res->scope = fi->fib_scope;
1583 res->fi = fi;
1584 res->table = tb;
1585 res->fa_head = &n->leaf;
1586 #ifdef CONFIG_IP_FIB_TRIE_STATS
1587 this_cpu_inc(stats->semantic_match_passed);
1588 #endif
1589 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1590
1591 return err;
1592 }
1593 }
1594 miss:
1595 #ifdef CONFIG_IP_FIB_TRIE_STATS
1596 this_cpu_inc(stats->semantic_match_miss);
1597 #endif
1598 goto backtrace;
1599 }
1600 EXPORT_SYMBOL_GPL(fib_table_lookup);
1601
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1602 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1603 struct key_vector *l, struct fib_alias *old)
1604 {
1605 /* record the location of the previous list_info entry */
1606 struct hlist_node **pprev = old->fa_list.pprev;
1607 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1608
1609 /* remove the fib_alias from the list */
1610 hlist_del_rcu(&old->fa_list);
1611
1612 /* if we emptied the list this leaf will be freed and we can sort
1613 * out parent suffix lengths as a part of trie_rebalance
1614 */
1615 if (hlist_empty(&l->leaf)) {
1616 if (tp->slen == l->slen)
1617 node_pull_suffix(tp, tp->pos);
1618 put_child_root(tp, l->key, NULL);
1619 node_free(l);
1620 trie_rebalance(t, tp);
1621 return;
1622 }
1623
1624 /* only access fa if it is pointing at the last valid hlist_node */
1625 if (*pprev)
1626 return;
1627
1628 /* update the trie with the latest suffix length */
1629 l->slen = fa->fa_slen;
1630 node_pull_suffix(tp, fa->fa_slen);
1631 }
1632
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1633 static void fib_notify_alias_delete(struct net *net, u32 key,
1634 struct hlist_head *fah,
1635 struct fib_alias *fa_to_delete,
1636 struct netlink_ext_ack *extack)
1637 {
1638 struct fib_alias *fa_next, *fa_to_notify;
1639 u32 tb_id = fa_to_delete->tb_id;
1640 u8 slen = fa_to_delete->fa_slen;
1641 enum fib_event_type fib_event;
1642
1643 /* Do not notify if we do not care about the route. */
1644 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1645 return;
1646
1647 /* Determine if the route should be replaced by the next route in the
1648 * list.
1649 */
1650 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1651 struct fib_alias, fa_list);
1652 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1653 fib_event = FIB_EVENT_ENTRY_REPLACE;
1654 fa_to_notify = fa_next;
1655 } else {
1656 fib_event = FIB_EVENT_ENTRY_DEL;
1657 fa_to_notify = fa_to_delete;
1658 }
1659 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1660 fa_to_notify, extack);
1661 }
1662
1663 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1664 int fib_table_delete(struct net *net, struct fib_table *tb,
1665 struct fib_config *cfg, struct netlink_ext_ack *extack)
1666 {
1667 struct trie *t = (struct trie *) tb->tb_data;
1668 struct fib_alias *fa, *fa_to_delete;
1669 struct key_vector *l, *tp;
1670 u8 plen = cfg->fc_dst_len;
1671 u8 slen = KEYLENGTH - plen;
1672 u8 tos = cfg->fc_tos;
1673 u32 key;
1674
1675 key = ntohl(cfg->fc_dst);
1676
1677 if (!fib_valid_key_len(key, plen, extack))
1678 return -EINVAL;
1679
1680 l = fib_find_node(t, &tp, key);
1681 if (!l)
1682 return -ESRCH;
1683
1684 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1685 if (!fa)
1686 return -ESRCH;
1687
1688 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1689
1690 fa_to_delete = NULL;
1691 hlist_for_each_entry_from(fa, fa_list) {
1692 struct fib_info *fi = fa->fa_info;
1693
1694 if ((fa->fa_slen != slen) ||
1695 (fa->tb_id != tb->tb_id) ||
1696 (fa->fa_tos != tos))
1697 break;
1698
1699 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1700 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1701 fa->fa_info->fib_scope == cfg->fc_scope) &&
1702 (!cfg->fc_prefsrc ||
1703 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1704 (!cfg->fc_protocol ||
1705 fi->fib_protocol == cfg->fc_protocol) &&
1706 fib_nh_match(net, cfg, fi, extack) == 0 &&
1707 fib_metrics_match(cfg, fi)) {
1708 fa_to_delete = fa;
1709 break;
1710 }
1711 }
1712
1713 if (!fa_to_delete)
1714 return -ESRCH;
1715
1716 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1717 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1718 &cfg->fc_nlinfo, 0);
1719
1720 if (!plen)
1721 tb->tb_num_default--;
1722
1723 fib_remove_alias(t, tp, l, fa_to_delete);
1724
1725 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1726 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1727
1728 fib_release_info(fa_to_delete->fa_info);
1729 alias_free_mem_rcu(fa_to_delete);
1730 return 0;
1731 }
1732
1733 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1734 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1735 {
1736 struct key_vector *pn, *n = *tn;
1737 unsigned long cindex;
1738
1739 /* this loop is meant to try and find the key in the trie */
1740 do {
1741 /* record parent and next child index */
1742 pn = n;
1743 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1744
1745 if (cindex >> pn->bits)
1746 break;
1747
1748 /* descend into the next child */
1749 n = get_child_rcu(pn, cindex++);
1750 if (!n)
1751 break;
1752
1753 /* guarantee forward progress on the keys */
1754 if (IS_LEAF(n) && (n->key >= key))
1755 goto found;
1756 } while (IS_TNODE(n));
1757
1758 /* this loop will search for the next leaf with a greater key */
1759 while (!IS_TRIE(pn)) {
1760 /* if we exhausted the parent node we will need to climb */
1761 if (cindex >= (1ul << pn->bits)) {
1762 t_key pkey = pn->key;
1763
1764 pn = node_parent_rcu(pn);
1765 cindex = get_index(pkey, pn) + 1;
1766 continue;
1767 }
1768
1769 /* grab the next available node */
1770 n = get_child_rcu(pn, cindex++);
1771 if (!n)
1772 continue;
1773
1774 /* no need to compare keys since we bumped the index */
1775 if (IS_LEAF(n))
1776 goto found;
1777
1778 /* Rescan start scanning in new node */
1779 pn = n;
1780 cindex = 0;
1781 }
1782
1783 *tn = pn;
1784 return NULL; /* Root of trie */
1785 found:
1786 /* if we are at the limit for keys just return NULL for the tnode */
1787 *tn = pn;
1788 return n;
1789 }
1790
fib_trie_free(struct fib_table * tb)1791 static void fib_trie_free(struct fib_table *tb)
1792 {
1793 struct trie *t = (struct trie *)tb->tb_data;
1794 struct key_vector *pn = t->kv;
1795 unsigned long cindex = 1;
1796 struct hlist_node *tmp;
1797 struct fib_alias *fa;
1798
1799 /* walk trie in reverse order and free everything */
1800 for (;;) {
1801 struct key_vector *n;
1802
1803 if (!(cindex--)) {
1804 t_key pkey = pn->key;
1805
1806 if (IS_TRIE(pn))
1807 break;
1808
1809 n = pn;
1810 pn = node_parent(pn);
1811
1812 /* drop emptied tnode */
1813 put_child_root(pn, n->key, NULL);
1814 node_free(n);
1815
1816 cindex = get_index(pkey, pn);
1817
1818 continue;
1819 }
1820
1821 /* grab the next available node */
1822 n = get_child(pn, cindex);
1823 if (!n)
1824 continue;
1825
1826 if (IS_TNODE(n)) {
1827 /* record pn and cindex for leaf walking */
1828 pn = n;
1829 cindex = 1ul << n->bits;
1830
1831 continue;
1832 }
1833
1834 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1835 hlist_del_rcu(&fa->fa_list);
1836 alias_free_mem_rcu(fa);
1837 }
1838
1839 put_child_root(pn, n->key, NULL);
1840 node_free(n);
1841 }
1842
1843 #ifdef CONFIG_IP_FIB_TRIE_STATS
1844 free_percpu(t->stats);
1845 #endif
1846 kfree(tb);
1847 }
1848
fib_trie_unmerge(struct fib_table * oldtb)1849 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1850 {
1851 struct trie *ot = (struct trie *)oldtb->tb_data;
1852 struct key_vector *l, *tp = ot->kv;
1853 struct fib_table *local_tb;
1854 struct fib_alias *fa;
1855 struct trie *lt;
1856 t_key key = 0;
1857
1858 if (oldtb->tb_data == oldtb->__data)
1859 return oldtb;
1860
1861 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1862 if (!local_tb)
1863 return NULL;
1864
1865 lt = (struct trie *)local_tb->tb_data;
1866
1867 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1868 struct key_vector *local_l = NULL, *local_tp;
1869
1870 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1871 struct fib_alias *new_fa;
1872
1873 if (local_tb->tb_id != fa->tb_id)
1874 continue;
1875
1876 /* clone fa for new local table */
1877 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1878 if (!new_fa)
1879 goto out;
1880
1881 memcpy(new_fa, fa, sizeof(*fa));
1882
1883 /* insert clone into table */
1884 if (!local_l)
1885 local_l = fib_find_node(lt, &local_tp, l->key);
1886
1887 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1888 NULL, l->key)) {
1889 kmem_cache_free(fn_alias_kmem, new_fa);
1890 goto out;
1891 }
1892 }
1893
1894 /* stop loop if key wrapped back to 0 */
1895 key = l->key + 1;
1896 if (key < l->key)
1897 break;
1898 }
1899
1900 return local_tb;
1901 out:
1902 fib_trie_free(local_tb);
1903
1904 return NULL;
1905 }
1906
1907 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1908 void fib_table_flush_external(struct fib_table *tb)
1909 {
1910 struct trie *t = (struct trie *)tb->tb_data;
1911 struct key_vector *pn = t->kv;
1912 unsigned long cindex = 1;
1913 struct hlist_node *tmp;
1914 struct fib_alias *fa;
1915
1916 /* walk trie in reverse order */
1917 for (;;) {
1918 unsigned char slen = 0;
1919 struct key_vector *n;
1920
1921 if (!(cindex--)) {
1922 t_key pkey = pn->key;
1923
1924 /* cannot resize the trie vector */
1925 if (IS_TRIE(pn))
1926 break;
1927
1928 /* update the suffix to address pulled leaves */
1929 if (pn->slen > pn->pos)
1930 update_suffix(pn);
1931
1932 /* resize completed node */
1933 pn = resize(t, pn);
1934 cindex = get_index(pkey, pn);
1935
1936 continue;
1937 }
1938
1939 /* grab the next available node */
1940 n = get_child(pn, cindex);
1941 if (!n)
1942 continue;
1943
1944 if (IS_TNODE(n)) {
1945 /* record pn and cindex for leaf walking */
1946 pn = n;
1947 cindex = 1ul << n->bits;
1948
1949 continue;
1950 }
1951
1952 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1953 /* if alias was cloned to local then we just
1954 * need to remove the local copy from main
1955 */
1956 if (tb->tb_id != fa->tb_id) {
1957 hlist_del_rcu(&fa->fa_list);
1958 alias_free_mem_rcu(fa);
1959 continue;
1960 }
1961
1962 /* record local slen */
1963 slen = fa->fa_slen;
1964 }
1965
1966 /* update leaf slen */
1967 n->slen = slen;
1968
1969 if (hlist_empty(&n->leaf)) {
1970 put_child_root(pn, n->key, NULL);
1971 node_free(n);
1972 }
1973 }
1974 }
1975
1976 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)1977 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1978 {
1979 struct trie *t = (struct trie *)tb->tb_data;
1980 struct key_vector *pn = t->kv;
1981 unsigned long cindex = 1;
1982 struct hlist_node *tmp;
1983 struct fib_alias *fa;
1984 int found = 0;
1985
1986 /* walk trie in reverse order */
1987 for (;;) {
1988 unsigned char slen = 0;
1989 struct key_vector *n;
1990
1991 if (!(cindex--)) {
1992 t_key pkey = pn->key;
1993
1994 /* cannot resize the trie vector */
1995 if (IS_TRIE(pn))
1996 break;
1997
1998 /* update the suffix to address pulled leaves */
1999 if (pn->slen > pn->pos)
2000 update_suffix(pn);
2001
2002 /* resize completed node */
2003 pn = resize(t, pn);
2004 cindex = get_index(pkey, pn);
2005
2006 continue;
2007 }
2008
2009 /* grab the next available node */
2010 n = get_child(pn, cindex);
2011 if (!n)
2012 continue;
2013
2014 if (IS_TNODE(n)) {
2015 /* record pn and cindex for leaf walking */
2016 pn = n;
2017 cindex = 1ul << n->bits;
2018
2019 continue;
2020 }
2021
2022 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2023 struct fib_info *fi = fa->fa_info;
2024
2025 if (!fi || tb->tb_id != fa->tb_id ||
2026 (!(fi->fib_flags & RTNH_F_DEAD) &&
2027 !fib_props[fa->fa_type].error)) {
2028 slen = fa->fa_slen;
2029 continue;
2030 }
2031
2032 /* Do not flush error routes if network namespace is
2033 * not being dismantled
2034 */
2035 if (!flush_all && fib_props[fa->fa_type].error) {
2036 slen = fa->fa_slen;
2037 continue;
2038 }
2039
2040 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2041 NULL);
2042 hlist_del_rcu(&fa->fa_list);
2043 fib_release_info(fa->fa_info);
2044 alias_free_mem_rcu(fa);
2045 found++;
2046 }
2047
2048 /* update leaf slen */
2049 n->slen = slen;
2050
2051 if (hlist_empty(&n->leaf)) {
2052 put_child_root(pn, n->key, NULL);
2053 node_free(n);
2054 }
2055 }
2056
2057 pr_debug("trie_flush found=%d\n", found);
2058 return found;
2059 }
2060
2061 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2062 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2063 struct nl_info *info)
2064 {
2065 struct trie *t = (struct trie *)tb->tb_data;
2066 struct key_vector *pn = t->kv;
2067 unsigned long cindex = 1;
2068 struct fib_alias *fa;
2069
2070 for (;;) {
2071 struct key_vector *n;
2072
2073 if (!(cindex--)) {
2074 t_key pkey = pn->key;
2075
2076 if (IS_TRIE(pn))
2077 break;
2078
2079 pn = node_parent(pn);
2080 cindex = get_index(pkey, pn);
2081 continue;
2082 }
2083
2084 /* grab the next available node */
2085 n = get_child(pn, cindex);
2086 if (!n)
2087 continue;
2088
2089 if (IS_TNODE(n)) {
2090 /* record pn and cindex for leaf walking */
2091 pn = n;
2092 cindex = 1ul << n->bits;
2093
2094 continue;
2095 }
2096
2097 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2098 struct fib_info *fi = fa->fa_info;
2099
2100 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2101 continue;
2102
2103 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2104 KEYLENGTH - fa->fa_slen, tb->tb_id,
2105 info, NLM_F_REPLACE);
2106
2107 /* call_fib_entry_notifiers will be removed when
2108 * in-kernel notifier is implemented and supported
2109 * for nexthop objects
2110 */
2111 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2112 n->key,
2113 KEYLENGTH - fa->fa_slen, fa,
2114 NULL);
2115 }
2116 }
2117 }
2118
fib_info_notify_update(struct net * net,struct nl_info * info)2119 void fib_info_notify_update(struct net *net, struct nl_info *info)
2120 {
2121 unsigned int h;
2122
2123 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2124 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2125 struct fib_table *tb;
2126
2127 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2128 lockdep_rtnl_is_held())
2129 __fib_info_notify_update(net, tb, info);
2130 }
2131 }
2132
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2133 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2134 struct notifier_block *nb,
2135 struct netlink_ext_ack *extack)
2136 {
2137 struct fib_alias *fa;
2138 int last_slen = -1;
2139 int err;
2140
2141 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2142 struct fib_info *fi = fa->fa_info;
2143
2144 if (!fi)
2145 continue;
2146
2147 /* local and main table can share the same trie,
2148 * so don't notify twice for the same entry.
2149 */
2150 if (tb->tb_id != fa->tb_id)
2151 continue;
2152
2153 if (fa->fa_slen == last_slen)
2154 continue;
2155
2156 last_slen = fa->fa_slen;
2157 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2158 l->key, KEYLENGTH - fa->fa_slen,
2159 fa, extack);
2160 if (err)
2161 return err;
2162 }
2163 return 0;
2164 }
2165
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2166 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2167 struct netlink_ext_ack *extack)
2168 {
2169 struct trie *t = (struct trie *)tb->tb_data;
2170 struct key_vector *l, *tp = t->kv;
2171 t_key key = 0;
2172 int err;
2173
2174 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2175 err = fib_leaf_notify(l, tb, nb, extack);
2176 if (err)
2177 return err;
2178
2179 key = l->key + 1;
2180 /* stop in case of wrap around */
2181 if (key < l->key)
2182 break;
2183 }
2184 return 0;
2185 }
2186
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2187 int fib_notify(struct net *net, struct notifier_block *nb,
2188 struct netlink_ext_ack *extack)
2189 {
2190 unsigned int h;
2191 int err;
2192
2193 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2194 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2195 struct fib_table *tb;
2196
2197 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2198 err = fib_table_notify(tb, nb, extack);
2199 if (err)
2200 return err;
2201 }
2202 }
2203 return 0;
2204 }
2205
__trie_free_rcu(struct rcu_head * head)2206 static void __trie_free_rcu(struct rcu_head *head)
2207 {
2208 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2209 #ifdef CONFIG_IP_FIB_TRIE_STATS
2210 struct trie *t = (struct trie *)tb->tb_data;
2211
2212 if (tb->tb_data == tb->__data)
2213 free_percpu(t->stats);
2214 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2215 kfree(tb);
2216 }
2217
fib_free_table(struct fib_table * tb)2218 void fib_free_table(struct fib_table *tb)
2219 {
2220 call_rcu(&tb->rcu, __trie_free_rcu);
2221 }
2222
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2223 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2224 struct sk_buff *skb, struct netlink_callback *cb,
2225 struct fib_dump_filter *filter)
2226 {
2227 unsigned int flags = NLM_F_MULTI;
2228 __be32 xkey = htonl(l->key);
2229 int i, s_i, i_fa, s_fa, err;
2230 struct fib_alias *fa;
2231
2232 if (filter->filter_set ||
2233 !filter->dump_exceptions || !filter->dump_routes)
2234 flags |= NLM_F_DUMP_FILTERED;
2235
2236 s_i = cb->args[4];
2237 s_fa = cb->args[5];
2238 i = 0;
2239
2240 /* rcu_read_lock is hold by caller */
2241 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2242 struct fib_info *fi = fa->fa_info;
2243
2244 if (i < s_i)
2245 goto next;
2246
2247 i_fa = 0;
2248
2249 if (tb->tb_id != fa->tb_id)
2250 goto next;
2251
2252 if (filter->filter_set) {
2253 if (filter->rt_type && fa->fa_type != filter->rt_type)
2254 goto next;
2255
2256 if ((filter->protocol &&
2257 fi->fib_protocol != filter->protocol))
2258 goto next;
2259
2260 if (filter->dev &&
2261 !fib_info_nh_uses_dev(fi, filter->dev))
2262 goto next;
2263 }
2264
2265 if (filter->dump_routes) {
2266 if (!s_fa) {
2267 struct fib_rt_info fri;
2268
2269 fri.fi = fi;
2270 fri.tb_id = tb->tb_id;
2271 fri.dst = xkey;
2272 fri.dst_len = KEYLENGTH - fa->fa_slen;
2273 fri.tos = fa->fa_tos;
2274 fri.type = fa->fa_type;
2275 fri.offload = fa->offload;
2276 fri.trap = fa->trap;
2277 err = fib_dump_info(skb,
2278 NETLINK_CB(cb->skb).portid,
2279 cb->nlh->nlmsg_seq,
2280 RTM_NEWROUTE, &fri, flags);
2281 if (err < 0)
2282 goto stop;
2283 }
2284
2285 i_fa++;
2286 }
2287
2288 if (filter->dump_exceptions) {
2289 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2290 &i_fa, s_fa, flags);
2291 if (err < 0)
2292 goto stop;
2293 }
2294
2295 next:
2296 i++;
2297 }
2298
2299 cb->args[4] = i;
2300 return skb->len;
2301
2302 stop:
2303 cb->args[4] = i;
2304 cb->args[5] = i_fa;
2305 return err;
2306 }
2307
2308 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2309 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2310 struct netlink_callback *cb, struct fib_dump_filter *filter)
2311 {
2312 struct trie *t = (struct trie *)tb->tb_data;
2313 struct key_vector *l, *tp = t->kv;
2314 /* Dump starting at last key.
2315 * Note: 0.0.0.0/0 (ie default) is first key.
2316 */
2317 int count = cb->args[2];
2318 t_key key = cb->args[3];
2319
2320 /* First time here, count and key are both always 0. Count > 0
2321 * and key == 0 means the dump has wrapped around and we are done.
2322 */
2323 if (count && !key)
2324 return skb->len;
2325
2326 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2327 int err;
2328
2329 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2330 if (err < 0) {
2331 cb->args[3] = key;
2332 cb->args[2] = count;
2333 return err;
2334 }
2335
2336 ++count;
2337 key = l->key + 1;
2338
2339 memset(&cb->args[4], 0,
2340 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2341
2342 /* stop loop if key wrapped back to 0 */
2343 if (key < l->key)
2344 break;
2345 }
2346
2347 cb->args[3] = key;
2348 cb->args[2] = count;
2349
2350 return skb->len;
2351 }
2352
fib_trie_init(void)2353 void __init fib_trie_init(void)
2354 {
2355 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2356 sizeof(struct fib_alias),
2357 0, SLAB_PANIC, NULL);
2358
2359 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2360 LEAF_SIZE,
2361 0, SLAB_PANIC, NULL);
2362 }
2363
fib_trie_table(u32 id,struct fib_table * alias)2364 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2365 {
2366 struct fib_table *tb;
2367 struct trie *t;
2368 size_t sz = sizeof(*tb);
2369
2370 if (!alias)
2371 sz += sizeof(struct trie);
2372
2373 tb = kzalloc(sz, GFP_KERNEL);
2374 if (!tb)
2375 return NULL;
2376
2377 tb->tb_id = id;
2378 tb->tb_num_default = 0;
2379 tb->tb_data = (alias ? alias->__data : tb->__data);
2380
2381 if (alias)
2382 return tb;
2383
2384 t = (struct trie *) tb->tb_data;
2385 t->kv[0].pos = KEYLENGTH;
2386 t->kv[0].slen = KEYLENGTH;
2387 #ifdef CONFIG_IP_FIB_TRIE_STATS
2388 t->stats = alloc_percpu(struct trie_use_stats);
2389 if (!t->stats) {
2390 kfree(tb);
2391 tb = NULL;
2392 }
2393 #endif
2394
2395 return tb;
2396 }
2397
2398 #ifdef CONFIG_PROC_FS
2399 /* Depth first Trie walk iterator */
2400 struct fib_trie_iter {
2401 struct seq_net_private p;
2402 struct fib_table *tb;
2403 struct key_vector *tnode;
2404 unsigned int index;
2405 unsigned int depth;
2406 };
2407
fib_trie_get_next(struct fib_trie_iter * iter)2408 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2409 {
2410 unsigned long cindex = iter->index;
2411 struct key_vector *pn = iter->tnode;
2412 t_key pkey;
2413
2414 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2415 iter->tnode, iter->index, iter->depth);
2416
2417 while (!IS_TRIE(pn)) {
2418 while (cindex < child_length(pn)) {
2419 struct key_vector *n = get_child_rcu(pn, cindex++);
2420
2421 if (!n)
2422 continue;
2423
2424 if (IS_LEAF(n)) {
2425 iter->tnode = pn;
2426 iter->index = cindex;
2427 } else {
2428 /* push down one level */
2429 iter->tnode = n;
2430 iter->index = 0;
2431 ++iter->depth;
2432 }
2433
2434 return n;
2435 }
2436
2437 /* Current node exhausted, pop back up */
2438 pkey = pn->key;
2439 pn = node_parent_rcu(pn);
2440 cindex = get_index(pkey, pn) + 1;
2441 --iter->depth;
2442 }
2443
2444 /* record root node so further searches know we are done */
2445 iter->tnode = pn;
2446 iter->index = 0;
2447
2448 return NULL;
2449 }
2450
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2451 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2452 struct trie *t)
2453 {
2454 struct key_vector *n, *pn;
2455
2456 if (!t)
2457 return NULL;
2458
2459 pn = t->kv;
2460 n = rcu_dereference(pn->tnode[0]);
2461 if (!n)
2462 return NULL;
2463
2464 if (IS_TNODE(n)) {
2465 iter->tnode = n;
2466 iter->index = 0;
2467 iter->depth = 1;
2468 } else {
2469 iter->tnode = pn;
2470 iter->index = 0;
2471 iter->depth = 0;
2472 }
2473
2474 return n;
2475 }
2476
trie_collect_stats(struct trie * t,struct trie_stat * s)2477 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2478 {
2479 struct key_vector *n;
2480 struct fib_trie_iter iter;
2481
2482 memset(s, 0, sizeof(*s));
2483
2484 rcu_read_lock();
2485 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2486 if (IS_LEAF(n)) {
2487 struct fib_alias *fa;
2488
2489 s->leaves++;
2490 s->totdepth += iter.depth;
2491 if (iter.depth > s->maxdepth)
2492 s->maxdepth = iter.depth;
2493
2494 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2495 ++s->prefixes;
2496 } else {
2497 s->tnodes++;
2498 if (n->bits < MAX_STAT_DEPTH)
2499 s->nodesizes[n->bits]++;
2500 s->nullpointers += tn_info(n)->empty_children;
2501 }
2502 }
2503 rcu_read_unlock();
2504 }
2505
2506 /*
2507 * This outputs /proc/net/fib_triestats
2508 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2509 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2510 {
2511 unsigned int i, max, pointers, bytes, avdepth;
2512
2513 if (stat->leaves)
2514 avdepth = stat->totdepth*100 / stat->leaves;
2515 else
2516 avdepth = 0;
2517
2518 seq_printf(seq, "\tAver depth: %u.%02d\n",
2519 avdepth / 100, avdepth % 100);
2520 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2521
2522 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2523 bytes = LEAF_SIZE * stat->leaves;
2524
2525 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2526 bytes += sizeof(struct fib_alias) * stat->prefixes;
2527
2528 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2529 bytes += TNODE_SIZE(0) * stat->tnodes;
2530
2531 max = MAX_STAT_DEPTH;
2532 while (max > 0 && stat->nodesizes[max-1] == 0)
2533 max--;
2534
2535 pointers = 0;
2536 for (i = 1; i < max; i++)
2537 if (stat->nodesizes[i] != 0) {
2538 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2539 pointers += (1<<i) * stat->nodesizes[i];
2540 }
2541 seq_putc(seq, '\n');
2542 seq_printf(seq, "\tPointers: %u\n", pointers);
2543
2544 bytes += sizeof(struct key_vector *) * pointers;
2545 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2546 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2547 }
2548
2549 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2550 static void trie_show_usage(struct seq_file *seq,
2551 const struct trie_use_stats __percpu *stats)
2552 {
2553 struct trie_use_stats s = { 0 };
2554 int cpu;
2555
2556 /* loop through all of the CPUs and gather up the stats */
2557 for_each_possible_cpu(cpu) {
2558 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2559
2560 s.gets += pcpu->gets;
2561 s.backtrack += pcpu->backtrack;
2562 s.semantic_match_passed += pcpu->semantic_match_passed;
2563 s.semantic_match_miss += pcpu->semantic_match_miss;
2564 s.null_node_hit += pcpu->null_node_hit;
2565 s.resize_node_skipped += pcpu->resize_node_skipped;
2566 }
2567
2568 seq_printf(seq, "\nCounters:\n---------\n");
2569 seq_printf(seq, "gets = %u\n", s.gets);
2570 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2571 seq_printf(seq, "semantic match passed = %u\n",
2572 s.semantic_match_passed);
2573 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2574 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2575 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2576 }
2577 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2578
fib_table_print(struct seq_file * seq,struct fib_table * tb)2579 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2580 {
2581 if (tb->tb_id == RT_TABLE_LOCAL)
2582 seq_puts(seq, "Local:\n");
2583 else if (tb->tb_id == RT_TABLE_MAIN)
2584 seq_puts(seq, "Main:\n");
2585 else
2586 seq_printf(seq, "Id %d:\n", tb->tb_id);
2587 }
2588
2589
fib_triestat_seq_show(struct seq_file * seq,void * v)2590 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2591 {
2592 struct net *net = (struct net *)seq->private;
2593 unsigned int h;
2594
2595 seq_printf(seq,
2596 "Basic info: size of leaf:"
2597 " %zd bytes, size of tnode: %zd bytes.\n",
2598 LEAF_SIZE, TNODE_SIZE(0));
2599
2600 rcu_read_lock();
2601 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2602 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2603 struct fib_table *tb;
2604
2605 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2606 struct trie *t = (struct trie *) tb->tb_data;
2607 struct trie_stat stat;
2608
2609 if (!t)
2610 continue;
2611
2612 fib_table_print(seq, tb);
2613
2614 trie_collect_stats(t, &stat);
2615 trie_show_stats(seq, &stat);
2616 #ifdef CONFIG_IP_FIB_TRIE_STATS
2617 trie_show_usage(seq, t->stats);
2618 #endif
2619 }
2620 cond_resched_rcu();
2621 }
2622 rcu_read_unlock();
2623
2624 return 0;
2625 }
2626
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2627 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2628 {
2629 struct fib_trie_iter *iter = seq->private;
2630 struct net *net = seq_file_net(seq);
2631 loff_t idx = 0;
2632 unsigned int h;
2633
2634 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2635 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2636 struct fib_table *tb;
2637
2638 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2639 struct key_vector *n;
2640
2641 for (n = fib_trie_get_first(iter,
2642 (struct trie *) tb->tb_data);
2643 n; n = fib_trie_get_next(iter))
2644 if (pos == idx++) {
2645 iter->tb = tb;
2646 return n;
2647 }
2648 }
2649 }
2650
2651 return NULL;
2652 }
2653
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2654 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2655 __acquires(RCU)
2656 {
2657 rcu_read_lock();
2658 return fib_trie_get_idx(seq, *pos);
2659 }
2660
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2661 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2662 {
2663 struct fib_trie_iter *iter = seq->private;
2664 struct net *net = seq_file_net(seq);
2665 struct fib_table *tb = iter->tb;
2666 struct hlist_node *tb_node;
2667 unsigned int h;
2668 struct key_vector *n;
2669
2670 ++*pos;
2671 /* next node in same table */
2672 n = fib_trie_get_next(iter);
2673 if (n)
2674 return n;
2675
2676 /* walk rest of this hash chain */
2677 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2678 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2679 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2680 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2681 if (n)
2682 goto found;
2683 }
2684
2685 /* new hash chain */
2686 while (++h < FIB_TABLE_HASHSZ) {
2687 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2688 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2689 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2690 if (n)
2691 goto found;
2692 }
2693 }
2694 return NULL;
2695
2696 found:
2697 iter->tb = tb;
2698 return n;
2699 }
2700
fib_trie_seq_stop(struct seq_file * seq,void * v)2701 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2702 __releases(RCU)
2703 {
2704 rcu_read_unlock();
2705 }
2706
seq_indent(struct seq_file * seq,int n)2707 static void seq_indent(struct seq_file *seq, int n)
2708 {
2709 while (n-- > 0)
2710 seq_puts(seq, " ");
2711 }
2712
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2713 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2714 {
2715 switch (s) {
2716 case RT_SCOPE_UNIVERSE: return "universe";
2717 case RT_SCOPE_SITE: return "site";
2718 case RT_SCOPE_LINK: return "link";
2719 case RT_SCOPE_HOST: return "host";
2720 case RT_SCOPE_NOWHERE: return "nowhere";
2721 default:
2722 snprintf(buf, len, "scope=%d", s);
2723 return buf;
2724 }
2725 }
2726
2727 static const char *const rtn_type_names[__RTN_MAX] = {
2728 [RTN_UNSPEC] = "UNSPEC",
2729 [RTN_UNICAST] = "UNICAST",
2730 [RTN_LOCAL] = "LOCAL",
2731 [RTN_BROADCAST] = "BROADCAST",
2732 [RTN_ANYCAST] = "ANYCAST",
2733 [RTN_MULTICAST] = "MULTICAST",
2734 [RTN_BLACKHOLE] = "BLACKHOLE",
2735 [RTN_UNREACHABLE] = "UNREACHABLE",
2736 [RTN_PROHIBIT] = "PROHIBIT",
2737 [RTN_THROW] = "THROW",
2738 [RTN_NAT] = "NAT",
2739 [RTN_XRESOLVE] = "XRESOLVE",
2740 };
2741
rtn_type(char * buf,size_t len,unsigned int t)2742 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2743 {
2744 if (t < __RTN_MAX && rtn_type_names[t])
2745 return rtn_type_names[t];
2746 snprintf(buf, len, "type %u", t);
2747 return buf;
2748 }
2749
2750 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2751 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2752 {
2753 const struct fib_trie_iter *iter = seq->private;
2754 struct key_vector *n = v;
2755
2756 if (IS_TRIE(node_parent_rcu(n)))
2757 fib_table_print(seq, iter->tb);
2758
2759 if (IS_TNODE(n)) {
2760 __be32 prf = htonl(n->key);
2761
2762 seq_indent(seq, iter->depth-1);
2763 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2764 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2765 tn_info(n)->full_children,
2766 tn_info(n)->empty_children);
2767 } else {
2768 __be32 val = htonl(n->key);
2769 struct fib_alias *fa;
2770
2771 seq_indent(seq, iter->depth);
2772 seq_printf(seq, " |-- %pI4\n", &val);
2773
2774 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2775 char buf1[32], buf2[32];
2776
2777 seq_indent(seq, iter->depth + 1);
2778 seq_printf(seq, " /%zu %s %s",
2779 KEYLENGTH - fa->fa_slen,
2780 rtn_scope(buf1, sizeof(buf1),
2781 fa->fa_info->fib_scope),
2782 rtn_type(buf2, sizeof(buf2),
2783 fa->fa_type));
2784 if (fa->fa_tos)
2785 seq_printf(seq, " tos=%d", fa->fa_tos);
2786 seq_putc(seq, '\n');
2787 }
2788 }
2789
2790 return 0;
2791 }
2792
2793 static const struct seq_operations fib_trie_seq_ops = {
2794 .start = fib_trie_seq_start,
2795 .next = fib_trie_seq_next,
2796 .stop = fib_trie_seq_stop,
2797 .show = fib_trie_seq_show,
2798 };
2799
2800 struct fib_route_iter {
2801 struct seq_net_private p;
2802 struct fib_table *main_tb;
2803 struct key_vector *tnode;
2804 loff_t pos;
2805 t_key key;
2806 };
2807
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2808 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2809 loff_t pos)
2810 {
2811 struct key_vector *l, **tp = &iter->tnode;
2812 t_key key;
2813
2814 /* use cached location of previously found key */
2815 if (iter->pos > 0 && pos >= iter->pos) {
2816 key = iter->key;
2817 } else {
2818 iter->pos = 1;
2819 key = 0;
2820 }
2821
2822 pos -= iter->pos;
2823
2824 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2825 key = l->key + 1;
2826 iter->pos++;
2827 l = NULL;
2828
2829 /* handle unlikely case of a key wrap */
2830 if (!key)
2831 break;
2832 }
2833
2834 if (l)
2835 iter->key = l->key; /* remember it */
2836 else
2837 iter->pos = 0; /* forget it */
2838
2839 return l;
2840 }
2841
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2842 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2843 __acquires(RCU)
2844 {
2845 struct fib_route_iter *iter = seq->private;
2846 struct fib_table *tb;
2847 struct trie *t;
2848
2849 rcu_read_lock();
2850
2851 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2852 if (!tb)
2853 return NULL;
2854
2855 iter->main_tb = tb;
2856 t = (struct trie *)tb->tb_data;
2857 iter->tnode = t->kv;
2858
2859 if (*pos != 0)
2860 return fib_route_get_idx(iter, *pos);
2861
2862 iter->pos = 0;
2863 iter->key = KEY_MAX;
2864
2865 return SEQ_START_TOKEN;
2866 }
2867
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2868 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2869 {
2870 struct fib_route_iter *iter = seq->private;
2871 struct key_vector *l = NULL;
2872 t_key key = iter->key + 1;
2873
2874 ++*pos;
2875
2876 /* only allow key of 0 for start of sequence */
2877 if ((v == SEQ_START_TOKEN) || key)
2878 l = leaf_walk_rcu(&iter->tnode, key);
2879
2880 if (l) {
2881 iter->key = l->key;
2882 iter->pos++;
2883 } else {
2884 iter->pos = 0;
2885 }
2886
2887 return l;
2888 }
2889
fib_route_seq_stop(struct seq_file * seq,void * v)2890 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2891 __releases(RCU)
2892 {
2893 rcu_read_unlock();
2894 }
2895
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2896 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2897 {
2898 unsigned int flags = 0;
2899
2900 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2901 flags = RTF_REJECT;
2902 if (fi) {
2903 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2904
2905 if (nhc->nhc_gw.ipv4)
2906 flags |= RTF_GATEWAY;
2907 }
2908 if (mask == htonl(0xFFFFFFFF))
2909 flags |= RTF_HOST;
2910 flags |= RTF_UP;
2911 return flags;
2912 }
2913
2914 /*
2915 * This outputs /proc/net/route.
2916 * The format of the file is not supposed to be changed
2917 * and needs to be same as fib_hash output to avoid breaking
2918 * legacy utilities
2919 */
fib_route_seq_show(struct seq_file * seq,void * v)2920 static int fib_route_seq_show(struct seq_file *seq, void *v)
2921 {
2922 struct fib_route_iter *iter = seq->private;
2923 struct fib_table *tb = iter->main_tb;
2924 struct fib_alias *fa;
2925 struct key_vector *l = v;
2926 __be32 prefix;
2927
2928 if (v == SEQ_START_TOKEN) {
2929 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2930 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2931 "\tWindow\tIRTT");
2932 return 0;
2933 }
2934
2935 prefix = htonl(l->key);
2936
2937 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2938 struct fib_info *fi = fa->fa_info;
2939 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2940 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2941
2942 if ((fa->fa_type == RTN_BROADCAST) ||
2943 (fa->fa_type == RTN_MULTICAST))
2944 continue;
2945
2946 if (fa->tb_id != tb->tb_id)
2947 continue;
2948
2949 seq_setwidth(seq, 127);
2950
2951 if (fi) {
2952 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2953 __be32 gw = 0;
2954
2955 if (nhc->nhc_gw_family == AF_INET)
2956 gw = nhc->nhc_gw.ipv4;
2957
2958 seq_printf(seq,
2959 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2960 "%d\t%08X\t%d\t%u\t%u",
2961 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2962 prefix, gw, flags, 0, 0,
2963 fi->fib_priority,
2964 mask,
2965 (fi->fib_advmss ?
2966 fi->fib_advmss + 40 : 0),
2967 fi->fib_window,
2968 fi->fib_rtt >> 3);
2969 } else {
2970 seq_printf(seq,
2971 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2972 "%d\t%08X\t%d\t%u\t%u",
2973 prefix, 0, flags, 0, 0, 0,
2974 mask, 0, 0, 0);
2975 }
2976 seq_pad(seq, '\n');
2977 }
2978
2979 return 0;
2980 }
2981
2982 static const struct seq_operations fib_route_seq_ops = {
2983 .start = fib_route_seq_start,
2984 .next = fib_route_seq_next,
2985 .stop = fib_route_seq_stop,
2986 .show = fib_route_seq_show,
2987 };
2988
fib_proc_init(struct net * net)2989 int __net_init fib_proc_init(struct net *net)
2990 {
2991 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2992 sizeof(struct fib_trie_iter)))
2993 goto out1;
2994
2995 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2996 fib_triestat_seq_show, NULL))
2997 goto out2;
2998
2999 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3000 sizeof(struct fib_route_iter)))
3001 goto out3;
3002
3003 return 0;
3004
3005 out3:
3006 remove_proc_entry("fib_triestat", net->proc_net);
3007 out2:
3008 remove_proc_entry("fib_trie", net->proc_net);
3009 out1:
3010 return -ENOMEM;
3011 }
3012
fib_proc_exit(struct net * net)3013 void __net_exit fib_proc_exit(struct net *net)
3014 {
3015 remove_proc_entry("fib_trie", net->proc_net);
3016 remove_proc_entry("fib_triestat", net->proc_net);
3017 remove_proc_entry("route", net->proc_net);
3018 }
3019
3020 #endif /* CONFIG_PROC_FS */
3021