1 /*
2 * Copyright(c) 2016 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 enum ib_qp_type type);
66
67 /*
68 * Convert the AETH RNR timeout code into the number of microseconds.
69 */
70 static const u32 ib_rvt_rnr_table[32] = {
71 655360, /* 00: 655.36 */
72 10, /* 01: .01 */
73 20, /* 02 .02 */
74 30, /* 03: .03 */
75 40, /* 04: .04 */
76 60, /* 05: .06 */
77 80, /* 06: .08 */
78 120, /* 07: .12 */
79 160, /* 08: .16 */
80 240, /* 09: .24 */
81 320, /* 0A: .32 */
82 480, /* 0B: .48 */
83 640, /* 0C: .64 */
84 960, /* 0D: .96 */
85 1280, /* 0E: 1.28 */
86 1920, /* 0F: 1.92 */
87 2560, /* 10: 2.56 */
88 3840, /* 11: 3.84 */
89 5120, /* 12: 5.12 */
90 7680, /* 13: 7.68 */
91 10240, /* 14: 10.24 */
92 15360, /* 15: 15.36 */
93 20480, /* 16: 20.48 */
94 30720, /* 17: 30.72 */
95 40960, /* 18: 40.96 */
96 61440, /* 19: 61.44 */
97 81920, /* 1A: 81.92 */
98 122880, /* 1B: 122.88 */
99 163840, /* 1C: 163.84 */
100 245760, /* 1D: 245.76 */
101 327680, /* 1E: 327.68 */
102 491520 /* 1F: 491.52 */
103 };
104
105 /*
106 * Note that it is OK to post send work requests in the SQE and ERR
107 * states; rvt_do_send() will process them and generate error
108 * completions as per IB 1.2 C10-96.
109 */
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 [IB_QPS_RESET] = 0,
112 [IB_QPS_INIT] = RVT_POST_RECV_OK,
113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 RVT_PROCESS_NEXT_SEND_OK,
117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
123 };
124 EXPORT_SYMBOL(ib_rvt_state_ops);
125
126 /* platform specific: return the last level cache (llc) size, in KiB */
rvt_wss_llc_size(void)127 static int rvt_wss_llc_size(void)
128 {
129 /* assume that the boot CPU value is universal for all CPUs */
130 return boot_cpu_data.x86_cache_size;
131 }
132
133 /* platform specific: cacheless copy */
cacheless_memcpy(void * dst,void * src,size_t n)134 static void cacheless_memcpy(void *dst, void *src, size_t n)
135 {
136 /*
137 * Use the only available X64 cacheless copy. Add a __user cast
138 * to quiet sparse. The src agument is already in the kernel so
139 * there are no security issues. The extra fault recovery machinery
140 * is not invoked.
141 */
142 __copy_user_nocache(dst, (void __user *)src, n, 0);
143 }
144
rvt_wss_exit(struct rvt_dev_info * rdi)145 void rvt_wss_exit(struct rvt_dev_info *rdi)
146 {
147 struct rvt_wss *wss = rdi->wss;
148
149 if (!wss)
150 return;
151
152 /* coded to handle partially initialized and repeat callers */
153 kfree(wss->entries);
154 wss->entries = NULL;
155 kfree(rdi->wss);
156 rdi->wss = NULL;
157 }
158
159 /**
160 * rvt_wss_init - Init wss data structures
161 *
162 * Return: 0 on success
163 */
rvt_wss_init(struct rvt_dev_info * rdi)164 int rvt_wss_init(struct rvt_dev_info *rdi)
165 {
166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 long llc_size;
170 long llc_bits;
171 long table_size;
172 long table_bits;
173 struct rvt_wss *wss;
174 int node = rdi->dparms.node;
175
176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 rdi->wss = NULL;
178 return 0;
179 }
180
181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 if (!rdi->wss)
183 return -ENOMEM;
184 wss = rdi->wss;
185
186 /* check for a valid percent range - default to 80 if none or invalid */
187 if (wss_threshold < 1 || wss_threshold > 100)
188 wss_threshold = 80;
189
190 /* reject a wildly large period */
191 if (wss_clean_period > 1000000)
192 wss_clean_period = 256;
193
194 /* reject a zero period */
195 if (wss_clean_period == 0)
196 wss_clean_period = 1;
197
198 /*
199 * Calculate the table size - the next power of 2 larger than the
200 * LLC size. LLC size is in KiB.
201 */
202 llc_size = rvt_wss_llc_size() * 1024;
203 table_size = roundup_pow_of_two(llc_size);
204
205 /* one bit per page in rounded up table */
206 llc_bits = llc_size / PAGE_SIZE;
207 table_bits = table_size / PAGE_SIZE;
208 wss->pages_mask = table_bits - 1;
209 wss->num_entries = table_bits / BITS_PER_LONG;
210
211 wss->threshold = (llc_bits * wss_threshold) / 100;
212 if (wss->threshold == 0)
213 wss->threshold = 1;
214
215 wss->clean_period = wss_clean_period;
216 atomic_set(&wss->clean_counter, wss_clean_period);
217
218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 GFP_KERNEL, node);
220 if (!wss->entries) {
221 rvt_wss_exit(rdi);
222 return -ENOMEM;
223 }
224
225 return 0;
226 }
227
228 /*
229 * Advance the clean counter. When the clean period has expired,
230 * clean an entry.
231 *
232 * This is implemented in atomics to avoid locking. Because multiple
233 * variables are involved, it can be racy which can lead to slightly
234 * inaccurate information. Since this is only a heuristic, this is
235 * OK. Any innaccuracies will clean themselves out as the counter
236 * advances. That said, it is unlikely the entry clean operation will
237 * race - the next possible racer will not start until the next clean
238 * period.
239 *
240 * The clean counter is implemented as a decrement to zero. When zero
241 * is reached an entry is cleaned.
242 */
wss_advance_clean_counter(struct rvt_wss * wss)243 static void wss_advance_clean_counter(struct rvt_wss *wss)
244 {
245 int entry;
246 int weight;
247 unsigned long bits;
248
249 /* become the cleaner if we decrement the counter to zero */
250 if (atomic_dec_and_test(&wss->clean_counter)) {
251 /*
252 * Set, not add, the clean period. This avoids an issue
253 * where the counter could decrement below the clean period.
254 * Doing a set can result in lost decrements, slowing the
255 * clean advance. Since this a heuristic, this possible
256 * slowdown is OK.
257 *
258 * An alternative is to loop, advancing the counter by a
259 * clean period until the result is > 0. However, this could
260 * lead to several threads keeping another in the clean loop.
261 * This could be mitigated by limiting the number of times
262 * we stay in the loop.
263 */
264 atomic_set(&wss->clean_counter, wss->clean_period);
265
266 /*
267 * Uniquely grab the entry to clean and move to next.
268 * The current entry is always the lower bits of
269 * wss.clean_entry. The table size, wss.num_entries,
270 * is always a power-of-2.
271 */
272 entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 & (wss->num_entries - 1);
274
275 /* clear the entry and count the bits */
276 bits = xchg(&wss->entries[entry], 0);
277 weight = hweight64((u64)bits);
278 /* only adjust the contended total count if needed */
279 if (weight)
280 atomic_sub(weight, &wss->total_count);
281 }
282 }
283
284 /*
285 * Insert the given address into the working set array.
286 */
wss_insert(struct rvt_wss * wss,void * address)287 static void wss_insert(struct rvt_wss *wss, void *address)
288 {
289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 u32 nr = page & (BITS_PER_LONG - 1);
292
293 if (!test_and_set_bit(nr, &wss->entries[entry]))
294 atomic_inc(&wss->total_count);
295
296 wss_advance_clean_counter(wss);
297 }
298
299 /*
300 * Is the working set larger than the threshold?
301 */
wss_exceeds_threshold(struct rvt_wss * wss)302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
303 {
304 return atomic_read(&wss->total_count) >= wss->threshold;
305 }
306
get_map_page(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map)307 static void get_map_page(struct rvt_qpn_table *qpt,
308 struct rvt_qpn_map *map)
309 {
310 unsigned long page = get_zeroed_page(GFP_KERNEL);
311
312 /*
313 * Free the page if someone raced with us installing it.
314 */
315
316 spin_lock(&qpt->lock);
317 if (map->page)
318 free_page(page);
319 else
320 map->page = (void *)page;
321 spin_unlock(&qpt->lock);
322 }
323
324 /**
325 * init_qpn_table - initialize the QP number table for a device
326 * @qpt: the QPN table
327 */
init_qpn_table(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt)328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
329 {
330 u32 offset, i;
331 struct rvt_qpn_map *map;
332 int ret = 0;
333
334 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335 return -EINVAL;
336
337 spin_lock_init(&qpt->lock);
338
339 qpt->last = rdi->dparms.qpn_start;
340 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
341
342 /*
343 * Drivers may want some QPs beyond what we need for verbs let them use
344 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345 * for those. The reserved range must be *after* the range which verbs
346 * will pick from.
347 */
348
349 /* Figure out number of bit maps needed before reserved range */
350 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
351
352 /* This should always be zero */
353 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
354
355 /* Starting with the first reserved bit map */
356 map = &qpt->map[qpt->nmaps];
357
358 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361 if (!map->page) {
362 get_map_page(qpt, map);
363 if (!map->page) {
364 ret = -ENOMEM;
365 break;
366 }
367 }
368 set_bit(offset, map->page);
369 offset++;
370 if (offset == RVT_BITS_PER_PAGE) {
371 /* next page */
372 qpt->nmaps++;
373 map++;
374 offset = 0;
375 }
376 }
377 return ret;
378 }
379
380 /**
381 * free_qpn_table - free the QP number table for a device
382 * @qpt: the QPN table
383 */
free_qpn_table(struct rvt_qpn_table * qpt)384 static void free_qpn_table(struct rvt_qpn_table *qpt)
385 {
386 int i;
387
388 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389 free_page((unsigned long)qpt->map[i].page);
390 }
391
392 /**
393 * rvt_driver_qp_init - Init driver qp resources
394 * @rdi: rvt dev strucutre
395 *
396 * Return: 0 on success
397 */
rvt_driver_qp_init(struct rvt_dev_info * rdi)398 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
399 {
400 int i;
401 int ret = -ENOMEM;
402
403 if (!rdi->dparms.qp_table_size)
404 return -EINVAL;
405
406 /*
407 * If driver is not doing any QP allocation then make sure it is
408 * providing the necessary QP functions.
409 */
410 if (!rdi->driver_f.free_all_qps ||
411 !rdi->driver_f.qp_priv_alloc ||
412 !rdi->driver_f.qp_priv_free ||
413 !rdi->driver_f.notify_qp_reset ||
414 !rdi->driver_f.notify_restart_rc)
415 return -EINVAL;
416
417 /* allocate parent object */
418 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419 rdi->dparms.node);
420 if (!rdi->qp_dev)
421 return -ENOMEM;
422
423 /* allocate hash table */
424 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426 rdi->qp_dev->qp_table =
427 kmalloc_array_node(rdi->qp_dev->qp_table_size,
428 sizeof(*rdi->qp_dev->qp_table),
429 GFP_KERNEL, rdi->dparms.node);
430 if (!rdi->qp_dev->qp_table)
431 goto no_qp_table;
432
433 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
435
436 spin_lock_init(&rdi->qp_dev->qpt_lock);
437
438 /* initialize qpn map */
439 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440 goto fail_table;
441
442 spin_lock_init(&rdi->n_qps_lock);
443
444 return 0;
445
446 fail_table:
447 kfree(rdi->qp_dev->qp_table);
448 free_qpn_table(&rdi->qp_dev->qpn_table);
449
450 no_qp_table:
451 kfree(rdi->qp_dev);
452
453 return ret;
454 }
455
456 /**
457 * rvt_free_qp_cb - callback function to reset a qp
458 * @qp: the qp to reset
459 * @v: a 64-bit value
460 *
461 * This function resets the qp and removes it from the
462 * qp hash table.
463 */
rvt_free_qp_cb(struct rvt_qp * qp,u64 v)464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
465 {
466 unsigned int *qp_inuse = (unsigned int *)v;
467 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
468
469 /* Reset the qp and remove it from the qp hash list */
470 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
471
472 /* Increment the qp_inuse count */
473 (*qp_inuse)++;
474 }
475
476 /**
477 * rvt_free_all_qps - check for QPs still in use
478 * @rdi: rvt device info structure
479 *
480 * There should not be any QPs still in use.
481 * Free memory for table.
482 * Return the number of QPs still in use.
483 */
rvt_free_all_qps(struct rvt_dev_info * rdi)484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
485 {
486 unsigned int qp_inuse = 0;
487
488 qp_inuse += rvt_mcast_tree_empty(rdi);
489
490 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
491
492 return qp_inuse;
493 }
494
495 /**
496 * rvt_qp_exit - clean up qps on device exit
497 * @rdi: rvt dev structure
498 *
499 * Check for qp leaks and free resources.
500 */
rvt_qp_exit(struct rvt_dev_info * rdi)501 void rvt_qp_exit(struct rvt_dev_info *rdi)
502 {
503 u32 qps_inuse = rvt_free_all_qps(rdi);
504
505 if (qps_inuse)
506 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507 qps_inuse);
508
509 kfree(rdi->qp_dev->qp_table);
510 free_qpn_table(&rdi->qp_dev->qpn_table);
511 kfree(rdi->qp_dev);
512 }
513
mk_qpn(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map,unsigned off)514 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
515 struct rvt_qpn_map *map, unsigned off)
516 {
517 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
518 }
519
520 /**
521 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
522 * IB_QPT_SMI/IB_QPT_GSI
523 * @rdi: rvt device info structure
524 * @qpt: queue pair number table pointer
525 * @port_num: IB port number, 1 based, comes from core
526 * @exclude_prefix: prefix of special queue pair number being allocated
527 *
528 * Return: The queue pair number
529 */
alloc_qpn(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt,enum ib_qp_type type,u8 port_num,u8 exclude_prefix)530 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
531 enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
532 {
533 u32 i, offset, max_scan, qpn;
534 struct rvt_qpn_map *map;
535 u32 ret;
536 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
537 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
538
539 if (rdi->driver_f.alloc_qpn)
540 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
541
542 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
543 unsigned n;
544
545 ret = type == IB_QPT_GSI;
546 n = 1 << (ret + 2 * (port_num - 1));
547 spin_lock(&qpt->lock);
548 if (qpt->flags & n)
549 ret = -EINVAL;
550 else
551 qpt->flags |= n;
552 spin_unlock(&qpt->lock);
553 goto bail;
554 }
555
556 qpn = qpt->last + qpt->incr;
557 if (qpn >= max_qpn)
558 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
559 /* offset carries bit 0 */
560 offset = qpn & RVT_BITS_PER_PAGE_MASK;
561 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
562 max_scan = qpt->nmaps - !offset;
563 for (i = 0;;) {
564 if (unlikely(!map->page)) {
565 get_map_page(qpt, map);
566 if (unlikely(!map->page))
567 break;
568 }
569 do {
570 if (!test_and_set_bit(offset, map->page)) {
571 qpt->last = qpn;
572 ret = qpn;
573 goto bail;
574 }
575 offset += qpt->incr;
576 /*
577 * This qpn might be bogus if offset >= BITS_PER_PAGE.
578 * That is OK. It gets re-assigned below
579 */
580 qpn = mk_qpn(qpt, map, offset);
581 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
582 /*
583 * In order to keep the number of pages allocated to a
584 * minimum, we scan the all existing pages before increasing
585 * the size of the bitmap table.
586 */
587 if (++i > max_scan) {
588 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
589 break;
590 map = &qpt->map[qpt->nmaps++];
591 /* start at incr with current bit 0 */
592 offset = qpt->incr | (offset & 1);
593 } else if (map < &qpt->map[qpt->nmaps]) {
594 ++map;
595 /* start at incr with current bit 0 */
596 offset = qpt->incr | (offset & 1);
597 } else {
598 map = &qpt->map[0];
599 /* wrap to first map page, invert bit 0 */
600 offset = qpt->incr | ((offset & 1) ^ 1);
601 }
602 /* there can be no set bits in low-order QoS bits */
603 WARN_ON(rdi->dparms.qos_shift > 1 &&
604 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
605 qpn = mk_qpn(qpt, map, offset);
606 }
607
608 ret = -ENOMEM;
609
610 bail:
611 return ret;
612 }
613
614 /**
615 * rvt_clear_mr_refs - Drop help mr refs
616 * @qp: rvt qp data structure
617 * @clr_sends: If shoudl clear send side or not
618 */
rvt_clear_mr_refs(struct rvt_qp * qp,int clr_sends)619 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
620 {
621 unsigned n;
622 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
623
624 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
625 rvt_put_ss(&qp->s_rdma_read_sge);
626
627 rvt_put_ss(&qp->r_sge);
628
629 if (clr_sends) {
630 while (qp->s_last != qp->s_head) {
631 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
632
633 rvt_put_qp_swqe(qp, wqe);
634 if (++qp->s_last >= qp->s_size)
635 qp->s_last = 0;
636 smp_wmb(); /* see qp_set_savail */
637 }
638 if (qp->s_rdma_mr) {
639 rvt_put_mr(qp->s_rdma_mr);
640 qp->s_rdma_mr = NULL;
641 }
642 }
643
644 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
645 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
646
647 if (e->rdma_sge.mr) {
648 rvt_put_mr(e->rdma_sge.mr);
649 e->rdma_sge.mr = NULL;
650 }
651 }
652 }
653
654 /**
655 * rvt_swqe_has_lkey - return true if lkey is used by swqe
656 * @wqe - the send wqe
657 * @lkey - the lkey
658 *
659 * Test the swqe for using lkey
660 */
rvt_swqe_has_lkey(struct rvt_swqe * wqe,u32 lkey)661 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
662 {
663 int i;
664
665 for (i = 0; i < wqe->wr.num_sge; i++) {
666 struct rvt_sge *sge = &wqe->sg_list[i];
667
668 if (rvt_mr_has_lkey(sge->mr, lkey))
669 return true;
670 }
671 return false;
672 }
673
674 /**
675 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
676 * @qp - the rvt_qp
677 * @lkey - the lkey
678 */
rvt_qp_sends_has_lkey(struct rvt_qp * qp,u32 lkey)679 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
680 {
681 u32 s_last = qp->s_last;
682
683 while (s_last != qp->s_head) {
684 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
685
686 if (rvt_swqe_has_lkey(wqe, lkey))
687 return true;
688
689 if (++s_last >= qp->s_size)
690 s_last = 0;
691 }
692 if (qp->s_rdma_mr)
693 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
694 return true;
695 return false;
696 }
697
698 /**
699 * rvt_qp_acks_has_lkey - return true if acks have lkey
700 * @qp - the qp
701 * @lkey - the lkey
702 */
rvt_qp_acks_has_lkey(struct rvt_qp * qp,u32 lkey)703 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
704 {
705 int i;
706 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
707
708 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
709 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
710
711 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
712 return true;
713 }
714 return false;
715 }
716
717 /*
718 * rvt_qp_mr_clean - clean up remote ops for lkey
719 * @qp - the qp
720 * @lkey - the lkey that is being de-registered
721 *
722 * This routine checks if the lkey is being used by
723 * the qp.
724 *
725 * If so, the qp is put into an error state to elminate
726 * any references from the qp.
727 */
rvt_qp_mr_clean(struct rvt_qp * qp,u32 lkey)728 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
729 {
730 bool lastwqe = false;
731
732 if (qp->ibqp.qp_type == IB_QPT_SMI ||
733 qp->ibqp.qp_type == IB_QPT_GSI)
734 /* avoid special QPs */
735 return;
736 spin_lock_irq(&qp->r_lock);
737 spin_lock(&qp->s_hlock);
738 spin_lock(&qp->s_lock);
739
740 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
741 goto check_lwqe;
742
743 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
744 rvt_qp_sends_has_lkey(qp, lkey) ||
745 rvt_qp_acks_has_lkey(qp, lkey))
746 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
747 check_lwqe:
748 spin_unlock(&qp->s_lock);
749 spin_unlock(&qp->s_hlock);
750 spin_unlock_irq(&qp->r_lock);
751 if (lastwqe) {
752 struct ib_event ev;
753
754 ev.device = qp->ibqp.device;
755 ev.element.qp = &qp->ibqp;
756 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
757 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
758 }
759 }
760
761 /**
762 * rvt_remove_qp - remove qp form table
763 * @rdi: rvt dev struct
764 * @qp: qp to remove
765 *
766 * Remove the QP from the table so it can't be found asynchronously by
767 * the receive routine.
768 */
rvt_remove_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)769 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
770 {
771 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
772 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
773 unsigned long flags;
774 int removed = 1;
775
776 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
777
778 if (rcu_dereference_protected(rvp->qp[0],
779 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
780 RCU_INIT_POINTER(rvp->qp[0], NULL);
781 } else if (rcu_dereference_protected(rvp->qp[1],
782 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
783 RCU_INIT_POINTER(rvp->qp[1], NULL);
784 } else {
785 struct rvt_qp *q;
786 struct rvt_qp __rcu **qpp;
787
788 removed = 0;
789 qpp = &rdi->qp_dev->qp_table[n];
790 for (; (q = rcu_dereference_protected(*qpp,
791 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
792 qpp = &q->next) {
793 if (q == qp) {
794 RCU_INIT_POINTER(*qpp,
795 rcu_dereference_protected(qp->next,
796 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
797 removed = 1;
798 trace_rvt_qpremove(qp, n);
799 break;
800 }
801 }
802 }
803
804 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
805 if (removed) {
806 synchronize_rcu();
807 rvt_put_qp(qp);
808 }
809 }
810
811 /**
812 * rvt_alloc_rq - allocate memory for user or kernel buffer
813 * @rq: receive queue data structure
814 * @size: number of request queue entries
815 * @node: The NUMA node
816 * @udata: True if user data is available or not false
817 *
818 * Return: If memory allocation failed, return -ENONEM
819 * This function is used by both shared receive
820 * queues and non-shared receive queues to allocate
821 * memory.
822 */
rvt_alloc_rq(struct rvt_rq * rq,u32 size,int node,struct ib_udata * udata)823 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
824 struct ib_udata *udata)
825 {
826 if (udata) {
827 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
828 if (!rq->wq)
829 goto bail;
830 /* need kwq with no buffers */
831 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
832 if (!rq->kwq)
833 goto bail;
834 rq->kwq->curr_wq = rq->wq->wq;
835 } else {
836 /* need kwq with buffers */
837 rq->kwq =
838 vzalloc_node(sizeof(struct rvt_krwq) + size, node);
839 if (!rq->kwq)
840 goto bail;
841 rq->kwq->curr_wq = rq->kwq->wq;
842 }
843
844 spin_lock_init(&rq->kwq->p_lock);
845 spin_lock_init(&rq->kwq->c_lock);
846 return 0;
847 bail:
848 rvt_free_rq(rq);
849 return -ENOMEM;
850 }
851
852 /**
853 * rvt_init_qp - initialize the QP state to the reset state
854 * @qp: the QP to init or reinit
855 * @type: the QP type
856 *
857 * This function is called from both rvt_create_qp() and
858 * rvt_reset_qp(). The difference is that the reset
859 * patch the necessary locks to protect against concurent
860 * access.
861 */
rvt_init_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)862 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
863 enum ib_qp_type type)
864 {
865 qp->remote_qpn = 0;
866 qp->qkey = 0;
867 qp->qp_access_flags = 0;
868 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
869 qp->s_hdrwords = 0;
870 qp->s_wqe = NULL;
871 qp->s_draining = 0;
872 qp->s_next_psn = 0;
873 qp->s_last_psn = 0;
874 qp->s_sending_psn = 0;
875 qp->s_sending_hpsn = 0;
876 qp->s_psn = 0;
877 qp->r_psn = 0;
878 qp->r_msn = 0;
879 if (type == IB_QPT_RC) {
880 qp->s_state = IB_OPCODE_RC_SEND_LAST;
881 qp->r_state = IB_OPCODE_RC_SEND_LAST;
882 } else {
883 qp->s_state = IB_OPCODE_UC_SEND_LAST;
884 qp->r_state = IB_OPCODE_UC_SEND_LAST;
885 }
886 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
887 qp->r_nak_state = 0;
888 qp->r_aflags = 0;
889 qp->r_flags = 0;
890 qp->s_head = 0;
891 qp->s_tail = 0;
892 qp->s_cur = 0;
893 qp->s_acked = 0;
894 qp->s_last = 0;
895 qp->s_ssn = 1;
896 qp->s_lsn = 0;
897 qp->s_mig_state = IB_MIG_MIGRATED;
898 qp->r_head_ack_queue = 0;
899 qp->s_tail_ack_queue = 0;
900 qp->s_acked_ack_queue = 0;
901 qp->s_num_rd_atomic = 0;
902 qp->r_sge.num_sge = 0;
903 atomic_set(&qp->s_reserved_used, 0);
904 }
905
906 /**
907 * _rvt_reset_qp - initialize the QP state to the reset state
908 * @qp: the QP to reset
909 * @type: the QP type
910 *
911 * r_lock, s_hlock, and s_lock are required to be held by the caller
912 */
_rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)913 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
914 enum ib_qp_type type)
915 __must_hold(&qp->s_lock)
916 __must_hold(&qp->s_hlock)
917 __must_hold(&qp->r_lock)
918 {
919 lockdep_assert_held(&qp->r_lock);
920 lockdep_assert_held(&qp->s_hlock);
921 lockdep_assert_held(&qp->s_lock);
922 if (qp->state != IB_QPS_RESET) {
923 qp->state = IB_QPS_RESET;
924
925 /* Let drivers flush their waitlist */
926 rdi->driver_f.flush_qp_waiters(qp);
927 rvt_stop_rc_timers(qp);
928 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
929 spin_unlock(&qp->s_lock);
930 spin_unlock(&qp->s_hlock);
931 spin_unlock_irq(&qp->r_lock);
932
933 /* Stop the send queue and the retry timer */
934 rdi->driver_f.stop_send_queue(qp);
935 rvt_del_timers_sync(qp);
936 /* Wait for things to stop */
937 rdi->driver_f.quiesce_qp(qp);
938
939 /* take qp out the hash and wait for it to be unused */
940 rvt_remove_qp(rdi, qp);
941
942 /* grab the lock b/c it was locked at call time */
943 spin_lock_irq(&qp->r_lock);
944 spin_lock(&qp->s_hlock);
945 spin_lock(&qp->s_lock);
946
947 rvt_clear_mr_refs(qp, 1);
948 /*
949 * Let the driver do any tear down or re-init it needs to for
950 * a qp that has been reset
951 */
952 rdi->driver_f.notify_qp_reset(qp);
953 }
954 rvt_init_qp(rdi, qp, type);
955 lockdep_assert_held(&qp->r_lock);
956 lockdep_assert_held(&qp->s_hlock);
957 lockdep_assert_held(&qp->s_lock);
958 }
959
960 /**
961 * rvt_reset_qp - initialize the QP state to the reset state
962 * @rdi: the device info
963 * @qp: the QP to reset
964 * @type: the QP type
965 *
966 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
967 * before calling _rvt_reset_qp().
968 */
rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)969 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
970 enum ib_qp_type type)
971 {
972 spin_lock_irq(&qp->r_lock);
973 spin_lock(&qp->s_hlock);
974 spin_lock(&qp->s_lock);
975 _rvt_reset_qp(rdi, qp, type);
976 spin_unlock(&qp->s_lock);
977 spin_unlock(&qp->s_hlock);
978 spin_unlock_irq(&qp->r_lock);
979 }
980
981 /** rvt_free_qpn - Free a qpn from the bit map
982 * @qpt: QP table
983 * @qpn: queue pair number to free
984 */
rvt_free_qpn(struct rvt_qpn_table * qpt,u32 qpn)985 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
986 {
987 struct rvt_qpn_map *map;
988
989 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
990 qpn &= RVT_AIP_QP_SUFFIX;
991
992 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
993 if (map->page)
994 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
995 }
996
997 /**
998 * get_allowed_ops - Given a QP type return the appropriate allowed OP
999 * @type: valid, supported, QP type
1000 */
get_allowed_ops(enum ib_qp_type type)1001 static u8 get_allowed_ops(enum ib_qp_type type)
1002 {
1003 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1004 IB_OPCODE_UC : IB_OPCODE_UD;
1005 }
1006
1007 /**
1008 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1009 * @qp: Valid QP with allowed_ops set
1010 *
1011 * The rvt_swqe data structure being used is a union, so this is
1012 * only valid for UD QPs.
1013 */
free_ud_wq_attr(struct rvt_qp * qp)1014 static void free_ud_wq_attr(struct rvt_qp *qp)
1015 {
1016 struct rvt_swqe *wqe;
1017 int i;
1018
1019 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1020 wqe = rvt_get_swqe_ptr(qp, i);
1021 kfree(wqe->ud_wr.attr);
1022 wqe->ud_wr.attr = NULL;
1023 }
1024 }
1025
1026 /**
1027 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1028 * @qp: Valid QP with allowed_ops set
1029 * @node: Numa node for allocation
1030 *
1031 * The rvt_swqe data structure being used is a union, so this is
1032 * only valid for UD QPs.
1033 */
alloc_ud_wq_attr(struct rvt_qp * qp,int node)1034 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1035 {
1036 struct rvt_swqe *wqe;
1037 int i;
1038
1039 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1040 wqe = rvt_get_swqe_ptr(qp, i);
1041 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1042 GFP_KERNEL, node);
1043 if (!wqe->ud_wr.attr) {
1044 free_ud_wq_attr(qp);
1045 return -ENOMEM;
1046 }
1047 }
1048
1049 return 0;
1050 }
1051
1052 /**
1053 * rvt_create_qp - create a queue pair for a device
1054 * @ibpd: the protection domain who's device we create the queue pair for
1055 * @init_attr: the attributes of the queue pair
1056 * @udata: user data for libibverbs.so
1057 *
1058 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1059 * unique idea of what queue pair numbers mean. For instance there is a reserved
1060 * range for PSM.
1061 *
1062 * Return: the queue pair on success, otherwise returns an errno.
1063 *
1064 * Called by the ib_create_qp() core verbs function.
1065 */
rvt_create_qp(struct ib_pd * ibpd,struct ib_qp_init_attr * init_attr,struct ib_udata * udata)1066 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1067 struct ib_qp_init_attr *init_attr,
1068 struct ib_udata *udata)
1069 {
1070 struct rvt_qp *qp;
1071 int err;
1072 struct rvt_swqe *swq = NULL;
1073 size_t sz;
1074 size_t sg_list_sz;
1075 struct ib_qp *ret = ERR_PTR(-ENOMEM);
1076 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1077 void *priv = NULL;
1078 size_t sqsize;
1079 u8 exclude_prefix = 0;
1080
1081 if (!rdi)
1082 return ERR_PTR(-EINVAL);
1083
1084 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1085 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1086 (init_attr->create_flags &&
1087 init_attr->create_flags != IB_QP_CREATE_NETDEV_USE))
1088 return ERR_PTR(-EINVAL);
1089
1090 /* Check receive queue parameters if no SRQ is specified. */
1091 if (!init_attr->srq) {
1092 if (init_attr->cap.max_recv_sge >
1093 rdi->dparms.props.max_recv_sge ||
1094 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1095 return ERR_PTR(-EINVAL);
1096
1097 if (init_attr->cap.max_send_sge +
1098 init_attr->cap.max_send_wr +
1099 init_attr->cap.max_recv_sge +
1100 init_attr->cap.max_recv_wr == 0)
1101 return ERR_PTR(-EINVAL);
1102 }
1103 sqsize =
1104 init_attr->cap.max_send_wr + 1 +
1105 rdi->dparms.reserved_operations;
1106 switch (init_attr->qp_type) {
1107 case IB_QPT_SMI:
1108 case IB_QPT_GSI:
1109 if (init_attr->port_num == 0 ||
1110 init_attr->port_num > ibpd->device->phys_port_cnt)
1111 return ERR_PTR(-EINVAL);
1112 fallthrough;
1113 case IB_QPT_UC:
1114 case IB_QPT_RC:
1115 case IB_QPT_UD:
1116 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1117 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1118 if (!swq)
1119 return ERR_PTR(-ENOMEM);
1120
1121 sz = sizeof(*qp);
1122 sg_list_sz = 0;
1123 if (init_attr->srq) {
1124 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1125
1126 if (srq->rq.max_sge > 1)
1127 sg_list_sz = sizeof(*qp->r_sg_list) *
1128 (srq->rq.max_sge - 1);
1129 } else if (init_attr->cap.max_recv_sge > 1)
1130 sg_list_sz = sizeof(*qp->r_sg_list) *
1131 (init_attr->cap.max_recv_sge - 1);
1132 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1133 rdi->dparms.node);
1134 if (!qp)
1135 goto bail_swq;
1136 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1137
1138 RCU_INIT_POINTER(qp->next, NULL);
1139 if (init_attr->qp_type == IB_QPT_RC) {
1140 qp->s_ack_queue =
1141 kcalloc_node(rvt_max_atomic(rdi),
1142 sizeof(*qp->s_ack_queue),
1143 GFP_KERNEL,
1144 rdi->dparms.node);
1145 if (!qp->s_ack_queue)
1146 goto bail_qp;
1147 }
1148 /* initialize timers needed for rc qp */
1149 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1150 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1151 HRTIMER_MODE_REL);
1152 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1153
1154 /*
1155 * Driver needs to set up it's private QP structure and do any
1156 * initialization that is needed.
1157 */
1158 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1159 if (IS_ERR(priv)) {
1160 ret = priv;
1161 goto bail_qp;
1162 }
1163 qp->priv = priv;
1164 qp->timeout_jiffies =
1165 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1166 1000UL);
1167 if (init_attr->srq) {
1168 sz = 0;
1169 } else {
1170 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1171 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1172 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1173 sizeof(struct rvt_rwqe);
1174 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1175 rdi->dparms.node, udata);
1176 if (err) {
1177 ret = ERR_PTR(err);
1178 goto bail_driver_priv;
1179 }
1180 }
1181
1182 /*
1183 * ib_create_qp() will initialize qp->ibqp
1184 * except for qp->ibqp.qp_num.
1185 */
1186 spin_lock_init(&qp->r_lock);
1187 spin_lock_init(&qp->s_hlock);
1188 spin_lock_init(&qp->s_lock);
1189 atomic_set(&qp->refcount, 0);
1190 atomic_set(&qp->local_ops_pending, 0);
1191 init_waitqueue_head(&qp->wait);
1192 INIT_LIST_HEAD(&qp->rspwait);
1193 qp->state = IB_QPS_RESET;
1194 qp->s_wq = swq;
1195 qp->s_size = sqsize;
1196 qp->s_avail = init_attr->cap.max_send_wr;
1197 qp->s_max_sge = init_attr->cap.max_send_sge;
1198 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1199 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1200 err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1201 if (err) {
1202 ret = (ERR_PTR(err));
1203 goto bail_rq_rvt;
1204 }
1205
1206 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1207 exclude_prefix = RVT_AIP_QP_PREFIX;
1208
1209 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1210 init_attr->qp_type,
1211 init_attr->port_num,
1212 exclude_prefix);
1213 if (err < 0) {
1214 ret = ERR_PTR(err);
1215 goto bail_rq_wq;
1216 }
1217 qp->ibqp.qp_num = err;
1218 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1219 qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1220 qp->port_num = init_attr->port_num;
1221 rvt_init_qp(rdi, qp, init_attr->qp_type);
1222 if (rdi->driver_f.qp_priv_init) {
1223 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1224 if (err) {
1225 ret = ERR_PTR(err);
1226 goto bail_rq_wq;
1227 }
1228 }
1229 break;
1230
1231 default:
1232 /* Don't support raw QPs */
1233 return ERR_PTR(-EOPNOTSUPP);
1234 }
1235
1236 init_attr->cap.max_inline_data = 0;
1237
1238 /*
1239 * Return the address of the RWQ as the offset to mmap.
1240 * See rvt_mmap() for details.
1241 */
1242 if (udata && udata->outlen >= sizeof(__u64)) {
1243 if (!qp->r_rq.wq) {
1244 __u64 offset = 0;
1245
1246 err = ib_copy_to_udata(udata, &offset,
1247 sizeof(offset));
1248 if (err) {
1249 ret = ERR_PTR(err);
1250 goto bail_qpn;
1251 }
1252 } else {
1253 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1254
1255 qp->ip = rvt_create_mmap_info(rdi, s, udata,
1256 qp->r_rq.wq);
1257 if (IS_ERR(qp->ip)) {
1258 ret = ERR_CAST(qp->ip);
1259 goto bail_qpn;
1260 }
1261
1262 err = ib_copy_to_udata(udata, &qp->ip->offset,
1263 sizeof(qp->ip->offset));
1264 if (err) {
1265 ret = ERR_PTR(err);
1266 goto bail_ip;
1267 }
1268 }
1269 qp->pid = current->pid;
1270 }
1271
1272 spin_lock(&rdi->n_qps_lock);
1273 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1274 spin_unlock(&rdi->n_qps_lock);
1275 ret = ERR_PTR(-ENOMEM);
1276 goto bail_ip;
1277 }
1278
1279 rdi->n_qps_allocated++;
1280 /*
1281 * Maintain a busy_jiffies variable that will be added to the timeout
1282 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1283 * is scaled by the number of rc qps created for the device to reduce
1284 * the number of timeouts occurring when there is a large number of
1285 * qps. busy_jiffies is incremented every rc qp scaling interval.
1286 * The scaling interval is selected based on extensive performance
1287 * evaluation of targeted workloads.
1288 */
1289 if (init_attr->qp_type == IB_QPT_RC) {
1290 rdi->n_rc_qps++;
1291 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1292 }
1293 spin_unlock(&rdi->n_qps_lock);
1294
1295 if (qp->ip) {
1296 spin_lock_irq(&rdi->pending_lock);
1297 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1298 spin_unlock_irq(&rdi->pending_lock);
1299 }
1300
1301 ret = &qp->ibqp;
1302
1303 return ret;
1304
1305 bail_ip:
1306 if (qp->ip)
1307 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1308
1309 bail_qpn:
1310 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1311
1312 bail_rq_wq:
1313 free_ud_wq_attr(qp);
1314
1315 bail_rq_rvt:
1316 rvt_free_rq(&qp->r_rq);
1317
1318 bail_driver_priv:
1319 rdi->driver_f.qp_priv_free(rdi, qp);
1320
1321 bail_qp:
1322 kfree(qp->s_ack_queue);
1323 kfree(qp);
1324
1325 bail_swq:
1326 vfree(swq);
1327
1328 return ret;
1329 }
1330
1331 /**
1332 * rvt_error_qp - put a QP into the error state
1333 * @qp: the QP to put into the error state
1334 * @err: the receive completion error to signal if a RWQE is active
1335 *
1336 * Flushes both send and receive work queues.
1337 *
1338 * Return: true if last WQE event should be generated.
1339 * The QP r_lock and s_lock should be held and interrupts disabled.
1340 * If we are already in error state, just return.
1341 */
rvt_error_qp(struct rvt_qp * qp,enum ib_wc_status err)1342 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1343 {
1344 struct ib_wc wc;
1345 int ret = 0;
1346 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1347
1348 lockdep_assert_held(&qp->r_lock);
1349 lockdep_assert_held(&qp->s_lock);
1350 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1351 goto bail;
1352
1353 qp->state = IB_QPS_ERR;
1354
1355 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1356 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1357 del_timer(&qp->s_timer);
1358 }
1359
1360 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1361 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1362
1363 rdi->driver_f.notify_error_qp(qp);
1364
1365 /* Schedule the sending tasklet to drain the send work queue. */
1366 if (READ_ONCE(qp->s_last) != qp->s_head)
1367 rdi->driver_f.schedule_send(qp);
1368
1369 rvt_clear_mr_refs(qp, 0);
1370
1371 memset(&wc, 0, sizeof(wc));
1372 wc.qp = &qp->ibqp;
1373 wc.opcode = IB_WC_RECV;
1374
1375 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1376 wc.wr_id = qp->r_wr_id;
1377 wc.status = err;
1378 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1379 }
1380 wc.status = IB_WC_WR_FLUSH_ERR;
1381
1382 if (qp->r_rq.kwq) {
1383 u32 head;
1384 u32 tail;
1385 struct rvt_rwq *wq = NULL;
1386 struct rvt_krwq *kwq = NULL;
1387
1388 spin_lock(&qp->r_rq.kwq->c_lock);
1389 /* qp->ip used to validate if there is a user buffer mmaped */
1390 if (qp->ip) {
1391 wq = qp->r_rq.wq;
1392 head = RDMA_READ_UAPI_ATOMIC(wq->head);
1393 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1394 } else {
1395 kwq = qp->r_rq.kwq;
1396 head = kwq->head;
1397 tail = kwq->tail;
1398 }
1399 /* sanity check pointers before trusting them */
1400 if (head >= qp->r_rq.size)
1401 head = 0;
1402 if (tail >= qp->r_rq.size)
1403 tail = 0;
1404 while (tail != head) {
1405 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1406 if (++tail >= qp->r_rq.size)
1407 tail = 0;
1408 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1409 }
1410 if (qp->ip)
1411 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1412 else
1413 kwq->tail = tail;
1414 spin_unlock(&qp->r_rq.kwq->c_lock);
1415 } else if (qp->ibqp.event_handler) {
1416 ret = 1;
1417 }
1418
1419 bail:
1420 return ret;
1421 }
1422 EXPORT_SYMBOL(rvt_error_qp);
1423
1424 /*
1425 * Put the QP into the hash table.
1426 * The hash table holds a reference to the QP.
1427 */
rvt_insert_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)1428 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1429 {
1430 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1431 unsigned long flags;
1432
1433 rvt_get_qp(qp);
1434 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1435
1436 if (qp->ibqp.qp_num <= 1) {
1437 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1438 } else {
1439 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1440
1441 qp->next = rdi->qp_dev->qp_table[n];
1442 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1443 trace_rvt_qpinsert(qp, n);
1444 }
1445
1446 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1447 }
1448
1449 /**
1450 * rvt_modify_qp - modify the attributes of a queue pair
1451 * @ibqp: the queue pair who's attributes we're modifying
1452 * @attr: the new attributes
1453 * @attr_mask: the mask of attributes to modify
1454 * @udata: user data for libibverbs.so
1455 *
1456 * Return: 0 on success, otherwise returns an errno.
1457 */
rvt_modify_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1458 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1459 int attr_mask, struct ib_udata *udata)
1460 {
1461 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1462 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1463 enum ib_qp_state cur_state, new_state;
1464 struct ib_event ev;
1465 int lastwqe = 0;
1466 int mig = 0;
1467 int pmtu = 0; /* for gcc warning only */
1468 int opa_ah;
1469
1470 spin_lock_irq(&qp->r_lock);
1471 spin_lock(&qp->s_hlock);
1472 spin_lock(&qp->s_lock);
1473
1474 cur_state = attr_mask & IB_QP_CUR_STATE ?
1475 attr->cur_qp_state : qp->state;
1476 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1477 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1478
1479 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1480 attr_mask))
1481 goto inval;
1482
1483 if (rdi->driver_f.check_modify_qp &&
1484 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1485 goto inval;
1486
1487 if (attr_mask & IB_QP_AV) {
1488 if (opa_ah) {
1489 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1490 opa_get_mcast_base(OPA_MCAST_NR))
1491 goto inval;
1492 } else {
1493 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1494 be16_to_cpu(IB_MULTICAST_LID_BASE))
1495 goto inval;
1496 }
1497
1498 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1499 goto inval;
1500 }
1501
1502 if (attr_mask & IB_QP_ALT_PATH) {
1503 if (opa_ah) {
1504 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1505 opa_get_mcast_base(OPA_MCAST_NR))
1506 goto inval;
1507 } else {
1508 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1509 be16_to_cpu(IB_MULTICAST_LID_BASE))
1510 goto inval;
1511 }
1512
1513 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1514 goto inval;
1515 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1516 goto inval;
1517 }
1518
1519 if (attr_mask & IB_QP_PKEY_INDEX)
1520 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1521 goto inval;
1522
1523 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1524 if (attr->min_rnr_timer > 31)
1525 goto inval;
1526
1527 if (attr_mask & IB_QP_PORT)
1528 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1529 qp->ibqp.qp_type == IB_QPT_GSI ||
1530 attr->port_num == 0 ||
1531 attr->port_num > ibqp->device->phys_port_cnt)
1532 goto inval;
1533
1534 if (attr_mask & IB_QP_DEST_QPN)
1535 if (attr->dest_qp_num > RVT_QPN_MASK)
1536 goto inval;
1537
1538 if (attr_mask & IB_QP_RETRY_CNT)
1539 if (attr->retry_cnt > 7)
1540 goto inval;
1541
1542 if (attr_mask & IB_QP_RNR_RETRY)
1543 if (attr->rnr_retry > 7)
1544 goto inval;
1545
1546 /*
1547 * Don't allow invalid path_mtu values. OK to set greater
1548 * than the active mtu (or even the max_cap, if we have tuned
1549 * that to a small mtu. We'll set qp->path_mtu
1550 * to the lesser of requested attribute mtu and active,
1551 * for packetizing messages.
1552 * Note that the QP port has to be set in INIT and MTU in RTR.
1553 */
1554 if (attr_mask & IB_QP_PATH_MTU) {
1555 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1556 if (pmtu < 0)
1557 goto inval;
1558 }
1559
1560 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1561 if (attr->path_mig_state == IB_MIG_REARM) {
1562 if (qp->s_mig_state == IB_MIG_ARMED)
1563 goto inval;
1564 if (new_state != IB_QPS_RTS)
1565 goto inval;
1566 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1567 if (qp->s_mig_state == IB_MIG_REARM)
1568 goto inval;
1569 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1570 goto inval;
1571 if (qp->s_mig_state == IB_MIG_ARMED)
1572 mig = 1;
1573 } else {
1574 goto inval;
1575 }
1576 }
1577
1578 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1579 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1580 goto inval;
1581
1582 switch (new_state) {
1583 case IB_QPS_RESET:
1584 if (qp->state != IB_QPS_RESET)
1585 _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1586 break;
1587
1588 case IB_QPS_RTR:
1589 /* Allow event to re-trigger if QP set to RTR more than once */
1590 qp->r_flags &= ~RVT_R_COMM_EST;
1591 qp->state = new_state;
1592 break;
1593
1594 case IB_QPS_SQD:
1595 qp->s_draining = qp->s_last != qp->s_cur;
1596 qp->state = new_state;
1597 break;
1598
1599 case IB_QPS_SQE:
1600 if (qp->ibqp.qp_type == IB_QPT_RC)
1601 goto inval;
1602 qp->state = new_state;
1603 break;
1604
1605 case IB_QPS_ERR:
1606 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1607 break;
1608
1609 default:
1610 qp->state = new_state;
1611 break;
1612 }
1613
1614 if (attr_mask & IB_QP_PKEY_INDEX)
1615 qp->s_pkey_index = attr->pkey_index;
1616
1617 if (attr_mask & IB_QP_PORT)
1618 qp->port_num = attr->port_num;
1619
1620 if (attr_mask & IB_QP_DEST_QPN)
1621 qp->remote_qpn = attr->dest_qp_num;
1622
1623 if (attr_mask & IB_QP_SQ_PSN) {
1624 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1625 qp->s_psn = qp->s_next_psn;
1626 qp->s_sending_psn = qp->s_next_psn;
1627 qp->s_last_psn = qp->s_next_psn - 1;
1628 qp->s_sending_hpsn = qp->s_last_psn;
1629 }
1630
1631 if (attr_mask & IB_QP_RQ_PSN)
1632 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1633
1634 if (attr_mask & IB_QP_ACCESS_FLAGS)
1635 qp->qp_access_flags = attr->qp_access_flags;
1636
1637 if (attr_mask & IB_QP_AV) {
1638 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1639 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1640 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1641 }
1642
1643 if (attr_mask & IB_QP_ALT_PATH) {
1644 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1645 qp->s_alt_pkey_index = attr->alt_pkey_index;
1646 }
1647
1648 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1649 qp->s_mig_state = attr->path_mig_state;
1650 if (mig) {
1651 qp->remote_ah_attr = qp->alt_ah_attr;
1652 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1653 qp->s_pkey_index = qp->s_alt_pkey_index;
1654 }
1655 }
1656
1657 if (attr_mask & IB_QP_PATH_MTU) {
1658 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1659 qp->log_pmtu = ilog2(qp->pmtu);
1660 }
1661
1662 if (attr_mask & IB_QP_RETRY_CNT) {
1663 qp->s_retry_cnt = attr->retry_cnt;
1664 qp->s_retry = attr->retry_cnt;
1665 }
1666
1667 if (attr_mask & IB_QP_RNR_RETRY) {
1668 qp->s_rnr_retry_cnt = attr->rnr_retry;
1669 qp->s_rnr_retry = attr->rnr_retry;
1670 }
1671
1672 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1673 qp->r_min_rnr_timer = attr->min_rnr_timer;
1674
1675 if (attr_mask & IB_QP_TIMEOUT) {
1676 qp->timeout = attr->timeout;
1677 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1678 }
1679
1680 if (attr_mask & IB_QP_QKEY)
1681 qp->qkey = attr->qkey;
1682
1683 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1684 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1685
1686 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1687 qp->s_max_rd_atomic = attr->max_rd_atomic;
1688
1689 if (rdi->driver_f.modify_qp)
1690 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1691
1692 spin_unlock(&qp->s_lock);
1693 spin_unlock(&qp->s_hlock);
1694 spin_unlock_irq(&qp->r_lock);
1695
1696 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1697 rvt_insert_qp(rdi, qp);
1698
1699 if (lastwqe) {
1700 ev.device = qp->ibqp.device;
1701 ev.element.qp = &qp->ibqp;
1702 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1703 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1704 }
1705 if (mig) {
1706 ev.device = qp->ibqp.device;
1707 ev.element.qp = &qp->ibqp;
1708 ev.event = IB_EVENT_PATH_MIG;
1709 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1710 }
1711 return 0;
1712
1713 inval:
1714 spin_unlock(&qp->s_lock);
1715 spin_unlock(&qp->s_hlock);
1716 spin_unlock_irq(&qp->r_lock);
1717 return -EINVAL;
1718 }
1719
1720 /**
1721 * rvt_destroy_qp - destroy a queue pair
1722 * @ibqp: the queue pair to destroy
1723 *
1724 * Note that this can be called while the QP is actively sending or
1725 * receiving!
1726 *
1727 * Return: 0 on success.
1728 */
rvt_destroy_qp(struct ib_qp * ibqp,struct ib_udata * udata)1729 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1730 {
1731 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1732 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1733
1734 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1735
1736 wait_event(qp->wait, !atomic_read(&qp->refcount));
1737 /* qpn is now available for use again */
1738 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1739
1740 spin_lock(&rdi->n_qps_lock);
1741 rdi->n_qps_allocated--;
1742 if (qp->ibqp.qp_type == IB_QPT_RC) {
1743 rdi->n_rc_qps--;
1744 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1745 }
1746 spin_unlock(&rdi->n_qps_lock);
1747
1748 if (qp->ip)
1749 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1750 kvfree(qp->r_rq.kwq);
1751 rdi->driver_f.qp_priv_free(rdi, qp);
1752 kfree(qp->s_ack_queue);
1753 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1754 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1755 free_ud_wq_attr(qp);
1756 vfree(qp->s_wq);
1757 kfree(qp);
1758 return 0;
1759 }
1760
1761 /**
1762 * rvt_query_qp - query an ipbq
1763 * @ibqp: IB qp to query
1764 * @attr: attr struct to fill in
1765 * @attr_mask: attr mask ignored
1766 * @init_attr: struct to fill in
1767 *
1768 * Return: always 0
1769 */
rvt_query_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_qp_init_attr * init_attr)1770 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1771 int attr_mask, struct ib_qp_init_attr *init_attr)
1772 {
1773 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1774 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1775
1776 attr->qp_state = qp->state;
1777 attr->cur_qp_state = attr->qp_state;
1778 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1779 attr->path_mig_state = qp->s_mig_state;
1780 attr->qkey = qp->qkey;
1781 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1782 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1783 attr->dest_qp_num = qp->remote_qpn;
1784 attr->qp_access_flags = qp->qp_access_flags;
1785 attr->cap.max_send_wr = qp->s_size - 1 -
1786 rdi->dparms.reserved_operations;
1787 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1788 attr->cap.max_send_sge = qp->s_max_sge;
1789 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1790 attr->cap.max_inline_data = 0;
1791 attr->ah_attr = qp->remote_ah_attr;
1792 attr->alt_ah_attr = qp->alt_ah_attr;
1793 attr->pkey_index = qp->s_pkey_index;
1794 attr->alt_pkey_index = qp->s_alt_pkey_index;
1795 attr->en_sqd_async_notify = 0;
1796 attr->sq_draining = qp->s_draining;
1797 attr->max_rd_atomic = qp->s_max_rd_atomic;
1798 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1799 attr->min_rnr_timer = qp->r_min_rnr_timer;
1800 attr->port_num = qp->port_num;
1801 attr->timeout = qp->timeout;
1802 attr->retry_cnt = qp->s_retry_cnt;
1803 attr->rnr_retry = qp->s_rnr_retry_cnt;
1804 attr->alt_port_num =
1805 rdma_ah_get_port_num(&qp->alt_ah_attr);
1806 attr->alt_timeout = qp->alt_timeout;
1807
1808 init_attr->event_handler = qp->ibqp.event_handler;
1809 init_attr->qp_context = qp->ibqp.qp_context;
1810 init_attr->send_cq = qp->ibqp.send_cq;
1811 init_attr->recv_cq = qp->ibqp.recv_cq;
1812 init_attr->srq = qp->ibqp.srq;
1813 init_attr->cap = attr->cap;
1814 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1815 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1816 else
1817 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1818 init_attr->qp_type = qp->ibqp.qp_type;
1819 init_attr->port_num = qp->port_num;
1820 return 0;
1821 }
1822
1823 /**
1824 * rvt_post_receive - post a receive on a QP
1825 * @ibqp: the QP to post the receive on
1826 * @wr: the WR to post
1827 * @bad_wr: the first bad WR is put here
1828 *
1829 * This may be called from interrupt context.
1830 *
1831 * Return: 0 on success otherwise errno
1832 */
rvt_post_recv(struct ib_qp * ibqp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1833 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1834 const struct ib_recv_wr **bad_wr)
1835 {
1836 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1837 struct rvt_krwq *wq = qp->r_rq.kwq;
1838 unsigned long flags;
1839 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1840 !qp->ibqp.srq;
1841
1842 /* Check that state is OK to post receive. */
1843 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1844 *bad_wr = wr;
1845 return -EINVAL;
1846 }
1847
1848 for (; wr; wr = wr->next) {
1849 struct rvt_rwqe *wqe;
1850 u32 next;
1851 int i;
1852
1853 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1854 *bad_wr = wr;
1855 return -EINVAL;
1856 }
1857
1858 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1859 next = wq->head + 1;
1860 if (next >= qp->r_rq.size)
1861 next = 0;
1862 if (next == READ_ONCE(wq->tail)) {
1863 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1864 *bad_wr = wr;
1865 return -ENOMEM;
1866 }
1867 if (unlikely(qp_err_flush)) {
1868 struct ib_wc wc;
1869
1870 memset(&wc, 0, sizeof(wc));
1871 wc.qp = &qp->ibqp;
1872 wc.opcode = IB_WC_RECV;
1873 wc.wr_id = wr->wr_id;
1874 wc.status = IB_WC_WR_FLUSH_ERR;
1875 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1876 } else {
1877 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1878 wqe->wr_id = wr->wr_id;
1879 wqe->num_sge = wr->num_sge;
1880 for (i = 0; i < wr->num_sge; i++) {
1881 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1882 wqe->sg_list[i].length = wr->sg_list[i].length;
1883 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1884 }
1885 /*
1886 * Make sure queue entry is written
1887 * before the head index.
1888 */
1889 smp_store_release(&wq->head, next);
1890 }
1891 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1892 }
1893 return 0;
1894 }
1895
1896 /**
1897 * rvt_qp_valid_operation - validate post send wr request
1898 * @qp - the qp
1899 * @post-parms - the post send table for the driver
1900 * @wr - the work request
1901 *
1902 * The routine validates the operation based on the
1903 * validation table an returns the length of the operation
1904 * which can extend beyond the ib_send_bw. Operation
1905 * dependent flags key atomic operation validation.
1906 *
1907 * There is an exception for UD qps that validates the pd and
1908 * overrides the length to include the additional UD specific
1909 * length.
1910 *
1911 * Returns a negative error or the length of the work request
1912 * for building the swqe.
1913 */
rvt_qp_valid_operation(struct rvt_qp * qp,const struct rvt_operation_params * post_parms,const struct ib_send_wr * wr)1914 static inline int rvt_qp_valid_operation(
1915 struct rvt_qp *qp,
1916 const struct rvt_operation_params *post_parms,
1917 const struct ib_send_wr *wr)
1918 {
1919 int len;
1920
1921 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1922 return -EINVAL;
1923 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1924 return -EINVAL;
1925 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1926 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1927 return -EINVAL;
1928 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1929 (wr->num_sge == 0 ||
1930 wr->sg_list[0].length < sizeof(u64) ||
1931 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1932 return -EINVAL;
1933 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1934 !qp->s_max_rd_atomic)
1935 return -EINVAL;
1936 len = post_parms[wr->opcode].length;
1937 /* UD specific */
1938 if (qp->ibqp.qp_type != IB_QPT_UC &&
1939 qp->ibqp.qp_type != IB_QPT_RC) {
1940 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1941 return -EINVAL;
1942 len = sizeof(struct ib_ud_wr);
1943 }
1944 return len;
1945 }
1946
1947 /**
1948 * rvt_qp_is_avail - determine queue capacity
1949 * @qp: the qp
1950 * @rdi: the rdmavt device
1951 * @reserved_op: is reserved operation
1952 *
1953 * This assumes the s_hlock is held but the s_last
1954 * qp variable is uncontrolled.
1955 *
1956 * For non reserved operations, the qp->s_avail
1957 * may be changed.
1958 *
1959 * The return value is zero or a -ENOMEM.
1960 */
rvt_qp_is_avail(struct rvt_qp * qp,struct rvt_dev_info * rdi,bool reserved_op)1961 static inline int rvt_qp_is_avail(
1962 struct rvt_qp *qp,
1963 struct rvt_dev_info *rdi,
1964 bool reserved_op)
1965 {
1966 u32 slast;
1967 u32 avail;
1968 u32 reserved_used;
1969
1970 /* see rvt_qp_wqe_unreserve() */
1971 smp_mb__before_atomic();
1972 if (unlikely(reserved_op)) {
1973 /* see rvt_qp_wqe_unreserve() */
1974 reserved_used = atomic_read(&qp->s_reserved_used);
1975 if (reserved_used >= rdi->dparms.reserved_operations)
1976 return -ENOMEM;
1977 return 0;
1978 }
1979 /* non-reserved operations */
1980 if (likely(qp->s_avail))
1981 return 0;
1982 /* See rvt_qp_complete_swqe() */
1983 slast = smp_load_acquire(&qp->s_last);
1984 if (qp->s_head >= slast)
1985 avail = qp->s_size - (qp->s_head - slast);
1986 else
1987 avail = slast - qp->s_head;
1988
1989 reserved_used = atomic_read(&qp->s_reserved_used);
1990 avail = avail - 1 -
1991 (rdi->dparms.reserved_operations - reserved_used);
1992 /* insure we don't assign a negative s_avail */
1993 if ((s32)avail <= 0)
1994 return -ENOMEM;
1995 qp->s_avail = avail;
1996 if (WARN_ON(qp->s_avail >
1997 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1998 rvt_pr_err(rdi,
1999 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2000 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2001 qp->s_head, qp->s_tail, qp->s_cur,
2002 qp->s_acked, qp->s_last);
2003 return 0;
2004 }
2005
2006 /**
2007 * rvt_post_one_wr - post one RC, UC, or UD send work request
2008 * @qp: the QP to post on
2009 * @wr: the work request to send
2010 */
rvt_post_one_wr(struct rvt_qp * qp,const struct ib_send_wr * wr,bool * call_send)2011 static int rvt_post_one_wr(struct rvt_qp *qp,
2012 const struct ib_send_wr *wr,
2013 bool *call_send)
2014 {
2015 struct rvt_swqe *wqe;
2016 u32 next;
2017 int i;
2018 int j;
2019 int acc;
2020 struct rvt_lkey_table *rkt;
2021 struct rvt_pd *pd;
2022 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2023 u8 log_pmtu;
2024 int ret;
2025 size_t cplen;
2026 bool reserved_op;
2027 int local_ops_delayed = 0;
2028
2029 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2030
2031 /* IB spec says that num_sge == 0 is OK. */
2032 if (unlikely(wr->num_sge > qp->s_max_sge))
2033 return -EINVAL;
2034
2035 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2036 if (ret < 0)
2037 return ret;
2038 cplen = ret;
2039
2040 /*
2041 * Local operations include fast register and local invalidate.
2042 * Fast register needs to be processed immediately because the
2043 * registered lkey may be used by following work requests and the
2044 * lkey needs to be valid at the time those requests are posted.
2045 * Local invalidate can be processed immediately if fencing is
2046 * not required and no previous local invalidate ops are pending.
2047 * Signaled local operations that have been processed immediately
2048 * need to have requests with "completion only" flags set posted
2049 * to the send queue in order to generate completions.
2050 */
2051 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2052 switch (wr->opcode) {
2053 case IB_WR_REG_MR:
2054 ret = rvt_fast_reg_mr(qp,
2055 reg_wr(wr)->mr,
2056 reg_wr(wr)->key,
2057 reg_wr(wr)->access);
2058 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2059 return ret;
2060 break;
2061 case IB_WR_LOCAL_INV:
2062 if ((wr->send_flags & IB_SEND_FENCE) ||
2063 atomic_read(&qp->local_ops_pending)) {
2064 local_ops_delayed = 1;
2065 } else {
2066 ret = rvt_invalidate_rkey(
2067 qp, wr->ex.invalidate_rkey);
2068 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2069 return ret;
2070 }
2071 break;
2072 default:
2073 return -EINVAL;
2074 }
2075 }
2076
2077 reserved_op = rdi->post_parms[wr->opcode].flags &
2078 RVT_OPERATION_USE_RESERVE;
2079 /* check for avail */
2080 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2081 if (ret)
2082 return ret;
2083 next = qp->s_head + 1;
2084 if (next >= qp->s_size)
2085 next = 0;
2086
2087 rkt = &rdi->lkey_table;
2088 pd = ibpd_to_rvtpd(qp->ibqp.pd);
2089 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2090
2091 /* cplen has length from above */
2092 memcpy(&wqe->wr, wr, cplen);
2093
2094 wqe->length = 0;
2095 j = 0;
2096 if (wr->num_sge) {
2097 struct rvt_sge *last_sge = NULL;
2098
2099 acc = wr->opcode >= IB_WR_RDMA_READ ?
2100 IB_ACCESS_LOCAL_WRITE : 0;
2101 for (i = 0; i < wr->num_sge; i++) {
2102 u32 length = wr->sg_list[i].length;
2103
2104 if (length == 0)
2105 continue;
2106 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2107 &wr->sg_list[i], acc);
2108 if (unlikely(ret < 0))
2109 goto bail_inval_free;
2110 wqe->length += length;
2111 if (ret)
2112 last_sge = &wqe->sg_list[j];
2113 j += ret;
2114 }
2115 wqe->wr.num_sge = j;
2116 }
2117
2118 /*
2119 * Calculate and set SWQE PSN values prior to handing it off
2120 * to the driver's check routine. This give the driver the
2121 * opportunity to adjust PSN values based on internal checks.
2122 */
2123 log_pmtu = qp->log_pmtu;
2124 if (qp->allowed_ops == IB_OPCODE_UD) {
2125 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2126
2127 log_pmtu = ah->log_pmtu;
2128 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2129 }
2130
2131 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2132 if (local_ops_delayed)
2133 atomic_inc(&qp->local_ops_pending);
2134 else
2135 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2136 wqe->ssn = 0;
2137 wqe->psn = 0;
2138 wqe->lpsn = 0;
2139 } else {
2140 wqe->ssn = qp->s_ssn++;
2141 wqe->psn = qp->s_next_psn;
2142 wqe->lpsn = wqe->psn +
2143 (wqe->length ?
2144 ((wqe->length - 1) >> log_pmtu) :
2145 0);
2146 }
2147
2148 /* general part of wqe valid - allow for driver checks */
2149 if (rdi->driver_f.setup_wqe) {
2150 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2151 if (ret < 0)
2152 goto bail_inval_free_ref;
2153 }
2154
2155 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2156 qp->s_next_psn = wqe->lpsn + 1;
2157
2158 if (unlikely(reserved_op)) {
2159 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2160 rvt_qp_wqe_reserve(qp, wqe);
2161 } else {
2162 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2163 qp->s_avail--;
2164 }
2165 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2166 smp_wmb(); /* see request builders */
2167 qp->s_head = next;
2168
2169 return 0;
2170
2171 bail_inval_free_ref:
2172 if (qp->allowed_ops == IB_OPCODE_UD)
2173 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2174 bail_inval_free:
2175 /* release mr holds */
2176 while (j) {
2177 struct rvt_sge *sge = &wqe->sg_list[--j];
2178
2179 rvt_put_mr(sge->mr);
2180 }
2181 return ret;
2182 }
2183
2184 /**
2185 * rvt_post_send - post a send on a QP
2186 * @ibqp: the QP to post the send on
2187 * @wr: the list of work requests to post
2188 * @bad_wr: the first bad WR is put here
2189 *
2190 * This may be called from interrupt context.
2191 *
2192 * Return: 0 on success else errno
2193 */
rvt_post_send(struct ib_qp * ibqp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)2194 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2195 const struct ib_send_wr **bad_wr)
2196 {
2197 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2198 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2199 unsigned long flags = 0;
2200 bool call_send;
2201 unsigned nreq = 0;
2202 int err = 0;
2203
2204 spin_lock_irqsave(&qp->s_hlock, flags);
2205
2206 /*
2207 * Ensure QP state is such that we can send. If not bail out early,
2208 * there is no need to do this every time we post a send.
2209 */
2210 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2211 spin_unlock_irqrestore(&qp->s_hlock, flags);
2212 return -EINVAL;
2213 }
2214
2215 /*
2216 * If the send queue is empty, and we only have a single WR then just go
2217 * ahead and kick the send engine into gear. Otherwise we will always
2218 * just schedule the send to happen later.
2219 */
2220 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2221
2222 for (; wr; wr = wr->next) {
2223 err = rvt_post_one_wr(qp, wr, &call_send);
2224 if (unlikely(err)) {
2225 *bad_wr = wr;
2226 goto bail;
2227 }
2228 nreq++;
2229 }
2230 bail:
2231 spin_unlock_irqrestore(&qp->s_hlock, flags);
2232 if (nreq) {
2233 /*
2234 * Only call do_send if there is exactly one packet, and the
2235 * driver said it was ok.
2236 */
2237 if (nreq == 1 && call_send)
2238 rdi->driver_f.do_send(qp);
2239 else
2240 rdi->driver_f.schedule_send_no_lock(qp);
2241 }
2242 return err;
2243 }
2244
2245 /**
2246 * rvt_post_srq_receive - post a receive on a shared receive queue
2247 * @ibsrq: the SRQ to post the receive on
2248 * @wr: the list of work requests to post
2249 * @bad_wr: A pointer to the first WR to cause a problem is put here
2250 *
2251 * This may be called from interrupt context.
2252 *
2253 * Return: 0 on success else errno
2254 */
rvt_post_srq_recv(struct ib_srq * ibsrq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)2255 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2256 const struct ib_recv_wr **bad_wr)
2257 {
2258 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2259 struct rvt_krwq *wq;
2260 unsigned long flags;
2261
2262 for (; wr; wr = wr->next) {
2263 struct rvt_rwqe *wqe;
2264 u32 next;
2265 int i;
2266
2267 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2268 *bad_wr = wr;
2269 return -EINVAL;
2270 }
2271
2272 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2273 wq = srq->rq.kwq;
2274 next = wq->head + 1;
2275 if (next >= srq->rq.size)
2276 next = 0;
2277 if (next == READ_ONCE(wq->tail)) {
2278 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2279 *bad_wr = wr;
2280 return -ENOMEM;
2281 }
2282
2283 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2284 wqe->wr_id = wr->wr_id;
2285 wqe->num_sge = wr->num_sge;
2286 for (i = 0; i < wr->num_sge; i++) {
2287 wqe->sg_list[i].addr = wr->sg_list[i].addr;
2288 wqe->sg_list[i].length = wr->sg_list[i].length;
2289 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2290 }
2291 /* Make sure queue entry is written before the head index. */
2292 smp_store_release(&wq->head, next);
2293 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2294 }
2295 return 0;
2296 }
2297
2298 /*
2299 * rvt used the internal kernel struct as part of its ABI, for now make sure
2300 * the kernel struct does not change layout. FIXME: rvt should never cast the
2301 * user struct to a kernel struct.
2302 */
rvt_cast_sge(struct rvt_wqe_sge * sge)2303 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2304 {
2305 BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2306 offsetof(struct rvt_wqe_sge, addr));
2307 BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2308 offsetof(struct rvt_wqe_sge, length));
2309 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2310 offsetof(struct rvt_wqe_sge, lkey));
2311 return (struct ib_sge *)sge;
2312 }
2313
2314 /*
2315 * Validate a RWQE and fill in the SGE state.
2316 * Return 1 if OK.
2317 */
init_sge(struct rvt_qp * qp,struct rvt_rwqe * wqe)2318 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2319 {
2320 int i, j, ret;
2321 struct ib_wc wc;
2322 struct rvt_lkey_table *rkt;
2323 struct rvt_pd *pd;
2324 struct rvt_sge_state *ss;
2325 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2326
2327 rkt = &rdi->lkey_table;
2328 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2329 ss = &qp->r_sge;
2330 ss->sg_list = qp->r_sg_list;
2331 qp->r_len = 0;
2332 for (i = j = 0; i < wqe->num_sge; i++) {
2333 if (wqe->sg_list[i].length == 0)
2334 continue;
2335 /* Check LKEY */
2336 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2337 NULL, rvt_cast_sge(&wqe->sg_list[i]),
2338 IB_ACCESS_LOCAL_WRITE);
2339 if (unlikely(ret <= 0))
2340 goto bad_lkey;
2341 qp->r_len += wqe->sg_list[i].length;
2342 j++;
2343 }
2344 ss->num_sge = j;
2345 ss->total_len = qp->r_len;
2346 return 1;
2347
2348 bad_lkey:
2349 while (j) {
2350 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2351
2352 rvt_put_mr(sge->mr);
2353 }
2354 ss->num_sge = 0;
2355 memset(&wc, 0, sizeof(wc));
2356 wc.wr_id = wqe->wr_id;
2357 wc.status = IB_WC_LOC_PROT_ERR;
2358 wc.opcode = IB_WC_RECV;
2359 wc.qp = &qp->ibqp;
2360 /* Signal solicited completion event. */
2361 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2362 return 0;
2363 }
2364
2365 /**
2366 * get_rvt_head - get head indices of the circular buffer
2367 * @rq: data structure for request queue entry
2368 * @ip: the QP
2369 *
2370 * Return - head index value
2371 */
get_rvt_head(struct rvt_rq * rq,void * ip)2372 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2373 {
2374 u32 head;
2375
2376 if (ip)
2377 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2378 else
2379 head = rq->kwq->head;
2380
2381 return head;
2382 }
2383
2384 /**
2385 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2386 * @qp: the QP
2387 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2388 *
2389 * Return -1 if there is a local error, 0 if no RWQE is available,
2390 * otherwise return 1.
2391 *
2392 * Can be called from interrupt level.
2393 */
rvt_get_rwqe(struct rvt_qp * qp,bool wr_id_only)2394 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2395 {
2396 unsigned long flags;
2397 struct rvt_rq *rq;
2398 struct rvt_krwq *kwq = NULL;
2399 struct rvt_rwq *wq;
2400 struct rvt_srq *srq;
2401 struct rvt_rwqe *wqe;
2402 void (*handler)(struct ib_event *, void *);
2403 u32 tail;
2404 u32 head;
2405 int ret;
2406 void *ip = NULL;
2407
2408 if (qp->ibqp.srq) {
2409 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2410 handler = srq->ibsrq.event_handler;
2411 rq = &srq->rq;
2412 ip = srq->ip;
2413 } else {
2414 srq = NULL;
2415 handler = NULL;
2416 rq = &qp->r_rq;
2417 ip = qp->ip;
2418 }
2419
2420 spin_lock_irqsave(&rq->kwq->c_lock, flags);
2421 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2422 ret = 0;
2423 goto unlock;
2424 }
2425 kwq = rq->kwq;
2426 if (ip) {
2427 wq = rq->wq;
2428 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2429 } else {
2430 tail = kwq->tail;
2431 }
2432
2433 /* Validate tail before using it since it is user writable. */
2434 if (tail >= rq->size)
2435 tail = 0;
2436
2437 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2438 head = get_rvt_head(rq, ip);
2439 kwq->count = rvt_get_rq_count(rq, head, tail);
2440 }
2441 if (unlikely(kwq->count == 0)) {
2442 ret = 0;
2443 goto unlock;
2444 }
2445 /* Make sure entry is read after the count is read. */
2446 smp_rmb();
2447 wqe = rvt_get_rwqe_ptr(rq, tail);
2448 /*
2449 * Even though we update the tail index in memory, the verbs
2450 * consumer is not supposed to post more entries until a
2451 * completion is generated.
2452 */
2453 if (++tail >= rq->size)
2454 tail = 0;
2455 if (ip)
2456 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2457 else
2458 kwq->tail = tail;
2459 if (!wr_id_only && !init_sge(qp, wqe)) {
2460 ret = -1;
2461 goto unlock;
2462 }
2463 qp->r_wr_id = wqe->wr_id;
2464
2465 kwq->count--;
2466 ret = 1;
2467 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2468 if (handler) {
2469 /*
2470 * Validate head pointer value and compute
2471 * the number of remaining WQEs.
2472 */
2473 if (kwq->count < srq->limit) {
2474 kwq->count =
2475 rvt_get_rq_count(rq,
2476 get_rvt_head(rq, ip), tail);
2477 if (kwq->count < srq->limit) {
2478 struct ib_event ev;
2479
2480 srq->limit = 0;
2481 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2482 ev.device = qp->ibqp.device;
2483 ev.element.srq = qp->ibqp.srq;
2484 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2485 handler(&ev, srq->ibsrq.srq_context);
2486 goto bail;
2487 }
2488 }
2489 }
2490 unlock:
2491 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2492 bail:
2493 return ret;
2494 }
2495 EXPORT_SYMBOL(rvt_get_rwqe);
2496
2497 /**
2498 * qp_comm_est - handle trap with QP established
2499 * @qp: the QP
2500 */
rvt_comm_est(struct rvt_qp * qp)2501 void rvt_comm_est(struct rvt_qp *qp)
2502 {
2503 qp->r_flags |= RVT_R_COMM_EST;
2504 if (qp->ibqp.event_handler) {
2505 struct ib_event ev;
2506
2507 ev.device = qp->ibqp.device;
2508 ev.element.qp = &qp->ibqp;
2509 ev.event = IB_EVENT_COMM_EST;
2510 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2511 }
2512 }
2513 EXPORT_SYMBOL(rvt_comm_est);
2514
rvt_rc_error(struct rvt_qp * qp,enum ib_wc_status err)2515 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2516 {
2517 unsigned long flags;
2518 int lastwqe;
2519
2520 spin_lock_irqsave(&qp->s_lock, flags);
2521 lastwqe = rvt_error_qp(qp, err);
2522 spin_unlock_irqrestore(&qp->s_lock, flags);
2523
2524 if (lastwqe) {
2525 struct ib_event ev;
2526
2527 ev.device = qp->ibqp.device;
2528 ev.element.qp = &qp->ibqp;
2529 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2530 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2531 }
2532 }
2533 EXPORT_SYMBOL(rvt_rc_error);
2534
2535 /*
2536 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2537 * @index - the index
2538 * return usec from an index into ib_rvt_rnr_table
2539 */
rvt_rnr_tbl_to_usec(u32 index)2540 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2541 {
2542 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2543 }
2544 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2545
rvt_aeth_to_usec(u32 aeth)2546 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2547 {
2548 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2549 IB_AETH_CREDIT_MASK];
2550 }
2551
2552 /*
2553 * rvt_add_retry_timer_ext - add/start a retry timer
2554 * @qp - the QP
2555 * @shift - timeout shift to wait for multiple packets
2556 * add a retry timer on the QP
2557 */
rvt_add_retry_timer_ext(struct rvt_qp * qp,u8 shift)2558 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2559 {
2560 struct ib_qp *ibqp = &qp->ibqp;
2561 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2562
2563 lockdep_assert_held(&qp->s_lock);
2564 qp->s_flags |= RVT_S_TIMER;
2565 /* 4.096 usec. * (1 << qp->timeout) */
2566 qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2567 (qp->timeout_jiffies << shift);
2568 add_timer(&qp->s_timer);
2569 }
2570 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2571
2572 /**
2573 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2574 * @qp: the QP
2575 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2576 */
rvt_add_rnr_timer(struct rvt_qp * qp,u32 aeth)2577 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2578 {
2579 u32 to;
2580
2581 lockdep_assert_held(&qp->s_lock);
2582 qp->s_flags |= RVT_S_WAIT_RNR;
2583 to = rvt_aeth_to_usec(aeth);
2584 trace_rvt_rnrnak_add(qp, to);
2585 hrtimer_start(&qp->s_rnr_timer,
2586 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2587 }
2588 EXPORT_SYMBOL(rvt_add_rnr_timer);
2589
2590 /**
2591 * rvt_stop_rc_timers - stop all timers
2592 * @qp: the QP
2593 * stop any pending timers
2594 */
rvt_stop_rc_timers(struct rvt_qp * qp)2595 void rvt_stop_rc_timers(struct rvt_qp *qp)
2596 {
2597 lockdep_assert_held(&qp->s_lock);
2598 /* Remove QP from all timers */
2599 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2600 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2601 del_timer(&qp->s_timer);
2602 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2603 }
2604 }
2605 EXPORT_SYMBOL(rvt_stop_rc_timers);
2606
2607 /**
2608 * rvt_stop_rnr_timer - stop an rnr timer
2609 * @qp - the QP
2610 *
2611 * stop an rnr timer and return if the timer
2612 * had been pending.
2613 */
rvt_stop_rnr_timer(struct rvt_qp * qp)2614 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2615 {
2616 lockdep_assert_held(&qp->s_lock);
2617 /* Remove QP from rnr timer */
2618 if (qp->s_flags & RVT_S_WAIT_RNR) {
2619 qp->s_flags &= ~RVT_S_WAIT_RNR;
2620 trace_rvt_rnrnak_stop(qp, 0);
2621 }
2622 }
2623
2624 /**
2625 * rvt_del_timers_sync - wait for any timeout routines to exit
2626 * @qp: the QP
2627 */
rvt_del_timers_sync(struct rvt_qp * qp)2628 void rvt_del_timers_sync(struct rvt_qp *qp)
2629 {
2630 del_timer_sync(&qp->s_timer);
2631 hrtimer_cancel(&qp->s_rnr_timer);
2632 }
2633 EXPORT_SYMBOL(rvt_del_timers_sync);
2634
2635 /*
2636 * This is called from s_timer for missing responses.
2637 */
rvt_rc_timeout(struct timer_list * t)2638 static void rvt_rc_timeout(struct timer_list *t)
2639 {
2640 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2641 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2642 unsigned long flags;
2643
2644 spin_lock_irqsave(&qp->r_lock, flags);
2645 spin_lock(&qp->s_lock);
2646 if (qp->s_flags & RVT_S_TIMER) {
2647 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2648
2649 qp->s_flags &= ~RVT_S_TIMER;
2650 rvp->n_rc_timeouts++;
2651 del_timer(&qp->s_timer);
2652 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2653 if (rdi->driver_f.notify_restart_rc)
2654 rdi->driver_f.notify_restart_rc(qp,
2655 qp->s_last_psn + 1,
2656 1);
2657 rdi->driver_f.schedule_send(qp);
2658 }
2659 spin_unlock(&qp->s_lock);
2660 spin_unlock_irqrestore(&qp->r_lock, flags);
2661 }
2662
2663 /*
2664 * This is called from s_timer for RNR timeouts.
2665 */
rvt_rc_rnr_retry(struct hrtimer * t)2666 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2667 {
2668 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2669 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2670 unsigned long flags;
2671
2672 spin_lock_irqsave(&qp->s_lock, flags);
2673 rvt_stop_rnr_timer(qp);
2674 trace_rvt_rnrnak_timeout(qp, 0);
2675 rdi->driver_f.schedule_send(qp);
2676 spin_unlock_irqrestore(&qp->s_lock, flags);
2677 return HRTIMER_NORESTART;
2678 }
2679 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2680
2681 /**
2682 * rvt_qp_iter_init - initial for QP iteration
2683 * @rdi: rvt devinfo
2684 * @v: u64 value
2685 * @cb: user-defined callback
2686 *
2687 * This returns an iterator suitable for iterating QPs
2688 * in the system.
2689 *
2690 * The @cb is a user-defined callback and @v is a 64-bit
2691 * value passed to and relevant for processing in the
2692 * @cb. An example use case would be to alter QP processing
2693 * based on criteria not part of the rvt_qp.
2694 *
2695 * Use cases that require memory allocation to succeed
2696 * must preallocate appropriately.
2697 *
2698 * Return: a pointer to an rvt_qp_iter or NULL
2699 */
rvt_qp_iter_init(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2700 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2701 u64 v,
2702 void (*cb)(struct rvt_qp *qp, u64 v))
2703 {
2704 struct rvt_qp_iter *i;
2705
2706 i = kzalloc(sizeof(*i), GFP_KERNEL);
2707 if (!i)
2708 return NULL;
2709
2710 i->rdi = rdi;
2711 /* number of special QPs (SMI/GSI) for device */
2712 i->specials = rdi->ibdev.phys_port_cnt * 2;
2713 i->v = v;
2714 i->cb = cb;
2715
2716 return i;
2717 }
2718 EXPORT_SYMBOL(rvt_qp_iter_init);
2719
2720 /**
2721 * rvt_qp_iter_next - return the next QP in iter
2722 * @iter: the iterator
2723 *
2724 * Fine grained QP iterator suitable for use
2725 * with debugfs seq_file mechanisms.
2726 *
2727 * Updates iter->qp with the current QP when the return
2728 * value is 0.
2729 *
2730 * Return: 0 - iter->qp is valid 1 - no more QPs
2731 */
rvt_qp_iter_next(struct rvt_qp_iter * iter)2732 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2733 __must_hold(RCU)
2734 {
2735 int n = iter->n;
2736 int ret = 1;
2737 struct rvt_qp *pqp = iter->qp;
2738 struct rvt_qp *qp;
2739 struct rvt_dev_info *rdi = iter->rdi;
2740
2741 /*
2742 * The approach is to consider the special qps
2743 * as additional table entries before the
2744 * real hash table. Since the qp code sets
2745 * the qp->next hash link to NULL, this works just fine.
2746 *
2747 * iter->specials is 2 * # ports
2748 *
2749 * n = 0..iter->specials is the special qp indices
2750 *
2751 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2752 * the potential hash bucket entries
2753 *
2754 */
2755 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2756 if (pqp) {
2757 qp = rcu_dereference(pqp->next);
2758 } else {
2759 if (n < iter->specials) {
2760 struct rvt_ibport *rvp;
2761 int pidx;
2762
2763 pidx = n % rdi->ibdev.phys_port_cnt;
2764 rvp = rdi->ports[pidx];
2765 qp = rcu_dereference(rvp->qp[n & 1]);
2766 } else {
2767 qp = rcu_dereference(
2768 rdi->qp_dev->qp_table[
2769 (n - iter->specials)]);
2770 }
2771 }
2772 pqp = qp;
2773 if (qp) {
2774 iter->qp = qp;
2775 iter->n = n;
2776 return 0;
2777 }
2778 }
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(rvt_qp_iter_next);
2782
2783 /**
2784 * rvt_qp_iter - iterate all QPs
2785 * @rdi: rvt devinfo
2786 * @v: a 64-bit value
2787 * @cb: a callback
2788 *
2789 * This provides a way for iterating all QPs.
2790 *
2791 * The @cb is a user-defined callback and @v is a 64-bit
2792 * value passed to and relevant for processing in the
2793 * cb. An example use case would be to alter QP processing
2794 * based on criteria not part of the rvt_qp.
2795 *
2796 * The code has an internal iterator to simplify
2797 * non seq_file use cases.
2798 */
rvt_qp_iter(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2799 void rvt_qp_iter(struct rvt_dev_info *rdi,
2800 u64 v,
2801 void (*cb)(struct rvt_qp *qp, u64 v))
2802 {
2803 int ret;
2804 struct rvt_qp_iter i = {
2805 .rdi = rdi,
2806 .specials = rdi->ibdev.phys_port_cnt * 2,
2807 .v = v,
2808 .cb = cb
2809 };
2810
2811 rcu_read_lock();
2812 do {
2813 ret = rvt_qp_iter_next(&i);
2814 if (!ret) {
2815 rvt_get_qp(i.qp);
2816 rcu_read_unlock();
2817 i.cb(i.qp, i.v);
2818 rcu_read_lock();
2819 rvt_put_qp(i.qp);
2820 }
2821 } while (!ret);
2822 rcu_read_unlock();
2823 }
2824 EXPORT_SYMBOL(rvt_qp_iter);
2825
2826 /*
2827 * This should be called with s_lock and r_lock held.
2828 */
rvt_send_complete(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_status status)2829 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2830 enum ib_wc_status status)
2831 {
2832 u32 old_last, last;
2833 struct rvt_dev_info *rdi;
2834
2835 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2836 return;
2837 rdi = ib_to_rvt(qp->ibqp.device);
2838
2839 old_last = qp->s_last;
2840 trace_rvt_qp_send_completion(qp, wqe, old_last);
2841 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2842 status);
2843 if (qp->s_acked == old_last)
2844 qp->s_acked = last;
2845 if (qp->s_cur == old_last)
2846 qp->s_cur = last;
2847 if (qp->s_tail == old_last)
2848 qp->s_tail = last;
2849 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2850 qp->s_draining = 0;
2851 }
2852 EXPORT_SYMBOL(rvt_send_complete);
2853
2854 /**
2855 * rvt_copy_sge - copy data to SGE memory
2856 * @qp: associated QP
2857 * @ss: the SGE state
2858 * @data: the data to copy
2859 * @length: the length of the data
2860 * @release: boolean to release MR
2861 * @copy_last: do a separate copy of the last 8 bytes
2862 */
rvt_copy_sge(struct rvt_qp * qp,struct rvt_sge_state * ss,void * data,u32 length,bool release,bool copy_last)2863 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2864 void *data, u32 length,
2865 bool release, bool copy_last)
2866 {
2867 struct rvt_sge *sge = &ss->sge;
2868 int i;
2869 bool in_last = false;
2870 bool cacheless_copy = false;
2871 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2872 struct rvt_wss *wss = rdi->wss;
2873 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2874
2875 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2876 cacheless_copy = length >= PAGE_SIZE;
2877 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2878 if (length >= PAGE_SIZE) {
2879 /*
2880 * NOTE: this *assumes*:
2881 * o The first vaddr is the dest.
2882 * o If multiple pages, then vaddr is sequential.
2883 */
2884 wss_insert(wss, sge->vaddr);
2885 if (length >= (2 * PAGE_SIZE))
2886 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2887
2888 cacheless_copy = wss_exceeds_threshold(wss);
2889 } else {
2890 wss_advance_clean_counter(wss);
2891 }
2892 }
2893
2894 if (copy_last) {
2895 if (length > 8) {
2896 length -= 8;
2897 } else {
2898 copy_last = false;
2899 in_last = true;
2900 }
2901 }
2902
2903 again:
2904 while (length) {
2905 u32 len = rvt_get_sge_length(sge, length);
2906
2907 WARN_ON_ONCE(len == 0);
2908 if (unlikely(in_last)) {
2909 /* enforce byte transfer ordering */
2910 for (i = 0; i < len; i++)
2911 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2912 } else if (cacheless_copy) {
2913 cacheless_memcpy(sge->vaddr, data, len);
2914 } else {
2915 memcpy(sge->vaddr, data, len);
2916 }
2917 rvt_update_sge(ss, len, release);
2918 data += len;
2919 length -= len;
2920 }
2921
2922 if (copy_last) {
2923 copy_last = false;
2924 in_last = true;
2925 length = 8;
2926 goto again;
2927 }
2928 }
2929 EXPORT_SYMBOL(rvt_copy_sge);
2930
loopback_qp_drop(struct rvt_ibport * rvp,struct rvt_qp * sqp)2931 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2932 struct rvt_qp *sqp)
2933 {
2934 rvp->n_pkt_drops++;
2935 /*
2936 * For RC, the requester would timeout and retry so
2937 * shortcut the timeouts and just signal too many retries.
2938 */
2939 return sqp->ibqp.qp_type == IB_QPT_RC ?
2940 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2941 }
2942
2943 /**
2944 * ruc_loopback - handle UC and RC loopback requests
2945 * @sqp: the sending QP
2946 *
2947 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2948 * Note that although we are single threaded due to the send engine, we still
2949 * have to protect against post_send(). We don't have to worry about
2950 * receive interrupts since this is a connected protocol and all packets
2951 * will pass through here.
2952 */
rvt_ruc_loopback(struct rvt_qp * sqp)2953 void rvt_ruc_loopback(struct rvt_qp *sqp)
2954 {
2955 struct rvt_ibport *rvp = NULL;
2956 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2957 struct rvt_qp *qp;
2958 struct rvt_swqe *wqe;
2959 struct rvt_sge *sge;
2960 unsigned long flags;
2961 struct ib_wc wc;
2962 u64 sdata;
2963 atomic64_t *maddr;
2964 enum ib_wc_status send_status;
2965 bool release;
2966 int ret;
2967 bool copy_last = false;
2968 int local_ops = 0;
2969
2970 rcu_read_lock();
2971 rvp = rdi->ports[sqp->port_num - 1];
2972
2973 /*
2974 * Note that we check the responder QP state after
2975 * checking the requester's state.
2976 */
2977
2978 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2979 sqp->remote_qpn);
2980
2981 spin_lock_irqsave(&sqp->s_lock, flags);
2982
2983 /* Return if we are already busy processing a work request. */
2984 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2985 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2986 goto unlock;
2987
2988 sqp->s_flags |= RVT_S_BUSY;
2989
2990 again:
2991 if (sqp->s_last == READ_ONCE(sqp->s_head))
2992 goto clr_busy;
2993 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2994
2995 /* Return if it is not OK to start a new work request. */
2996 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2997 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2998 goto clr_busy;
2999 /* We are in the error state, flush the work request. */
3000 send_status = IB_WC_WR_FLUSH_ERR;
3001 goto flush_send;
3002 }
3003
3004 /*
3005 * We can rely on the entry not changing without the s_lock
3006 * being held until we update s_last.
3007 * We increment s_cur to indicate s_last is in progress.
3008 */
3009 if (sqp->s_last == sqp->s_cur) {
3010 if (++sqp->s_cur >= sqp->s_size)
3011 sqp->s_cur = 0;
3012 }
3013 spin_unlock_irqrestore(&sqp->s_lock, flags);
3014
3015 if (!qp) {
3016 send_status = loopback_qp_drop(rvp, sqp);
3017 goto serr_no_r_lock;
3018 }
3019 spin_lock_irqsave(&qp->r_lock, flags);
3020 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3021 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3022 send_status = loopback_qp_drop(rvp, sqp);
3023 goto serr;
3024 }
3025
3026 memset(&wc, 0, sizeof(wc));
3027 send_status = IB_WC_SUCCESS;
3028
3029 release = true;
3030 sqp->s_sge.sge = wqe->sg_list[0];
3031 sqp->s_sge.sg_list = wqe->sg_list + 1;
3032 sqp->s_sge.num_sge = wqe->wr.num_sge;
3033 sqp->s_len = wqe->length;
3034 switch (wqe->wr.opcode) {
3035 case IB_WR_REG_MR:
3036 goto send_comp;
3037
3038 case IB_WR_LOCAL_INV:
3039 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3040 if (rvt_invalidate_rkey(sqp,
3041 wqe->wr.ex.invalidate_rkey))
3042 send_status = IB_WC_LOC_PROT_ERR;
3043 local_ops = 1;
3044 }
3045 goto send_comp;
3046
3047 case IB_WR_SEND_WITH_INV:
3048 case IB_WR_SEND_WITH_IMM:
3049 case IB_WR_SEND:
3050 ret = rvt_get_rwqe(qp, false);
3051 if (ret < 0)
3052 goto op_err;
3053 if (!ret)
3054 goto rnr_nak;
3055 if (wqe->length > qp->r_len)
3056 goto inv_err;
3057 switch (wqe->wr.opcode) {
3058 case IB_WR_SEND_WITH_INV:
3059 if (!rvt_invalidate_rkey(qp,
3060 wqe->wr.ex.invalidate_rkey)) {
3061 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3062 wc.ex.invalidate_rkey =
3063 wqe->wr.ex.invalidate_rkey;
3064 }
3065 break;
3066 case IB_WR_SEND_WITH_IMM:
3067 wc.wc_flags = IB_WC_WITH_IMM;
3068 wc.ex.imm_data = wqe->wr.ex.imm_data;
3069 break;
3070 default:
3071 break;
3072 }
3073 break;
3074
3075 case IB_WR_RDMA_WRITE_WITH_IMM:
3076 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3077 goto inv_err;
3078 wc.wc_flags = IB_WC_WITH_IMM;
3079 wc.ex.imm_data = wqe->wr.ex.imm_data;
3080 ret = rvt_get_rwqe(qp, true);
3081 if (ret < 0)
3082 goto op_err;
3083 if (!ret)
3084 goto rnr_nak;
3085 /* skip copy_last set and qp_access_flags recheck */
3086 goto do_write;
3087 case IB_WR_RDMA_WRITE:
3088 copy_last = rvt_is_user_qp(qp);
3089 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3090 goto inv_err;
3091 do_write:
3092 if (wqe->length == 0)
3093 break;
3094 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3095 wqe->rdma_wr.remote_addr,
3096 wqe->rdma_wr.rkey,
3097 IB_ACCESS_REMOTE_WRITE)))
3098 goto acc_err;
3099 qp->r_sge.sg_list = NULL;
3100 qp->r_sge.num_sge = 1;
3101 qp->r_sge.total_len = wqe->length;
3102 break;
3103
3104 case IB_WR_RDMA_READ:
3105 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3106 goto inv_err;
3107 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3108 wqe->rdma_wr.remote_addr,
3109 wqe->rdma_wr.rkey,
3110 IB_ACCESS_REMOTE_READ)))
3111 goto acc_err;
3112 release = false;
3113 sqp->s_sge.sg_list = NULL;
3114 sqp->s_sge.num_sge = 1;
3115 qp->r_sge.sge = wqe->sg_list[0];
3116 qp->r_sge.sg_list = wqe->sg_list + 1;
3117 qp->r_sge.num_sge = wqe->wr.num_sge;
3118 qp->r_sge.total_len = wqe->length;
3119 break;
3120
3121 case IB_WR_ATOMIC_CMP_AND_SWP:
3122 case IB_WR_ATOMIC_FETCH_AND_ADD:
3123 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3124 goto inv_err;
3125 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3126 goto inv_err;
3127 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3128 wqe->atomic_wr.remote_addr,
3129 wqe->atomic_wr.rkey,
3130 IB_ACCESS_REMOTE_ATOMIC)))
3131 goto acc_err;
3132 /* Perform atomic OP and save result. */
3133 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3134 sdata = wqe->atomic_wr.compare_add;
3135 *(u64 *)sqp->s_sge.sge.vaddr =
3136 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3137 (u64)atomic64_add_return(sdata, maddr) - sdata :
3138 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3139 sdata, wqe->atomic_wr.swap);
3140 rvt_put_mr(qp->r_sge.sge.mr);
3141 qp->r_sge.num_sge = 0;
3142 goto send_comp;
3143
3144 default:
3145 send_status = IB_WC_LOC_QP_OP_ERR;
3146 goto serr;
3147 }
3148
3149 sge = &sqp->s_sge.sge;
3150 while (sqp->s_len) {
3151 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3152
3153 WARN_ON_ONCE(len == 0);
3154 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3155 len, release, copy_last);
3156 rvt_update_sge(&sqp->s_sge, len, !release);
3157 sqp->s_len -= len;
3158 }
3159 if (release)
3160 rvt_put_ss(&qp->r_sge);
3161
3162 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3163 goto send_comp;
3164
3165 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3166 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3167 else
3168 wc.opcode = IB_WC_RECV;
3169 wc.wr_id = qp->r_wr_id;
3170 wc.status = IB_WC_SUCCESS;
3171 wc.byte_len = wqe->length;
3172 wc.qp = &qp->ibqp;
3173 wc.src_qp = qp->remote_qpn;
3174 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3175 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3176 wc.port_num = 1;
3177 /* Signal completion event if the solicited bit is set. */
3178 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3179
3180 send_comp:
3181 spin_unlock_irqrestore(&qp->r_lock, flags);
3182 spin_lock_irqsave(&sqp->s_lock, flags);
3183 rvp->n_loop_pkts++;
3184 flush_send:
3185 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3186 spin_lock(&sqp->r_lock);
3187 rvt_send_complete(sqp, wqe, send_status);
3188 spin_unlock(&sqp->r_lock);
3189 if (local_ops) {
3190 atomic_dec(&sqp->local_ops_pending);
3191 local_ops = 0;
3192 }
3193 goto again;
3194
3195 rnr_nak:
3196 /* Handle RNR NAK */
3197 if (qp->ibqp.qp_type == IB_QPT_UC)
3198 goto send_comp;
3199 rvp->n_rnr_naks++;
3200 /*
3201 * Note: we don't need the s_lock held since the BUSY flag
3202 * makes this single threaded.
3203 */
3204 if (sqp->s_rnr_retry == 0) {
3205 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3206 goto serr;
3207 }
3208 if (sqp->s_rnr_retry_cnt < 7)
3209 sqp->s_rnr_retry--;
3210 spin_unlock_irqrestore(&qp->r_lock, flags);
3211 spin_lock_irqsave(&sqp->s_lock, flags);
3212 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3213 goto clr_busy;
3214 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3215 IB_AETH_CREDIT_SHIFT);
3216 goto clr_busy;
3217
3218 op_err:
3219 send_status = IB_WC_REM_OP_ERR;
3220 wc.status = IB_WC_LOC_QP_OP_ERR;
3221 goto err;
3222
3223 inv_err:
3224 send_status =
3225 sqp->ibqp.qp_type == IB_QPT_RC ?
3226 IB_WC_REM_INV_REQ_ERR :
3227 IB_WC_SUCCESS;
3228 wc.status = IB_WC_LOC_QP_OP_ERR;
3229 goto err;
3230
3231 acc_err:
3232 send_status = IB_WC_REM_ACCESS_ERR;
3233 wc.status = IB_WC_LOC_PROT_ERR;
3234 err:
3235 /* responder goes to error state */
3236 rvt_rc_error(qp, wc.status);
3237
3238 serr:
3239 spin_unlock_irqrestore(&qp->r_lock, flags);
3240 serr_no_r_lock:
3241 spin_lock_irqsave(&sqp->s_lock, flags);
3242 spin_lock(&sqp->r_lock);
3243 rvt_send_complete(sqp, wqe, send_status);
3244 spin_unlock(&sqp->r_lock);
3245 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3246 int lastwqe;
3247
3248 spin_lock(&sqp->r_lock);
3249 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3250 spin_unlock(&sqp->r_lock);
3251
3252 sqp->s_flags &= ~RVT_S_BUSY;
3253 spin_unlock_irqrestore(&sqp->s_lock, flags);
3254 if (lastwqe) {
3255 struct ib_event ev;
3256
3257 ev.device = sqp->ibqp.device;
3258 ev.element.qp = &sqp->ibqp;
3259 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3260 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3261 }
3262 goto done;
3263 }
3264 clr_busy:
3265 sqp->s_flags &= ~RVT_S_BUSY;
3266 unlock:
3267 spin_unlock_irqrestore(&sqp->s_lock, flags);
3268 done:
3269 rcu_read_unlock();
3270 }
3271 EXPORT_SYMBOL(rvt_ruc_loopback);
3272