• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
247 		 * set then it is likely the end of an application write. So
248 		 * more data may not be arriving soon, and yet the data sender
249 		 * may be waiting for an ACK if cwnd-bound or using TX zero
250 		 * copy. So we set ICSK_ACK_PUSHED here so that
251 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
252 		 * reads all of the data and is not ping-pong. If len > MSS
253 		 * then this logic does not matter (and does not hurt) because
254 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
255 		 * reads data and there is more than an MSS of unACKed data.
256 		 */
257 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
258 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
259 	} else {
260 		/* Otherwise, we make more careful check taking into account,
261 		 * that SACKs block is variable.
262 		 *
263 		 * "len" is invariant segment length, including TCP header.
264 		 */
265 		len += skb->data - skb_transport_header(skb);
266 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
267 		    /* If PSH is not set, packet should be
268 		     * full sized, provided peer TCP is not badly broken.
269 		     * This observation (if it is correct 8)) allows
270 		     * to handle super-low mtu links fairly.
271 		     */
272 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
273 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
274 			/* Subtract also invariant (if peer is RFC compliant),
275 			 * tcp header plus fixed timestamp option length.
276 			 * Resulting "len" is MSS free of SACK jitter.
277 			 */
278 			len -= tcp_sk(sk)->tcp_header_len;
279 			icsk->icsk_ack.last_seg_size = len;
280 			if (len == lss) {
281 				icsk->icsk_ack.rcv_mss = len;
282 				return;
283 			}
284 		}
285 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
286 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
287 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
288 	}
289 }
290 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)291 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
292 {
293 	struct inet_connection_sock *icsk = inet_csk(sk);
294 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
295 
296 	if (quickacks == 0)
297 		quickacks = 2;
298 	quickacks = min(quickacks, max_quickacks);
299 	if (quickacks > icsk->icsk_ack.quick)
300 		icsk->icsk_ack.quick = quickacks;
301 }
302 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)303 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
304 {
305 	struct inet_connection_sock *icsk = inet_csk(sk);
306 
307 	tcp_incr_quickack(sk, max_quickacks);
308 	inet_csk_exit_pingpong_mode(sk);
309 	icsk->icsk_ack.ato = TCP_ATO_MIN;
310 }
311 
312 /* Send ACKs quickly, if "quick" count is not exhausted
313  * and the session is not interactive.
314  */
315 
tcp_in_quickack_mode(struct sock * sk)316 static bool tcp_in_quickack_mode(struct sock *sk)
317 {
318 	const struct inet_connection_sock *icsk = inet_csk(sk);
319 	const struct dst_entry *dst = __sk_dst_get(sk);
320 
321 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
322 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
323 }
324 
tcp_ecn_queue_cwr(struct tcp_sock * tp)325 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
326 {
327 	if (tp->ecn_flags & TCP_ECN_OK)
328 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
329 }
330 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)331 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
332 {
333 	if (tcp_hdr(skb)->cwr) {
334 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
335 
336 		/* If the sender is telling us it has entered CWR, then its
337 		 * cwnd may be very low (even just 1 packet), so we should ACK
338 		 * immediately.
339 		 */
340 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
341 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
342 	}
343 }
344 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)345 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
346 {
347 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
348 }
349 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)350 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
351 {
352 	struct tcp_sock *tp = tcp_sk(sk);
353 
354 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
355 	case INET_ECN_NOT_ECT:
356 		/* Funny extension: if ECT is not set on a segment,
357 		 * and we already seen ECT on a previous segment,
358 		 * it is probably a retransmit.
359 		 */
360 		if (tp->ecn_flags & TCP_ECN_SEEN)
361 			tcp_enter_quickack_mode(sk, 2);
362 		break;
363 	case INET_ECN_CE:
364 		if (tcp_ca_needs_ecn(sk))
365 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
366 
367 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
368 			/* Better not delay acks, sender can have a very low cwnd */
369 			tcp_enter_quickack_mode(sk, 2);
370 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
371 		}
372 		tp->ecn_flags |= TCP_ECN_SEEN;
373 		break;
374 	default:
375 		if (tcp_ca_needs_ecn(sk))
376 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
377 		tp->ecn_flags |= TCP_ECN_SEEN;
378 		break;
379 	}
380 }
381 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)382 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
383 {
384 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
385 		__tcp_ecn_check_ce(sk, skb);
386 }
387 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)388 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
391 		tp->ecn_flags &= ~TCP_ECN_OK;
392 }
393 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)394 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
395 {
396 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
397 		tp->ecn_flags &= ~TCP_ECN_OK;
398 }
399 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)400 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
401 {
402 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
403 		return true;
404 	return false;
405 }
406 
407 /* Buffer size and advertised window tuning.
408  *
409  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
410  */
411 
tcp_sndbuf_expand(struct sock * sk)412 static void tcp_sndbuf_expand(struct sock *sk)
413 {
414 	const struct tcp_sock *tp = tcp_sk(sk);
415 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
416 	int sndmem, per_mss;
417 	u32 nr_segs;
418 
419 	/* Worst case is non GSO/TSO : each frame consumes one skb
420 	 * and skb->head is kmalloced using power of two area of memory
421 	 */
422 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
423 		  MAX_TCP_HEADER +
424 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 
426 	per_mss = roundup_pow_of_two(per_mss) +
427 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
428 
429 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
430 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
431 
432 	/* Fast Recovery (RFC 5681 3.2) :
433 	 * Cubic needs 1.7 factor, rounded to 2 to include
434 	 * extra cushion (application might react slowly to EPOLLOUT)
435 	 */
436 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
437 	sndmem *= nr_segs * per_mss;
438 
439 	if (sk->sk_sndbuf < sndmem)
440 		WRITE_ONCE(sk->sk_sndbuf,
441 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
442 }
443 
444 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
445  *
446  * All tcp_full_space() is split to two parts: "network" buffer, allocated
447  * forward and advertised in receiver window (tp->rcv_wnd) and
448  * "application buffer", required to isolate scheduling/application
449  * latencies from network.
450  * window_clamp is maximal advertised window. It can be less than
451  * tcp_full_space(), in this case tcp_full_space() - window_clamp
452  * is reserved for "application" buffer. The less window_clamp is
453  * the smoother our behaviour from viewpoint of network, but the lower
454  * throughput and the higher sensitivity of the connection to losses. 8)
455  *
456  * rcv_ssthresh is more strict window_clamp used at "slow start"
457  * phase to predict further behaviour of this connection.
458  * It is used for two goals:
459  * - to enforce header prediction at sender, even when application
460  *   requires some significant "application buffer". It is check #1.
461  * - to prevent pruning of receive queue because of misprediction
462  *   of receiver window. Check #2.
463  *
464  * The scheme does not work when sender sends good segments opening
465  * window and then starts to feed us spaghetti. But it should work
466  * in common situations. Otherwise, we have to rely on queue collapsing.
467  */
468 
469 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)470 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
471 			     unsigned int skbtruesize)
472 {
473 	struct tcp_sock *tp = tcp_sk(sk);
474 	/* Optimize this! */
475 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
476 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
477 
478 	while (tp->rcv_ssthresh <= window) {
479 		if (truesize <= skb->len)
480 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
481 
482 		truesize >>= 1;
483 		window >>= 1;
484 	}
485 	return 0;
486 }
487 
488 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
489  * can play nice with us, as sk_buff and skb->head might be either
490  * freed or shared with up to MAX_SKB_FRAGS segments.
491  * Only give a boost to drivers using page frag(s) to hold the frame(s),
492  * and if no payload was pulled in skb->head before reaching us.
493  */
truesize_adjust(bool adjust,const struct sk_buff * skb)494 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
495 {
496 	u32 truesize = skb->truesize;
497 
498 	if (adjust && !skb_headlen(skb)) {
499 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
500 		/* paranoid check, some drivers might be buggy */
501 		if (unlikely((int)truesize < (int)skb->len))
502 			truesize = skb->truesize;
503 	}
504 	return truesize;
505 }
506 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)507 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
508 			    bool adjust)
509 {
510 	struct tcp_sock *tp = tcp_sk(sk);
511 	int room;
512 
513 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
514 
515 	/* Check #1 */
516 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
517 		unsigned int truesize = truesize_adjust(adjust, skb);
518 		int incr;
519 
520 		/* Check #2. Increase window, if skb with such overhead
521 		 * will fit to rcvbuf in future.
522 		 */
523 		if (tcp_win_from_space(sk, truesize) <= skb->len)
524 			incr = 2 * tp->advmss;
525 		else
526 			incr = __tcp_grow_window(sk, skb, truesize);
527 
528 		if (incr) {
529 			incr = max_t(int, incr, 2 * skb->len);
530 			tp->rcv_ssthresh += min(room, incr);
531 			inet_csk(sk)->icsk_ack.quick |= 1;
532 		}
533 	}
534 }
535 
536 /* 3. Try to fixup all. It is made immediately after connection enters
537  *    established state.
538  */
tcp_init_buffer_space(struct sock * sk)539 static void tcp_init_buffer_space(struct sock *sk)
540 {
541 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	int maxwin;
544 
545 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
546 		tcp_sndbuf_expand(sk);
547 
548 	tcp_mstamp_refresh(tp);
549 	tp->rcvq_space.time = tp->tcp_mstamp;
550 	tp->rcvq_space.seq = tp->copied_seq;
551 
552 	maxwin = tcp_full_space(sk);
553 
554 	if (tp->window_clamp >= maxwin) {
555 		tp->window_clamp = maxwin;
556 
557 		if (tcp_app_win && maxwin > 4 * tp->advmss)
558 			tp->window_clamp = max(maxwin -
559 					       (maxwin >> tcp_app_win),
560 					       4 * tp->advmss);
561 	}
562 
563 	/* Force reservation of one segment. */
564 	if (tcp_app_win &&
565 	    tp->window_clamp > 2 * tp->advmss &&
566 	    tp->window_clamp + tp->advmss > maxwin)
567 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
568 
569 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
570 	tp->snd_cwnd_stamp = tcp_jiffies32;
571 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
572 				    (u32)TCP_INIT_CWND * tp->advmss);
573 }
574 
575 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)576 static void tcp_clamp_window(struct sock *sk)
577 {
578 	struct tcp_sock *tp = tcp_sk(sk);
579 	struct inet_connection_sock *icsk = inet_csk(sk);
580 	struct net *net = sock_net(sk);
581 	int rmem2;
582 
583 	icsk->icsk_ack.quick = 0;
584 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
585 
586 	if (sk->sk_rcvbuf < rmem2 &&
587 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
588 	    !tcp_under_memory_pressure(sk) &&
589 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
590 		WRITE_ONCE(sk->sk_rcvbuf,
591 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
592 	}
593 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
594 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
595 }
596 
597 /* Initialize RCV_MSS value.
598  * RCV_MSS is an our guess about MSS used by the peer.
599  * We haven't any direct information about the MSS.
600  * It's better to underestimate the RCV_MSS rather than overestimate.
601  * Overestimations make us ACKing less frequently than needed.
602  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
603  */
tcp_initialize_rcv_mss(struct sock * sk)604 void tcp_initialize_rcv_mss(struct sock *sk)
605 {
606 	const struct tcp_sock *tp = tcp_sk(sk);
607 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
608 
609 	hint = min(hint, tp->rcv_wnd / 2);
610 	hint = min(hint, TCP_MSS_DEFAULT);
611 	hint = max(hint, TCP_MIN_MSS);
612 
613 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
614 }
615 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
616 
617 /* Receiver "autotuning" code.
618  *
619  * The algorithm for RTT estimation w/o timestamps is based on
620  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
621  * <https://public.lanl.gov/radiant/pubs.html#DRS>
622  *
623  * More detail on this code can be found at
624  * <http://staff.psc.edu/jheffner/>,
625  * though this reference is out of date.  A new paper
626  * is pending.
627  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)628 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
629 {
630 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
631 	long m = sample;
632 
633 	if (new_sample != 0) {
634 		/* If we sample in larger samples in the non-timestamp
635 		 * case, we could grossly overestimate the RTT especially
636 		 * with chatty applications or bulk transfer apps which
637 		 * are stalled on filesystem I/O.
638 		 *
639 		 * Also, since we are only going for a minimum in the
640 		 * non-timestamp case, we do not smooth things out
641 		 * else with timestamps disabled convergence takes too
642 		 * long.
643 		 */
644 		if (!win_dep) {
645 			m -= (new_sample >> 3);
646 			new_sample += m;
647 		} else {
648 			m <<= 3;
649 			if (m < new_sample)
650 				new_sample = m;
651 		}
652 	} else {
653 		/* No previous measure. */
654 		new_sample = m << 3;
655 	}
656 
657 	tp->rcv_rtt_est.rtt_us = new_sample;
658 }
659 
tcp_rcv_rtt_measure(struct tcp_sock * tp)660 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
661 {
662 	u32 delta_us;
663 
664 	if (tp->rcv_rtt_est.time == 0)
665 		goto new_measure;
666 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
667 		return;
668 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
669 	if (!delta_us)
670 		delta_us = 1;
671 	tcp_rcv_rtt_update(tp, delta_us, 1);
672 
673 new_measure:
674 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
675 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
676 }
677 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)678 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
679 					  const struct sk_buff *skb)
680 {
681 	struct tcp_sock *tp = tcp_sk(sk);
682 
683 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
684 		return;
685 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
686 
687 	if (TCP_SKB_CB(skb)->end_seq -
688 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
689 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
690 		u32 delta_us;
691 
692 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
693 			if (!delta)
694 				delta = 1;
695 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
696 			tcp_rcv_rtt_update(tp, delta_us, 0);
697 		}
698 	}
699 }
700 
701 /*
702  * This function should be called every time data is copied to user space.
703  * It calculates the appropriate TCP receive buffer space.
704  */
tcp_rcv_space_adjust(struct sock * sk)705 void tcp_rcv_space_adjust(struct sock *sk)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	u32 copied;
709 	int time;
710 
711 	trace_tcp_rcv_space_adjust(sk);
712 
713 	tcp_mstamp_refresh(tp);
714 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
715 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
716 		return;
717 
718 	/* Number of bytes copied to user in last RTT */
719 	copied = tp->copied_seq - tp->rcvq_space.seq;
720 	if (copied <= tp->rcvq_space.space)
721 		goto new_measure;
722 
723 	/* A bit of theory :
724 	 * copied = bytes received in previous RTT, our base window
725 	 * To cope with packet losses, we need a 2x factor
726 	 * To cope with slow start, and sender growing its cwin by 100 %
727 	 * every RTT, we need a 4x factor, because the ACK we are sending
728 	 * now is for the next RTT, not the current one :
729 	 * <prev RTT . ><current RTT .. ><next RTT .... >
730 	 */
731 
732 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
733 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
734 		int rcvmem, rcvbuf;
735 		u64 rcvwin, grow;
736 
737 		/* minimal window to cope with packet losses, assuming
738 		 * steady state. Add some cushion because of small variations.
739 		 */
740 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
741 
742 		/* Accommodate for sender rate increase (eg. slow start) */
743 		grow = rcvwin * (copied - tp->rcvq_space.space);
744 		do_div(grow, tp->rcvq_space.space);
745 		rcvwin += (grow << 1);
746 
747 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
748 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
749 			rcvmem += 128;
750 
751 		do_div(rcvwin, tp->advmss);
752 		rcvbuf = min_t(u64, rcvwin * rcvmem,
753 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
754 		if (rcvbuf > sk->sk_rcvbuf) {
755 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
756 
757 			/* Make the window clamp follow along.  */
758 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
759 		}
760 	}
761 	tp->rcvq_space.space = copied;
762 
763 new_measure:
764 	tp->rcvq_space.seq = tp->copied_seq;
765 	tp->rcvq_space.time = tp->tcp_mstamp;
766 }
767 
768 /* There is something which you must keep in mind when you analyze the
769  * behavior of the tp->ato delayed ack timeout interval.  When a
770  * connection starts up, we want to ack as quickly as possible.  The
771  * problem is that "good" TCP's do slow start at the beginning of data
772  * transmission.  The means that until we send the first few ACK's the
773  * sender will sit on his end and only queue most of his data, because
774  * he can only send snd_cwnd unacked packets at any given time.  For
775  * each ACK we send, he increments snd_cwnd and transmits more of his
776  * queue.  -DaveM
777  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)778 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
779 {
780 	struct tcp_sock *tp = tcp_sk(sk);
781 	struct inet_connection_sock *icsk = inet_csk(sk);
782 	u32 now;
783 
784 	inet_csk_schedule_ack(sk);
785 
786 	tcp_measure_rcv_mss(sk, skb);
787 
788 	tcp_rcv_rtt_measure(tp);
789 
790 	now = tcp_jiffies32;
791 
792 	if (!icsk->icsk_ack.ato) {
793 		/* The _first_ data packet received, initialize
794 		 * delayed ACK engine.
795 		 */
796 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
797 		icsk->icsk_ack.ato = TCP_ATO_MIN;
798 	} else {
799 		int m = now - icsk->icsk_ack.lrcvtime;
800 
801 		if (m <= TCP_ATO_MIN / 2) {
802 			/* The fastest case is the first. */
803 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
804 		} else if (m < icsk->icsk_ack.ato) {
805 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
806 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
807 				icsk->icsk_ack.ato = icsk->icsk_rto;
808 		} else if (m > icsk->icsk_rto) {
809 			/* Too long gap. Apparently sender failed to
810 			 * restart window, so that we send ACKs quickly.
811 			 */
812 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
813 			sk_mem_reclaim(sk);
814 		}
815 	}
816 	icsk->icsk_ack.lrcvtime = now;
817 
818 	tcp_ecn_check_ce(sk, skb);
819 
820 	if (skb->len >= 128)
821 		tcp_grow_window(sk, skb, true);
822 }
823 
824 /* Called to compute a smoothed rtt estimate. The data fed to this
825  * routine either comes from timestamps, or from segments that were
826  * known _not_ to have been retransmitted [see Karn/Partridge
827  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
828  * piece by Van Jacobson.
829  * NOTE: the next three routines used to be one big routine.
830  * To save cycles in the RFC 1323 implementation it was better to break
831  * it up into three procedures. -- erics
832  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)833 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
834 {
835 	struct tcp_sock *tp = tcp_sk(sk);
836 	long m = mrtt_us; /* RTT */
837 	u32 srtt = tp->srtt_us;
838 
839 	/*	The following amusing code comes from Jacobson's
840 	 *	article in SIGCOMM '88.  Note that rtt and mdev
841 	 *	are scaled versions of rtt and mean deviation.
842 	 *	This is designed to be as fast as possible
843 	 *	m stands for "measurement".
844 	 *
845 	 *	On a 1990 paper the rto value is changed to:
846 	 *	RTO = rtt + 4 * mdev
847 	 *
848 	 * Funny. This algorithm seems to be very broken.
849 	 * These formulae increase RTO, when it should be decreased, increase
850 	 * too slowly, when it should be increased quickly, decrease too quickly
851 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
852 	 * does not matter how to _calculate_ it. Seems, it was trap
853 	 * that VJ failed to avoid. 8)
854 	 */
855 	if (srtt != 0) {
856 		m -= (srtt >> 3);	/* m is now error in rtt est */
857 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
858 		if (m < 0) {
859 			m = -m;		/* m is now abs(error) */
860 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
861 			/* This is similar to one of Eifel findings.
862 			 * Eifel blocks mdev updates when rtt decreases.
863 			 * This solution is a bit different: we use finer gain
864 			 * for mdev in this case (alpha*beta).
865 			 * Like Eifel it also prevents growth of rto,
866 			 * but also it limits too fast rto decreases,
867 			 * happening in pure Eifel.
868 			 */
869 			if (m > 0)
870 				m >>= 3;
871 		} else {
872 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
873 		}
874 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
875 		if (tp->mdev_us > tp->mdev_max_us) {
876 			tp->mdev_max_us = tp->mdev_us;
877 			if (tp->mdev_max_us > tp->rttvar_us)
878 				tp->rttvar_us = tp->mdev_max_us;
879 		}
880 		if (after(tp->snd_una, tp->rtt_seq)) {
881 			if (tp->mdev_max_us < tp->rttvar_us)
882 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
883 			tp->rtt_seq = tp->snd_nxt;
884 			tp->mdev_max_us = tcp_rto_min_us(sk);
885 
886 			tcp_bpf_rtt(sk);
887 		}
888 	} else {
889 		/* no previous measure. */
890 		srtt = m << 3;		/* take the measured time to be rtt */
891 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
892 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
893 		tp->mdev_max_us = tp->rttvar_us;
894 		tp->rtt_seq = tp->snd_nxt;
895 
896 		tcp_bpf_rtt(sk);
897 	}
898 	tp->srtt_us = max(1U, srtt);
899 }
900 
tcp_update_pacing_rate(struct sock * sk)901 static void tcp_update_pacing_rate(struct sock *sk)
902 {
903 	const struct tcp_sock *tp = tcp_sk(sk);
904 	u64 rate;
905 
906 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
907 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
908 
909 	/* current rate is (cwnd * mss) / srtt
910 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
911 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
912 	 *
913 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
914 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
915 	 *	 end of slow start and should slow down.
916 	 */
917 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
918 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
919 	else
920 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
921 
922 	rate *= max(tp->snd_cwnd, tp->packets_out);
923 
924 	if (likely(tp->srtt_us))
925 		do_div(rate, tp->srtt_us);
926 
927 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
928 	 * without any lock. We want to make sure compiler wont store
929 	 * intermediate values in this location.
930 	 */
931 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
932 					     sk->sk_max_pacing_rate));
933 }
934 
935 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
936  * routine referred to above.
937  */
tcp_set_rto(struct sock * sk)938 static void tcp_set_rto(struct sock *sk)
939 {
940 	const struct tcp_sock *tp = tcp_sk(sk);
941 	/* Old crap is replaced with new one. 8)
942 	 *
943 	 * More seriously:
944 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
945 	 *    It cannot be less due to utterly erratic ACK generation made
946 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
947 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
948 	 *    is invisible. Actually, Linux-2.4 also generates erratic
949 	 *    ACKs in some circumstances.
950 	 */
951 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
952 
953 	/* 2. Fixups made earlier cannot be right.
954 	 *    If we do not estimate RTO correctly without them,
955 	 *    all the algo is pure shit and should be replaced
956 	 *    with correct one. It is exactly, which we pretend to do.
957 	 */
958 
959 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
960 	 * guarantees that rto is higher.
961 	 */
962 	tcp_bound_rto(sk);
963 }
964 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)965 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
966 {
967 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
968 
969 	if (!cwnd)
970 		cwnd = TCP_INIT_CWND;
971 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
972 }
973 
974 struct tcp_sacktag_state {
975 	/* Timestamps for earliest and latest never-retransmitted segment
976 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
977 	 * but congestion control should still get an accurate delay signal.
978 	 */
979 	u64	first_sackt;
980 	u64	last_sackt;
981 	u32	reord;
982 	u32	sack_delivered;
983 	int	flag;
984 	unsigned int mss_now;
985 	struct rate_sample *rate;
986 };
987 
988 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
989  * and spurious retransmission information if this DSACK is unlikely caused by
990  * sender's action:
991  * - DSACKed sequence range is larger than maximum receiver's window.
992  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
993  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)994 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
995 			  u32 end_seq, struct tcp_sacktag_state *state)
996 {
997 	u32 seq_len, dup_segs = 1;
998 
999 	if (!before(start_seq, end_seq))
1000 		return 0;
1001 
1002 	seq_len = end_seq - start_seq;
1003 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1004 	if (seq_len > tp->max_window)
1005 		return 0;
1006 	if (seq_len > tp->mss_cache)
1007 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1008 
1009 	tp->dsack_dups += dup_segs;
1010 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1011 	if (tp->dsack_dups > tp->total_retrans)
1012 		return 0;
1013 
1014 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1015 	tp->rack.dsack_seen = 1;
1016 
1017 	state->flag |= FLAG_DSACKING_ACK;
1018 	/* A spurious retransmission is delivered */
1019 	state->sack_delivered += dup_segs;
1020 
1021 	return dup_segs;
1022 }
1023 
1024 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1025  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1026  * distance is approximated in full-mss packet distance ("reordering").
1027  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1028 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1029 				      const int ts)
1030 {
1031 	struct tcp_sock *tp = tcp_sk(sk);
1032 	const u32 mss = tp->mss_cache;
1033 	u32 fack, metric;
1034 
1035 	fack = tcp_highest_sack_seq(tp);
1036 	if (!before(low_seq, fack))
1037 		return;
1038 
1039 	metric = fack - low_seq;
1040 	if ((metric > tp->reordering * mss) && mss) {
1041 #if FASTRETRANS_DEBUG > 1
1042 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1043 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1044 			 tp->reordering,
1045 			 0,
1046 			 tp->sacked_out,
1047 			 tp->undo_marker ? tp->undo_retrans : 0);
1048 #endif
1049 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1050 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1051 	}
1052 
1053 	/* This exciting event is worth to be remembered. 8) */
1054 	tp->reord_seen++;
1055 	NET_INC_STATS(sock_net(sk),
1056 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1057 }
1058 
1059  /* This must be called before lost_out or retrans_out are updated
1060   * on a new loss, because we want to know if all skbs previously
1061   * known to be lost have already been retransmitted, indicating
1062   * that this newly lost skb is our next skb to retransmit.
1063   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1064 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1065 {
1066 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1067 	    (tp->retransmit_skb_hint &&
1068 	     before(TCP_SKB_CB(skb)->seq,
1069 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1070 		tp->retransmit_skb_hint = skb;
1071 }
1072 
1073 /* Sum the number of packets on the wire we have marked as lost, and
1074  * notify the congestion control module that the given skb was marked lost.
1075  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1076 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1077 {
1078 	tp->lost += tcp_skb_pcount(skb);
1079 }
1080 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1081 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1082 {
1083 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1084 	struct tcp_sock *tp = tcp_sk(sk);
1085 
1086 	if (sacked & TCPCB_SACKED_ACKED)
1087 		return;
1088 
1089 	tcp_verify_retransmit_hint(tp, skb);
1090 	if (sacked & TCPCB_LOST) {
1091 		if (sacked & TCPCB_SACKED_RETRANS) {
1092 			/* Account for retransmits that are lost again */
1093 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1094 			tp->retrans_out -= tcp_skb_pcount(skb);
1095 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1096 				      tcp_skb_pcount(skb));
1097 			tcp_notify_skb_loss_event(tp, skb);
1098 		}
1099 	} else {
1100 		tp->lost_out += tcp_skb_pcount(skb);
1101 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1102 		tcp_notify_skb_loss_event(tp, skb);
1103 	}
1104 }
1105 
1106 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1107 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1108 				bool ece_ack)
1109 {
1110 	tp->delivered += delivered;
1111 	if (ece_ack)
1112 		tp->delivered_ce += delivered;
1113 }
1114 
1115 /* This procedure tags the retransmission queue when SACKs arrive.
1116  *
1117  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1118  * Packets in queue with these bits set are counted in variables
1119  * sacked_out, retrans_out and lost_out, correspondingly.
1120  *
1121  * Valid combinations are:
1122  * Tag  InFlight	Description
1123  * 0	1		- orig segment is in flight.
1124  * S	0		- nothing flies, orig reached receiver.
1125  * L	0		- nothing flies, orig lost by net.
1126  * R	2		- both orig and retransmit are in flight.
1127  * L|R	1		- orig is lost, retransmit is in flight.
1128  * S|R  1		- orig reached receiver, retrans is still in flight.
1129  * (L|S|R is logically valid, it could occur when L|R is sacked,
1130  *  but it is equivalent to plain S and code short-curcuits it to S.
1131  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1132  *
1133  * These 6 states form finite state machine, controlled by the following events:
1134  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1135  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1136  * 3. Loss detection event of two flavors:
1137  *	A. Scoreboard estimator decided the packet is lost.
1138  *	   A'. Reno "three dupacks" marks head of queue lost.
1139  *	B. SACK arrives sacking SND.NXT at the moment, when the
1140  *	   segment was retransmitted.
1141  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1142  *
1143  * It is pleasant to note, that state diagram turns out to be commutative,
1144  * so that we are allowed not to be bothered by order of our actions,
1145  * when multiple events arrive simultaneously. (see the function below).
1146  *
1147  * Reordering detection.
1148  * --------------------
1149  * Reordering metric is maximal distance, which a packet can be displaced
1150  * in packet stream. With SACKs we can estimate it:
1151  *
1152  * 1. SACK fills old hole and the corresponding segment was not
1153  *    ever retransmitted -> reordering. Alas, we cannot use it
1154  *    when segment was retransmitted.
1155  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1156  *    for retransmitted and already SACKed segment -> reordering..
1157  * Both of these heuristics are not used in Loss state, when we cannot
1158  * account for retransmits accurately.
1159  *
1160  * SACK block validation.
1161  * ----------------------
1162  *
1163  * SACK block range validation checks that the received SACK block fits to
1164  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1165  * Note that SND.UNA is not included to the range though being valid because
1166  * it means that the receiver is rather inconsistent with itself reporting
1167  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1168  * perfectly valid, however, in light of RFC2018 which explicitly states
1169  * that "SACK block MUST reflect the newest segment.  Even if the newest
1170  * segment is going to be discarded ...", not that it looks very clever
1171  * in case of head skb. Due to potentional receiver driven attacks, we
1172  * choose to avoid immediate execution of a walk in write queue due to
1173  * reneging and defer head skb's loss recovery to standard loss recovery
1174  * procedure that will eventually trigger (nothing forbids us doing this).
1175  *
1176  * Implements also blockage to start_seq wrap-around. Problem lies in the
1177  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1178  * there's no guarantee that it will be before snd_nxt (n). The problem
1179  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1180  * wrap (s_w):
1181  *
1182  *         <- outs wnd ->                          <- wrapzone ->
1183  *         u     e      n                         u_w   e_w  s n_w
1184  *         |     |      |                          |     |   |  |
1185  * |<------------+------+----- TCP seqno space --------------+---------->|
1186  * ...-- <2^31 ->|                                           |<--------...
1187  * ...---- >2^31 ------>|                                    |<--------...
1188  *
1189  * Current code wouldn't be vulnerable but it's better still to discard such
1190  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1191  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1192  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1193  * equal to the ideal case (infinite seqno space without wrap caused issues).
1194  *
1195  * With D-SACK the lower bound is extended to cover sequence space below
1196  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1197  * again, D-SACK block must not to go across snd_una (for the same reason as
1198  * for the normal SACK blocks, explained above). But there all simplicity
1199  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1200  * fully below undo_marker they do not affect behavior in anyway and can
1201  * therefore be safely ignored. In rare cases (which are more or less
1202  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1203  * fragmentation and packet reordering past skb's retransmission. To consider
1204  * them correctly, the acceptable range must be extended even more though
1205  * the exact amount is rather hard to quantify. However, tp->max_window can
1206  * be used as an exaggerated estimate.
1207  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1208 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1209 				   u32 start_seq, u32 end_seq)
1210 {
1211 	/* Too far in future, or reversed (interpretation is ambiguous) */
1212 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1213 		return false;
1214 
1215 	/* Nasty start_seq wrap-around check (see comments above) */
1216 	if (!before(start_seq, tp->snd_nxt))
1217 		return false;
1218 
1219 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1220 	 * start_seq == snd_una is non-sensical (see comments above)
1221 	 */
1222 	if (after(start_seq, tp->snd_una))
1223 		return true;
1224 
1225 	if (!is_dsack || !tp->undo_marker)
1226 		return false;
1227 
1228 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1229 	if (after(end_seq, tp->snd_una))
1230 		return false;
1231 
1232 	if (!before(start_seq, tp->undo_marker))
1233 		return true;
1234 
1235 	/* Too old */
1236 	if (!after(end_seq, tp->undo_marker))
1237 		return false;
1238 
1239 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1240 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1241 	 */
1242 	return !before(start_seq, end_seq - tp->max_window);
1243 }
1244 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1245 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1246 			    struct tcp_sack_block_wire *sp, int num_sacks,
1247 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1248 {
1249 	struct tcp_sock *tp = tcp_sk(sk);
1250 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1251 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1252 	u32 dup_segs;
1253 
1254 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1255 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1256 	} else if (num_sacks > 1) {
1257 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1258 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1259 
1260 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1261 			return false;
1262 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1263 	} else {
1264 		return false;
1265 	}
1266 
1267 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1268 	if (!dup_segs) {	/* Skip dubious DSACK */
1269 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1270 		return false;
1271 	}
1272 
1273 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1274 
1275 	/* D-SACK for already forgotten data... Do dumb counting. */
1276 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1277 	    !after(end_seq_0, prior_snd_una) &&
1278 	    after(end_seq_0, tp->undo_marker))
1279 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1280 
1281 	return true;
1282 }
1283 
1284 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1285  * the incoming SACK may not exactly match but we can find smaller MSS
1286  * aligned portion of it that matches. Therefore we might need to fragment
1287  * which may fail and creates some hassle (caller must handle error case
1288  * returns).
1289  *
1290  * FIXME: this could be merged to shift decision code
1291  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1292 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1293 				  u32 start_seq, u32 end_seq)
1294 {
1295 	int err;
1296 	bool in_sack;
1297 	unsigned int pkt_len;
1298 	unsigned int mss;
1299 
1300 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1301 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1302 
1303 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1304 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1305 		mss = tcp_skb_mss(skb);
1306 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1307 
1308 		if (!in_sack) {
1309 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1310 			if (pkt_len < mss)
1311 				pkt_len = mss;
1312 		} else {
1313 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1314 			if (pkt_len < mss)
1315 				return -EINVAL;
1316 		}
1317 
1318 		/* Round if necessary so that SACKs cover only full MSSes
1319 		 * and/or the remaining small portion (if present)
1320 		 */
1321 		if (pkt_len > mss) {
1322 			unsigned int new_len = (pkt_len / mss) * mss;
1323 			if (!in_sack && new_len < pkt_len)
1324 				new_len += mss;
1325 			pkt_len = new_len;
1326 		}
1327 
1328 		if (pkt_len >= skb->len && !in_sack)
1329 			return 0;
1330 
1331 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1332 				   pkt_len, mss, GFP_ATOMIC);
1333 		if (err < 0)
1334 			return err;
1335 	}
1336 
1337 	return in_sack;
1338 }
1339 
1340 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1341 static u8 tcp_sacktag_one(struct sock *sk,
1342 			  struct tcp_sacktag_state *state, u8 sacked,
1343 			  u32 start_seq, u32 end_seq,
1344 			  int dup_sack, int pcount,
1345 			  u64 xmit_time)
1346 {
1347 	struct tcp_sock *tp = tcp_sk(sk);
1348 
1349 	/* Account D-SACK for retransmitted packet. */
1350 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1351 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1352 		    after(end_seq, tp->undo_marker))
1353 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1354 		if ((sacked & TCPCB_SACKED_ACKED) &&
1355 		    before(start_seq, state->reord))
1356 				state->reord = start_seq;
1357 	}
1358 
1359 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1360 	if (!after(end_seq, tp->snd_una))
1361 		return sacked;
1362 
1363 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1364 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1365 
1366 		if (sacked & TCPCB_SACKED_RETRANS) {
1367 			/* If the segment is not tagged as lost,
1368 			 * we do not clear RETRANS, believing
1369 			 * that retransmission is still in flight.
1370 			 */
1371 			if (sacked & TCPCB_LOST) {
1372 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1373 				tp->lost_out -= pcount;
1374 				tp->retrans_out -= pcount;
1375 			}
1376 		} else {
1377 			if (!(sacked & TCPCB_RETRANS)) {
1378 				/* New sack for not retransmitted frame,
1379 				 * which was in hole. It is reordering.
1380 				 */
1381 				if (before(start_seq,
1382 					   tcp_highest_sack_seq(tp)) &&
1383 				    before(start_seq, state->reord))
1384 					state->reord = start_seq;
1385 
1386 				if (!after(end_seq, tp->high_seq))
1387 					state->flag |= FLAG_ORIG_SACK_ACKED;
1388 				if (state->first_sackt == 0)
1389 					state->first_sackt = xmit_time;
1390 				state->last_sackt = xmit_time;
1391 			}
1392 
1393 			if (sacked & TCPCB_LOST) {
1394 				sacked &= ~TCPCB_LOST;
1395 				tp->lost_out -= pcount;
1396 			}
1397 		}
1398 
1399 		sacked |= TCPCB_SACKED_ACKED;
1400 		state->flag |= FLAG_DATA_SACKED;
1401 		tp->sacked_out += pcount;
1402 		/* Out-of-order packets delivered */
1403 		state->sack_delivered += pcount;
1404 
1405 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1406 		if (tp->lost_skb_hint &&
1407 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1408 			tp->lost_cnt_hint += pcount;
1409 	}
1410 
1411 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1412 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1413 	 * are accounted above as well.
1414 	 */
1415 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1416 		sacked &= ~TCPCB_SACKED_RETRANS;
1417 		tp->retrans_out -= pcount;
1418 	}
1419 
1420 	return sacked;
1421 }
1422 
1423 /* Shift newly-SACKed bytes from this skb to the immediately previous
1424  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1425  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1426 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1427 			    struct sk_buff *skb,
1428 			    struct tcp_sacktag_state *state,
1429 			    unsigned int pcount, int shifted, int mss,
1430 			    bool dup_sack)
1431 {
1432 	struct tcp_sock *tp = tcp_sk(sk);
1433 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1434 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1435 
1436 	BUG_ON(!pcount);
1437 
1438 	/* Adjust counters and hints for the newly sacked sequence
1439 	 * range but discard the return value since prev is already
1440 	 * marked. We must tag the range first because the seq
1441 	 * advancement below implicitly advances
1442 	 * tcp_highest_sack_seq() when skb is highest_sack.
1443 	 */
1444 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1445 			start_seq, end_seq, dup_sack, pcount,
1446 			tcp_skb_timestamp_us(skb));
1447 	tcp_rate_skb_delivered(sk, skb, state->rate);
1448 
1449 	if (skb == tp->lost_skb_hint)
1450 		tp->lost_cnt_hint += pcount;
1451 
1452 	TCP_SKB_CB(prev)->end_seq += shifted;
1453 	TCP_SKB_CB(skb)->seq += shifted;
1454 
1455 	tcp_skb_pcount_add(prev, pcount);
1456 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1457 	tcp_skb_pcount_add(skb, -pcount);
1458 
1459 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1460 	 * in theory this shouldn't be necessary but as long as DSACK
1461 	 * code can come after this skb later on it's better to keep
1462 	 * setting gso_size to something.
1463 	 */
1464 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1465 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1466 
1467 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1468 	if (tcp_skb_pcount(skb) <= 1)
1469 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1470 
1471 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1472 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1473 
1474 	if (skb->len > 0) {
1475 		BUG_ON(!tcp_skb_pcount(skb));
1476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1477 		return false;
1478 	}
1479 
1480 	/* Whole SKB was eaten :-) */
1481 
1482 	if (skb == tp->retransmit_skb_hint)
1483 		tp->retransmit_skb_hint = prev;
1484 	if (skb == tp->lost_skb_hint) {
1485 		tp->lost_skb_hint = prev;
1486 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1487 	}
1488 
1489 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1490 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1491 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1492 		TCP_SKB_CB(prev)->end_seq++;
1493 
1494 	if (skb == tcp_highest_sack(sk))
1495 		tcp_advance_highest_sack(sk, skb);
1496 
1497 	tcp_skb_collapse_tstamp(prev, skb);
1498 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1499 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1500 
1501 	tcp_rtx_queue_unlink_and_free(skb, sk);
1502 
1503 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1504 
1505 	return true;
1506 }
1507 
1508 /* I wish gso_size would have a bit more sane initialization than
1509  * something-or-zero which complicates things
1510  */
tcp_skb_seglen(const struct sk_buff * skb)1511 static int tcp_skb_seglen(const struct sk_buff *skb)
1512 {
1513 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1514 }
1515 
1516 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1517 static int skb_can_shift(const struct sk_buff *skb)
1518 {
1519 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1520 }
1521 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1522 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1523 		  int pcount, int shiftlen)
1524 {
1525 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1526 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1527 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1528 	 * even if current MSS is bigger.
1529 	 */
1530 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1531 		return 0;
1532 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1533 		return 0;
1534 	return skb_shift(to, from, shiftlen);
1535 }
1536 
1537 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1538  * skb.
1539  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1540 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1541 					  struct tcp_sacktag_state *state,
1542 					  u32 start_seq, u32 end_seq,
1543 					  bool dup_sack)
1544 {
1545 	struct tcp_sock *tp = tcp_sk(sk);
1546 	struct sk_buff *prev;
1547 	int mss;
1548 	int pcount = 0;
1549 	int len;
1550 	int in_sack;
1551 
1552 	/* Normally R but no L won't result in plain S */
1553 	if (!dup_sack &&
1554 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1555 		goto fallback;
1556 	if (!skb_can_shift(skb))
1557 		goto fallback;
1558 	/* This frame is about to be dropped (was ACKed). */
1559 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1560 		goto fallback;
1561 
1562 	/* Can only happen with delayed DSACK + discard craziness */
1563 	prev = skb_rb_prev(skb);
1564 	if (!prev)
1565 		goto fallback;
1566 
1567 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1568 		goto fallback;
1569 
1570 	if (!tcp_skb_can_collapse(prev, skb))
1571 		goto fallback;
1572 
1573 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1574 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1575 
1576 	if (in_sack) {
1577 		len = skb->len;
1578 		pcount = tcp_skb_pcount(skb);
1579 		mss = tcp_skb_seglen(skb);
1580 
1581 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1582 		 * drop this restriction as unnecessary
1583 		 */
1584 		if (mss != tcp_skb_seglen(prev))
1585 			goto fallback;
1586 	} else {
1587 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1588 			goto noop;
1589 		/* CHECKME: This is non-MSS split case only?, this will
1590 		 * cause skipped skbs due to advancing loop btw, original
1591 		 * has that feature too
1592 		 */
1593 		if (tcp_skb_pcount(skb) <= 1)
1594 			goto noop;
1595 
1596 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1597 		if (!in_sack) {
1598 			/* TODO: head merge to next could be attempted here
1599 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1600 			 * though it might not be worth of the additional hassle
1601 			 *
1602 			 * ...we can probably just fallback to what was done
1603 			 * previously. We could try merging non-SACKed ones
1604 			 * as well but it probably isn't going to buy off
1605 			 * because later SACKs might again split them, and
1606 			 * it would make skb timestamp tracking considerably
1607 			 * harder problem.
1608 			 */
1609 			goto fallback;
1610 		}
1611 
1612 		len = end_seq - TCP_SKB_CB(skb)->seq;
1613 		BUG_ON(len < 0);
1614 		BUG_ON(len > skb->len);
1615 
1616 		/* MSS boundaries should be honoured or else pcount will
1617 		 * severely break even though it makes things bit trickier.
1618 		 * Optimize common case to avoid most of the divides
1619 		 */
1620 		mss = tcp_skb_mss(skb);
1621 
1622 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1623 		 * drop this restriction as unnecessary
1624 		 */
1625 		if (mss != tcp_skb_seglen(prev))
1626 			goto fallback;
1627 
1628 		if (len == mss) {
1629 			pcount = 1;
1630 		} else if (len < mss) {
1631 			goto noop;
1632 		} else {
1633 			pcount = len / mss;
1634 			len = pcount * mss;
1635 		}
1636 	}
1637 
1638 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1639 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1640 		goto fallback;
1641 
1642 	if (!tcp_skb_shift(prev, skb, pcount, len))
1643 		goto fallback;
1644 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1645 		goto out;
1646 
1647 	/* Hole filled allows collapsing with the next as well, this is very
1648 	 * useful when hole on every nth skb pattern happens
1649 	 */
1650 	skb = skb_rb_next(prev);
1651 	if (!skb)
1652 		goto out;
1653 
1654 	if (!skb_can_shift(skb) ||
1655 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1656 	    (mss != tcp_skb_seglen(skb)))
1657 		goto out;
1658 
1659 	if (!tcp_skb_can_collapse(prev, skb))
1660 		goto out;
1661 	len = skb->len;
1662 	pcount = tcp_skb_pcount(skb);
1663 	if (tcp_skb_shift(prev, skb, pcount, len))
1664 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1665 				len, mss, 0);
1666 
1667 out:
1668 	return prev;
1669 
1670 noop:
1671 	return skb;
1672 
1673 fallback:
1674 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1675 	return NULL;
1676 }
1677 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1678 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1679 					struct tcp_sack_block *next_dup,
1680 					struct tcp_sacktag_state *state,
1681 					u32 start_seq, u32 end_seq,
1682 					bool dup_sack_in)
1683 {
1684 	struct tcp_sock *tp = tcp_sk(sk);
1685 	struct sk_buff *tmp;
1686 
1687 	skb_rbtree_walk_from(skb) {
1688 		int in_sack = 0;
1689 		bool dup_sack = dup_sack_in;
1690 
1691 		/* queue is in-order => we can short-circuit the walk early */
1692 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1693 			break;
1694 
1695 		if (next_dup  &&
1696 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1697 			in_sack = tcp_match_skb_to_sack(sk, skb,
1698 							next_dup->start_seq,
1699 							next_dup->end_seq);
1700 			if (in_sack > 0)
1701 				dup_sack = true;
1702 		}
1703 
1704 		/* skb reference here is a bit tricky to get right, since
1705 		 * shifting can eat and free both this skb and the next,
1706 		 * so not even _safe variant of the loop is enough.
1707 		 */
1708 		if (in_sack <= 0) {
1709 			tmp = tcp_shift_skb_data(sk, skb, state,
1710 						 start_seq, end_seq, dup_sack);
1711 			if (tmp) {
1712 				if (tmp != skb) {
1713 					skb = tmp;
1714 					continue;
1715 				}
1716 
1717 				in_sack = 0;
1718 			} else {
1719 				in_sack = tcp_match_skb_to_sack(sk, skb,
1720 								start_seq,
1721 								end_seq);
1722 			}
1723 		}
1724 
1725 		if (unlikely(in_sack < 0))
1726 			break;
1727 
1728 		if (in_sack) {
1729 			TCP_SKB_CB(skb)->sacked =
1730 				tcp_sacktag_one(sk,
1731 						state,
1732 						TCP_SKB_CB(skb)->sacked,
1733 						TCP_SKB_CB(skb)->seq,
1734 						TCP_SKB_CB(skb)->end_seq,
1735 						dup_sack,
1736 						tcp_skb_pcount(skb),
1737 						tcp_skb_timestamp_us(skb));
1738 			tcp_rate_skb_delivered(sk, skb, state->rate);
1739 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1740 				list_del_init(&skb->tcp_tsorted_anchor);
1741 
1742 			if (!before(TCP_SKB_CB(skb)->seq,
1743 				    tcp_highest_sack_seq(tp)))
1744 				tcp_advance_highest_sack(sk, skb);
1745 		}
1746 	}
1747 	return skb;
1748 }
1749 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1750 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1751 {
1752 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1753 	struct sk_buff *skb;
1754 
1755 	while (*p) {
1756 		parent = *p;
1757 		skb = rb_to_skb(parent);
1758 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1759 			p = &parent->rb_left;
1760 			continue;
1761 		}
1762 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1763 			p = &parent->rb_right;
1764 			continue;
1765 		}
1766 		return skb;
1767 	}
1768 	return NULL;
1769 }
1770 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1771 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1772 					u32 skip_to_seq)
1773 {
1774 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1775 		return skb;
1776 
1777 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1778 }
1779 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1780 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1781 						struct sock *sk,
1782 						struct tcp_sack_block *next_dup,
1783 						struct tcp_sacktag_state *state,
1784 						u32 skip_to_seq)
1785 {
1786 	if (!next_dup)
1787 		return skb;
1788 
1789 	if (before(next_dup->start_seq, skip_to_seq)) {
1790 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1791 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1792 				       next_dup->start_seq, next_dup->end_seq,
1793 				       1);
1794 	}
1795 
1796 	return skb;
1797 }
1798 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1799 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1800 {
1801 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1802 }
1803 
1804 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1805 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1806 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1807 {
1808 	struct tcp_sock *tp = tcp_sk(sk);
1809 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1810 				    TCP_SKB_CB(ack_skb)->sacked);
1811 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1812 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1813 	struct tcp_sack_block *cache;
1814 	struct sk_buff *skb;
1815 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1816 	int used_sacks;
1817 	bool found_dup_sack = false;
1818 	int i, j;
1819 	int first_sack_index;
1820 
1821 	state->flag = 0;
1822 	state->reord = tp->snd_nxt;
1823 
1824 	if (!tp->sacked_out)
1825 		tcp_highest_sack_reset(sk);
1826 
1827 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1828 					 num_sacks, prior_snd_una, state);
1829 
1830 	/* Eliminate too old ACKs, but take into
1831 	 * account more or less fresh ones, they can
1832 	 * contain valid SACK info.
1833 	 */
1834 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1835 		return 0;
1836 
1837 	if (!tp->packets_out)
1838 		goto out;
1839 
1840 	used_sacks = 0;
1841 	first_sack_index = 0;
1842 	for (i = 0; i < num_sacks; i++) {
1843 		bool dup_sack = !i && found_dup_sack;
1844 
1845 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1846 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1847 
1848 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1849 					    sp[used_sacks].start_seq,
1850 					    sp[used_sacks].end_seq)) {
1851 			int mib_idx;
1852 
1853 			if (dup_sack) {
1854 				if (!tp->undo_marker)
1855 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1856 				else
1857 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1858 			} else {
1859 				/* Don't count olds caused by ACK reordering */
1860 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1861 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1862 					continue;
1863 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1864 			}
1865 
1866 			NET_INC_STATS(sock_net(sk), mib_idx);
1867 			if (i == 0)
1868 				first_sack_index = -1;
1869 			continue;
1870 		}
1871 
1872 		/* Ignore very old stuff early */
1873 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1874 			if (i == 0)
1875 				first_sack_index = -1;
1876 			continue;
1877 		}
1878 
1879 		used_sacks++;
1880 	}
1881 
1882 	/* order SACK blocks to allow in order walk of the retrans queue */
1883 	for (i = used_sacks - 1; i > 0; i--) {
1884 		for (j = 0; j < i; j++) {
1885 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1886 				swap(sp[j], sp[j + 1]);
1887 
1888 				/* Track where the first SACK block goes to */
1889 				if (j == first_sack_index)
1890 					first_sack_index = j + 1;
1891 			}
1892 		}
1893 	}
1894 
1895 	state->mss_now = tcp_current_mss(sk);
1896 	skb = NULL;
1897 	i = 0;
1898 
1899 	if (!tp->sacked_out) {
1900 		/* It's already past, so skip checking against it */
1901 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1902 	} else {
1903 		cache = tp->recv_sack_cache;
1904 		/* Skip empty blocks in at head of the cache */
1905 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1906 		       !cache->end_seq)
1907 			cache++;
1908 	}
1909 
1910 	while (i < used_sacks) {
1911 		u32 start_seq = sp[i].start_seq;
1912 		u32 end_seq = sp[i].end_seq;
1913 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1914 		struct tcp_sack_block *next_dup = NULL;
1915 
1916 		if (found_dup_sack && ((i + 1) == first_sack_index))
1917 			next_dup = &sp[i + 1];
1918 
1919 		/* Skip too early cached blocks */
1920 		while (tcp_sack_cache_ok(tp, cache) &&
1921 		       !before(start_seq, cache->end_seq))
1922 			cache++;
1923 
1924 		/* Can skip some work by looking recv_sack_cache? */
1925 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1926 		    after(end_seq, cache->start_seq)) {
1927 
1928 			/* Head todo? */
1929 			if (before(start_seq, cache->start_seq)) {
1930 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1931 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1932 						       state,
1933 						       start_seq,
1934 						       cache->start_seq,
1935 						       dup_sack);
1936 			}
1937 
1938 			/* Rest of the block already fully processed? */
1939 			if (!after(end_seq, cache->end_seq))
1940 				goto advance_sp;
1941 
1942 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1943 						       state,
1944 						       cache->end_seq);
1945 
1946 			/* ...tail remains todo... */
1947 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1948 				/* ...but better entrypoint exists! */
1949 				skb = tcp_highest_sack(sk);
1950 				if (!skb)
1951 					break;
1952 				cache++;
1953 				goto walk;
1954 			}
1955 
1956 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1957 			/* Check overlap against next cached too (past this one already) */
1958 			cache++;
1959 			continue;
1960 		}
1961 
1962 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1963 			skb = tcp_highest_sack(sk);
1964 			if (!skb)
1965 				break;
1966 		}
1967 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1968 
1969 walk:
1970 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1971 				       start_seq, end_seq, dup_sack);
1972 
1973 advance_sp:
1974 		i++;
1975 	}
1976 
1977 	/* Clear the head of the cache sack blocks so we can skip it next time */
1978 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1979 		tp->recv_sack_cache[i].start_seq = 0;
1980 		tp->recv_sack_cache[i].end_seq = 0;
1981 	}
1982 	for (j = 0; j < used_sacks; j++)
1983 		tp->recv_sack_cache[i++] = sp[j];
1984 
1985 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1986 		tcp_check_sack_reordering(sk, state->reord, 0);
1987 
1988 	tcp_verify_left_out(tp);
1989 out:
1990 
1991 #if FASTRETRANS_DEBUG > 0
1992 	WARN_ON((int)tp->sacked_out < 0);
1993 	WARN_ON((int)tp->lost_out < 0);
1994 	WARN_ON((int)tp->retrans_out < 0);
1995 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1996 #endif
1997 	return state->flag;
1998 }
1999 
2000 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2001  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2002  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2003 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2004 {
2005 	u32 holes;
2006 
2007 	holes = max(tp->lost_out, 1U);
2008 	holes = min(holes, tp->packets_out);
2009 
2010 	if ((tp->sacked_out + holes) > tp->packets_out) {
2011 		tp->sacked_out = tp->packets_out - holes;
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 /* If we receive more dupacks than we expected counting segments
2018  * in assumption of absent reordering, interpret this as reordering.
2019  * The only another reason could be bug in receiver TCP.
2020  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2021 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2022 {
2023 	struct tcp_sock *tp = tcp_sk(sk);
2024 
2025 	if (!tcp_limit_reno_sacked(tp))
2026 		return;
2027 
2028 	tp->reordering = min_t(u32, tp->packets_out + addend,
2029 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2030 	tp->reord_seen++;
2031 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2032 }
2033 
2034 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2035 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2036 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2037 {
2038 	if (num_dupack) {
2039 		struct tcp_sock *tp = tcp_sk(sk);
2040 		u32 prior_sacked = tp->sacked_out;
2041 		s32 delivered;
2042 
2043 		tp->sacked_out += num_dupack;
2044 		tcp_check_reno_reordering(sk, 0);
2045 		delivered = tp->sacked_out - prior_sacked;
2046 		if (delivered > 0)
2047 			tcp_count_delivered(tp, delivered, ece_ack);
2048 		tcp_verify_left_out(tp);
2049 	}
2050 }
2051 
2052 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2053 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2054 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2055 {
2056 	struct tcp_sock *tp = tcp_sk(sk);
2057 
2058 	if (acked > 0) {
2059 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2060 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2061 				    ece_ack);
2062 		if (acked - 1 >= tp->sacked_out)
2063 			tp->sacked_out = 0;
2064 		else
2065 			tp->sacked_out -= acked - 1;
2066 	}
2067 	tcp_check_reno_reordering(sk, acked);
2068 	tcp_verify_left_out(tp);
2069 }
2070 
tcp_reset_reno_sack(struct tcp_sock * tp)2071 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2072 {
2073 	tp->sacked_out = 0;
2074 }
2075 
tcp_clear_retrans(struct tcp_sock * tp)2076 void tcp_clear_retrans(struct tcp_sock *tp)
2077 {
2078 	tp->retrans_out = 0;
2079 	tp->lost_out = 0;
2080 	tp->undo_marker = 0;
2081 	tp->undo_retrans = -1;
2082 	tp->sacked_out = 0;
2083 }
2084 
tcp_init_undo(struct tcp_sock * tp)2085 static inline void tcp_init_undo(struct tcp_sock *tp)
2086 {
2087 	tp->undo_marker = tp->snd_una;
2088 	/* Retransmission still in flight may cause DSACKs later. */
2089 	tp->undo_retrans = tp->retrans_out ? : -1;
2090 }
2091 
tcp_is_rack(const struct sock * sk)2092 static bool tcp_is_rack(const struct sock *sk)
2093 {
2094 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2095 		TCP_RACK_LOSS_DETECTION;
2096 }
2097 
2098 /* If we detect SACK reneging, forget all SACK information
2099  * and reset tags completely, otherwise preserve SACKs. If receiver
2100  * dropped its ofo queue, we will know this due to reneging detection.
2101  */
tcp_timeout_mark_lost(struct sock * sk)2102 static void tcp_timeout_mark_lost(struct sock *sk)
2103 {
2104 	struct tcp_sock *tp = tcp_sk(sk);
2105 	struct sk_buff *skb, *head;
2106 	bool is_reneg;			/* is receiver reneging on SACKs? */
2107 
2108 	head = tcp_rtx_queue_head(sk);
2109 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2110 	if (is_reneg) {
2111 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2112 		tp->sacked_out = 0;
2113 		/* Mark SACK reneging until we recover from this loss event. */
2114 		tp->is_sack_reneg = 1;
2115 	} else if (tcp_is_reno(tp)) {
2116 		tcp_reset_reno_sack(tp);
2117 	}
2118 
2119 	skb = head;
2120 	skb_rbtree_walk_from(skb) {
2121 		if (is_reneg)
2122 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2123 		else if (tcp_is_rack(sk) && skb != head &&
2124 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2125 			continue; /* Don't mark recently sent ones lost yet */
2126 		tcp_mark_skb_lost(sk, skb);
2127 	}
2128 	tcp_verify_left_out(tp);
2129 	tcp_clear_all_retrans_hints(tp);
2130 }
2131 
2132 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2133 void tcp_enter_loss(struct sock *sk)
2134 {
2135 	const struct inet_connection_sock *icsk = inet_csk(sk);
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 	struct net *net = sock_net(sk);
2138 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2139 	u8 reordering;
2140 
2141 	tcp_timeout_mark_lost(sk);
2142 
2143 	/* Reduce ssthresh if it has not yet been made inside this window. */
2144 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2145 	    !after(tp->high_seq, tp->snd_una) ||
2146 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2147 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2148 		tp->prior_cwnd = tp->snd_cwnd;
2149 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2150 		tcp_ca_event(sk, CA_EVENT_LOSS);
2151 		tcp_init_undo(tp);
2152 	}
2153 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2154 	tp->snd_cwnd_cnt   = 0;
2155 	tp->snd_cwnd_stamp = tcp_jiffies32;
2156 
2157 	/* Timeout in disordered state after receiving substantial DUPACKs
2158 	 * suggests that the degree of reordering is over-estimated.
2159 	 */
2160 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2161 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2162 	    tp->sacked_out >= reordering)
2163 		tp->reordering = min_t(unsigned int, tp->reordering,
2164 				       reordering);
2165 
2166 	tcp_set_ca_state(sk, TCP_CA_Loss);
2167 	tp->high_seq = tp->snd_nxt;
2168 	tcp_ecn_queue_cwr(tp);
2169 
2170 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2171 	 * loss recovery is underway except recurring timeout(s) on
2172 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2173 	 */
2174 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2175 		   (new_recovery || icsk->icsk_retransmits) &&
2176 		   !inet_csk(sk)->icsk_mtup.probe_size;
2177 }
2178 
2179 /* If ACK arrived pointing to a remembered SACK, it means that our
2180  * remembered SACKs do not reflect real state of receiver i.e.
2181  * receiver _host_ is heavily congested (or buggy).
2182  *
2183  * To avoid big spurious retransmission bursts due to transient SACK
2184  * scoreboard oddities that look like reneging, we give the receiver a
2185  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2186  * restore sanity to the SACK scoreboard. If the apparent reneging
2187  * persists until this RTO then we'll clear the SACK scoreboard.
2188  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2189 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2190 {
2191 	if (*ack_flag & FLAG_SACK_RENEGING &&
2192 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2193 		struct tcp_sock *tp = tcp_sk(sk);
2194 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2195 					  msecs_to_jiffies(10));
2196 
2197 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2198 					  delay, TCP_RTO_MAX);
2199 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2200 		return true;
2201 	}
2202 	return false;
2203 }
2204 
2205 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2206  * counter when SACK is enabled (without SACK, sacked_out is used for
2207  * that purpose).
2208  *
2209  * With reordering, holes may still be in flight, so RFC3517 recovery
2210  * uses pure sacked_out (total number of SACKed segments) even though
2211  * it violates the RFC that uses duplicate ACKs, often these are equal
2212  * but when e.g. out-of-window ACKs or packet duplication occurs,
2213  * they differ. Since neither occurs due to loss, TCP should really
2214  * ignore them.
2215  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2216 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2217 {
2218 	return tp->sacked_out + 1;
2219 }
2220 
2221 /* Linux NewReno/SACK/ECN state machine.
2222  * --------------------------------------
2223  *
2224  * "Open"	Normal state, no dubious events, fast path.
2225  * "Disorder"   In all the respects it is "Open",
2226  *		but requires a bit more attention. It is entered when
2227  *		we see some SACKs or dupacks. It is split of "Open"
2228  *		mainly to move some processing from fast path to slow one.
2229  * "CWR"	CWND was reduced due to some Congestion Notification event.
2230  *		It can be ECN, ICMP source quench, local device congestion.
2231  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2232  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2233  *
2234  * tcp_fastretrans_alert() is entered:
2235  * - each incoming ACK, if state is not "Open"
2236  * - when arrived ACK is unusual, namely:
2237  *	* SACK
2238  *	* Duplicate ACK.
2239  *	* ECN ECE.
2240  *
2241  * Counting packets in flight is pretty simple.
2242  *
2243  *	in_flight = packets_out - left_out + retrans_out
2244  *
2245  *	packets_out is SND.NXT-SND.UNA counted in packets.
2246  *
2247  *	retrans_out is number of retransmitted segments.
2248  *
2249  *	left_out is number of segments left network, but not ACKed yet.
2250  *
2251  *		left_out = sacked_out + lost_out
2252  *
2253  *     sacked_out: Packets, which arrived to receiver out of order
2254  *		   and hence not ACKed. With SACKs this number is simply
2255  *		   amount of SACKed data. Even without SACKs
2256  *		   it is easy to give pretty reliable estimate of this number,
2257  *		   counting duplicate ACKs.
2258  *
2259  *       lost_out: Packets lost by network. TCP has no explicit
2260  *		   "loss notification" feedback from network (for now).
2261  *		   It means that this number can be only _guessed_.
2262  *		   Actually, it is the heuristics to predict lossage that
2263  *		   distinguishes different algorithms.
2264  *
2265  *	F.e. after RTO, when all the queue is considered as lost,
2266  *	lost_out = packets_out and in_flight = retrans_out.
2267  *
2268  *		Essentially, we have now a few algorithms detecting
2269  *		lost packets.
2270  *
2271  *		If the receiver supports SACK:
2272  *
2273  *		RFC6675/3517: It is the conventional algorithm. A packet is
2274  *		considered lost if the number of higher sequence packets
2275  *		SACKed is greater than or equal the DUPACK thoreshold
2276  *		(reordering). This is implemented in tcp_mark_head_lost and
2277  *		tcp_update_scoreboard.
2278  *
2279  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2280  *		(2017-) that checks timing instead of counting DUPACKs.
2281  *		Essentially a packet is considered lost if it's not S/ACKed
2282  *		after RTT + reordering_window, where both metrics are
2283  *		dynamically measured and adjusted. This is implemented in
2284  *		tcp_rack_mark_lost.
2285  *
2286  *		If the receiver does not support SACK:
2287  *
2288  *		NewReno (RFC6582): in Recovery we assume that one segment
2289  *		is lost (classic Reno). While we are in Recovery and
2290  *		a partial ACK arrives, we assume that one more packet
2291  *		is lost (NewReno). This heuristics are the same in NewReno
2292  *		and SACK.
2293  *
2294  * Really tricky (and requiring careful tuning) part of algorithm
2295  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2296  * The first determines the moment _when_ we should reduce CWND and,
2297  * hence, slow down forward transmission. In fact, it determines the moment
2298  * when we decide that hole is caused by loss, rather than by a reorder.
2299  *
2300  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2301  * holes, caused by lost packets.
2302  *
2303  * And the most logically complicated part of algorithm is undo
2304  * heuristics. We detect false retransmits due to both too early
2305  * fast retransmit (reordering) and underestimated RTO, analyzing
2306  * timestamps and D-SACKs. When we detect that some segments were
2307  * retransmitted by mistake and CWND reduction was wrong, we undo
2308  * window reduction and abort recovery phase. This logic is hidden
2309  * inside several functions named tcp_try_undo_<something>.
2310  */
2311 
2312 /* This function decides, when we should leave Disordered state
2313  * and enter Recovery phase, reducing congestion window.
2314  *
2315  * Main question: may we further continue forward transmission
2316  * with the same cwnd?
2317  */
tcp_time_to_recover(struct sock * sk,int flag)2318 static bool tcp_time_to_recover(struct sock *sk, int flag)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 
2322 	/* Trick#1: The loss is proven. */
2323 	if (tp->lost_out)
2324 		return true;
2325 
2326 	/* Not-A-Trick#2 : Classic rule... */
2327 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2328 		return true;
2329 
2330 	return false;
2331 }
2332 
2333 /* Detect loss in event "A" above by marking head of queue up as lost.
2334  * For RFC3517 SACK, a segment is considered lost if it
2335  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2336  * the maximum SACKed segments to pass before reaching this limit.
2337  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2338 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2339 {
2340 	struct tcp_sock *tp = tcp_sk(sk);
2341 	struct sk_buff *skb;
2342 	int cnt;
2343 	/* Use SACK to deduce losses of new sequences sent during recovery */
2344 	const u32 loss_high = tp->snd_nxt;
2345 
2346 	WARN_ON(packets > tp->packets_out);
2347 	skb = tp->lost_skb_hint;
2348 	if (skb) {
2349 		/* Head already handled? */
2350 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2351 			return;
2352 		cnt = tp->lost_cnt_hint;
2353 	} else {
2354 		skb = tcp_rtx_queue_head(sk);
2355 		cnt = 0;
2356 	}
2357 
2358 	skb_rbtree_walk_from(skb) {
2359 		/* TODO: do this better */
2360 		/* this is not the most efficient way to do this... */
2361 		tp->lost_skb_hint = skb;
2362 		tp->lost_cnt_hint = cnt;
2363 
2364 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2365 			break;
2366 
2367 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2368 			cnt += tcp_skb_pcount(skb);
2369 
2370 		if (cnt > packets)
2371 			break;
2372 
2373 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2374 			tcp_mark_skb_lost(sk, skb);
2375 
2376 		if (mark_head)
2377 			break;
2378 	}
2379 	tcp_verify_left_out(tp);
2380 }
2381 
2382 /* Account newly detected lost packet(s) */
2383 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2384 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2385 {
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 
2388 	if (tcp_is_sack(tp)) {
2389 		int sacked_upto = tp->sacked_out - tp->reordering;
2390 		if (sacked_upto >= 0)
2391 			tcp_mark_head_lost(sk, sacked_upto, 0);
2392 		else if (fast_rexmit)
2393 			tcp_mark_head_lost(sk, 1, 1);
2394 	}
2395 }
2396 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2397 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2398 {
2399 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2400 	       before(tp->rx_opt.rcv_tsecr, when);
2401 }
2402 
2403 /* skb is spurious retransmitted if the returned timestamp echo
2404  * reply is prior to the skb transmission time
2405  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2406 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2407 				     const struct sk_buff *skb)
2408 {
2409 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2410 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2411 }
2412 
2413 /* Nothing was retransmitted or returned timestamp is less
2414  * than timestamp of the first retransmission.
2415  */
tcp_packet_delayed(const struct tcp_sock * tp)2416 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2417 {
2418 	return tp->retrans_stamp &&
2419 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2420 }
2421 
2422 /* Undo procedures. */
2423 
2424 /* We can clear retrans_stamp when there are no retransmissions in the
2425  * window. It would seem that it is trivially available for us in
2426  * tp->retrans_out, however, that kind of assumptions doesn't consider
2427  * what will happen if errors occur when sending retransmission for the
2428  * second time. ...It could the that such segment has only
2429  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2430  * the head skb is enough except for some reneging corner cases that
2431  * are not worth the effort.
2432  *
2433  * Main reason for all this complexity is the fact that connection dying
2434  * time now depends on the validity of the retrans_stamp, in particular,
2435  * that successive retransmissions of a segment must not advance
2436  * retrans_stamp under any conditions.
2437  */
tcp_any_retrans_done(const struct sock * sk)2438 static bool tcp_any_retrans_done(const struct sock *sk)
2439 {
2440 	const struct tcp_sock *tp = tcp_sk(sk);
2441 	struct sk_buff *skb;
2442 
2443 	if (tp->retrans_out)
2444 		return true;
2445 
2446 	skb = tcp_rtx_queue_head(sk);
2447 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2448 		return true;
2449 
2450 	return false;
2451 }
2452 
DBGUNDO(struct sock * sk,const char * msg)2453 static void DBGUNDO(struct sock *sk, const char *msg)
2454 {
2455 #if FASTRETRANS_DEBUG > 1
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 	struct inet_sock *inet = inet_sk(sk);
2458 
2459 	if (sk->sk_family == AF_INET) {
2460 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2461 			 msg,
2462 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2463 			 tp->snd_cwnd, tcp_left_out(tp),
2464 			 tp->snd_ssthresh, tp->prior_ssthresh,
2465 			 tp->packets_out);
2466 	}
2467 #if IS_ENABLED(CONFIG_IPV6)
2468 	else if (sk->sk_family == AF_INET6) {
2469 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2470 			 msg,
2471 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2472 			 tp->snd_cwnd, tcp_left_out(tp),
2473 			 tp->snd_ssthresh, tp->prior_ssthresh,
2474 			 tp->packets_out);
2475 	}
2476 #endif
2477 #endif
2478 }
2479 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2480 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2481 {
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 
2484 	if (unmark_loss) {
2485 		struct sk_buff *skb;
2486 
2487 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2488 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2489 		}
2490 		tp->lost_out = 0;
2491 		tcp_clear_all_retrans_hints(tp);
2492 	}
2493 
2494 	if (tp->prior_ssthresh) {
2495 		const struct inet_connection_sock *icsk = inet_csk(sk);
2496 
2497 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2498 
2499 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2500 			tp->snd_ssthresh = tp->prior_ssthresh;
2501 			tcp_ecn_withdraw_cwr(tp);
2502 		}
2503 	}
2504 	tp->snd_cwnd_stamp = tcp_jiffies32;
2505 	tp->undo_marker = 0;
2506 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2507 }
2508 
tcp_may_undo(const struct tcp_sock * tp)2509 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2510 {
2511 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2512 }
2513 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2514 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2515 {
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 
2518 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2519 		/* Hold old state until something *above* high_seq
2520 		 * is ACKed. For Reno it is MUST to prevent false
2521 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2522 		if (!tcp_any_retrans_done(sk))
2523 			tp->retrans_stamp = 0;
2524 		return true;
2525 	}
2526 	return false;
2527 }
2528 
2529 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2530 static bool tcp_try_undo_recovery(struct sock *sk)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 
2534 	if (tcp_may_undo(tp)) {
2535 		int mib_idx;
2536 
2537 		/* Happy end! We did not retransmit anything
2538 		 * or our original transmission succeeded.
2539 		 */
2540 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2541 		tcp_undo_cwnd_reduction(sk, false);
2542 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2543 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2544 		else
2545 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2546 
2547 		NET_INC_STATS(sock_net(sk), mib_idx);
2548 	} else if (tp->rack.reo_wnd_persist) {
2549 		tp->rack.reo_wnd_persist--;
2550 	}
2551 	if (tcp_is_non_sack_preventing_reopen(sk))
2552 		return true;
2553 	tcp_set_ca_state(sk, TCP_CA_Open);
2554 	tp->is_sack_reneg = 0;
2555 	return false;
2556 }
2557 
2558 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2559 static bool tcp_try_undo_dsack(struct sock *sk)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 
2563 	if (tp->undo_marker && !tp->undo_retrans) {
2564 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2565 					       tp->rack.reo_wnd_persist + 1);
2566 		DBGUNDO(sk, "D-SACK");
2567 		tcp_undo_cwnd_reduction(sk, false);
2568 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2569 		return true;
2570 	}
2571 	return false;
2572 }
2573 
2574 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2575 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 
2579 	if (frto_undo || tcp_may_undo(tp)) {
2580 		tcp_undo_cwnd_reduction(sk, true);
2581 
2582 		DBGUNDO(sk, "partial loss");
2583 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2584 		if (frto_undo)
2585 			NET_INC_STATS(sock_net(sk),
2586 					LINUX_MIB_TCPSPURIOUSRTOS);
2587 		inet_csk(sk)->icsk_retransmits = 0;
2588 		if (tcp_is_non_sack_preventing_reopen(sk))
2589 			return true;
2590 		if (frto_undo || tcp_is_sack(tp)) {
2591 			tcp_set_ca_state(sk, TCP_CA_Open);
2592 			tp->is_sack_reneg = 0;
2593 		}
2594 		return true;
2595 	}
2596 	return false;
2597 }
2598 
2599 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2600  * It computes the number of packets to send (sndcnt) based on packets newly
2601  * delivered:
2602  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2603  *	cwnd reductions across a full RTT.
2604  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2605  *      But when the retransmits are acked without further losses, PRR
2606  *      slow starts cwnd up to ssthresh to speed up the recovery.
2607  */
tcp_init_cwnd_reduction(struct sock * sk)2608 static void tcp_init_cwnd_reduction(struct sock *sk)
2609 {
2610 	struct tcp_sock *tp = tcp_sk(sk);
2611 
2612 	tp->high_seq = tp->snd_nxt;
2613 	tp->tlp_high_seq = 0;
2614 	tp->snd_cwnd_cnt = 0;
2615 	tp->prior_cwnd = tp->snd_cwnd;
2616 	tp->prr_delivered = 0;
2617 	tp->prr_out = 0;
2618 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2619 	tcp_ecn_queue_cwr(tp);
2620 }
2621 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2622 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	int sndcnt = 0;
2626 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2627 
2628 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2629 		return;
2630 
2631 	tp->prr_delivered += newly_acked_sacked;
2632 	if (delta < 0) {
2633 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2634 			       tp->prior_cwnd - 1;
2635 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2636 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2637 		   FLAG_RETRANS_DATA_ACKED) {
2638 		sndcnt = min_t(int, delta,
2639 			       max_t(int, tp->prr_delivered - tp->prr_out,
2640 				     newly_acked_sacked) + 1);
2641 	} else {
2642 		sndcnt = min(delta, newly_acked_sacked);
2643 	}
2644 	/* Force a fast retransmit upon entering fast recovery */
2645 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2646 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2647 }
2648 
tcp_end_cwnd_reduction(struct sock * sk)2649 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 
2653 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2654 		return;
2655 
2656 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2657 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2658 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2659 		tp->snd_cwnd = tp->snd_ssthresh;
2660 		tp->snd_cwnd_stamp = tcp_jiffies32;
2661 	}
2662 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2663 }
2664 
2665 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2666 void tcp_enter_cwr(struct sock *sk)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 
2670 	tp->prior_ssthresh = 0;
2671 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2672 		tp->undo_marker = 0;
2673 		tcp_init_cwnd_reduction(sk);
2674 		tcp_set_ca_state(sk, TCP_CA_CWR);
2675 	}
2676 }
2677 EXPORT_SYMBOL(tcp_enter_cwr);
2678 
tcp_try_keep_open(struct sock * sk)2679 static void tcp_try_keep_open(struct sock *sk)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 	int state = TCP_CA_Open;
2683 
2684 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2685 		state = TCP_CA_Disorder;
2686 
2687 	if (inet_csk(sk)->icsk_ca_state != state) {
2688 		tcp_set_ca_state(sk, state);
2689 		tp->high_seq = tp->snd_nxt;
2690 	}
2691 }
2692 
tcp_try_to_open(struct sock * sk,int flag)2693 static void tcp_try_to_open(struct sock *sk, int flag)
2694 {
2695 	struct tcp_sock *tp = tcp_sk(sk);
2696 
2697 	tcp_verify_left_out(tp);
2698 
2699 	if (!tcp_any_retrans_done(sk))
2700 		tp->retrans_stamp = 0;
2701 
2702 	if (flag & FLAG_ECE)
2703 		tcp_enter_cwr(sk);
2704 
2705 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2706 		tcp_try_keep_open(sk);
2707 	}
2708 }
2709 
tcp_mtup_probe_failed(struct sock * sk)2710 static void tcp_mtup_probe_failed(struct sock *sk)
2711 {
2712 	struct inet_connection_sock *icsk = inet_csk(sk);
2713 
2714 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2715 	icsk->icsk_mtup.probe_size = 0;
2716 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2717 }
2718 
tcp_mtup_probe_success(struct sock * sk)2719 static void tcp_mtup_probe_success(struct sock *sk)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 	struct inet_connection_sock *icsk = inet_csk(sk);
2723 	u64 val;
2724 
2725 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2726 
2727 	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2728 	do_div(val, icsk->icsk_mtup.probe_size);
2729 	WARN_ON_ONCE((u32)val != val);
2730 	tp->snd_cwnd = max_t(u32, 1U, val);
2731 
2732 	tp->snd_cwnd_cnt = 0;
2733 	tp->snd_cwnd_stamp = tcp_jiffies32;
2734 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2735 
2736 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2737 	icsk->icsk_mtup.probe_size = 0;
2738 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2739 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2740 }
2741 
2742 /* Do a simple retransmit without using the backoff mechanisms in
2743  * tcp_timer. This is used for path mtu discovery.
2744  * The socket is already locked here.
2745  */
tcp_simple_retransmit(struct sock * sk)2746 void tcp_simple_retransmit(struct sock *sk)
2747 {
2748 	const struct inet_connection_sock *icsk = inet_csk(sk);
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 	struct sk_buff *skb;
2751 	unsigned int mss = tcp_current_mss(sk);
2752 
2753 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2754 		if (tcp_skb_seglen(skb) > mss)
2755 			tcp_mark_skb_lost(sk, skb);
2756 	}
2757 
2758 	tcp_clear_retrans_hints_partial(tp);
2759 
2760 	if (!tp->lost_out)
2761 		return;
2762 
2763 	if (tcp_is_reno(tp))
2764 		tcp_limit_reno_sacked(tp);
2765 
2766 	tcp_verify_left_out(tp);
2767 
2768 	/* Don't muck with the congestion window here.
2769 	 * Reason is that we do not increase amount of _data_
2770 	 * in network, but units changed and effective
2771 	 * cwnd/ssthresh really reduced now.
2772 	 */
2773 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2774 		tp->high_seq = tp->snd_nxt;
2775 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2776 		tp->prior_ssthresh = 0;
2777 		tp->undo_marker = 0;
2778 		tcp_set_ca_state(sk, TCP_CA_Loss);
2779 	}
2780 	tcp_xmit_retransmit_queue(sk);
2781 }
2782 EXPORT_SYMBOL(tcp_simple_retransmit);
2783 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2784 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2785 {
2786 	struct tcp_sock *tp = tcp_sk(sk);
2787 	int mib_idx;
2788 
2789 	if (tcp_is_reno(tp))
2790 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2791 	else
2792 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2793 
2794 	NET_INC_STATS(sock_net(sk), mib_idx);
2795 
2796 	tp->prior_ssthresh = 0;
2797 	tcp_init_undo(tp);
2798 
2799 	if (!tcp_in_cwnd_reduction(sk)) {
2800 		if (!ece_ack)
2801 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2802 		tcp_init_cwnd_reduction(sk);
2803 	}
2804 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2805 }
2806 
2807 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2808  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2809  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2810 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2811 			     int *rexmit)
2812 {
2813 	struct tcp_sock *tp = tcp_sk(sk);
2814 	bool recovered = !before(tp->snd_una, tp->high_seq);
2815 
2816 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2817 	    tcp_try_undo_loss(sk, false))
2818 		return;
2819 
2820 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2821 		/* Step 3.b. A timeout is spurious if not all data are
2822 		 * lost, i.e., never-retransmitted data are (s)acked.
2823 		 */
2824 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2825 		    tcp_try_undo_loss(sk, true))
2826 			return;
2827 
2828 		if (after(tp->snd_nxt, tp->high_seq)) {
2829 			if (flag & FLAG_DATA_SACKED || num_dupack)
2830 				tp->frto = 0; /* Step 3.a. loss was real */
2831 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2832 			tp->high_seq = tp->snd_nxt;
2833 			/* Step 2.b. Try send new data (but deferred until cwnd
2834 			 * is updated in tcp_ack()). Otherwise fall back to
2835 			 * the conventional recovery.
2836 			 */
2837 			if (!tcp_write_queue_empty(sk) &&
2838 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2839 				*rexmit = REXMIT_NEW;
2840 				return;
2841 			}
2842 			tp->frto = 0;
2843 		}
2844 	}
2845 
2846 	if (recovered) {
2847 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2848 		tcp_try_undo_recovery(sk);
2849 		return;
2850 	}
2851 	if (tcp_is_reno(tp)) {
2852 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2853 		 * delivered. Lower inflight to clock out (re)tranmissions.
2854 		 */
2855 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2856 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2857 		else if (flag & FLAG_SND_UNA_ADVANCED)
2858 			tcp_reset_reno_sack(tp);
2859 	}
2860 	*rexmit = REXMIT_LOST;
2861 }
2862 
tcp_force_fast_retransmit(struct sock * sk)2863 static bool tcp_force_fast_retransmit(struct sock *sk)
2864 {
2865 	struct tcp_sock *tp = tcp_sk(sk);
2866 
2867 	return after(tcp_highest_sack_seq(tp),
2868 		     tp->snd_una + tp->reordering * tp->mss_cache);
2869 }
2870 
2871 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2872 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2873 				 bool *do_lost)
2874 {
2875 	struct tcp_sock *tp = tcp_sk(sk);
2876 
2877 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2878 		/* Plain luck! Hole if filled with delayed
2879 		 * packet, rather than with a retransmit. Check reordering.
2880 		 */
2881 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2882 
2883 		/* We are getting evidence that the reordering degree is higher
2884 		 * than we realized. If there are no retransmits out then we
2885 		 * can undo. Otherwise we clock out new packets but do not
2886 		 * mark more packets lost or retransmit more.
2887 		 */
2888 		if (tp->retrans_out)
2889 			return true;
2890 
2891 		if (!tcp_any_retrans_done(sk))
2892 			tp->retrans_stamp = 0;
2893 
2894 		DBGUNDO(sk, "partial recovery");
2895 		tcp_undo_cwnd_reduction(sk, true);
2896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2897 		tcp_try_keep_open(sk);
2898 	} else {
2899 		/* Partial ACK arrived. Force fast retransmit. */
2900 		*do_lost = tcp_force_fast_retransmit(sk);
2901 	}
2902 	return false;
2903 }
2904 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2905 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2906 {
2907 	struct tcp_sock *tp = tcp_sk(sk);
2908 
2909 	if (tcp_rtx_queue_empty(sk))
2910 		return;
2911 
2912 	if (unlikely(tcp_is_reno(tp))) {
2913 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2914 	} else if (tcp_is_rack(sk)) {
2915 		u32 prior_retrans = tp->retrans_out;
2916 
2917 		if (tcp_rack_mark_lost(sk))
2918 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2919 		if (prior_retrans > tp->retrans_out)
2920 			*ack_flag |= FLAG_LOST_RETRANS;
2921 	}
2922 }
2923 
2924 /* Process an event, which can update packets-in-flight not trivially.
2925  * Main goal of this function is to calculate new estimate for left_out,
2926  * taking into account both packets sitting in receiver's buffer and
2927  * packets lost by network.
2928  *
2929  * Besides that it updates the congestion state when packet loss or ECN
2930  * is detected. But it does not reduce the cwnd, it is done by the
2931  * congestion control later.
2932  *
2933  * It does _not_ decide what to send, it is made in function
2934  * tcp_xmit_retransmit_queue().
2935  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2936 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2937 				  int num_dupack, int *ack_flag, int *rexmit)
2938 {
2939 	struct inet_connection_sock *icsk = inet_csk(sk);
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 	int fast_rexmit = 0, flag = *ack_flag;
2942 	bool ece_ack = flag & FLAG_ECE;
2943 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2944 				      tcp_force_fast_retransmit(sk));
2945 
2946 	if (!tp->packets_out && tp->sacked_out)
2947 		tp->sacked_out = 0;
2948 
2949 	/* Now state machine starts.
2950 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2951 	if (ece_ack)
2952 		tp->prior_ssthresh = 0;
2953 
2954 	/* B. In all the states check for reneging SACKs. */
2955 	if (tcp_check_sack_reneging(sk, ack_flag))
2956 		return;
2957 
2958 	/* C. Check consistency of the current state. */
2959 	tcp_verify_left_out(tp);
2960 
2961 	/* D. Check state exit conditions. State can be terminated
2962 	 *    when high_seq is ACKed. */
2963 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2964 		WARN_ON(tp->retrans_out != 0);
2965 		tp->retrans_stamp = 0;
2966 	} else if (!before(tp->snd_una, tp->high_seq)) {
2967 		switch (icsk->icsk_ca_state) {
2968 		case TCP_CA_CWR:
2969 			/* CWR is to be held something *above* high_seq
2970 			 * is ACKed for CWR bit to reach receiver. */
2971 			if (tp->snd_una != tp->high_seq) {
2972 				tcp_end_cwnd_reduction(sk);
2973 				tcp_set_ca_state(sk, TCP_CA_Open);
2974 			}
2975 			break;
2976 
2977 		case TCP_CA_Recovery:
2978 			if (tcp_is_reno(tp))
2979 				tcp_reset_reno_sack(tp);
2980 			if (tcp_try_undo_recovery(sk))
2981 				return;
2982 			tcp_end_cwnd_reduction(sk);
2983 			break;
2984 		}
2985 	}
2986 
2987 	/* E. Process state. */
2988 	switch (icsk->icsk_ca_state) {
2989 	case TCP_CA_Recovery:
2990 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 			if (tcp_is_reno(tp))
2992 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2993 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2994 			return;
2995 
2996 		if (tcp_try_undo_dsack(sk))
2997 			tcp_try_keep_open(sk);
2998 
2999 		tcp_identify_packet_loss(sk, ack_flag);
3000 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3001 			if (!tcp_time_to_recover(sk, flag))
3002 				return;
3003 			/* Undo reverts the recovery state. If loss is evident,
3004 			 * starts a new recovery (e.g. reordering then loss);
3005 			 */
3006 			tcp_enter_recovery(sk, ece_ack);
3007 		}
3008 		break;
3009 	case TCP_CA_Loss:
3010 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3011 		tcp_identify_packet_loss(sk, ack_flag);
3012 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3013 		      (*ack_flag & FLAG_LOST_RETRANS)))
3014 			return;
3015 		/* Change state if cwnd is undone or retransmits are lost */
3016 		fallthrough;
3017 	default:
3018 		if (tcp_is_reno(tp)) {
3019 			if (flag & FLAG_SND_UNA_ADVANCED)
3020 				tcp_reset_reno_sack(tp);
3021 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3022 		}
3023 
3024 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3025 			tcp_try_undo_dsack(sk);
3026 
3027 		tcp_identify_packet_loss(sk, ack_flag);
3028 		if (!tcp_time_to_recover(sk, flag)) {
3029 			tcp_try_to_open(sk, flag);
3030 			return;
3031 		}
3032 
3033 		/* MTU probe failure: don't reduce cwnd */
3034 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3035 		    icsk->icsk_mtup.probe_size &&
3036 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3037 			tcp_mtup_probe_failed(sk);
3038 			/* Restores the reduction we did in tcp_mtup_probe() */
3039 			tp->snd_cwnd++;
3040 			tcp_simple_retransmit(sk);
3041 			return;
3042 		}
3043 
3044 		/* Otherwise enter Recovery state */
3045 		tcp_enter_recovery(sk, ece_ack);
3046 		fast_rexmit = 1;
3047 	}
3048 
3049 	if (!tcp_is_rack(sk) && do_lost)
3050 		tcp_update_scoreboard(sk, fast_rexmit);
3051 	*rexmit = REXMIT_LOST;
3052 }
3053 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3054 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3055 {
3056 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 
3059 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3060 		/* If the remote keeps returning delayed ACKs, eventually
3061 		 * the min filter would pick it up and overestimate the
3062 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3063 		 */
3064 		return;
3065 	}
3066 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3067 			   rtt_us ? : jiffies_to_usecs(1));
3068 }
3069 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3070 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3071 			       long seq_rtt_us, long sack_rtt_us,
3072 			       long ca_rtt_us, struct rate_sample *rs)
3073 {
3074 	const struct tcp_sock *tp = tcp_sk(sk);
3075 
3076 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3077 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3078 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3079 	 * is acked (RFC6298).
3080 	 */
3081 	if (seq_rtt_us < 0)
3082 		seq_rtt_us = sack_rtt_us;
3083 
3084 	/* RTTM Rule: A TSecr value received in a segment is used to
3085 	 * update the averaged RTT measurement only if the segment
3086 	 * acknowledges some new data, i.e., only if it advances the
3087 	 * left edge of the send window.
3088 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3089 	 */
3090 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3091 	    flag & FLAG_ACKED) {
3092 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3093 
3094 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3095 			if (!delta)
3096 				delta = 1;
3097 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3098 			ca_rtt_us = seq_rtt_us;
3099 		}
3100 	}
3101 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3102 	if (seq_rtt_us < 0)
3103 		return false;
3104 
3105 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3106 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3107 	 * values will be skipped with the seq_rtt_us < 0 check above.
3108 	 */
3109 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3110 	tcp_rtt_estimator(sk, seq_rtt_us);
3111 	tcp_set_rto(sk);
3112 
3113 	/* RFC6298: only reset backoff on valid RTT measurement. */
3114 	inet_csk(sk)->icsk_backoff = 0;
3115 	return true;
3116 }
3117 
3118 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3119 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3120 {
3121 	struct rate_sample rs;
3122 	long rtt_us = -1L;
3123 
3124 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3125 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3126 
3127 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3128 }
3129 
3130 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3131 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3132 {
3133 	const struct inet_connection_sock *icsk = inet_csk(sk);
3134 
3135 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3136 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3137 }
3138 
3139 /* Restart timer after forward progress on connection.
3140  * RFC2988 recommends to restart timer to now+rto.
3141  */
tcp_rearm_rto(struct sock * sk)3142 void tcp_rearm_rto(struct sock *sk)
3143 {
3144 	const struct inet_connection_sock *icsk = inet_csk(sk);
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	/* If the retrans timer is currently being used by Fast Open
3148 	 * for SYN-ACK retrans purpose, stay put.
3149 	 */
3150 	if (rcu_access_pointer(tp->fastopen_rsk))
3151 		return;
3152 
3153 	if (!tp->packets_out) {
3154 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 	} else {
3156 		u32 rto = inet_csk(sk)->icsk_rto;
3157 		/* Offset the time elapsed after installing regular RTO */
3158 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3159 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3160 			s64 delta_us = tcp_rto_delta_us(sk);
3161 			/* delta_us may not be positive if the socket is locked
3162 			 * when the retrans timer fires and is rescheduled.
3163 			 */
3164 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3165 		}
3166 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3167 				     TCP_RTO_MAX);
3168 	}
3169 }
3170 
3171 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3172 static void tcp_set_xmit_timer(struct sock *sk)
3173 {
3174 	if (!tcp_schedule_loss_probe(sk, true))
3175 		tcp_rearm_rto(sk);
3176 }
3177 
3178 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3179 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3180 {
3181 	struct tcp_sock *tp = tcp_sk(sk);
3182 	u32 packets_acked;
3183 
3184 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3185 
3186 	packets_acked = tcp_skb_pcount(skb);
3187 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188 		return 0;
3189 	packets_acked -= tcp_skb_pcount(skb);
3190 
3191 	if (packets_acked) {
3192 		BUG_ON(tcp_skb_pcount(skb) == 0);
3193 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3194 	}
3195 
3196 	return packets_acked;
3197 }
3198 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3199 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3200 			   u32 prior_snd_una)
3201 {
3202 	const struct skb_shared_info *shinfo;
3203 
3204 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3205 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3206 		return;
3207 
3208 	shinfo = skb_shinfo(skb);
3209 	if (!before(shinfo->tskey, prior_snd_una) &&
3210 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3211 		tcp_skb_tsorted_save(skb) {
3212 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3213 		} tcp_skb_tsorted_restore(skb);
3214 	}
3215 }
3216 
3217 /* Remove acknowledged frames from the retransmission queue. If our packet
3218  * is before the ack sequence we can discard it as it's confirmed to have
3219  * arrived at the other end.
3220  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3221 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3222 			       u32 prior_snd_una,
3223 			       struct tcp_sacktag_state *sack, bool ece_ack)
3224 {
3225 	const struct inet_connection_sock *icsk = inet_csk(sk);
3226 	u64 first_ackt, last_ackt;
3227 	struct tcp_sock *tp = tcp_sk(sk);
3228 	u32 prior_sacked = tp->sacked_out;
3229 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3230 	struct sk_buff *skb, *next;
3231 	bool fully_acked = true;
3232 	long sack_rtt_us = -1L;
3233 	long seq_rtt_us = -1L;
3234 	long ca_rtt_us = -1L;
3235 	u32 pkts_acked = 0;
3236 	u32 last_in_flight = 0;
3237 	bool rtt_update;
3238 	int flag = 0;
3239 
3240 	first_ackt = 0;
3241 
3242 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3243 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3244 		const u32 start_seq = scb->seq;
3245 		u8 sacked = scb->sacked;
3246 		u32 acked_pcount;
3247 
3248 		/* Determine how many packets and what bytes were acked, tso and else */
3249 		if (after(scb->end_seq, tp->snd_una)) {
3250 			if (tcp_skb_pcount(skb) == 1 ||
3251 			    !after(tp->snd_una, scb->seq))
3252 				break;
3253 
3254 			acked_pcount = tcp_tso_acked(sk, skb);
3255 			if (!acked_pcount)
3256 				break;
3257 			fully_acked = false;
3258 		} else {
3259 			acked_pcount = tcp_skb_pcount(skb);
3260 		}
3261 
3262 		if (unlikely(sacked & TCPCB_RETRANS)) {
3263 			if (sacked & TCPCB_SACKED_RETRANS)
3264 				tp->retrans_out -= acked_pcount;
3265 			flag |= FLAG_RETRANS_DATA_ACKED;
3266 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3267 			last_ackt = tcp_skb_timestamp_us(skb);
3268 			WARN_ON_ONCE(last_ackt == 0);
3269 			if (!first_ackt)
3270 				first_ackt = last_ackt;
3271 
3272 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3273 			if (before(start_seq, reord))
3274 				reord = start_seq;
3275 			if (!after(scb->end_seq, tp->high_seq))
3276 				flag |= FLAG_ORIG_SACK_ACKED;
3277 		}
3278 
3279 		if (sacked & TCPCB_SACKED_ACKED) {
3280 			tp->sacked_out -= acked_pcount;
3281 		} else if (tcp_is_sack(tp)) {
3282 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3283 			if (!tcp_skb_spurious_retrans(tp, skb))
3284 				tcp_rack_advance(tp, sacked, scb->end_seq,
3285 						 tcp_skb_timestamp_us(skb));
3286 		}
3287 		if (sacked & TCPCB_LOST)
3288 			tp->lost_out -= acked_pcount;
3289 
3290 		tp->packets_out -= acked_pcount;
3291 		pkts_acked += acked_pcount;
3292 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3293 
3294 		/* Initial outgoing SYN's get put onto the write_queue
3295 		 * just like anything else we transmit.  It is not
3296 		 * true data, and if we misinform our callers that
3297 		 * this ACK acks real data, we will erroneously exit
3298 		 * connection startup slow start one packet too
3299 		 * quickly.  This is severely frowned upon behavior.
3300 		 */
3301 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3302 			flag |= FLAG_DATA_ACKED;
3303 		} else {
3304 			flag |= FLAG_SYN_ACKED;
3305 			tp->retrans_stamp = 0;
3306 		}
3307 
3308 		if (!fully_acked)
3309 			break;
3310 
3311 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3312 
3313 		next = skb_rb_next(skb);
3314 		if (unlikely(skb == tp->retransmit_skb_hint))
3315 			tp->retransmit_skb_hint = NULL;
3316 		if (unlikely(skb == tp->lost_skb_hint))
3317 			tp->lost_skb_hint = NULL;
3318 		tcp_highest_sack_replace(sk, skb, next);
3319 		tcp_rtx_queue_unlink_and_free(skb, sk);
3320 	}
3321 
3322 	if (!skb)
3323 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3324 
3325 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3326 		tp->snd_up = tp->snd_una;
3327 
3328 	if (skb) {
3329 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3330 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3331 			flag |= FLAG_SACK_RENEGING;
3332 	}
3333 
3334 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3335 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3336 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3337 
3338 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3339 		    last_in_flight && !prior_sacked && fully_acked &&
3340 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3341 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3342 			/* Conservatively mark a delayed ACK. It's typically
3343 			 * from a lone runt packet over the round trip to
3344 			 * a receiver w/o out-of-order or CE events.
3345 			 */
3346 			flag |= FLAG_ACK_MAYBE_DELAYED;
3347 		}
3348 	}
3349 	if (sack->first_sackt) {
3350 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3351 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3352 	}
3353 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3354 					ca_rtt_us, sack->rate);
3355 
3356 	if (flag & FLAG_ACKED) {
3357 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3358 		if (unlikely(icsk->icsk_mtup.probe_size &&
3359 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3360 			tcp_mtup_probe_success(sk);
3361 		}
3362 
3363 		if (tcp_is_reno(tp)) {
3364 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3365 
3366 			/* If any of the cumulatively ACKed segments was
3367 			 * retransmitted, non-SACK case cannot confirm that
3368 			 * progress was due to original transmission due to
3369 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3370 			 * the packets may have been never retransmitted.
3371 			 */
3372 			if (flag & FLAG_RETRANS_DATA_ACKED)
3373 				flag &= ~FLAG_ORIG_SACK_ACKED;
3374 		} else {
3375 			int delta;
3376 
3377 			/* Non-retransmitted hole got filled? That's reordering */
3378 			if (before(reord, prior_fack))
3379 				tcp_check_sack_reordering(sk, reord, 0);
3380 
3381 			delta = prior_sacked - tp->sacked_out;
3382 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3383 		}
3384 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3385 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3386 						    tcp_skb_timestamp_us(skb))) {
3387 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3388 		 * after when the head was last (re)transmitted. Otherwise the
3389 		 * timeout may continue to extend in loss recovery.
3390 		 */
3391 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3392 	}
3393 
3394 	if (icsk->icsk_ca_ops->pkts_acked) {
3395 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3396 					     .rtt_us = sack->rate->rtt_us,
3397 					     .in_flight = last_in_flight };
3398 
3399 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3400 	}
3401 
3402 #if FASTRETRANS_DEBUG > 0
3403 	WARN_ON((int)tp->sacked_out < 0);
3404 	WARN_ON((int)tp->lost_out < 0);
3405 	WARN_ON((int)tp->retrans_out < 0);
3406 	if (!tp->packets_out && tcp_is_sack(tp)) {
3407 		icsk = inet_csk(sk);
3408 		if (tp->lost_out) {
3409 			pr_debug("Leak l=%u %d\n",
3410 				 tp->lost_out, icsk->icsk_ca_state);
3411 			tp->lost_out = 0;
3412 		}
3413 		if (tp->sacked_out) {
3414 			pr_debug("Leak s=%u %d\n",
3415 				 tp->sacked_out, icsk->icsk_ca_state);
3416 			tp->sacked_out = 0;
3417 		}
3418 		if (tp->retrans_out) {
3419 			pr_debug("Leak r=%u %d\n",
3420 				 tp->retrans_out, icsk->icsk_ca_state);
3421 			tp->retrans_out = 0;
3422 		}
3423 	}
3424 #endif
3425 	return flag;
3426 }
3427 
tcp_ack_probe(struct sock * sk)3428 static void tcp_ack_probe(struct sock *sk)
3429 {
3430 	struct inet_connection_sock *icsk = inet_csk(sk);
3431 	struct sk_buff *head = tcp_send_head(sk);
3432 	const struct tcp_sock *tp = tcp_sk(sk);
3433 
3434 	/* Was it a usable window open? */
3435 	if (!head)
3436 		return;
3437 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3438 		icsk->icsk_backoff = 0;
3439 		icsk->icsk_probes_tstamp = 0;
3440 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3441 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3442 		 * This function is not for random using!
3443 		 */
3444 	} else {
3445 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3446 
3447 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3448 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3449 	}
3450 }
3451 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3452 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3453 {
3454 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3455 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3456 }
3457 
3458 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3459 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3460 {
3461 	/* If reordering is high then always grow cwnd whenever data is
3462 	 * delivered regardless of its ordering. Otherwise stay conservative
3463 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3464 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3465 	 * cwnd in tcp_fastretrans_alert() based on more states.
3466 	 */
3467 	if (tcp_sk(sk)->reordering >
3468 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3469 		return flag & FLAG_FORWARD_PROGRESS;
3470 
3471 	return flag & FLAG_DATA_ACKED;
3472 }
3473 
3474 /* The "ultimate" congestion control function that aims to replace the rigid
3475  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3476  * It's called toward the end of processing an ACK with precise rate
3477  * information. All transmission or retransmission are delayed afterwards.
3478  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3479 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3480 			     int flag, const struct rate_sample *rs)
3481 {
3482 	const struct inet_connection_sock *icsk = inet_csk(sk);
3483 
3484 	if (icsk->icsk_ca_ops->cong_control) {
3485 		icsk->icsk_ca_ops->cong_control(sk, rs);
3486 		return;
3487 	}
3488 
3489 	if (tcp_in_cwnd_reduction(sk)) {
3490 		/* Reduce cwnd if state mandates */
3491 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3492 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3493 		/* Advance cwnd if state allows */
3494 		tcp_cong_avoid(sk, ack, acked_sacked);
3495 	}
3496 	tcp_update_pacing_rate(sk);
3497 }
3498 
3499 /* Check that window update is acceptable.
3500  * The function assumes that snd_una<=ack<=snd_next.
3501  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3502 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3503 					const u32 ack, const u32 ack_seq,
3504 					const u32 nwin)
3505 {
3506 	return	after(ack, tp->snd_una) ||
3507 		after(ack_seq, tp->snd_wl1) ||
3508 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3509 }
3510 
3511 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3512 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3513 {
3514 	u32 delta = ack - tp->snd_una;
3515 
3516 	sock_owned_by_me((struct sock *)tp);
3517 	tp->bytes_acked += delta;
3518 	tp->snd_una = ack;
3519 }
3520 
3521 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3522 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3523 {
3524 	u32 delta = seq - tp->rcv_nxt;
3525 
3526 	sock_owned_by_me((struct sock *)tp);
3527 	tp->bytes_received += delta;
3528 	WRITE_ONCE(tp->rcv_nxt, seq);
3529 }
3530 
3531 /* Update our send window.
3532  *
3533  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3534  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3535  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3536 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3537 				 u32 ack_seq)
3538 {
3539 	struct tcp_sock *tp = tcp_sk(sk);
3540 	int flag = 0;
3541 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3542 
3543 	if (likely(!tcp_hdr(skb)->syn))
3544 		nwin <<= tp->rx_opt.snd_wscale;
3545 
3546 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3547 		flag |= FLAG_WIN_UPDATE;
3548 		tcp_update_wl(tp, ack_seq);
3549 
3550 		if (tp->snd_wnd != nwin) {
3551 			tp->snd_wnd = nwin;
3552 
3553 			/* Note, it is the only place, where
3554 			 * fast path is recovered for sending TCP.
3555 			 */
3556 			tp->pred_flags = 0;
3557 			tcp_fast_path_check(sk);
3558 
3559 			if (!tcp_write_queue_empty(sk))
3560 				tcp_slow_start_after_idle_check(sk);
3561 
3562 			if (nwin > tp->max_window) {
3563 				tp->max_window = nwin;
3564 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3565 			}
3566 		}
3567 	}
3568 
3569 	tcp_snd_una_update(tp, ack);
3570 
3571 	return flag;
3572 }
3573 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3574 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3575 				   u32 *last_oow_ack_time)
3576 {
3577 	/* Paired with the WRITE_ONCE() in this function. */
3578 	u32 val = READ_ONCE(*last_oow_ack_time);
3579 
3580 	if (val) {
3581 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3582 
3583 		if (0 <= elapsed &&
3584 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3585 			NET_INC_STATS(net, mib_idx);
3586 			return true;	/* rate-limited: don't send yet! */
3587 		}
3588 	}
3589 
3590 	/* Paired with the prior READ_ONCE() and with itself,
3591 	 * as we might be lockless.
3592 	 */
3593 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3594 
3595 	return false;	/* not rate-limited: go ahead, send dupack now! */
3596 }
3597 
3598 /* Return true if we're currently rate-limiting out-of-window ACKs and
3599  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3600  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3601  * attacks that send repeated SYNs or ACKs for the same connection. To
3602  * do this, we do not send a duplicate SYNACK or ACK if the remote
3603  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3604  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3605 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3606 			  int mib_idx, u32 *last_oow_ack_time)
3607 {
3608 	/* Data packets without SYNs are not likely part of an ACK loop. */
3609 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3610 	    !tcp_hdr(skb)->syn)
3611 		return false;
3612 
3613 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3614 }
3615 
3616 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3617 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3618 {
3619 	/* unprotected vars, we dont care of overwrites */
3620 	static u32 challenge_timestamp;
3621 	static unsigned int challenge_count;
3622 	struct tcp_sock *tp = tcp_sk(sk);
3623 	struct net *net = sock_net(sk);
3624 	u32 count, now;
3625 
3626 	/* First check our per-socket dupack rate limit. */
3627 	if (__tcp_oow_rate_limited(net,
3628 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3629 				   &tp->last_oow_ack_time))
3630 		return;
3631 
3632 	/* Then check host-wide RFC 5961 rate limit. */
3633 	now = jiffies / HZ;
3634 	if (now != READ_ONCE(challenge_timestamp)) {
3635 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3636 		u32 half = (ack_limit + 1) >> 1;
3637 
3638 		WRITE_ONCE(challenge_timestamp, now);
3639 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3640 	}
3641 	count = READ_ONCE(challenge_count);
3642 	if (count > 0) {
3643 		WRITE_ONCE(challenge_count, count - 1);
3644 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3645 		tcp_send_ack(sk);
3646 	}
3647 }
3648 
tcp_store_ts_recent(struct tcp_sock * tp)3649 static void tcp_store_ts_recent(struct tcp_sock *tp)
3650 {
3651 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3652 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3653 }
3654 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3655 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3656 {
3657 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3658 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3659 		 * extra check below makes sure this can only happen
3660 		 * for pure ACK frames.  -DaveM
3661 		 *
3662 		 * Not only, also it occurs for expired timestamps.
3663 		 */
3664 
3665 		if (tcp_paws_check(&tp->rx_opt, 0))
3666 			tcp_store_ts_recent(tp);
3667 	}
3668 }
3669 
3670 /* This routine deals with acks during a TLP episode and ends an episode by
3671  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3672  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3673 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3674 {
3675 	struct tcp_sock *tp = tcp_sk(sk);
3676 
3677 	if (before(ack, tp->tlp_high_seq))
3678 		return;
3679 
3680 	if (!tp->tlp_retrans) {
3681 		/* TLP of new data has been acknowledged */
3682 		tp->tlp_high_seq = 0;
3683 	} else if (flag & FLAG_DSACKING_ACK) {
3684 		/* This DSACK means original and TLP probe arrived; no loss */
3685 		tp->tlp_high_seq = 0;
3686 	} else if (after(ack, tp->tlp_high_seq)) {
3687 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3688 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3689 		 */
3690 		tcp_init_cwnd_reduction(sk);
3691 		tcp_set_ca_state(sk, TCP_CA_CWR);
3692 		tcp_end_cwnd_reduction(sk);
3693 		tcp_try_keep_open(sk);
3694 		NET_INC_STATS(sock_net(sk),
3695 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3696 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3697 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3698 		/* Pure dupack: original and TLP probe arrived; no loss */
3699 		tp->tlp_high_seq = 0;
3700 	}
3701 }
3702 
tcp_in_ack_event(struct sock * sk,u32 flags)3703 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3704 {
3705 	const struct inet_connection_sock *icsk = inet_csk(sk);
3706 
3707 	if (icsk->icsk_ca_ops->in_ack_event)
3708 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3709 }
3710 
3711 /* Congestion control has updated the cwnd already. So if we're in
3712  * loss recovery then now we do any new sends (for FRTO) or
3713  * retransmits (for CA_Loss or CA_recovery) that make sense.
3714  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3715 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3716 {
3717 	struct tcp_sock *tp = tcp_sk(sk);
3718 
3719 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3720 		return;
3721 
3722 	if (unlikely(rexmit == REXMIT_NEW)) {
3723 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3724 					  TCP_NAGLE_OFF);
3725 		if (after(tp->snd_nxt, tp->high_seq))
3726 			return;
3727 		tp->frto = 0;
3728 	}
3729 	tcp_xmit_retransmit_queue(sk);
3730 }
3731 
3732 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3733 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3734 {
3735 	const struct net *net = sock_net(sk);
3736 	struct tcp_sock *tp = tcp_sk(sk);
3737 	u32 delivered;
3738 
3739 	delivered = tp->delivered - prior_delivered;
3740 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3741 	if (flag & FLAG_ECE)
3742 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3743 
3744 	return delivered;
3745 }
3746 
3747 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3748 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3749 {
3750 	struct inet_connection_sock *icsk = inet_csk(sk);
3751 	struct tcp_sock *tp = tcp_sk(sk);
3752 	struct tcp_sacktag_state sack_state;
3753 	struct rate_sample rs = { .prior_delivered = 0 };
3754 	u32 prior_snd_una = tp->snd_una;
3755 	bool is_sack_reneg = tp->is_sack_reneg;
3756 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3757 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3758 	int num_dupack = 0;
3759 	int prior_packets = tp->packets_out;
3760 	u32 delivered = tp->delivered;
3761 	u32 lost = tp->lost;
3762 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3763 	u32 prior_fack;
3764 
3765 	sack_state.first_sackt = 0;
3766 	sack_state.rate = &rs;
3767 	sack_state.sack_delivered = 0;
3768 
3769 	/* We very likely will need to access rtx queue. */
3770 	prefetch(sk->tcp_rtx_queue.rb_node);
3771 
3772 	/* If the ack is older than previous acks
3773 	 * then we can probably ignore it.
3774 	 */
3775 	if (before(ack, prior_snd_una)) {
3776 		u32 max_window;
3777 
3778 		/* do not accept ACK for bytes we never sent. */
3779 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3780 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3781 		if (before(ack, prior_snd_una - max_window)) {
3782 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3783 				tcp_send_challenge_ack(sk, skb);
3784 			return -1;
3785 		}
3786 		goto old_ack;
3787 	}
3788 
3789 	/* If the ack includes data we haven't sent yet, discard
3790 	 * this segment (RFC793 Section 3.9).
3791 	 */
3792 	if (after(ack, tp->snd_nxt))
3793 		return -1;
3794 
3795 	if (after(ack, prior_snd_una)) {
3796 		flag |= FLAG_SND_UNA_ADVANCED;
3797 		icsk->icsk_retransmits = 0;
3798 
3799 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3800 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3801 			if (icsk->icsk_clean_acked)
3802 				icsk->icsk_clean_acked(sk, ack);
3803 #endif
3804 	}
3805 
3806 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3807 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3808 
3809 	/* ts_recent update must be made after we are sure that the packet
3810 	 * is in window.
3811 	 */
3812 	if (flag & FLAG_UPDATE_TS_RECENT)
3813 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3814 
3815 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3816 	    FLAG_SND_UNA_ADVANCED) {
3817 		/* Window is constant, pure forward advance.
3818 		 * No more checks are required.
3819 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3820 		 */
3821 		tcp_update_wl(tp, ack_seq);
3822 		tcp_snd_una_update(tp, ack);
3823 		flag |= FLAG_WIN_UPDATE;
3824 
3825 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3826 
3827 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3828 	} else {
3829 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3830 
3831 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3832 			flag |= FLAG_DATA;
3833 		else
3834 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3835 
3836 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3837 
3838 		if (TCP_SKB_CB(skb)->sacked)
3839 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3840 							&sack_state);
3841 
3842 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3843 			flag |= FLAG_ECE;
3844 			ack_ev_flags |= CA_ACK_ECE;
3845 		}
3846 
3847 		if (sack_state.sack_delivered)
3848 			tcp_count_delivered(tp, sack_state.sack_delivered,
3849 					    flag & FLAG_ECE);
3850 
3851 		if (flag & FLAG_WIN_UPDATE)
3852 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3853 
3854 		tcp_in_ack_event(sk, ack_ev_flags);
3855 	}
3856 
3857 	/* This is a deviation from RFC3168 since it states that:
3858 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3859 	 * the congestion window, it SHOULD set the CWR bit only on the first
3860 	 * new data packet that it transmits."
3861 	 * We accept CWR on pure ACKs to be more robust
3862 	 * with widely-deployed TCP implementations that do this.
3863 	 */
3864 	tcp_ecn_accept_cwr(sk, skb);
3865 
3866 	/* We passed data and got it acked, remove any soft error
3867 	 * log. Something worked...
3868 	 */
3869 	sk->sk_err_soft = 0;
3870 	icsk->icsk_probes_out = 0;
3871 	tp->rcv_tstamp = tcp_jiffies32;
3872 	if (!prior_packets)
3873 		goto no_queue;
3874 
3875 	/* See if we can take anything off of the retransmit queue. */
3876 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3877 				    flag & FLAG_ECE);
3878 
3879 	tcp_rack_update_reo_wnd(sk, &rs);
3880 
3881 	if (tp->tlp_high_seq)
3882 		tcp_process_tlp_ack(sk, ack, flag);
3883 
3884 	if (tcp_ack_is_dubious(sk, flag)) {
3885 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3886 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3887 			num_dupack = 1;
3888 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3889 			if (!(flag & FLAG_DATA))
3890 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3891 		}
3892 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3893 				      &rexmit);
3894 	}
3895 
3896 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3897 	if (flag & FLAG_SET_XMIT_TIMER)
3898 		tcp_set_xmit_timer(sk);
3899 
3900 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3901 		sk_dst_confirm(sk);
3902 
3903 	delivered = tcp_newly_delivered(sk, delivered, flag);
3904 	lost = tp->lost - lost;			/* freshly marked lost */
3905 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3906 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3907 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3908 	tcp_xmit_recovery(sk, rexmit);
3909 	return 1;
3910 
3911 no_queue:
3912 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3913 	if (flag & FLAG_DSACKING_ACK) {
3914 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3915 				      &rexmit);
3916 		tcp_newly_delivered(sk, delivered, flag);
3917 	}
3918 	/* If this ack opens up a zero window, clear backoff.  It was
3919 	 * being used to time the probes, and is probably far higher than
3920 	 * it needs to be for normal retransmission.
3921 	 */
3922 	tcp_ack_probe(sk);
3923 
3924 	if (tp->tlp_high_seq)
3925 		tcp_process_tlp_ack(sk, ack, flag);
3926 	return 1;
3927 
3928 old_ack:
3929 	/* If data was SACKed, tag it and see if we should send more data.
3930 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3931 	 */
3932 	if (TCP_SKB_CB(skb)->sacked) {
3933 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3934 						&sack_state);
3935 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3936 				      &rexmit);
3937 		tcp_newly_delivered(sk, delivered, flag);
3938 		tcp_xmit_recovery(sk, rexmit);
3939 	}
3940 
3941 	return 0;
3942 }
3943 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3944 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3945 				      bool syn, struct tcp_fastopen_cookie *foc,
3946 				      bool exp_opt)
3947 {
3948 	/* Valid only in SYN or SYN-ACK with an even length.  */
3949 	if (!foc || !syn || len < 0 || (len & 1))
3950 		return;
3951 
3952 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3953 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3954 		memcpy(foc->val, cookie, len);
3955 	else if (len != 0)
3956 		len = -1;
3957 	foc->len = len;
3958 	foc->exp = exp_opt;
3959 }
3960 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3961 static bool smc_parse_options(const struct tcphdr *th,
3962 			      struct tcp_options_received *opt_rx,
3963 			      const unsigned char *ptr,
3964 			      int opsize)
3965 {
3966 #if IS_ENABLED(CONFIG_SMC)
3967 	if (static_branch_unlikely(&tcp_have_smc)) {
3968 		if (th->syn && !(opsize & 1) &&
3969 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3970 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3971 			opt_rx->smc_ok = 1;
3972 			return true;
3973 		}
3974 	}
3975 #endif
3976 	return false;
3977 }
3978 
3979 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3980  * value on success.
3981  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3982 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3983 {
3984 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3985 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3986 	u16 mss = 0;
3987 
3988 	while (length > 0) {
3989 		int opcode = *ptr++;
3990 		int opsize;
3991 
3992 		switch (opcode) {
3993 		case TCPOPT_EOL:
3994 			return mss;
3995 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3996 			length--;
3997 			continue;
3998 		default:
3999 			if (length < 2)
4000 				return mss;
4001 			opsize = *ptr++;
4002 			if (opsize < 2) /* "silly options" */
4003 				return mss;
4004 			if (opsize > length)
4005 				return mss;	/* fail on partial options */
4006 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4007 				u16 in_mss = get_unaligned_be16(ptr);
4008 
4009 				if (in_mss) {
4010 					if (user_mss && user_mss < in_mss)
4011 						in_mss = user_mss;
4012 					mss = in_mss;
4013 				}
4014 			}
4015 			ptr += opsize - 2;
4016 			length -= opsize;
4017 		}
4018 	}
4019 	return mss;
4020 }
4021 
4022 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4023  * But, this can also be called on packets in the established flow when
4024  * the fast version below fails.
4025  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4026 void tcp_parse_options(const struct net *net,
4027 		       const struct sk_buff *skb,
4028 		       struct tcp_options_received *opt_rx, int estab,
4029 		       struct tcp_fastopen_cookie *foc)
4030 {
4031 	const unsigned char *ptr;
4032 	const struct tcphdr *th = tcp_hdr(skb);
4033 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4034 
4035 	ptr = (const unsigned char *)(th + 1);
4036 	opt_rx->saw_tstamp = 0;
4037 	opt_rx->saw_unknown = 0;
4038 
4039 	while (length > 0) {
4040 		int opcode = *ptr++;
4041 		int opsize;
4042 
4043 		switch (opcode) {
4044 		case TCPOPT_EOL:
4045 			return;
4046 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4047 			length--;
4048 			continue;
4049 		default:
4050 			if (length < 2)
4051 				return;
4052 			opsize = *ptr++;
4053 			if (opsize < 2) /* "silly options" */
4054 				return;
4055 			if (opsize > length)
4056 				return;	/* don't parse partial options */
4057 			switch (opcode) {
4058 			case TCPOPT_MSS:
4059 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4060 					u16 in_mss = get_unaligned_be16(ptr);
4061 					if (in_mss) {
4062 						if (opt_rx->user_mss &&
4063 						    opt_rx->user_mss < in_mss)
4064 							in_mss = opt_rx->user_mss;
4065 						opt_rx->mss_clamp = in_mss;
4066 					}
4067 				}
4068 				break;
4069 			case TCPOPT_WINDOW:
4070 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4071 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4072 					__u8 snd_wscale = *(__u8 *)ptr;
4073 					opt_rx->wscale_ok = 1;
4074 					if (snd_wscale > TCP_MAX_WSCALE) {
4075 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4076 								     __func__,
4077 								     snd_wscale,
4078 								     TCP_MAX_WSCALE);
4079 						snd_wscale = TCP_MAX_WSCALE;
4080 					}
4081 					opt_rx->snd_wscale = snd_wscale;
4082 				}
4083 				break;
4084 			case TCPOPT_TIMESTAMP:
4085 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4086 				    ((estab && opt_rx->tstamp_ok) ||
4087 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4088 					opt_rx->saw_tstamp = 1;
4089 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4090 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4091 				}
4092 				break;
4093 			case TCPOPT_SACK_PERM:
4094 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4095 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4096 					opt_rx->sack_ok = TCP_SACK_SEEN;
4097 					tcp_sack_reset(opt_rx);
4098 				}
4099 				break;
4100 
4101 			case TCPOPT_SACK:
4102 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4103 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4104 				   opt_rx->sack_ok) {
4105 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4106 				}
4107 				break;
4108 #ifdef CONFIG_TCP_MD5SIG
4109 			case TCPOPT_MD5SIG:
4110 				/*
4111 				 * The MD5 Hash has already been
4112 				 * checked (see tcp_v{4,6}_do_rcv()).
4113 				 */
4114 				break;
4115 #endif
4116 			case TCPOPT_FASTOPEN:
4117 				tcp_parse_fastopen_option(
4118 					opsize - TCPOLEN_FASTOPEN_BASE,
4119 					ptr, th->syn, foc, false);
4120 				break;
4121 
4122 			case TCPOPT_EXP:
4123 				/* Fast Open option shares code 254 using a
4124 				 * 16 bits magic number.
4125 				 */
4126 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4127 				    get_unaligned_be16(ptr) ==
4128 				    TCPOPT_FASTOPEN_MAGIC) {
4129 					tcp_parse_fastopen_option(opsize -
4130 						TCPOLEN_EXP_FASTOPEN_BASE,
4131 						ptr + 2, th->syn, foc, true);
4132 					break;
4133 				}
4134 
4135 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4136 					break;
4137 
4138 				opt_rx->saw_unknown = 1;
4139 				break;
4140 
4141 			default:
4142 				opt_rx->saw_unknown = 1;
4143 			}
4144 			ptr += opsize-2;
4145 			length -= opsize;
4146 		}
4147 	}
4148 }
4149 EXPORT_SYMBOL(tcp_parse_options);
4150 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4151 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4152 {
4153 	const __be32 *ptr = (const __be32 *)(th + 1);
4154 
4155 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4156 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4157 		tp->rx_opt.saw_tstamp = 1;
4158 		++ptr;
4159 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4160 		++ptr;
4161 		if (*ptr)
4162 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4163 		else
4164 			tp->rx_opt.rcv_tsecr = 0;
4165 		return true;
4166 	}
4167 	return false;
4168 }
4169 
4170 /* Fast parse options. This hopes to only see timestamps.
4171  * If it is wrong it falls back on tcp_parse_options().
4172  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4173 static bool tcp_fast_parse_options(const struct net *net,
4174 				   const struct sk_buff *skb,
4175 				   const struct tcphdr *th, struct tcp_sock *tp)
4176 {
4177 	/* In the spirit of fast parsing, compare doff directly to constant
4178 	 * values.  Because equality is used, short doff can be ignored here.
4179 	 */
4180 	if (th->doff == (sizeof(*th) / 4)) {
4181 		tp->rx_opt.saw_tstamp = 0;
4182 		return false;
4183 	} else if (tp->rx_opt.tstamp_ok &&
4184 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4185 		if (tcp_parse_aligned_timestamp(tp, th))
4186 			return true;
4187 	}
4188 
4189 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4190 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4191 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4192 
4193 	return true;
4194 }
4195 
4196 #ifdef CONFIG_TCP_MD5SIG
4197 /*
4198  * Parse MD5 Signature option
4199  */
tcp_parse_md5sig_option(const struct tcphdr * th)4200 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4201 {
4202 	int length = (th->doff << 2) - sizeof(*th);
4203 	const u8 *ptr = (const u8 *)(th + 1);
4204 
4205 	/* If not enough data remaining, we can short cut */
4206 	while (length >= TCPOLEN_MD5SIG) {
4207 		int opcode = *ptr++;
4208 		int opsize;
4209 
4210 		switch (opcode) {
4211 		case TCPOPT_EOL:
4212 			return NULL;
4213 		case TCPOPT_NOP:
4214 			length--;
4215 			continue;
4216 		default:
4217 			opsize = *ptr++;
4218 			if (opsize < 2 || opsize > length)
4219 				return NULL;
4220 			if (opcode == TCPOPT_MD5SIG)
4221 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4222 		}
4223 		ptr += opsize - 2;
4224 		length -= opsize;
4225 	}
4226 	return NULL;
4227 }
4228 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4229 #endif
4230 
4231 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4232  *
4233  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4234  * it can pass through stack. So, the following predicate verifies that
4235  * this segment is not used for anything but congestion avoidance or
4236  * fast retransmit. Moreover, we even are able to eliminate most of such
4237  * second order effects, if we apply some small "replay" window (~RTO)
4238  * to timestamp space.
4239  *
4240  * All these measures still do not guarantee that we reject wrapped ACKs
4241  * on networks with high bandwidth, when sequence space is recycled fastly,
4242  * but it guarantees that such events will be very rare and do not affect
4243  * connection seriously. This doesn't look nice, but alas, PAWS is really
4244  * buggy extension.
4245  *
4246  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4247  * states that events when retransmit arrives after original data are rare.
4248  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4249  * the biggest problem on large power networks even with minor reordering.
4250  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4251  * up to bandwidth of 18Gigabit/sec. 8) ]
4252  */
4253 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4254 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4255 {
4256 	const struct tcp_sock *tp = tcp_sk(sk);
4257 	const struct tcphdr *th = tcp_hdr(skb);
4258 	u32 seq = TCP_SKB_CB(skb)->seq;
4259 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4260 
4261 	return (/* 1. Pure ACK with correct sequence number. */
4262 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4263 
4264 		/* 2. ... and duplicate ACK. */
4265 		ack == tp->snd_una &&
4266 
4267 		/* 3. ... and does not update window. */
4268 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4269 
4270 		/* 4. ... and sits in replay window. */
4271 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4272 }
4273 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4274 static inline bool tcp_paws_discard(const struct sock *sk,
4275 				   const struct sk_buff *skb)
4276 {
4277 	const struct tcp_sock *tp = tcp_sk(sk);
4278 
4279 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4280 	       !tcp_disordered_ack(sk, skb);
4281 }
4282 
4283 /* Check segment sequence number for validity.
4284  *
4285  * Segment controls are considered valid, if the segment
4286  * fits to the window after truncation to the window. Acceptability
4287  * of data (and SYN, FIN, of course) is checked separately.
4288  * See tcp_data_queue(), for example.
4289  *
4290  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4291  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4292  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4293  * (borrowed from freebsd)
4294  */
4295 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4296 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4297 {
4298 	return	!before(end_seq, tp->rcv_wup) &&
4299 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4300 }
4301 
4302 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4303 void tcp_reset(struct sock *sk)
4304 {
4305 	trace_tcp_receive_reset(sk);
4306 
4307 	/* We want the right error as BSD sees it (and indeed as we do). */
4308 	switch (sk->sk_state) {
4309 	case TCP_SYN_SENT:
4310 		sk->sk_err = ECONNREFUSED;
4311 		break;
4312 	case TCP_CLOSE_WAIT:
4313 		sk->sk_err = EPIPE;
4314 		break;
4315 	case TCP_CLOSE:
4316 		return;
4317 	default:
4318 		sk->sk_err = ECONNRESET;
4319 	}
4320 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4321 	smp_wmb();
4322 
4323 	tcp_write_queue_purge(sk);
4324 	tcp_done(sk);
4325 
4326 	if (!sock_flag(sk, SOCK_DEAD))
4327 		sk->sk_error_report(sk);
4328 }
4329 
4330 /*
4331  * 	Process the FIN bit. This now behaves as it is supposed to work
4332  *	and the FIN takes effect when it is validly part of sequence
4333  *	space. Not before when we get holes.
4334  *
4335  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4336  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4337  *	TIME-WAIT)
4338  *
4339  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4340  *	close and we go into CLOSING (and later onto TIME-WAIT)
4341  *
4342  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4343  */
tcp_fin(struct sock * sk)4344 void tcp_fin(struct sock *sk)
4345 {
4346 	struct tcp_sock *tp = tcp_sk(sk);
4347 
4348 	inet_csk_schedule_ack(sk);
4349 
4350 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4351 	sock_set_flag(sk, SOCK_DONE);
4352 
4353 	switch (sk->sk_state) {
4354 	case TCP_SYN_RECV:
4355 	case TCP_ESTABLISHED:
4356 		/* Move to CLOSE_WAIT */
4357 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4358 		inet_csk_enter_pingpong_mode(sk);
4359 		break;
4360 
4361 	case TCP_CLOSE_WAIT:
4362 	case TCP_CLOSING:
4363 		/* Received a retransmission of the FIN, do
4364 		 * nothing.
4365 		 */
4366 		break;
4367 	case TCP_LAST_ACK:
4368 		/* RFC793: Remain in the LAST-ACK state. */
4369 		break;
4370 
4371 	case TCP_FIN_WAIT1:
4372 		/* This case occurs when a simultaneous close
4373 		 * happens, we must ack the received FIN and
4374 		 * enter the CLOSING state.
4375 		 */
4376 		tcp_send_ack(sk);
4377 		tcp_set_state(sk, TCP_CLOSING);
4378 		break;
4379 	case TCP_FIN_WAIT2:
4380 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4381 		tcp_send_ack(sk);
4382 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4383 		break;
4384 	default:
4385 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4386 		 * cases we should never reach this piece of code.
4387 		 */
4388 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4389 		       __func__, sk->sk_state);
4390 		break;
4391 	}
4392 
4393 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4394 	 * Probably, we should reset in this case. For now drop them.
4395 	 */
4396 	skb_rbtree_purge(&tp->out_of_order_queue);
4397 	if (tcp_is_sack(tp))
4398 		tcp_sack_reset(&tp->rx_opt);
4399 	sk_mem_reclaim(sk);
4400 
4401 	if (!sock_flag(sk, SOCK_DEAD)) {
4402 		sk->sk_state_change(sk);
4403 
4404 		/* Do not send POLL_HUP for half duplex close. */
4405 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4406 		    sk->sk_state == TCP_CLOSE)
4407 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4408 		else
4409 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4410 	}
4411 }
4412 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4413 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4414 				  u32 end_seq)
4415 {
4416 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4417 		if (before(seq, sp->start_seq))
4418 			sp->start_seq = seq;
4419 		if (after(end_seq, sp->end_seq))
4420 			sp->end_seq = end_seq;
4421 		return true;
4422 	}
4423 	return false;
4424 }
4425 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4426 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4427 {
4428 	struct tcp_sock *tp = tcp_sk(sk);
4429 
4430 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4431 		int mib_idx;
4432 
4433 		if (before(seq, tp->rcv_nxt))
4434 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4435 		else
4436 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4437 
4438 		NET_INC_STATS(sock_net(sk), mib_idx);
4439 
4440 		tp->rx_opt.dsack = 1;
4441 		tp->duplicate_sack[0].start_seq = seq;
4442 		tp->duplicate_sack[0].end_seq = end_seq;
4443 	}
4444 }
4445 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4446 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4447 {
4448 	struct tcp_sock *tp = tcp_sk(sk);
4449 
4450 	if (!tp->rx_opt.dsack)
4451 		tcp_dsack_set(sk, seq, end_seq);
4452 	else
4453 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4454 }
4455 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4456 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4457 {
4458 	/* When the ACK path fails or drops most ACKs, the sender would
4459 	 * timeout and spuriously retransmit the same segment repeatedly.
4460 	 * The receiver remembers and reflects via DSACKs. Leverage the
4461 	 * DSACK state and change the txhash to re-route speculatively.
4462 	 */
4463 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4464 	    sk_rethink_txhash(sk))
4465 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4466 }
4467 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4468 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4469 {
4470 	struct tcp_sock *tp = tcp_sk(sk);
4471 
4472 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4473 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4474 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4475 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4476 
4477 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4478 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4479 
4480 			tcp_rcv_spurious_retrans(sk, skb);
4481 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4482 				end_seq = tp->rcv_nxt;
4483 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4484 		}
4485 	}
4486 
4487 	tcp_send_ack(sk);
4488 }
4489 
4490 /* These routines update the SACK block as out-of-order packets arrive or
4491  * in-order packets close up the sequence space.
4492  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4493 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4494 {
4495 	int this_sack;
4496 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4497 	struct tcp_sack_block *swalk = sp + 1;
4498 
4499 	/* See if the recent change to the first SACK eats into
4500 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4501 	 */
4502 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4503 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4504 			int i;
4505 
4506 			/* Zap SWALK, by moving every further SACK up by one slot.
4507 			 * Decrease num_sacks.
4508 			 */
4509 			tp->rx_opt.num_sacks--;
4510 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4511 				sp[i] = sp[i + 1];
4512 			continue;
4513 		}
4514 		this_sack++;
4515 		swalk++;
4516 	}
4517 }
4518 
tcp_sack_compress_send_ack(struct sock * sk)4519 static void tcp_sack_compress_send_ack(struct sock *sk)
4520 {
4521 	struct tcp_sock *tp = tcp_sk(sk);
4522 
4523 	if (!tp->compressed_ack)
4524 		return;
4525 
4526 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4527 		__sock_put(sk);
4528 
4529 	/* Since we have to send one ack finally,
4530 	 * substract one from tp->compressed_ack to keep
4531 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4532 	 */
4533 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4534 		      tp->compressed_ack - 1);
4535 
4536 	tp->compressed_ack = 0;
4537 	tcp_send_ack(sk);
4538 }
4539 
4540 /* Reasonable amount of sack blocks included in TCP SACK option
4541  * The max is 4, but this becomes 3 if TCP timestamps are there.
4542  * Given that SACK packets might be lost, be conservative and use 2.
4543  */
4544 #define TCP_SACK_BLOCKS_EXPECTED 2
4545 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4546 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4547 {
4548 	struct tcp_sock *tp = tcp_sk(sk);
4549 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4550 	int cur_sacks = tp->rx_opt.num_sacks;
4551 	int this_sack;
4552 
4553 	if (!cur_sacks)
4554 		goto new_sack;
4555 
4556 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4557 		if (tcp_sack_extend(sp, seq, end_seq)) {
4558 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4559 				tcp_sack_compress_send_ack(sk);
4560 			/* Rotate this_sack to the first one. */
4561 			for (; this_sack > 0; this_sack--, sp--)
4562 				swap(*sp, *(sp - 1));
4563 			if (cur_sacks > 1)
4564 				tcp_sack_maybe_coalesce(tp);
4565 			return;
4566 		}
4567 	}
4568 
4569 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4570 		tcp_sack_compress_send_ack(sk);
4571 
4572 	/* Could not find an adjacent existing SACK, build a new one,
4573 	 * put it at the front, and shift everyone else down.  We
4574 	 * always know there is at least one SACK present already here.
4575 	 *
4576 	 * If the sack array is full, forget about the last one.
4577 	 */
4578 	if (this_sack >= TCP_NUM_SACKS) {
4579 		this_sack--;
4580 		tp->rx_opt.num_sacks--;
4581 		sp--;
4582 	}
4583 	for (; this_sack > 0; this_sack--, sp--)
4584 		*sp = *(sp - 1);
4585 
4586 new_sack:
4587 	/* Build the new head SACK, and we're done. */
4588 	sp->start_seq = seq;
4589 	sp->end_seq = end_seq;
4590 	tp->rx_opt.num_sacks++;
4591 }
4592 
4593 /* RCV.NXT advances, some SACKs should be eaten. */
4594 
tcp_sack_remove(struct tcp_sock * tp)4595 static void tcp_sack_remove(struct tcp_sock *tp)
4596 {
4597 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4598 	int num_sacks = tp->rx_opt.num_sacks;
4599 	int this_sack;
4600 
4601 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4602 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4603 		tp->rx_opt.num_sacks = 0;
4604 		return;
4605 	}
4606 
4607 	for (this_sack = 0; this_sack < num_sacks;) {
4608 		/* Check if the start of the sack is covered by RCV.NXT. */
4609 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4610 			int i;
4611 
4612 			/* RCV.NXT must cover all the block! */
4613 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4614 
4615 			/* Zap this SACK, by moving forward any other SACKS. */
4616 			for (i = this_sack+1; i < num_sacks; i++)
4617 				tp->selective_acks[i-1] = tp->selective_acks[i];
4618 			num_sacks--;
4619 			continue;
4620 		}
4621 		this_sack++;
4622 		sp++;
4623 	}
4624 	tp->rx_opt.num_sacks = num_sacks;
4625 }
4626 
4627 /**
4628  * tcp_try_coalesce - try to merge skb to prior one
4629  * @sk: socket
4630  * @to: prior buffer
4631  * @from: buffer to add in queue
4632  * @fragstolen: pointer to boolean
4633  *
4634  * Before queueing skb @from after @to, try to merge them
4635  * to reduce overall memory use and queue lengths, if cost is small.
4636  * Packets in ofo or receive queues can stay a long time.
4637  * Better try to coalesce them right now to avoid future collapses.
4638  * Returns true if caller should free @from instead of queueing it
4639  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4640 static bool tcp_try_coalesce(struct sock *sk,
4641 			     struct sk_buff *to,
4642 			     struct sk_buff *from,
4643 			     bool *fragstolen)
4644 {
4645 	int delta;
4646 
4647 	*fragstolen = false;
4648 
4649 	/* Its possible this segment overlaps with prior segment in queue */
4650 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4651 		return false;
4652 
4653 	if (!mptcp_skb_can_collapse(to, from))
4654 		return false;
4655 
4656 #ifdef CONFIG_TLS_DEVICE
4657 	if (from->decrypted != to->decrypted)
4658 		return false;
4659 #endif
4660 
4661 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4662 		return false;
4663 
4664 	atomic_add(delta, &sk->sk_rmem_alloc);
4665 	sk_mem_charge(sk, delta);
4666 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4667 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4668 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4669 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4670 
4671 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4672 		TCP_SKB_CB(to)->has_rxtstamp = true;
4673 		to->tstamp = from->tstamp;
4674 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4675 	}
4676 
4677 	return true;
4678 }
4679 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4680 static bool tcp_ooo_try_coalesce(struct sock *sk,
4681 			     struct sk_buff *to,
4682 			     struct sk_buff *from,
4683 			     bool *fragstolen)
4684 {
4685 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4686 
4687 	/* In case tcp_drop() is called later, update to->gso_segs */
4688 	if (res) {
4689 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4690 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4691 
4692 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4693 	}
4694 	return res;
4695 }
4696 
tcp_drop(struct sock * sk,struct sk_buff * skb)4697 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4698 {
4699 	trace_android_vh_kfree_skb(skb);
4700 	sk_drops_add(sk, skb);
4701 	__kfree_skb(skb);
4702 }
4703 
4704 /* This one checks to see if we can put data from the
4705  * out_of_order queue into the receive_queue.
4706  */
tcp_ofo_queue(struct sock * sk)4707 static void tcp_ofo_queue(struct sock *sk)
4708 {
4709 	struct tcp_sock *tp = tcp_sk(sk);
4710 	__u32 dsack_high = tp->rcv_nxt;
4711 	bool fin, fragstolen, eaten;
4712 	struct sk_buff *skb, *tail;
4713 	struct rb_node *p;
4714 
4715 	p = rb_first(&tp->out_of_order_queue);
4716 	while (p) {
4717 		skb = rb_to_skb(p);
4718 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4719 			break;
4720 
4721 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4722 			__u32 dsack = dsack_high;
4723 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4724 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4725 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4726 		}
4727 		p = rb_next(p);
4728 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4729 
4730 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4731 			tcp_drop(sk, skb);
4732 			continue;
4733 		}
4734 
4735 		tail = skb_peek_tail(&sk->sk_receive_queue);
4736 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4737 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4738 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4739 		if (!eaten)
4740 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4741 		else
4742 			kfree_skb_partial(skb, fragstolen);
4743 
4744 		if (unlikely(fin)) {
4745 			tcp_fin(sk);
4746 			/* tcp_fin() purges tp->out_of_order_queue,
4747 			 * so we must end this loop right now.
4748 			 */
4749 			break;
4750 		}
4751 	}
4752 }
4753 
4754 static bool tcp_prune_ofo_queue(struct sock *sk);
4755 static int tcp_prune_queue(struct sock *sk);
4756 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4757 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4758 				 unsigned int size)
4759 {
4760 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4761 	    !sk_rmem_schedule(sk, skb, size)) {
4762 
4763 		if (tcp_prune_queue(sk) < 0)
4764 			return -1;
4765 
4766 		while (!sk_rmem_schedule(sk, skb, size)) {
4767 			if (!tcp_prune_ofo_queue(sk))
4768 				return -1;
4769 		}
4770 	}
4771 	return 0;
4772 }
4773 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4774 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4775 {
4776 	struct tcp_sock *tp = tcp_sk(sk);
4777 	struct rb_node **p, *parent;
4778 	struct sk_buff *skb1;
4779 	u32 seq, end_seq;
4780 	bool fragstolen;
4781 
4782 	tcp_ecn_check_ce(sk, skb);
4783 
4784 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4785 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4786 		sk->sk_data_ready(sk);
4787 		tcp_drop(sk, skb);
4788 		return;
4789 	}
4790 
4791 	/* Disable header prediction. */
4792 	tp->pred_flags = 0;
4793 	inet_csk_schedule_ack(sk);
4794 
4795 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4796 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4797 	seq = TCP_SKB_CB(skb)->seq;
4798 	end_seq = TCP_SKB_CB(skb)->end_seq;
4799 
4800 	p = &tp->out_of_order_queue.rb_node;
4801 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4802 		/* Initial out of order segment, build 1 SACK. */
4803 		if (tcp_is_sack(tp)) {
4804 			tp->rx_opt.num_sacks = 1;
4805 			tp->selective_acks[0].start_seq = seq;
4806 			tp->selective_acks[0].end_seq = end_seq;
4807 		}
4808 		rb_link_node(&skb->rbnode, NULL, p);
4809 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4810 		tp->ooo_last_skb = skb;
4811 		goto end;
4812 	}
4813 
4814 	/* In the typical case, we are adding an skb to the end of the list.
4815 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4816 	 */
4817 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4818 				 skb, &fragstolen)) {
4819 coalesce_done:
4820 		/* For non sack flows, do not grow window to force DUPACK
4821 		 * and trigger fast retransmit.
4822 		 */
4823 		if (tcp_is_sack(tp))
4824 			tcp_grow_window(sk, skb, true);
4825 		kfree_skb_partial(skb, fragstolen);
4826 		skb = NULL;
4827 		goto add_sack;
4828 	}
4829 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4830 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4831 		parent = &tp->ooo_last_skb->rbnode;
4832 		p = &parent->rb_right;
4833 		goto insert;
4834 	}
4835 
4836 	/* Find place to insert this segment. Handle overlaps on the way. */
4837 	parent = NULL;
4838 	while (*p) {
4839 		parent = *p;
4840 		skb1 = rb_to_skb(parent);
4841 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4842 			p = &parent->rb_left;
4843 			continue;
4844 		}
4845 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4846 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 				/* All the bits are present. Drop. */
4848 				NET_INC_STATS(sock_net(sk),
4849 					      LINUX_MIB_TCPOFOMERGE);
4850 				tcp_drop(sk, skb);
4851 				skb = NULL;
4852 				tcp_dsack_set(sk, seq, end_seq);
4853 				goto add_sack;
4854 			}
4855 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4856 				/* Partial overlap. */
4857 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4858 			} else {
4859 				/* skb's seq == skb1's seq and skb covers skb1.
4860 				 * Replace skb1 with skb.
4861 				 */
4862 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4863 						&tp->out_of_order_queue);
4864 				tcp_dsack_extend(sk,
4865 						 TCP_SKB_CB(skb1)->seq,
4866 						 TCP_SKB_CB(skb1)->end_seq);
4867 				NET_INC_STATS(sock_net(sk),
4868 					      LINUX_MIB_TCPOFOMERGE);
4869 				tcp_drop(sk, skb1);
4870 				goto merge_right;
4871 			}
4872 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4873 						skb, &fragstolen)) {
4874 			goto coalesce_done;
4875 		}
4876 		p = &parent->rb_right;
4877 	}
4878 insert:
4879 	/* Insert segment into RB tree. */
4880 	rb_link_node(&skb->rbnode, parent, p);
4881 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4882 
4883 merge_right:
4884 	/* Remove other segments covered by skb. */
4885 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4886 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4887 			break;
4888 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4889 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4890 					 end_seq);
4891 			break;
4892 		}
4893 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4894 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4895 				 TCP_SKB_CB(skb1)->end_seq);
4896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4897 		tcp_drop(sk, skb1);
4898 	}
4899 	/* If there is no skb after us, we are the last_skb ! */
4900 	if (!skb1)
4901 		tp->ooo_last_skb = skb;
4902 
4903 add_sack:
4904 	if (tcp_is_sack(tp))
4905 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4906 end:
4907 	if (skb) {
4908 		/* For non sack flows, do not grow window to force DUPACK
4909 		 * and trigger fast retransmit.
4910 		 */
4911 		if (tcp_is_sack(tp))
4912 			tcp_grow_window(sk, skb, false);
4913 		skb_condense(skb);
4914 		skb_set_owner_r(skb, sk);
4915 	}
4916 }
4917 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4918 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4919 				      bool *fragstolen)
4920 {
4921 	int eaten;
4922 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4923 
4924 	eaten = (tail &&
4925 		 tcp_try_coalesce(sk, tail,
4926 				  skb, fragstolen)) ? 1 : 0;
4927 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4928 	if (!eaten) {
4929 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4930 		skb_set_owner_r(skb, sk);
4931 	}
4932 	return eaten;
4933 }
4934 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4935 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4936 {
4937 	struct sk_buff *skb;
4938 	int err = -ENOMEM;
4939 	int data_len = 0;
4940 	bool fragstolen;
4941 
4942 	if (size == 0)
4943 		return 0;
4944 
4945 	if (size > PAGE_SIZE) {
4946 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4947 
4948 		data_len = npages << PAGE_SHIFT;
4949 		size = data_len + (size & ~PAGE_MASK);
4950 	}
4951 	skb = alloc_skb_with_frags(size - data_len, data_len,
4952 				   PAGE_ALLOC_COSTLY_ORDER,
4953 				   &err, sk->sk_allocation);
4954 	if (!skb)
4955 		goto err;
4956 
4957 	skb_put(skb, size - data_len);
4958 	skb->data_len = data_len;
4959 	skb->len = size;
4960 
4961 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4962 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4963 		goto err_free;
4964 	}
4965 
4966 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4967 	if (err)
4968 		goto err_free;
4969 
4970 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4971 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4972 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4973 
4974 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4975 		WARN_ON_ONCE(fragstolen); /* should not happen */
4976 		__kfree_skb(skb);
4977 	}
4978 	return size;
4979 
4980 err_free:
4981 	kfree_skb(skb);
4982 err:
4983 	return err;
4984 
4985 }
4986 
tcp_data_ready(struct sock * sk)4987 void tcp_data_ready(struct sock *sk)
4988 {
4989 	const struct tcp_sock *tp = tcp_sk(sk);
4990 	int avail = tp->rcv_nxt - tp->copied_seq;
4991 
4992 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4993 	    !sock_flag(sk, SOCK_DONE) &&
4994 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4995 		return;
4996 
4997 	sk->sk_data_ready(sk);
4998 }
4999 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5000 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5001 {
5002 	struct tcp_sock *tp = tcp_sk(sk);
5003 	bool fragstolen;
5004 	int eaten;
5005 
5006 	if (sk_is_mptcp(sk))
5007 		mptcp_incoming_options(sk, skb);
5008 
5009 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5010 		__kfree_skb(skb);
5011 		return;
5012 	}
5013 	skb_dst_drop(skb);
5014 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5015 
5016 	tp->rx_opt.dsack = 0;
5017 
5018 	/*  Queue data for delivery to the user.
5019 	 *  Packets in sequence go to the receive queue.
5020 	 *  Out of sequence packets to the out_of_order_queue.
5021 	 */
5022 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5023 		if (tcp_receive_window(tp) == 0) {
5024 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5025 			goto out_of_window;
5026 		}
5027 
5028 		/* Ok. In sequence. In window. */
5029 queue_and_out:
5030 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5031 			sk_forced_mem_schedule(sk, skb->truesize);
5032 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5033 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5034 			sk->sk_data_ready(sk);
5035 			goto drop;
5036 		}
5037 
5038 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5039 		if (skb->len)
5040 			tcp_event_data_recv(sk, skb);
5041 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5042 			tcp_fin(sk);
5043 
5044 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5045 			tcp_ofo_queue(sk);
5046 
5047 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5048 			 * gap in queue is filled.
5049 			 */
5050 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5051 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5052 		}
5053 
5054 		if (tp->rx_opt.num_sacks)
5055 			tcp_sack_remove(tp);
5056 
5057 		tcp_fast_path_check(sk);
5058 
5059 		if (eaten > 0)
5060 			kfree_skb_partial(skb, fragstolen);
5061 		if (!sock_flag(sk, SOCK_DEAD))
5062 			tcp_data_ready(sk);
5063 		return;
5064 	}
5065 
5066 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5067 		tcp_rcv_spurious_retrans(sk, skb);
5068 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5069 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5070 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5071 
5072 out_of_window:
5073 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5074 		inet_csk_schedule_ack(sk);
5075 drop:
5076 		tcp_drop(sk, skb);
5077 		return;
5078 	}
5079 
5080 	/* Out of window. F.e. zero window probe. */
5081 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5082 		goto out_of_window;
5083 
5084 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5085 		/* Partial packet, seq < rcv_next < end_seq */
5086 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5087 
5088 		/* If window is closed, drop tail of packet. But after
5089 		 * remembering D-SACK for its head made in previous line.
5090 		 */
5091 		if (!tcp_receive_window(tp)) {
5092 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5093 			goto out_of_window;
5094 		}
5095 		goto queue_and_out;
5096 	}
5097 
5098 	tcp_data_queue_ofo(sk, skb);
5099 }
5100 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5101 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5102 {
5103 	if (list)
5104 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5105 
5106 	return skb_rb_next(skb);
5107 }
5108 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5109 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5110 					struct sk_buff_head *list,
5111 					struct rb_root *root)
5112 {
5113 	struct sk_buff *next = tcp_skb_next(skb, list);
5114 
5115 	if (list)
5116 		__skb_unlink(skb, list);
5117 	else
5118 		rb_erase(&skb->rbnode, root);
5119 
5120 	__kfree_skb(skb);
5121 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5122 
5123 	return next;
5124 }
5125 
5126 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5127 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5128 {
5129 	struct rb_node **p = &root->rb_node;
5130 	struct rb_node *parent = NULL;
5131 	struct sk_buff *skb1;
5132 
5133 	while (*p) {
5134 		parent = *p;
5135 		skb1 = rb_to_skb(parent);
5136 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5137 			p = &parent->rb_left;
5138 		else
5139 			p = &parent->rb_right;
5140 	}
5141 	rb_link_node(&skb->rbnode, parent, p);
5142 	rb_insert_color(&skb->rbnode, root);
5143 }
5144 
5145 /* Collapse contiguous sequence of skbs head..tail with
5146  * sequence numbers start..end.
5147  *
5148  * If tail is NULL, this means until the end of the queue.
5149  *
5150  * Segments with FIN/SYN are not collapsed (only because this
5151  * simplifies code)
5152  */
5153 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5154 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5155 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5156 {
5157 	struct sk_buff *skb = head, *n;
5158 	struct sk_buff_head tmp;
5159 	bool end_of_skbs;
5160 
5161 	/* First, check that queue is collapsible and find
5162 	 * the point where collapsing can be useful.
5163 	 */
5164 restart:
5165 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5166 		n = tcp_skb_next(skb, list);
5167 
5168 		/* No new bits? It is possible on ofo queue. */
5169 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5170 			skb = tcp_collapse_one(sk, skb, list, root);
5171 			if (!skb)
5172 				break;
5173 			goto restart;
5174 		}
5175 
5176 		/* The first skb to collapse is:
5177 		 * - not SYN/FIN and
5178 		 * - bloated or contains data before "start" or
5179 		 *   overlaps to the next one and mptcp allow collapsing.
5180 		 */
5181 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5182 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5183 		     before(TCP_SKB_CB(skb)->seq, start))) {
5184 			end_of_skbs = false;
5185 			break;
5186 		}
5187 
5188 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5189 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5190 			end_of_skbs = false;
5191 			break;
5192 		}
5193 
5194 		/* Decided to skip this, advance start seq. */
5195 		start = TCP_SKB_CB(skb)->end_seq;
5196 	}
5197 	if (end_of_skbs ||
5198 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5199 		return;
5200 
5201 	__skb_queue_head_init(&tmp);
5202 
5203 	while (before(start, end)) {
5204 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5205 		struct sk_buff *nskb;
5206 
5207 		nskb = alloc_skb(copy, GFP_ATOMIC);
5208 		if (!nskb)
5209 			break;
5210 
5211 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5212 #ifdef CONFIG_TLS_DEVICE
5213 		nskb->decrypted = skb->decrypted;
5214 #endif
5215 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5216 		if (list)
5217 			__skb_queue_before(list, skb, nskb);
5218 		else
5219 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5220 		skb_set_owner_r(nskb, sk);
5221 		mptcp_skb_ext_move(nskb, skb);
5222 
5223 		/* Copy data, releasing collapsed skbs. */
5224 		while (copy > 0) {
5225 			int offset = start - TCP_SKB_CB(skb)->seq;
5226 			int size = TCP_SKB_CB(skb)->end_seq - start;
5227 
5228 			BUG_ON(offset < 0);
5229 			if (size > 0) {
5230 				size = min(copy, size);
5231 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5232 					BUG();
5233 				TCP_SKB_CB(nskb)->end_seq += size;
5234 				copy -= size;
5235 				start += size;
5236 			}
5237 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5238 				skb = tcp_collapse_one(sk, skb, list, root);
5239 				if (!skb ||
5240 				    skb == tail ||
5241 				    !mptcp_skb_can_collapse(nskb, skb) ||
5242 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5243 					goto end;
5244 #ifdef CONFIG_TLS_DEVICE
5245 				if (skb->decrypted != nskb->decrypted)
5246 					goto end;
5247 #endif
5248 			}
5249 		}
5250 	}
5251 end:
5252 	skb_queue_walk_safe(&tmp, skb, n)
5253 		tcp_rbtree_insert(root, skb);
5254 }
5255 
5256 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5257  * and tcp_collapse() them until all the queue is collapsed.
5258  */
tcp_collapse_ofo_queue(struct sock * sk)5259 static void tcp_collapse_ofo_queue(struct sock *sk)
5260 {
5261 	struct tcp_sock *tp = tcp_sk(sk);
5262 	u32 range_truesize, sum_tiny = 0;
5263 	struct sk_buff *skb, *head;
5264 	u32 start, end;
5265 
5266 	skb = skb_rb_first(&tp->out_of_order_queue);
5267 new_range:
5268 	if (!skb) {
5269 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5270 		return;
5271 	}
5272 	start = TCP_SKB_CB(skb)->seq;
5273 	end = TCP_SKB_CB(skb)->end_seq;
5274 	range_truesize = skb->truesize;
5275 
5276 	for (head = skb;;) {
5277 		skb = skb_rb_next(skb);
5278 
5279 		/* Range is terminated when we see a gap or when
5280 		 * we are at the queue end.
5281 		 */
5282 		if (!skb ||
5283 		    after(TCP_SKB_CB(skb)->seq, end) ||
5284 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5285 			/* Do not attempt collapsing tiny skbs */
5286 			if (range_truesize != head->truesize ||
5287 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5288 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5289 					     head, skb, start, end);
5290 			} else {
5291 				sum_tiny += range_truesize;
5292 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5293 					return;
5294 			}
5295 			goto new_range;
5296 		}
5297 
5298 		range_truesize += skb->truesize;
5299 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5300 			start = TCP_SKB_CB(skb)->seq;
5301 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5302 			end = TCP_SKB_CB(skb)->end_seq;
5303 	}
5304 }
5305 
5306 /*
5307  * Clean the out-of-order queue to make room.
5308  * We drop high sequences packets to :
5309  * 1) Let a chance for holes to be filled.
5310  * 2) not add too big latencies if thousands of packets sit there.
5311  *    (But if application shrinks SO_RCVBUF, we could still end up
5312  *     freeing whole queue here)
5313  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5314  *
5315  * Return true if queue has shrunk.
5316  */
tcp_prune_ofo_queue(struct sock * sk)5317 static bool tcp_prune_ofo_queue(struct sock *sk)
5318 {
5319 	struct tcp_sock *tp = tcp_sk(sk);
5320 	struct rb_node *node, *prev;
5321 	int goal;
5322 
5323 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5324 		return false;
5325 
5326 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5327 	goal = sk->sk_rcvbuf >> 3;
5328 	node = &tp->ooo_last_skb->rbnode;
5329 	do {
5330 		prev = rb_prev(node);
5331 		rb_erase(node, &tp->out_of_order_queue);
5332 		goal -= rb_to_skb(node)->truesize;
5333 		tcp_drop(sk, rb_to_skb(node));
5334 		if (!prev || goal <= 0) {
5335 			sk_mem_reclaim(sk);
5336 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5337 			    !tcp_under_memory_pressure(sk))
5338 				break;
5339 			goal = sk->sk_rcvbuf >> 3;
5340 		}
5341 		node = prev;
5342 	} while (node);
5343 	tp->ooo_last_skb = rb_to_skb(prev);
5344 
5345 	/* Reset SACK state.  A conforming SACK implementation will
5346 	 * do the same at a timeout based retransmit.  When a connection
5347 	 * is in a sad state like this, we care only about integrity
5348 	 * of the connection not performance.
5349 	 */
5350 	if (tp->rx_opt.sack_ok)
5351 		tcp_sack_reset(&tp->rx_opt);
5352 	return true;
5353 }
5354 
5355 /* Reduce allocated memory if we can, trying to get
5356  * the socket within its memory limits again.
5357  *
5358  * Return less than zero if we should start dropping frames
5359  * until the socket owning process reads some of the data
5360  * to stabilize the situation.
5361  */
tcp_prune_queue(struct sock * sk)5362 static int tcp_prune_queue(struct sock *sk)
5363 {
5364 	struct tcp_sock *tp = tcp_sk(sk);
5365 
5366 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5367 
5368 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5369 		tcp_clamp_window(sk);
5370 	else if (tcp_under_memory_pressure(sk))
5371 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5372 
5373 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5374 		return 0;
5375 
5376 	tcp_collapse_ofo_queue(sk);
5377 	if (!skb_queue_empty(&sk->sk_receive_queue))
5378 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5379 			     skb_peek(&sk->sk_receive_queue),
5380 			     NULL,
5381 			     tp->copied_seq, tp->rcv_nxt);
5382 	sk_mem_reclaim(sk);
5383 
5384 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5385 		return 0;
5386 
5387 	/* Collapsing did not help, destructive actions follow.
5388 	 * This must not ever occur. */
5389 
5390 	tcp_prune_ofo_queue(sk);
5391 
5392 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5393 		return 0;
5394 
5395 	/* If we are really being abused, tell the caller to silently
5396 	 * drop receive data on the floor.  It will get retransmitted
5397 	 * and hopefully then we'll have sufficient space.
5398 	 */
5399 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5400 
5401 	/* Massive buffer overcommit. */
5402 	tp->pred_flags = 0;
5403 	return -1;
5404 }
5405 
tcp_should_expand_sndbuf(const struct sock * sk)5406 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5407 {
5408 	const struct tcp_sock *tp = tcp_sk(sk);
5409 
5410 	/* If the user specified a specific send buffer setting, do
5411 	 * not modify it.
5412 	 */
5413 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5414 		return false;
5415 
5416 	/* If we are under global TCP memory pressure, do not expand.  */
5417 	if (tcp_under_memory_pressure(sk))
5418 		return false;
5419 
5420 	/* If we are under soft global TCP memory pressure, do not expand.  */
5421 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5422 		return false;
5423 
5424 	/* If we filled the congestion window, do not expand.  */
5425 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5426 		return false;
5427 
5428 	return true;
5429 }
5430 
tcp_new_space(struct sock * sk)5431 static void tcp_new_space(struct sock *sk)
5432 {
5433 	struct tcp_sock *tp = tcp_sk(sk);
5434 
5435 	if (tcp_should_expand_sndbuf(sk)) {
5436 		tcp_sndbuf_expand(sk);
5437 		tp->snd_cwnd_stamp = tcp_jiffies32;
5438 	}
5439 
5440 	sk->sk_write_space(sk);
5441 }
5442 
5443 /* Caller made space either from:
5444  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5445  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5446  *
5447  * We might be able to generate EPOLLOUT to the application if:
5448  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5449  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5450  *    small enough that tcp_stream_memory_free() decides it
5451  *    is time to generate EPOLLOUT.
5452  */
tcp_check_space(struct sock * sk)5453 void tcp_check_space(struct sock *sk)
5454 {
5455 	/* pairs with tcp_poll() */
5456 	smp_mb();
5457 	if (sk->sk_socket &&
5458 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5459 		tcp_new_space(sk);
5460 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5461 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5462 	}
5463 }
5464 
tcp_data_snd_check(struct sock * sk)5465 static inline void tcp_data_snd_check(struct sock *sk)
5466 {
5467 	tcp_push_pending_frames(sk);
5468 	tcp_check_space(sk);
5469 }
5470 
5471 /*
5472  * Check if sending an ack is needed.
5473  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5474 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5475 {
5476 	struct tcp_sock *tp = tcp_sk(sk);
5477 	unsigned long rtt, delay;
5478 
5479 	    /* More than one full frame received... */
5480 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5481 	     /* ... and right edge of window advances far enough.
5482 	      * (tcp_recvmsg() will send ACK otherwise).
5483 	      * If application uses SO_RCVLOWAT, we want send ack now if
5484 	      * we have not received enough bytes to satisfy the condition.
5485 	      */
5486 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5487 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5488 	    /* We ACK each frame or... */
5489 	    tcp_in_quickack_mode(sk) ||
5490 	    /* Protocol state mandates a one-time immediate ACK */
5491 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5492 send_now:
5493 		tcp_send_ack(sk);
5494 		return;
5495 	}
5496 
5497 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5498 		tcp_send_delayed_ack(sk);
5499 		return;
5500 	}
5501 
5502 	if (!tcp_is_sack(tp) ||
5503 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5504 		goto send_now;
5505 
5506 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5507 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5508 		tp->dup_ack_counter = 0;
5509 	}
5510 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5511 		tp->dup_ack_counter++;
5512 		goto send_now;
5513 	}
5514 	tp->compressed_ack++;
5515 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5516 		return;
5517 
5518 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5519 
5520 	rtt = tp->rcv_rtt_est.rtt_us;
5521 	if (tp->srtt_us && tp->srtt_us < rtt)
5522 		rtt = tp->srtt_us;
5523 
5524 	delay = min_t(unsigned long,
5525 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5526 		      rtt * (NSEC_PER_USEC >> 3)/20);
5527 	sock_hold(sk);
5528 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5529 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5530 			       HRTIMER_MODE_REL_PINNED_SOFT);
5531 }
5532 
tcp_ack_snd_check(struct sock * sk)5533 static inline void tcp_ack_snd_check(struct sock *sk)
5534 {
5535 	if (!inet_csk_ack_scheduled(sk)) {
5536 		/* We sent a data segment already. */
5537 		return;
5538 	}
5539 	__tcp_ack_snd_check(sk, 1);
5540 }
5541 
5542 /*
5543  *	This routine is only called when we have urgent data
5544  *	signaled. Its the 'slow' part of tcp_urg. It could be
5545  *	moved inline now as tcp_urg is only called from one
5546  *	place. We handle URGent data wrong. We have to - as
5547  *	BSD still doesn't use the correction from RFC961.
5548  *	For 1003.1g we should support a new option TCP_STDURG to permit
5549  *	either form (or just set the sysctl tcp_stdurg).
5550  */
5551 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5552 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5553 {
5554 	struct tcp_sock *tp = tcp_sk(sk);
5555 	u32 ptr = ntohs(th->urg_ptr);
5556 
5557 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5558 		ptr--;
5559 	ptr += ntohl(th->seq);
5560 
5561 	/* Ignore urgent data that we've already seen and read. */
5562 	if (after(tp->copied_seq, ptr))
5563 		return;
5564 
5565 	/* Do not replay urg ptr.
5566 	 *
5567 	 * NOTE: interesting situation not covered by specs.
5568 	 * Misbehaving sender may send urg ptr, pointing to segment,
5569 	 * which we already have in ofo queue. We are not able to fetch
5570 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5571 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5572 	 * situations. But it is worth to think about possibility of some
5573 	 * DoSes using some hypothetical application level deadlock.
5574 	 */
5575 	if (before(ptr, tp->rcv_nxt))
5576 		return;
5577 
5578 	/* Do we already have a newer (or duplicate) urgent pointer? */
5579 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5580 		return;
5581 
5582 	/* Tell the world about our new urgent pointer. */
5583 	sk_send_sigurg(sk);
5584 
5585 	/* We may be adding urgent data when the last byte read was
5586 	 * urgent. To do this requires some care. We cannot just ignore
5587 	 * tp->copied_seq since we would read the last urgent byte again
5588 	 * as data, nor can we alter copied_seq until this data arrives
5589 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5590 	 *
5591 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5592 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5593 	 * and expect that both A and B disappear from stream. This is _wrong_.
5594 	 * Though this happens in BSD with high probability, this is occasional.
5595 	 * Any application relying on this is buggy. Note also, that fix "works"
5596 	 * only in this artificial test. Insert some normal data between A and B and we will
5597 	 * decline of BSD again. Verdict: it is better to remove to trap
5598 	 * buggy users.
5599 	 */
5600 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5601 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5602 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5603 		tp->copied_seq++;
5604 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5605 			__skb_unlink(skb, &sk->sk_receive_queue);
5606 			__kfree_skb(skb);
5607 		}
5608 	}
5609 
5610 	tp->urg_data = TCP_URG_NOTYET;
5611 	WRITE_ONCE(tp->urg_seq, ptr);
5612 
5613 	/* Disable header prediction. */
5614 	tp->pred_flags = 0;
5615 }
5616 
5617 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5618 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5619 {
5620 	struct tcp_sock *tp = tcp_sk(sk);
5621 
5622 	/* Check if we get a new urgent pointer - normally not. */
5623 	if (th->urg)
5624 		tcp_check_urg(sk, th);
5625 
5626 	/* Do we wait for any urgent data? - normally not... */
5627 	if (tp->urg_data == TCP_URG_NOTYET) {
5628 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5629 			  th->syn;
5630 
5631 		/* Is the urgent pointer pointing into this packet? */
5632 		if (ptr < skb->len) {
5633 			u8 tmp;
5634 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5635 				BUG();
5636 			tp->urg_data = TCP_URG_VALID | tmp;
5637 			if (!sock_flag(sk, SOCK_DEAD))
5638 				sk->sk_data_ready(sk);
5639 		}
5640 	}
5641 }
5642 
5643 /* Accept RST for rcv_nxt - 1 after a FIN.
5644  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5645  * FIN is sent followed by a RST packet. The RST is sent with the same
5646  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5647  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5648  * ACKs on the closed socket. In addition middleboxes can drop either the
5649  * challenge ACK or a subsequent RST.
5650  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5651 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5652 {
5653 	struct tcp_sock *tp = tcp_sk(sk);
5654 
5655 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5656 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5657 					       TCPF_CLOSING));
5658 }
5659 
5660 /* Does PAWS and seqno based validation of an incoming segment, flags will
5661  * play significant role here.
5662  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5663 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5664 				  const struct tcphdr *th, int syn_inerr)
5665 {
5666 	struct tcp_sock *tp = tcp_sk(sk);
5667 	bool rst_seq_match = false;
5668 
5669 	/* RFC1323: H1. Apply PAWS check first. */
5670 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5671 	    tp->rx_opt.saw_tstamp &&
5672 	    tcp_paws_discard(sk, skb)) {
5673 		if (!th->rst) {
5674 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5675 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5676 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5677 						  &tp->last_oow_ack_time))
5678 				tcp_send_dupack(sk, skb);
5679 			goto discard;
5680 		}
5681 		/* Reset is accepted even if it did not pass PAWS. */
5682 	}
5683 
5684 	/* Step 1: check sequence number */
5685 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5686 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5687 		 * (RST) segments are validated by checking their SEQ-fields."
5688 		 * And page 69: "If an incoming segment is not acceptable,
5689 		 * an acknowledgment should be sent in reply (unless the RST
5690 		 * bit is set, if so drop the segment and return)".
5691 		 */
5692 		if (!th->rst) {
5693 			if (th->syn)
5694 				goto syn_challenge;
5695 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5696 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5697 						  &tp->last_oow_ack_time))
5698 				tcp_send_dupack(sk, skb);
5699 		} else if (tcp_reset_check(sk, skb)) {
5700 			tcp_reset(sk);
5701 		}
5702 		goto discard;
5703 	}
5704 
5705 	/* Step 2: check RST bit */
5706 	if (th->rst) {
5707 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5708 		 * FIN and SACK too if available):
5709 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5710 		 * the right-most SACK block,
5711 		 * then
5712 		 *     RESET the connection
5713 		 * else
5714 		 *     Send a challenge ACK
5715 		 */
5716 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5717 		    tcp_reset_check(sk, skb)) {
5718 			rst_seq_match = true;
5719 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5720 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5721 			int max_sack = sp[0].end_seq;
5722 			int this_sack;
5723 
5724 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5725 			     ++this_sack) {
5726 				max_sack = after(sp[this_sack].end_seq,
5727 						 max_sack) ?
5728 					sp[this_sack].end_seq : max_sack;
5729 			}
5730 
5731 			if (TCP_SKB_CB(skb)->seq == max_sack)
5732 				rst_seq_match = true;
5733 		}
5734 
5735 		if (rst_seq_match)
5736 			tcp_reset(sk);
5737 		else {
5738 			/* Disable TFO if RST is out-of-order
5739 			 * and no data has been received
5740 			 * for current active TFO socket
5741 			 */
5742 			if (tp->syn_fastopen && !tp->data_segs_in &&
5743 			    sk->sk_state == TCP_ESTABLISHED)
5744 				tcp_fastopen_active_disable(sk);
5745 			tcp_send_challenge_ack(sk, skb);
5746 		}
5747 		goto discard;
5748 	}
5749 
5750 	/* step 3: check security and precedence [ignored] */
5751 
5752 	/* step 4: Check for a SYN
5753 	 * RFC 5961 4.2 : Send a challenge ack
5754 	 */
5755 	if (th->syn) {
5756 syn_challenge:
5757 		if (syn_inerr)
5758 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5759 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5760 		tcp_send_challenge_ack(sk, skb);
5761 		goto discard;
5762 	}
5763 
5764 	bpf_skops_parse_hdr(sk, skb);
5765 
5766 	return true;
5767 
5768 discard:
5769 	tcp_drop(sk, skb);
5770 	return false;
5771 }
5772 
5773 /*
5774  *	TCP receive function for the ESTABLISHED state.
5775  *
5776  *	It is split into a fast path and a slow path. The fast path is
5777  * 	disabled when:
5778  *	- A zero window was announced from us - zero window probing
5779  *        is only handled properly in the slow path.
5780  *	- Out of order segments arrived.
5781  *	- Urgent data is expected.
5782  *	- There is no buffer space left
5783  *	- Unexpected TCP flags/window values/header lengths are received
5784  *	  (detected by checking the TCP header against pred_flags)
5785  *	- Data is sent in both directions. Fast path only supports pure senders
5786  *	  or pure receivers (this means either the sequence number or the ack
5787  *	  value must stay constant)
5788  *	- Unexpected TCP option.
5789  *
5790  *	When these conditions are not satisfied it drops into a standard
5791  *	receive procedure patterned after RFC793 to handle all cases.
5792  *	The first three cases are guaranteed by proper pred_flags setting,
5793  *	the rest is checked inline. Fast processing is turned on in
5794  *	tcp_data_queue when everything is OK.
5795  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5796 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5797 {
5798 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5799 	struct tcp_sock *tp = tcp_sk(sk);
5800 	unsigned int len = skb->len;
5801 
5802 	/* TCP congestion window tracking */
5803 	trace_tcp_probe(sk, skb);
5804 
5805 	tcp_mstamp_refresh(tp);
5806 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5807 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5808 	/*
5809 	 *	Header prediction.
5810 	 *	The code loosely follows the one in the famous
5811 	 *	"30 instruction TCP receive" Van Jacobson mail.
5812 	 *
5813 	 *	Van's trick is to deposit buffers into socket queue
5814 	 *	on a device interrupt, to call tcp_recv function
5815 	 *	on the receive process context and checksum and copy
5816 	 *	the buffer to user space. smart...
5817 	 *
5818 	 *	Our current scheme is not silly either but we take the
5819 	 *	extra cost of the net_bh soft interrupt processing...
5820 	 *	We do checksum and copy also but from device to kernel.
5821 	 */
5822 
5823 	tp->rx_opt.saw_tstamp = 0;
5824 
5825 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5826 	 *	if header_prediction is to be made
5827 	 *	'S' will always be tp->tcp_header_len >> 2
5828 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5829 	 *  turn it off	(when there are holes in the receive
5830 	 *	 space for instance)
5831 	 *	PSH flag is ignored.
5832 	 */
5833 
5834 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5835 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5836 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5837 		int tcp_header_len = tp->tcp_header_len;
5838 
5839 		/* Timestamp header prediction: tcp_header_len
5840 		 * is automatically equal to th->doff*4 due to pred_flags
5841 		 * match.
5842 		 */
5843 
5844 		/* Check timestamp */
5845 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5846 			/* No? Slow path! */
5847 			if (!tcp_parse_aligned_timestamp(tp, th))
5848 				goto slow_path;
5849 
5850 			/* If PAWS failed, check it more carefully in slow path */
5851 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5852 				goto slow_path;
5853 
5854 			/* DO NOT update ts_recent here, if checksum fails
5855 			 * and timestamp was corrupted part, it will result
5856 			 * in a hung connection since we will drop all
5857 			 * future packets due to the PAWS test.
5858 			 */
5859 		}
5860 
5861 		if (len <= tcp_header_len) {
5862 			/* Bulk data transfer: sender */
5863 			if (len == tcp_header_len) {
5864 				/* Predicted packet is in window by definition.
5865 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5866 				 * Hence, check seq<=rcv_wup reduces to:
5867 				 */
5868 				if (tcp_header_len ==
5869 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5870 				    tp->rcv_nxt == tp->rcv_wup)
5871 					tcp_store_ts_recent(tp);
5872 
5873 				/* We know that such packets are checksummed
5874 				 * on entry.
5875 				 */
5876 				tcp_ack(sk, skb, 0);
5877 				__kfree_skb(skb);
5878 				tcp_data_snd_check(sk);
5879 				/* When receiving pure ack in fast path, update
5880 				 * last ts ecr directly instead of calling
5881 				 * tcp_rcv_rtt_measure_ts()
5882 				 */
5883 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5884 				return;
5885 			} else { /* Header too small */
5886 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5887 				goto discard;
5888 			}
5889 		} else {
5890 			int eaten = 0;
5891 			bool fragstolen = false;
5892 
5893 			if (tcp_checksum_complete(skb))
5894 				goto csum_error;
5895 
5896 			if ((int)skb->truesize > sk->sk_forward_alloc)
5897 				goto step5;
5898 
5899 			/* Predicted packet is in window by definition.
5900 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5901 			 * Hence, check seq<=rcv_wup reduces to:
5902 			 */
5903 			if (tcp_header_len ==
5904 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5905 			    tp->rcv_nxt == tp->rcv_wup)
5906 				tcp_store_ts_recent(tp);
5907 
5908 			tcp_rcv_rtt_measure_ts(sk, skb);
5909 
5910 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5911 
5912 			/* Bulk data transfer: receiver */
5913 			__skb_pull(skb, tcp_header_len);
5914 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5915 
5916 			tcp_event_data_recv(sk, skb);
5917 
5918 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5919 				/* Well, only one small jumplet in fast path... */
5920 				tcp_ack(sk, skb, FLAG_DATA);
5921 				tcp_data_snd_check(sk);
5922 				if (!inet_csk_ack_scheduled(sk))
5923 					goto no_ack;
5924 			} else {
5925 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5926 			}
5927 
5928 			__tcp_ack_snd_check(sk, 0);
5929 no_ack:
5930 			if (eaten)
5931 				kfree_skb_partial(skb, fragstolen);
5932 			tcp_data_ready(sk);
5933 			return;
5934 		}
5935 	}
5936 
5937 slow_path:
5938 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5939 		goto csum_error;
5940 
5941 	if (!th->ack && !th->rst && !th->syn)
5942 		goto discard;
5943 
5944 	/*
5945 	 *	Standard slow path.
5946 	 */
5947 
5948 	if (!tcp_validate_incoming(sk, skb, th, 1))
5949 		return;
5950 
5951 step5:
5952 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5953 		goto discard;
5954 
5955 	tcp_rcv_rtt_measure_ts(sk, skb);
5956 
5957 	/* Process urgent data. */
5958 	tcp_urg(sk, skb, th);
5959 
5960 	/* step 7: process the segment text */
5961 	tcp_data_queue(sk, skb);
5962 
5963 	tcp_data_snd_check(sk);
5964 	tcp_ack_snd_check(sk);
5965 	return;
5966 
5967 csum_error:
5968 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5969 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5970 
5971 discard:
5972 	tcp_drop(sk, skb);
5973 }
5974 EXPORT_SYMBOL(tcp_rcv_established);
5975 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5976 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5977 {
5978 	struct inet_connection_sock *icsk = inet_csk(sk);
5979 	struct tcp_sock *tp = tcp_sk(sk);
5980 
5981 	tcp_mtup_init(sk);
5982 	icsk->icsk_af_ops->rebuild_header(sk);
5983 	tcp_init_metrics(sk);
5984 
5985 	/* Initialize the congestion window to start the transfer.
5986 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5987 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5988 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5989 	 * retransmission has occurred.
5990 	 */
5991 	if (tp->total_retrans > 1 && tp->undo_marker)
5992 		tp->snd_cwnd = 1;
5993 	else
5994 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5995 	tp->snd_cwnd_stamp = tcp_jiffies32;
5996 
5997 	bpf_skops_established(sk, bpf_op, skb);
5998 	/* Initialize congestion control unless BPF initialized it already: */
5999 	if (!icsk->icsk_ca_initialized)
6000 		tcp_init_congestion_control(sk);
6001 	tcp_init_buffer_space(sk);
6002 }
6003 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6004 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6005 {
6006 	struct tcp_sock *tp = tcp_sk(sk);
6007 	struct inet_connection_sock *icsk = inet_csk(sk);
6008 
6009 	tcp_set_state(sk, TCP_ESTABLISHED);
6010 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6011 
6012 	if (skb) {
6013 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6014 		security_inet_conn_established(sk, skb);
6015 		sk_mark_napi_id(sk, skb);
6016 	}
6017 
6018 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6019 
6020 	/* Prevent spurious tcp_cwnd_restart() on first data
6021 	 * packet.
6022 	 */
6023 	tp->lsndtime = tcp_jiffies32;
6024 
6025 	if (sock_flag(sk, SOCK_KEEPOPEN))
6026 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6027 
6028 	if (!tp->rx_opt.snd_wscale)
6029 		__tcp_fast_path_on(tp, tp->snd_wnd);
6030 	else
6031 		tp->pred_flags = 0;
6032 }
6033 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6034 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6035 				    struct tcp_fastopen_cookie *cookie)
6036 {
6037 	struct tcp_sock *tp = tcp_sk(sk);
6038 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6039 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6040 	bool syn_drop = false;
6041 
6042 	if (mss == tp->rx_opt.user_mss) {
6043 		struct tcp_options_received opt;
6044 
6045 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6046 		tcp_clear_options(&opt);
6047 		opt.user_mss = opt.mss_clamp = 0;
6048 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6049 		mss = opt.mss_clamp;
6050 	}
6051 
6052 	if (!tp->syn_fastopen) {
6053 		/* Ignore an unsolicited cookie */
6054 		cookie->len = -1;
6055 	} else if (tp->total_retrans) {
6056 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6057 		 * acknowledges data. Presumably the remote received only
6058 		 * the retransmitted (regular) SYNs: either the original
6059 		 * SYN-data or the corresponding SYN-ACK was dropped.
6060 		 */
6061 		syn_drop = (cookie->len < 0 && data);
6062 	} else if (cookie->len < 0 && !tp->syn_data) {
6063 		/* We requested a cookie but didn't get it. If we did not use
6064 		 * the (old) exp opt format then try so next time (try_exp=1).
6065 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6066 		 */
6067 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6068 	}
6069 
6070 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6071 
6072 	if (data) { /* Retransmit unacked data in SYN */
6073 		if (tp->total_retrans)
6074 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6075 		else
6076 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6077 		skb_rbtree_walk_from(data) {
6078 			if (__tcp_retransmit_skb(sk, data, 1))
6079 				break;
6080 		}
6081 		tcp_rearm_rto(sk);
6082 		NET_INC_STATS(sock_net(sk),
6083 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6084 		return true;
6085 	}
6086 	tp->syn_data_acked = tp->syn_data;
6087 	if (tp->syn_data_acked) {
6088 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6089 		/* SYN-data is counted as two separate packets in tcp_ack() */
6090 		if (tp->delivered > 1)
6091 			--tp->delivered;
6092 	}
6093 
6094 	tcp_fastopen_add_skb(sk, synack);
6095 
6096 	return false;
6097 }
6098 
smc_check_reset_syn(struct tcp_sock * tp)6099 static void smc_check_reset_syn(struct tcp_sock *tp)
6100 {
6101 #if IS_ENABLED(CONFIG_SMC)
6102 	if (static_branch_unlikely(&tcp_have_smc)) {
6103 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6104 			tp->syn_smc = 0;
6105 	}
6106 #endif
6107 }
6108 
tcp_try_undo_spurious_syn(struct sock * sk)6109 static void tcp_try_undo_spurious_syn(struct sock *sk)
6110 {
6111 	struct tcp_sock *tp = tcp_sk(sk);
6112 	u32 syn_stamp;
6113 
6114 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6115 	 * spurious if the ACK's timestamp option echo value matches the
6116 	 * original SYN timestamp.
6117 	 */
6118 	syn_stamp = tp->retrans_stamp;
6119 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6120 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6121 		tp->undo_marker = 0;
6122 }
6123 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6124 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6125 					 const struct tcphdr *th)
6126 {
6127 	struct inet_connection_sock *icsk = inet_csk(sk);
6128 	struct tcp_sock *tp = tcp_sk(sk);
6129 	struct tcp_fastopen_cookie foc = { .len = -1 };
6130 	int saved_clamp = tp->rx_opt.mss_clamp;
6131 	bool fastopen_fail;
6132 
6133 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6134 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6135 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6136 
6137 	if (th->ack) {
6138 		/* rfc793:
6139 		 * "If the state is SYN-SENT then
6140 		 *    first check the ACK bit
6141 		 *      If the ACK bit is set
6142 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6143 		 *        a reset (unless the RST bit is set, if so drop
6144 		 *        the segment and return)"
6145 		 */
6146 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6147 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6148 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6149 			if (icsk->icsk_retransmits == 0)
6150 				inet_csk_reset_xmit_timer(sk,
6151 						ICSK_TIME_RETRANS,
6152 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6153 			goto reset_and_undo;
6154 		}
6155 
6156 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6157 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6158 			     tcp_time_stamp(tp))) {
6159 			NET_INC_STATS(sock_net(sk),
6160 					LINUX_MIB_PAWSACTIVEREJECTED);
6161 			goto reset_and_undo;
6162 		}
6163 
6164 		/* Now ACK is acceptable.
6165 		 *
6166 		 * "If the RST bit is set
6167 		 *    If the ACK was acceptable then signal the user "error:
6168 		 *    connection reset", drop the segment, enter CLOSED state,
6169 		 *    delete TCB, and return."
6170 		 */
6171 
6172 		if (th->rst) {
6173 			tcp_reset(sk);
6174 			goto discard;
6175 		}
6176 
6177 		/* rfc793:
6178 		 *   "fifth, if neither of the SYN or RST bits is set then
6179 		 *    drop the segment and return."
6180 		 *
6181 		 *    See note below!
6182 		 *                                        --ANK(990513)
6183 		 */
6184 		if (!th->syn)
6185 			goto discard_and_undo;
6186 
6187 		/* rfc793:
6188 		 *   "If the SYN bit is on ...
6189 		 *    are acceptable then ...
6190 		 *    (our SYN has been ACKed), change the connection
6191 		 *    state to ESTABLISHED..."
6192 		 */
6193 
6194 		tcp_ecn_rcv_synack(tp, th);
6195 
6196 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6197 		tcp_try_undo_spurious_syn(sk);
6198 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6199 
6200 		/* Ok.. it's good. Set up sequence numbers and
6201 		 * move to established.
6202 		 */
6203 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6204 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6205 
6206 		/* RFC1323: The window in SYN & SYN/ACK segments is
6207 		 * never scaled.
6208 		 */
6209 		tp->snd_wnd = ntohs(th->window);
6210 
6211 		if (!tp->rx_opt.wscale_ok) {
6212 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6213 			tp->window_clamp = min(tp->window_clamp, 65535U);
6214 		}
6215 
6216 		if (tp->rx_opt.saw_tstamp) {
6217 			tp->rx_opt.tstamp_ok	   = 1;
6218 			tp->tcp_header_len =
6219 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6220 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6221 			tcp_store_ts_recent(tp);
6222 		} else {
6223 			tp->tcp_header_len = sizeof(struct tcphdr);
6224 		}
6225 
6226 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6227 		tcp_initialize_rcv_mss(sk);
6228 
6229 		/* Remember, tcp_poll() does not lock socket!
6230 		 * Change state from SYN-SENT only after copied_seq
6231 		 * is initialized. */
6232 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6233 
6234 		smc_check_reset_syn(tp);
6235 
6236 		smp_mb();
6237 
6238 		tcp_finish_connect(sk, skb);
6239 
6240 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6241 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6242 
6243 		if (!sock_flag(sk, SOCK_DEAD)) {
6244 			sk->sk_state_change(sk);
6245 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6246 		}
6247 		if (fastopen_fail)
6248 			return -1;
6249 		if (sk->sk_write_pending ||
6250 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6251 		    inet_csk_in_pingpong_mode(sk)) {
6252 			/* Save one ACK. Data will be ready after
6253 			 * several ticks, if write_pending is set.
6254 			 *
6255 			 * It may be deleted, but with this feature tcpdumps
6256 			 * look so _wonderfully_ clever, that I was not able
6257 			 * to stand against the temptation 8)     --ANK
6258 			 */
6259 			inet_csk_schedule_ack(sk);
6260 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6261 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6262 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6263 
6264 discard:
6265 			tcp_drop(sk, skb);
6266 			return 0;
6267 		} else {
6268 			tcp_send_ack(sk);
6269 		}
6270 		return -1;
6271 	}
6272 
6273 	/* No ACK in the segment */
6274 
6275 	if (th->rst) {
6276 		/* rfc793:
6277 		 * "If the RST bit is set
6278 		 *
6279 		 *      Otherwise (no ACK) drop the segment and return."
6280 		 */
6281 
6282 		goto discard_and_undo;
6283 	}
6284 
6285 	/* PAWS check. */
6286 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6287 	    tcp_paws_reject(&tp->rx_opt, 0))
6288 		goto discard_and_undo;
6289 
6290 	if (th->syn) {
6291 		/* We see SYN without ACK. It is attempt of
6292 		 * simultaneous connect with crossed SYNs.
6293 		 * Particularly, it can be connect to self.
6294 		 */
6295 		tcp_set_state(sk, TCP_SYN_RECV);
6296 
6297 		if (tp->rx_opt.saw_tstamp) {
6298 			tp->rx_opt.tstamp_ok = 1;
6299 			tcp_store_ts_recent(tp);
6300 			tp->tcp_header_len =
6301 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6302 		} else {
6303 			tp->tcp_header_len = sizeof(struct tcphdr);
6304 		}
6305 
6306 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6307 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6308 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6309 
6310 		/* RFC1323: The window in SYN & SYN/ACK segments is
6311 		 * never scaled.
6312 		 */
6313 		tp->snd_wnd    = ntohs(th->window);
6314 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6315 		tp->max_window = tp->snd_wnd;
6316 
6317 		tcp_ecn_rcv_syn(tp, th);
6318 
6319 		tcp_mtup_init(sk);
6320 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6321 		tcp_initialize_rcv_mss(sk);
6322 
6323 		tcp_send_synack(sk);
6324 #if 0
6325 		/* Note, we could accept data and URG from this segment.
6326 		 * There are no obstacles to make this (except that we must
6327 		 * either change tcp_recvmsg() to prevent it from returning data
6328 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6329 		 *
6330 		 * However, if we ignore data in ACKless segments sometimes,
6331 		 * we have no reasons to accept it sometimes.
6332 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6333 		 * is not flawless. So, discard packet for sanity.
6334 		 * Uncomment this return to process the data.
6335 		 */
6336 		return -1;
6337 #else
6338 		goto discard;
6339 #endif
6340 	}
6341 	/* "fifth, if neither of the SYN or RST bits is set then
6342 	 * drop the segment and return."
6343 	 */
6344 
6345 discard_and_undo:
6346 	tcp_clear_options(&tp->rx_opt);
6347 	tp->rx_opt.mss_clamp = saved_clamp;
6348 	goto discard;
6349 
6350 reset_and_undo:
6351 	tcp_clear_options(&tp->rx_opt);
6352 	tp->rx_opt.mss_clamp = saved_clamp;
6353 	return 1;
6354 }
6355 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6356 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6357 {
6358 	struct tcp_sock *tp = tcp_sk(sk);
6359 	struct request_sock *req;
6360 
6361 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6362 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6363 	 */
6364 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6365 		tcp_try_undo_recovery(sk);
6366 
6367 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6368 	tp->retrans_stamp = 0;
6369 	inet_csk(sk)->icsk_retransmits = 0;
6370 
6371 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6372 	 * we no longer need req so release it.
6373 	 */
6374 	req = rcu_dereference_protected(tp->fastopen_rsk,
6375 					lockdep_sock_is_held(sk));
6376 	reqsk_fastopen_remove(sk, req, false);
6377 
6378 	/* Re-arm the timer because data may have been sent out.
6379 	 * This is similar to the regular data transmission case
6380 	 * when new data has just been ack'ed.
6381 	 *
6382 	 * (TFO) - we could try to be more aggressive and
6383 	 * retransmitting any data sooner based on when they
6384 	 * are sent out.
6385 	 */
6386 	tcp_rearm_rto(sk);
6387 }
6388 
6389 /*
6390  *	This function implements the receiving procedure of RFC 793 for
6391  *	all states except ESTABLISHED and TIME_WAIT.
6392  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6393  *	address independent.
6394  */
6395 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6396 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6397 {
6398 	struct tcp_sock *tp = tcp_sk(sk);
6399 	struct inet_connection_sock *icsk = inet_csk(sk);
6400 	const struct tcphdr *th = tcp_hdr(skb);
6401 	struct request_sock *req;
6402 	int queued = 0;
6403 	bool acceptable;
6404 
6405 	switch (sk->sk_state) {
6406 	case TCP_CLOSE:
6407 		goto discard;
6408 
6409 	case TCP_LISTEN:
6410 		if (th->ack)
6411 			return 1;
6412 
6413 		if (th->rst)
6414 			goto discard;
6415 
6416 		if (th->syn) {
6417 			if (th->fin)
6418 				goto discard;
6419 			/* It is possible that we process SYN packets from backlog,
6420 			 * so we need to make sure to disable BH and RCU right there.
6421 			 */
6422 			rcu_read_lock();
6423 			local_bh_disable();
6424 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6425 			local_bh_enable();
6426 			rcu_read_unlock();
6427 
6428 			if (!acceptable)
6429 				return 1;
6430 			consume_skb(skb);
6431 			return 0;
6432 		}
6433 		goto discard;
6434 
6435 	case TCP_SYN_SENT:
6436 		tp->rx_opt.saw_tstamp = 0;
6437 		tcp_mstamp_refresh(tp);
6438 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6439 		if (queued >= 0)
6440 			return queued;
6441 
6442 		/* Do step6 onward by hand. */
6443 		tcp_urg(sk, skb, th);
6444 		__kfree_skb(skb);
6445 		tcp_data_snd_check(sk);
6446 		return 0;
6447 	}
6448 
6449 	tcp_mstamp_refresh(tp);
6450 	tp->rx_opt.saw_tstamp = 0;
6451 	req = rcu_dereference_protected(tp->fastopen_rsk,
6452 					lockdep_sock_is_held(sk));
6453 	if (req) {
6454 		bool req_stolen;
6455 
6456 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6457 		    sk->sk_state != TCP_FIN_WAIT1);
6458 
6459 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6460 			goto discard;
6461 	}
6462 
6463 	if (!th->ack && !th->rst && !th->syn)
6464 		goto discard;
6465 
6466 	if (!tcp_validate_incoming(sk, skb, th, 0))
6467 		return 0;
6468 
6469 	/* step 5: check the ACK field */
6470 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6471 				      FLAG_UPDATE_TS_RECENT |
6472 				      FLAG_NO_CHALLENGE_ACK) > 0;
6473 
6474 	if (!acceptable) {
6475 		if (sk->sk_state == TCP_SYN_RECV)
6476 			return 1;	/* send one RST */
6477 		tcp_send_challenge_ack(sk, skb);
6478 		goto discard;
6479 	}
6480 	switch (sk->sk_state) {
6481 	case TCP_SYN_RECV:
6482 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6483 		if (!tp->srtt_us)
6484 			tcp_synack_rtt_meas(sk, req);
6485 
6486 		if (req) {
6487 			tcp_rcv_synrecv_state_fastopen(sk);
6488 		} else {
6489 			tcp_try_undo_spurious_syn(sk);
6490 			tp->retrans_stamp = 0;
6491 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6492 					  skb);
6493 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6494 		}
6495 		smp_mb();
6496 		tcp_set_state(sk, TCP_ESTABLISHED);
6497 		sk->sk_state_change(sk);
6498 
6499 		/* Note, that this wakeup is only for marginal crossed SYN case.
6500 		 * Passively open sockets are not waked up, because
6501 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6502 		 */
6503 		if (sk->sk_socket)
6504 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6505 
6506 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6507 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6508 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6509 
6510 		if (tp->rx_opt.tstamp_ok)
6511 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6512 
6513 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6514 			tcp_update_pacing_rate(sk);
6515 
6516 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6517 		tp->lsndtime = tcp_jiffies32;
6518 
6519 		tcp_initialize_rcv_mss(sk);
6520 		tcp_fast_path_on(tp);
6521 		break;
6522 
6523 	case TCP_FIN_WAIT1: {
6524 		int tmo;
6525 
6526 		if (req)
6527 			tcp_rcv_synrecv_state_fastopen(sk);
6528 
6529 		if (tp->snd_una != tp->write_seq)
6530 			break;
6531 
6532 		tcp_set_state(sk, TCP_FIN_WAIT2);
6533 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6534 
6535 		sk_dst_confirm(sk);
6536 
6537 		if (!sock_flag(sk, SOCK_DEAD)) {
6538 			/* Wake up lingering close() */
6539 			sk->sk_state_change(sk);
6540 			break;
6541 		}
6542 
6543 		if (tp->linger2 < 0) {
6544 			tcp_done(sk);
6545 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6546 			return 1;
6547 		}
6548 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6549 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6550 			/* Receive out of order FIN after close() */
6551 			if (tp->syn_fastopen && th->fin)
6552 				tcp_fastopen_active_disable(sk);
6553 			tcp_done(sk);
6554 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6555 			return 1;
6556 		}
6557 
6558 		tmo = tcp_fin_time(sk);
6559 		if (tmo > TCP_TIMEWAIT_LEN) {
6560 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6561 		} else if (th->fin || sock_owned_by_user(sk)) {
6562 			/* Bad case. We could lose such FIN otherwise.
6563 			 * It is not a big problem, but it looks confusing
6564 			 * and not so rare event. We still can lose it now,
6565 			 * if it spins in bh_lock_sock(), but it is really
6566 			 * marginal case.
6567 			 */
6568 			inet_csk_reset_keepalive_timer(sk, tmo);
6569 		} else {
6570 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6571 			goto discard;
6572 		}
6573 		break;
6574 	}
6575 
6576 	case TCP_CLOSING:
6577 		if (tp->snd_una == tp->write_seq) {
6578 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6579 			goto discard;
6580 		}
6581 		break;
6582 
6583 	case TCP_LAST_ACK:
6584 		if (tp->snd_una == tp->write_seq) {
6585 			tcp_update_metrics(sk);
6586 			tcp_done(sk);
6587 			goto discard;
6588 		}
6589 		break;
6590 	}
6591 
6592 	/* step 6: check the URG bit */
6593 	tcp_urg(sk, skb, th);
6594 
6595 	/* step 7: process the segment text */
6596 	switch (sk->sk_state) {
6597 	case TCP_CLOSE_WAIT:
6598 	case TCP_CLOSING:
6599 	case TCP_LAST_ACK:
6600 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6601 			if (sk_is_mptcp(sk))
6602 				mptcp_incoming_options(sk, skb);
6603 			break;
6604 		}
6605 		fallthrough;
6606 	case TCP_FIN_WAIT1:
6607 	case TCP_FIN_WAIT2:
6608 		/* RFC 793 says to queue data in these states,
6609 		 * RFC 1122 says we MUST send a reset.
6610 		 * BSD 4.4 also does reset.
6611 		 */
6612 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6613 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6614 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6615 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6616 				tcp_reset(sk);
6617 				return 1;
6618 			}
6619 		}
6620 		fallthrough;
6621 	case TCP_ESTABLISHED:
6622 		tcp_data_queue(sk, skb);
6623 		queued = 1;
6624 		break;
6625 	}
6626 
6627 	/* tcp_data could move socket to TIME-WAIT */
6628 	if (sk->sk_state != TCP_CLOSE) {
6629 		tcp_data_snd_check(sk);
6630 		tcp_ack_snd_check(sk);
6631 	}
6632 
6633 	if (!queued) {
6634 discard:
6635 		tcp_drop(sk, skb);
6636 	}
6637 	return 0;
6638 }
6639 EXPORT_SYMBOL(tcp_rcv_state_process);
6640 
pr_drop_req(struct request_sock * req,__u16 port,int family)6641 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6642 {
6643 	struct inet_request_sock *ireq = inet_rsk(req);
6644 
6645 	if (family == AF_INET)
6646 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6647 				    &ireq->ir_rmt_addr, port);
6648 #if IS_ENABLED(CONFIG_IPV6)
6649 	else if (family == AF_INET6)
6650 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6651 				    &ireq->ir_v6_rmt_addr, port);
6652 #endif
6653 }
6654 
6655 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6656  *
6657  * If we receive a SYN packet with these bits set, it means a
6658  * network is playing bad games with TOS bits. In order to
6659  * avoid possible false congestion notifications, we disable
6660  * TCP ECN negotiation.
6661  *
6662  * Exception: tcp_ca wants ECN. This is required for DCTCP
6663  * congestion control: Linux DCTCP asserts ECT on all packets,
6664  * including SYN, which is most optimal solution; however,
6665  * others, such as FreeBSD do not.
6666  *
6667  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6668  * set, indicating the use of a future TCP extension (such as AccECN). See
6669  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6670  * extensions.
6671  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6672 static void tcp_ecn_create_request(struct request_sock *req,
6673 				   const struct sk_buff *skb,
6674 				   const struct sock *listen_sk,
6675 				   const struct dst_entry *dst)
6676 {
6677 	const struct tcphdr *th = tcp_hdr(skb);
6678 	const struct net *net = sock_net(listen_sk);
6679 	bool th_ecn = th->ece && th->cwr;
6680 	bool ect, ecn_ok;
6681 	u32 ecn_ok_dst;
6682 
6683 	if (!th_ecn)
6684 		return;
6685 
6686 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6687 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6688 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6689 
6690 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6691 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6692 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6693 		inet_rsk(req)->ecn_ok = 1;
6694 }
6695 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6696 static void tcp_openreq_init(struct request_sock *req,
6697 			     const struct tcp_options_received *rx_opt,
6698 			     struct sk_buff *skb, const struct sock *sk)
6699 {
6700 	struct inet_request_sock *ireq = inet_rsk(req);
6701 
6702 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6703 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6704 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6705 	tcp_rsk(req)->snt_synack = 0;
6706 	tcp_rsk(req)->last_oow_ack_time = 0;
6707 	req->mss = rx_opt->mss_clamp;
6708 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6709 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6710 	ireq->sack_ok = rx_opt->sack_ok;
6711 	ireq->snd_wscale = rx_opt->snd_wscale;
6712 	ireq->wscale_ok = rx_opt->wscale_ok;
6713 	ireq->acked = 0;
6714 	ireq->ecn_ok = 0;
6715 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6716 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6717 	ireq->ir_mark = inet_request_mark(sk, skb);
6718 #if IS_ENABLED(CONFIG_SMC)
6719 	ireq->smc_ok = rx_opt->smc_ok;
6720 #endif
6721 }
6722 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6723 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6724 				      struct sock *sk_listener,
6725 				      bool attach_listener)
6726 {
6727 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6728 					       attach_listener);
6729 
6730 	if (req) {
6731 		struct inet_request_sock *ireq = inet_rsk(req);
6732 
6733 		ireq->ireq_opt = NULL;
6734 #if IS_ENABLED(CONFIG_IPV6)
6735 		ireq->pktopts = NULL;
6736 #endif
6737 		atomic64_set(&ireq->ir_cookie, 0);
6738 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6739 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6740 		ireq->ireq_family = sk_listener->sk_family;
6741 	}
6742 
6743 	return req;
6744 }
6745 EXPORT_SYMBOL(inet_reqsk_alloc);
6746 
6747 /*
6748  * Return true if a syncookie should be sent
6749  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6750 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6751 {
6752 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6753 	const char *msg = "Dropping request";
6754 	struct net *net = sock_net(sk);
6755 	bool want_cookie = false;
6756 	u8 syncookies;
6757 
6758 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6759 
6760 #ifdef CONFIG_SYN_COOKIES
6761 	if (syncookies) {
6762 		msg = "Sending cookies";
6763 		want_cookie = true;
6764 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6765 	} else
6766 #endif
6767 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6768 
6769 	if (!queue->synflood_warned && syncookies != 2 &&
6770 	    xchg(&queue->synflood_warned, 1) == 0)
6771 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6772 				     proto, sk->sk_num, msg);
6773 
6774 	return want_cookie;
6775 }
6776 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6777 static void tcp_reqsk_record_syn(const struct sock *sk,
6778 				 struct request_sock *req,
6779 				 const struct sk_buff *skb)
6780 {
6781 	if (tcp_sk(sk)->save_syn) {
6782 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6783 		struct saved_syn *saved_syn;
6784 		u32 mac_hdrlen;
6785 		void *base;
6786 
6787 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6788 			base = skb_mac_header(skb);
6789 			mac_hdrlen = skb_mac_header_len(skb);
6790 			len += mac_hdrlen;
6791 		} else {
6792 			base = skb_network_header(skb);
6793 			mac_hdrlen = 0;
6794 		}
6795 
6796 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6797 				    GFP_ATOMIC);
6798 		if (saved_syn) {
6799 			saved_syn->mac_hdrlen = mac_hdrlen;
6800 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6801 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6802 			memcpy(saved_syn->data, base, len);
6803 			req->saved_syn = saved_syn;
6804 		}
6805 	}
6806 }
6807 
6808 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6809  * used for SYN cookie generation.
6810  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6811 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6812 			  const struct tcp_request_sock_ops *af_ops,
6813 			  struct sock *sk, struct tcphdr *th)
6814 {
6815 	struct tcp_sock *tp = tcp_sk(sk);
6816 	u16 mss;
6817 
6818 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6819 	    !inet_csk_reqsk_queue_is_full(sk))
6820 		return 0;
6821 
6822 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6823 		return 0;
6824 
6825 	if (sk_acceptq_is_full(sk)) {
6826 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6827 		return 0;
6828 	}
6829 
6830 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6831 	if (!mss)
6832 		mss = af_ops->mss_clamp;
6833 
6834 	return mss;
6835 }
6836 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6837 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6838 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6839 		     const struct tcp_request_sock_ops *af_ops,
6840 		     struct sock *sk, struct sk_buff *skb)
6841 {
6842 	struct tcp_fastopen_cookie foc = { .len = -1 };
6843 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6844 	struct tcp_options_received tmp_opt;
6845 	struct tcp_sock *tp = tcp_sk(sk);
6846 	struct net *net = sock_net(sk);
6847 	struct sock *fastopen_sk = NULL;
6848 	struct request_sock *req;
6849 	bool want_cookie = false;
6850 	struct dst_entry *dst;
6851 	struct flowi fl;
6852 	u8 syncookies;
6853 
6854 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6855 
6856 	/* TW buckets are converted to open requests without
6857 	 * limitations, they conserve resources and peer is
6858 	 * evidently real one.
6859 	 */
6860 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6861 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6862 		if (!want_cookie)
6863 			goto drop;
6864 	}
6865 
6866 	if (sk_acceptq_is_full(sk)) {
6867 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6868 		goto drop;
6869 	}
6870 
6871 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6872 	if (!req)
6873 		goto drop;
6874 
6875 	req->syncookie = want_cookie;
6876 	tcp_rsk(req)->af_specific = af_ops;
6877 	tcp_rsk(req)->ts_off = 0;
6878 #if IS_ENABLED(CONFIG_MPTCP)
6879 	tcp_rsk(req)->is_mptcp = 0;
6880 #endif
6881 
6882 	tcp_clear_options(&tmp_opt);
6883 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6884 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6885 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6886 			  want_cookie ? NULL : &foc);
6887 
6888 	if (want_cookie && !tmp_opt.saw_tstamp)
6889 		tcp_clear_options(&tmp_opt);
6890 
6891 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6892 		tmp_opt.smc_ok = 0;
6893 
6894 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6895 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6896 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6897 
6898 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6899 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6900 
6901 	af_ops->init_req(req, sk, skb);
6902 
6903 	if (security_inet_conn_request(sk, skb, req))
6904 		goto drop_and_free;
6905 
6906 	if (tmp_opt.tstamp_ok)
6907 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6908 
6909 	dst = af_ops->route_req(sk, &fl, req);
6910 	if (!dst)
6911 		goto drop_and_free;
6912 
6913 	if (!want_cookie && !isn) {
6914 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6915 
6916 		/* Kill the following clause, if you dislike this way. */
6917 		if (!syncookies &&
6918 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6919 		     (max_syn_backlog >> 2)) &&
6920 		    !tcp_peer_is_proven(req, dst)) {
6921 			/* Without syncookies last quarter of
6922 			 * backlog is filled with destinations,
6923 			 * proven to be alive.
6924 			 * It means that we continue to communicate
6925 			 * to destinations, already remembered
6926 			 * to the moment of synflood.
6927 			 */
6928 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6929 				    rsk_ops->family);
6930 			goto drop_and_release;
6931 		}
6932 
6933 		isn = af_ops->init_seq(skb);
6934 	}
6935 
6936 	tcp_ecn_create_request(req, skb, sk, dst);
6937 
6938 	if (want_cookie) {
6939 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6940 		if (!tmp_opt.tstamp_ok)
6941 			inet_rsk(req)->ecn_ok = 0;
6942 	}
6943 
6944 	tcp_rsk(req)->snt_isn = isn;
6945 	tcp_rsk(req)->txhash = net_tx_rndhash();
6946 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6947 	tcp_openreq_init_rwin(req, sk, dst);
6948 	sk_rx_queue_set(req_to_sk(req), skb);
6949 	if (!want_cookie) {
6950 		tcp_reqsk_record_syn(sk, req, skb);
6951 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6952 	}
6953 	if (fastopen_sk) {
6954 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6955 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6956 		/* Add the child socket directly into the accept queue */
6957 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6958 			reqsk_fastopen_remove(fastopen_sk, req, false);
6959 			bh_unlock_sock(fastopen_sk);
6960 			sock_put(fastopen_sk);
6961 			goto drop_and_free;
6962 		}
6963 		sk->sk_data_ready(sk);
6964 		bh_unlock_sock(fastopen_sk);
6965 		sock_put(fastopen_sk);
6966 	} else {
6967 		tcp_rsk(req)->tfo_listener = false;
6968 		if (!want_cookie)
6969 			inet_csk_reqsk_queue_hash_add(sk, req,
6970 				tcp_timeout_init((struct sock *)req));
6971 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6972 				    !want_cookie ? TCP_SYNACK_NORMAL :
6973 						   TCP_SYNACK_COOKIE,
6974 				    skb);
6975 		if (want_cookie) {
6976 			reqsk_free(req);
6977 			return 0;
6978 		}
6979 	}
6980 	reqsk_put(req);
6981 	return 0;
6982 
6983 drop_and_release:
6984 	dst_release(dst);
6985 drop_and_free:
6986 	__reqsk_free(req);
6987 drop:
6988 	tcp_listendrop(sk);
6989 	return 0;
6990 }
6991 EXPORT_SYMBOL(tcp_conn_request);
6992