• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 				/* to mask all the flags */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct mm_slot ksm_mm_head = {
235 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
ksm_slab_init(void)306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
ksm_slab_free(void)330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
is_stable_node_chain(struct stable_node * chain)338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
is_stable_node_dup(struct stable_node * dup)343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349 					     struct stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
__stable_node_dup_del(struct stable_node * dup)358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
stable_node_dup_del(struct stable_node * dup)365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
alloc_rmap_item(void)377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379 	struct rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
free_rmap_item(struct rmap_item * rmap_item)388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm = NULL;	/* debug safety */
392 	kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394 
alloc_stable_node(void)395 static inline struct stable_node *alloc_stable_node(void)
396 {
397 	/*
398 	 * The allocation can take too long with GFP_KERNEL when memory is under
399 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400 	 * grants access to memory reserves, helping to avoid this problem.
401 	 */
402 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404 
free_stable_node(struct stable_node * stable_node)405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407 	VM_BUG_ON(stable_node->rmap_hlist_len &&
408 		  !is_stable_node_chain(stable_node));
409 	kmem_cache_free(stable_node_cache, stable_node);
410 }
411 
alloc_mm_slot(void)412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414 	if (!mm_slot_cache)	/* initialization failed */
415 		return NULL;
416 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418 
free_mm_slot(struct mm_slot * mm_slot)419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421 	kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423 
get_mm_slot(struct mm_struct * mm)424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426 	struct mm_slot *slot;
427 
428 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429 		if (slot->mm == mm)
430 			return slot;
431 
432 	return NULL;
433 }
434 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436 				    struct mm_slot *mm_slot)
437 {
438 	mm_slot->mm = mm;
439 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441 
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
ksm_test_exit(struct mm_struct * mm)450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452 	return atomic_read(&mm->mm_users) == 0;
453 }
454 
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
459  *		put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
break_ksm(struct vm_area_struct * vma,unsigned long addr)470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472 	struct page *page;
473 	vm_fault_t ret = 0;
474 
475 	do {
476 		cond_resched();
477 		page = follow_page(vma, addr,
478 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479 		if (IS_ERR_OR_NULL(page))
480 			break;
481 		if (PageKsm(page))
482 			ret = handle_mm_fault(vma, addr,
483 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
484 					      NULL);
485 		else
486 			ret = VM_FAULT_WRITE;
487 		put_user_page(page);
488 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 	/*
490 	 * We must loop because handle_mm_fault() may back out if there's
491 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 	 *
493 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 	 * COW has been broken, even if the vma does not permit VM_WRITE;
495 	 * but note that a concurrent fault might break PageKsm for us.
496 	 *
497 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 	 * backing file, which also invalidates anonymous pages: that's
499 	 * okay, that truncation will have unmapped the PageKsm for us.
500 	 *
501 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 	 * to user; and ksmd, having no mm, would never be chosen for that.
505 	 *
506 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 	 * even ksmd can fail in this way - though it's usually breaking ksm
509 	 * just to undo a merge it made a moment before, so unlikely to oom.
510 	 *
511 	 * That's a pity: we might therefore have more kernel pages allocated
512 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 	 * will retry to break_cow on each pass, so should recover the page
514 	 * in due course.  The important thing is to not let VM_MERGEABLE
515 	 * be cleared while any such pages might remain in the area.
516 	 */
517 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 		unsigned long addr)
522 {
523 	struct vm_area_struct *vma;
524 	if (ksm_test_exit(mm))
525 		return NULL;
526 	vma = find_vma(mm, addr);
527 	if (!vma || vma->vm_start > addr)
528 		return NULL;
529 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 		return NULL;
531 	return vma;
532 }
533 
break_cow(struct rmap_item * rmap_item)534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 	struct mm_struct *mm = rmap_item->mm;
537 	unsigned long addr = rmap_item->address;
538 	struct vm_area_struct *vma;
539 
540 	/*
541 	 * It is not an accident that whenever we want to break COW
542 	 * to undo, we also need to drop a reference to the anon_vma.
543 	 */
544 	put_anon_vma(rmap_item->anon_vma);
545 
546 	mmap_read_lock(mm);
547 	vma = find_mergeable_vma(mm, addr);
548 	if (vma)
549 		break_ksm(vma, addr);
550 	mmap_read_unlock(mm);
551 }
552 
get_mergeable_page(struct rmap_item * rmap_item)553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 	struct page *page;
559 
560 	mmap_read_lock(mm);
561 	vma = find_mergeable_vma(mm, addr);
562 	if (!vma)
563 		goto out;
564 
565 	page = follow_page(vma, addr, FOLL_GET);
566 	if (IS_ERR_OR_NULL(page))
567 		goto out;
568 	if (PageAnon(page)) {
569 		flush_anon_page(vma, page, addr);
570 		flush_dcache_page(page);
571 	} else {
572 		put_user_page(page);
573 out:
574 		page = NULL;
575 	}
576 	mmap_read_unlock(mm);
577 	return page;
578 }
579 
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
get_kpfn_nid(unsigned long kpfn)586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590 
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 						   struct rb_root *root)
593 {
594 	struct stable_node *chain = alloc_stable_node();
595 	VM_BUG_ON(is_stable_node_chain(dup));
596 	if (likely(chain)) {
597 		INIT_HLIST_HEAD(&chain->hlist);
598 		chain->chain_prune_time = jiffies;
599 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 		chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 		ksm_stable_node_chains++;
604 
605 		/*
606 		 * Put the stable node chain in the first dimension of
607 		 * the stable tree and at the same time remove the old
608 		 * stable node.
609 		 */
610 		rb_replace_node(&dup->node, &chain->node, root);
611 
612 		/*
613 		 * Move the old stable node to the second dimension
614 		 * queued in the hlist_dup. The invariant is that all
615 		 * dup stable_nodes in the chain->hlist point to pages
616 		 * that are write protected and have the exact same
617 		 * content.
618 		 */
619 		stable_node_chain_add_dup(dup, chain);
620 	}
621 	return chain;
622 }
623 
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)624 static inline void free_stable_node_chain(struct stable_node *chain,
625 					  struct rb_root *root)
626 {
627 	rb_erase(&chain->node, root);
628 	free_stable_node(chain);
629 	ksm_stable_node_chains--;
630 }
631 
remove_node_from_stable_tree(struct stable_node * stable_node)632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 	struct rmap_item *rmap_item;
635 
636 	/* check it's not STABLE_NODE_CHAIN or negative */
637 	BUG_ON(stable_node->rmap_hlist_len < 0);
638 
639 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 		if (rmap_item->hlist.next)
641 			ksm_pages_sharing--;
642 		else
643 			ksm_pages_shared--;
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662 
663 	if (stable_node->head == &migrate_nodes)
664 		list_del(&stable_node->list);
665 	else
666 		stable_node_dup_del(stable_node);
667 	free_stable_node(stable_node);
668 }
669 
670 enum get_ksm_page_flags {
671 	GET_KSM_PAGE_NOLOCK,
672 	GET_KSM_PAGE_LOCK,
673 	GET_KSM_PAGE_TRYLOCK
674 };
675 
676 /*
677  * get_ksm_page: checks if the page indicated by the stable node
678  * is still its ksm page, despite having held no reference to it.
679  * In which case we can trust the content of the page, and it
680  * returns the gotten page; but if the page has now been zapped,
681  * remove the stale node from the stable tree and return NULL.
682  * But beware, the stable node's page might be being migrated.
683  *
684  * You would expect the stable_node to hold a reference to the ksm page.
685  * But if it increments the page's count, swapping out has to wait for
686  * ksmd to come around again before it can free the page, which may take
687  * seconds or even minutes: much too unresponsive.  So instead we use a
688  * "keyhole reference": access to the ksm page from the stable node peeps
689  * out through its keyhole to see if that page still holds the right key,
690  * pointing back to this stable node.  This relies on freeing a PageAnon
691  * page to reset its page->mapping to NULL, and relies on no other use of
692  * a page to put something that might look like our key in page->mapping.
693  * is on its way to being freed; but it is an anomaly to bear in mind.
694  */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)695 static struct page *get_ksm_page(struct stable_node *stable_node,
696 				 enum get_ksm_page_flags flags)
697 {
698 	struct page *page;
699 	void *expected_mapping;
700 	unsigned long kpfn;
701 
702 	expected_mapping = (void *)((unsigned long)stable_node |
703 					PAGE_MAPPING_KSM);
704 again:
705 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
706 	page = pfn_to_page(kpfn);
707 	if (READ_ONCE(page->mapping) != expected_mapping)
708 		goto stale;
709 
710 	/*
711 	 * We cannot do anything with the page while its refcount is 0.
712 	 * Usually 0 means free, or tail of a higher-order page: in which
713 	 * case this node is no longer referenced, and should be freed;
714 	 * however, it might mean that the page is under page_ref_freeze().
715 	 * The __remove_mapping() case is easy, again the node is now stale;
716 	 * the same is in reuse_ksm_page() case; but if page is swapcache
717 	 * in migrate_page_move_mapping(), it might still be our page,
718 	 * in which case it's essential to keep the node.
719 	 */
720 	while (!get_page_unless_zero(page)) {
721 		/*
722 		 * Another check for page->mapping != expected_mapping would
723 		 * work here too.  We have chosen the !PageSwapCache test to
724 		 * optimize the common case, when the page is or is about to
725 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
726 		 * in the ref_freeze section of __remove_mapping(); but Anon
727 		 * page->mapping reset to NULL later, in free_pages_prepare().
728 		 */
729 		if (!PageSwapCache(page))
730 			goto stale;
731 		cpu_relax();
732 	}
733 
734 	if (READ_ONCE(page->mapping) != expected_mapping) {
735 		put_page(page);
736 		goto stale;
737 	}
738 
739 	if (flags == GET_KSM_PAGE_TRYLOCK) {
740 		if (!trylock_page(page)) {
741 			put_page(page);
742 			return ERR_PTR(-EBUSY);
743 		}
744 	} else if (flags == GET_KSM_PAGE_LOCK)
745 		lock_page(page);
746 
747 	if (flags != GET_KSM_PAGE_NOLOCK) {
748 		if (READ_ONCE(page->mapping) != expected_mapping) {
749 			unlock_page(page);
750 			put_page(page);
751 			goto stale;
752 		}
753 	}
754 	return page;
755 
756 stale:
757 	/*
758 	 * We come here from above when page->mapping or !PageSwapCache
759 	 * suggests that the node is stale; but it might be under migration.
760 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
761 	 * before checking whether node->kpfn has been changed.
762 	 */
763 	smp_rmb();
764 	if (READ_ONCE(stable_node->kpfn) != kpfn)
765 		goto again;
766 	remove_node_from_stable_tree(stable_node);
767 	return NULL;
768 }
769 
770 /*
771  * Removing rmap_item from stable or unstable tree.
772  * This function will clean the information from the stable/unstable tree.
773  */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)774 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
775 {
776 	if (rmap_item->address & STABLE_FLAG) {
777 		struct stable_node *stable_node;
778 		struct page *page;
779 
780 		stable_node = rmap_item->head;
781 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
782 		if (!page)
783 			goto out;
784 
785 		hlist_del(&rmap_item->hlist);
786 		unlock_page(page);
787 		put_page(page);
788 
789 		if (!hlist_empty(&stable_node->hlist))
790 			ksm_pages_sharing--;
791 		else
792 			ksm_pages_shared--;
793 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 		stable_node->rmap_hlist_len--;
795 
796 		put_anon_vma(rmap_item->anon_vma);
797 		rmap_item->head = NULL;
798 		rmap_item->address &= PAGE_MASK;
799 
800 	} else if (rmap_item->address & UNSTABLE_FLAG) {
801 		unsigned char age;
802 		/*
803 		 * Usually ksmd can and must skip the rb_erase, because
804 		 * root_unstable_tree was already reset to RB_ROOT.
805 		 * But be careful when an mm is exiting: do the rb_erase
806 		 * if this rmap_item was inserted by this scan, rather
807 		 * than left over from before.
808 		 */
809 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
810 		BUG_ON(age > 1);
811 		if (!age)
812 			rb_erase(&rmap_item->node,
813 				 root_unstable_tree + NUMA(rmap_item->nid));
814 		ksm_pages_unshared--;
815 		rmap_item->address &= PAGE_MASK;
816 	}
817 out:
818 	cond_resched();		/* we're called from many long loops */
819 }
820 
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)821 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
822 				       struct rmap_item **rmap_list)
823 {
824 	while (*rmap_list) {
825 		struct rmap_item *rmap_item = *rmap_list;
826 		*rmap_list = rmap_item->rmap_list;
827 		remove_rmap_item_from_tree(rmap_item);
828 		free_rmap_item(rmap_item);
829 	}
830 }
831 
832 /*
833  * Though it's very tempting to unmerge rmap_items from stable tree rather
834  * than check every pte of a given vma, the locking doesn't quite work for
835  * that - an rmap_item is assigned to the stable tree after inserting ksm
836  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
837  * rmap_items from parent to child at fork time (so as not to waste time
838  * if exit comes before the next scan reaches it).
839  *
840  * Similarly, although we'd like to remove rmap_items (so updating counts
841  * and freeing memory) when unmerging an area, it's easier to leave that
842  * to the next pass of ksmd - consider, for example, how ksmd might be
843  * in cmp_and_merge_page on one of the rmap_items we would be removing.
844  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)845 static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 			     unsigned long start, unsigned long end)
847 {
848 	unsigned long addr;
849 	int err = 0;
850 
851 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852 		if (ksm_test_exit(vma->vm_mm))
853 			break;
854 		if (signal_pending(current))
855 			err = -ERESTARTSYS;
856 		else
857 			err = break_ksm(vma, addr);
858 	}
859 	return err;
860 }
861 
page_stable_node(struct page * page)862 static inline struct stable_node *page_stable_node(struct page *page)
863 {
864 	return PageKsm(page) ? page_rmapping(page) : NULL;
865 }
866 
set_page_stable_node(struct page * page,struct stable_node * stable_node)867 static inline void set_page_stable_node(struct page *page,
868 					struct stable_node *stable_node)
869 {
870 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
871 }
872 
873 #ifdef CONFIG_SYSFS
874 /*
875  * Only called through the sysfs control interface:
876  */
remove_stable_node(struct stable_node * stable_node)877 static int remove_stable_node(struct stable_node *stable_node)
878 {
879 	struct page *page;
880 	int err;
881 
882 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
883 	if (!page) {
884 		/*
885 		 * get_ksm_page did remove_node_from_stable_tree itself.
886 		 */
887 		return 0;
888 	}
889 
890 	/*
891 	 * Page could be still mapped if this races with __mmput() running in
892 	 * between ksm_exit() and exit_mmap(). Just refuse to let
893 	 * merge_across_nodes/max_page_sharing be switched.
894 	 */
895 	err = -EBUSY;
896 	if (!page_mapped(page)) {
897 		/*
898 		 * The stable node did not yet appear stale to get_ksm_page(),
899 		 * since that allows for an unmapped ksm page to be recognized
900 		 * right up until it is freed; but the node is safe to remove.
901 		 * This page might be in a pagevec waiting to be freed,
902 		 * or it might be PageSwapCache (perhaps under writeback),
903 		 * or it might have been removed from swapcache a moment ago.
904 		 */
905 		set_page_stable_node(page, NULL);
906 		remove_node_from_stable_tree(stable_node);
907 		err = 0;
908 	}
909 
910 	unlock_page(page);
911 	put_page(page);
912 	return err;
913 }
914 
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)915 static int remove_stable_node_chain(struct stable_node *stable_node,
916 				    struct rb_root *root)
917 {
918 	struct stable_node *dup;
919 	struct hlist_node *hlist_safe;
920 
921 	if (!is_stable_node_chain(stable_node)) {
922 		VM_BUG_ON(is_stable_node_dup(stable_node));
923 		if (remove_stable_node(stable_node))
924 			return true;
925 		else
926 			return false;
927 	}
928 
929 	hlist_for_each_entry_safe(dup, hlist_safe,
930 				  &stable_node->hlist, hlist_dup) {
931 		VM_BUG_ON(!is_stable_node_dup(dup));
932 		if (remove_stable_node(dup))
933 			return true;
934 	}
935 	BUG_ON(!hlist_empty(&stable_node->hlist));
936 	free_stable_node_chain(stable_node, root);
937 	return false;
938 }
939 
remove_all_stable_nodes(void)940 static int remove_all_stable_nodes(void)
941 {
942 	struct stable_node *stable_node, *next;
943 	int nid;
944 	int err = 0;
945 
946 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
947 		while (root_stable_tree[nid].rb_node) {
948 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
949 						struct stable_node, node);
950 			if (remove_stable_node_chain(stable_node,
951 						     root_stable_tree + nid)) {
952 				err = -EBUSY;
953 				break;	/* proceed to next nid */
954 			}
955 			cond_resched();
956 		}
957 	}
958 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
959 		if (remove_stable_node(stable_node))
960 			err = -EBUSY;
961 		cond_resched();
962 	}
963 	return err;
964 }
965 
unmerge_and_remove_all_rmap_items(void)966 static int unmerge_and_remove_all_rmap_items(void)
967 {
968 	struct mm_slot *mm_slot;
969 	struct mm_struct *mm;
970 	struct vm_area_struct *vma;
971 	int err = 0;
972 
973 	spin_lock(&ksm_mmlist_lock);
974 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
975 						struct mm_slot, mm_list);
976 	spin_unlock(&ksm_mmlist_lock);
977 
978 	for (mm_slot = ksm_scan.mm_slot;
979 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
980 		mm = mm_slot->mm;
981 		mmap_read_lock(mm);
982 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
983 			if (ksm_test_exit(mm))
984 				break;
985 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
986 				continue;
987 			err = unmerge_ksm_pages(vma,
988 						vma->vm_start, vma->vm_end);
989 			if (err)
990 				goto error;
991 		}
992 
993 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
994 		mmap_read_unlock(mm);
995 
996 		spin_lock(&ksm_mmlist_lock);
997 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
998 						struct mm_slot, mm_list);
999 		if (ksm_test_exit(mm)) {
1000 			hash_del(&mm_slot->link);
1001 			list_del(&mm_slot->mm_list);
1002 			spin_unlock(&ksm_mmlist_lock);
1003 
1004 			free_mm_slot(mm_slot);
1005 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1006 			mmdrop(mm);
1007 		} else
1008 			spin_unlock(&ksm_mmlist_lock);
1009 	}
1010 
1011 	/* Clean up stable nodes, but don't worry if some are still busy */
1012 	remove_all_stable_nodes();
1013 	ksm_scan.seqnr = 0;
1014 	return 0;
1015 
1016 error:
1017 	mmap_read_unlock(mm);
1018 	spin_lock(&ksm_mmlist_lock);
1019 	ksm_scan.mm_slot = &ksm_mm_head;
1020 	spin_unlock(&ksm_mmlist_lock);
1021 	return err;
1022 }
1023 #endif /* CONFIG_SYSFS */
1024 
calc_checksum(struct page * page)1025 static u32 calc_checksum(struct page *page)
1026 {
1027 	u32 checksum;
1028 	void *addr = kmap_atomic(page);
1029 	checksum = xxhash(addr, PAGE_SIZE, 0);
1030 	kunmap_atomic(addr);
1031 	return checksum;
1032 }
1033 
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1034 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1035 			      pte_t *orig_pte)
1036 {
1037 	struct mm_struct *mm = vma->vm_mm;
1038 	struct page_vma_mapped_walk pvmw = {
1039 		.page = page,
1040 		.vma = vma,
1041 	};
1042 	int swapped;
1043 	int err = -EFAULT;
1044 	struct mmu_notifier_range range;
1045 
1046 	pvmw.address = page_address_in_vma(page, vma);
1047 	if (pvmw.address == -EFAULT)
1048 		goto out;
1049 
1050 	BUG_ON(PageTransCompound(page));
1051 
1052 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1053 				pvmw.address,
1054 				pvmw.address + PAGE_SIZE);
1055 	mmu_notifier_invalidate_range_start(&range);
1056 
1057 	if (!page_vma_mapped_walk(&pvmw))
1058 		goto out_mn;
1059 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1060 		goto out_unlock;
1061 
1062 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1063 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1064 						mm_tlb_flush_pending(mm)) {
1065 		pte_t entry;
1066 
1067 		swapped = PageSwapCache(page);
1068 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1069 		/*
1070 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1071 		 * take any lock, therefore the check that we are going to make
1072 		 * with the pagecount against the mapcount is racey and
1073 		 * O_DIRECT can happen right after the check.
1074 		 * So we clear the pte and flush the tlb before the check
1075 		 * this assure us that no O_DIRECT can happen after the check
1076 		 * or in the middle of the check.
1077 		 *
1078 		 * No need to notify as we are downgrading page table to read
1079 		 * only not changing it to point to a new page.
1080 		 *
1081 		 * See Documentation/vm/mmu_notifier.rst
1082 		 */
1083 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1084 		/*
1085 		 * Check that no O_DIRECT or similar I/O is in progress on the
1086 		 * page
1087 		 */
1088 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1089 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1090 			goto out_unlock;
1091 		}
1092 		if (pte_dirty(entry))
1093 			set_page_dirty(page);
1094 
1095 		if (pte_protnone(entry))
1096 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1097 		else
1098 			entry = pte_mkclean(pte_wrprotect(entry));
1099 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1100 	}
1101 	*orig_pte = *pvmw.pte;
1102 	err = 0;
1103 
1104 out_unlock:
1105 	page_vma_mapped_walk_done(&pvmw);
1106 out_mn:
1107 	mmu_notifier_invalidate_range_end(&range);
1108 out:
1109 	return err;
1110 }
1111 
1112 /**
1113  * replace_page - replace page in vma by new ksm page
1114  * @vma:      vma that holds the pte pointing to page
1115  * @page:     the page we are replacing by kpage
1116  * @kpage:    the ksm page we replace page by
1117  * @orig_pte: the original value of the pte
1118  *
1119  * Returns 0 on success, -EFAULT on failure.
1120  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1121 static int replace_page(struct vm_area_struct *vma, struct page *page,
1122 			struct page *kpage, pte_t orig_pte)
1123 {
1124 	struct mm_struct *mm = vma->vm_mm;
1125 	pmd_t *pmd;
1126 	pte_t *ptep;
1127 	pte_t newpte;
1128 	spinlock_t *ptl;
1129 	unsigned long addr;
1130 	int err = -EFAULT;
1131 	struct mmu_notifier_range range;
1132 
1133 	addr = page_address_in_vma(page, vma);
1134 	if (addr == -EFAULT)
1135 		goto out;
1136 
1137 	pmd = mm_find_pmd(mm, addr);
1138 	if (!pmd)
1139 		goto out;
1140 
1141 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1142 				addr + PAGE_SIZE);
1143 	mmu_notifier_invalidate_range_start(&range);
1144 
1145 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 	if (!pte_same(*ptep, orig_pte)) {
1147 		pte_unmap_unlock(ptep, ptl);
1148 		goto out_mn;
1149 	}
1150 
1151 	/*
1152 	 * No need to check ksm_use_zero_pages here: we can only have a
1153 	 * zero_page here if ksm_use_zero_pages was enabled already.
1154 	 */
1155 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 		get_page(kpage);
1157 		page_add_anon_rmap(kpage, vma, addr, false);
1158 		newpte = mk_pte(kpage, vma->vm_page_prot);
1159 	} else {
1160 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 					       vma->vm_page_prot));
1162 		/*
1163 		 * We're replacing an anonymous page with a zero page, which is
1164 		 * not anonymous. We need to do proper accounting otherwise we
1165 		 * will get wrong values in /proc, and a BUG message in dmesg
1166 		 * when tearing down the mm.
1167 		 */
1168 		dec_mm_counter(mm, MM_ANONPAGES);
1169 	}
1170 
1171 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1172 	/*
1173 	 * No need to notify as we are replacing a read only page with another
1174 	 * read only page with the same content.
1175 	 *
1176 	 * See Documentation/vm/mmu_notifier.rst
1177 	 */
1178 	ptep_clear_flush(vma, addr, ptep);
1179 	set_pte_at_notify(mm, addr, ptep, newpte);
1180 
1181 	page_remove_rmap(page, false);
1182 	if (!page_mapped(page))
1183 		try_to_free_swap(page);
1184 	put_page(page);
1185 
1186 	pte_unmap_unlock(ptep, ptl);
1187 	err = 0;
1188 out_mn:
1189 	mmu_notifier_invalidate_range_end(&range);
1190 out:
1191 	return err;
1192 }
1193 
1194 /*
1195  * try_to_merge_one_page - take two pages and merge them into one
1196  * @vma: the vma that holds the pte pointing to page
1197  * @page: the PageAnon page that we want to replace with kpage
1198  * @kpage: the PageKsm page that we want to map instead of page,
1199  *         or NULL the first time when we want to use page as kpage.
1200  *
1201  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1203 static int try_to_merge_one_page(struct vm_area_struct *vma,
1204 				 struct page *page, struct page *kpage)
1205 {
1206 	pte_t orig_pte = __pte(0);
1207 	int err = -EFAULT;
1208 
1209 	if (page == kpage)			/* ksm page forked */
1210 		return 0;
1211 
1212 	if (!PageAnon(page))
1213 		goto out;
1214 
1215 	/*
1216 	 * We need the page lock to read a stable PageSwapCache in
1217 	 * write_protect_page().  We use trylock_page() instead of
1218 	 * lock_page() because we don't want to wait here - we
1219 	 * prefer to continue scanning and merging different pages,
1220 	 * then come back to this page when it is unlocked.
1221 	 */
1222 	if (!trylock_page(page))
1223 		goto out;
1224 
1225 	if (PageTransCompound(page)) {
1226 		if (split_huge_page(page))
1227 			goto out_unlock;
1228 	}
1229 
1230 	/*
1231 	 * If this anonymous page is mapped only here, its pte may need
1232 	 * to be write-protected.  If it's mapped elsewhere, all of its
1233 	 * ptes are necessarily already write-protected.  But in either
1234 	 * case, we need to lock and check page_count is not raised.
1235 	 */
1236 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 		if (!kpage) {
1238 			/*
1239 			 * While we hold page lock, upgrade page from
1240 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 			 * stable_tree_insert() will update stable_node.
1242 			 */
1243 			set_page_stable_node(page, NULL);
1244 			mark_page_accessed(page);
1245 			/*
1246 			 * Page reclaim just frees a clean page with no dirty
1247 			 * ptes: make sure that the ksm page would be swapped.
1248 			 */
1249 			if (!PageDirty(page))
1250 				SetPageDirty(page);
1251 			err = 0;
1252 		} else if (pages_identical(page, kpage))
1253 			err = replace_page(vma, page, kpage, orig_pte);
1254 	}
1255 
1256 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1257 		munlock_vma_page(page);
1258 		if (!PageMlocked(kpage)) {
1259 			unlock_page(page);
1260 			lock_page(kpage);
1261 			mlock_vma_page(kpage);
1262 			page = kpage;		/* for final unlock */
1263 		}
1264 	}
1265 
1266 out_unlock:
1267 	unlock_page(page);
1268 out:
1269 	return err;
1270 }
1271 
1272 /*
1273  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274  * but no new kernel page is allocated: kpage must already be a ksm page.
1275  *
1276  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277  */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1278 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 				      struct page *page, struct page *kpage)
1280 {
1281 	struct mm_struct *mm = rmap_item->mm;
1282 	struct vm_area_struct *vma;
1283 	int err = -EFAULT;
1284 
1285 	mmap_read_lock(mm);
1286 	vma = find_mergeable_vma(mm, rmap_item->address);
1287 	if (!vma)
1288 		goto out;
1289 
1290 	err = try_to_merge_one_page(vma, page, kpage);
1291 	if (err)
1292 		goto out;
1293 
1294 	/* Unstable nid is in union with stable anon_vma: remove first */
1295 	remove_rmap_item_from_tree(rmap_item);
1296 
1297 	/* Must get reference to anon_vma while still holding mmap_lock */
1298 	rmap_item->anon_vma = vma->anon_vma;
1299 	get_anon_vma(vma->anon_vma);
1300 out:
1301 	mmap_read_unlock(mm);
1302 	return err;
1303 }
1304 
1305 /*
1306  * try_to_merge_two_pages - take two identical pages and prepare them
1307  * to be merged into one page.
1308  *
1309  * This function returns the kpage if we successfully merged two identical
1310  * pages into one ksm page, NULL otherwise.
1311  *
1312  * Note that this function upgrades page to ksm page: if one of the pages
1313  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314  */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1315 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 					   struct page *page,
1317 					   struct rmap_item *tree_rmap_item,
1318 					   struct page *tree_page)
1319 {
1320 	int err;
1321 
1322 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1323 	if (!err) {
1324 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1325 							tree_page, page);
1326 		/*
1327 		 * If that fails, we have a ksm page with only one pte
1328 		 * pointing to it: so break it.
1329 		 */
1330 		if (err)
1331 			break_cow(rmap_item);
1332 	}
1333 	return err ? NULL : page;
1334 }
1335 
1336 static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1337 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338 {
1339 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 	/*
1341 	 * Check that at least one mapping still exists, otherwise
1342 	 * there's no much point to merge and share with this
1343 	 * stable_node, as the underlying tree_page of the other
1344 	 * sharer is going to be freed soon.
1345 	 */
1346 	return stable_node->rmap_hlist_len &&
1347 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348 }
1349 
1350 static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1351 bool is_page_sharing_candidate(struct stable_node *stable_node)
1352 {
1353 	return __is_page_sharing_candidate(stable_node, 0);
1354 }
1355 
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1356 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 				    struct stable_node **_stable_node,
1358 				    struct rb_root *root,
1359 				    bool prune_stale_stable_nodes)
1360 {
1361 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1362 	struct hlist_node *hlist_safe;
1363 	struct page *_tree_page, *tree_page = NULL;
1364 	int nr = 0;
1365 	int found_rmap_hlist_len;
1366 
1367 	if (!prune_stale_stable_nodes ||
1368 	    time_before(jiffies, stable_node->chain_prune_time +
1369 			msecs_to_jiffies(
1370 				ksm_stable_node_chains_prune_millisecs)))
1371 		prune_stale_stable_nodes = false;
1372 	else
1373 		stable_node->chain_prune_time = jiffies;
1374 
1375 	hlist_for_each_entry_safe(dup, hlist_safe,
1376 				  &stable_node->hlist, hlist_dup) {
1377 		cond_resched();
1378 		/*
1379 		 * We must walk all stable_node_dup to prune the stale
1380 		 * stable nodes during lookup.
1381 		 *
1382 		 * get_ksm_page can drop the nodes from the
1383 		 * stable_node->hlist if they point to freed pages
1384 		 * (that's why we do a _safe walk). The "dup"
1385 		 * stable_node parameter itself will be freed from
1386 		 * under us if it returns NULL.
1387 		 */
1388 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1389 		if (!_tree_page)
1390 			continue;
1391 		nr += 1;
1392 		if (is_page_sharing_candidate(dup)) {
1393 			if (!found ||
1394 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 				if (found)
1396 					put_page(tree_page);
1397 				found = dup;
1398 				found_rmap_hlist_len = found->rmap_hlist_len;
1399 				tree_page = _tree_page;
1400 
1401 				/* skip put_page for found dup */
1402 				if (!prune_stale_stable_nodes)
1403 					break;
1404 				continue;
1405 			}
1406 		}
1407 		put_page(_tree_page);
1408 	}
1409 
1410 	if (found) {
1411 		/*
1412 		 * nr is counting all dups in the chain only if
1413 		 * prune_stale_stable_nodes is true, otherwise we may
1414 		 * break the loop at nr == 1 even if there are
1415 		 * multiple entries.
1416 		 */
1417 		if (prune_stale_stable_nodes && nr == 1) {
1418 			/*
1419 			 * If there's not just one entry it would
1420 			 * corrupt memory, better BUG_ON. In KSM
1421 			 * context with no lock held it's not even
1422 			 * fatal.
1423 			 */
1424 			BUG_ON(stable_node->hlist.first->next);
1425 
1426 			/*
1427 			 * There's just one entry and it is below the
1428 			 * deduplication limit so drop the chain.
1429 			 */
1430 			rb_replace_node(&stable_node->node, &found->node,
1431 					root);
1432 			free_stable_node(stable_node);
1433 			ksm_stable_node_chains--;
1434 			ksm_stable_node_dups--;
1435 			/*
1436 			 * NOTE: the caller depends on the stable_node
1437 			 * to be equal to stable_node_dup if the chain
1438 			 * was collapsed.
1439 			 */
1440 			*_stable_node = found;
1441 			/*
1442 			 * Just for robustneess as stable_node is
1443 			 * otherwise left as a stable pointer, the
1444 			 * compiler shall optimize it away at build
1445 			 * time.
1446 			 */
1447 			stable_node = NULL;
1448 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1449 			   __is_page_sharing_candidate(found, 1)) {
1450 			/*
1451 			 * If the found stable_node dup can accept one
1452 			 * more future merge (in addition to the one
1453 			 * that is underway) and is not at the head of
1454 			 * the chain, put it there so next search will
1455 			 * be quicker in the !prune_stale_stable_nodes
1456 			 * case.
1457 			 *
1458 			 * NOTE: it would be inaccurate to use nr > 1
1459 			 * instead of checking the hlist.first pointer
1460 			 * directly, because in the
1461 			 * prune_stale_stable_nodes case "nr" isn't
1462 			 * the position of the found dup in the chain,
1463 			 * but the total number of dups in the chain.
1464 			 */
1465 			hlist_del(&found->hlist_dup);
1466 			hlist_add_head(&found->hlist_dup,
1467 				       &stable_node->hlist);
1468 		}
1469 	}
1470 
1471 	*_stable_node_dup = found;
1472 	return tree_page;
1473 }
1474 
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1475 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 					       struct rb_root *root)
1477 {
1478 	if (!is_stable_node_chain(stable_node))
1479 		return stable_node;
1480 	if (hlist_empty(&stable_node->hlist)) {
1481 		free_stable_node_chain(stable_node, root);
1482 		return NULL;
1483 	}
1484 	return hlist_entry(stable_node->hlist.first,
1485 			   typeof(*stable_node), hlist_dup);
1486 }
1487 
1488 /*
1489  * Like for get_ksm_page, this function can free the *_stable_node and
1490  * *_stable_node_dup if the returned tree_page is NULL.
1491  *
1492  * It can also free and overwrite *_stable_node with the found
1493  * stable_node_dup if the chain is collapsed (in which case
1494  * *_stable_node will be equal to *_stable_node_dup like if the chain
1495  * never existed). It's up to the caller to verify tree_page is not
1496  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497  *
1498  * *_stable_node_dup is really a second output parameter of this
1499  * function and will be overwritten in all cases, the caller doesn't
1500  * need to initialize it.
1501  */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1502 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 					struct stable_node **_stable_node,
1504 					struct rb_root *root,
1505 					bool prune_stale_stable_nodes)
1506 {
1507 	struct stable_node *stable_node = *_stable_node;
1508 	if (!is_stable_node_chain(stable_node)) {
1509 		if (is_page_sharing_candidate(stable_node)) {
1510 			*_stable_node_dup = stable_node;
1511 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1512 		}
1513 		/*
1514 		 * _stable_node_dup set to NULL means the stable_node
1515 		 * reached the ksm_max_page_sharing limit.
1516 		 */
1517 		*_stable_node_dup = NULL;
1518 		return NULL;
1519 	}
1520 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1521 			       prune_stale_stable_nodes);
1522 }
1523 
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1524 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 						struct stable_node **s_n,
1526 						struct rb_root *root)
1527 {
1528 	return __stable_node_chain(s_n_d, s_n, root, true);
1529 }
1530 
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1531 static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 					  struct stable_node *s_n,
1533 					  struct rb_root *root)
1534 {
1535 	struct stable_node *old_stable_node = s_n;
1536 	struct page *tree_page;
1537 
1538 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 	/* not pruning dups so s_n cannot have changed */
1540 	VM_BUG_ON(s_n != old_stable_node);
1541 	return tree_page;
1542 }
1543 
1544 /*
1545  * stable_tree_search - search for page inside the stable tree
1546  *
1547  * This function checks if there is a page inside the stable tree
1548  * with identical content to the page that we are scanning right now.
1549  *
1550  * This function returns the stable tree node of identical content if found,
1551  * NULL otherwise.
1552  */
stable_tree_search(struct page * page)1553 static struct page *stable_tree_search(struct page *page)
1554 {
1555 	int nid;
1556 	struct rb_root *root;
1557 	struct rb_node **new;
1558 	struct rb_node *parent;
1559 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1560 	struct stable_node *page_node;
1561 
1562 	page_node = page_stable_node(page);
1563 	if (page_node && page_node->head != &migrate_nodes) {
1564 		/* ksm page forked */
1565 		get_page(page);
1566 		return page;
1567 	}
1568 
1569 	nid = get_kpfn_nid(page_to_pfn(page));
1570 	root = root_stable_tree + nid;
1571 again:
1572 	new = &root->rb_node;
1573 	parent = NULL;
1574 
1575 	while (*new) {
1576 		struct page *tree_page;
1577 		int ret;
1578 
1579 		cond_resched();
1580 		stable_node = rb_entry(*new, struct stable_node, node);
1581 		stable_node_any = NULL;
1582 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1583 		/*
1584 		 * NOTE: stable_node may have been freed by
1585 		 * chain_prune() if the returned stable_node_dup is
1586 		 * not NULL. stable_node_dup may have been inserted in
1587 		 * the rbtree instead as a regular stable_node (in
1588 		 * order to collapse the stable_node chain if a single
1589 		 * stable_node dup was found in it). In such case the
1590 		 * stable_node is overwritten by the calleee to point
1591 		 * to the stable_node_dup that was collapsed in the
1592 		 * stable rbtree and stable_node will be equal to
1593 		 * stable_node_dup like if the chain never existed.
1594 		 */
1595 		if (!stable_node_dup) {
1596 			/*
1597 			 * Either all stable_node dups were full in
1598 			 * this stable_node chain, or this chain was
1599 			 * empty and should be rb_erased.
1600 			 */
1601 			stable_node_any = stable_node_dup_any(stable_node,
1602 							      root);
1603 			if (!stable_node_any) {
1604 				/* rb_erase just run */
1605 				goto again;
1606 			}
1607 			/*
1608 			 * Take any of the stable_node dups page of
1609 			 * this stable_node chain to let the tree walk
1610 			 * continue. All KSM pages belonging to the
1611 			 * stable_node dups in a stable_node chain
1612 			 * have the same content and they're
1613 			 * write protected at all times. Any will work
1614 			 * fine to continue the walk.
1615 			 */
1616 			tree_page = get_ksm_page(stable_node_any,
1617 						 GET_KSM_PAGE_NOLOCK);
1618 		}
1619 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1620 		if (!tree_page) {
1621 			/*
1622 			 * If we walked over a stale stable_node,
1623 			 * get_ksm_page() will call rb_erase() and it
1624 			 * may rebalance the tree from under us. So
1625 			 * restart the search from scratch. Returning
1626 			 * NULL would be safe too, but we'd generate
1627 			 * false negative insertions just because some
1628 			 * stable_node was stale.
1629 			 */
1630 			goto again;
1631 		}
1632 
1633 		ret = memcmp_pages(page, tree_page);
1634 		put_page(tree_page);
1635 
1636 		parent = *new;
1637 		if (ret < 0)
1638 			new = &parent->rb_left;
1639 		else if (ret > 0)
1640 			new = &parent->rb_right;
1641 		else {
1642 			if (page_node) {
1643 				VM_BUG_ON(page_node->head != &migrate_nodes);
1644 				/*
1645 				 * Test if the migrated page should be merged
1646 				 * into a stable node dup. If the mapcount is
1647 				 * 1 we can migrate it with another KSM page
1648 				 * without adding it to the chain.
1649 				 */
1650 				if (page_mapcount(page) > 1)
1651 					goto chain_append;
1652 			}
1653 
1654 			if (!stable_node_dup) {
1655 				/*
1656 				 * If the stable_node is a chain and
1657 				 * we got a payload match in memcmp
1658 				 * but we cannot merge the scanned
1659 				 * page in any of the existing
1660 				 * stable_node dups because they're
1661 				 * all full, we need to wait the
1662 				 * scanned page to find itself a match
1663 				 * in the unstable tree to create a
1664 				 * brand new KSM page to add later to
1665 				 * the dups of this stable_node.
1666 				 */
1667 				return NULL;
1668 			}
1669 
1670 			/*
1671 			 * Lock and unlock the stable_node's page (which
1672 			 * might already have been migrated) so that page
1673 			 * migration is sure to notice its raised count.
1674 			 * It would be more elegant to return stable_node
1675 			 * than kpage, but that involves more changes.
1676 			 */
1677 			tree_page = get_ksm_page(stable_node_dup,
1678 						 GET_KSM_PAGE_TRYLOCK);
1679 
1680 			if (PTR_ERR(tree_page) == -EBUSY)
1681 				return ERR_PTR(-EBUSY);
1682 
1683 			if (unlikely(!tree_page))
1684 				/*
1685 				 * The tree may have been rebalanced,
1686 				 * so re-evaluate parent and new.
1687 				 */
1688 				goto again;
1689 			unlock_page(tree_page);
1690 
1691 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1692 			    NUMA(stable_node_dup->nid)) {
1693 				put_page(tree_page);
1694 				goto replace;
1695 			}
1696 			return tree_page;
1697 		}
1698 	}
1699 
1700 	if (!page_node)
1701 		return NULL;
1702 
1703 	list_del(&page_node->list);
1704 	DO_NUMA(page_node->nid = nid);
1705 	rb_link_node(&page_node->node, parent, new);
1706 	rb_insert_color(&page_node->node, root);
1707 out:
1708 	if (is_page_sharing_candidate(page_node)) {
1709 		get_page(page);
1710 		return page;
1711 	} else
1712 		return NULL;
1713 
1714 replace:
1715 	/*
1716 	 * If stable_node was a chain and chain_prune collapsed it,
1717 	 * stable_node has been updated to be the new regular
1718 	 * stable_node. A collapse of the chain is indistinguishable
1719 	 * from the case there was no chain in the stable
1720 	 * rbtree. Otherwise stable_node is the chain and
1721 	 * stable_node_dup is the dup to replace.
1722 	 */
1723 	if (stable_node_dup == stable_node) {
1724 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1725 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1726 		/* there is no chain */
1727 		if (page_node) {
1728 			VM_BUG_ON(page_node->head != &migrate_nodes);
1729 			list_del(&page_node->list);
1730 			DO_NUMA(page_node->nid = nid);
1731 			rb_replace_node(&stable_node_dup->node,
1732 					&page_node->node,
1733 					root);
1734 			if (is_page_sharing_candidate(page_node))
1735 				get_page(page);
1736 			else
1737 				page = NULL;
1738 		} else {
1739 			rb_erase(&stable_node_dup->node, root);
1740 			page = NULL;
1741 		}
1742 	} else {
1743 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1744 		__stable_node_dup_del(stable_node_dup);
1745 		if (page_node) {
1746 			VM_BUG_ON(page_node->head != &migrate_nodes);
1747 			list_del(&page_node->list);
1748 			DO_NUMA(page_node->nid = nid);
1749 			stable_node_chain_add_dup(page_node, stable_node);
1750 			if (is_page_sharing_candidate(page_node))
1751 				get_page(page);
1752 			else
1753 				page = NULL;
1754 		} else {
1755 			page = NULL;
1756 		}
1757 	}
1758 	stable_node_dup->head = &migrate_nodes;
1759 	list_add(&stable_node_dup->list, stable_node_dup->head);
1760 	return page;
1761 
1762 chain_append:
1763 	/* stable_node_dup could be null if it reached the limit */
1764 	if (!stable_node_dup)
1765 		stable_node_dup = stable_node_any;
1766 	/*
1767 	 * If stable_node was a chain and chain_prune collapsed it,
1768 	 * stable_node has been updated to be the new regular
1769 	 * stable_node. A collapse of the chain is indistinguishable
1770 	 * from the case there was no chain in the stable
1771 	 * rbtree. Otherwise stable_node is the chain and
1772 	 * stable_node_dup is the dup to replace.
1773 	 */
1774 	if (stable_node_dup == stable_node) {
1775 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1776 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1777 		/* chain is missing so create it */
1778 		stable_node = alloc_stable_node_chain(stable_node_dup,
1779 						      root);
1780 		if (!stable_node)
1781 			return NULL;
1782 	}
1783 	/*
1784 	 * Add this stable_node dup that was
1785 	 * migrated to the stable_node chain
1786 	 * of the current nid for this page
1787 	 * content.
1788 	 */
1789 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1790 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1791 	VM_BUG_ON(page_node->head != &migrate_nodes);
1792 	list_del(&page_node->list);
1793 	DO_NUMA(page_node->nid = nid);
1794 	stable_node_chain_add_dup(page_node, stable_node);
1795 	goto out;
1796 }
1797 
1798 /*
1799  * stable_tree_insert - insert stable tree node pointing to new ksm page
1800  * into the stable tree.
1801  *
1802  * This function returns the stable tree node just allocated on success,
1803  * NULL otherwise.
1804  */
stable_tree_insert(struct page * kpage)1805 static struct stable_node *stable_tree_insert(struct page *kpage)
1806 {
1807 	int nid;
1808 	unsigned long kpfn;
1809 	struct rb_root *root;
1810 	struct rb_node **new;
1811 	struct rb_node *parent;
1812 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1813 	bool need_chain = false;
1814 
1815 	kpfn = page_to_pfn(kpage);
1816 	nid = get_kpfn_nid(kpfn);
1817 	root = root_stable_tree + nid;
1818 again:
1819 	parent = NULL;
1820 	new = &root->rb_node;
1821 
1822 	while (*new) {
1823 		struct page *tree_page;
1824 		int ret;
1825 
1826 		cond_resched();
1827 		stable_node = rb_entry(*new, struct stable_node, node);
1828 		stable_node_any = NULL;
1829 		tree_page = chain(&stable_node_dup, stable_node, root);
1830 		if (!stable_node_dup) {
1831 			/*
1832 			 * Either all stable_node dups were full in
1833 			 * this stable_node chain, or this chain was
1834 			 * empty and should be rb_erased.
1835 			 */
1836 			stable_node_any = stable_node_dup_any(stable_node,
1837 							      root);
1838 			if (!stable_node_any) {
1839 				/* rb_erase just run */
1840 				goto again;
1841 			}
1842 			/*
1843 			 * Take any of the stable_node dups page of
1844 			 * this stable_node chain to let the tree walk
1845 			 * continue. All KSM pages belonging to the
1846 			 * stable_node dups in a stable_node chain
1847 			 * have the same content and they're
1848 			 * write protected at all times. Any will work
1849 			 * fine to continue the walk.
1850 			 */
1851 			tree_page = get_ksm_page(stable_node_any,
1852 						 GET_KSM_PAGE_NOLOCK);
1853 		}
1854 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1855 		if (!tree_page) {
1856 			/*
1857 			 * If we walked over a stale stable_node,
1858 			 * get_ksm_page() will call rb_erase() and it
1859 			 * may rebalance the tree from under us. So
1860 			 * restart the search from scratch. Returning
1861 			 * NULL would be safe too, but we'd generate
1862 			 * false negative insertions just because some
1863 			 * stable_node was stale.
1864 			 */
1865 			goto again;
1866 		}
1867 
1868 		ret = memcmp_pages(kpage, tree_page);
1869 		put_page(tree_page);
1870 
1871 		parent = *new;
1872 		if (ret < 0)
1873 			new = &parent->rb_left;
1874 		else if (ret > 0)
1875 			new = &parent->rb_right;
1876 		else {
1877 			need_chain = true;
1878 			break;
1879 		}
1880 	}
1881 
1882 	stable_node_dup = alloc_stable_node();
1883 	if (!stable_node_dup)
1884 		return NULL;
1885 
1886 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1887 	stable_node_dup->kpfn = kpfn;
1888 	set_page_stable_node(kpage, stable_node_dup);
1889 	stable_node_dup->rmap_hlist_len = 0;
1890 	DO_NUMA(stable_node_dup->nid = nid);
1891 	if (!need_chain) {
1892 		rb_link_node(&stable_node_dup->node, parent, new);
1893 		rb_insert_color(&stable_node_dup->node, root);
1894 	} else {
1895 		if (!is_stable_node_chain(stable_node)) {
1896 			struct stable_node *orig = stable_node;
1897 			/* chain is missing so create it */
1898 			stable_node = alloc_stable_node_chain(orig, root);
1899 			if (!stable_node) {
1900 				free_stable_node(stable_node_dup);
1901 				return NULL;
1902 			}
1903 		}
1904 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1905 	}
1906 
1907 	return stable_node_dup;
1908 }
1909 
1910 /*
1911  * unstable_tree_search_insert - search for identical page,
1912  * else insert rmap_item into the unstable tree.
1913  *
1914  * This function searches for a page in the unstable tree identical to the
1915  * page currently being scanned; and if no identical page is found in the
1916  * tree, we insert rmap_item as a new object into the unstable tree.
1917  *
1918  * This function returns pointer to rmap_item found to be identical
1919  * to the currently scanned page, NULL otherwise.
1920  *
1921  * This function does both searching and inserting, because they share
1922  * the same walking algorithm in an rbtree.
1923  */
1924 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1925 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1926 					      struct page *page,
1927 					      struct page **tree_pagep)
1928 {
1929 	struct rb_node **new;
1930 	struct rb_root *root;
1931 	struct rb_node *parent = NULL;
1932 	int nid;
1933 
1934 	nid = get_kpfn_nid(page_to_pfn(page));
1935 	root = root_unstable_tree + nid;
1936 	new = &root->rb_node;
1937 
1938 	while (*new) {
1939 		struct rmap_item *tree_rmap_item;
1940 		struct page *tree_page;
1941 		int ret;
1942 
1943 		cond_resched();
1944 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1945 		tree_page = get_mergeable_page(tree_rmap_item);
1946 		if (!tree_page)
1947 			return NULL;
1948 
1949 		/*
1950 		 * Don't substitute a ksm page for a forked page.
1951 		 */
1952 		if (page == tree_page) {
1953 			put_user_page(tree_page);
1954 			return NULL;
1955 		}
1956 
1957 		ret = memcmp_pages(page, tree_page);
1958 
1959 		parent = *new;
1960 		if (ret < 0) {
1961 			put_user_page(tree_page);
1962 			new = &parent->rb_left;
1963 		} else if (ret > 0) {
1964 			put_user_page(tree_page);
1965 			new = &parent->rb_right;
1966 		} else if (!ksm_merge_across_nodes &&
1967 			   page_to_nid(tree_page) != nid) {
1968 			/*
1969 			 * If tree_page has been migrated to another NUMA node,
1970 			 * it will be flushed out and put in the right unstable
1971 			 * tree next time: only merge with it when across_nodes.
1972 			 */
1973 			put_user_page(tree_page);
1974 			return NULL;
1975 		} else {
1976 			*tree_pagep = tree_page;
1977 			return tree_rmap_item;
1978 		}
1979 	}
1980 
1981 	rmap_item->address |= UNSTABLE_FLAG;
1982 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1983 	DO_NUMA(rmap_item->nid = nid);
1984 	rb_link_node(&rmap_item->node, parent, new);
1985 	rb_insert_color(&rmap_item->node, root);
1986 
1987 	ksm_pages_unshared++;
1988 	return NULL;
1989 }
1990 
1991 /*
1992  * stable_tree_append - add another rmap_item to the linked list of
1993  * rmap_items hanging off a given node of the stable tree, all sharing
1994  * the same ksm page.
1995  */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)1996 static void stable_tree_append(struct rmap_item *rmap_item,
1997 			       struct stable_node *stable_node,
1998 			       bool max_page_sharing_bypass)
1999 {
2000 	/*
2001 	 * rmap won't find this mapping if we don't insert the
2002 	 * rmap_item in the right stable_node
2003 	 * duplicate. page_migration could break later if rmap breaks,
2004 	 * so we can as well crash here. We really need to check for
2005 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2006 	 * for other negative values as an underflow if detected here
2007 	 * for the first time (and not when decreasing rmap_hlist_len)
2008 	 * would be sign of memory corruption in the stable_node.
2009 	 */
2010 	BUG_ON(stable_node->rmap_hlist_len < 0);
2011 
2012 	stable_node->rmap_hlist_len++;
2013 	if (!max_page_sharing_bypass)
2014 		/* possibly non fatal but unexpected overflow, only warn */
2015 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2016 			     ksm_max_page_sharing);
2017 
2018 	rmap_item->head = stable_node;
2019 	rmap_item->address |= STABLE_FLAG;
2020 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2021 
2022 	if (rmap_item->hlist.next)
2023 		ksm_pages_sharing++;
2024 	else
2025 		ksm_pages_shared++;
2026 }
2027 
2028 /*
2029  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2030  * if not, compare checksum to previous and if it's the same, see if page can
2031  * be inserted into the unstable tree, or merged with a page already there and
2032  * both transferred to the stable tree.
2033  *
2034  * @page: the page that we are searching identical page to.
2035  * @rmap_item: the reverse mapping into the virtual address of this page
2036  */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2037 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2038 {
2039 	struct mm_struct *mm = rmap_item->mm;
2040 	struct rmap_item *tree_rmap_item;
2041 	struct page *tree_page = NULL;
2042 	struct stable_node *stable_node;
2043 	struct page *kpage;
2044 	unsigned int checksum;
2045 	int err;
2046 	bool max_page_sharing_bypass = false;
2047 
2048 	stable_node = page_stable_node(page);
2049 	if (stable_node) {
2050 		if (stable_node->head != &migrate_nodes &&
2051 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2052 		    NUMA(stable_node->nid)) {
2053 			stable_node_dup_del(stable_node);
2054 			stable_node->head = &migrate_nodes;
2055 			list_add(&stable_node->list, stable_node->head);
2056 		}
2057 		if (stable_node->head != &migrate_nodes &&
2058 		    rmap_item->head == stable_node)
2059 			return;
2060 		/*
2061 		 * If it's a KSM fork, allow it to go over the sharing limit
2062 		 * without warnings.
2063 		 */
2064 		if (!is_page_sharing_candidate(stable_node))
2065 			max_page_sharing_bypass = true;
2066 	}
2067 
2068 	/* We first start with searching the page inside the stable tree */
2069 	kpage = stable_tree_search(page);
2070 	if (kpage == page && rmap_item->head == stable_node) {
2071 		put_page(kpage);
2072 		return;
2073 	}
2074 
2075 	remove_rmap_item_from_tree(rmap_item);
2076 
2077 	if (kpage) {
2078 		if (PTR_ERR(kpage) == -EBUSY)
2079 			return;
2080 
2081 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2082 		if (!err) {
2083 			/*
2084 			 * The page was successfully merged:
2085 			 * add its rmap_item to the stable tree.
2086 			 */
2087 			lock_page(kpage);
2088 			stable_tree_append(rmap_item, page_stable_node(kpage),
2089 					   max_page_sharing_bypass);
2090 			unlock_page(kpage);
2091 		}
2092 		put_page(kpage);
2093 		return;
2094 	}
2095 
2096 	/*
2097 	 * If the hash value of the page has changed from the last time
2098 	 * we calculated it, this page is changing frequently: therefore we
2099 	 * don't want to insert it in the unstable tree, and we don't want
2100 	 * to waste our time searching for something identical to it there.
2101 	 */
2102 	checksum = calc_checksum(page);
2103 	if (rmap_item->oldchecksum != checksum) {
2104 		rmap_item->oldchecksum = checksum;
2105 		return;
2106 	}
2107 
2108 	/*
2109 	 * Same checksum as an empty page. We attempt to merge it with the
2110 	 * appropriate zero page if the user enabled this via sysfs.
2111 	 */
2112 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2113 		struct vm_area_struct *vma;
2114 
2115 		mmap_read_lock(mm);
2116 		vma = find_mergeable_vma(mm, rmap_item->address);
2117 		if (vma) {
2118 			err = try_to_merge_one_page(vma, page,
2119 					ZERO_PAGE(rmap_item->address));
2120 		} else {
2121 			/*
2122 			 * If the vma is out of date, we do not need to
2123 			 * continue.
2124 			 */
2125 			err = 0;
2126 		}
2127 		mmap_read_unlock(mm);
2128 		/*
2129 		 * In case of failure, the page was not really empty, so we
2130 		 * need to continue. Otherwise we're done.
2131 		 */
2132 		if (!err)
2133 			return;
2134 	}
2135 	tree_rmap_item =
2136 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2137 	if (tree_rmap_item) {
2138 		bool split;
2139 
2140 		kpage = try_to_merge_two_pages(rmap_item, page,
2141 						tree_rmap_item, tree_page);
2142 		/*
2143 		 * If both pages we tried to merge belong to the same compound
2144 		 * page, then we actually ended up increasing the reference
2145 		 * count of the same compound page twice, and split_huge_page
2146 		 * failed.
2147 		 * Here we set a flag if that happened, and we use it later to
2148 		 * try split_huge_page again. Since we call put_page right
2149 		 * afterwards, the reference count will be correct and
2150 		 * split_huge_page should succeed.
2151 		 */
2152 		split = PageTransCompound(page)
2153 			&& compound_head(page) == compound_head(tree_page);
2154 		put_user_page(tree_page);
2155 		if (kpage) {
2156 			/*
2157 			 * The pages were successfully merged: insert new
2158 			 * node in the stable tree and add both rmap_items.
2159 			 */
2160 			lock_page(kpage);
2161 			stable_node = stable_tree_insert(kpage);
2162 			if (stable_node) {
2163 				stable_tree_append(tree_rmap_item, stable_node,
2164 						   false);
2165 				stable_tree_append(rmap_item, stable_node,
2166 						   false);
2167 			}
2168 			unlock_page(kpage);
2169 
2170 			/*
2171 			 * If we fail to insert the page into the stable tree,
2172 			 * we will have 2 virtual addresses that are pointing
2173 			 * to a ksm page left outside the stable tree,
2174 			 * in which case we need to break_cow on both.
2175 			 */
2176 			if (!stable_node) {
2177 				break_cow(tree_rmap_item);
2178 				break_cow(rmap_item);
2179 			}
2180 		} else if (split) {
2181 			/*
2182 			 * We are here if we tried to merge two pages and
2183 			 * failed because they both belonged to the same
2184 			 * compound page. We will split the page now, but no
2185 			 * merging will take place.
2186 			 * We do not want to add the cost of a full lock; if
2187 			 * the page is locked, it is better to skip it and
2188 			 * perhaps try again later.
2189 			 */
2190 			if (!trylock_page(page))
2191 				return;
2192 			split_huge_page(page);
2193 			unlock_page(page);
2194 		}
2195 	}
2196 }
2197 
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2198 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2199 					    struct rmap_item **rmap_list,
2200 					    unsigned long addr)
2201 {
2202 	struct rmap_item *rmap_item;
2203 
2204 	while (*rmap_list) {
2205 		rmap_item = *rmap_list;
2206 		if ((rmap_item->address & PAGE_MASK) == addr)
2207 			return rmap_item;
2208 		if (rmap_item->address > addr)
2209 			break;
2210 		*rmap_list = rmap_item->rmap_list;
2211 		remove_rmap_item_from_tree(rmap_item);
2212 		free_rmap_item(rmap_item);
2213 	}
2214 
2215 	rmap_item = alloc_rmap_item();
2216 	if (rmap_item) {
2217 		/* It has already been zeroed */
2218 		rmap_item->mm = mm_slot->mm;
2219 		rmap_item->address = addr;
2220 		rmap_item->rmap_list = *rmap_list;
2221 		*rmap_list = rmap_item;
2222 	}
2223 	return rmap_item;
2224 }
2225 
scan_get_next_rmap_item(struct page ** page)2226 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2227 {
2228 	struct mm_struct *mm;
2229 	struct mm_slot *slot;
2230 	struct vm_area_struct *vma;
2231 	struct rmap_item *rmap_item;
2232 	int nid;
2233 
2234 	if (list_empty(&ksm_mm_head.mm_list))
2235 		return NULL;
2236 
2237 	slot = ksm_scan.mm_slot;
2238 	if (slot == &ksm_mm_head) {
2239 		/*
2240 		 * A number of pages can hang around indefinitely on per-cpu
2241 		 * pagevecs, raised page count preventing write_protect_page
2242 		 * from merging them.  Though it doesn't really matter much,
2243 		 * it is puzzling to see some stuck in pages_volatile until
2244 		 * other activity jostles them out, and they also prevented
2245 		 * LTP's KSM test from succeeding deterministically; so drain
2246 		 * them here (here rather than on entry to ksm_do_scan(),
2247 		 * so we don't IPI too often when pages_to_scan is set low).
2248 		 */
2249 		lru_add_drain_all();
2250 
2251 		/*
2252 		 * Whereas stale stable_nodes on the stable_tree itself
2253 		 * get pruned in the regular course of stable_tree_search(),
2254 		 * those moved out to the migrate_nodes list can accumulate:
2255 		 * so prune them once before each full scan.
2256 		 */
2257 		if (!ksm_merge_across_nodes) {
2258 			struct stable_node *stable_node, *next;
2259 			struct page *page;
2260 
2261 			list_for_each_entry_safe(stable_node, next,
2262 						 &migrate_nodes, list) {
2263 				page = get_ksm_page(stable_node,
2264 						    GET_KSM_PAGE_NOLOCK);
2265 				if (page)
2266 					put_page(page);
2267 				cond_resched();
2268 			}
2269 		}
2270 
2271 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2272 			root_unstable_tree[nid] = RB_ROOT;
2273 
2274 		spin_lock(&ksm_mmlist_lock);
2275 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2276 		ksm_scan.mm_slot = slot;
2277 		spin_unlock(&ksm_mmlist_lock);
2278 		/*
2279 		 * Although we tested list_empty() above, a racing __ksm_exit
2280 		 * of the last mm on the list may have removed it since then.
2281 		 */
2282 		if (slot == &ksm_mm_head)
2283 			return NULL;
2284 next_mm:
2285 		ksm_scan.address = 0;
2286 		ksm_scan.rmap_list = &slot->rmap_list;
2287 	}
2288 
2289 	mm = slot->mm;
2290 	mmap_read_lock(mm);
2291 	if (ksm_test_exit(mm))
2292 		vma = NULL;
2293 	else
2294 		vma = find_vma(mm, ksm_scan.address);
2295 
2296 	for (; vma; vma = vma->vm_next) {
2297 		if (!(vma->vm_flags & VM_MERGEABLE))
2298 			continue;
2299 		if (ksm_scan.address < vma->vm_start)
2300 			ksm_scan.address = vma->vm_start;
2301 		if (!vma->anon_vma)
2302 			ksm_scan.address = vma->vm_end;
2303 
2304 		while (ksm_scan.address < vma->vm_end) {
2305 			if (ksm_test_exit(mm))
2306 				break;
2307 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2308 			if (IS_ERR_OR_NULL(*page)) {
2309 				ksm_scan.address += PAGE_SIZE;
2310 				cond_resched();
2311 				continue;
2312 			}
2313 			if (PageAnon(*page)) {
2314 				flush_anon_page(vma, *page, ksm_scan.address);
2315 				flush_dcache_page(*page);
2316 				rmap_item = get_next_rmap_item(slot,
2317 					ksm_scan.rmap_list, ksm_scan.address);
2318 				if (rmap_item) {
2319 					ksm_scan.rmap_list =
2320 							&rmap_item->rmap_list;
2321 					ksm_scan.address += PAGE_SIZE;
2322 				} else
2323 					put_user_page(*page);
2324 				mmap_read_unlock(mm);
2325 				return rmap_item;
2326 			}
2327 			put_user_page(*page);
2328 			ksm_scan.address += PAGE_SIZE;
2329 			cond_resched();
2330 		}
2331 	}
2332 
2333 	if (ksm_test_exit(mm)) {
2334 		ksm_scan.address = 0;
2335 		ksm_scan.rmap_list = &slot->rmap_list;
2336 	}
2337 	/*
2338 	 * Nuke all the rmap_items that are above this current rmap:
2339 	 * because there were no VM_MERGEABLE vmas with such addresses.
2340 	 */
2341 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2342 
2343 	spin_lock(&ksm_mmlist_lock);
2344 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2345 						struct mm_slot, mm_list);
2346 	if (ksm_scan.address == 0) {
2347 		/*
2348 		 * We've completed a full scan of all vmas, holding mmap_lock
2349 		 * throughout, and found no VM_MERGEABLE: so do the same as
2350 		 * __ksm_exit does to remove this mm from all our lists now.
2351 		 * This applies either when cleaning up after __ksm_exit
2352 		 * (but beware: we can reach here even before __ksm_exit),
2353 		 * or when all VM_MERGEABLE areas have been unmapped (and
2354 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2355 		 */
2356 		hash_del(&slot->link);
2357 		list_del(&slot->mm_list);
2358 		spin_unlock(&ksm_mmlist_lock);
2359 
2360 		free_mm_slot(slot);
2361 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2362 		mmap_read_unlock(mm);
2363 		mmdrop(mm);
2364 	} else {
2365 		mmap_read_unlock(mm);
2366 		/*
2367 		 * mmap_read_unlock(mm) first because after
2368 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2369 		 * already have been freed under us by __ksm_exit()
2370 		 * because the "mm_slot" is still hashed and
2371 		 * ksm_scan.mm_slot doesn't point to it anymore.
2372 		 */
2373 		spin_unlock(&ksm_mmlist_lock);
2374 	}
2375 
2376 	/* Repeat until we've completed scanning the whole list */
2377 	slot = ksm_scan.mm_slot;
2378 	if (slot != &ksm_mm_head)
2379 		goto next_mm;
2380 
2381 	ksm_scan.seqnr++;
2382 	return NULL;
2383 }
2384 
2385 /**
2386  * ksm_do_scan  - the ksm scanner main worker function.
2387  * @scan_npages:  number of pages we want to scan before we return.
2388  */
ksm_do_scan(unsigned int scan_npages)2389 static void ksm_do_scan(unsigned int scan_npages)
2390 {
2391 	struct rmap_item *rmap_item;
2392 	struct page *page;
2393 
2394 	while (scan_npages-- && likely(!freezing(current))) {
2395 		cond_resched();
2396 		rmap_item = scan_get_next_rmap_item(&page);
2397 		if (!rmap_item)
2398 			return;
2399 		cmp_and_merge_page(page, rmap_item);
2400 		put_page(page);
2401 	}
2402 }
2403 
ksmd_should_run(void)2404 static int ksmd_should_run(void)
2405 {
2406 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2407 }
2408 
ksm_scan_thread(void * nothing)2409 static int ksm_scan_thread(void *nothing)
2410 {
2411 	unsigned int sleep_ms;
2412 
2413 	set_freezable();
2414 	set_user_nice(current, 5);
2415 
2416 	while (!kthread_should_stop()) {
2417 		mutex_lock(&ksm_thread_mutex);
2418 		wait_while_offlining();
2419 		if (ksmd_should_run())
2420 			ksm_do_scan(ksm_thread_pages_to_scan);
2421 		mutex_unlock(&ksm_thread_mutex);
2422 
2423 		try_to_freeze();
2424 
2425 		if (ksmd_should_run()) {
2426 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2427 			wait_event_interruptible_timeout(ksm_iter_wait,
2428 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2429 				msecs_to_jiffies(sleep_ms));
2430 		} else {
2431 			wait_event_freezable(ksm_thread_wait,
2432 				ksmd_should_run() || kthread_should_stop());
2433 		}
2434 	}
2435 	return 0;
2436 }
2437 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2438 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2439 		unsigned long end, int advice, unsigned long *vm_flags)
2440 {
2441 	struct mm_struct *mm = vma->vm_mm;
2442 	int err;
2443 
2444 	switch (advice) {
2445 	case MADV_MERGEABLE:
2446 		/*
2447 		 * Be somewhat over-protective for now!
2448 		 */
2449 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2450 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2451 				 VM_HUGETLB | VM_MIXEDMAP))
2452 			return 0;		/* just ignore the advice */
2453 
2454 		if (vma_is_dax(vma))
2455 			return 0;
2456 
2457 #ifdef VM_SAO
2458 		if (*vm_flags & VM_SAO)
2459 			return 0;
2460 #endif
2461 #ifdef VM_SPARC_ADI
2462 		if (*vm_flags & VM_SPARC_ADI)
2463 			return 0;
2464 #endif
2465 
2466 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2467 			err = __ksm_enter(mm);
2468 			if (err)
2469 				return err;
2470 		}
2471 
2472 		*vm_flags |= VM_MERGEABLE;
2473 		break;
2474 
2475 	case MADV_UNMERGEABLE:
2476 		if (!(*vm_flags & VM_MERGEABLE))
2477 			return 0;		/* just ignore the advice */
2478 
2479 		if (vma->anon_vma) {
2480 			err = unmerge_ksm_pages(vma, start, end);
2481 			if (err)
2482 				return err;
2483 		}
2484 
2485 		*vm_flags &= ~VM_MERGEABLE;
2486 		break;
2487 	}
2488 
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(ksm_madvise);
2492 
__ksm_enter(struct mm_struct * mm)2493 int __ksm_enter(struct mm_struct *mm)
2494 {
2495 	struct mm_slot *mm_slot;
2496 	int needs_wakeup;
2497 
2498 	mm_slot = alloc_mm_slot();
2499 	if (!mm_slot)
2500 		return -ENOMEM;
2501 
2502 	/* Check ksm_run too?  Would need tighter locking */
2503 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2504 
2505 	spin_lock(&ksm_mmlist_lock);
2506 	insert_to_mm_slots_hash(mm, mm_slot);
2507 	/*
2508 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2509 	 * insert just behind the scanning cursor, to let the area settle
2510 	 * down a little; when fork is followed by immediate exec, we don't
2511 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2512 	 *
2513 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2514 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2515 	 * missed: then we might as well insert at the end of the list.
2516 	 */
2517 	if (ksm_run & KSM_RUN_UNMERGE)
2518 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2519 	else
2520 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2521 	spin_unlock(&ksm_mmlist_lock);
2522 
2523 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2524 	mmgrab(mm);
2525 
2526 	if (needs_wakeup)
2527 		wake_up_interruptible(&ksm_thread_wait);
2528 
2529 	return 0;
2530 }
2531 
__ksm_exit(struct mm_struct * mm)2532 void __ksm_exit(struct mm_struct *mm)
2533 {
2534 	struct mm_slot *mm_slot;
2535 	int easy_to_free = 0;
2536 
2537 	/*
2538 	 * This process is exiting: if it's straightforward (as is the
2539 	 * case when ksmd was never running), free mm_slot immediately.
2540 	 * But if it's at the cursor or has rmap_items linked to it, use
2541 	 * mmap_lock to synchronize with any break_cows before pagetables
2542 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2543 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2544 	 */
2545 
2546 	spin_lock(&ksm_mmlist_lock);
2547 	mm_slot = get_mm_slot(mm);
2548 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2549 		if (!mm_slot->rmap_list) {
2550 			hash_del(&mm_slot->link);
2551 			list_del(&mm_slot->mm_list);
2552 			easy_to_free = 1;
2553 		} else {
2554 			list_move(&mm_slot->mm_list,
2555 				  &ksm_scan.mm_slot->mm_list);
2556 		}
2557 	}
2558 	spin_unlock(&ksm_mmlist_lock);
2559 
2560 	if (easy_to_free) {
2561 		free_mm_slot(mm_slot);
2562 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2563 		mmdrop(mm);
2564 	} else if (mm_slot) {
2565 		mmap_write_lock(mm);
2566 		mmap_write_unlock(mm);
2567 	}
2568 }
2569 
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2570 struct page *ksm_might_need_to_copy(struct page *page,
2571 			struct vm_area_struct *vma, unsigned long address)
2572 {
2573 	struct anon_vma *anon_vma = page_anon_vma(page);
2574 	struct page *new_page;
2575 
2576 	if (PageKsm(page)) {
2577 		if (page_stable_node(page) &&
2578 		    !(ksm_run & KSM_RUN_UNMERGE))
2579 			return page;	/* no need to copy it */
2580 	} else if (!anon_vma) {
2581 		return page;		/* no need to copy it */
2582 	} else if (anon_vma->root == vma->anon_vma->root &&
2583 		 page->index == linear_page_index(vma, address)) {
2584 		return page;		/* still no need to copy it */
2585 	}
2586 	if (!PageUptodate(page))
2587 		return page;		/* let do_swap_page report the error */
2588 
2589 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2590 	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2591 		put_page(new_page);
2592 		new_page = NULL;
2593 	}
2594 	if (new_page) {
2595 		copy_user_highpage(new_page, page, address, vma);
2596 
2597 		SetPageDirty(new_page);
2598 		__SetPageUptodate(new_page);
2599 		__SetPageLocked(new_page);
2600 	}
2601 
2602 	return new_page;
2603 }
2604 
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2605 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2606 {
2607 	struct stable_node *stable_node;
2608 	struct rmap_item *rmap_item;
2609 	int search_new_forks = 0;
2610 
2611 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2612 
2613 	/*
2614 	 * Rely on the page lock to protect against concurrent modifications
2615 	 * to that page's node of the stable tree.
2616 	 */
2617 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2618 
2619 	stable_node = page_stable_node(page);
2620 	if (!stable_node)
2621 		return;
2622 again:
2623 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2624 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2625 		struct anon_vma_chain *vmac;
2626 		struct vm_area_struct *vma;
2627 
2628 		cond_resched();
2629 		if (!anon_vma_trylock_read(anon_vma)) {
2630 			if (rwc->try_lock) {
2631 				rwc->contended = true;
2632 				return;
2633 			}
2634 			anon_vma_lock_read(anon_vma);
2635 		}
2636 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2637 					       0, ULONG_MAX) {
2638 			unsigned long addr;
2639 
2640 			cond_resched();
2641 			vma = vmac->vma;
2642 
2643 			/* Ignore the stable/unstable/sqnr flags */
2644 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2645 
2646 			if (addr < vma->vm_start || addr >= vma->vm_end)
2647 				continue;
2648 			/*
2649 			 * Initially we examine only the vma which covers this
2650 			 * rmap_item; but later, if there is still work to do,
2651 			 * we examine covering vmas in other mms: in case they
2652 			 * were forked from the original since ksmd passed.
2653 			 */
2654 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2655 				continue;
2656 
2657 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2658 				continue;
2659 
2660 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2661 				anon_vma_unlock_read(anon_vma);
2662 				return;
2663 			}
2664 			if (rwc->done && rwc->done(page)) {
2665 				anon_vma_unlock_read(anon_vma);
2666 				return;
2667 			}
2668 		}
2669 		anon_vma_unlock_read(anon_vma);
2670 	}
2671 	if (!search_new_forks++)
2672 		goto again;
2673 }
2674 
2675 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2676 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2677 {
2678 	struct stable_node *stable_node;
2679 
2680 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2681 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2682 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2683 
2684 	stable_node = page_stable_node(newpage);
2685 	if (stable_node) {
2686 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2687 		stable_node->kpfn = page_to_pfn(newpage);
2688 		/*
2689 		 * newpage->mapping was set in advance; now we need smp_wmb()
2690 		 * to make sure that the new stable_node->kpfn is visible
2691 		 * to get_ksm_page() before it can see that oldpage->mapping
2692 		 * has gone stale (or that PageSwapCache has been cleared).
2693 		 */
2694 		smp_wmb();
2695 		set_page_stable_node(oldpage, NULL);
2696 	}
2697 }
2698 #endif /* CONFIG_MIGRATION */
2699 
2700 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2701 static void wait_while_offlining(void)
2702 {
2703 	while (ksm_run & KSM_RUN_OFFLINE) {
2704 		mutex_unlock(&ksm_thread_mutex);
2705 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2706 			    TASK_UNINTERRUPTIBLE);
2707 		mutex_lock(&ksm_thread_mutex);
2708 	}
2709 }
2710 
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2711 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2712 					 unsigned long start_pfn,
2713 					 unsigned long end_pfn)
2714 {
2715 	if (stable_node->kpfn >= start_pfn &&
2716 	    stable_node->kpfn < end_pfn) {
2717 		/*
2718 		 * Don't get_ksm_page, page has already gone:
2719 		 * which is why we keep kpfn instead of page*
2720 		 */
2721 		remove_node_from_stable_tree(stable_node);
2722 		return true;
2723 	}
2724 	return false;
2725 }
2726 
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2727 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2728 					   unsigned long start_pfn,
2729 					   unsigned long end_pfn,
2730 					   struct rb_root *root)
2731 {
2732 	struct stable_node *dup;
2733 	struct hlist_node *hlist_safe;
2734 
2735 	if (!is_stable_node_chain(stable_node)) {
2736 		VM_BUG_ON(is_stable_node_dup(stable_node));
2737 		return stable_node_dup_remove_range(stable_node, start_pfn,
2738 						    end_pfn);
2739 	}
2740 
2741 	hlist_for_each_entry_safe(dup, hlist_safe,
2742 				  &stable_node->hlist, hlist_dup) {
2743 		VM_BUG_ON(!is_stable_node_dup(dup));
2744 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2745 	}
2746 	if (hlist_empty(&stable_node->hlist)) {
2747 		free_stable_node_chain(stable_node, root);
2748 		return true; /* notify caller that tree was rebalanced */
2749 	} else
2750 		return false;
2751 }
2752 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2753 static void ksm_check_stable_tree(unsigned long start_pfn,
2754 				  unsigned long end_pfn)
2755 {
2756 	struct stable_node *stable_node, *next;
2757 	struct rb_node *node;
2758 	int nid;
2759 
2760 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2761 		node = rb_first(root_stable_tree + nid);
2762 		while (node) {
2763 			stable_node = rb_entry(node, struct stable_node, node);
2764 			if (stable_node_chain_remove_range(stable_node,
2765 							   start_pfn, end_pfn,
2766 							   root_stable_tree +
2767 							   nid))
2768 				node = rb_first(root_stable_tree + nid);
2769 			else
2770 				node = rb_next(node);
2771 			cond_resched();
2772 		}
2773 	}
2774 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2775 		if (stable_node->kpfn >= start_pfn &&
2776 		    stable_node->kpfn < end_pfn)
2777 			remove_node_from_stable_tree(stable_node);
2778 		cond_resched();
2779 	}
2780 }
2781 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2782 static int ksm_memory_callback(struct notifier_block *self,
2783 			       unsigned long action, void *arg)
2784 {
2785 	struct memory_notify *mn = arg;
2786 
2787 	switch (action) {
2788 	case MEM_GOING_OFFLINE:
2789 		/*
2790 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2791 		 * and remove_all_stable_nodes() while memory is going offline:
2792 		 * it is unsafe for them to touch the stable tree at this time.
2793 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2794 		 * which do not need the ksm_thread_mutex are all safe.
2795 		 */
2796 		mutex_lock(&ksm_thread_mutex);
2797 		ksm_run |= KSM_RUN_OFFLINE;
2798 		mutex_unlock(&ksm_thread_mutex);
2799 		break;
2800 
2801 	case MEM_OFFLINE:
2802 		/*
2803 		 * Most of the work is done by page migration; but there might
2804 		 * be a few stable_nodes left over, still pointing to struct
2805 		 * pages which have been offlined: prune those from the tree,
2806 		 * otherwise get_ksm_page() might later try to access a
2807 		 * non-existent struct page.
2808 		 */
2809 		ksm_check_stable_tree(mn->start_pfn,
2810 				      mn->start_pfn + mn->nr_pages);
2811 		fallthrough;
2812 	case MEM_CANCEL_OFFLINE:
2813 		mutex_lock(&ksm_thread_mutex);
2814 		ksm_run &= ~KSM_RUN_OFFLINE;
2815 		mutex_unlock(&ksm_thread_mutex);
2816 
2817 		smp_mb();	/* wake_up_bit advises this */
2818 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2819 		break;
2820 	}
2821 	return NOTIFY_OK;
2822 }
2823 #else
wait_while_offlining(void)2824 static void wait_while_offlining(void)
2825 {
2826 }
2827 #endif /* CONFIG_MEMORY_HOTREMOVE */
2828 
2829 #ifdef CONFIG_SYSFS
2830 /*
2831  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2832  */
2833 
2834 #define KSM_ATTR_RO(_name) \
2835 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2836 #define KSM_ATTR(_name) \
2837 	static struct kobj_attribute _name##_attr = \
2838 		__ATTR(_name, 0644, _name##_show, _name##_store)
2839 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2840 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2841 				    struct kobj_attribute *attr, char *buf)
2842 {
2843 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2844 }
2845 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2846 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2847 				     struct kobj_attribute *attr,
2848 				     const char *buf, size_t count)
2849 {
2850 	unsigned long msecs;
2851 	int err;
2852 
2853 	err = kstrtoul(buf, 10, &msecs);
2854 	if (err || msecs > UINT_MAX)
2855 		return -EINVAL;
2856 
2857 	ksm_thread_sleep_millisecs = msecs;
2858 	wake_up_interruptible(&ksm_iter_wait);
2859 
2860 	return count;
2861 }
2862 KSM_ATTR(sleep_millisecs);
2863 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2864 static ssize_t pages_to_scan_show(struct kobject *kobj,
2865 				  struct kobj_attribute *attr, char *buf)
2866 {
2867 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2868 }
2869 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2870 static ssize_t pages_to_scan_store(struct kobject *kobj,
2871 				   struct kobj_attribute *attr,
2872 				   const char *buf, size_t count)
2873 {
2874 	int err;
2875 	unsigned long nr_pages;
2876 
2877 	err = kstrtoul(buf, 10, &nr_pages);
2878 	if (err || nr_pages > UINT_MAX)
2879 		return -EINVAL;
2880 
2881 	ksm_thread_pages_to_scan = nr_pages;
2882 
2883 	return count;
2884 }
2885 KSM_ATTR(pages_to_scan);
2886 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2887 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2888 			char *buf)
2889 {
2890 	return sprintf(buf, "%lu\n", ksm_run);
2891 }
2892 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2893 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2894 			 const char *buf, size_t count)
2895 {
2896 	int err;
2897 	unsigned long flags;
2898 
2899 	err = kstrtoul(buf, 10, &flags);
2900 	if (err || flags > UINT_MAX)
2901 		return -EINVAL;
2902 	if (flags > KSM_RUN_UNMERGE)
2903 		return -EINVAL;
2904 
2905 	/*
2906 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2907 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2908 	 * breaking COW to free the pages_shared (but leaves mm_slots
2909 	 * on the list for when ksmd may be set running again).
2910 	 */
2911 
2912 	mutex_lock(&ksm_thread_mutex);
2913 	wait_while_offlining();
2914 	if (ksm_run != flags) {
2915 		ksm_run = flags;
2916 		if (flags & KSM_RUN_UNMERGE) {
2917 			set_current_oom_origin();
2918 			err = unmerge_and_remove_all_rmap_items();
2919 			clear_current_oom_origin();
2920 			if (err) {
2921 				ksm_run = KSM_RUN_STOP;
2922 				count = err;
2923 			}
2924 		}
2925 	}
2926 	mutex_unlock(&ksm_thread_mutex);
2927 
2928 	if (flags & KSM_RUN_MERGE)
2929 		wake_up_interruptible(&ksm_thread_wait);
2930 
2931 	return count;
2932 }
2933 KSM_ATTR(run);
2934 
2935 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2936 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2937 				struct kobj_attribute *attr, char *buf)
2938 {
2939 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2940 }
2941 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2942 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2943 				   struct kobj_attribute *attr,
2944 				   const char *buf, size_t count)
2945 {
2946 	int err;
2947 	unsigned long knob;
2948 
2949 	err = kstrtoul(buf, 10, &knob);
2950 	if (err)
2951 		return err;
2952 	if (knob > 1)
2953 		return -EINVAL;
2954 
2955 	mutex_lock(&ksm_thread_mutex);
2956 	wait_while_offlining();
2957 	if (ksm_merge_across_nodes != knob) {
2958 		if (ksm_pages_shared || remove_all_stable_nodes())
2959 			err = -EBUSY;
2960 		else if (root_stable_tree == one_stable_tree) {
2961 			struct rb_root *buf;
2962 			/*
2963 			 * This is the first time that we switch away from the
2964 			 * default of merging across nodes: must now allocate
2965 			 * a buffer to hold as many roots as may be needed.
2966 			 * Allocate stable and unstable together:
2967 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2968 			 */
2969 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2970 				      GFP_KERNEL);
2971 			/* Let us assume that RB_ROOT is NULL is zero */
2972 			if (!buf)
2973 				err = -ENOMEM;
2974 			else {
2975 				root_stable_tree = buf;
2976 				root_unstable_tree = buf + nr_node_ids;
2977 				/* Stable tree is empty but not the unstable */
2978 				root_unstable_tree[0] = one_unstable_tree[0];
2979 			}
2980 		}
2981 		if (!err) {
2982 			ksm_merge_across_nodes = knob;
2983 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2984 		}
2985 	}
2986 	mutex_unlock(&ksm_thread_mutex);
2987 
2988 	return err ? err : count;
2989 }
2990 KSM_ATTR(merge_across_nodes);
2991 #endif
2992 
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2993 static ssize_t use_zero_pages_show(struct kobject *kobj,
2994 				struct kobj_attribute *attr, char *buf)
2995 {
2996 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2997 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2998 static ssize_t use_zero_pages_store(struct kobject *kobj,
2999 				   struct kobj_attribute *attr,
3000 				   const char *buf, size_t count)
3001 {
3002 	int err;
3003 	bool value;
3004 
3005 	err = kstrtobool(buf, &value);
3006 	if (err)
3007 		return -EINVAL;
3008 
3009 	ksm_use_zero_pages = value;
3010 
3011 	return count;
3012 }
3013 KSM_ATTR(use_zero_pages);
3014 
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3015 static ssize_t max_page_sharing_show(struct kobject *kobj,
3016 				     struct kobj_attribute *attr, char *buf)
3017 {
3018 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3019 }
3020 
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3021 static ssize_t max_page_sharing_store(struct kobject *kobj,
3022 				      struct kobj_attribute *attr,
3023 				      const char *buf, size_t count)
3024 {
3025 	int err;
3026 	int knob;
3027 
3028 	err = kstrtoint(buf, 10, &knob);
3029 	if (err)
3030 		return err;
3031 	/*
3032 	 * When a KSM page is created it is shared by 2 mappings. This
3033 	 * being a signed comparison, it implicitly verifies it's not
3034 	 * negative.
3035 	 */
3036 	if (knob < 2)
3037 		return -EINVAL;
3038 
3039 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3040 		return count;
3041 
3042 	mutex_lock(&ksm_thread_mutex);
3043 	wait_while_offlining();
3044 	if (ksm_max_page_sharing != knob) {
3045 		if (ksm_pages_shared || remove_all_stable_nodes())
3046 			err = -EBUSY;
3047 		else
3048 			ksm_max_page_sharing = knob;
3049 	}
3050 	mutex_unlock(&ksm_thread_mutex);
3051 
3052 	return err ? err : count;
3053 }
3054 KSM_ATTR(max_page_sharing);
3055 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3056 static ssize_t pages_shared_show(struct kobject *kobj,
3057 				 struct kobj_attribute *attr, char *buf)
3058 {
3059 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3060 }
3061 KSM_ATTR_RO(pages_shared);
3062 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3063 static ssize_t pages_sharing_show(struct kobject *kobj,
3064 				  struct kobj_attribute *attr, char *buf)
3065 {
3066 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3067 }
3068 KSM_ATTR_RO(pages_sharing);
3069 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3070 static ssize_t pages_unshared_show(struct kobject *kobj,
3071 				   struct kobj_attribute *attr, char *buf)
3072 {
3073 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3074 }
3075 KSM_ATTR_RO(pages_unshared);
3076 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3077 static ssize_t pages_volatile_show(struct kobject *kobj,
3078 				   struct kobj_attribute *attr, char *buf)
3079 {
3080 	long ksm_pages_volatile;
3081 
3082 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3083 				- ksm_pages_sharing - ksm_pages_unshared;
3084 	/*
3085 	 * It was not worth any locking to calculate that statistic,
3086 	 * but it might therefore sometimes be negative: conceal that.
3087 	 */
3088 	if (ksm_pages_volatile < 0)
3089 		ksm_pages_volatile = 0;
3090 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3091 }
3092 KSM_ATTR_RO(pages_volatile);
3093 
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3094 static ssize_t stable_node_dups_show(struct kobject *kobj,
3095 				     struct kobj_attribute *attr, char *buf)
3096 {
3097 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3098 }
3099 KSM_ATTR_RO(stable_node_dups);
3100 
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3101 static ssize_t stable_node_chains_show(struct kobject *kobj,
3102 				       struct kobj_attribute *attr, char *buf)
3103 {
3104 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3105 }
3106 KSM_ATTR_RO(stable_node_chains);
3107 
3108 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3109 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3110 					struct kobj_attribute *attr,
3111 					char *buf)
3112 {
3113 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3114 }
3115 
3116 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3117 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3118 					 struct kobj_attribute *attr,
3119 					 const char *buf, size_t count)
3120 {
3121 	unsigned long msecs;
3122 	int err;
3123 
3124 	err = kstrtoul(buf, 10, &msecs);
3125 	if (err || msecs > UINT_MAX)
3126 		return -EINVAL;
3127 
3128 	ksm_stable_node_chains_prune_millisecs = msecs;
3129 
3130 	return count;
3131 }
3132 KSM_ATTR(stable_node_chains_prune_millisecs);
3133 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3134 static ssize_t full_scans_show(struct kobject *kobj,
3135 			       struct kobj_attribute *attr, char *buf)
3136 {
3137 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3138 }
3139 KSM_ATTR_RO(full_scans);
3140 
3141 static struct attribute *ksm_attrs[] = {
3142 	&sleep_millisecs_attr.attr,
3143 	&pages_to_scan_attr.attr,
3144 	&run_attr.attr,
3145 	&pages_shared_attr.attr,
3146 	&pages_sharing_attr.attr,
3147 	&pages_unshared_attr.attr,
3148 	&pages_volatile_attr.attr,
3149 	&full_scans_attr.attr,
3150 #ifdef CONFIG_NUMA
3151 	&merge_across_nodes_attr.attr,
3152 #endif
3153 	&max_page_sharing_attr.attr,
3154 	&stable_node_chains_attr.attr,
3155 	&stable_node_dups_attr.attr,
3156 	&stable_node_chains_prune_millisecs_attr.attr,
3157 	&use_zero_pages_attr.attr,
3158 	NULL,
3159 };
3160 
3161 static const struct attribute_group ksm_attr_group = {
3162 	.attrs = ksm_attrs,
3163 	.name = "ksm",
3164 };
3165 #endif /* CONFIG_SYSFS */
3166 
ksm_init(void)3167 static int __init ksm_init(void)
3168 {
3169 	struct task_struct *ksm_thread;
3170 	int err;
3171 
3172 	/* The correct value depends on page size and endianness */
3173 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3174 	/* Default to false for backwards compatibility */
3175 	ksm_use_zero_pages = false;
3176 
3177 	err = ksm_slab_init();
3178 	if (err)
3179 		goto out;
3180 
3181 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3182 	if (IS_ERR(ksm_thread)) {
3183 		pr_err("ksm: creating kthread failed\n");
3184 		err = PTR_ERR(ksm_thread);
3185 		goto out_free;
3186 	}
3187 
3188 #ifdef CONFIG_SYSFS
3189 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3190 	if (err) {
3191 		pr_err("ksm: register sysfs failed\n");
3192 		kthread_stop(ksm_thread);
3193 		goto out_free;
3194 	}
3195 #else
3196 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3197 
3198 #endif /* CONFIG_SYSFS */
3199 
3200 #ifdef CONFIG_MEMORY_HOTREMOVE
3201 	/* There is no significance to this priority 100 */
3202 	hotplug_memory_notifier(ksm_memory_callback, 100);
3203 #endif
3204 	return 0;
3205 
3206 out_free:
3207 	ksm_slab_free();
3208 out:
3209 	return err;
3210 }
3211 subsys_initcall(ksm_init);
3212