1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Serial Attached SCSI (SAS) Transport Layer initialization
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 */
8
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/device.h>
13 #include <linux/spinlock.h>
14 #include <scsi/sas_ata.h>
15 #include <scsi/scsi_host.h>
16 #include <scsi/scsi_device.h>
17 #include <scsi/scsi_transport.h>
18 #include <scsi/scsi_transport_sas.h>
19
20 #include "sas_internal.h"
21
22 #include "../scsi_sas_internal.h"
23
24 static struct kmem_cache *sas_task_cache;
25 static struct kmem_cache *sas_event_cache;
26
sas_alloc_task(gfp_t flags)27 struct sas_task *sas_alloc_task(gfp_t flags)
28 {
29 struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
30
31 if (task) {
32 spin_lock_init(&task->task_state_lock);
33 task->task_state_flags = SAS_TASK_STATE_PENDING;
34 }
35
36 return task;
37 }
38 EXPORT_SYMBOL_GPL(sas_alloc_task);
39
sas_alloc_slow_task(gfp_t flags)40 struct sas_task *sas_alloc_slow_task(gfp_t flags)
41 {
42 struct sas_task *task = sas_alloc_task(flags);
43 struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
44
45 if (!task || !slow) {
46 if (task)
47 kmem_cache_free(sas_task_cache, task);
48 kfree(slow);
49 return NULL;
50 }
51
52 task->slow_task = slow;
53 slow->task = task;
54 timer_setup(&slow->timer, NULL, 0);
55 init_completion(&slow->completion);
56
57 return task;
58 }
59 EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
60
sas_free_task(struct sas_task * task)61 void sas_free_task(struct sas_task *task)
62 {
63 if (task) {
64 kfree(task->slow_task);
65 kmem_cache_free(sas_task_cache, task);
66 }
67 }
68 EXPORT_SYMBOL_GPL(sas_free_task);
69
70 /*------------ SAS addr hash -----------*/
sas_hash_addr(u8 * hashed,const u8 * sas_addr)71 void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
72 {
73 const u32 poly = 0x00DB2777;
74 u32 r = 0;
75 int i;
76
77 for (i = 0; i < SAS_ADDR_SIZE; i++) {
78 int b;
79
80 for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
81 r <<= 1;
82 if ((1 << b) & sas_addr[i]) {
83 if (!(r & 0x01000000))
84 r ^= poly;
85 } else if (r & 0x01000000) {
86 r ^= poly;
87 }
88 }
89 }
90
91 hashed[0] = (r >> 16) & 0xFF;
92 hashed[1] = (r >> 8) & 0xFF;
93 hashed[2] = r & 0xFF;
94 }
95
sas_register_ha(struct sas_ha_struct * sas_ha)96 int sas_register_ha(struct sas_ha_struct *sas_ha)
97 {
98 char name[64];
99 int error = 0;
100
101 mutex_init(&sas_ha->disco_mutex);
102 spin_lock_init(&sas_ha->phy_port_lock);
103 sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
104
105 set_bit(SAS_HA_REGISTERED, &sas_ha->state);
106 spin_lock_init(&sas_ha->lock);
107 mutex_init(&sas_ha->drain_mutex);
108 init_waitqueue_head(&sas_ha->eh_wait_q);
109 INIT_LIST_HEAD(&sas_ha->defer_q);
110 INIT_LIST_HEAD(&sas_ha->eh_dev_q);
111
112 sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
113
114 error = sas_register_phys(sas_ha);
115 if (error) {
116 pr_notice("couldn't register sas phys:%d\n", error);
117 return error;
118 }
119
120 error = sas_register_ports(sas_ha);
121 if (error) {
122 pr_notice("couldn't register sas ports:%d\n", error);
123 goto Undo_phys;
124 }
125
126 error = -ENOMEM;
127 snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
128 sas_ha->event_q = create_singlethread_workqueue(name);
129 if (!sas_ha->event_q)
130 goto Undo_ports;
131
132 snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
133 sas_ha->disco_q = create_singlethread_workqueue(name);
134 if (!sas_ha->disco_q)
135 goto Undo_event_q;
136
137 INIT_LIST_HEAD(&sas_ha->eh_done_q);
138 INIT_LIST_HEAD(&sas_ha->eh_ata_q);
139
140 return 0;
141
142 Undo_event_q:
143 destroy_workqueue(sas_ha->event_q);
144 Undo_ports:
145 sas_unregister_ports(sas_ha);
146 Undo_phys:
147
148 return error;
149 }
150
sas_disable_events(struct sas_ha_struct * sas_ha)151 static void sas_disable_events(struct sas_ha_struct *sas_ha)
152 {
153 /* Set the state to unregistered to avoid further unchained
154 * events to be queued, and flush any in-progress drainers
155 */
156 mutex_lock(&sas_ha->drain_mutex);
157 spin_lock_irq(&sas_ha->lock);
158 clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
159 spin_unlock_irq(&sas_ha->lock);
160 __sas_drain_work(sas_ha);
161 mutex_unlock(&sas_ha->drain_mutex);
162 }
163
sas_unregister_ha(struct sas_ha_struct * sas_ha)164 int sas_unregister_ha(struct sas_ha_struct *sas_ha)
165 {
166 sas_disable_events(sas_ha);
167 sas_unregister_ports(sas_ha);
168
169 /* flush unregistration work */
170 mutex_lock(&sas_ha->drain_mutex);
171 __sas_drain_work(sas_ha);
172 mutex_unlock(&sas_ha->drain_mutex);
173
174 destroy_workqueue(sas_ha->disco_q);
175 destroy_workqueue(sas_ha->event_q);
176
177 return 0;
178 }
179
sas_get_linkerrors(struct sas_phy * phy)180 static int sas_get_linkerrors(struct sas_phy *phy)
181 {
182 if (scsi_is_sas_phy_local(phy)) {
183 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
184 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
185 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
186 struct sas_internal *i =
187 to_sas_internal(sas_ha->core.shost->transportt);
188
189 return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
190 }
191
192 return sas_smp_get_phy_events(phy);
193 }
194
sas_try_ata_reset(struct asd_sas_phy * asd_phy)195 int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
196 {
197 struct domain_device *dev = NULL;
198
199 /* try to route user requested link resets through libata */
200 if (asd_phy->port)
201 dev = asd_phy->port->port_dev;
202
203 /* validate that dev has been probed */
204 if (dev)
205 dev = sas_find_dev_by_rphy(dev->rphy);
206
207 if (dev && dev_is_sata(dev)) {
208 sas_ata_schedule_reset(dev);
209 sas_ata_wait_eh(dev);
210 return 0;
211 }
212
213 return -ENODEV;
214 }
215
216 /*
217 * transport_sas_phy_reset - reset a phy and permit libata to manage the link
218 *
219 * phy reset request via sysfs in host workqueue context so we know we
220 * can block on eh and safely traverse the domain_device topology
221 */
transport_sas_phy_reset(struct sas_phy * phy,int hard_reset)222 static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
223 {
224 enum phy_func reset_type;
225
226 if (hard_reset)
227 reset_type = PHY_FUNC_HARD_RESET;
228 else
229 reset_type = PHY_FUNC_LINK_RESET;
230
231 if (scsi_is_sas_phy_local(phy)) {
232 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
233 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
234 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
235 struct sas_internal *i =
236 to_sas_internal(sas_ha->core.shost->transportt);
237
238 if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
239 return 0;
240 return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
241 } else {
242 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
243 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
244 struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
245
246 if (ata_dev && !hard_reset) {
247 sas_ata_schedule_reset(ata_dev);
248 sas_ata_wait_eh(ata_dev);
249 return 0;
250 } else
251 return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
252 }
253 }
254
sas_phy_enable(struct sas_phy * phy,int enable)255 static int sas_phy_enable(struct sas_phy *phy, int enable)
256 {
257 int ret;
258 enum phy_func cmd;
259
260 if (enable)
261 cmd = PHY_FUNC_LINK_RESET;
262 else
263 cmd = PHY_FUNC_DISABLE;
264
265 if (scsi_is_sas_phy_local(phy)) {
266 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
267 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
268 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
269 struct sas_internal *i =
270 to_sas_internal(sas_ha->core.shost->transportt);
271
272 if (enable)
273 ret = transport_sas_phy_reset(phy, 0);
274 else
275 ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
276 } else {
277 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
278 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
279
280 if (enable)
281 ret = transport_sas_phy_reset(phy, 0);
282 else
283 ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
284 }
285 return ret;
286 }
287
sas_phy_reset(struct sas_phy * phy,int hard_reset)288 int sas_phy_reset(struct sas_phy *phy, int hard_reset)
289 {
290 int ret;
291 enum phy_func reset_type;
292
293 if (!phy->enabled)
294 return -ENODEV;
295
296 if (hard_reset)
297 reset_type = PHY_FUNC_HARD_RESET;
298 else
299 reset_type = PHY_FUNC_LINK_RESET;
300
301 if (scsi_is_sas_phy_local(phy)) {
302 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
303 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
304 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
305 struct sas_internal *i =
306 to_sas_internal(sas_ha->core.shost->transportt);
307
308 ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
309 } else {
310 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
311 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
312 ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
313 }
314 return ret;
315 }
316
sas_set_phy_speed(struct sas_phy * phy,struct sas_phy_linkrates * rates)317 int sas_set_phy_speed(struct sas_phy *phy,
318 struct sas_phy_linkrates *rates)
319 {
320 int ret;
321
322 if ((rates->minimum_linkrate &&
323 rates->minimum_linkrate > phy->maximum_linkrate) ||
324 (rates->maximum_linkrate &&
325 rates->maximum_linkrate < phy->minimum_linkrate))
326 return -EINVAL;
327
328 if (rates->minimum_linkrate &&
329 rates->minimum_linkrate < phy->minimum_linkrate_hw)
330 rates->minimum_linkrate = phy->minimum_linkrate_hw;
331
332 if (rates->maximum_linkrate &&
333 rates->maximum_linkrate > phy->maximum_linkrate_hw)
334 rates->maximum_linkrate = phy->maximum_linkrate_hw;
335
336 if (scsi_is_sas_phy_local(phy)) {
337 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
338 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
339 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
340 struct sas_internal *i =
341 to_sas_internal(sas_ha->core.shost->transportt);
342
343 ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
344 rates);
345 } else {
346 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
347 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
348 ret = sas_smp_phy_control(ddev, phy->number,
349 PHY_FUNC_LINK_RESET, rates);
350
351 }
352
353 return ret;
354 }
355
sas_prep_resume_ha(struct sas_ha_struct * ha)356 void sas_prep_resume_ha(struct sas_ha_struct *ha)
357 {
358 int i;
359
360 set_bit(SAS_HA_REGISTERED, &ha->state);
361
362 /* clear out any stale link events/data from the suspension path */
363 for (i = 0; i < ha->num_phys; i++) {
364 struct asd_sas_phy *phy = ha->sas_phy[i];
365
366 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
367 phy->frame_rcvd_size = 0;
368 }
369 }
370 EXPORT_SYMBOL(sas_prep_resume_ha);
371
phys_suspended(struct sas_ha_struct * ha)372 static int phys_suspended(struct sas_ha_struct *ha)
373 {
374 int i, rc = 0;
375
376 for (i = 0; i < ha->num_phys; i++) {
377 struct asd_sas_phy *phy = ha->sas_phy[i];
378
379 if (phy->suspended)
380 rc++;
381 }
382
383 return rc;
384 }
385
sas_resume_ha(struct sas_ha_struct * ha)386 void sas_resume_ha(struct sas_ha_struct *ha)
387 {
388 const unsigned long tmo = msecs_to_jiffies(25000);
389 int i;
390
391 /* deform ports on phys that did not resume
392 * at this point we may be racing the phy coming back (as posted
393 * by the lldd). So we post the event and once we are in the
394 * libsas context check that the phy remains suspended before
395 * tearing it down.
396 */
397 i = phys_suspended(ha);
398 if (i)
399 dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
400 i, i > 1 ? "s" : "");
401 wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
402 for (i = 0; i < ha->num_phys; i++) {
403 struct asd_sas_phy *phy = ha->sas_phy[i];
404
405 if (phy->suspended) {
406 dev_warn(&phy->phy->dev, "resume timeout\n");
407 sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
408 }
409 }
410
411 /* all phys are back up or timed out, turn on i/o so we can
412 * flush out disks that did not return
413 */
414 scsi_unblock_requests(ha->core.shost);
415 sas_drain_work(ha);
416 }
417 EXPORT_SYMBOL(sas_resume_ha);
418
sas_suspend_ha(struct sas_ha_struct * ha)419 void sas_suspend_ha(struct sas_ha_struct *ha)
420 {
421 int i;
422
423 sas_disable_events(ha);
424 scsi_block_requests(ha->core.shost);
425 for (i = 0; i < ha->num_phys; i++) {
426 struct asd_sas_port *port = ha->sas_port[i];
427
428 sas_discover_event(port, DISCE_SUSPEND);
429 }
430
431 /* flush suspend events while unregistered */
432 mutex_lock(&ha->drain_mutex);
433 __sas_drain_work(ha);
434 mutex_unlock(&ha->drain_mutex);
435 }
436 EXPORT_SYMBOL(sas_suspend_ha);
437
sas_phy_release(struct sas_phy * phy)438 static void sas_phy_release(struct sas_phy *phy)
439 {
440 kfree(phy->hostdata);
441 phy->hostdata = NULL;
442 }
443
phy_reset_work(struct work_struct * work)444 static void phy_reset_work(struct work_struct *work)
445 {
446 struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
447
448 d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
449 }
450
phy_enable_work(struct work_struct * work)451 static void phy_enable_work(struct work_struct *work)
452 {
453 struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
454
455 d->enable_result = sas_phy_enable(d->phy, d->enable);
456 }
457
sas_phy_setup(struct sas_phy * phy)458 static int sas_phy_setup(struct sas_phy *phy)
459 {
460 struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
461
462 if (!d)
463 return -ENOMEM;
464
465 mutex_init(&d->event_lock);
466 INIT_SAS_WORK(&d->reset_work, phy_reset_work);
467 INIT_SAS_WORK(&d->enable_work, phy_enable_work);
468 d->phy = phy;
469 phy->hostdata = d;
470
471 return 0;
472 }
473
queue_phy_reset(struct sas_phy * phy,int hard_reset)474 static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
475 {
476 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
477 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
478 struct sas_phy_data *d = phy->hostdata;
479 int rc;
480
481 if (!d)
482 return -ENOMEM;
483
484 /* libsas workqueue coordinates ata-eh reset with discovery */
485 mutex_lock(&d->event_lock);
486 d->reset_result = 0;
487 d->hard_reset = hard_reset;
488
489 spin_lock_irq(&ha->lock);
490 sas_queue_work(ha, &d->reset_work);
491 spin_unlock_irq(&ha->lock);
492
493 rc = sas_drain_work(ha);
494 if (rc == 0)
495 rc = d->reset_result;
496 mutex_unlock(&d->event_lock);
497
498 return rc;
499 }
500
queue_phy_enable(struct sas_phy * phy,int enable)501 static int queue_phy_enable(struct sas_phy *phy, int enable)
502 {
503 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
504 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
505 struct sas_phy_data *d = phy->hostdata;
506 int rc;
507
508 if (!d)
509 return -ENOMEM;
510
511 /* libsas workqueue coordinates ata-eh reset with discovery */
512 mutex_lock(&d->event_lock);
513 d->enable_result = 0;
514 d->enable = enable;
515
516 spin_lock_irq(&ha->lock);
517 sas_queue_work(ha, &d->enable_work);
518 spin_unlock_irq(&ha->lock);
519
520 rc = sas_drain_work(ha);
521 if (rc == 0)
522 rc = d->enable_result;
523 mutex_unlock(&d->event_lock);
524
525 return rc;
526 }
527
528 static struct sas_function_template sft = {
529 .phy_enable = queue_phy_enable,
530 .phy_reset = queue_phy_reset,
531 .phy_setup = sas_phy_setup,
532 .phy_release = sas_phy_release,
533 .set_phy_speed = sas_set_phy_speed,
534 .get_linkerrors = sas_get_linkerrors,
535 .smp_handler = sas_smp_handler,
536 };
537
phy_event_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)538 static inline ssize_t phy_event_threshold_show(struct device *dev,
539 struct device_attribute *attr, char *buf)
540 {
541 struct Scsi_Host *shost = class_to_shost(dev);
542 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
543
544 return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
545 }
546
phy_event_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)547 static inline ssize_t phy_event_threshold_store(struct device *dev,
548 struct device_attribute *attr,
549 const char *buf, size_t count)
550 {
551 struct Scsi_Host *shost = class_to_shost(dev);
552 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
553
554 sha->event_thres = simple_strtol(buf, NULL, 10);
555
556 /* threshold cannot be set too small */
557 if (sha->event_thres < 32)
558 sha->event_thres = 32;
559
560 return count;
561 }
562
563 DEVICE_ATTR(phy_event_threshold,
564 S_IRUGO|S_IWUSR,
565 phy_event_threshold_show,
566 phy_event_threshold_store);
567 EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
568
569 struct scsi_transport_template *
sas_domain_attach_transport(struct sas_domain_function_template * dft)570 sas_domain_attach_transport(struct sas_domain_function_template *dft)
571 {
572 struct scsi_transport_template *stt = sas_attach_transport(&sft);
573 struct sas_internal *i;
574
575 if (!stt)
576 return stt;
577
578 i = to_sas_internal(stt);
579 i->dft = dft;
580 stt->create_work_queue = 1;
581 stt->eh_strategy_handler = sas_scsi_recover_host;
582
583 return stt;
584 }
585 EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
586
__sas_alloc_event(struct asd_sas_phy * phy,gfp_t gfp_flags)587 static struct asd_sas_event *__sas_alloc_event(struct asd_sas_phy *phy,
588 gfp_t gfp_flags)
589 {
590 struct asd_sas_event *event;
591 struct sas_ha_struct *sas_ha = phy->ha;
592 struct sas_internal *i =
593 to_sas_internal(sas_ha->core.shost->transportt);
594
595 event = kmem_cache_zalloc(sas_event_cache, gfp_flags);
596 if (!event)
597 return NULL;
598
599 atomic_inc(&phy->event_nr);
600
601 if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
602 if (i->dft->lldd_control_phy) {
603 if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
604 pr_notice("The phy%d bursting events, shut it down.\n",
605 phy->id);
606 sas_notify_phy_event_gfp(phy, PHYE_SHUTDOWN,
607 gfp_flags);
608 }
609 } else {
610 /* Do not support PHY control, stop allocating events */
611 WARN_ONCE(1, "PHY control not supported.\n");
612 kmem_cache_free(sas_event_cache, event);
613 atomic_dec(&phy->event_nr);
614 event = NULL;
615 }
616 }
617
618 return event;
619 }
620
sas_alloc_event(struct asd_sas_phy * phy)621 struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
622 {
623 return __sas_alloc_event(phy, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
624 }
625
sas_alloc_event_gfp(struct asd_sas_phy * phy,gfp_t gfp_flags)626 struct asd_sas_event *sas_alloc_event_gfp(struct asd_sas_phy *phy,
627 gfp_t gfp_flags)
628 {
629 return __sas_alloc_event(phy, gfp_flags);
630 }
631
sas_free_event(struct asd_sas_event * event)632 void sas_free_event(struct asd_sas_event *event)
633 {
634 struct asd_sas_phy *phy = event->phy;
635
636 kmem_cache_free(sas_event_cache, event);
637 atomic_dec(&phy->event_nr);
638 }
639
640 /* ---------- SAS Class register/unregister ---------- */
641
sas_class_init(void)642 static int __init sas_class_init(void)
643 {
644 sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
645 if (!sas_task_cache)
646 goto out;
647
648 sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
649 if (!sas_event_cache)
650 goto free_task_kmem;
651
652 return 0;
653 free_task_kmem:
654 kmem_cache_destroy(sas_task_cache);
655 out:
656 return -ENOMEM;
657 }
658
sas_class_exit(void)659 static void __exit sas_class_exit(void)
660 {
661 kmem_cache_destroy(sas_task_cache);
662 kmem_cache_destroy(sas_event_cache);
663 }
664
665 MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
666 MODULE_DESCRIPTION("SAS Transport Layer");
667 MODULE_LICENSE("GPL v2");
668
669 module_init(sas_class_init);
670 module_exit(sas_class_exit);
671
672 EXPORT_SYMBOL_GPL(sas_register_ha);
673 EXPORT_SYMBOL_GPL(sas_unregister_ha);
674