1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RSA padding templates.
4 *
5 * Copyright (c) 2015 Intel Corporation
6 */
7
8 #include <crypto/algapi.h>
9 #include <crypto/akcipher.h>
10 #include <crypto/internal/akcipher.h>
11 #include <crypto/internal/rsa.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18
19 /*
20 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
21 */
22 static const u8 rsa_digest_info_md5[] = {
23 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
24 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
25 0x05, 0x00, 0x04, 0x10
26 };
27
28 static const u8 rsa_digest_info_sha1[] = {
29 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
30 0x2b, 0x0e, 0x03, 0x02, 0x1a,
31 0x05, 0x00, 0x04, 0x14
32 };
33
34 static const u8 rsa_digest_info_rmd160[] = {
35 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
36 0x2b, 0x24, 0x03, 0x02, 0x01,
37 0x05, 0x00, 0x04, 0x14
38 };
39
40 static const u8 rsa_digest_info_sha224[] = {
41 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
42 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
43 0x05, 0x00, 0x04, 0x1c
44 };
45
46 static const u8 rsa_digest_info_sha256[] = {
47 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
48 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
49 0x05, 0x00, 0x04, 0x20
50 };
51
52 static const u8 rsa_digest_info_sha384[] = {
53 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
54 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
55 0x05, 0x00, 0x04, 0x30
56 };
57
58 static const u8 rsa_digest_info_sha512[] = {
59 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
60 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
61 0x05, 0x00, 0x04, 0x40
62 };
63
64 static const struct rsa_asn1_template {
65 const char *name;
66 const u8 *data;
67 size_t size;
68 } rsa_asn1_templates[] = {
69 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
70 _(md5),
71 _(sha1),
72 _(rmd160),
73 _(sha256),
74 _(sha384),
75 _(sha512),
76 _(sha224),
77 { NULL }
78 #undef _
79 };
80
rsa_lookup_asn1(const char * name)81 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
82 {
83 const struct rsa_asn1_template *p;
84
85 for (p = rsa_asn1_templates; p->name; p++)
86 if (strcmp(name, p->name) == 0)
87 return p;
88 return NULL;
89 }
90
91 struct pkcs1pad_ctx {
92 struct crypto_akcipher *child;
93 unsigned int key_size;
94 };
95
96 struct pkcs1pad_inst_ctx {
97 struct crypto_akcipher_spawn spawn;
98 const struct rsa_asn1_template *digest_info;
99 };
100
101 struct pkcs1pad_request {
102 struct scatterlist in_sg[2], out_sg[1];
103 uint8_t *in_buf, *out_buf;
104 struct akcipher_request child_req;
105 };
106
pkcs1pad_set_pub_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)107 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
108 unsigned int keylen)
109 {
110 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
111 int err;
112
113 ctx->key_size = 0;
114
115 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
116 if (err)
117 return err;
118
119 /* Find out new modulus size from rsa implementation */
120 err = crypto_akcipher_maxsize(ctx->child);
121 if (err > PAGE_SIZE)
122 return -ENOTSUPP;
123
124 ctx->key_size = err;
125 return 0;
126 }
127
pkcs1pad_set_priv_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)128 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
129 unsigned int keylen)
130 {
131 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
132 int err;
133
134 ctx->key_size = 0;
135
136 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
137 if (err)
138 return err;
139
140 /* Find out new modulus size from rsa implementation */
141 err = crypto_akcipher_maxsize(ctx->child);
142 if (err > PAGE_SIZE)
143 return -ENOTSUPP;
144
145 ctx->key_size = err;
146 return 0;
147 }
148
pkcs1pad_get_max_size(struct crypto_akcipher * tfm)149 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
150 {
151 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
152
153 /*
154 * The maximum destination buffer size for the encrypt/sign operations
155 * will be the same as for RSA, even though it's smaller for
156 * decrypt/verify.
157 */
158
159 return ctx->key_size;
160 }
161
pkcs1pad_sg_set_buf(struct scatterlist * sg,void * buf,size_t len,struct scatterlist * next)162 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
163 struct scatterlist *next)
164 {
165 int nsegs = next ? 2 : 1;
166
167 sg_init_table(sg, nsegs);
168 sg_set_buf(sg, buf, len);
169
170 if (next)
171 sg_chain(sg, nsegs, next);
172 }
173
pkcs1pad_encrypt_sign_complete(struct akcipher_request * req,int err)174 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
175 {
176 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
177 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
178 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
179 unsigned int pad_len;
180 unsigned int len;
181 u8 *out_buf;
182
183 if (err)
184 goto out;
185
186 len = req_ctx->child_req.dst_len;
187 pad_len = ctx->key_size - len;
188
189 /* Four billion to one */
190 if (likely(!pad_len))
191 goto out;
192
193 out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
194 err = -ENOMEM;
195 if (!out_buf)
196 goto out;
197
198 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
199 out_buf + pad_len, len);
200 sg_copy_from_buffer(req->dst,
201 sg_nents_for_len(req->dst, ctx->key_size),
202 out_buf, ctx->key_size);
203 kfree_sensitive(out_buf);
204
205 out:
206 req->dst_len = ctx->key_size;
207
208 kfree(req_ctx->in_buf);
209
210 return err;
211 }
212
pkcs1pad_encrypt_sign_complete_cb(struct crypto_async_request * child_async_req,int err)213 static void pkcs1pad_encrypt_sign_complete_cb(
214 struct crypto_async_request *child_async_req, int err)
215 {
216 struct akcipher_request *req = child_async_req->data;
217
218 if (err == -EINPROGRESS)
219 goto out;
220
221 err = pkcs1pad_encrypt_sign_complete(req, err);
222
223 out:
224 akcipher_request_complete(req, err);
225 }
226
pkcs1pad_encrypt(struct akcipher_request * req)227 static int pkcs1pad_encrypt(struct akcipher_request *req)
228 {
229 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
230 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
231 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
232 int err;
233 unsigned int i, ps_end;
234
235 if (!ctx->key_size)
236 return -EINVAL;
237
238 if (req->src_len > ctx->key_size - 11)
239 return -EOVERFLOW;
240
241 if (req->dst_len < ctx->key_size) {
242 req->dst_len = ctx->key_size;
243 return -EOVERFLOW;
244 }
245
246 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
247 GFP_KERNEL);
248 if (!req_ctx->in_buf)
249 return -ENOMEM;
250
251 ps_end = ctx->key_size - req->src_len - 2;
252 req_ctx->in_buf[0] = 0x02;
253 for (i = 1; i < ps_end; i++)
254 req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
255 req_ctx->in_buf[ps_end] = 0x00;
256
257 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
258 ctx->key_size - 1 - req->src_len, req->src);
259
260 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
261 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
262 pkcs1pad_encrypt_sign_complete_cb, req);
263
264 /* Reuse output buffer */
265 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
266 req->dst, ctx->key_size - 1, req->dst_len);
267
268 err = crypto_akcipher_encrypt(&req_ctx->child_req);
269 if (err != -EINPROGRESS && err != -EBUSY)
270 return pkcs1pad_encrypt_sign_complete(req, err);
271
272 return err;
273 }
274
pkcs1pad_decrypt_complete(struct akcipher_request * req,int err)275 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
276 {
277 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
278 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
279 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
280 unsigned int dst_len;
281 unsigned int pos;
282 u8 *out_buf;
283
284 if (err)
285 goto done;
286
287 err = -EINVAL;
288 dst_len = req_ctx->child_req.dst_len;
289 if (dst_len < ctx->key_size - 1)
290 goto done;
291
292 out_buf = req_ctx->out_buf;
293 if (dst_len == ctx->key_size) {
294 if (out_buf[0] != 0x00)
295 /* Decrypted value had no leading 0 byte */
296 goto done;
297
298 dst_len--;
299 out_buf++;
300 }
301
302 if (out_buf[0] != 0x02)
303 goto done;
304
305 for (pos = 1; pos < dst_len; pos++)
306 if (out_buf[pos] == 0x00)
307 break;
308 if (pos < 9 || pos == dst_len)
309 goto done;
310 pos++;
311
312 err = 0;
313
314 if (req->dst_len < dst_len - pos)
315 err = -EOVERFLOW;
316 req->dst_len = dst_len - pos;
317
318 if (!err)
319 sg_copy_from_buffer(req->dst,
320 sg_nents_for_len(req->dst, req->dst_len),
321 out_buf + pos, req->dst_len);
322
323 done:
324 kfree_sensitive(req_ctx->out_buf);
325
326 return err;
327 }
328
pkcs1pad_decrypt_complete_cb(struct crypto_async_request * child_async_req,int err)329 static void pkcs1pad_decrypt_complete_cb(
330 struct crypto_async_request *child_async_req, int err)
331 {
332 struct akcipher_request *req = child_async_req->data;
333
334 if (err == -EINPROGRESS)
335 goto out;
336
337 err = pkcs1pad_decrypt_complete(req, err);
338
339 out:
340 akcipher_request_complete(req, err);
341 }
342
pkcs1pad_decrypt(struct akcipher_request * req)343 static int pkcs1pad_decrypt(struct akcipher_request *req)
344 {
345 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
346 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
347 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
348 int err;
349
350 if (!ctx->key_size || req->src_len != ctx->key_size)
351 return -EINVAL;
352
353 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
354 if (!req_ctx->out_buf)
355 return -ENOMEM;
356
357 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
358 ctx->key_size, NULL);
359
360 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
361 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
362 pkcs1pad_decrypt_complete_cb, req);
363
364 /* Reuse input buffer, output to a new buffer */
365 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
366 req_ctx->out_sg, req->src_len,
367 ctx->key_size);
368
369 err = crypto_akcipher_decrypt(&req_ctx->child_req);
370 if (err != -EINPROGRESS && err != -EBUSY)
371 return pkcs1pad_decrypt_complete(req, err);
372
373 return err;
374 }
375
pkcs1pad_sign(struct akcipher_request * req)376 static int pkcs1pad_sign(struct akcipher_request *req)
377 {
378 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
379 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
380 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
381 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
382 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
383 const struct rsa_asn1_template *digest_info = ictx->digest_info;
384 int err;
385 unsigned int ps_end, digest_size = 0;
386
387 if (!ctx->key_size)
388 return -EINVAL;
389
390 if (digest_info)
391 digest_size = digest_info->size;
392
393 if (req->src_len + digest_size > ctx->key_size - 11)
394 return -EOVERFLOW;
395
396 if (req->dst_len < ctx->key_size) {
397 req->dst_len = ctx->key_size;
398 return -EOVERFLOW;
399 }
400
401 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
402 GFP_KERNEL);
403 if (!req_ctx->in_buf)
404 return -ENOMEM;
405
406 ps_end = ctx->key_size - digest_size - req->src_len - 2;
407 req_ctx->in_buf[0] = 0x01;
408 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
409 req_ctx->in_buf[ps_end] = 0x00;
410
411 if (digest_info)
412 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
413 digest_info->size);
414
415 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
416 ctx->key_size - 1 - req->src_len, req->src);
417
418 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
419 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
420 pkcs1pad_encrypt_sign_complete_cb, req);
421
422 /* Reuse output buffer */
423 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
424 req->dst, ctx->key_size - 1, req->dst_len);
425
426 err = crypto_akcipher_decrypt(&req_ctx->child_req);
427 if (err != -EINPROGRESS && err != -EBUSY)
428 return pkcs1pad_encrypt_sign_complete(req, err);
429
430 return err;
431 }
432
pkcs1pad_verify_complete(struct akcipher_request * req,int err)433 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
434 {
435 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
436 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
437 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
438 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
439 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
440 const struct rsa_asn1_template *digest_info = ictx->digest_info;
441 unsigned int dst_len;
442 unsigned int pos;
443 u8 *out_buf;
444
445 if (err)
446 goto done;
447
448 err = -EINVAL;
449 dst_len = req_ctx->child_req.dst_len;
450 if (dst_len < ctx->key_size - 1)
451 goto done;
452
453 out_buf = req_ctx->out_buf;
454 if (dst_len == ctx->key_size) {
455 if (out_buf[0] != 0x00)
456 /* Decrypted value had no leading 0 byte */
457 goto done;
458
459 dst_len--;
460 out_buf++;
461 }
462
463 err = -EBADMSG;
464 if (out_buf[0] != 0x01)
465 goto done;
466
467 for (pos = 1; pos < dst_len; pos++)
468 if (out_buf[pos] != 0xff)
469 break;
470
471 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
472 goto done;
473 pos++;
474
475 if (digest_info) {
476 if (digest_info->size > dst_len - pos)
477 goto done;
478 if (crypto_memneq(out_buf + pos, digest_info->data,
479 digest_info->size))
480 goto done;
481
482 pos += digest_info->size;
483 }
484
485 err = 0;
486
487 if (req->dst_len != dst_len - pos) {
488 err = -EKEYREJECTED;
489 req->dst_len = dst_len - pos;
490 goto done;
491 }
492 /* Extract appended digest. */
493 sg_pcopy_to_buffer(req->src,
494 sg_nents_for_len(req->src,
495 req->src_len + req->dst_len),
496 req_ctx->out_buf + ctx->key_size,
497 req->dst_len, req->src_len);
498 /* Do the actual verification step. */
499 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos,
500 req->dst_len) != 0)
501 err = -EKEYREJECTED;
502 done:
503 kfree_sensitive(req_ctx->out_buf);
504
505 return err;
506 }
507
pkcs1pad_verify_complete_cb(struct crypto_async_request * child_async_req,int err)508 static void pkcs1pad_verify_complete_cb(
509 struct crypto_async_request *child_async_req, int err)
510 {
511 struct akcipher_request *req = child_async_req->data;
512
513 if (err == -EINPROGRESS)
514 goto out;
515
516 err = pkcs1pad_verify_complete(req, err);
517
518 out:
519 akcipher_request_complete(req, err);
520 }
521
522 /*
523 * The verify operation is here for completeness similar to the verification
524 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
525 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
526 * retrieve the DigestInfo from a signature, instead the user is expected
527 * to call the sign operation to generate the expected signature and compare
528 * signatures instead of the message-digests.
529 */
pkcs1pad_verify(struct akcipher_request * req)530 static int pkcs1pad_verify(struct akcipher_request *req)
531 {
532 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
533 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
534 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
535 int err;
536
537 if (WARN_ON(req->dst) ||
538 WARN_ON(!req->dst_len) ||
539 !ctx->key_size || req->src_len != ctx->key_size)
540 return -EINVAL;
541
542 req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL);
543 if (!req_ctx->out_buf)
544 return -ENOMEM;
545
546 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
547 ctx->key_size, NULL);
548
549 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
550 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
551 pkcs1pad_verify_complete_cb, req);
552
553 /* Reuse input buffer, output to a new buffer */
554 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
555 req_ctx->out_sg, req->src_len,
556 ctx->key_size);
557
558 err = crypto_akcipher_encrypt(&req_ctx->child_req);
559 if (err != -EINPROGRESS && err != -EBUSY)
560 return pkcs1pad_verify_complete(req, err);
561
562 return err;
563 }
564
pkcs1pad_init_tfm(struct crypto_akcipher * tfm)565 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
566 {
567 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
568 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
569 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
570 struct crypto_akcipher *child_tfm;
571
572 child_tfm = crypto_spawn_akcipher(&ictx->spawn);
573 if (IS_ERR(child_tfm))
574 return PTR_ERR(child_tfm);
575
576 ctx->child = child_tfm;
577 return 0;
578 }
579
pkcs1pad_exit_tfm(struct crypto_akcipher * tfm)580 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
581 {
582 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
583
584 crypto_free_akcipher(ctx->child);
585 }
586
pkcs1pad_free(struct akcipher_instance * inst)587 static void pkcs1pad_free(struct akcipher_instance *inst)
588 {
589 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
590 struct crypto_akcipher_spawn *spawn = &ctx->spawn;
591
592 crypto_drop_akcipher(spawn);
593 kfree(inst);
594 }
595
pkcs1pad_create(struct crypto_template * tmpl,struct rtattr ** tb)596 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
597 {
598 u32 mask;
599 struct akcipher_instance *inst;
600 struct pkcs1pad_inst_ctx *ctx;
601 struct akcipher_alg *rsa_alg;
602 const char *hash_name;
603 int err;
604
605 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
606 if (err)
607 return err;
608
609 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
610 if (!inst)
611 return -ENOMEM;
612
613 ctx = akcipher_instance_ctx(inst);
614
615 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst),
616 crypto_attr_alg_name(tb[1]), 0, mask);
617 if (err)
618 goto err_free_inst;
619
620 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
621
622 if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) {
623 err = -EINVAL;
624 goto err_free_inst;
625 }
626
627 err = -ENAMETOOLONG;
628 hash_name = crypto_attr_alg_name(tb[2]);
629 if (IS_ERR(hash_name)) {
630 if (snprintf(inst->alg.base.cra_name,
631 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
632 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
633 goto err_free_inst;
634
635 if (snprintf(inst->alg.base.cra_driver_name,
636 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
637 rsa_alg->base.cra_driver_name) >=
638 CRYPTO_MAX_ALG_NAME)
639 goto err_free_inst;
640 } else {
641 ctx->digest_info = rsa_lookup_asn1(hash_name);
642 if (!ctx->digest_info) {
643 err = -EINVAL;
644 goto err_free_inst;
645 }
646
647 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
648 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name,
649 hash_name) >= CRYPTO_MAX_ALG_NAME)
650 goto err_free_inst;
651
652 if (snprintf(inst->alg.base.cra_driver_name,
653 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)",
654 rsa_alg->base.cra_driver_name,
655 hash_name) >= CRYPTO_MAX_ALG_NAME)
656 goto err_free_inst;
657 }
658
659 inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
660 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
661
662 inst->alg.init = pkcs1pad_init_tfm;
663 inst->alg.exit = pkcs1pad_exit_tfm;
664
665 inst->alg.encrypt = pkcs1pad_encrypt;
666 inst->alg.decrypt = pkcs1pad_decrypt;
667 inst->alg.sign = pkcs1pad_sign;
668 inst->alg.verify = pkcs1pad_verify;
669 inst->alg.set_pub_key = pkcs1pad_set_pub_key;
670 inst->alg.set_priv_key = pkcs1pad_set_priv_key;
671 inst->alg.max_size = pkcs1pad_get_max_size;
672 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
673
674 inst->free = pkcs1pad_free;
675
676 err = akcipher_register_instance(tmpl, inst);
677 if (err) {
678 err_free_inst:
679 pkcs1pad_free(inst);
680 }
681 return err;
682 }
683
684 struct crypto_template rsa_pkcs1pad_tmpl = {
685 .name = "pkcs1pad",
686 .create = pkcs1pad_create,
687 .module = THIS_MODULE,
688 };
689