1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 /* If the skb has a len of exactly 1*MSS and has the PSH bit
247 * set then it is likely the end of an application write. So
248 * more data may not be arriving soon, and yet the data sender
249 * may be waiting for an ACK if cwnd-bound or using TX zero
250 * copy. So we set ICSK_ACK_PUSHED here so that
251 * tcp_cleanup_rbuf() will send an ACK immediately if the app
252 * reads all of the data and is not ping-pong. If len > MSS
253 * then this logic does not matter (and does not hurt) because
254 * tcp_cleanup_rbuf() will always ACK immediately if the app
255 * reads data and there is more than an MSS of unACKed data.
256 */
257 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
258 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
259 } else {
260 /* Otherwise, we make more careful check taking into account,
261 * that SACKs block is variable.
262 *
263 * "len" is invariant segment length, including TCP header.
264 */
265 len += skb->data - skb_transport_header(skb);
266 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
267 /* If PSH is not set, packet should be
268 * full sized, provided peer TCP is not badly broken.
269 * This observation (if it is correct 8)) allows
270 * to handle super-low mtu links fairly.
271 */
272 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
273 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
274 /* Subtract also invariant (if peer is RFC compliant),
275 * tcp header plus fixed timestamp option length.
276 * Resulting "len" is MSS free of SACK jitter.
277 */
278 len -= tcp_sk(sk)->tcp_header_len;
279 icsk->icsk_ack.last_seg_size = len;
280 if (len == lss) {
281 icsk->icsk_ack.rcv_mss = len;
282 return;
283 }
284 }
285 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
286 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
287 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
288 }
289 }
290
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)291 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
292 {
293 struct inet_connection_sock *icsk = inet_csk(sk);
294 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
295
296 if (quickacks == 0)
297 quickacks = 2;
298 quickacks = min(quickacks, max_quickacks);
299 if (quickacks > icsk->icsk_ack.quick)
300 icsk->icsk_ack.quick = quickacks;
301 }
302
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)303 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
304 {
305 struct inet_connection_sock *icsk = inet_csk(sk);
306
307 tcp_incr_quickack(sk, max_quickacks);
308 inet_csk_exit_pingpong_mode(sk);
309 icsk->icsk_ack.ato = TCP_ATO_MIN;
310 }
311
312 /* Send ACKs quickly, if "quick" count is not exhausted
313 * and the session is not interactive.
314 */
315
tcp_in_quickack_mode(struct sock * sk)316 static bool tcp_in_quickack_mode(struct sock *sk)
317 {
318 const struct inet_connection_sock *icsk = inet_csk(sk);
319 const struct dst_entry *dst = __sk_dst_get(sk);
320
321 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
322 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
323 }
324
tcp_ecn_queue_cwr(struct tcp_sock * tp)325 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
326 {
327 if (tp->ecn_flags & TCP_ECN_OK)
328 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
329 }
330
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)331 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
332 {
333 if (tcp_hdr(skb)->cwr) {
334 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
335
336 /* If the sender is telling us it has entered CWR, then its
337 * cwnd may be very low (even just 1 packet), so we should ACK
338 * immediately.
339 */
340 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
341 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
342 }
343 }
344
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)345 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
346 {
347 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
348 }
349
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)350 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
351 {
352 struct tcp_sock *tp = tcp_sk(sk);
353
354 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
355 case INET_ECN_NOT_ECT:
356 /* Funny extension: if ECT is not set on a segment,
357 * and we already seen ECT on a previous segment,
358 * it is probably a retransmit.
359 */
360 if (tp->ecn_flags & TCP_ECN_SEEN)
361 tcp_enter_quickack_mode(sk, 2);
362 break;
363 case INET_ECN_CE:
364 if (tcp_ca_needs_ecn(sk))
365 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
366
367 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
368 /* Better not delay acks, sender can have a very low cwnd */
369 tcp_enter_quickack_mode(sk, 2);
370 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
371 }
372 tp->ecn_flags |= TCP_ECN_SEEN;
373 break;
374 default:
375 if (tcp_ca_needs_ecn(sk))
376 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
377 tp->ecn_flags |= TCP_ECN_SEEN;
378 break;
379 }
380 }
381
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)382 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
383 {
384 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
385 __tcp_ecn_check_ce(sk, skb);
386 }
387
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)388 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
391 tp->ecn_flags &= ~TCP_ECN_OK;
392 }
393
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)394 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
395 {
396 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
397 tp->ecn_flags &= ~TCP_ECN_OK;
398 }
399
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)400 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
401 {
402 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
403 return true;
404 return false;
405 }
406
407 /* Buffer size and advertised window tuning.
408 *
409 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
410 */
411
tcp_sndbuf_expand(struct sock * sk)412 static void tcp_sndbuf_expand(struct sock *sk)
413 {
414 const struct tcp_sock *tp = tcp_sk(sk);
415 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
416 int sndmem, per_mss;
417 u32 nr_segs;
418
419 /* Worst case is non GSO/TSO : each frame consumes one skb
420 * and skb->head is kmalloced using power of two area of memory
421 */
422 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
423 MAX_TCP_HEADER +
424 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425
426 per_mss = roundup_pow_of_two(per_mss) +
427 SKB_DATA_ALIGN(sizeof(struct sk_buff));
428
429 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
430 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
431
432 /* Fast Recovery (RFC 5681 3.2) :
433 * Cubic needs 1.7 factor, rounded to 2 to include
434 * extra cushion (application might react slowly to EPOLLOUT)
435 */
436 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
437 sndmem *= nr_segs * per_mss;
438
439 if (sk->sk_sndbuf < sndmem)
440 WRITE_ONCE(sk->sk_sndbuf,
441 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
442 }
443
444 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
445 *
446 * All tcp_full_space() is split to two parts: "network" buffer, allocated
447 * forward and advertised in receiver window (tp->rcv_wnd) and
448 * "application buffer", required to isolate scheduling/application
449 * latencies from network.
450 * window_clamp is maximal advertised window. It can be less than
451 * tcp_full_space(), in this case tcp_full_space() - window_clamp
452 * is reserved for "application" buffer. The less window_clamp is
453 * the smoother our behaviour from viewpoint of network, but the lower
454 * throughput and the higher sensitivity of the connection to losses. 8)
455 *
456 * rcv_ssthresh is more strict window_clamp used at "slow start"
457 * phase to predict further behaviour of this connection.
458 * It is used for two goals:
459 * - to enforce header prediction at sender, even when application
460 * requires some significant "application buffer". It is check #1.
461 * - to prevent pruning of receive queue because of misprediction
462 * of receiver window. Check #2.
463 *
464 * The scheme does not work when sender sends good segments opening
465 * window and then starts to feed us spaghetti. But it should work
466 * in common situations. Otherwise, we have to rely on queue collapsing.
467 */
468
469 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)470 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
471 unsigned int skbtruesize)
472 {
473 struct tcp_sock *tp = tcp_sk(sk);
474 /* Optimize this! */
475 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
476 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
477
478 while (tp->rcv_ssthresh <= window) {
479 if (truesize <= skb->len)
480 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
481
482 truesize >>= 1;
483 window >>= 1;
484 }
485 return 0;
486 }
487
488 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
489 * can play nice with us, as sk_buff and skb->head might be either
490 * freed or shared with up to MAX_SKB_FRAGS segments.
491 * Only give a boost to drivers using page frag(s) to hold the frame(s),
492 * and if no payload was pulled in skb->head before reaching us.
493 */
truesize_adjust(bool adjust,const struct sk_buff * skb)494 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
495 {
496 u32 truesize = skb->truesize;
497
498 if (adjust && !skb_headlen(skb)) {
499 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
500 /* paranoid check, some drivers might be buggy */
501 if (unlikely((int)truesize < (int)skb->len))
502 truesize = skb->truesize;
503 }
504 return truesize;
505 }
506
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)507 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
508 bool adjust)
509 {
510 struct tcp_sock *tp = tcp_sk(sk);
511 int room;
512
513 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
514
515 /* Check #1 */
516 if (room > 0 && !tcp_under_memory_pressure(sk)) {
517 unsigned int truesize = truesize_adjust(adjust, skb);
518 int incr;
519
520 /* Check #2. Increase window, if skb with such overhead
521 * will fit to rcvbuf in future.
522 */
523 if (tcp_win_from_space(sk, truesize) <= skb->len)
524 incr = 2 * tp->advmss;
525 else
526 incr = __tcp_grow_window(sk, skb, truesize);
527
528 if (incr) {
529 incr = max_t(int, incr, 2 * skb->len);
530 tp->rcv_ssthresh += min(room, incr);
531 inet_csk(sk)->icsk_ack.quick |= 1;
532 }
533 }
534 }
535
536 /* 3. Try to fixup all. It is made immediately after connection enters
537 * established state.
538 */
tcp_init_buffer_space(struct sock * sk)539 static void tcp_init_buffer_space(struct sock *sk)
540 {
541 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
542 struct tcp_sock *tp = tcp_sk(sk);
543 int maxwin;
544
545 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
546 tcp_sndbuf_expand(sk);
547
548 tcp_mstamp_refresh(tp);
549 tp->rcvq_space.time = tp->tcp_mstamp;
550 tp->rcvq_space.seq = tp->copied_seq;
551
552 maxwin = tcp_full_space(sk);
553
554 if (tp->window_clamp >= maxwin) {
555 tp->window_clamp = maxwin;
556
557 if (tcp_app_win && maxwin > 4 * tp->advmss)
558 tp->window_clamp = max(maxwin -
559 (maxwin >> tcp_app_win),
560 4 * tp->advmss);
561 }
562
563 /* Force reservation of one segment. */
564 if (tcp_app_win &&
565 tp->window_clamp > 2 * tp->advmss &&
566 tp->window_clamp + tp->advmss > maxwin)
567 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
568
569 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
570 tp->snd_cwnd_stamp = tcp_jiffies32;
571 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
572 (u32)TCP_INIT_CWND * tp->advmss);
573 }
574
575 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)576 static void tcp_clamp_window(struct sock *sk)
577 {
578 struct tcp_sock *tp = tcp_sk(sk);
579 struct inet_connection_sock *icsk = inet_csk(sk);
580 struct net *net = sock_net(sk);
581 int rmem2;
582
583 icsk->icsk_ack.quick = 0;
584 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
585
586 if (sk->sk_rcvbuf < rmem2 &&
587 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
588 !tcp_under_memory_pressure(sk) &&
589 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
590 WRITE_ONCE(sk->sk_rcvbuf,
591 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
592 }
593 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
594 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
595 }
596
597 /* Initialize RCV_MSS value.
598 * RCV_MSS is an our guess about MSS used by the peer.
599 * We haven't any direct information about the MSS.
600 * It's better to underestimate the RCV_MSS rather than overestimate.
601 * Overestimations make us ACKing less frequently than needed.
602 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
603 */
tcp_initialize_rcv_mss(struct sock * sk)604 void tcp_initialize_rcv_mss(struct sock *sk)
605 {
606 const struct tcp_sock *tp = tcp_sk(sk);
607 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
608
609 hint = min(hint, tp->rcv_wnd / 2);
610 hint = min(hint, TCP_MSS_DEFAULT);
611 hint = max(hint, TCP_MIN_MSS);
612
613 inet_csk(sk)->icsk_ack.rcv_mss = hint;
614 }
615 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
616
617 /* Receiver "autotuning" code.
618 *
619 * The algorithm for RTT estimation w/o timestamps is based on
620 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
621 * <https://public.lanl.gov/radiant/pubs.html#DRS>
622 *
623 * More detail on this code can be found at
624 * <http://staff.psc.edu/jheffner/>,
625 * though this reference is out of date. A new paper
626 * is pending.
627 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)628 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
629 {
630 u32 new_sample = tp->rcv_rtt_est.rtt_us;
631 long m = sample;
632
633 if (new_sample != 0) {
634 /* If we sample in larger samples in the non-timestamp
635 * case, we could grossly overestimate the RTT especially
636 * with chatty applications or bulk transfer apps which
637 * are stalled on filesystem I/O.
638 *
639 * Also, since we are only going for a minimum in the
640 * non-timestamp case, we do not smooth things out
641 * else with timestamps disabled convergence takes too
642 * long.
643 */
644 if (!win_dep) {
645 m -= (new_sample >> 3);
646 new_sample += m;
647 } else {
648 m <<= 3;
649 if (m < new_sample)
650 new_sample = m;
651 }
652 } else {
653 /* No previous measure. */
654 new_sample = m << 3;
655 }
656
657 tp->rcv_rtt_est.rtt_us = new_sample;
658 }
659
tcp_rcv_rtt_measure(struct tcp_sock * tp)660 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
661 {
662 u32 delta_us;
663
664 if (tp->rcv_rtt_est.time == 0)
665 goto new_measure;
666 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
667 return;
668 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
669 if (!delta_us)
670 delta_us = 1;
671 tcp_rcv_rtt_update(tp, delta_us, 1);
672
673 new_measure:
674 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
675 tp->rcv_rtt_est.time = tp->tcp_mstamp;
676 }
677
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)678 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
679 const struct sk_buff *skb)
680 {
681 struct tcp_sock *tp = tcp_sk(sk);
682
683 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
684 return;
685 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
686
687 if (TCP_SKB_CB(skb)->end_seq -
688 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
689 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
690 u32 delta_us;
691
692 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
693 if (!delta)
694 delta = 1;
695 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
696 tcp_rcv_rtt_update(tp, delta_us, 0);
697 }
698 }
699 }
700
701 /*
702 * This function should be called every time data is copied to user space.
703 * It calculates the appropriate TCP receive buffer space.
704 */
tcp_rcv_space_adjust(struct sock * sk)705 void tcp_rcv_space_adjust(struct sock *sk)
706 {
707 struct tcp_sock *tp = tcp_sk(sk);
708 u32 copied;
709 int time;
710
711 trace_tcp_rcv_space_adjust(sk);
712
713 tcp_mstamp_refresh(tp);
714 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
715 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
716 return;
717
718 /* Number of bytes copied to user in last RTT */
719 copied = tp->copied_seq - tp->rcvq_space.seq;
720 if (copied <= tp->rcvq_space.space)
721 goto new_measure;
722
723 /* A bit of theory :
724 * copied = bytes received in previous RTT, our base window
725 * To cope with packet losses, we need a 2x factor
726 * To cope with slow start, and sender growing its cwin by 100 %
727 * every RTT, we need a 4x factor, because the ACK we are sending
728 * now is for the next RTT, not the current one :
729 * <prev RTT . ><current RTT .. ><next RTT .... >
730 */
731
732 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
733 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
734 int rcvmem, rcvbuf;
735 u64 rcvwin, grow;
736
737 /* minimal window to cope with packet losses, assuming
738 * steady state. Add some cushion because of small variations.
739 */
740 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
741
742 /* Accommodate for sender rate increase (eg. slow start) */
743 grow = rcvwin * (copied - tp->rcvq_space.space);
744 do_div(grow, tp->rcvq_space.space);
745 rcvwin += (grow << 1);
746
747 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
748 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
749 rcvmem += 128;
750
751 do_div(rcvwin, tp->advmss);
752 rcvbuf = min_t(u64, rcvwin * rcvmem,
753 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
754 if (rcvbuf > sk->sk_rcvbuf) {
755 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
756
757 /* Make the window clamp follow along. */
758 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
759 }
760 }
761 tp->rcvq_space.space = copied;
762
763 new_measure:
764 tp->rcvq_space.seq = tp->copied_seq;
765 tp->rcvq_space.time = tp->tcp_mstamp;
766 }
767
768 /* There is something which you must keep in mind when you analyze the
769 * behavior of the tp->ato delayed ack timeout interval. When a
770 * connection starts up, we want to ack as quickly as possible. The
771 * problem is that "good" TCP's do slow start at the beginning of data
772 * transmission. The means that until we send the first few ACK's the
773 * sender will sit on his end and only queue most of his data, because
774 * he can only send snd_cwnd unacked packets at any given time. For
775 * each ACK we send, he increments snd_cwnd and transmits more of his
776 * queue. -DaveM
777 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)778 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
779 {
780 struct tcp_sock *tp = tcp_sk(sk);
781 struct inet_connection_sock *icsk = inet_csk(sk);
782 u32 now;
783
784 inet_csk_schedule_ack(sk);
785
786 tcp_measure_rcv_mss(sk, skb);
787
788 tcp_rcv_rtt_measure(tp);
789
790 now = tcp_jiffies32;
791
792 if (!icsk->icsk_ack.ato) {
793 /* The _first_ data packet received, initialize
794 * delayed ACK engine.
795 */
796 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
797 icsk->icsk_ack.ato = TCP_ATO_MIN;
798 } else {
799 int m = now - icsk->icsk_ack.lrcvtime;
800
801 if (m <= TCP_ATO_MIN / 2) {
802 /* The fastest case is the first. */
803 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
804 } else if (m < icsk->icsk_ack.ato) {
805 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
806 if (icsk->icsk_ack.ato > icsk->icsk_rto)
807 icsk->icsk_ack.ato = icsk->icsk_rto;
808 } else if (m > icsk->icsk_rto) {
809 /* Too long gap. Apparently sender failed to
810 * restart window, so that we send ACKs quickly.
811 */
812 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
813 sk_mem_reclaim(sk);
814 }
815 }
816 icsk->icsk_ack.lrcvtime = now;
817
818 tcp_ecn_check_ce(sk, skb);
819
820 if (skb->len >= 128)
821 tcp_grow_window(sk, skb, true);
822 }
823
824 /* Called to compute a smoothed rtt estimate. The data fed to this
825 * routine either comes from timestamps, or from segments that were
826 * known _not_ to have been retransmitted [see Karn/Partridge
827 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
828 * piece by Van Jacobson.
829 * NOTE: the next three routines used to be one big routine.
830 * To save cycles in the RFC 1323 implementation it was better to break
831 * it up into three procedures. -- erics
832 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)833 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
834 {
835 struct tcp_sock *tp = tcp_sk(sk);
836 long m = mrtt_us; /* RTT */
837 u32 srtt = tp->srtt_us;
838
839 /* The following amusing code comes from Jacobson's
840 * article in SIGCOMM '88. Note that rtt and mdev
841 * are scaled versions of rtt and mean deviation.
842 * This is designed to be as fast as possible
843 * m stands for "measurement".
844 *
845 * On a 1990 paper the rto value is changed to:
846 * RTO = rtt + 4 * mdev
847 *
848 * Funny. This algorithm seems to be very broken.
849 * These formulae increase RTO, when it should be decreased, increase
850 * too slowly, when it should be increased quickly, decrease too quickly
851 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
852 * does not matter how to _calculate_ it. Seems, it was trap
853 * that VJ failed to avoid. 8)
854 */
855 if (srtt != 0) {
856 m -= (srtt >> 3); /* m is now error in rtt est */
857 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
858 if (m < 0) {
859 m = -m; /* m is now abs(error) */
860 m -= (tp->mdev_us >> 2); /* similar update on mdev */
861 /* This is similar to one of Eifel findings.
862 * Eifel blocks mdev updates when rtt decreases.
863 * This solution is a bit different: we use finer gain
864 * for mdev in this case (alpha*beta).
865 * Like Eifel it also prevents growth of rto,
866 * but also it limits too fast rto decreases,
867 * happening in pure Eifel.
868 */
869 if (m > 0)
870 m >>= 3;
871 } else {
872 m -= (tp->mdev_us >> 2); /* similar update on mdev */
873 }
874 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
875 if (tp->mdev_us > tp->mdev_max_us) {
876 tp->mdev_max_us = tp->mdev_us;
877 if (tp->mdev_max_us > tp->rttvar_us)
878 tp->rttvar_us = tp->mdev_max_us;
879 }
880 if (after(tp->snd_una, tp->rtt_seq)) {
881 if (tp->mdev_max_us < tp->rttvar_us)
882 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
883 tp->rtt_seq = tp->snd_nxt;
884 tp->mdev_max_us = tcp_rto_min_us(sk);
885
886 tcp_bpf_rtt(sk);
887 }
888 } else {
889 /* no previous measure. */
890 srtt = m << 3; /* take the measured time to be rtt */
891 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
892 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
893 tp->mdev_max_us = tp->rttvar_us;
894 tp->rtt_seq = tp->snd_nxt;
895
896 tcp_bpf_rtt(sk);
897 }
898 tp->srtt_us = max(1U, srtt);
899 }
900
tcp_update_pacing_rate(struct sock * sk)901 static void tcp_update_pacing_rate(struct sock *sk)
902 {
903 const struct tcp_sock *tp = tcp_sk(sk);
904 u64 rate;
905
906 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
907 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
908
909 /* current rate is (cwnd * mss) / srtt
910 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
911 * In Congestion Avoidance phase, set it to 120 % the current rate.
912 *
913 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
914 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
915 * end of slow start and should slow down.
916 */
917 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
918 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
919 else
920 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
921
922 rate *= max(tp->snd_cwnd, tp->packets_out);
923
924 if (likely(tp->srtt_us))
925 do_div(rate, tp->srtt_us);
926
927 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
928 * without any lock. We want to make sure compiler wont store
929 * intermediate values in this location.
930 */
931 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
932 sk->sk_max_pacing_rate));
933 }
934
935 /* Calculate rto without backoff. This is the second half of Van Jacobson's
936 * routine referred to above.
937 */
tcp_set_rto(struct sock * sk)938 static void tcp_set_rto(struct sock *sk)
939 {
940 const struct tcp_sock *tp = tcp_sk(sk);
941 /* Old crap is replaced with new one. 8)
942 *
943 * More seriously:
944 * 1. If rtt variance happened to be less 50msec, it is hallucination.
945 * It cannot be less due to utterly erratic ACK generation made
946 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
947 * to do with delayed acks, because at cwnd>2 true delack timeout
948 * is invisible. Actually, Linux-2.4 also generates erratic
949 * ACKs in some circumstances.
950 */
951 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
952
953 /* 2. Fixups made earlier cannot be right.
954 * If we do not estimate RTO correctly without them,
955 * all the algo is pure shit and should be replaced
956 * with correct one. It is exactly, which we pretend to do.
957 */
958
959 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
960 * guarantees that rto is higher.
961 */
962 tcp_bound_rto(sk);
963 }
964
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)965 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
966 {
967 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
968
969 if (!cwnd)
970 cwnd = TCP_INIT_CWND;
971 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
972 }
973
974 struct tcp_sacktag_state {
975 /* Timestamps for earliest and latest never-retransmitted segment
976 * that was SACKed. RTO needs the earliest RTT to stay conservative,
977 * but congestion control should still get an accurate delay signal.
978 */
979 u64 first_sackt;
980 u64 last_sackt;
981 u32 reord;
982 u32 sack_delivered;
983 int flag;
984 unsigned int mss_now;
985 struct rate_sample *rate;
986 };
987
988 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
989 * and spurious retransmission information if this DSACK is unlikely caused by
990 * sender's action:
991 * - DSACKed sequence range is larger than maximum receiver's window.
992 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
993 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)994 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
995 u32 end_seq, struct tcp_sacktag_state *state)
996 {
997 u32 seq_len, dup_segs = 1;
998
999 if (!before(start_seq, end_seq))
1000 return 0;
1001
1002 seq_len = end_seq - start_seq;
1003 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1004 if (seq_len > tp->max_window)
1005 return 0;
1006 if (seq_len > tp->mss_cache)
1007 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1008
1009 tp->dsack_dups += dup_segs;
1010 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1011 if (tp->dsack_dups > tp->total_retrans)
1012 return 0;
1013
1014 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1015 tp->rack.dsack_seen = 1;
1016
1017 state->flag |= FLAG_DSACKING_ACK;
1018 /* A spurious retransmission is delivered */
1019 state->sack_delivered += dup_segs;
1020
1021 return dup_segs;
1022 }
1023
1024 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1025 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1026 * distance is approximated in full-mss packet distance ("reordering").
1027 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1028 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1029 const int ts)
1030 {
1031 struct tcp_sock *tp = tcp_sk(sk);
1032 const u32 mss = tp->mss_cache;
1033 u32 fack, metric;
1034
1035 fack = tcp_highest_sack_seq(tp);
1036 if (!before(low_seq, fack))
1037 return;
1038
1039 metric = fack - low_seq;
1040 if ((metric > tp->reordering * mss) && mss) {
1041 #if FASTRETRANS_DEBUG > 1
1042 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1043 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1044 tp->reordering,
1045 0,
1046 tp->sacked_out,
1047 tp->undo_marker ? tp->undo_retrans : 0);
1048 #endif
1049 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1050 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1051 }
1052
1053 /* This exciting event is worth to be remembered. 8) */
1054 tp->reord_seen++;
1055 NET_INC_STATS(sock_net(sk),
1056 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1057 }
1058
1059 /* This must be called before lost_out or retrans_out are updated
1060 * on a new loss, because we want to know if all skbs previously
1061 * known to be lost have already been retransmitted, indicating
1062 * that this newly lost skb is our next skb to retransmit.
1063 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1064 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1065 {
1066 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1067 (tp->retransmit_skb_hint &&
1068 before(TCP_SKB_CB(skb)->seq,
1069 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1070 tp->retransmit_skb_hint = skb;
1071 }
1072
1073 /* Sum the number of packets on the wire we have marked as lost, and
1074 * notify the congestion control module that the given skb was marked lost.
1075 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1076 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1077 {
1078 tp->lost += tcp_skb_pcount(skb);
1079 }
1080
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1081 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1082 {
1083 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1084 struct tcp_sock *tp = tcp_sk(sk);
1085
1086 if (sacked & TCPCB_SACKED_ACKED)
1087 return;
1088
1089 tcp_verify_retransmit_hint(tp, skb);
1090 if (sacked & TCPCB_LOST) {
1091 if (sacked & TCPCB_SACKED_RETRANS) {
1092 /* Account for retransmits that are lost again */
1093 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1094 tp->retrans_out -= tcp_skb_pcount(skb);
1095 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1096 tcp_skb_pcount(skb));
1097 tcp_notify_skb_loss_event(tp, skb);
1098 }
1099 } else {
1100 tp->lost_out += tcp_skb_pcount(skb);
1101 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1102 tcp_notify_skb_loss_event(tp, skb);
1103 }
1104 }
1105
1106 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1107 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1108 bool ece_ack)
1109 {
1110 tp->delivered += delivered;
1111 if (ece_ack)
1112 tp->delivered_ce += delivered;
1113 }
1114
1115 /* This procedure tags the retransmission queue when SACKs arrive.
1116 *
1117 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1118 * Packets in queue with these bits set are counted in variables
1119 * sacked_out, retrans_out and lost_out, correspondingly.
1120 *
1121 * Valid combinations are:
1122 * Tag InFlight Description
1123 * 0 1 - orig segment is in flight.
1124 * S 0 - nothing flies, orig reached receiver.
1125 * L 0 - nothing flies, orig lost by net.
1126 * R 2 - both orig and retransmit are in flight.
1127 * L|R 1 - orig is lost, retransmit is in flight.
1128 * S|R 1 - orig reached receiver, retrans is still in flight.
1129 * (L|S|R is logically valid, it could occur when L|R is sacked,
1130 * but it is equivalent to plain S and code short-curcuits it to S.
1131 * L|S is logically invalid, it would mean -1 packet in flight 8))
1132 *
1133 * These 6 states form finite state machine, controlled by the following events:
1134 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1135 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1136 * 3. Loss detection event of two flavors:
1137 * A. Scoreboard estimator decided the packet is lost.
1138 * A'. Reno "three dupacks" marks head of queue lost.
1139 * B. SACK arrives sacking SND.NXT at the moment, when the
1140 * segment was retransmitted.
1141 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1142 *
1143 * It is pleasant to note, that state diagram turns out to be commutative,
1144 * so that we are allowed not to be bothered by order of our actions,
1145 * when multiple events arrive simultaneously. (see the function below).
1146 *
1147 * Reordering detection.
1148 * --------------------
1149 * Reordering metric is maximal distance, which a packet can be displaced
1150 * in packet stream. With SACKs we can estimate it:
1151 *
1152 * 1. SACK fills old hole and the corresponding segment was not
1153 * ever retransmitted -> reordering. Alas, we cannot use it
1154 * when segment was retransmitted.
1155 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1156 * for retransmitted and already SACKed segment -> reordering..
1157 * Both of these heuristics are not used in Loss state, when we cannot
1158 * account for retransmits accurately.
1159 *
1160 * SACK block validation.
1161 * ----------------------
1162 *
1163 * SACK block range validation checks that the received SACK block fits to
1164 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1165 * Note that SND.UNA is not included to the range though being valid because
1166 * it means that the receiver is rather inconsistent with itself reporting
1167 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1168 * perfectly valid, however, in light of RFC2018 which explicitly states
1169 * that "SACK block MUST reflect the newest segment. Even if the newest
1170 * segment is going to be discarded ...", not that it looks very clever
1171 * in case of head skb. Due to potentional receiver driven attacks, we
1172 * choose to avoid immediate execution of a walk in write queue due to
1173 * reneging and defer head skb's loss recovery to standard loss recovery
1174 * procedure that will eventually trigger (nothing forbids us doing this).
1175 *
1176 * Implements also blockage to start_seq wrap-around. Problem lies in the
1177 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1178 * there's no guarantee that it will be before snd_nxt (n). The problem
1179 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1180 * wrap (s_w):
1181 *
1182 * <- outs wnd -> <- wrapzone ->
1183 * u e n u_w e_w s n_w
1184 * | | | | | | |
1185 * |<------------+------+----- TCP seqno space --------------+---------->|
1186 * ...-- <2^31 ->| |<--------...
1187 * ...---- >2^31 ------>| |<--------...
1188 *
1189 * Current code wouldn't be vulnerable but it's better still to discard such
1190 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1191 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1192 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1193 * equal to the ideal case (infinite seqno space without wrap caused issues).
1194 *
1195 * With D-SACK the lower bound is extended to cover sequence space below
1196 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1197 * again, D-SACK block must not to go across snd_una (for the same reason as
1198 * for the normal SACK blocks, explained above). But there all simplicity
1199 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1200 * fully below undo_marker they do not affect behavior in anyway and can
1201 * therefore be safely ignored. In rare cases (which are more or less
1202 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1203 * fragmentation and packet reordering past skb's retransmission. To consider
1204 * them correctly, the acceptable range must be extended even more though
1205 * the exact amount is rather hard to quantify. However, tp->max_window can
1206 * be used as an exaggerated estimate.
1207 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1208 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1209 u32 start_seq, u32 end_seq)
1210 {
1211 /* Too far in future, or reversed (interpretation is ambiguous) */
1212 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1213 return false;
1214
1215 /* Nasty start_seq wrap-around check (see comments above) */
1216 if (!before(start_seq, tp->snd_nxt))
1217 return false;
1218
1219 /* In outstanding window? ...This is valid exit for D-SACKs too.
1220 * start_seq == snd_una is non-sensical (see comments above)
1221 */
1222 if (after(start_seq, tp->snd_una))
1223 return true;
1224
1225 if (!is_dsack || !tp->undo_marker)
1226 return false;
1227
1228 /* ...Then it's D-SACK, and must reside below snd_una completely */
1229 if (after(end_seq, tp->snd_una))
1230 return false;
1231
1232 if (!before(start_seq, tp->undo_marker))
1233 return true;
1234
1235 /* Too old */
1236 if (!after(end_seq, tp->undo_marker))
1237 return false;
1238
1239 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1240 * start_seq < undo_marker and end_seq >= undo_marker.
1241 */
1242 return !before(start_seq, end_seq - tp->max_window);
1243 }
1244
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1245 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1246 struct tcp_sack_block_wire *sp, int num_sacks,
1247 u32 prior_snd_una, struct tcp_sacktag_state *state)
1248 {
1249 struct tcp_sock *tp = tcp_sk(sk);
1250 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1251 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1252 u32 dup_segs;
1253
1254 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1255 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1256 } else if (num_sacks > 1) {
1257 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1258 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1259
1260 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1261 return false;
1262 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1263 } else {
1264 return false;
1265 }
1266
1267 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1268 if (!dup_segs) { /* Skip dubious DSACK */
1269 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1270 return false;
1271 }
1272
1273 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1274
1275 /* D-SACK for already forgotten data... Do dumb counting. */
1276 if (tp->undo_marker && tp->undo_retrans > 0 &&
1277 !after(end_seq_0, prior_snd_una) &&
1278 after(end_seq_0, tp->undo_marker))
1279 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1280
1281 return true;
1282 }
1283
1284 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1285 * the incoming SACK may not exactly match but we can find smaller MSS
1286 * aligned portion of it that matches. Therefore we might need to fragment
1287 * which may fail and creates some hassle (caller must handle error case
1288 * returns).
1289 *
1290 * FIXME: this could be merged to shift decision code
1291 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1292 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1293 u32 start_seq, u32 end_seq)
1294 {
1295 int err;
1296 bool in_sack;
1297 unsigned int pkt_len;
1298 unsigned int mss;
1299
1300 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1301 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1302
1303 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1304 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1305 mss = tcp_skb_mss(skb);
1306 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1307
1308 if (!in_sack) {
1309 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1310 if (pkt_len < mss)
1311 pkt_len = mss;
1312 } else {
1313 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1314 if (pkt_len < mss)
1315 return -EINVAL;
1316 }
1317
1318 /* Round if necessary so that SACKs cover only full MSSes
1319 * and/or the remaining small portion (if present)
1320 */
1321 if (pkt_len > mss) {
1322 unsigned int new_len = (pkt_len / mss) * mss;
1323 if (!in_sack && new_len < pkt_len)
1324 new_len += mss;
1325 pkt_len = new_len;
1326 }
1327
1328 if (pkt_len >= skb->len && !in_sack)
1329 return 0;
1330
1331 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1332 pkt_len, mss, GFP_ATOMIC);
1333 if (err < 0)
1334 return err;
1335 }
1336
1337 return in_sack;
1338 }
1339
1340 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1341 static u8 tcp_sacktag_one(struct sock *sk,
1342 struct tcp_sacktag_state *state, u8 sacked,
1343 u32 start_seq, u32 end_seq,
1344 int dup_sack, int pcount,
1345 u64 xmit_time)
1346 {
1347 struct tcp_sock *tp = tcp_sk(sk);
1348
1349 /* Account D-SACK for retransmitted packet. */
1350 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1351 if (tp->undo_marker && tp->undo_retrans > 0 &&
1352 after(end_seq, tp->undo_marker))
1353 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1354 if ((sacked & TCPCB_SACKED_ACKED) &&
1355 before(start_seq, state->reord))
1356 state->reord = start_seq;
1357 }
1358
1359 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1360 if (!after(end_seq, tp->snd_una))
1361 return sacked;
1362
1363 if (!(sacked & TCPCB_SACKED_ACKED)) {
1364 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1365
1366 if (sacked & TCPCB_SACKED_RETRANS) {
1367 /* If the segment is not tagged as lost,
1368 * we do not clear RETRANS, believing
1369 * that retransmission is still in flight.
1370 */
1371 if (sacked & TCPCB_LOST) {
1372 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1373 tp->lost_out -= pcount;
1374 tp->retrans_out -= pcount;
1375 }
1376 } else {
1377 if (!(sacked & TCPCB_RETRANS)) {
1378 /* New sack for not retransmitted frame,
1379 * which was in hole. It is reordering.
1380 */
1381 if (before(start_seq,
1382 tcp_highest_sack_seq(tp)) &&
1383 before(start_seq, state->reord))
1384 state->reord = start_seq;
1385
1386 if (!after(end_seq, tp->high_seq))
1387 state->flag |= FLAG_ORIG_SACK_ACKED;
1388 if (state->first_sackt == 0)
1389 state->first_sackt = xmit_time;
1390 state->last_sackt = xmit_time;
1391 }
1392
1393 if (sacked & TCPCB_LOST) {
1394 sacked &= ~TCPCB_LOST;
1395 tp->lost_out -= pcount;
1396 }
1397 }
1398
1399 sacked |= TCPCB_SACKED_ACKED;
1400 state->flag |= FLAG_DATA_SACKED;
1401 tp->sacked_out += pcount;
1402 /* Out-of-order packets delivered */
1403 state->sack_delivered += pcount;
1404
1405 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1406 if (tp->lost_skb_hint &&
1407 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1408 tp->lost_cnt_hint += pcount;
1409 }
1410
1411 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1412 * frames and clear it. undo_retrans is decreased above, L|R frames
1413 * are accounted above as well.
1414 */
1415 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1416 sacked &= ~TCPCB_SACKED_RETRANS;
1417 tp->retrans_out -= pcount;
1418 }
1419
1420 return sacked;
1421 }
1422
1423 /* Shift newly-SACKed bytes from this skb to the immediately previous
1424 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1425 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1426 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1427 struct sk_buff *skb,
1428 struct tcp_sacktag_state *state,
1429 unsigned int pcount, int shifted, int mss,
1430 bool dup_sack)
1431 {
1432 struct tcp_sock *tp = tcp_sk(sk);
1433 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1434 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1435
1436 BUG_ON(!pcount);
1437
1438 /* Adjust counters and hints for the newly sacked sequence
1439 * range but discard the return value since prev is already
1440 * marked. We must tag the range first because the seq
1441 * advancement below implicitly advances
1442 * tcp_highest_sack_seq() when skb is highest_sack.
1443 */
1444 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1445 start_seq, end_seq, dup_sack, pcount,
1446 tcp_skb_timestamp_us(skb));
1447 tcp_rate_skb_delivered(sk, skb, state->rate);
1448
1449 if (skb == tp->lost_skb_hint)
1450 tp->lost_cnt_hint += pcount;
1451
1452 TCP_SKB_CB(prev)->end_seq += shifted;
1453 TCP_SKB_CB(skb)->seq += shifted;
1454
1455 tcp_skb_pcount_add(prev, pcount);
1456 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1457 tcp_skb_pcount_add(skb, -pcount);
1458
1459 /* When we're adding to gso_segs == 1, gso_size will be zero,
1460 * in theory this shouldn't be necessary but as long as DSACK
1461 * code can come after this skb later on it's better to keep
1462 * setting gso_size to something.
1463 */
1464 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1465 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1466
1467 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1468 if (tcp_skb_pcount(skb) <= 1)
1469 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1470
1471 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1472 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1473
1474 if (skb->len > 0) {
1475 BUG_ON(!tcp_skb_pcount(skb));
1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1477 return false;
1478 }
1479
1480 /* Whole SKB was eaten :-) */
1481
1482 if (skb == tp->retransmit_skb_hint)
1483 tp->retransmit_skb_hint = prev;
1484 if (skb == tp->lost_skb_hint) {
1485 tp->lost_skb_hint = prev;
1486 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1487 }
1488
1489 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1490 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1491 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1492 TCP_SKB_CB(prev)->end_seq++;
1493
1494 if (skb == tcp_highest_sack(sk))
1495 tcp_advance_highest_sack(sk, skb);
1496
1497 tcp_skb_collapse_tstamp(prev, skb);
1498 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1499 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1500
1501 tcp_rtx_queue_unlink_and_free(skb, sk);
1502
1503 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1504
1505 return true;
1506 }
1507
1508 /* I wish gso_size would have a bit more sane initialization than
1509 * something-or-zero which complicates things
1510 */
tcp_skb_seglen(const struct sk_buff * skb)1511 static int tcp_skb_seglen(const struct sk_buff *skb)
1512 {
1513 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1514 }
1515
1516 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1517 static int skb_can_shift(const struct sk_buff *skb)
1518 {
1519 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1520 }
1521
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1522 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1523 int pcount, int shiftlen)
1524 {
1525 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1526 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1527 * to make sure not storing more than 65535 * 8 bytes per skb,
1528 * even if current MSS is bigger.
1529 */
1530 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1531 return 0;
1532 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1533 return 0;
1534 return skb_shift(to, from, shiftlen);
1535 }
1536
1537 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1538 * skb.
1539 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1540 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1541 struct tcp_sacktag_state *state,
1542 u32 start_seq, u32 end_seq,
1543 bool dup_sack)
1544 {
1545 struct tcp_sock *tp = tcp_sk(sk);
1546 struct sk_buff *prev;
1547 int mss;
1548 int pcount = 0;
1549 int len;
1550 int in_sack;
1551
1552 /* Normally R but no L won't result in plain S */
1553 if (!dup_sack &&
1554 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1555 goto fallback;
1556 if (!skb_can_shift(skb))
1557 goto fallback;
1558 /* This frame is about to be dropped (was ACKed). */
1559 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1560 goto fallback;
1561
1562 /* Can only happen with delayed DSACK + discard craziness */
1563 prev = skb_rb_prev(skb);
1564 if (!prev)
1565 goto fallback;
1566
1567 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1568 goto fallback;
1569
1570 if (!tcp_skb_can_collapse(prev, skb))
1571 goto fallback;
1572
1573 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1574 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1575
1576 if (in_sack) {
1577 len = skb->len;
1578 pcount = tcp_skb_pcount(skb);
1579 mss = tcp_skb_seglen(skb);
1580
1581 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1582 * drop this restriction as unnecessary
1583 */
1584 if (mss != tcp_skb_seglen(prev))
1585 goto fallback;
1586 } else {
1587 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1588 goto noop;
1589 /* CHECKME: This is non-MSS split case only?, this will
1590 * cause skipped skbs due to advancing loop btw, original
1591 * has that feature too
1592 */
1593 if (tcp_skb_pcount(skb) <= 1)
1594 goto noop;
1595
1596 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1597 if (!in_sack) {
1598 /* TODO: head merge to next could be attempted here
1599 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1600 * though it might not be worth of the additional hassle
1601 *
1602 * ...we can probably just fallback to what was done
1603 * previously. We could try merging non-SACKed ones
1604 * as well but it probably isn't going to buy off
1605 * because later SACKs might again split them, and
1606 * it would make skb timestamp tracking considerably
1607 * harder problem.
1608 */
1609 goto fallback;
1610 }
1611
1612 len = end_seq - TCP_SKB_CB(skb)->seq;
1613 BUG_ON(len < 0);
1614 BUG_ON(len > skb->len);
1615
1616 /* MSS boundaries should be honoured or else pcount will
1617 * severely break even though it makes things bit trickier.
1618 * Optimize common case to avoid most of the divides
1619 */
1620 mss = tcp_skb_mss(skb);
1621
1622 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1623 * drop this restriction as unnecessary
1624 */
1625 if (mss != tcp_skb_seglen(prev))
1626 goto fallback;
1627
1628 if (len == mss) {
1629 pcount = 1;
1630 } else if (len < mss) {
1631 goto noop;
1632 } else {
1633 pcount = len / mss;
1634 len = pcount * mss;
1635 }
1636 }
1637
1638 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1639 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1640 goto fallback;
1641
1642 if (!tcp_skb_shift(prev, skb, pcount, len))
1643 goto fallback;
1644 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1645 goto out;
1646
1647 /* Hole filled allows collapsing with the next as well, this is very
1648 * useful when hole on every nth skb pattern happens
1649 */
1650 skb = skb_rb_next(prev);
1651 if (!skb)
1652 goto out;
1653
1654 if (!skb_can_shift(skb) ||
1655 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1656 (mss != tcp_skb_seglen(skb)))
1657 goto out;
1658
1659 if (!tcp_skb_can_collapse(prev, skb))
1660 goto out;
1661 len = skb->len;
1662 pcount = tcp_skb_pcount(skb);
1663 if (tcp_skb_shift(prev, skb, pcount, len))
1664 tcp_shifted_skb(sk, prev, skb, state, pcount,
1665 len, mss, 0);
1666
1667 out:
1668 return prev;
1669
1670 noop:
1671 return skb;
1672
1673 fallback:
1674 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1675 return NULL;
1676 }
1677
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1678 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1679 struct tcp_sack_block *next_dup,
1680 struct tcp_sacktag_state *state,
1681 u32 start_seq, u32 end_seq,
1682 bool dup_sack_in)
1683 {
1684 struct tcp_sock *tp = tcp_sk(sk);
1685 struct sk_buff *tmp;
1686
1687 skb_rbtree_walk_from(skb) {
1688 int in_sack = 0;
1689 bool dup_sack = dup_sack_in;
1690
1691 /* queue is in-order => we can short-circuit the walk early */
1692 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1693 break;
1694
1695 if (next_dup &&
1696 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1697 in_sack = tcp_match_skb_to_sack(sk, skb,
1698 next_dup->start_seq,
1699 next_dup->end_seq);
1700 if (in_sack > 0)
1701 dup_sack = true;
1702 }
1703
1704 /* skb reference here is a bit tricky to get right, since
1705 * shifting can eat and free both this skb and the next,
1706 * so not even _safe variant of the loop is enough.
1707 */
1708 if (in_sack <= 0) {
1709 tmp = tcp_shift_skb_data(sk, skb, state,
1710 start_seq, end_seq, dup_sack);
1711 if (tmp) {
1712 if (tmp != skb) {
1713 skb = tmp;
1714 continue;
1715 }
1716
1717 in_sack = 0;
1718 } else {
1719 in_sack = tcp_match_skb_to_sack(sk, skb,
1720 start_seq,
1721 end_seq);
1722 }
1723 }
1724
1725 if (unlikely(in_sack < 0))
1726 break;
1727
1728 if (in_sack) {
1729 TCP_SKB_CB(skb)->sacked =
1730 tcp_sacktag_one(sk,
1731 state,
1732 TCP_SKB_CB(skb)->sacked,
1733 TCP_SKB_CB(skb)->seq,
1734 TCP_SKB_CB(skb)->end_seq,
1735 dup_sack,
1736 tcp_skb_pcount(skb),
1737 tcp_skb_timestamp_us(skb));
1738 tcp_rate_skb_delivered(sk, skb, state->rate);
1739 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1740 list_del_init(&skb->tcp_tsorted_anchor);
1741
1742 if (!before(TCP_SKB_CB(skb)->seq,
1743 tcp_highest_sack_seq(tp)))
1744 tcp_advance_highest_sack(sk, skb);
1745 }
1746 }
1747 return skb;
1748 }
1749
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1750 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1751 {
1752 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1753 struct sk_buff *skb;
1754
1755 while (*p) {
1756 parent = *p;
1757 skb = rb_to_skb(parent);
1758 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1759 p = &parent->rb_left;
1760 continue;
1761 }
1762 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1763 p = &parent->rb_right;
1764 continue;
1765 }
1766 return skb;
1767 }
1768 return NULL;
1769 }
1770
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1771 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1772 u32 skip_to_seq)
1773 {
1774 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1775 return skb;
1776
1777 return tcp_sacktag_bsearch(sk, skip_to_seq);
1778 }
1779
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1780 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1781 struct sock *sk,
1782 struct tcp_sack_block *next_dup,
1783 struct tcp_sacktag_state *state,
1784 u32 skip_to_seq)
1785 {
1786 if (!next_dup)
1787 return skb;
1788
1789 if (before(next_dup->start_seq, skip_to_seq)) {
1790 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1791 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1792 next_dup->start_seq, next_dup->end_seq,
1793 1);
1794 }
1795
1796 return skb;
1797 }
1798
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1799 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1800 {
1801 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1802 }
1803
1804 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1805 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1806 u32 prior_snd_una, struct tcp_sacktag_state *state)
1807 {
1808 struct tcp_sock *tp = tcp_sk(sk);
1809 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1810 TCP_SKB_CB(ack_skb)->sacked);
1811 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1812 struct tcp_sack_block sp[TCP_NUM_SACKS];
1813 struct tcp_sack_block *cache;
1814 struct sk_buff *skb;
1815 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1816 int used_sacks;
1817 bool found_dup_sack = false;
1818 int i, j;
1819 int first_sack_index;
1820
1821 state->flag = 0;
1822 state->reord = tp->snd_nxt;
1823
1824 if (!tp->sacked_out)
1825 tcp_highest_sack_reset(sk);
1826
1827 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1828 num_sacks, prior_snd_una, state);
1829
1830 /* Eliminate too old ACKs, but take into
1831 * account more or less fresh ones, they can
1832 * contain valid SACK info.
1833 */
1834 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1835 return 0;
1836
1837 if (!tp->packets_out)
1838 goto out;
1839
1840 used_sacks = 0;
1841 first_sack_index = 0;
1842 for (i = 0; i < num_sacks; i++) {
1843 bool dup_sack = !i && found_dup_sack;
1844
1845 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1846 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1847
1848 if (!tcp_is_sackblock_valid(tp, dup_sack,
1849 sp[used_sacks].start_seq,
1850 sp[used_sacks].end_seq)) {
1851 int mib_idx;
1852
1853 if (dup_sack) {
1854 if (!tp->undo_marker)
1855 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1856 else
1857 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1858 } else {
1859 /* Don't count olds caused by ACK reordering */
1860 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1861 !after(sp[used_sacks].end_seq, tp->snd_una))
1862 continue;
1863 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1864 }
1865
1866 NET_INC_STATS(sock_net(sk), mib_idx);
1867 if (i == 0)
1868 first_sack_index = -1;
1869 continue;
1870 }
1871
1872 /* Ignore very old stuff early */
1873 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1874 if (i == 0)
1875 first_sack_index = -1;
1876 continue;
1877 }
1878
1879 used_sacks++;
1880 }
1881
1882 /* order SACK blocks to allow in order walk of the retrans queue */
1883 for (i = used_sacks - 1; i > 0; i--) {
1884 for (j = 0; j < i; j++) {
1885 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1886 swap(sp[j], sp[j + 1]);
1887
1888 /* Track where the first SACK block goes to */
1889 if (j == first_sack_index)
1890 first_sack_index = j + 1;
1891 }
1892 }
1893 }
1894
1895 state->mss_now = tcp_current_mss(sk);
1896 skb = NULL;
1897 i = 0;
1898
1899 if (!tp->sacked_out) {
1900 /* It's already past, so skip checking against it */
1901 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1902 } else {
1903 cache = tp->recv_sack_cache;
1904 /* Skip empty blocks in at head of the cache */
1905 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1906 !cache->end_seq)
1907 cache++;
1908 }
1909
1910 while (i < used_sacks) {
1911 u32 start_seq = sp[i].start_seq;
1912 u32 end_seq = sp[i].end_seq;
1913 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1914 struct tcp_sack_block *next_dup = NULL;
1915
1916 if (found_dup_sack && ((i + 1) == first_sack_index))
1917 next_dup = &sp[i + 1];
1918
1919 /* Skip too early cached blocks */
1920 while (tcp_sack_cache_ok(tp, cache) &&
1921 !before(start_seq, cache->end_seq))
1922 cache++;
1923
1924 /* Can skip some work by looking recv_sack_cache? */
1925 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1926 after(end_seq, cache->start_seq)) {
1927
1928 /* Head todo? */
1929 if (before(start_seq, cache->start_seq)) {
1930 skb = tcp_sacktag_skip(skb, sk, start_seq);
1931 skb = tcp_sacktag_walk(skb, sk, next_dup,
1932 state,
1933 start_seq,
1934 cache->start_seq,
1935 dup_sack);
1936 }
1937
1938 /* Rest of the block already fully processed? */
1939 if (!after(end_seq, cache->end_seq))
1940 goto advance_sp;
1941
1942 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1943 state,
1944 cache->end_seq);
1945
1946 /* ...tail remains todo... */
1947 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1948 /* ...but better entrypoint exists! */
1949 skb = tcp_highest_sack(sk);
1950 if (!skb)
1951 break;
1952 cache++;
1953 goto walk;
1954 }
1955
1956 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1957 /* Check overlap against next cached too (past this one already) */
1958 cache++;
1959 continue;
1960 }
1961
1962 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1963 skb = tcp_highest_sack(sk);
1964 if (!skb)
1965 break;
1966 }
1967 skb = tcp_sacktag_skip(skb, sk, start_seq);
1968
1969 walk:
1970 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1971 start_seq, end_seq, dup_sack);
1972
1973 advance_sp:
1974 i++;
1975 }
1976
1977 /* Clear the head of the cache sack blocks so we can skip it next time */
1978 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1979 tp->recv_sack_cache[i].start_seq = 0;
1980 tp->recv_sack_cache[i].end_seq = 0;
1981 }
1982 for (j = 0; j < used_sacks; j++)
1983 tp->recv_sack_cache[i++] = sp[j];
1984
1985 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1986 tcp_check_sack_reordering(sk, state->reord, 0);
1987
1988 tcp_verify_left_out(tp);
1989 out:
1990
1991 #if FASTRETRANS_DEBUG > 0
1992 WARN_ON((int)tp->sacked_out < 0);
1993 WARN_ON((int)tp->lost_out < 0);
1994 WARN_ON((int)tp->retrans_out < 0);
1995 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1996 #endif
1997 return state->flag;
1998 }
1999
2000 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2001 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2002 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2003 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2004 {
2005 u32 holes;
2006
2007 holes = max(tp->lost_out, 1U);
2008 holes = min(holes, tp->packets_out);
2009
2010 if ((tp->sacked_out + holes) > tp->packets_out) {
2011 tp->sacked_out = tp->packets_out - holes;
2012 return true;
2013 }
2014 return false;
2015 }
2016
2017 /* If we receive more dupacks than we expected counting segments
2018 * in assumption of absent reordering, interpret this as reordering.
2019 * The only another reason could be bug in receiver TCP.
2020 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2021 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2022 {
2023 struct tcp_sock *tp = tcp_sk(sk);
2024
2025 if (!tcp_limit_reno_sacked(tp))
2026 return;
2027
2028 tp->reordering = min_t(u32, tp->packets_out + addend,
2029 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2030 tp->reord_seen++;
2031 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2032 }
2033
2034 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2035
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2036 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2037 {
2038 if (num_dupack) {
2039 struct tcp_sock *tp = tcp_sk(sk);
2040 u32 prior_sacked = tp->sacked_out;
2041 s32 delivered;
2042
2043 tp->sacked_out += num_dupack;
2044 tcp_check_reno_reordering(sk, 0);
2045 delivered = tp->sacked_out - prior_sacked;
2046 if (delivered > 0)
2047 tcp_count_delivered(tp, delivered, ece_ack);
2048 tcp_verify_left_out(tp);
2049 }
2050 }
2051
2052 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2053
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2054 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2055 {
2056 struct tcp_sock *tp = tcp_sk(sk);
2057
2058 if (acked > 0) {
2059 /* One ACK acked hole. The rest eat duplicate ACKs. */
2060 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2061 ece_ack);
2062 if (acked - 1 >= tp->sacked_out)
2063 tp->sacked_out = 0;
2064 else
2065 tp->sacked_out -= acked - 1;
2066 }
2067 tcp_check_reno_reordering(sk, acked);
2068 tcp_verify_left_out(tp);
2069 }
2070
tcp_reset_reno_sack(struct tcp_sock * tp)2071 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2072 {
2073 tp->sacked_out = 0;
2074 }
2075
tcp_clear_retrans(struct tcp_sock * tp)2076 void tcp_clear_retrans(struct tcp_sock *tp)
2077 {
2078 tp->retrans_out = 0;
2079 tp->lost_out = 0;
2080 tp->undo_marker = 0;
2081 tp->undo_retrans = -1;
2082 tp->sacked_out = 0;
2083 }
2084
tcp_init_undo(struct tcp_sock * tp)2085 static inline void tcp_init_undo(struct tcp_sock *tp)
2086 {
2087 tp->undo_marker = tp->snd_una;
2088 /* Retransmission still in flight may cause DSACKs later. */
2089 tp->undo_retrans = tp->retrans_out ? : -1;
2090 }
2091
tcp_is_rack(const struct sock * sk)2092 static bool tcp_is_rack(const struct sock *sk)
2093 {
2094 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2095 TCP_RACK_LOSS_DETECTION;
2096 }
2097
2098 /* If we detect SACK reneging, forget all SACK information
2099 * and reset tags completely, otherwise preserve SACKs. If receiver
2100 * dropped its ofo queue, we will know this due to reneging detection.
2101 */
tcp_timeout_mark_lost(struct sock * sk)2102 static void tcp_timeout_mark_lost(struct sock *sk)
2103 {
2104 struct tcp_sock *tp = tcp_sk(sk);
2105 struct sk_buff *skb, *head;
2106 bool is_reneg; /* is receiver reneging on SACKs? */
2107
2108 head = tcp_rtx_queue_head(sk);
2109 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2110 if (is_reneg) {
2111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2112 tp->sacked_out = 0;
2113 /* Mark SACK reneging until we recover from this loss event. */
2114 tp->is_sack_reneg = 1;
2115 } else if (tcp_is_reno(tp)) {
2116 tcp_reset_reno_sack(tp);
2117 }
2118
2119 skb = head;
2120 skb_rbtree_walk_from(skb) {
2121 if (is_reneg)
2122 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2123 else if (tcp_is_rack(sk) && skb != head &&
2124 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2125 continue; /* Don't mark recently sent ones lost yet */
2126 tcp_mark_skb_lost(sk, skb);
2127 }
2128 tcp_verify_left_out(tp);
2129 tcp_clear_all_retrans_hints(tp);
2130 }
2131
2132 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2133 void tcp_enter_loss(struct sock *sk)
2134 {
2135 const struct inet_connection_sock *icsk = inet_csk(sk);
2136 struct tcp_sock *tp = tcp_sk(sk);
2137 struct net *net = sock_net(sk);
2138 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2139 u8 reordering;
2140
2141 tcp_timeout_mark_lost(sk);
2142
2143 /* Reduce ssthresh if it has not yet been made inside this window. */
2144 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2145 !after(tp->high_seq, tp->snd_una) ||
2146 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2147 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2148 tp->prior_cwnd = tp->snd_cwnd;
2149 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2150 tcp_ca_event(sk, CA_EVENT_LOSS);
2151 tcp_init_undo(tp);
2152 }
2153 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2154 tp->snd_cwnd_cnt = 0;
2155 tp->snd_cwnd_stamp = tcp_jiffies32;
2156
2157 /* Timeout in disordered state after receiving substantial DUPACKs
2158 * suggests that the degree of reordering is over-estimated.
2159 */
2160 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2161 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2162 tp->sacked_out >= reordering)
2163 tp->reordering = min_t(unsigned int, tp->reordering,
2164 reordering);
2165
2166 tcp_set_ca_state(sk, TCP_CA_Loss);
2167 tp->high_seq = tp->snd_nxt;
2168 tcp_ecn_queue_cwr(tp);
2169
2170 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2171 * loss recovery is underway except recurring timeout(s) on
2172 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2173 */
2174 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2175 (new_recovery || icsk->icsk_retransmits) &&
2176 !inet_csk(sk)->icsk_mtup.probe_size;
2177 }
2178
2179 /* If ACK arrived pointing to a remembered SACK, it means that our
2180 * remembered SACKs do not reflect real state of receiver i.e.
2181 * receiver _host_ is heavily congested (or buggy).
2182 *
2183 * To avoid big spurious retransmission bursts due to transient SACK
2184 * scoreboard oddities that look like reneging, we give the receiver a
2185 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2186 * restore sanity to the SACK scoreboard. If the apparent reneging
2187 * persists until this RTO then we'll clear the SACK scoreboard.
2188 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2189 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2190 {
2191 if (*ack_flag & FLAG_SACK_RENEGING &&
2192 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2193 struct tcp_sock *tp = tcp_sk(sk);
2194 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2195 msecs_to_jiffies(10));
2196
2197 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2198 delay, TCP_RTO_MAX);
2199 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2200 return true;
2201 }
2202 return false;
2203 }
2204
2205 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2206 * counter when SACK is enabled (without SACK, sacked_out is used for
2207 * that purpose).
2208 *
2209 * With reordering, holes may still be in flight, so RFC3517 recovery
2210 * uses pure sacked_out (total number of SACKed segments) even though
2211 * it violates the RFC that uses duplicate ACKs, often these are equal
2212 * but when e.g. out-of-window ACKs or packet duplication occurs,
2213 * they differ. Since neither occurs due to loss, TCP should really
2214 * ignore them.
2215 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2216 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2217 {
2218 return tp->sacked_out + 1;
2219 }
2220
2221 /* Linux NewReno/SACK/ECN state machine.
2222 * --------------------------------------
2223 *
2224 * "Open" Normal state, no dubious events, fast path.
2225 * "Disorder" In all the respects it is "Open",
2226 * but requires a bit more attention. It is entered when
2227 * we see some SACKs or dupacks. It is split of "Open"
2228 * mainly to move some processing from fast path to slow one.
2229 * "CWR" CWND was reduced due to some Congestion Notification event.
2230 * It can be ECN, ICMP source quench, local device congestion.
2231 * "Recovery" CWND was reduced, we are fast-retransmitting.
2232 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2233 *
2234 * tcp_fastretrans_alert() is entered:
2235 * - each incoming ACK, if state is not "Open"
2236 * - when arrived ACK is unusual, namely:
2237 * * SACK
2238 * * Duplicate ACK.
2239 * * ECN ECE.
2240 *
2241 * Counting packets in flight is pretty simple.
2242 *
2243 * in_flight = packets_out - left_out + retrans_out
2244 *
2245 * packets_out is SND.NXT-SND.UNA counted in packets.
2246 *
2247 * retrans_out is number of retransmitted segments.
2248 *
2249 * left_out is number of segments left network, but not ACKed yet.
2250 *
2251 * left_out = sacked_out + lost_out
2252 *
2253 * sacked_out: Packets, which arrived to receiver out of order
2254 * and hence not ACKed. With SACKs this number is simply
2255 * amount of SACKed data. Even without SACKs
2256 * it is easy to give pretty reliable estimate of this number,
2257 * counting duplicate ACKs.
2258 *
2259 * lost_out: Packets lost by network. TCP has no explicit
2260 * "loss notification" feedback from network (for now).
2261 * It means that this number can be only _guessed_.
2262 * Actually, it is the heuristics to predict lossage that
2263 * distinguishes different algorithms.
2264 *
2265 * F.e. after RTO, when all the queue is considered as lost,
2266 * lost_out = packets_out and in_flight = retrans_out.
2267 *
2268 * Essentially, we have now a few algorithms detecting
2269 * lost packets.
2270 *
2271 * If the receiver supports SACK:
2272 *
2273 * RFC6675/3517: It is the conventional algorithm. A packet is
2274 * considered lost if the number of higher sequence packets
2275 * SACKed is greater than or equal the DUPACK thoreshold
2276 * (reordering). This is implemented in tcp_mark_head_lost and
2277 * tcp_update_scoreboard.
2278 *
2279 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2280 * (2017-) that checks timing instead of counting DUPACKs.
2281 * Essentially a packet is considered lost if it's not S/ACKed
2282 * after RTT + reordering_window, where both metrics are
2283 * dynamically measured and adjusted. This is implemented in
2284 * tcp_rack_mark_lost.
2285 *
2286 * If the receiver does not support SACK:
2287 *
2288 * NewReno (RFC6582): in Recovery we assume that one segment
2289 * is lost (classic Reno). While we are in Recovery and
2290 * a partial ACK arrives, we assume that one more packet
2291 * is lost (NewReno). This heuristics are the same in NewReno
2292 * and SACK.
2293 *
2294 * Really tricky (and requiring careful tuning) part of algorithm
2295 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2296 * The first determines the moment _when_ we should reduce CWND and,
2297 * hence, slow down forward transmission. In fact, it determines the moment
2298 * when we decide that hole is caused by loss, rather than by a reorder.
2299 *
2300 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2301 * holes, caused by lost packets.
2302 *
2303 * And the most logically complicated part of algorithm is undo
2304 * heuristics. We detect false retransmits due to both too early
2305 * fast retransmit (reordering) and underestimated RTO, analyzing
2306 * timestamps and D-SACKs. When we detect that some segments were
2307 * retransmitted by mistake and CWND reduction was wrong, we undo
2308 * window reduction and abort recovery phase. This logic is hidden
2309 * inside several functions named tcp_try_undo_<something>.
2310 */
2311
2312 /* This function decides, when we should leave Disordered state
2313 * and enter Recovery phase, reducing congestion window.
2314 *
2315 * Main question: may we further continue forward transmission
2316 * with the same cwnd?
2317 */
tcp_time_to_recover(struct sock * sk,int flag)2318 static bool tcp_time_to_recover(struct sock *sk, int flag)
2319 {
2320 struct tcp_sock *tp = tcp_sk(sk);
2321
2322 /* Trick#1: The loss is proven. */
2323 if (tp->lost_out)
2324 return true;
2325
2326 /* Not-A-Trick#2 : Classic rule... */
2327 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2328 return true;
2329
2330 return false;
2331 }
2332
2333 /* Detect loss in event "A" above by marking head of queue up as lost.
2334 * For RFC3517 SACK, a segment is considered lost if it
2335 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2336 * the maximum SACKed segments to pass before reaching this limit.
2337 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2338 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2339 {
2340 struct tcp_sock *tp = tcp_sk(sk);
2341 struct sk_buff *skb;
2342 int cnt;
2343 /* Use SACK to deduce losses of new sequences sent during recovery */
2344 const u32 loss_high = tp->snd_nxt;
2345
2346 WARN_ON(packets > tp->packets_out);
2347 skb = tp->lost_skb_hint;
2348 if (skb) {
2349 /* Head already handled? */
2350 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2351 return;
2352 cnt = tp->lost_cnt_hint;
2353 } else {
2354 skb = tcp_rtx_queue_head(sk);
2355 cnt = 0;
2356 }
2357
2358 skb_rbtree_walk_from(skb) {
2359 /* TODO: do this better */
2360 /* this is not the most efficient way to do this... */
2361 tp->lost_skb_hint = skb;
2362 tp->lost_cnt_hint = cnt;
2363
2364 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2365 break;
2366
2367 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2368 cnt += tcp_skb_pcount(skb);
2369
2370 if (cnt > packets)
2371 break;
2372
2373 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2374 tcp_mark_skb_lost(sk, skb);
2375
2376 if (mark_head)
2377 break;
2378 }
2379 tcp_verify_left_out(tp);
2380 }
2381
2382 /* Account newly detected lost packet(s) */
2383
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2384 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2385 {
2386 struct tcp_sock *tp = tcp_sk(sk);
2387
2388 if (tcp_is_sack(tp)) {
2389 int sacked_upto = tp->sacked_out - tp->reordering;
2390 if (sacked_upto >= 0)
2391 tcp_mark_head_lost(sk, sacked_upto, 0);
2392 else if (fast_rexmit)
2393 tcp_mark_head_lost(sk, 1, 1);
2394 }
2395 }
2396
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2397 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2398 {
2399 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2400 before(tp->rx_opt.rcv_tsecr, when);
2401 }
2402
2403 /* skb is spurious retransmitted if the returned timestamp echo
2404 * reply is prior to the skb transmission time
2405 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2406 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2407 const struct sk_buff *skb)
2408 {
2409 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2410 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2411 }
2412
2413 /* Nothing was retransmitted or returned timestamp is less
2414 * than timestamp of the first retransmission.
2415 */
tcp_packet_delayed(const struct tcp_sock * tp)2416 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2417 {
2418 return tp->retrans_stamp &&
2419 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2420 }
2421
2422 /* Undo procedures. */
2423
2424 /* We can clear retrans_stamp when there are no retransmissions in the
2425 * window. It would seem that it is trivially available for us in
2426 * tp->retrans_out, however, that kind of assumptions doesn't consider
2427 * what will happen if errors occur when sending retransmission for the
2428 * second time. ...It could the that such segment has only
2429 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2430 * the head skb is enough except for some reneging corner cases that
2431 * are not worth the effort.
2432 *
2433 * Main reason for all this complexity is the fact that connection dying
2434 * time now depends on the validity of the retrans_stamp, in particular,
2435 * that successive retransmissions of a segment must not advance
2436 * retrans_stamp under any conditions.
2437 */
tcp_any_retrans_done(const struct sock * sk)2438 static bool tcp_any_retrans_done(const struct sock *sk)
2439 {
2440 const struct tcp_sock *tp = tcp_sk(sk);
2441 struct sk_buff *skb;
2442
2443 if (tp->retrans_out)
2444 return true;
2445
2446 skb = tcp_rtx_queue_head(sk);
2447 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2448 return true;
2449
2450 return false;
2451 }
2452
DBGUNDO(struct sock * sk,const char * msg)2453 static void DBGUNDO(struct sock *sk, const char *msg)
2454 {
2455 #if FASTRETRANS_DEBUG > 1
2456 struct tcp_sock *tp = tcp_sk(sk);
2457 struct inet_sock *inet = inet_sk(sk);
2458
2459 if (sk->sk_family == AF_INET) {
2460 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2461 msg,
2462 &inet->inet_daddr, ntohs(inet->inet_dport),
2463 tp->snd_cwnd, tcp_left_out(tp),
2464 tp->snd_ssthresh, tp->prior_ssthresh,
2465 tp->packets_out);
2466 }
2467 #if IS_ENABLED(CONFIG_IPV6)
2468 else if (sk->sk_family == AF_INET6) {
2469 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2470 msg,
2471 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2472 tp->snd_cwnd, tcp_left_out(tp),
2473 tp->snd_ssthresh, tp->prior_ssthresh,
2474 tp->packets_out);
2475 }
2476 #endif
2477 #endif
2478 }
2479
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2480 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2481 {
2482 struct tcp_sock *tp = tcp_sk(sk);
2483
2484 if (unmark_loss) {
2485 struct sk_buff *skb;
2486
2487 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2488 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2489 }
2490 tp->lost_out = 0;
2491 tcp_clear_all_retrans_hints(tp);
2492 }
2493
2494 if (tp->prior_ssthresh) {
2495 const struct inet_connection_sock *icsk = inet_csk(sk);
2496
2497 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2498
2499 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2500 tp->snd_ssthresh = tp->prior_ssthresh;
2501 tcp_ecn_withdraw_cwr(tp);
2502 }
2503 }
2504 tp->snd_cwnd_stamp = tcp_jiffies32;
2505 tp->undo_marker = 0;
2506 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2507 }
2508
tcp_may_undo(const struct tcp_sock * tp)2509 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2510 {
2511 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2512 }
2513
tcp_is_non_sack_preventing_reopen(struct sock * sk)2514 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2515 {
2516 struct tcp_sock *tp = tcp_sk(sk);
2517
2518 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2519 /* Hold old state until something *above* high_seq
2520 * is ACKed. For Reno it is MUST to prevent false
2521 * fast retransmits (RFC2582). SACK TCP is safe. */
2522 if (!tcp_any_retrans_done(sk))
2523 tp->retrans_stamp = 0;
2524 return true;
2525 }
2526 return false;
2527 }
2528
2529 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2530 static bool tcp_try_undo_recovery(struct sock *sk)
2531 {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533
2534 if (tcp_may_undo(tp)) {
2535 int mib_idx;
2536
2537 /* Happy end! We did not retransmit anything
2538 * or our original transmission succeeded.
2539 */
2540 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2541 tcp_undo_cwnd_reduction(sk, false);
2542 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2543 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2544 else
2545 mib_idx = LINUX_MIB_TCPFULLUNDO;
2546
2547 NET_INC_STATS(sock_net(sk), mib_idx);
2548 } else if (tp->rack.reo_wnd_persist) {
2549 tp->rack.reo_wnd_persist--;
2550 }
2551 if (tcp_is_non_sack_preventing_reopen(sk))
2552 return true;
2553 tcp_set_ca_state(sk, TCP_CA_Open);
2554 tp->is_sack_reneg = 0;
2555 return false;
2556 }
2557
2558 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2559 static bool tcp_try_undo_dsack(struct sock *sk)
2560 {
2561 struct tcp_sock *tp = tcp_sk(sk);
2562
2563 if (tp->undo_marker && !tp->undo_retrans) {
2564 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2565 tp->rack.reo_wnd_persist + 1);
2566 DBGUNDO(sk, "D-SACK");
2567 tcp_undo_cwnd_reduction(sk, false);
2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2569 return true;
2570 }
2571 return false;
2572 }
2573
2574 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2575 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2576 {
2577 struct tcp_sock *tp = tcp_sk(sk);
2578
2579 if (frto_undo || tcp_may_undo(tp)) {
2580 tcp_undo_cwnd_reduction(sk, true);
2581
2582 DBGUNDO(sk, "partial loss");
2583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2584 if (frto_undo)
2585 NET_INC_STATS(sock_net(sk),
2586 LINUX_MIB_TCPSPURIOUSRTOS);
2587 inet_csk(sk)->icsk_retransmits = 0;
2588 if (tcp_is_non_sack_preventing_reopen(sk))
2589 return true;
2590 if (frto_undo || tcp_is_sack(tp)) {
2591 tcp_set_ca_state(sk, TCP_CA_Open);
2592 tp->is_sack_reneg = 0;
2593 }
2594 return true;
2595 }
2596 return false;
2597 }
2598
2599 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2600 * It computes the number of packets to send (sndcnt) based on packets newly
2601 * delivered:
2602 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2603 * cwnd reductions across a full RTT.
2604 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2605 * But when the retransmits are acked without further losses, PRR
2606 * slow starts cwnd up to ssthresh to speed up the recovery.
2607 */
tcp_init_cwnd_reduction(struct sock * sk)2608 static void tcp_init_cwnd_reduction(struct sock *sk)
2609 {
2610 struct tcp_sock *tp = tcp_sk(sk);
2611
2612 tp->high_seq = tp->snd_nxt;
2613 tp->tlp_high_seq = 0;
2614 tp->snd_cwnd_cnt = 0;
2615 tp->prior_cwnd = tp->snd_cwnd;
2616 tp->prr_delivered = 0;
2617 tp->prr_out = 0;
2618 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2619 tcp_ecn_queue_cwr(tp);
2620 }
2621
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2622 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2623 {
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 int sndcnt = 0;
2626 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2627
2628 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2629 return;
2630
2631 tp->prr_delivered += newly_acked_sacked;
2632 if (delta < 0) {
2633 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2634 tp->prior_cwnd - 1;
2635 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2636 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2637 FLAG_RETRANS_DATA_ACKED) {
2638 sndcnt = min_t(int, delta,
2639 max_t(int, tp->prr_delivered - tp->prr_out,
2640 newly_acked_sacked) + 1);
2641 } else {
2642 sndcnt = min(delta, newly_acked_sacked);
2643 }
2644 /* Force a fast retransmit upon entering fast recovery */
2645 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2646 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2647 }
2648
tcp_end_cwnd_reduction(struct sock * sk)2649 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2650 {
2651 struct tcp_sock *tp = tcp_sk(sk);
2652
2653 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2654 return;
2655
2656 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2657 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2658 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2659 tp->snd_cwnd = tp->snd_ssthresh;
2660 tp->snd_cwnd_stamp = tcp_jiffies32;
2661 }
2662 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2663 }
2664
2665 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2666 void tcp_enter_cwr(struct sock *sk)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669
2670 tp->prior_ssthresh = 0;
2671 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2672 tp->undo_marker = 0;
2673 tcp_init_cwnd_reduction(sk);
2674 tcp_set_ca_state(sk, TCP_CA_CWR);
2675 }
2676 }
2677 EXPORT_SYMBOL(tcp_enter_cwr);
2678
tcp_try_keep_open(struct sock * sk)2679 static void tcp_try_keep_open(struct sock *sk)
2680 {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 int state = TCP_CA_Open;
2683
2684 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2685 state = TCP_CA_Disorder;
2686
2687 if (inet_csk(sk)->icsk_ca_state != state) {
2688 tcp_set_ca_state(sk, state);
2689 tp->high_seq = tp->snd_nxt;
2690 }
2691 }
2692
tcp_try_to_open(struct sock * sk,int flag)2693 static void tcp_try_to_open(struct sock *sk, int flag)
2694 {
2695 struct tcp_sock *tp = tcp_sk(sk);
2696
2697 tcp_verify_left_out(tp);
2698
2699 if (!tcp_any_retrans_done(sk))
2700 tp->retrans_stamp = 0;
2701
2702 if (flag & FLAG_ECE)
2703 tcp_enter_cwr(sk);
2704
2705 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2706 tcp_try_keep_open(sk);
2707 }
2708 }
2709
tcp_mtup_probe_failed(struct sock * sk)2710 static void tcp_mtup_probe_failed(struct sock *sk)
2711 {
2712 struct inet_connection_sock *icsk = inet_csk(sk);
2713
2714 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2715 icsk->icsk_mtup.probe_size = 0;
2716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2717 }
2718
tcp_mtup_probe_success(struct sock * sk)2719 static void tcp_mtup_probe_success(struct sock *sk)
2720 {
2721 struct tcp_sock *tp = tcp_sk(sk);
2722 struct inet_connection_sock *icsk = inet_csk(sk);
2723 u64 val;
2724
2725 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2726
2727 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2728 do_div(val, icsk->icsk_mtup.probe_size);
2729 WARN_ON_ONCE((u32)val != val);
2730 tp->snd_cwnd = max_t(u32, 1U, val);
2731
2732 tp->snd_cwnd_cnt = 0;
2733 tp->snd_cwnd_stamp = tcp_jiffies32;
2734 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2735
2736 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2737 icsk->icsk_mtup.probe_size = 0;
2738 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2739 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2740 }
2741
2742 /* Do a simple retransmit without using the backoff mechanisms in
2743 * tcp_timer. This is used for path mtu discovery.
2744 * The socket is already locked here.
2745 */
tcp_simple_retransmit(struct sock * sk)2746 void tcp_simple_retransmit(struct sock *sk)
2747 {
2748 const struct inet_connection_sock *icsk = inet_csk(sk);
2749 struct tcp_sock *tp = tcp_sk(sk);
2750 struct sk_buff *skb;
2751 unsigned int mss = tcp_current_mss(sk);
2752
2753 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2754 if (tcp_skb_seglen(skb) > mss)
2755 tcp_mark_skb_lost(sk, skb);
2756 }
2757
2758 tcp_clear_retrans_hints_partial(tp);
2759
2760 if (!tp->lost_out)
2761 return;
2762
2763 if (tcp_is_reno(tp))
2764 tcp_limit_reno_sacked(tp);
2765
2766 tcp_verify_left_out(tp);
2767
2768 /* Don't muck with the congestion window here.
2769 * Reason is that we do not increase amount of _data_
2770 * in network, but units changed and effective
2771 * cwnd/ssthresh really reduced now.
2772 */
2773 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2774 tp->high_seq = tp->snd_nxt;
2775 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2776 tp->prior_ssthresh = 0;
2777 tp->undo_marker = 0;
2778 tcp_set_ca_state(sk, TCP_CA_Loss);
2779 }
2780 tcp_xmit_retransmit_queue(sk);
2781 }
2782 EXPORT_SYMBOL(tcp_simple_retransmit);
2783
tcp_enter_recovery(struct sock * sk,bool ece_ack)2784 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2785 {
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 int mib_idx;
2788
2789 if (tcp_is_reno(tp))
2790 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2791 else
2792 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2793
2794 NET_INC_STATS(sock_net(sk), mib_idx);
2795
2796 tp->prior_ssthresh = 0;
2797 tcp_init_undo(tp);
2798
2799 if (!tcp_in_cwnd_reduction(sk)) {
2800 if (!ece_ack)
2801 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2802 tcp_init_cwnd_reduction(sk);
2803 }
2804 tcp_set_ca_state(sk, TCP_CA_Recovery);
2805 }
2806
2807 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2808 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2809 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2810 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2811 int *rexmit)
2812 {
2813 struct tcp_sock *tp = tcp_sk(sk);
2814 bool recovered = !before(tp->snd_una, tp->high_seq);
2815
2816 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2817 tcp_try_undo_loss(sk, false))
2818 return;
2819
2820 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2821 /* Step 3.b. A timeout is spurious if not all data are
2822 * lost, i.e., never-retransmitted data are (s)acked.
2823 */
2824 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2825 tcp_try_undo_loss(sk, true))
2826 return;
2827
2828 if (after(tp->snd_nxt, tp->high_seq)) {
2829 if (flag & FLAG_DATA_SACKED || num_dupack)
2830 tp->frto = 0; /* Step 3.a. loss was real */
2831 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2832 tp->high_seq = tp->snd_nxt;
2833 /* Step 2.b. Try send new data (but deferred until cwnd
2834 * is updated in tcp_ack()). Otherwise fall back to
2835 * the conventional recovery.
2836 */
2837 if (!tcp_write_queue_empty(sk) &&
2838 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2839 *rexmit = REXMIT_NEW;
2840 return;
2841 }
2842 tp->frto = 0;
2843 }
2844 }
2845
2846 if (recovered) {
2847 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2848 tcp_try_undo_recovery(sk);
2849 return;
2850 }
2851 if (tcp_is_reno(tp)) {
2852 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2853 * delivered. Lower inflight to clock out (re)tranmissions.
2854 */
2855 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2856 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2857 else if (flag & FLAG_SND_UNA_ADVANCED)
2858 tcp_reset_reno_sack(tp);
2859 }
2860 *rexmit = REXMIT_LOST;
2861 }
2862
tcp_force_fast_retransmit(struct sock * sk)2863 static bool tcp_force_fast_retransmit(struct sock *sk)
2864 {
2865 struct tcp_sock *tp = tcp_sk(sk);
2866
2867 return after(tcp_highest_sack_seq(tp),
2868 tp->snd_una + tp->reordering * tp->mss_cache);
2869 }
2870
2871 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2872 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2873 bool *do_lost)
2874 {
2875 struct tcp_sock *tp = tcp_sk(sk);
2876
2877 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2878 /* Plain luck! Hole if filled with delayed
2879 * packet, rather than with a retransmit. Check reordering.
2880 */
2881 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2882
2883 /* We are getting evidence that the reordering degree is higher
2884 * than we realized. If there are no retransmits out then we
2885 * can undo. Otherwise we clock out new packets but do not
2886 * mark more packets lost or retransmit more.
2887 */
2888 if (tp->retrans_out)
2889 return true;
2890
2891 if (!tcp_any_retrans_done(sk))
2892 tp->retrans_stamp = 0;
2893
2894 DBGUNDO(sk, "partial recovery");
2895 tcp_undo_cwnd_reduction(sk, true);
2896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2897 tcp_try_keep_open(sk);
2898 } else {
2899 /* Partial ACK arrived. Force fast retransmit. */
2900 *do_lost = tcp_force_fast_retransmit(sk);
2901 }
2902 return false;
2903 }
2904
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2905 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2906 {
2907 struct tcp_sock *tp = tcp_sk(sk);
2908
2909 if (tcp_rtx_queue_empty(sk))
2910 return;
2911
2912 if (unlikely(tcp_is_reno(tp))) {
2913 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2914 } else if (tcp_is_rack(sk)) {
2915 u32 prior_retrans = tp->retrans_out;
2916
2917 if (tcp_rack_mark_lost(sk))
2918 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2919 if (prior_retrans > tp->retrans_out)
2920 *ack_flag |= FLAG_LOST_RETRANS;
2921 }
2922 }
2923
2924 /* Process an event, which can update packets-in-flight not trivially.
2925 * Main goal of this function is to calculate new estimate for left_out,
2926 * taking into account both packets sitting in receiver's buffer and
2927 * packets lost by network.
2928 *
2929 * Besides that it updates the congestion state when packet loss or ECN
2930 * is detected. But it does not reduce the cwnd, it is done by the
2931 * congestion control later.
2932 *
2933 * It does _not_ decide what to send, it is made in function
2934 * tcp_xmit_retransmit_queue().
2935 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2936 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2937 int num_dupack, int *ack_flag, int *rexmit)
2938 {
2939 struct inet_connection_sock *icsk = inet_csk(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2941 int fast_rexmit = 0, flag = *ack_flag;
2942 bool ece_ack = flag & FLAG_ECE;
2943 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2944 tcp_force_fast_retransmit(sk));
2945
2946 if (!tp->packets_out && tp->sacked_out)
2947 tp->sacked_out = 0;
2948
2949 /* Now state machine starts.
2950 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2951 if (ece_ack)
2952 tp->prior_ssthresh = 0;
2953
2954 /* B. In all the states check for reneging SACKs. */
2955 if (tcp_check_sack_reneging(sk, ack_flag))
2956 return;
2957
2958 /* C. Check consistency of the current state. */
2959 tcp_verify_left_out(tp);
2960
2961 /* D. Check state exit conditions. State can be terminated
2962 * when high_seq is ACKed. */
2963 if (icsk->icsk_ca_state == TCP_CA_Open) {
2964 WARN_ON(tp->retrans_out != 0);
2965 tp->retrans_stamp = 0;
2966 } else if (!before(tp->snd_una, tp->high_seq)) {
2967 switch (icsk->icsk_ca_state) {
2968 case TCP_CA_CWR:
2969 /* CWR is to be held something *above* high_seq
2970 * is ACKed for CWR bit to reach receiver. */
2971 if (tp->snd_una != tp->high_seq) {
2972 tcp_end_cwnd_reduction(sk);
2973 tcp_set_ca_state(sk, TCP_CA_Open);
2974 }
2975 break;
2976
2977 case TCP_CA_Recovery:
2978 if (tcp_is_reno(tp))
2979 tcp_reset_reno_sack(tp);
2980 if (tcp_try_undo_recovery(sk))
2981 return;
2982 tcp_end_cwnd_reduction(sk);
2983 break;
2984 }
2985 }
2986
2987 /* E. Process state. */
2988 switch (icsk->icsk_ca_state) {
2989 case TCP_CA_Recovery:
2990 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 if (tcp_is_reno(tp))
2992 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2993 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2994 return;
2995
2996 if (tcp_try_undo_dsack(sk))
2997 tcp_try_keep_open(sk);
2998
2999 tcp_identify_packet_loss(sk, ack_flag);
3000 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3001 if (!tcp_time_to_recover(sk, flag))
3002 return;
3003 /* Undo reverts the recovery state. If loss is evident,
3004 * starts a new recovery (e.g. reordering then loss);
3005 */
3006 tcp_enter_recovery(sk, ece_ack);
3007 }
3008 break;
3009 case TCP_CA_Loss:
3010 tcp_process_loss(sk, flag, num_dupack, rexmit);
3011 tcp_identify_packet_loss(sk, ack_flag);
3012 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3013 (*ack_flag & FLAG_LOST_RETRANS)))
3014 return;
3015 /* Change state if cwnd is undone or retransmits are lost */
3016 fallthrough;
3017 default:
3018 if (tcp_is_reno(tp)) {
3019 if (flag & FLAG_SND_UNA_ADVANCED)
3020 tcp_reset_reno_sack(tp);
3021 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3022 }
3023
3024 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3025 tcp_try_undo_dsack(sk);
3026
3027 tcp_identify_packet_loss(sk, ack_flag);
3028 if (!tcp_time_to_recover(sk, flag)) {
3029 tcp_try_to_open(sk, flag);
3030 return;
3031 }
3032
3033 /* MTU probe failure: don't reduce cwnd */
3034 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3035 icsk->icsk_mtup.probe_size &&
3036 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3037 tcp_mtup_probe_failed(sk);
3038 /* Restores the reduction we did in tcp_mtup_probe() */
3039 tp->snd_cwnd++;
3040 tcp_simple_retransmit(sk);
3041 return;
3042 }
3043
3044 /* Otherwise enter Recovery state */
3045 tcp_enter_recovery(sk, ece_ack);
3046 fast_rexmit = 1;
3047 }
3048
3049 if (!tcp_is_rack(sk) && do_lost)
3050 tcp_update_scoreboard(sk, fast_rexmit);
3051 *rexmit = REXMIT_LOST;
3052 }
3053
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3054 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3055 {
3056 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3057 struct tcp_sock *tp = tcp_sk(sk);
3058
3059 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3060 /* If the remote keeps returning delayed ACKs, eventually
3061 * the min filter would pick it up and overestimate the
3062 * prop. delay when it expires. Skip suspected delayed ACKs.
3063 */
3064 return;
3065 }
3066 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3067 rtt_us ? : jiffies_to_usecs(1));
3068 }
3069
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3070 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3071 long seq_rtt_us, long sack_rtt_us,
3072 long ca_rtt_us, struct rate_sample *rs)
3073 {
3074 const struct tcp_sock *tp = tcp_sk(sk);
3075
3076 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3077 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3078 * Karn's algorithm forbids taking RTT if some retransmitted data
3079 * is acked (RFC6298).
3080 */
3081 if (seq_rtt_us < 0)
3082 seq_rtt_us = sack_rtt_us;
3083
3084 /* RTTM Rule: A TSecr value received in a segment is used to
3085 * update the averaged RTT measurement only if the segment
3086 * acknowledges some new data, i.e., only if it advances the
3087 * left edge of the send window.
3088 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3089 */
3090 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3091 flag & FLAG_ACKED) {
3092 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3093
3094 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3095 if (!delta)
3096 delta = 1;
3097 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3098 ca_rtt_us = seq_rtt_us;
3099 }
3100 }
3101 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3102 if (seq_rtt_us < 0)
3103 return false;
3104
3105 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3106 * always taken together with ACK, SACK, or TS-opts. Any negative
3107 * values will be skipped with the seq_rtt_us < 0 check above.
3108 */
3109 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3110 tcp_rtt_estimator(sk, seq_rtt_us);
3111 tcp_set_rto(sk);
3112
3113 /* RFC6298: only reset backoff on valid RTT measurement. */
3114 inet_csk(sk)->icsk_backoff = 0;
3115 return true;
3116 }
3117
3118 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3119 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3120 {
3121 struct rate_sample rs;
3122 long rtt_us = -1L;
3123
3124 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3125 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3126
3127 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3128 }
3129
3130
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3131 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3132 {
3133 const struct inet_connection_sock *icsk = inet_csk(sk);
3134
3135 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3136 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3137 }
3138
3139 /* Restart timer after forward progress on connection.
3140 * RFC2988 recommends to restart timer to now+rto.
3141 */
tcp_rearm_rto(struct sock * sk)3142 void tcp_rearm_rto(struct sock *sk)
3143 {
3144 const struct inet_connection_sock *icsk = inet_csk(sk);
3145 struct tcp_sock *tp = tcp_sk(sk);
3146
3147 /* If the retrans timer is currently being used by Fast Open
3148 * for SYN-ACK retrans purpose, stay put.
3149 */
3150 if (rcu_access_pointer(tp->fastopen_rsk))
3151 return;
3152
3153 if (!tp->packets_out) {
3154 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 } else {
3156 u32 rto = inet_csk(sk)->icsk_rto;
3157 /* Offset the time elapsed after installing regular RTO */
3158 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3159 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3160 s64 delta_us = tcp_rto_delta_us(sk);
3161 /* delta_us may not be positive if the socket is locked
3162 * when the retrans timer fires and is rescheduled.
3163 */
3164 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3165 }
3166 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3167 TCP_RTO_MAX);
3168 }
3169 }
3170
3171 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3172 static void tcp_set_xmit_timer(struct sock *sk)
3173 {
3174 if (!tcp_schedule_loss_probe(sk, true))
3175 tcp_rearm_rto(sk);
3176 }
3177
3178 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3179 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3180 {
3181 struct tcp_sock *tp = tcp_sk(sk);
3182 u32 packets_acked;
3183
3184 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3185
3186 packets_acked = tcp_skb_pcount(skb);
3187 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188 return 0;
3189 packets_acked -= tcp_skb_pcount(skb);
3190
3191 if (packets_acked) {
3192 BUG_ON(tcp_skb_pcount(skb) == 0);
3193 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3194 }
3195
3196 return packets_acked;
3197 }
3198
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3199 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3200 u32 prior_snd_una)
3201 {
3202 const struct skb_shared_info *shinfo;
3203
3204 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3205 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3206 return;
3207
3208 shinfo = skb_shinfo(skb);
3209 if (!before(shinfo->tskey, prior_snd_una) &&
3210 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3211 tcp_skb_tsorted_save(skb) {
3212 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3213 } tcp_skb_tsorted_restore(skb);
3214 }
3215 }
3216
3217 /* Remove acknowledged frames from the retransmission queue. If our packet
3218 * is before the ack sequence we can discard it as it's confirmed to have
3219 * arrived at the other end.
3220 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3221 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3222 u32 prior_snd_una,
3223 struct tcp_sacktag_state *sack, bool ece_ack)
3224 {
3225 const struct inet_connection_sock *icsk = inet_csk(sk);
3226 u64 first_ackt, last_ackt;
3227 struct tcp_sock *tp = tcp_sk(sk);
3228 u32 prior_sacked = tp->sacked_out;
3229 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3230 struct sk_buff *skb, *next;
3231 bool fully_acked = true;
3232 long sack_rtt_us = -1L;
3233 long seq_rtt_us = -1L;
3234 long ca_rtt_us = -1L;
3235 u32 pkts_acked = 0;
3236 u32 last_in_flight = 0;
3237 bool rtt_update;
3238 int flag = 0;
3239
3240 first_ackt = 0;
3241
3242 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3243 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3244 const u32 start_seq = scb->seq;
3245 u8 sacked = scb->sacked;
3246 u32 acked_pcount;
3247
3248 /* Determine how many packets and what bytes were acked, tso and else */
3249 if (after(scb->end_seq, tp->snd_una)) {
3250 if (tcp_skb_pcount(skb) == 1 ||
3251 !after(tp->snd_una, scb->seq))
3252 break;
3253
3254 acked_pcount = tcp_tso_acked(sk, skb);
3255 if (!acked_pcount)
3256 break;
3257 fully_acked = false;
3258 } else {
3259 acked_pcount = tcp_skb_pcount(skb);
3260 }
3261
3262 if (unlikely(sacked & TCPCB_RETRANS)) {
3263 if (sacked & TCPCB_SACKED_RETRANS)
3264 tp->retrans_out -= acked_pcount;
3265 flag |= FLAG_RETRANS_DATA_ACKED;
3266 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3267 last_ackt = tcp_skb_timestamp_us(skb);
3268 WARN_ON_ONCE(last_ackt == 0);
3269 if (!first_ackt)
3270 first_ackt = last_ackt;
3271
3272 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3273 if (before(start_seq, reord))
3274 reord = start_seq;
3275 if (!after(scb->end_seq, tp->high_seq))
3276 flag |= FLAG_ORIG_SACK_ACKED;
3277 }
3278
3279 if (sacked & TCPCB_SACKED_ACKED) {
3280 tp->sacked_out -= acked_pcount;
3281 } else if (tcp_is_sack(tp)) {
3282 tcp_count_delivered(tp, acked_pcount, ece_ack);
3283 if (!tcp_skb_spurious_retrans(tp, skb))
3284 tcp_rack_advance(tp, sacked, scb->end_seq,
3285 tcp_skb_timestamp_us(skb));
3286 }
3287 if (sacked & TCPCB_LOST)
3288 tp->lost_out -= acked_pcount;
3289
3290 tp->packets_out -= acked_pcount;
3291 pkts_acked += acked_pcount;
3292 tcp_rate_skb_delivered(sk, skb, sack->rate);
3293
3294 /* Initial outgoing SYN's get put onto the write_queue
3295 * just like anything else we transmit. It is not
3296 * true data, and if we misinform our callers that
3297 * this ACK acks real data, we will erroneously exit
3298 * connection startup slow start one packet too
3299 * quickly. This is severely frowned upon behavior.
3300 */
3301 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3302 flag |= FLAG_DATA_ACKED;
3303 } else {
3304 flag |= FLAG_SYN_ACKED;
3305 tp->retrans_stamp = 0;
3306 }
3307
3308 if (!fully_acked)
3309 break;
3310
3311 tcp_ack_tstamp(sk, skb, prior_snd_una);
3312
3313 next = skb_rb_next(skb);
3314 if (unlikely(skb == tp->retransmit_skb_hint))
3315 tp->retransmit_skb_hint = NULL;
3316 if (unlikely(skb == tp->lost_skb_hint))
3317 tp->lost_skb_hint = NULL;
3318 tcp_highest_sack_replace(sk, skb, next);
3319 tcp_rtx_queue_unlink_and_free(skb, sk);
3320 }
3321
3322 if (!skb)
3323 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3324
3325 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3326 tp->snd_up = tp->snd_una;
3327
3328 if (skb) {
3329 tcp_ack_tstamp(sk, skb, prior_snd_una);
3330 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3331 flag |= FLAG_SACK_RENEGING;
3332 }
3333
3334 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3335 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3336 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3337
3338 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3339 last_in_flight && !prior_sacked && fully_acked &&
3340 sack->rate->prior_delivered + 1 == tp->delivered &&
3341 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3342 /* Conservatively mark a delayed ACK. It's typically
3343 * from a lone runt packet over the round trip to
3344 * a receiver w/o out-of-order or CE events.
3345 */
3346 flag |= FLAG_ACK_MAYBE_DELAYED;
3347 }
3348 }
3349 if (sack->first_sackt) {
3350 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3351 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3352 }
3353 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3354 ca_rtt_us, sack->rate);
3355
3356 if (flag & FLAG_ACKED) {
3357 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3358 if (unlikely(icsk->icsk_mtup.probe_size &&
3359 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3360 tcp_mtup_probe_success(sk);
3361 }
3362
3363 if (tcp_is_reno(tp)) {
3364 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3365
3366 /* If any of the cumulatively ACKed segments was
3367 * retransmitted, non-SACK case cannot confirm that
3368 * progress was due to original transmission due to
3369 * lack of TCPCB_SACKED_ACKED bits even if some of
3370 * the packets may have been never retransmitted.
3371 */
3372 if (flag & FLAG_RETRANS_DATA_ACKED)
3373 flag &= ~FLAG_ORIG_SACK_ACKED;
3374 } else {
3375 int delta;
3376
3377 /* Non-retransmitted hole got filled? That's reordering */
3378 if (before(reord, prior_fack))
3379 tcp_check_sack_reordering(sk, reord, 0);
3380
3381 delta = prior_sacked - tp->sacked_out;
3382 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3383 }
3384 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3385 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3386 tcp_skb_timestamp_us(skb))) {
3387 /* Do not re-arm RTO if the sack RTT is measured from data sent
3388 * after when the head was last (re)transmitted. Otherwise the
3389 * timeout may continue to extend in loss recovery.
3390 */
3391 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3392 }
3393
3394 if (icsk->icsk_ca_ops->pkts_acked) {
3395 struct ack_sample sample = { .pkts_acked = pkts_acked,
3396 .rtt_us = sack->rate->rtt_us,
3397 .in_flight = last_in_flight };
3398
3399 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3400 }
3401
3402 #if FASTRETRANS_DEBUG > 0
3403 WARN_ON((int)tp->sacked_out < 0);
3404 WARN_ON((int)tp->lost_out < 0);
3405 WARN_ON((int)tp->retrans_out < 0);
3406 if (!tp->packets_out && tcp_is_sack(tp)) {
3407 icsk = inet_csk(sk);
3408 if (tp->lost_out) {
3409 pr_debug("Leak l=%u %d\n",
3410 tp->lost_out, icsk->icsk_ca_state);
3411 tp->lost_out = 0;
3412 }
3413 if (tp->sacked_out) {
3414 pr_debug("Leak s=%u %d\n",
3415 tp->sacked_out, icsk->icsk_ca_state);
3416 tp->sacked_out = 0;
3417 }
3418 if (tp->retrans_out) {
3419 pr_debug("Leak r=%u %d\n",
3420 tp->retrans_out, icsk->icsk_ca_state);
3421 tp->retrans_out = 0;
3422 }
3423 }
3424 #endif
3425 return flag;
3426 }
3427
tcp_ack_probe(struct sock * sk)3428 static void tcp_ack_probe(struct sock *sk)
3429 {
3430 struct inet_connection_sock *icsk = inet_csk(sk);
3431 struct sk_buff *head = tcp_send_head(sk);
3432 const struct tcp_sock *tp = tcp_sk(sk);
3433
3434 /* Was it a usable window open? */
3435 if (!head)
3436 return;
3437 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3438 icsk->icsk_backoff = 0;
3439 icsk->icsk_probes_tstamp = 0;
3440 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3441 /* Socket must be waked up by subsequent tcp_data_snd_check().
3442 * This function is not for random using!
3443 */
3444 } else {
3445 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3446
3447 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3448 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3449 }
3450 }
3451
tcp_ack_is_dubious(const struct sock * sk,const int flag)3452 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3453 {
3454 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3455 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3456 }
3457
3458 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3459 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3460 {
3461 /* If reordering is high then always grow cwnd whenever data is
3462 * delivered regardless of its ordering. Otherwise stay conservative
3463 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3464 * new SACK or ECE mark may first advance cwnd here and later reduce
3465 * cwnd in tcp_fastretrans_alert() based on more states.
3466 */
3467 if (tcp_sk(sk)->reordering >
3468 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3469 return flag & FLAG_FORWARD_PROGRESS;
3470
3471 return flag & FLAG_DATA_ACKED;
3472 }
3473
3474 /* The "ultimate" congestion control function that aims to replace the rigid
3475 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3476 * It's called toward the end of processing an ACK with precise rate
3477 * information. All transmission or retransmission are delayed afterwards.
3478 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3479 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3480 int flag, const struct rate_sample *rs)
3481 {
3482 const struct inet_connection_sock *icsk = inet_csk(sk);
3483
3484 if (icsk->icsk_ca_ops->cong_control) {
3485 icsk->icsk_ca_ops->cong_control(sk, rs);
3486 return;
3487 }
3488
3489 if (tcp_in_cwnd_reduction(sk)) {
3490 /* Reduce cwnd if state mandates */
3491 tcp_cwnd_reduction(sk, acked_sacked, flag);
3492 } else if (tcp_may_raise_cwnd(sk, flag)) {
3493 /* Advance cwnd if state allows */
3494 tcp_cong_avoid(sk, ack, acked_sacked);
3495 }
3496 tcp_update_pacing_rate(sk);
3497 }
3498
3499 /* Check that window update is acceptable.
3500 * The function assumes that snd_una<=ack<=snd_next.
3501 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3502 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3503 const u32 ack, const u32 ack_seq,
3504 const u32 nwin)
3505 {
3506 return after(ack, tp->snd_una) ||
3507 after(ack_seq, tp->snd_wl1) ||
3508 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3509 }
3510
3511 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3512 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3513 {
3514 u32 delta = ack - tp->snd_una;
3515
3516 sock_owned_by_me((struct sock *)tp);
3517 tp->bytes_acked += delta;
3518 tp->snd_una = ack;
3519 }
3520
3521 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3522 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3523 {
3524 u32 delta = seq - tp->rcv_nxt;
3525
3526 sock_owned_by_me((struct sock *)tp);
3527 tp->bytes_received += delta;
3528 WRITE_ONCE(tp->rcv_nxt, seq);
3529 }
3530
3531 /* Update our send window.
3532 *
3533 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3534 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3535 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3536 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3537 u32 ack_seq)
3538 {
3539 struct tcp_sock *tp = tcp_sk(sk);
3540 int flag = 0;
3541 u32 nwin = ntohs(tcp_hdr(skb)->window);
3542
3543 if (likely(!tcp_hdr(skb)->syn))
3544 nwin <<= tp->rx_opt.snd_wscale;
3545
3546 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3547 flag |= FLAG_WIN_UPDATE;
3548 tcp_update_wl(tp, ack_seq);
3549
3550 if (tp->snd_wnd != nwin) {
3551 tp->snd_wnd = nwin;
3552
3553 /* Note, it is the only place, where
3554 * fast path is recovered for sending TCP.
3555 */
3556 tp->pred_flags = 0;
3557 tcp_fast_path_check(sk);
3558
3559 if (!tcp_write_queue_empty(sk))
3560 tcp_slow_start_after_idle_check(sk);
3561
3562 if (nwin > tp->max_window) {
3563 tp->max_window = nwin;
3564 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3565 }
3566 }
3567 }
3568
3569 tcp_snd_una_update(tp, ack);
3570
3571 return flag;
3572 }
3573
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3574 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3575 u32 *last_oow_ack_time)
3576 {
3577 /* Paired with the WRITE_ONCE() in this function. */
3578 u32 val = READ_ONCE(*last_oow_ack_time);
3579
3580 if (val) {
3581 s32 elapsed = (s32)(tcp_jiffies32 - val);
3582
3583 if (0 <= elapsed &&
3584 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3585 NET_INC_STATS(net, mib_idx);
3586 return true; /* rate-limited: don't send yet! */
3587 }
3588 }
3589
3590 /* Paired with the prior READ_ONCE() and with itself,
3591 * as we might be lockless.
3592 */
3593 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3594
3595 return false; /* not rate-limited: go ahead, send dupack now! */
3596 }
3597
3598 /* Return true if we're currently rate-limiting out-of-window ACKs and
3599 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3600 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3601 * attacks that send repeated SYNs or ACKs for the same connection. To
3602 * do this, we do not send a duplicate SYNACK or ACK if the remote
3603 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3604 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3605 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3606 int mib_idx, u32 *last_oow_ack_time)
3607 {
3608 /* Data packets without SYNs are not likely part of an ACK loop. */
3609 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3610 !tcp_hdr(skb)->syn)
3611 return false;
3612
3613 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3614 }
3615
3616 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3617 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3618 {
3619 /* unprotected vars, we dont care of overwrites */
3620 static u32 challenge_timestamp;
3621 static unsigned int challenge_count;
3622 struct tcp_sock *tp = tcp_sk(sk);
3623 struct net *net = sock_net(sk);
3624 u32 count, now;
3625
3626 /* First check our per-socket dupack rate limit. */
3627 if (__tcp_oow_rate_limited(net,
3628 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3629 &tp->last_oow_ack_time))
3630 return;
3631
3632 /* Then check host-wide RFC 5961 rate limit. */
3633 now = jiffies / HZ;
3634 if (now != READ_ONCE(challenge_timestamp)) {
3635 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3636 u32 half = (ack_limit + 1) >> 1;
3637
3638 WRITE_ONCE(challenge_timestamp, now);
3639 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3640 }
3641 count = READ_ONCE(challenge_count);
3642 if (count > 0) {
3643 WRITE_ONCE(challenge_count, count - 1);
3644 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3645 tcp_send_ack(sk);
3646 }
3647 }
3648
tcp_store_ts_recent(struct tcp_sock * tp)3649 static void tcp_store_ts_recent(struct tcp_sock *tp)
3650 {
3651 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3652 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3653 }
3654
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3655 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3656 {
3657 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3658 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3659 * extra check below makes sure this can only happen
3660 * for pure ACK frames. -DaveM
3661 *
3662 * Not only, also it occurs for expired timestamps.
3663 */
3664
3665 if (tcp_paws_check(&tp->rx_opt, 0))
3666 tcp_store_ts_recent(tp);
3667 }
3668 }
3669
3670 /* This routine deals with acks during a TLP episode and ends an episode by
3671 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3672 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3673 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3674 {
3675 struct tcp_sock *tp = tcp_sk(sk);
3676
3677 if (before(ack, tp->tlp_high_seq))
3678 return;
3679
3680 if (!tp->tlp_retrans) {
3681 /* TLP of new data has been acknowledged */
3682 tp->tlp_high_seq = 0;
3683 } else if (flag & FLAG_DSACKING_ACK) {
3684 /* This DSACK means original and TLP probe arrived; no loss */
3685 tp->tlp_high_seq = 0;
3686 } else if (after(ack, tp->tlp_high_seq)) {
3687 /* ACK advances: there was a loss, so reduce cwnd. Reset
3688 * tlp_high_seq in tcp_init_cwnd_reduction()
3689 */
3690 tcp_init_cwnd_reduction(sk);
3691 tcp_set_ca_state(sk, TCP_CA_CWR);
3692 tcp_end_cwnd_reduction(sk);
3693 tcp_try_keep_open(sk);
3694 NET_INC_STATS(sock_net(sk),
3695 LINUX_MIB_TCPLOSSPROBERECOVERY);
3696 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3697 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3698 /* Pure dupack: original and TLP probe arrived; no loss */
3699 tp->tlp_high_seq = 0;
3700 }
3701 }
3702
tcp_in_ack_event(struct sock * sk,u32 flags)3703 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3704 {
3705 const struct inet_connection_sock *icsk = inet_csk(sk);
3706
3707 if (icsk->icsk_ca_ops->in_ack_event)
3708 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3709 }
3710
3711 /* Congestion control has updated the cwnd already. So if we're in
3712 * loss recovery then now we do any new sends (for FRTO) or
3713 * retransmits (for CA_Loss or CA_recovery) that make sense.
3714 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3715 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3716 {
3717 struct tcp_sock *tp = tcp_sk(sk);
3718
3719 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3720 return;
3721
3722 if (unlikely(rexmit == REXMIT_NEW)) {
3723 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3724 TCP_NAGLE_OFF);
3725 if (after(tp->snd_nxt, tp->high_seq))
3726 return;
3727 tp->frto = 0;
3728 }
3729 tcp_xmit_retransmit_queue(sk);
3730 }
3731
3732 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3733 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3734 {
3735 const struct net *net = sock_net(sk);
3736 struct tcp_sock *tp = tcp_sk(sk);
3737 u32 delivered;
3738
3739 delivered = tp->delivered - prior_delivered;
3740 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3741 if (flag & FLAG_ECE)
3742 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3743
3744 return delivered;
3745 }
3746
3747 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3748 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3749 {
3750 struct inet_connection_sock *icsk = inet_csk(sk);
3751 struct tcp_sock *tp = tcp_sk(sk);
3752 struct tcp_sacktag_state sack_state;
3753 struct rate_sample rs = { .prior_delivered = 0 };
3754 u32 prior_snd_una = tp->snd_una;
3755 bool is_sack_reneg = tp->is_sack_reneg;
3756 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3757 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3758 int num_dupack = 0;
3759 int prior_packets = tp->packets_out;
3760 u32 delivered = tp->delivered;
3761 u32 lost = tp->lost;
3762 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3763 u32 prior_fack;
3764
3765 sack_state.first_sackt = 0;
3766 sack_state.rate = &rs;
3767 sack_state.sack_delivered = 0;
3768
3769 /* We very likely will need to access rtx queue. */
3770 prefetch(sk->tcp_rtx_queue.rb_node);
3771
3772 /* If the ack is older than previous acks
3773 * then we can probably ignore it.
3774 */
3775 if (before(ack, prior_snd_una)) {
3776 u32 max_window;
3777
3778 /* do not accept ACK for bytes we never sent. */
3779 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3780 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3781 if (before(ack, prior_snd_una - max_window)) {
3782 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3783 tcp_send_challenge_ack(sk, skb);
3784 return -1;
3785 }
3786 goto old_ack;
3787 }
3788
3789 /* If the ack includes data we haven't sent yet, discard
3790 * this segment (RFC793 Section 3.9).
3791 */
3792 if (after(ack, tp->snd_nxt))
3793 return -1;
3794
3795 if (after(ack, prior_snd_una)) {
3796 flag |= FLAG_SND_UNA_ADVANCED;
3797 icsk->icsk_retransmits = 0;
3798
3799 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3800 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3801 if (icsk->icsk_clean_acked)
3802 icsk->icsk_clean_acked(sk, ack);
3803 #endif
3804 }
3805
3806 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3807 rs.prior_in_flight = tcp_packets_in_flight(tp);
3808
3809 /* ts_recent update must be made after we are sure that the packet
3810 * is in window.
3811 */
3812 if (flag & FLAG_UPDATE_TS_RECENT)
3813 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3814
3815 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3816 FLAG_SND_UNA_ADVANCED) {
3817 /* Window is constant, pure forward advance.
3818 * No more checks are required.
3819 * Note, we use the fact that SND.UNA>=SND.WL2.
3820 */
3821 tcp_update_wl(tp, ack_seq);
3822 tcp_snd_una_update(tp, ack);
3823 flag |= FLAG_WIN_UPDATE;
3824
3825 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3826
3827 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3828 } else {
3829 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3830
3831 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3832 flag |= FLAG_DATA;
3833 else
3834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3835
3836 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3837
3838 if (TCP_SKB_CB(skb)->sacked)
3839 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3840 &sack_state);
3841
3842 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3843 flag |= FLAG_ECE;
3844 ack_ev_flags |= CA_ACK_ECE;
3845 }
3846
3847 if (sack_state.sack_delivered)
3848 tcp_count_delivered(tp, sack_state.sack_delivered,
3849 flag & FLAG_ECE);
3850
3851 if (flag & FLAG_WIN_UPDATE)
3852 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3853
3854 tcp_in_ack_event(sk, ack_ev_flags);
3855 }
3856
3857 /* This is a deviation from RFC3168 since it states that:
3858 * "When the TCP data sender is ready to set the CWR bit after reducing
3859 * the congestion window, it SHOULD set the CWR bit only on the first
3860 * new data packet that it transmits."
3861 * We accept CWR on pure ACKs to be more robust
3862 * with widely-deployed TCP implementations that do this.
3863 */
3864 tcp_ecn_accept_cwr(sk, skb);
3865
3866 /* We passed data and got it acked, remove any soft error
3867 * log. Something worked...
3868 */
3869 sk->sk_err_soft = 0;
3870 icsk->icsk_probes_out = 0;
3871 tp->rcv_tstamp = tcp_jiffies32;
3872 if (!prior_packets)
3873 goto no_queue;
3874
3875 /* See if we can take anything off of the retransmit queue. */
3876 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3877 flag & FLAG_ECE);
3878
3879 tcp_rack_update_reo_wnd(sk, &rs);
3880
3881 if (tp->tlp_high_seq)
3882 tcp_process_tlp_ack(sk, ack, flag);
3883
3884 if (tcp_ack_is_dubious(sk, flag)) {
3885 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3886 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3887 num_dupack = 1;
3888 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3889 if (!(flag & FLAG_DATA))
3890 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3891 }
3892 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3893 &rexmit);
3894 }
3895
3896 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3897 if (flag & FLAG_SET_XMIT_TIMER)
3898 tcp_set_xmit_timer(sk);
3899
3900 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3901 sk_dst_confirm(sk);
3902
3903 delivered = tcp_newly_delivered(sk, delivered, flag);
3904 lost = tp->lost - lost; /* freshly marked lost */
3905 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3906 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3907 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3908 tcp_xmit_recovery(sk, rexmit);
3909 return 1;
3910
3911 no_queue:
3912 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3913 if (flag & FLAG_DSACKING_ACK) {
3914 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3915 &rexmit);
3916 tcp_newly_delivered(sk, delivered, flag);
3917 }
3918 /* If this ack opens up a zero window, clear backoff. It was
3919 * being used to time the probes, and is probably far higher than
3920 * it needs to be for normal retransmission.
3921 */
3922 tcp_ack_probe(sk);
3923
3924 if (tp->tlp_high_seq)
3925 tcp_process_tlp_ack(sk, ack, flag);
3926 return 1;
3927
3928 old_ack:
3929 /* If data was SACKed, tag it and see if we should send more data.
3930 * If data was DSACKed, see if we can undo a cwnd reduction.
3931 */
3932 if (TCP_SKB_CB(skb)->sacked) {
3933 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3934 &sack_state);
3935 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3936 &rexmit);
3937 tcp_newly_delivered(sk, delivered, flag);
3938 tcp_xmit_recovery(sk, rexmit);
3939 }
3940
3941 return 0;
3942 }
3943
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3944 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3945 bool syn, struct tcp_fastopen_cookie *foc,
3946 bool exp_opt)
3947 {
3948 /* Valid only in SYN or SYN-ACK with an even length. */
3949 if (!foc || !syn || len < 0 || (len & 1))
3950 return;
3951
3952 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3953 len <= TCP_FASTOPEN_COOKIE_MAX)
3954 memcpy(foc->val, cookie, len);
3955 else if (len != 0)
3956 len = -1;
3957 foc->len = len;
3958 foc->exp = exp_opt;
3959 }
3960
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3961 static bool smc_parse_options(const struct tcphdr *th,
3962 struct tcp_options_received *opt_rx,
3963 const unsigned char *ptr,
3964 int opsize)
3965 {
3966 #if IS_ENABLED(CONFIG_SMC)
3967 if (static_branch_unlikely(&tcp_have_smc)) {
3968 if (th->syn && !(opsize & 1) &&
3969 opsize >= TCPOLEN_EXP_SMC_BASE &&
3970 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3971 opt_rx->smc_ok = 1;
3972 return true;
3973 }
3974 }
3975 #endif
3976 return false;
3977 }
3978
3979 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3980 * value on success.
3981 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3982 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3983 {
3984 const unsigned char *ptr = (const unsigned char *)(th + 1);
3985 int length = (th->doff * 4) - sizeof(struct tcphdr);
3986 u16 mss = 0;
3987
3988 while (length > 0) {
3989 int opcode = *ptr++;
3990 int opsize;
3991
3992 switch (opcode) {
3993 case TCPOPT_EOL:
3994 return mss;
3995 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3996 length--;
3997 continue;
3998 default:
3999 if (length < 2)
4000 return mss;
4001 opsize = *ptr++;
4002 if (opsize < 2) /* "silly options" */
4003 return mss;
4004 if (opsize > length)
4005 return mss; /* fail on partial options */
4006 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4007 u16 in_mss = get_unaligned_be16(ptr);
4008
4009 if (in_mss) {
4010 if (user_mss && user_mss < in_mss)
4011 in_mss = user_mss;
4012 mss = in_mss;
4013 }
4014 }
4015 ptr += opsize - 2;
4016 length -= opsize;
4017 }
4018 }
4019 return mss;
4020 }
4021
4022 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4023 * But, this can also be called on packets in the established flow when
4024 * the fast version below fails.
4025 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4026 void tcp_parse_options(const struct net *net,
4027 const struct sk_buff *skb,
4028 struct tcp_options_received *opt_rx, int estab,
4029 struct tcp_fastopen_cookie *foc)
4030 {
4031 const unsigned char *ptr;
4032 const struct tcphdr *th = tcp_hdr(skb);
4033 int length = (th->doff * 4) - sizeof(struct tcphdr);
4034
4035 ptr = (const unsigned char *)(th + 1);
4036 opt_rx->saw_tstamp = 0;
4037 opt_rx->saw_unknown = 0;
4038
4039 while (length > 0) {
4040 int opcode = *ptr++;
4041 int opsize;
4042
4043 switch (opcode) {
4044 case TCPOPT_EOL:
4045 return;
4046 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4047 length--;
4048 continue;
4049 default:
4050 if (length < 2)
4051 return;
4052 opsize = *ptr++;
4053 if (opsize < 2) /* "silly options" */
4054 return;
4055 if (opsize > length)
4056 return; /* don't parse partial options */
4057 switch (opcode) {
4058 case TCPOPT_MSS:
4059 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4060 u16 in_mss = get_unaligned_be16(ptr);
4061 if (in_mss) {
4062 if (opt_rx->user_mss &&
4063 opt_rx->user_mss < in_mss)
4064 in_mss = opt_rx->user_mss;
4065 opt_rx->mss_clamp = in_mss;
4066 }
4067 }
4068 break;
4069 case TCPOPT_WINDOW:
4070 if (opsize == TCPOLEN_WINDOW && th->syn &&
4071 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4072 __u8 snd_wscale = *(__u8 *)ptr;
4073 opt_rx->wscale_ok = 1;
4074 if (snd_wscale > TCP_MAX_WSCALE) {
4075 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4076 __func__,
4077 snd_wscale,
4078 TCP_MAX_WSCALE);
4079 snd_wscale = TCP_MAX_WSCALE;
4080 }
4081 opt_rx->snd_wscale = snd_wscale;
4082 }
4083 break;
4084 case TCPOPT_TIMESTAMP:
4085 if ((opsize == TCPOLEN_TIMESTAMP) &&
4086 ((estab && opt_rx->tstamp_ok) ||
4087 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4088 opt_rx->saw_tstamp = 1;
4089 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4090 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4091 }
4092 break;
4093 case TCPOPT_SACK_PERM:
4094 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4095 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4096 opt_rx->sack_ok = TCP_SACK_SEEN;
4097 tcp_sack_reset(opt_rx);
4098 }
4099 break;
4100
4101 case TCPOPT_SACK:
4102 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4103 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4104 opt_rx->sack_ok) {
4105 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4106 }
4107 break;
4108 #ifdef CONFIG_TCP_MD5SIG
4109 case TCPOPT_MD5SIG:
4110 /*
4111 * The MD5 Hash has already been
4112 * checked (see tcp_v{4,6}_do_rcv()).
4113 */
4114 break;
4115 #endif
4116 case TCPOPT_FASTOPEN:
4117 tcp_parse_fastopen_option(
4118 opsize - TCPOLEN_FASTOPEN_BASE,
4119 ptr, th->syn, foc, false);
4120 break;
4121
4122 case TCPOPT_EXP:
4123 /* Fast Open option shares code 254 using a
4124 * 16 bits magic number.
4125 */
4126 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4127 get_unaligned_be16(ptr) ==
4128 TCPOPT_FASTOPEN_MAGIC) {
4129 tcp_parse_fastopen_option(opsize -
4130 TCPOLEN_EXP_FASTOPEN_BASE,
4131 ptr + 2, th->syn, foc, true);
4132 break;
4133 }
4134
4135 if (smc_parse_options(th, opt_rx, ptr, opsize))
4136 break;
4137
4138 opt_rx->saw_unknown = 1;
4139 break;
4140
4141 default:
4142 opt_rx->saw_unknown = 1;
4143 }
4144 ptr += opsize-2;
4145 length -= opsize;
4146 }
4147 }
4148 }
4149 EXPORT_SYMBOL(tcp_parse_options);
4150
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4151 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4152 {
4153 const __be32 *ptr = (const __be32 *)(th + 1);
4154
4155 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4156 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4157 tp->rx_opt.saw_tstamp = 1;
4158 ++ptr;
4159 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4160 ++ptr;
4161 if (*ptr)
4162 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4163 else
4164 tp->rx_opt.rcv_tsecr = 0;
4165 return true;
4166 }
4167 return false;
4168 }
4169
4170 /* Fast parse options. This hopes to only see timestamps.
4171 * If it is wrong it falls back on tcp_parse_options().
4172 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4173 static bool tcp_fast_parse_options(const struct net *net,
4174 const struct sk_buff *skb,
4175 const struct tcphdr *th, struct tcp_sock *tp)
4176 {
4177 /* In the spirit of fast parsing, compare doff directly to constant
4178 * values. Because equality is used, short doff can be ignored here.
4179 */
4180 if (th->doff == (sizeof(*th) / 4)) {
4181 tp->rx_opt.saw_tstamp = 0;
4182 return false;
4183 } else if (tp->rx_opt.tstamp_ok &&
4184 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4185 if (tcp_parse_aligned_timestamp(tp, th))
4186 return true;
4187 }
4188
4189 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4190 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4191 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4192
4193 return true;
4194 }
4195
4196 #ifdef CONFIG_TCP_MD5SIG
4197 /*
4198 * Parse MD5 Signature option
4199 */
tcp_parse_md5sig_option(const struct tcphdr * th)4200 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4201 {
4202 int length = (th->doff << 2) - sizeof(*th);
4203 const u8 *ptr = (const u8 *)(th + 1);
4204
4205 /* If not enough data remaining, we can short cut */
4206 while (length >= TCPOLEN_MD5SIG) {
4207 int opcode = *ptr++;
4208 int opsize;
4209
4210 switch (opcode) {
4211 case TCPOPT_EOL:
4212 return NULL;
4213 case TCPOPT_NOP:
4214 length--;
4215 continue;
4216 default:
4217 opsize = *ptr++;
4218 if (opsize < 2 || opsize > length)
4219 return NULL;
4220 if (opcode == TCPOPT_MD5SIG)
4221 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4222 }
4223 ptr += opsize - 2;
4224 length -= opsize;
4225 }
4226 return NULL;
4227 }
4228 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4229 #endif
4230
4231 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4232 *
4233 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4234 * it can pass through stack. So, the following predicate verifies that
4235 * this segment is not used for anything but congestion avoidance or
4236 * fast retransmit. Moreover, we even are able to eliminate most of such
4237 * second order effects, if we apply some small "replay" window (~RTO)
4238 * to timestamp space.
4239 *
4240 * All these measures still do not guarantee that we reject wrapped ACKs
4241 * on networks with high bandwidth, when sequence space is recycled fastly,
4242 * but it guarantees that such events will be very rare and do not affect
4243 * connection seriously. This doesn't look nice, but alas, PAWS is really
4244 * buggy extension.
4245 *
4246 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4247 * states that events when retransmit arrives after original data are rare.
4248 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4249 * the biggest problem on large power networks even with minor reordering.
4250 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4251 * up to bandwidth of 18Gigabit/sec. 8) ]
4252 */
4253
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4254 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4255 {
4256 const struct tcp_sock *tp = tcp_sk(sk);
4257 const struct tcphdr *th = tcp_hdr(skb);
4258 u32 seq = TCP_SKB_CB(skb)->seq;
4259 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4260
4261 return (/* 1. Pure ACK with correct sequence number. */
4262 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4263
4264 /* 2. ... and duplicate ACK. */
4265 ack == tp->snd_una &&
4266
4267 /* 3. ... and does not update window. */
4268 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4269
4270 /* 4. ... and sits in replay window. */
4271 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4272 }
4273
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4274 static inline bool tcp_paws_discard(const struct sock *sk,
4275 const struct sk_buff *skb)
4276 {
4277 const struct tcp_sock *tp = tcp_sk(sk);
4278
4279 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4280 !tcp_disordered_ack(sk, skb);
4281 }
4282
4283 /* Check segment sequence number for validity.
4284 *
4285 * Segment controls are considered valid, if the segment
4286 * fits to the window after truncation to the window. Acceptability
4287 * of data (and SYN, FIN, of course) is checked separately.
4288 * See tcp_data_queue(), for example.
4289 *
4290 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4291 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4292 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4293 * (borrowed from freebsd)
4294 */
4295
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4296 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4297 {
4298 return !before(end_seq, tp->rcv_wup) &&
4299 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4300 }
4301
4302 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4303 void tcp_reset(struct sock *sk)
4304 {
4305 trace_tcp_receive_reset(sk);
4306
4307 /* We want the right error as BSD sees it (and indeed as we do). */
4308 switch (sk->sk_state) {
4309 case TCP_SYN_SENT:
4310 sk->sk_err = ECONNREFUSED;
4311 break;
4312 case TCP_CLOSE_WAIT:
4313 sk->sk_err = EPIPE;
4314 break;
4315 case TCP_CLOSE:
4316 return;
4317 default:
4318 sk->sk_err = ECONNRESET;
4319 }
4320 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4321 smp_wmb();
4322
4323 tcp_write_queue_purge(sk);
4324 tcp_done(sk);
4325
4326 if (!sock_flag(sk, SOCK_DEAD))
4327 sk->sk_error_report(sk);
4328 }
4329
4330 /*
4331 * Process the FIN bit. This now behaves as it is supposed to work
4332 * and the FIN takes effect when it is validly part of sequence
4333 * space. Not before when we get holes.
4334 *
4335 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4336 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4337 * TIME-WAIT)
4338 *
4339 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4340 * close and we go into CLOSING (and later onto TIME-WAIT)
4341 *
4342 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4343 */
tcp_fin(struct sock * sk)4344 void tcp_fin(struct sock *sk)
4345 {
4346 struct tcp_sock *tp = tcp_sk(sk);
4347
4348 inet_csk_schedule_ack(sk);
4349
4350 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4351 sock_set_flag(sk, SOCK_DONE);
4352
4353 switch (sk->sk_state) {
4354 case TCP_SYN_RECV:
4355 case TCP_ESTABLISHED:
4356 /* Move to CLOSE_WAIT */
4357 tcp_set_state(sk, TCP_CLOSE_WAIT);
4358 inet_csk_enter_pingpong_mode(sk);
4359 break;
4360
4361 case TCP_CLOSE_WAIT:
4362 case TCP_CLOSING:
4363 /* Received a retransmission of the FIN, do
4364 * nothing.
4365 */
4366 break;
4367 case TCP_LAST_ACK:
4368 /* RFC793: Remain in the LAST-ACK state. */
4369 break;
4370
4371 case TCP_FIN_WAIT1:
4372 /* This case occurs when a simultaneous close
4373 * happens, we must ack the received FIN and
4374 * enter the CLOSING state.
4375 */
4376 tcp_send_ack(sk);
4377 tcp_set_state(sk, TCP_CLOSING);
4378 break;
4379 case TCP_FIN_WAIT2:
4380 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4381 tcp_send_ack(sk);
4382 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4383 break;
4384 default:
4385 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4386 * cases we should never reach this piece of code.
4387 */
4388 pr_err("%s: Impossible, sk->sk_state=%d\n",
4389 __func__, sk->sk_state);
4390 break;
4391 }
4392
4393 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4394 * Probably, we should reset in this case. For now drop them.
4395 */
4396 skb_rbtree_purge(&tp->out_of_order_queue);
4397 if (tcp_is_sack(tp))
4398 tcp_sack_reset(&tp->rx_opt);
4399 sk_mem_reclaim(sk);
4400
4401 if (!sock_flag(sk, SOCK_DEAD)) {
4402 sk->sk_state_change(sk);
4403
4404 /* Do not send POLL_HUP for half duplex close. */
4405 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4406 sk->sk_state == TCP_CLOSE)
4407 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4408 else
4409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4410 }
4411 }
4412
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4413 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4414 u32 end_seq)
4415 {
4416 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4417 if (before(seq, sp->start_seq))
4418 sp->start_seq = seq;
4419 if (after(end_seq, sp->end_seq))
4420 sp->end_seq = end_seq;
4421 return true;
4422 }
4423 return false;
4424 }
4425
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4426 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4427 {
4428 struct tcp_sock *tp = tcp_sk(sk);
4429
4430 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4431 int mib_idx;
4432
4433 if (before(seq, tp->rcv_nxt))
4434 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4435 else
4436 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4437
4438 NET_INC_STATS(sock_net(sk), mib_idx);
4439
4440 tp->rx_opt.dsack = 1;
4441 tp->duplicate_sack[0].start_seq = seq;
4442 tp->duplicate_sack[0].end_seq = end_seq;
4443 }
4444 }
4445
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4446 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4447 {
4448 struct tcp_sock *tp = tcp_sk(sk);
4449
4450 if (!tp->rx_opt.dsack)
4451 tcp_dsack_set(sk, seq, end_seq);
4452 else
4453 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4454 }
4455
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4456 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4457 {
4458 /* When the ACK path fails or drops most ACKs, the sender would
4459 * timeout and spuriously retransmit the same segment repeatedly.
4460 * The receiver remembers and reflects via DSACKs. Leverage the
4461 * DSACK state and change the txhash to re-route speculatively.
4462 */
4463 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4464 sk_rethink_txhash(sk))
4465 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4466 }
4467
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4468 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4469 {
4470 struct tcp_sock *tp = tcp_sk(sk);
4471
4472 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4473 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4474 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4475 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4476
4477 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4478 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4479
4480 tcp_rcv_spurious_retrans(sk, skb);
4481 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4482 end_seq = tp->rcv_nxt;
4483 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4484 }
4485 }
4486
4487 tcp_send_ack(sk);
4488 }
4489
4490 /* These routines update the SACK block as out-of-order packets arrive or
4491 * in-order packets close up the sequence space.
4492 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4493 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4494 {
4495 int this_sack;
4496 struct tcp_sack_block *sp = &tp->selective_acks[0];
4497 struct tcp_sack_block *swalk = sp + 1;
4498
4499 /* See if the recent change to the first SACK eats into
4500 * or hits the sequence space of other SACK blocks, if so coalesce.
4501 */
4502 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4503 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4504 int i;
4505
4506 /* Zap SWALK, by moving every further SACK up by one slot.
4507 * Decrease num_sacks.
4508 */
4509 tp->rx_opt.num_sacks--;
4510 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4511 sp[i] = sp[i + 1];
4512 continue;
4513 }
4514 this_sack++;
4515 swalk++;
4516 }
4517 }
4518
tcp_sack_compress_send_ack(struct sock * sk)4519 static void tcp_sack_compress_send_ack(struct sock *sk)
4520 {
4521 struct tcp_sock *tp = tcp_sk(sk);
4522
4523 if (!tp->compressed_ack)
4524 return;
4525
4526 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4527 __sock_put(sk);
4528
4529 /* Since we have to send one ack finally,
4530 * substract one from tp->compressed_ack to keep
4531 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4532 */
4533 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4534 tp->compressed_ack - 1);
4535
4536 tp->compressed_ack = 0;
4537 tcp_send_ack(sk);
4538 }
4539
4540 /* Reasonable amount of sack blocks included in TCP SACK option
4541 * The max is 4, but this becomes 3 if TCP timestamps are there.
4542 * Given that SACK packets might be lost, be conservative and use 2.
4543 */
4544 #define TCP_SACK_BLOCKS_EXPECTED 2
4545
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4546 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4547 {
4548 struct tcp_sock *tp = tcp_sk(sk);
4549 struct tcp_sack_block *sp = &tp->selective_acks[0];
4550 int cur_sacks = tp->rx_opt.num_sacks;
4551 int this_sack;
4552
4553 if (!cur_sacks)
4554 goto new_sack;
4555
4556 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4557 if (tcp_sack_extend(sp, seq, end_seq)) {
4558 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4559 tcp_sack_compress_send_ack(sk);
4560 /* Rotate this_sack to the first one. */
4561 for (; this_sack > 0; this_sack--, sp--)
4562 swap(*sp, *(sp - 1));
4563 if (cur_sacks > 1)
4564 tcp_sack_maybe_coalesce(tp);
4565 return;
4566 }
4567 }
4568
4569 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4570 tcp_sack_compress_send_ack(sk);
4571
4572 /* Could not find an adjacent existing SACK, build a new one,
4573 * put it at the front, and shift everyone else down. We
4574 * always know there is at least one SACK present already here.
4575 *
4576 * If the sack array is full, forget about the last one.
4577 */
4578 if (this_sack >= TCP_NUM_SACKS) {
4579 this_sack--;
4580 tp->rx_opt.num_sacks--;
4581 sp--;
4582 }
4583 for (; this_sack > 0; this_sack--, sp--)
4584 *sp = *(sp - 1);
4585
4586 new_sack:
4587 /* Build the new head SACK, and we're done. */
4588 sp->start_seq = seq;
4589 sp->end_seq = end_seq;
4590 tp->rx_opt.num_sacks++;
4591 }
4592
4593 /* RCV.NXT advances, some SACKs should be eaten. */
4594
tcp_sack_remove(struct tcp_sock * tp)4595 static void tcp_sack_remove(struct tcp_sock *tp)
4596 {
4597 struct tcp_sack_block *sp = &tp->selective_acks[0];
4598 int num_sacks = tp->rx_opt.num_sacks;
4599 int this_sack;
4600
4601 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4602 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4603 tp->rx_opt.num_sacks = 0;
4604 return;
4605 }
4606
4607 for (this_sack = 0; this_sack < num_sacks;) {
4608 /* Check if the start of the sack is covered by RCV.NXT. */
4609 if (!before(tp->rcv_nxt, sp->start_seq)) {
4610 int i;
4611
4612 /* RCV.NXT must cover all the block! */
4613 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4614
4615 /* Zap this SACK, by moving forward any other SACKS. */
4616 for (i = this_sack+1; i < num_sacks; i++)
4617 tp->selective_acks[i-1] = tp->selective_acks[i];
4618 num_sacks--;
4619 continue;
4620 }
4621 this_sack++;
4622 sp++;
4623 }
4624 tp->rx_opt.num_sacks = num_sacks;
4625 }
4626
4627 /**
4628 * tcp_try_coalesce - try to merge skb to prior one
4629 * @sk: socket
4630 * @to: prior buffer
4631 * @from: buffer to add in queue
4632 * @fragstolen: pointer to boolean
4633 *
4634 * Before queueing skb @from after @to, try to merge them
4635 * to reduce overall memory use and queue lengths, if cost is small.
4636 * Packets in ofo or receive queues can stay a long time.
4637 * Better try to coalesce them right now to avoid future collapses.
4638 * Returns true if caller should free @from instead of queueing it
4639 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4640 static bool tcp_try_coalesce(struct sock *sk,
4641 struct sk_buff *to,
4642 struct sk_buff *from,
4643 bool *fragstolen)
4644 {
4645 int delta;
4646
4647 *fragstolen = false;
4648
4649 /* Its possible this segment overlaps with prior segment in queue */
4650 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4651 return false;
4652
4653 if (!mptcp_skb_can_collapse(to, from))
4654 return false;
4655
4656 #ifdef CONFIG_TLS_DEVICE
4657 if (from->decrypted != to->decrypted)
4658 return false;
4659 #endif
4660
4661 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4662 return false;
4663
4664 atomic_add(delta, &sk->sk_rmem_alloc);
4665 sk_mem_charge(sk, delta);
4666 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4667 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4668 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4669 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4670
4671 if (TCP_SKB_CB(from)->has_rxtstamp) {
4672 TCP_SKB_CB(to)->has_rxtstamp = true;
4673 to->tstamp = from->tstamp;
4674 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4675 }
4676
4677 return true;
4678 }
4679
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4680 static bool tcp_ooo_try_coalesce(struct sock *sk,
4681 struct sk_buff *to,
4682 struct sk_buff *from,
4683 bool *fragstolen)
4684 {
4685 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4686
4687 /* In case tcp_drop() is called later, update to->gso_segs */
4688 if (res) {
4689 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4690 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4691
4692 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4693 }
4694 return res;
4695 }
4696
tcp_drop(struct sock * sk,struct sk_buff * skb)4697 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4698 {
4699 trace_android_vh_kfree_skb(skb);
4700 sk_drops_add(sk, skb);
4701 __kfree_skb(skb);
4702 }
4703
4704 /* This one checks to see if we can put data from the
4705 * out_of_order queue into the receive_queue.
4706 */
tcp_ofo_queue(struct sock * sk)4707 static void tcp_ofo_queue(struct sock *sk)
4708 {
4709 struct tcp_sock *tp = tcp_sk(sk);
4710 __u32 dsack_high = tp->rcv_nxt;
4711 bool fin, fragstolen, eaten;
4712 struct sk_buff *skb, *tail;
4713 struct rb_node *p;
4714
4715 p = rb_first(&tp->out_of_order_queue);
4716 while (p) {
4717 skb = rb_to_skb(p);
4718 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4719 break;
4720
4721 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4722 __u32 dsack = dsack_high;
4723 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4724 dsack_high = TCP_SKB_CB(skb)->end_seq;
4725 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4726 }
4727 p = rb_next(p);
4728 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4729
4730 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4731 tcp_drop(sk, skb);
4732 continue;
4733 }
4734
4735 tail = skb_peek_tail(&sk->sk_receive_queue);
4736 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4737 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4738 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4739 if (!eaten)
4740 __skb_queue_tail(&sk->sk_receive_queue, skb);
4741 else
4742 kfree_skb_partial(skb, fragstolen);
4743
4744 if (unlikely(fin)) {
4745 tcp_fin(sk);
4746 /* tcp_fin() purges tp->out_of_order_queue,
4747 * so we must end this loop right now.
4748 */
4749 break;
4750 }
4751 }
4752 }
4753
4754 static bool tcp_prune_ofo_queue(struct sock *sk);
4755 static int tcp_prune_queue(struct sock *sk);
4756
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4757 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4758 unsigned int size)
4759 {
4760 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4761 !sk_rmem_schedule(sk, skb, size)) {
4762
4763 if (tcp_prune_queue(sk) < 0)
4764 return -1;
4765
4766 while (!sk_rmem_schedule(sk, skb, size)) {
4767 if (!tcp_prune_ofo_queue(sk))
4768 return -1;
4769 }
4770 }
4771 return 0;
4772 }
4773
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4774 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4775 {
4776 struct tcp_sock *tp = tcp_sk(sk);
4777 struct rb_node **p, *parent;
4778 struct sk_buff *skb1;
4779 u32 seq, end_seq;
4780 bool fragstolen;
4781
4782 tcp_ecn_check_ce(sk, skb);
4783
4784 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4786 sk->sk_data_ready(sk);
4787 tcp_drop(sk, skb);
4788 return;
4789 }
4790
4791 /* Disable header prediction. */
4792 tp->pred_flags = 0;
4793 inet_csk_schedule_ack(sk);
4794
4795 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4797 seq = TCP_SKB_CB(skb)->seq;
4798 end_seq = TCP_SKB_CB(skb)->end_seq;
4799
4800 p = &tp->out_of_order_queue.rb_node;
4801 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4802 /* Initial out of order segment, build 1 SACK. */
4803 if (tcp_is_sack(tp)) {
4804 tp->rx_opt.num_sacks = 1;
4805 tp->selective_acks[0].start_seq = seq;
4806 tp->selective_acks[0].end_seq = end_seq;
4807 }
4808 rb_link_node(&skb->rbnode, NULL, p);
4809 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4810 tp->ooo_last_skb = skb;
4811 goto end;
4812 }
4813
4814 /* In the typical case, we are adding an skb to the end of the list.
4815 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4816 */
4817 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4818 skb, &fragstolen)) {
4819 coalesce_done:
4820 /* For non sack flows, do not grow window to force DUPACK
4821 * and trigger fast retransmit.
4822 */
4823 if (tcp_is_sack(tp))
4824 tcp_grow_window(sk, skb, true);
4825 kfree_skb_partial(skb, fragstolen);
4826 skb = NULL;
4827 goto add_sack;
4828 }
4829 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4830 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4831 parent = &tp->ooo_last_skb->rbnode;
4832 p = &parent->rb_right;
4833 goto insert;
4834 }
4835
4836 /* Find place to insert this segment. Handle overlaps on the way. */
4837 parent = NULL;
4838 while (*p) {
4839 parent = *p;
4840 skb1 = rb_to_skb(parent);
4841 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4842 p = &parent->rb_left;
4843 continue;
4844 }
4845 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4846 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 /* All the bits are present. Drop. */
4848 NET_INC_STATS(sock_net(sk),
4849 LINUX_MIB_TCPOFOMERGE);
4850 tcp_drop(sk, skb);
4851 skb = NULL;
4852 tcp_dsack_set(sk, seq, end_seq);
4853 goto add_sack;
4854 }
4855 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4856 /* Partial overlap. */
4857 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4858 } else {
4859 /* skb's seq == skb1's seq and skb covers skb1.
4860 * Replace skb1 with skb.
4861 */
4862 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4863 &tp->out_of_order_queue);
4864 tcp_dsack_extend(sk,
4865 TCP_SKB_CB(skb1)->seq,
4866 TCP_SKB_CB(skb1)->end_seq);
4867 NET_INC_STATS(sock_net(sk),
4868 LINUX_MIB_TCPOFOMERGE);
4869 tcp_drop(sk, skb1);
4870 goto merge_right;
4871 }
4872 } else if (tcp_ooo_try_coalesce(sk, skb1,
4873 skb, &fragstolen)) {
4874 goto coalesce_done;
4875 }
4876 p = &parent->rb_right;
4877 }
4878 insert:
4879 /* Insert segment into RB tree. */
4880 rb_link_node(&skb->rbnode, parent, p);
4881 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4882
4883 merge_right:
4884 /* Remove other segments covered by skb. */
4885 while ((skb1 = skb_rb_next(skb)) != NULL) {
4886 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4887 break;
4888 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4889 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4890 end_seq);
4891 break;
4892 }
4893 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4894 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4895 TCP_SKB_CB(skb1)->end_seq);
4896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4897 tcp_drop(sk, skb1);
4898 }
4899 /* If there is no skb after us, we are the last_skb ! */
4900 if (!skb1)
4901 tp->ooo_last_skb = skb;
4902
4903 add_sack:
4904 if (tcp_is_sack(tp))
4905 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4906 end:
4907 if (skb) {
4908 /* For non sack flows, do not grow window to force DUPACK
4909 * and trigger fast retransmit.
4910 */
4911 if (tcp_is_sack(tp))
4912 tcp_grow_window(sk, skb, false);
4913 skb_condense(skb);
4914 skb_set_owner_r(skb, sk);
4915 }
4916 }
4917
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4918 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4919 bool *fragstolen)
4920 {
4921 int eaten;
4922 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4923
4924 eaten = (tail &&
4925 tcp_try_coalesce(sk, tail,
4926 skb, fragstolen)) ? 1 : 0;
4927 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4928 if (!eaten) {
4929 __skb_queue_tail(&sk->sk_receive_queue, skb);
4930 skb_set_owner_r(skb, sk);
4931 }
4932 return eaten;
4933 }
4934
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4935 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4936 {
4937 struct sk_buff *skb;
4938 int err = -ENOMEM;
4939 int data_len = 0;
4940 bool fragstolen;
4941
4942 if (size == 0)
4943 return 0;
4944
4945 if (size > PAGE_SIZE) {
4946 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4947
4948 data_len = npages << PAGE_SHIFT;
4949 size = data_len + (size & ~PAGE_MASK);
4950 }
4951 skb = alloc_skb_with_frags(size - data_len, data_len,
4952 PAGE_ALLOC_COSTLY_ORDER,
4953 &err, sk->sk_allocation);
4954 if (!skb)
4955 goto err;
4956
4957 skb_put(skb, size - data_len);
4958 skb->data_len = data_len;
4959 skb->len = size;
4960
4961 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4962 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4963 goto err_free;
4964 }
4965
4966 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4967 if (err)
4968 goto err_free;
4969
4970 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4971 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4972 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4973
4974 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4975 WARN_ON_ONCE(fragstolen); /* should not happen */
4976 __kfree_skb(skb);
4977 }
4978 return size;
4979
4980 err_free:
4981 kfree_skb(skb);
4982 err:
4983 return err;
4984
4985 }
4986
tcp_data_ready(struct sock * sk)4987 void tcp_data_ready(struct sock *sk)
4988 {
4989 const struct tcp_sock *tp = tcp_sk(sk);
4990 int avail = tp->rcv_nxt - tp->copied_seq;
4991
4992 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4993 !sock_flag(sk, SOCK_DONE) &&
4994 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4995 return;
4996
4997 sk->sk_data_ready(sk);
4998 }
4999
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5000 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5001 {
5002 struct tcp_sock *tp = tcp_sk(sk);
5003 bool fragstolen;
5004 int eaten;
5005
5006 if (sk_is_mptcp(sk))
5007 mptcp_incoming_options(sk, skb);
5008
5009 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5010 __kfree_skb(skb);
5011 return;
5012 }
5013 skb_dst_drop(skb);
5014 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5015
5016 tp->rx_opt.dsack = 0;
5017
5018 /* Queue data for delivery to the user.
5019 * Packets in sequence go to the receive queue.
5020 * Out of sequence packets to the out_of_order_queue.
5021 */
5022 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5023 if (tcp_receive_window(tp) == 0) {
5024 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5025 goto out_of_window;
5026 }
5027
5028 /* Ok. In sequence. In window. */
5029 queue_and_out:
5030 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5031 sk_forced_mem_schedule(sk, skb->truesize);
5032 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5033 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5034 sk->sk_data_ready(sk);
5035 goto drop;
5036 }
5037
5038 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5039 if (skb->len)
5040 tcp_event_data_recv(sk, skb);
5041 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5042 tcp_fin(sk);
5043
5044 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5045 tcp_ofo_queue(sk);
5046
5047 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5048 * gap in queue is filled.
5049 */
5050 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5051 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5052 }
5053
5054 if (tp->rx_opt.num_sacks)
5055 tcp_sack_remove(tp);
5056
5057 tcp_fast_path_check(sk);
5058
5059 if (eaten > 0)
5060 kfree_skb_partial(skb, fragstolen);
5061 if (!sock_flag(sk, SOCK_DEAD))
5062 tcp_data_ready(sk);
5063 return;
5064 }
5065
5066 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5067 tcp_rcv_spurious_retrans(sk, skb);
5068 /* A retransmit, 2nd most common case. Force an immediate ack. */
5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5070 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5071
5072 out_of_window:
5073 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5074 inet_csk_schedule_ack(sk);
5075 drop:
5076 tcp_drop(sk, skb);
5077 return;
5078 }
5079
5080 /* Out of window. F.e. zero window probe. */
5081 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5082 goto out_of_window;
5083
5084 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5085 /* Partial packet, seq < rcv_next < end_seq */
5086 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5087
5088 /* If window is closed, drop tail of packet. But after
5089 * remembering D-SACK for its head made in previous line.
5090 */
5091 if (!tcp_receive_window(tp)) {
5092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5093 goto out_of_window;
5094 }
5095 goto queue_and_out;
5096 }
5097
5098 tcp_data_queue_ofo(sk, skb);
5099 }
5100
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5101 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5102 {
5103 if (list)
5104 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5105
5106 return skb_rb_next(skb);
5107 }
5108
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5109 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5110 struct sk_buff_head *list,
5111 struct rb_root *root)
5112 {
5113 struct sk_buff *next = tcp_skb_next(skb, list);
5114
5115 if (list)
5116 __skb_unlink(skb, list);
5117 else
5118 rb_erase(&skb->rbnode, root);
5119
5120 __kfree_skb(skb);
5121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5122
5123 return next;
5124 }
5125
5126 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5127 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5128 {
5129 struct rb_node **p = &root->rb_node;
5130 struct rb_node *parent = NULL;
5131 struct sk_buff *skb1;
5132
5133 while (*p) {
5134 parent = *p;
5135 skb1 = rb_to_skb(parent);
5136 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5137 p = &parent->rb_left;
5138 else
5139 p = &parent->rb_right;
5140 }
5141 rb_link_node(&skb->rbnode, parent, p);
5142 rb_insert_color(&skb->rbnode, root);
5143 }
5144
5145 /* Collapse contiguous sequence of skbs head..tail with
5146 * sequence numbers start..end.
5147 *
5148 * If tail is NULL, this means until the end of the queue.
5149 *
5150 * Segments with FIN/SYN are not collapsed (only because this
5151 * simplifies code)
5152 */
5153 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5154 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5155 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5156 {
5157 struct sk_buff *skb = head, *n;
5158 struct sk_buff_head tmp;
5159 bool end_of_skbs;
5160
5161 /* First, check that queue is collapsible and find
5162 * the point where collapsing can be useful.
5163 */
5164 restart:
5165 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5166 n = tcp_skb_next(skb, list);
5167
5168 /* No new bits? It is possible on ofo queue. */
5169 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5170 skb = tcp_collapse_one(sk, skb, list, root);
5171 if (!skb)
5172 break;
5173 goto restart;
5174 }
5175
5176 /* The first skb to collapse is:
5177 * - not SYN/FIN and
5178 * - bloated or contains data before "start" or
5179 * overlaps to the next one and mptcp allow collapsing.
5180 */
5181 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5182 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5183 before(TCP_SKB_CB(skb)->seq, start))) {
5184 end_of_skbs = false;
5185 break;
5186 }
5187
5188 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5189 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5190 end_of_skbs = false;
5191 break;
5192 }
5193
5194 /* Decided to skip this, advance start seq. */
5195 start = TCP_SKB_CB(skb)->end_seq;
5196 }
5197 if (end_of_skbs ||
5198 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5199 return;
5200
5201 __skb_queue_head_init(&tmp);
5202
5203 while (before(start, end)) {
5204 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5205 struct sk_buff *nskb;
5206
5207 nskb = alloc_skb(copy, GFP_ATOMIC);
5208 if (!nskb)
5209 break;
5210
5211 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5212 #ifdef CONFIG_TLS_DEVICE
5213 nskb->decrypted = skb->decrypted;
5214 #endif
5215 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5216 if (list)
5217 __skb_queue_before(list, skb, nskb);
5218 else
5219 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5220 skb_set_owner_r(nskb, sk);
5221 mptcp_skb_ext_move(nskb, skb);
5222
5223 /* Copy data, releasing collapsed skbs. */
5224 while (copy > 0) {
5225 int offset = start - TCP_SKB_CB(skb)->seq;
5226 int size = TCP_SKB_CB(skb)->end_seq - start;
5227
5228 BUG_ON(offset < 0);
5229 if (size > 0) {
5230 size = min(copy, size);
5231 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5232 BUG();
5233 TCP_SKB_CB(nskb)->end_seq += size;
5234 copy -= size;
5235 start += size;
5236 }
5237 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5238 skb = tcp_collapse_one(sk, skb, list, root);
5239 if (!skb ||
5240 skb == tail ||
5241 !mptcp_skb_can_collapse(nskb, skb) ||
5242 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5243 goto end;
5244 #ifdef CONFIG_TLS_DEVICE
5245 if (skb->decrypted != nskb->decrypted)
5246 goto end;
5247 #endif
5248 }
5249 }
5250 }
5251 end:
5252 skb_queue_walk_safe(&tmp, skb, n)
5253 tcp_rbtree_insert(root, skb);
5254 }
5255
5256 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5257 * and tcp_collapse() them until all the queue is collapsed.
5258 */
tcp_collapse_ofo_queue(struct sock * sk)5259 static void tcp_collapse_ofo_queue(struct sock *sk)
5260 {
5261 struct tcp_sock *tp = tcp_sk(sk);
5262 u32 range_truesize, sum_tiny = 0;
5263 struct sk_buff *skb, *head;
5264 u32 start, end;
5265
5266 skb = skb_rb_first(&tp->out_of_order_queue);
5267 new_range:
5268 if (!skb) {
5269 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5270 return;
5271 }
5272 start = TCP_SKB_CB(skb)->seq;
5273 end = TCP_SKB_CB(skb)->end_seq;
5274 range_truesize = skb->truesize;
5275
5276 for (head = skb;;) {
5277 skb = skb_rb_next(skb);
5278
5279 /* Range is terminated when we see a gap or when
5280 * we are at the queue end.
5281 */
5282 if (!skb ||
5283 after(TCP_SKB_CB(skb)->seq, end) ||
5284 before(TCP_SKB_CB(skb)->end_seq, start)) {
5285 /* Do not attempt collapsing tiny skbs */
5286 if (range_truesize != head->truesize ||
5287 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5288 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5289 head, skb, start, end);
5290 } else {
5291 sum_tiny += range_truesize;
5292 if (sum_tiny > sk->sk_rcvbuf >> 3)
5293 return;
5294 }
5295 goto new_range;
5296 }
5297
5298 range_truesize += skb->truesize;
5299 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5300 start = TCP_SKB_CB(skb)->seq;
5301 if (after(TCP_SKB_CB(skb)->end_seq, end))
5302 end = TCP_SKB_CB(skb)->end_seq;
5303 }
5304 }
5305
5306 /*
5307 * Clean the out-of-order queue to make room.
5308 * We drop high sequences packets to :
5309 * 1) Let a chance for holes to be filled.
5310 * 2) not add too big latencies if thousands of packets sit there.
5311 * (But if application shrinks SO_RCVBUF, we could still end up
5312 * freeing whole queue here)
5313 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5314 *
5315 * Return true if queue has shrunk.
5316 */
tcp_prune_ofo_queue(struct sock * sk)5317 static bool tcp_prune_ofo_queue(struct sock *sk)
5318 {
5319 struct tcp_sock *tp = tcp_sk(sk);
5320 struct rb_node *node, *prev;
5321 int goal;
5322
5323 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5324 return false;
5325
5326 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5327 goal = sk->sk_rcvbuf >> 3;
5328 node = &tp->ooo_last_skb->rbnode;
5329 do {
5330 prev = rb_prev(node);
5331 rb_erase(node, &tp->out_of_order_queue);
5332 goal -= rb_to_skb(node)->truesize;
5333 tcp_drop(sk, rb_to_skb(node));
5334 if (!prev || goal <= 0) {
5335 sk_mem_reclaim(sk);
5336 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5337 !tcp_under_memory_pressure(sk))
5338 break;
5339 goal = sk->sk_rcvbuf >> 3;
5340 }
5341 node = prev;
5342 } while (node);
5343 tp->ooo_last_skb = rb_to_skb(prev);
5344
5345 /* Reset SACK state. A conforming SACK implementation will
5346 * do the same at a timeout based retransmit. When a connection
5347 * is in a sad state like this, we care only about integrity
5348 * of the connection not performance.
5349 */
5350 if (tp->rx_opt.sack_ok)
5351 tcp_sack_reset(&tp->rx_opt);
5352 return true;
5353 }
5354
5355 /* Reduce allocated memory if we can, trying to get
5356 * the socket within its memory limits again.
5357 *
5358 * Return less than zero if we should start dropping frames
5359 * until the socket owning process reads some of the data
5360 * to stabilize the situation.
5361 */
tcp_prune_queue(struct sock * sk)5362 static int tcp_prune_queue(struct sock *sk)
5363 {
5364 struct tcp_sock *tp = tcp_sk(sk);
5365
5366 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5367
5368 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5369 tcp_clamp_window(sk);
5370 else if (tcp_under_memory_pressure(sk))
5371 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5372
5373 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5374 return 0;
5375
5376 tcp_collapse_ofo_queue(sk);
5377 if (!skb_queue_empty(&sk->sk_receive_queue))
5378 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5379 skb_peek(&sk->sk_receive_queue),
5380 NULL,
5381 tp->copied_seq, tp->rcv_nxt);
5382 sk_mem_reclaim(sk);
5383
5384 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5385 return 0;
5386
5387 /* Collapsing did not help, destructive actions follow.
5388 * This must not ever occur. */
5389
5390 tcp_prune_ofo_queue(sk);
5391
5392 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5393 return 0;
5394
5395 /* If we are really being abused, tell the caller to silently
5396 * drop receive data on the floor. It will get retransmitted
5397 * and hopefully then we'll have sufficient space.
5398 */
5399 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5400
5401 /* Massive buffer overcommit. */
5402 tp->pred_flags = 0;
5403 return -1;
5404 }
5405
tcp_should_expand_sndbuf(const struct sock * sk)5406 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5407 {
5408 const struct tcp_sock *tp = tcp_sk(sk);
5409
5410 /* If the user specified a specific send buffer setting, do
5411 * not modify it.
5412 */
5413 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5414 return false;
5415
5416 /* If we are under global TCP memory pressure, do not expand. */
5417 if (tcp_under_memory_pressure(sk))
5418 return false;
5419
5420 /* If we are under soft global TCP memory pressure, do not expand. */
5421 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5422 return false;
5423
5424 /* If we filled the congestion window, do not expand. */
5425 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5426 return false;
5427
5428 return true;
5429 }
5430
tcp_new_space(struct sock * sk)5431 static void tcp_new_space(struct sock *sk)
5432 {
5433 struct tcp_sock *tp = tcp_sk(sk);
5434
5435 if (tcp_should_expand_sndbuf(sk)) {
5436 tcp_sndbuf_expand(sk);
5437 tp->snd_cwnd_stamp = tcp_jiffies32;
5438 }
5439
5440 sk->sk_write_space(sk);
5441 }
5442
5443 /* Caller made space either from:
5444 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5445 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5446 *
5447 * We might be able to generate EPOLLOUT to the application if:
5448 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5449 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5450 * small enough that tcp_stream_memory_free() decides it
5451 * is time to generate EPOLLOUT.
5452 */
tcp_check_space(struct sock * sk)5453 void tcp_check_space(struct sock *sk)
5454 {
5455 /* pairs with tcp_poll() */
5456 smp_mb();
5457 if (sk->sk_socket &&
5458 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5459 tcp_new_space(sk);
5460 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5461 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5462 }
5463 }
5464
tcp_data_snd_check(struct sock * sk)5465 static inline void tcp_data_snd_check(struct sock *sk)
5466 {
5467 tcp_push_pending_frames(sk);
5468 tcp_check_space(sk);
5469 }
5470
5471 /*
5472 * Check if sending an ack is needed.
5473 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5474 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5475 {
5476 struct tcp_sock *tp = tcp_sk(sk);
5477 unsigned long rtt, delay;
5478
5479 /* More than one full frame received... */
5480 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5481 /* ... and right edge of window advances far enough.
5482 * (tcp_recvmsg() will send ACK otherwise).
5483 * If application uses SO_RCVLOWAT, we want send ack now if
5484 * we have not received enough bytes to satisfy the condition.
5485 */
5486 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5487 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5488 /* We ACK each frame or... */
5489 tcp_in_quickack_mode(sk) ||
5490 /* Protocol state mandates a one-time immediate ACK */
5491 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5492 send_now:
5493 tcp_send_ack(sk);
5494 return;
5495 }
5496
5497 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5498 tcp_send_delayed_ack(sk);
5499 return;
5500 }
5501
5502 if (!tcp_is_sack(tp) ||
5503 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5504 goto send_now;
5505
5506 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5507 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5508 tp->dup_ack_counter = 0;
5509 }
5510 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5511 tp->dup_ack_counter++;
5512 goto send_now;
5513 }
5514 tp->compressed_ack++;
5515 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5516 return;
5517
5518 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5519
5520 rtt = tp->rcv_rtt_est.rtt_us;
5521 if (tp->srtt_us && tp->srtt_us < rtt)
5522 rtt = tp->srtt_us;
5523
5524 delay = min_t(unsigned long,
5525 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5526 rtt * (NSEC_PER_USEC >> 3)/20);
5527 sock_hold(sk);
5528 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5529 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5530 HRTIMER_MODE_REL_PINNED_SOFT);
5531 }
5532
tcp_ack_snd_check(struct sock * sk)5533 static inline void tcp_ack_snd_check(struct sock *sk)
5534 {
5535 if (!inet_csk_ack_scheduled(sk)) {
5536 /* We sent a data segment already. */
5537 return;
5538 }
5539 __tcp_ack_snd_check(sk, 1);
5540 }
5541
5542 /*
5543 * This routine is only called when we have urgent data
5544 * signaled. Its the 'slow' part of tcp_urg. It could be
5545 * moved inline now as tcp_urg is only called from one
5546 * place. We handle URGent data wrong. We have to - as
5547 * BSD still doesn't use the correction from RFC961.
5548 * For 1003.1g we should support a new option TCP_STDURG to permit
5549 * either form (or just set the sysctl tcp_stdurg).
5550 */
5551
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5552 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5553 {
5554 struct tcp_sock *tp = tcp_sk(sk);
5555 u32 ptr = ntohs(th->urg_ptr);
5556
5557 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5558 ptr--;
5559 ptr += ntohl(th->seq);
5560
5561 /* Ignore urgent data that we've already seen and read. */
5562 if (after(tp->copied_seq, ptr))
5563 return;
5564
5565 /* Do not replay urg ptr.
5566 *
5567 * NOTE: interesting situation not covered by specs.
5568 * Misbehaving sender may send urg ptr, pointing to segment,
5569 * which we already have in ofo queue. We are not able to fetch
5570 * such data and will stay in TCP_URG_NOTYET until will be eaten
5571 * by recvmsg(). Seems, we are not obliged to handle such wicked
5572 * situations. But it is worth to think about possibility of some
5573 * DoSes using some hypothetical application level deadlock.
5574 */
5575 if (before(ptr, tp->rcv_nxt))
5576 return;
5577
5578 /* Do we already have a newer (or duplicate) urgent pointer? */
5579 if (tp->urg_data && !after(ptr, tp->urg_seq))
5580 return;
5581
5582 /* Tell the world about our new urgent pointer. */
5583 sk_send_sigurg(sk);
5584
5585 /* We may be adding urgent data when the last byte read was
5586 * urgent. To do this requires some care. We cannot just ignore
5587 * tp->copied_seq since we would read the last urgent byte again
5588 * as data, nor can we alter copied_seq until this data arrives
5589 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5590 *
5591 * NOTE. Double Dutch. Rendering to plain English: author of comment
5592 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5593 * and expect that both A and B disappear from stream. This is _wrong_.
5594 * Though this happens in BSD with high probability, this is occasional.
5595 * Any application relying on this is buggy. Note also, that fix "works"
5596 * only in this artificial test. Insert some normal data between A and B and we will
5597 * decline of BSD again. Verdict: it is better to remove to trap
5598 * buggy users.
5599 */
5600 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5601 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5602 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5603 tp->copied_seq++;
5604 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5605 __skb_unlink(skb, &sk->sk_receive_queue);
5606 __kfree_skb(skb);
5607 }
5608 }
5609
5610 tp->urg_data = TCP_URG_NOTYET;
5611 WRITE_ONCE(tp->urg_seq, ptr);
5612
5613 /* Disable header prediction. */
5614 tp->pred_flags = 0;
5615 }
5616
5617 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5618 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5619 {
5620 struct tcp_sock *tp = tcp_sk(sk);
5621
5622 /* Check if we get a new urgent pointer - normally not. */
5623 if (th->urg)
5624 tcp_check_urg(sk, th);
5625
5626 /* Do we wait for any urgent data? - normally not... */
5627 if (tp->urg_data == TCP_URG_NOTYET) {
5628 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5629 th->syn;
5630
5631 /* Is the urgent pointer pointing into this packet? */
5632 if (ptr < skb->len) {
5633 u8 tmp;
5634 if (skb_copy_bits(skb, ptr, &tmp, 1))
5635 BUG();
5636 tp->urg_data = TCP_URG_VALID | tmp;
5637 if (!sock_flag(sk, SOCK_DEAD))
5638 sk->sk_data_ready(sk);
5639 }
5640 }
5641 }
5642
5643 /* Accept RST for rcv_nxt - 1 after a FIN.
5644 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5645 * FIN is sent followed by a RST packet. The RST is sent with the same
5646 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5647 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5648 * ACKs on the closed socket. In addition middleboxes can drop either the
5649 * challenge ACK or a subsequent RST.
5650 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5651 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5652 {
5653 struct tcp_sock *tp = tcp_sk(sk);
5654
5655 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5656 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5657 TCPF_CLOSING));
5658 }
5659
5660 /* Does PAWS and seqno based validation of an incoming segment, flags will
5661 * play significant role here.
5662 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5663 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5664 const struct tcphdr *th, int syn_inerr)
5665 {
5666 struct tcp_sock *tp = tcp_sk(sk);
5667 bool rst_seq_match = false;
5668
5669 /* RFC1323: H1. Apply PAWS check first. */
5670 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5671 tp->rx_opt.saw_tstamp &&
5672 tcp_paws_discard(sk, skb)) {
5673 if (!th->rst) {
5674 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5675 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5676 LINUX_MIB_TCPACKSKIPPEDPAWS,
5677 &tp->last_oow_ack_time))
5678 tcp_send_dupack(sk, skb);
5679 goto discard;
5680 }
5681 /* Reset is accepted even if it did not pass PAWS. */
5682 }
5683
5684 /* Step 1: check sequence number */
5685 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5686 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5687 * (RST) segments are validated by checking their SEQ-fields."
5688 * And page 69: "If an incoming segment is not acceptable,
5689 * an acknowledgment should be sent in reply (unless the RST
5690 * bit is set, if so drop the segment and return)".
5691 */
5692 if (!th->rst) {
5693 if (th->syn)
5694 goto syn_challenge;
5695 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5696 LINUX_MIB_TCPACKSKIPPEDSEQ,
5697 &tp->last_oow_ack_time))
5698 tcp_send_dupack(sk, skb);
5699 } else if (tcp_reset_check(sk, skb)) {
5700 tcp_reset(sk);
5701 }
5702 goto discard;
5703 }
5704
5705 /* Step 2: check RST bit */
5706 if (th->rst) {
5707 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5708 * FIN and SACK too if available):
5709 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5710 * the right-most SACK block,
5711 * then
5712 * RESET the connection
5713 * else
5714 * Send a challenge ACK
5715 */
5716 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5717 tcp_reset_check(sk, skb)) {
5718 rst_seq_match = true;
5719 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5720 struct tcp_sack_block *sp = &tp->selective_acks[0];
5721 int max_sack = sp[0].end_seq;
5722 int this_sack;
5723
5724 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5725 ++this_sack) {
5726 max_sack = after(sp[this_sack].end_seq,
5727 max_sack) ?
5728 sp[this_sack].end_seq : max_sack;
5729 }
5730
5731 if (TCP_SKB_CB(skb)->seq == max_sack)
5732 rst_seq_match = true;
5733 }
5734
5735 if (rst_seq_match)
5736 tcp_reset(sk);
5737 else {
5738 /* Disable TFO if RST is out-of-order
5739 * and no data has been received
5740 * for current active TFO socket
5741 */
5742 if (tp->syn_fastopen && !tp->data_segs_in &&
5743 sk->sk_state == TCP_ESTABLISHED)
5744 tcp_fastopen_active_disable(sk);
5745 tcp_send_challenge_ack(sk, skb);
5746 }
5747 goto discard;
5748 }
5749
5750 /* step 3: check security and precedence [ignored] */
5751
5752 /* step 4: Check for a SYN
5753 * RFC 5961 4.2 : Send a challenge ack
5754 */
5755 if (th->syn) {
5756 syn_challenge:
5757 if (syn_inerr)
5758 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5760 tcp_send_challenge_ack(sk, skb);
5761 goto discard;
5762 }
5763
5764 bpf_skops_parse_hdr(sk, skb);
5765
5766 return true;
5767
5768 discard:
5769 tcp_drop(sk, skb);
5770 return false;
5771 }
5772
5773 /*
5774 * TCP receive function for the ESTABLISHED state.
5775 *
5776 * It is split into a fast path and a slow path. The fast path is
5777 * disabled when:
5778 * - A zero window was announced from us - zero window probing
5779 * is only handled properly in the slow path.
5780 * - Out of order segments arrived.
5781 * - Urgent data is expected.
5782 * - There is no buffer space left
5783 * - Unexpected TCP flags/window values/header lengths are received
5784 * (detected by checking the TCP header against pred_flags)
5785 * - Data is sent in both directions. Fast path only supports pure senders
5786 * or pure receivers (this means either the sequence number or the ack
5787 * value must stay constant)
5788 * - Unexpected TCP option.
5789 *
5790 * When these conditions are not satisfied it drops into a standard
5791 * receive procedure patterned after RFC793 to handle all cases.
5792 * The first three cases are guaranteed by proper pred_flags setting,
5793 * the rest is checked inline. Fast processing is turned on in
5794 * tcp_data_queue when everything is OK.
5795 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5796 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5797 {
5798 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5799 struct tcp_sock *tp = tcp_sk(sk);
5800 unsigned int len = skb->len;
5801
5802 /* TCP congestion window tracking */
5803 trace_tcp_probe(sk, skb);
5804
5805 tcp_mstamp_refresh(tp);
5806 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5807 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5808 /*
5809 * Header prediction.
5810 * The code loosely follows the one in the famous
5811 * "30 instruction TCP receive" Van Jacobson mail.
5812 *
5813 * Van's trick is to deposit buffers into socket queue
5814 * on a device interrupt, to call tcp_recv function
5815 * on the receive process context and checksum and copy
5816 * the buffer to user space. smart...
5817 *
5818 * Our current scheme is not silly either but we take the
5819 * extra cost of the net_bh soft interrupt processing...
5820 * We do checksum and copy also but from device to kernel.
5821 */
5822
5823 tp->rx_opt.saw_tstamp = 0;
5824
5825 /* pred_flags is 0xS?10 << 16 + snd_wnd
5826 * if header_prediction is to be made
5827 * 'S' will always be tp->tcp_header_len >> 2
5828 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5829 * turn it off (when there are holes in the receive
5830 * space for instance)
5831 * PSH flag is ignored.
5832 */
5833
5834 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5835 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5836 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5837 int tcp_header_len = tp->tcp_header_len;
5838
5839 /* Timestamp header prediction: tcp_header_len
5840 * is automatically equal to th->doff*4 due to pred_flags
5841 * match.
5842 */
5843
5844 /* Check timestamp */
5845 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5846 /* No? Slow path! */
5847 if (!tcp_parse_aligned_timestamp(tp, th))
5848 goto slow_path;
5849
5850 /* If PAWS failed, check it more carefully in slow path */
5851 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5852 goto slow_path;
5853
5854 /* DO NOT update ts_recent here, if checksum fails
5855 * and timestamp was corrupted part, it will result
5856 * in a hung connection since we will drop all
5857 * future packets due to the PAWS test.
5858 */
5859 }
5860
5861 if (len <= tcp_header_len) {
5862 /* Bulk data transfer: sender */
5863 if (len == tcp_header_len) {
5864 /* Predicted packet is in window by definition.
5865 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5866 * Hence, check seq<=rcv_wup reduces to:
5867 */
5868 if (tcp_header_len ==
5869 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5870 tp->rcv_nxt == tp->rcv_wup)
5871 tcp_store_ts_recent(tp);
5872
5873 /* We know that such packets are checksummed
5874 * on entry.
5875 */
5876 tcp_ack(sk, skb, 0);
5877 __kfree_skb(skb);
5878 tcp_data_snd_check(sk);
5879 /* When receiving pure ack in fast path, update
5880 * last ts ecr directly instead of calling
5881 * tcp_rcv_rtt_measure_ts()
5882 */
5883 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5884 return;
5885 } else { /* Header too small */
5886 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5887 goto discard;
5888 }
5889 } else {
5890 int eaten = 0;
5891 bool fragstolen = false;
5892
5893 if (tcp_checksum_complete(skb))
5894 goto csum_error;
5895
5896 if ((int)skb->truesize > sk->sk_forward_alloc)
5897 goto step5;
5898
5899 /* Predicted packet is in window by definition.
5900 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5901 * Hence, check seq<=rcv_wup reduces to:
5902 */
5903 if (tcp_header_len ==
5904 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5905 tp->rcv_nxt == tp->rcv_wup)
5906 tcp_store_ts_recent(tp);
5907
5908 tcp_rcv_rtt_measure_ts(sk, skb);
5909
5910 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5911
5912 /* Bulk data transfer: receiver */
5913 __skb_pull(skb, tcp_header_len);
5914 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5915
5916 tcp_event_data_recv(sk, skb);
5917
5918 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5919 /* Well, only one small jumplet in fast path... */
5920 tcp_ack(sk, skb, FLAG_DATA);
5921 tcp_data_snd_check(sk);
5922 if (!inet_csk_ack_scheduled(sk))
5923 goto no_ack;
5924 } else {
5925 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5926 }
5927
5928 __tcp_ack_snd_check(sk, 0);
5929 no_ack:
5930 if (eaten)
5931 kfree_skb_partial(skb, fragstolen);
5932 tcp_data_ready(sk);
5933 return;
5934 }
5935 }
5936
5937 slow_path:
5938 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5939 goto csum_error;
5940
5941 if (!th->ack && !th->rst && !th->syn)
5942 goto discard;
5943
5944 /*
5945 * Standard slow path.
5946 */
5947
5948 if (!tcp_validate_incoming(sk, skb, th, 1))
5949 return;
5950
5951 step5:
5952 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5953 goto discard;
5954
5955 tcp_rcv_rtt_measure_ts(sk, skb);
5956
5957 /* Process urgent data. */
5958 tcp_urg(sk, skb, th);
5959
5960 /* step 7: process the segment text */
5961 tcp_data_queue(sk, skb);
5962
5963 tcp_data_snd_check(sk);
5964 tcp_ack_snd_check(sk);
5965 return;
5966
5967 csum_error:
5968 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5969 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5970
5971 discard:
5972 tcp_drop(sk, skb);
5973 }
5974 EXPORT_SYMBOL(tcp_rcv_established);
5975
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5976 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5977 {
5978 struct inet_connection_sock *icsk = inet_csk(sk);
5979 struct tcp_sock *tp = tcp_sk(sk);
5980
5981 tcp_mtup_init(sk);
5982 icsk->icsk_af_ops->rebuild_header(sk);
5983 tcp_init_metrics(sk);
5984
5985 /* Initialize the congestion window to start the transfer.
5986 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5987 * retransmitted. In light of RFC6298 more aggressive 1sec
5988 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5989 * retransmission has occurred.
5990 */
5991 if (tp->total_retrans > 1 && tp->undo_marker)
5992 tp->snd_cwnd = 1;
5993 else
5994 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5995 tp->snd_cwnd_stamp = tcp_jiffies32;
5996
5997 bpf_skops_established(sk, bpf_op, skb);
5998 /* Initialize congestion control unless BPF initialized it already: */
5999 if (!icsk->icsk_ca_initialized)
6000 tcp_init_congestion_control(sk);
6001 tcp_init_buffer_space(sk);
6002 }
6003
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6004 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6005 {
6006 struct tcp_sock *tp = tcp_sk(sk);
6007 struct inet_connection_sock *icsk = inet_csk(sk);
6008
6009 tcp_set_state(sk, TCP_ESTABLISHED);
6010 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6011
6012 if (skb) {
6013 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6014 security_inet_conn_established(sk, skb);
6015 sk_mark_napi_id(sk, skb);
6016 }
6017
6018 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6019
6020 /* Prevent spurious tcp_cwnd_restart() on first data
6021 * packet.
6022 */
6023 tp->lsndtime = tcp_jiffies32;
6024
6025 if (sock_flag(sk, SOCK_KEEPOPEN))
6026 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6027
6028 if (!tp->rx_opt.snd_wscale)
6029 __tcp_fast_path_on(tp, tp->snd_wnd);
6030 else
6031 tp->pred_flags = 0;
6032 }
6033
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6034 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6035 struct tcp_fastopen_cookie *cookie)
6036 {
6037 struct tcp_sock *tp = tcp_sk(sk);
6038 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6039 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6040 bool syn_drop = false;
6041
6042 if (mss == tp->rx_opt.user_mss) {
6043 struct tcp_options_received opt;
6044
6045 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6046 tcp_clear_options(&opt);
6047 opt.user_mss = opt.mss_clamp = 0;
6048 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6049 mss = opt.mss_clamp;
6050 }
6051
6052 if (!tp->syn_fastopen) {
6053 /* Ignore an unsolicited cookie */
6054 cookie->len = -1;
6055 } else if (tp->total_retrans) {
6056 /* SYN timed out and the SYN-ACK neither has a cookie nor
6057 * acknowledges data. Presumably the remote received only
6058 * the retransmitted (regular) SYNs: either the original
6059 * SYN-data or the corresponding SYN-ACK was dropped.
6060 */
6061 syn_drop = (cookie->len < 0 && data);
6062 } else if (cookie->len < 0 && !tp->syn_data) {
6063 /* We requested a cookie but didn't get it. If we did not use
6064 * the (old) exp opt format then try so next time (try_exp=1).
6065 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6066 */
6067 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6068 }
6069
6070 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6071
6072 if (data) { /* Retransmit unacked data in SYN */
6073 if (tp->total_retrans)
6074 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6075 else
6076 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6077 skb_rbtree_walk_from(data) {
6078 if (__tcp_retransmit_skb(sk, data, 1))
6079 break;
6080 }
6081 tcp_rearm_rto(sk);
6082 NET_INC_STATS(sock_net(sk),
6083 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6084 return true;
6085 }
6086 tp->syn_data_acked = tp->syn_data;
6087 if (tp->syn_data_acked) {
6088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6089 /* SYN-data is counted as two separate packets in tcp_ack() */
6090 if (tp->delivered > 1)
6091 --tp->delivered;
6092 }
6093
6094 tcp_fastopen_add_skb(sk, synack);
6095
6096 return false;
6097 }
6098
smc_check_reset_syn(struct tcp_sock * tp)6099 static void smc_check_reset_syn(struct tcp_sock *tp)
6100 {
6101 #if IS_ENABLED(CONFIG_SMC)
6102 if (static_branch_unlikely(&tcp_have_smc)) {
6103 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6104 tp->syn_smc = 0;
6105 }
6106 #endif
6107 }
6108
tcp_try_undo_spurious_syn(struct sock * sk)6109 static void tcp_try_undo_spurious_syn(struct sock *sk)
6110 {
6111 struct tcp_sock *tp = tcp_sk(sk);
6112 u32 syn_stamp;
6113
6114 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6115 * spurious if the ACK's timestamp option echo value matches the
6116 * original SYN timestamp.
6117 */
6118 syn_stamp = tp->retrans_stamp;
6119 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6120 syn_stamp == tp->rx_opt.rcv_tsecr)
6121 tp->undo_marker = 0;
6122 }
6123
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6124 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6125 const struct tcphdr *th)
6126 {
6127 struct inet_connection_sock *icsk = inet_csk(sk);
6128 struct tcp_sock *tp = tcp_sk(sk);
6129 struct tcp_fastopen_cookie foc = { .len = -1 };
6130 int saved_clamp = tp->rx_opt.mss_clamp;
6131 bool fastopen_fail;
6132
6133 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6134 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6135 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6136
6137 if (th->ack) {
6138 /* rfc793:
6139 * "If the state is SYN-SENT then
6140 * first check the ACK bit
6141 * If the ACK bit is set
6142 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6143 * a reset (unless the RST bit is set, if so drop
6144 * the segment and return)"
6145 */
6146 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6147 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6148 /* Previous FIN/ACK or RST/ACK might be ignored. */
6149 if (icsk->icsk_retransmits == 0)
6150 inet_csk_reset_xmit_timer(sk,
6151 ICSK_TIME_RETRANS,
6152 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6153 goto reset_and_undo;
6154 }
6155
6156 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6157 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6158 tcp_time_stamp(tp))) {
6159 NET_INC_STATS(sock_net(sk),
6160 LINUX_MIB_PAWSACTIVEREJECTED);
6161 goto reset_and_undo;
6162 }
6163
6164 /* Now ACK is acceptable.
6165 *
6166 * "If the RST bit is set
6167 * If the ACK was acceptable then signal the user "error:
6168 * connection reset", drop the segment, enter CLOSED state,
6169 * delete TCB, and return."
6170 */
6171
6172 if (th->rst) {
6173 tcp_reset(sk);
6174 goto discard;
6175 }
6176
6177 /* rfc793:
6178 * "fifth, if neither of the SYN or RST bits is set then
6179 * drop the segment and return."
6180 *
6181 * See note below!
6182 * --ANK(990513)
6183 */
6184 if (!th->syn)
6185 goto discard_and_undo;
6186
6187 /* rfc793:
6188 * "If the SYN bit is on ...
6189 * are acceptable then ...
6190 * (our SYN has been ACKed), change the connection
6191 * state to ESTABLISHED..."
6192 */
6193
6194 tcp_ecn_rcv_synack(tp, th);
6195
6196 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6197 tcp_try_undo_spurious_syn(sk);
6198 tcp_ack(sk, skb, FLAG_SLOWPATH);
6199
6200 /* Ok.. it's good. Set up sequence numbers and
6201 * move to established.
6202 */
6203 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6204 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6205
6206 /* RFC1323: The window in SYN & SYN/ACK segments is
6207 * never scaled.
6208 */
6209 tp->snd_wnd = ntohs(th->window);
6210
6211 if (!tp->rx_opt.wscale_ok) {
6212 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6213 tp->window_clamp = min(tp->window_clamp, 65535U);
6214 }
6215
6216 if (tp->rx_opt.saw_tstamp) {
6217 tp->rx_opt.tstamp_ok = 1;
6218 tp->tcp_header_len =
6219 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6220 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6221 tcp_store_ts_recent(tp);
6222 } else {
6223 tp->tcp_header_len = sizeof(struct tcphdr);
6224 }
6225
6226 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6227 tcp_initialize_rcv_mss(sk);
6228
6229 /* Remember, tcp_poll() does not lock socket!
6230 * Change state from SYN-SENT only after copied_seq
6231 * is initialized. */
6232 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6233
6234 smc_check_reset_syn(tp);
6235
6236 smp_mb();
6237
6238 tcp_finish_connect(sk, skb);
6239
6240 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6241 tcp_rcv_fastopen_synack(sk, skb, &foc);
6242
6243 if (!sock_flag(sk, SOCK_DEAD)) {
6244 sk->sk_state_change(sk);
6245 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6246 }
6247 if (fastopen_fail)
6248 return -1;
6249 if (sk->sk_write_pending ||
6250 icsk->icsk_accept_queue.rskq_defer_accept ||
6251 inet_csk_in_pingpong_mode(sk)) {
6252 /* Save one ACK. Data will be ready after
6253 * several ticks, if write_pending is set.
6254 *
6255 * It may be deleted, but with this feature tcpdumps
6256 * look so _wonderfully_ clever, that I was not able
6257 * to stand against the temptation 8) --ANK
6258 */
6259 inet_csk_schedule_ack(sk);
6260 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6262 TCP_DELACK_MAX, TCP_RTO_MAX);
6263
6264 discard:
6265 tcp_drop(sk, skb);
6266 return 0;
6267 } else {
6268 tcp_send_ack(sk);
6269 }
6270 return -1;
6271 }
6272
6273 /* No ACK in the segment */
6274
6275 if (th->rst) {
6276 /* rfc793:
6277 * "If the RST bit is set
6278 *
6279 * Otherwise (no ACK) drop the segment and return."
6280 */
6281
6282 goto discard_and_undo;
6283 }
6284
6285 /* PAWS check. */
6286 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6287 tcp_paws_reject(&tp->rx_opt, 0))
6288 goto discard_and_undo;
6289
6290 if (th->syn) {
6291 /* We see SYN without ACK. It is attempt of
6292 * simultaneous connect with crossed SYNs.
6293 * Particularly, it can be connect to self.
6294 */
6295 tcp_set_state(sk, TCP_SYN_RECV);
6296
6297 if (tp->rx_opt.saw_tstamp) {
6298 tp->rx_opt.tstamp_ok = 1;
6299 tcp_store_ts_recent(tp);
6300 tp->tcp_header_len =
6301 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6302 } else {
6303 tp->tcp_header_len = sizeof(struct tcphdr);
6304 }
6305
6306 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6307 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6308 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6309
6310 /* RFC1323: The window in SYN & SYN/ACK segments is
6311 * never scaled.
6312 */
6313 tp->snd_wnd = ntohs(th->window);
6314 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6315 tp->max_window = tp->snd_wnd;
6316
6317 tcp_ecn_rcv_syn(tp, th);
6318
6319 tcp_mtup_init(sk);
6320 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6321 tcp_initialize_rcv_mss(sk);
6322
6323 tcp_send_synack(sk);
6324 #if 0
6325 /* Note, we could accept data and URG from this segment.
6326 * There are no obstacles to make this (except that we must
6327 * either change tcp_recvmsg() to prevent it from returning data
6328 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6329 *
6330 * However, if we ignore data in ACKless segments sometimes,
6331 * we have no reasons to accept it sometimes.
6332 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6333 * is not flawless. So, discard packet for sanity.
6334 * Uncomment this return to process the data.
6335 */
6336 return -1;
6337 #else
6338 goto discard;
6339 #endif
6340 }
6341 /* "fifth, if neither of the SYN or RST bits is set then
6342 * drop the segment and return."
6343 */
6344
6345 discard_and_undo:
6346 tcp_clear_options(&tp->rx_opt);
6347 tp->rx_opt.mss_clamp = saved_clamp;
6348 goto discard;
6349
6350 reset_and_undo:
6351 tcp_clear_options(&tp->rx_opt);
6352 tp->rx_opt.mss_clamp = saved_clamp;
6353 return 1;
6354 }
6355
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6356 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6357 {
6358 struct tcp_sock *tp = tcp_sk(sk);
6359 struct request_sock *req;
6360
6361 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6362 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6363 */
6364 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6365 tcp_try_undo_recovery(sk);
6366
6367 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6368 tp->retrans_stamp = 0;
6369 inet_csk(sk)->icsk_retransmits = 0;
6370
6371 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6372 * we no longer need req so release it.
6373 */
6374 req = rcu_dereference_protected(tp->fastopen_rsk,
6375 lockdep_sock_is_held(sk));
6376 reqsk_fastopen_remove(sk, req, false);
6377
6378 /* Re-arm the timer because data may have been sent out.
6379 * This is similar to the regular data transmission case
6380 * when new data has just been ack'ed.
6381 *
6382 * (TFO) - we could try to be more aggressive and
6383 * retransmitting any data sooner based on when they
6384 * are sent out.
6385 */
6386 tcp_rearm_rto(sk);
6387 }
6388
6389 /*
6390 * This function implements the receiving procedure of RFC 793 for
6391 * all states except ESTABLISHED and TIME_WAIT.
6392 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6393 * address independent.
6394 */
6395
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6396 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6397 {
6398 struct tcp_sock *tp = tcp_sk(sk);
6399 struct inet_connection_sock *icsk = inet_csk(sk);
6400 const struct tcphdr *th = tcp_hdr(skb);
6401 struct request_sock *req;
6402 int queued = 0;
6403 bool acceptable;
6404
6405 switch (sk->sk_state) {
6406 case TCP_CLOSE:
6407 goto discard;
6408
6409 case TCP_LISTEN:
6410 if (th->ack)
6411 return 1;
6412
6413 if (th->rst)
6414 goto discard;
6415
6416 if (th->syn) {
6417 if (th->fin)
6418 goto discard;
6419 /* It is possible that we process SYN packets from backlog,
6420 * so we need to make sure to disable BH and RCU right there.
6421 */
6422 rcu_read_lock();
6423 local_bh_disable();
6424 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6425 local_bh_enable();
6426 rcu_read_unlock();
6427
6428 if (!acceptable)
6429 return 1;
6430 consume_skb(skb);
6431 return 0;
6432 }
6433 goto discard;
6434
6435 case TCP_SYN_SENT:
6436 tp->rx_opt.saw_tstamp = 0;
6437 tcp_mstamp_refresh(tp);
6438 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6439 if (queued >= 0)
6440 return queued;
6441
6442 /* Do step6 onward by hand. */
6443 tcp_urg(sk, skb, th);
6444 __kfree_skb(skb);
6445 tcp_data_snd_check(sk);
6446 return 0;
6447 }
6448
6449 tcp_mstamp_refresh(tp);
6450 tp->rx_opt.saw_tstamp = 0;
6451 req = rcu_dereference_protected(tp->fastopen_rsk,
6452 lockdep_sock_is_held(sk));
6453 if (req) {
6454 bool req_stolen;
6455
6456 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6457 sk->sk_state != TCP_FIN_WAIT1);
6458
6459 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6460 goto discard;
6461 }
6462
6463 if (!th->ack && !th->rst && !th->syn)
6464 goto discard;
6465
6466 if (!tcp_validate_incoming(sk, skb, th, 0))
6467 return 0;
6468
6469 /* step 5: check the ACK field */
6470 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6471 FLAG_UPDATE_TS_RECENT |
6472 FLAG_NO_CHALLENGE_ACK) > 0;
6473
6474 if (!acceptable) {
6475 if (sk->sk_state == TCP_SYN_RECV)
6476 return 1; /* send one RST */
6477 tcp_send_challenge_ack(sk, skb);
6478 goto discard;
6479 }
6480 switch (sk->sk_state) {
6481 case TCP_SYN_RECV:
6482 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6483 if (!tp->srtt_us)
6484 tcp_synack_rtt_meas(sk, req);
6485
6486 if (req) {
6487 tcp_rcv_synrecv_state_fastopen(sk);
6488 } else {
6489 tcp_try_undo_spurious_syn(sk);
6490 tp->retrans_stamp = 0;
6491 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6492 skb);
6493 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6494 }
6495 smp_mb();
6496 tcp_set_state(sk, TCP_ESTABLISHED);
6497 sk->sk_state_change(sk);
6498
6499 /* Note, that this wakeup is only for marginal crossed SYN case.
6500 * Passively open sockets are not waked up, because
6501 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6502 */
6503 if (sk->sk_socket)
6504 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6505
6506 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6507 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6508 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6509
6510 if (tp->rx_opt.tstamp_ok)
6511 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6512
6513 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6514 tcp_update_pacing_rate(sk);
6515
6516 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6517 tp->lsndtime = tcp_jiffies32;
6518
6519 tcp_initialize_rcv_mss(sk);
6520 tcp_fast_path_on(tp);
6521 break;
6522
6523 case TCP_FIN_WAIT1: {
6524 int tmo;
6525
6526 if (req)
6527 tcp_rcv_synrecv_state_fastopen(sk);
6528
6529 if (tp->snd_una != tp->write_seq)
6530 break;
6531
6532 tcp_set_state(sk, TCP_FIN_WAIT2);
6533 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6534
6535 sk_dst_confirm(sk);
6536
6537 if (!sock_flag(sk, SOCK_DEAD)) {
6538 /* Wake up lingering close() */
6539 sk->sk_state_change(sk);
6540 break;
6541 }
6542
6543 if (tp->linger2 < 0) {
6544 tcp_done(sk);
6545 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6546 return 1;
6547 }
6548 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6549 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6550 /* Receive out of order FIN after close() */
6551 if (tp->syn_fastopen && th->fin)
6552 tcp_fastopen_active_disable(sk);
6553 tcp_done(sk);
6554 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6555 return 1;
6556 }
6557
6558 tmo = tcp_fin_time(sk);
6559 if (tmo > TCP_TIMEWAIT_LEN) {
6560 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6561 } else if (th->fin || sock_owned_by_user(sk)) {
6562 /* Bad case. We could lose such FIN otherwise.
6563 * It is not a big problem, but it looks confusing
6564 * and not so rare event. We still can lose it now,
6565 * if it spins in bh_lock_sock(), but it is really
6566 * marginal case.
6567 */
6568 inet_csk_reset_keepalive_timer(sk, tmo);
6569 } else {
6570 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6571 goto discard;
6572 }
6573 break;
6574 }
6575
6576 case TCP_CLOSING:
6577 if (tp->snd_una == tp->write_seq) {
6578 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6579 goto discard;
6580 }
6581 break;
6582
6583 case TCP_LAST_ACK:
6584 if (tp->snd_una == tp->write_seq) {
6585 tcp_update_metrics(sk);
6586 tcp_done(sk);
6587 goto discard;
6588 }
6589 break;
6590 }
6591
6592 /* step 6: check the URG bit */
6593 tcp_urg(sk, skb, th);
6594
6595 /* step 7: process the segment text */
6596 switch (sk->sk_state) {
6597 case TCP_CLOSE_WAIT:
6598 case TCP_CLOSING:
6599 case TCP_LAST_ACK:
6600 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6601 if (sk_is_mptcp(sk))
6602 mptcp_incoming_options(sk, skb);
6603 break;
6604 }
6605 fallthrough;
6606 case TCP_FIN_WAIT1:
6607 case TCP_FIN_WAIT2:
6608 /* RFC 793 says to queue data in these states,
6609 * RFC 1122 says we MUST send a reset.
6610 * BSD 4.4 also does reset.
6611 */
6612 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6613 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6614 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6616 tcp_reset(sk);
6617 return 1;
6618 }
6619 }
6620 fallthrough;
6621 case TCP_ESTABLISHED:
6622 tcp_data_queue(sk, skb);
6623 queued = 1;
6624 break;
6625 }
6626
6627 /* tcp_data could move socket to TIME-WAIT */
6628 if (sk->sk_state != TCP_CLOSE) {
6629 tcp_data_snd_check(sk);
6630 tcp_ack_snd_check(sk);
6631 }
6632
6633 if (!queued) {
6634 discard:
6635 tcp_drop(sk, skb);
6636 }
6637 return 0;
6638 }
6639 EXPORT_SYMBOL(tcp_rcv_state_process);
6640
pr_drop_req(struct request_sock * req,__u16 port,int family)6641 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6642 {
6643 struct inet_request_sock *ireq = inet_rsk(req);
6644
6645 if (family == AF_INET)
6646 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6647 &ireq->ir_rmt_addr, port);
6648 #if IS_ENABLED(CONFIG_IPV6)
6649 else if (family == AF_INET6)
6650 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6651 &ireq->ir_v6_rmt_addr, port);
6652 #endif
6653 }
6654
6655 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6656 *
6657 * If we receive a SYN packet with these bits set, it means a
6658 * network is playing bad games with TOS bits. In order to
6659 * avoid possible false congestion notifications, we disable
6660 * TCP ECN negotiation.
6661 *
6662 * Exception: tcp_ca wants ECN. This is required for DCTCP
6663 * congestion control: Linux DCTCP asserts ECT on all packets,
6664 * including SYN, which is most optimal solution; however,
6665 * others, such as FreeBSD do not.
6666 *
6667 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6668 * set, indicating the use of a future TCP extension (such as AccECN). See
6669 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6670 * extensions.
6671 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6672 static void tcp_ecn_create_request(struct request_sock *req,
6673 const struct sk_buff *skb,
6674 const struct sock *listen_sk,
6675 const struct dst_entry *dst)
6676 {
6677 const struct tcphdr *th = tcp_hdr(skb);
6678 const struct net *net = sock_net(listen_sk);
6679 bool th_ecn = th->ece && th->cwr;
6680 bool ect, ecn_ok;
6681 u32 ecn_ok_dst;
6682
6683 if (!th_ecn)
6684 return;
6685
6686 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6687 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6688 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6689
6690 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6691 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6692 tcp_bpf_ca_needs_ecn((struct sock *)req))
6693 inet_rsk(req)->ecn_ok = 1;
6694 }
6695
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6696 static void tcp_openreq_init(struct request_sock *req,
6697 const struct tcp_options_received *rx_opt,
6698 struct sk_buff *skb, const struct sock *sk)
6699 {
6700 struct inet_request_sock *ireq = inet_rsk(req);
6701
6702 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6703 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6704 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6705 tcp_rsk(req)->snt_synack = 0;
6706 tcp_rsk(req)->last_oow_ack_time = 0;
6707 req->mss = rx_opt->mss_clamp;
6708 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6709 ireq->tstamp_ok = rx_opt->tstamp_ok;
6710 ireq->sack_ok = rx_opt->sack_ok;
6711 ireq->snd_wscale = rx_opt->snd_wscale;
6712 ireq->wscale_ok = rx_opt->wscale_ok;
6713 ireq->acked = 0;
6714 ireq->ecn_ok = 0;
6715 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6716 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6717 ireq->ir_mark = inet_request_mark(sk, skb);
6718 #if IS_ENABLED(CONFIG_SMC)
6719 ireq->smc_ok = rx_opt->smc_ok;
6720 #endif
6721 }
6722
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6723 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6724 struct sock *sk_listener,
6725 bool attach_listener)
6726 {
6727 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6728 attach_listener);
6729
6730 if (req) {
6731 struct inet_request_sock *ireq = inet_rsk(req);
6732
6733 ireq->ireq_opt = NULL;
6734 #if IS_ENABLED(CONFIG_IPV6)
6735 ireq->pktopts = NULL;
6736 #endif
6737 atomic64_set(&ireq->ir_cookie, 0);
6738 ireq->ireq_state = TCP_NEW_SYN_RECV;
6739 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6740 ireq->ireq_family = sk_listener->sk_family;
6741 }
6742
6743 return req;
6744 }
6745 EXPORT_SYMBOL(inet_reqsk_alloc);
6746
6747 /*
6748 * Return true if a syncookie should be sent
6749 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6750 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6751 {
6752 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6753 const char *msg = "Dropping request";
6754 struct net *net = sock_net(sk);
6755 bool want_cookie = false;
6756 u8 syncookies;
6757
6758 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6759
6760 #ifdef CONFIG_SYN_COOKIES
6761 if (syncookies) {
6762 msg = "Sending cookies";
6763 want_cookie = true;
6764 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6765 } else
6766 #endif
6767 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6768
6769 if (!queue->synflood_warned && syncookies != 2 &&
6770 xchg(&queue->synflood_warned, 1) == 0)
6771 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6772 proto, sk->sk_num, msg);
6773
6774 return want_cookie;
6775 }
6776
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6777 static void tcp_reqsk_record_syn(const struct sock *sk,
6778 struct request_sock *req,
6779 const struct sk_buff *skb)
6780 {
6781 if (tcp_sk(sk)->save_syn) {
6782 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6783 struct saved_syn *saved_syn;
6784 u32 mac_hdrlen;
6785 void *base;
6786
6787 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6788 base = skb_mac_header(skb);
6789 mac_hdrlen = skb_mac_header_len(skb);
6790 len += mac_hdrlen;
6791 } else {
6792 base = skb_network_header(skb);
6793 mac_hdrlen = 0;
6794 }
6795
6796 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6797 GFP_ATOMIC);
6798 if (saved_syn) {
6799 saved_syn->mac_hdrlen = mac_hdrlen;
6800 saved_syn->network_hdrlen = skb_network_header_len(skb);
6801 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6802 memcpy(saved_syn->data, base, len);
6803 req->saved_syn = saved_syn;
6804 }
6805 }
6806 }
6807
6808 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6809 * used for SYN cookie generation.
6810 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6811 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6812 const struct tcp_request_sock_ops *af_ops,
6813 struct sock *sk, struct tcphdr *th)
6814 {
6815 struct tcp_sock *tp = tcp_sk(sk);
6816 u16 mss;
6817
6818 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6819 !inet_csk_reqsk_queue_is_full(sk))
6820 return 0;
6821
6822 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6823 return 0;
6824
6825 if (sk_acceptq_is_full(sk)) {
6826 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6827 return 0;
6828 }
6829
6830 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6831 if (!mss)
6832 mss = af_ops->mss_clamp;
6833
6834 return mss;
6835 }
6836 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6837
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6838 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6839 const struct tcp_request_sock_ops *af_ops,
6840 struct sock *sk, struct sk_buff *skb)
6841 {
6842 struct tcp_fastopen_cookie foc = { .len = -1 };
6843 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6844 struct tcp_options_received tmp_opt;
6845 struct tcp_sock *tp = tcp_sk(sk);
6846 struct net *net = sock_net(sk);
6847 struct sock *fastopen_sk = NULL;
6848 struct request_sock *req;
6849 bool want_cookie = false;
6850 struct dst_entry *dst;
6851 struct flowi fl;
6852 u8 syncookies;
6853
6854 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6855
6856 /* TW buckets are converted to open requests without
6857 * limitations, they conserve resources and peer is
6858 * evidently real one.
6859 */
6860 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6861 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6862 if (!want_cookie)
6863 goto drop;
6864 }
6865
6866 if (sk_acceptq_is_full(sk)) {
6867 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6868 goto drop;
6869 }
6870
6871 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6872 if (!req)
6873 goto drop;
6874
6875 req->syncookie = want_cookie;
6876 tcp_rsk(req)->af_specific = af_ops;
6877 tcp_rsk(req)->ts_off = 0;
6878 #if IS_ENABLED(CONFIG_MPTCP)
6879 tcp_rsk(req)->is_mptcp = 0;
6880 #endif
6881
6882 tcp_clear_options(&tmp_opt);
6883 tmp_opt.mss_clamp = af_ops->mss_clamp;
6884 tmp_opt.user_mss = tp->rx_opt.user_mss;
6885 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6886 want_cookie ? NULL : &foc);
6887
6888 if (want_cookie && !tmp_opt.saw_tstamp)
6889 tcp_clear_options(&tmp_opt);
6890
6891 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6892 tmp_opt.smc_ok = 0;
6893
6894 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6895 tcp_openreq_init(req, &tmp_opt, skb, sk);
6896 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6897
6898 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6899 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6900
6901 af_ops->init_req(req, sk, skb);
6902
6903 if (security_inet_conn_request(sk, skb, req))
6904 goto drop_and_free;
6905
6906 if (tmp_opt.tstamp_ok)
6907 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6908
6909 dst = af_ops->route_req(sk, &fl, req);
6910 if (!dst)
6911 goto drop_and_free;
6912
6913 if (!want_cookie && !isn) {
6914 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6915
6916 /* Kill the following clause, if you dislike this way. */
6917 if (!syncookies &&
6918 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6919 (max_syn_backlog >> 2)) &&
6920 !tcp_peer_is_proven(req, dst)) {
6921 /* Without syncookies last quarter of
6922 * backlog is filled with destinations,
6923 * proven to be alive.
6924 * It means that we continue to communicate
6925 * to destinations, already remembered
6926 * to the moment of synflood.
6927 */
6928 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6929 rsk_ops->family);
6930 goto drop_and_release;
6931 }
6932
6933 isn = af_ops->init_seq(skb);
6934 }
6935
6936 tcp_ecn_create_request(req, skb, sk, dst);
6937
6938 if (want_cookie) {
6939 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6940 if (!tmp_opt.tstamp_ok)
6941 inet_rsk(req)->ecn_ok = 0;
6942 }
6943
6944 tcp_rsk(req)->snt_isn = isn;
6945 tcp_rsk(req)->txhash = net_tx_rndhash();
6946 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6947 tcp_openreq_init_rwin(req, sk, dst);
6948 sk_rx_queue_set(req_to_sk(req), skb);
6949 if (!want_cookie) {
6950 tcp_reqsk_record_syn(sk, req, skb);
6951 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6952 }
6953 if (fastopen_sk) {
6954 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6955 &foc, TCP_SYNACK_FASTOPEN, skb);
6956 /* Add the child socket directly into the accept queue */
6957 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6958 reqsk_fastopen_remove(fastopen_sk, req, false);
6959 bh_unlock_sock(fastopen_sk);
6960 sock_put(fastopen_sk);
6961 goto drop_and_free;
6962 }
6963 sk->sk_data_ready(sk);
6964 bh_unlock_sock(fastopen_sk);
6965 sock_put(fastopen_sk);
6966 } else {
6967 tcp_rsk(req)->tfo_listener = false;
6968 if (!want_cookie)
6969 inet_csk_reqsk_queue_hash_add(sk, req,
6970 tcp_timeout_init((struct sock *)req));
6971 af_ops->send_synack(sk, dst, &fl, req, &foc,
6972 !want_cookie ? TCP_SYNACK_NORMAL :
6973 TCP_SYNACK_COOKIE,
6974 skb);
6975 if (want_cookie) {
6976 reqsk_free(req);
6977 return 0;
6978 }
6979 }
6980 reqsk_put(req);
6981 return 0;
6982
6983 drop_and_release:
6984 dst_release(dst);
6985 drop_and_free:
6986 __reqsk_free(req);
6987 drop:
6988 tcp_listendrop(sk);
6989 return 0;
6990 }
6991 EXPORT_SYMBOL(tcp_conn_request);
6992