• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 flags;
24 };
25 
26 /* Used for the RX and TX queues for packets */
27 struct xdp_rxtx_ring {
28 	struct xdp_ring ptrs;
29 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
30 };
31 
32 /* Used for the fill and completion queues for buffers */
33 struct xdp_umem_ring {
34 	struct xdp_ring ptrs;
35 	u64 desc[] ____cacheline_aligned_in_smp;
36 };
37 
38 struct xsk_queue {
39 	u32 ring_mask;
40 	u32 nentries;
41 	u32 cached_prod;
42 	u32 cached_cons;
43 	struct xdp_ring *ring;
44 	u64 invalid_descs;
45 	u64 queue_empty_descs;
46 };
47 
48 /* The structure of the shared state of the rings are the same as the
49  * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
50  * ring, the kernel is the producer and user space is the consumer. For
51  * the Tx and fill rings, the kernel is the consumer and user space is
52  * the producer.
53  *
54  * producer                         consumer
55  *
56  * if (LOAD ->consumer) {           LOAD ->producer
57  *                    (A)           smp_rmb()       (C)
58  *    STORE $data                   LOAD $data
59  *    smp_wmb()       (B)           smp_mb()        (D)
60  *    STORE ->producer              STORE ->consumer
61  * }
62  *
63  * (A) pairs with (D), and (B) pairs with (C).
64  *
65  * Starting with (B), it protects the data from being written after
66  * the producer pointer. If this barrier was missing, the consumer
67  * could observe the producer pointer being set and thus load the data
68  * before the producer has written the new data. The consumer would in
69  * this case load the old data.
70  *
71  * (C) protects the consumer from speculatively loading the data before
72  * the producer pointer actually has been read. If we do not have this
73  * barrier, some architectures could load old data as speculative loads
74  * are not discarded as the CPU does not know there is a dependency
75  * between ->producer and data.
76  *
77  * (A) is a control dependency that separates the load of ->consumer
78  * from the stores of $data. In case ->consumer indicates there is no
79  * room in the buffer to store $data we do not. So no barrier is needed.
80  *
81  * (D) protects the load of the data to be observed to happen after the
82  * store of the consumer pointer. If we did not have this memory
83  * barrier, the producer could observe the consumer pointer being set
84  * and overwrite the data with a new value before the consumer got the
85  * chance to read the old value. The consumer would thus miss reading
86  * the old entry and very likely read the new entry twice, once right
87  * now and again after circling through the ring.
88  */
89 
90 /* The operations on the rings are the following:
91  *
92  * producer                           consumer
93  *
94  * RESERVE entries                    PEEK in the ring for entries
95  * WRITE data into the ring           READ data from the ring
96  * SUBMIT entries                     RELEASE entries
97  *
98  * The producer reserves one or more entries in the ring. It can then
99  * fill in these entries and finally submit them so that they can be
100  * seen and read by the consumer.
101  *
102  * The consumer peeks into the ring to see if the producer has written
103  * any new entries. If so, the consumer can then read these entries
104  * and when it is done reading them release them back to the producer
105  * so that the producer can use these slots to fill in new entries.
106  *
107  * The function names below reflect these operations.
108  */
109 
110 /* Functions that read and validate content from consumer rings. */
111 
xskq_cons_read_addr_unchecked(struct xsk_queue * q,u64 * addr)112 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
113 {
114 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
115 
116 	if (q->cached_cons != q->cached_prod) {
117 		u32 idx = q->cached_cons & q->ring_mask;
118 
119 		*addr = ring->desc[idx];
120 		return true;
121 	}
122 
123 	return false;
124 }
125 
xp_aligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)126 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
127 					    struct xdp_desc *desc)
128 {
129 	u64 chunk, chunk_end;
130 
131 	chunk = xp_aligned_extract_addr(pool, desc->addr);
132 	if (likely(desc->len)) {
133 		chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
134 		if (chunk != chunk_end)
135 			return false;
136 	}
137 
138 	if (chunk >= pool->addrs_cnt)
139 		return false;
140 
141 	if (desc->options)
142 		return false;
143 	return true;
144 }
145 
xp_unaligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)146 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
147 					      struct xdp_desc *desc)
148 {
149 	u64 addr, base_addr;
150 
151 	base_addr = xp_unaligned_extract_addr(desc->addr);
152 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
153 
154 	if (desc->len > pool->chunk_size)
155 		return false;
156 
157 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
158 	    addr + desc->len > pool->addrs_cnt ||
159 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
160 		return false;
161 
162 	if (desc->options)
163 		return false;
164 	return true;
165 }
166 
xp_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)167 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
168 				    struct xdp_desc *desc)
169 {
170 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
171 		xp_aligned_validate_desc(pool, desc);
172 }
173 
xskq_cons_is_valid_desc(struct xsk_queue * q,struct xdp_desc * d,struct xsk_buff_pool * pool)174 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
175 					   struct xdp_desc *d,
176 					   struct xsk_buff_pool *pool)
177 {
178 	if (!xp_validate_desc(pool, d)) {
179 		q->invalid_descs++;
180 		return false;
181 	}
182 	return true;
183 }
184 
xskq_cons_read_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)185 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
186 				       struct xdp_desc *desc,
187 				       struct xsk_buff_pool *pool)
188 {
189 	while (q->cached_cons != q->cached_prod) {
190 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
191 		u32 idx = q->cached_cons & q->ring_mask;
192 
193 		*desc = ring->desc[idx];
194 		if (xskq_cons_is_valid_desc(q, desc, pool))
195 			return true;
196 
197 		q->cached_cons++;
198 	}
199 
200 	return false;
201 }
202 
203 /* Functions for consumers */
204 
__xskq_cons_release(struct xsk_queue * q)205 static inline void __xskq_cons_release(struct xsk_queue *q)
206 {
207 	smp_mb(); /* D, matches A */
208 	WRITE_ONCE(q->ring->consumer, q->cached_cons);
209 }
210 
__xskq_cons_peek(struct xsk_queue * q)211 static inline void __xskq_cons_peek(struct xsk_queue *q)
212 {
213 	/* Refresh the local pointer */
214 	q->cached_prod = READ_ONCE(q->ring->producer);
215 	smp_rmb(); /* C, matches B */
216 }
217 
xskq_cons_get_entries(struct xsk_queue * q)218 static inline void xskq_cons_get_entries(struct xsk_queue *q)
219 {
220 	__xskq_cons_release(q);
221 	__xskq_cons_peek(q);
222 }
223 
xskq_cons_has_entries(struct xsk_queue * q,u32 cnt)224 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
225 {
226 	u32 entries = q->cached_prod - q->cached_cons;
227 
228 	if (entries >= cnt)
229 		return true;
230 
231 	__xskq_cons_peek(q);
232 	entries = q->cached_prod - q->cached_cons;
233 
234 	return entries >= cnt;
235 }
236 
xskq_cons_peek_addr_unchecked(struct xsk_queue * q,u64 * addr)237 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
238 {
239 	if (q->cached_prod == q->cached_cons)
240 		xskq_cons_get_entries(q);
241 	return xskq_cons_read_addr_unchecked(q, addr);
242 }
243 
xskq_cons_peek_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)244 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
245 				       struct xdp_desc *desc,
246 				       struct xsk_buff_pool *pool)
247 {
248 	if (q->cached_prod == q->cached_cons)
249 		xskq_cons_get_entries(q);
250 	return xskq_cons_read_desc(q, desc, pool);
251 }
252 
xskq_cons_release(struct xsk_queue * q)253 static inline void xskq_cons_release(struct xsk_queue *q)
254 {
255 	/* To improve performance, only update local state here.
256 	 * Reflect this to global state when we get new entries
257 	 * from the ring in xskq_cons_get_entries() and whenever
258 	 * Rx or Tx processing are completed in the NAPI loop.
259 	 */
260 	q->cached_cons++;
261 }
262 
xskq_cons_is_full(struct xsk_queue * q)263 static inline bool xskq_cons_is_full(struct xsk_queue *q)
264 {
265 	/* No barriers needed since data is not accessed */
266 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
267 		q->nentries;
268 }
269 
xskq_cons_present_entries(struct xsk_queue * q)270 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
271 {
272 	/* No barriers needed since data is not accessed */
273 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
274 }
275 
276 /* Functions for producers */
277 
xskq_prod_is_full(struct xsk_queue * q)278 static inline bool xskq_prod_is_full(struct xsk_queue *q)
279 {
280 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
281 
282 	if (free_entries)
283 		return false;
284 
285 	/* Refresh the local tail pointer */
286 	q->cached_cons = READ_ONCE(q->ring->consumer);
287 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
288 
289 	return !free_entries;
290 }
291 
xskq_prod_cancel(struct xsk_queue * q)292 static inline void xskq_prod_cancel(struct xsk_queue *q)
293 {
294 	q->cached_prod--;
295 }
296 
xskq_prod_reserve(struct xsk_queue * q)297 static inline int xskq_prod_reserve(struct xsk_queue *q)
298 {
299 	if (xskq_prod_is_full(q))
300 		return -ENOSPC;
301 
302 	/* A, matches D */
303 	q->cached_prod++;
304 	return 0;
305 }
306 
xskq_prod_reserve_addr(struct xsk_queue * q,u64 addr)307 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
308 {
309 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
310 
311 	if (xskq_prod_is_full(q))
312 		return -ENOSPC;
313 
314 	/* A, matches D */
315 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
316 	return 0;
317 }
318 
xskq_prod_reserve_desc(struct xsk_queue * q,u64 addr,u32 len)319 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
320 					 u64 addr, u32 len)
321 {
322 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
323 	u32 idx;
324 
325 	if (xskq_prod_is_full(q))
326 		return -ENOSPC;
327 
328 	/* A, matches D */
329 	idx = q->cached_prod++ & q->ring_mask;
330 	ring->desc[idx].addr = addr;
331 	ring->desc[idx].len = len;
332 
333 	return 0;
334 }
335 
__xskq_prod_submit(struct xsk_queue * q,u32 idx)336 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
337 {
338 	smp_wmb(); /* B, matches C */
339 
340 	WRITE_ONCE(q->ring->producer, idx);
341 }
342 
xskq_prod_submit(struct xsk_queue * q)343 static inline void xskq_prod_submit(struct xsk_queue *q)
344 {
345 	__xskq_prod_submit(q, q->cached_prod);
346 }
347 
xskq_prod_submit_addr(struct xsk_queue * q,u64 addr)348 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
349 {
350 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
351 	u32 idx = q->ring->producer;
352 
353 	ring->desc[idx++ & q->ring_mask] = addr;
354 
355 	__xskq_prod_submit(q, idx);
356 }
357 
xskq_prod_submit_n(struct xsk_queue * q,u32 nb_entries)358 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
359 {
360 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
361 }
362 
xskq_prod_is_empty(struct xsk_queue * q)363 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
364 {
365 	/* No barriers needed since data is not accessed */
366 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
367 }
368 
369 /* For both producers and consumers */
370 
xskq_nb_invalid_descs(struct xsk_queue * q)371 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
372 {
373 	return q ? q->invalid_descs : 0;
374 }
375 
xskq_nb_queue_empty_descs(struct xsk_queue * q)376 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
377 {
378 	return q ? q->queue_empty_descs : 0;
379 }
380 
381 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
382 void xskq_destroy(struct xsk_queue *q_ops);
383 
384 #endif /* _LINUX_XSK_QUEUE_H */
385