• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 International Business Machines, Corp.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions handle all input from the IP layer into SCTP.
13  *
14  * Please send any bug reports or fixes you make to the
15  * email address(es):
16  *    lksctp developers <linux-sctp@vger.kernel.org>
17  *
18  * Written or modified by:
19  *    La Monte H.P. Yarroll <piggy@acm.org>
20  *    Karl Knutson <karl@athena.chicago.il.us>
21  *    Xingang Guo <xingang.guo@intel.com>
22  *    Jon Grimm <jgrimm@us.ibm.com>
23  *    Hui Huang <hui.huang@nokia.com>
24  *    Daisy Chang <daisyc@us.ibm.com>
25  *    Sridhar Samudrala <sri@us.ibm.com>
26  *    Ardelle Fan <ardelle.fan@intel.com>
27  */
28 
29 #include <linux/types.h>
30 #include <linux/list.h> /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/time.h> /* For struct timeval */
34 #include <linux/slab.h>
35 #include <net/ip.h>
36 #include <net/icmp.h>
37 #include <net/snmp.h>
38 #include <net/sock.h>
39 #include <net/xfrm.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/sm.h>
42 #include <net/sctp/checksum.h>
43 #include <net/net_namespace.h>
44 #include <linux/rhashtable.h>
45 #include <net/sock_reuseport.h>
46 
47 /* Forward declarations for internal helpers. */
48 static int sctp_rcv_ootb(struct sk_buff *);
49 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50 				      struct sk_buff *skb,
51 				      const union sctp_addr *paddr,
52 				      const union sctp_addr *laddr,
53 				      struct sctp_transport **transportp);
54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55 					struct net *net, struct sk_buff *skb,
56 					const union sctp_addr *laddr,
57 					const union sctp_addr *daddr);
58 static struct sctp_association *__sctp_lookup_association(
59 					struct net *net,
60 					const union sctp_addr *local,
61 					const union sctp_addr *peer,
62 					struct sctp_transport **pt);
63 
64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65 
66 
67 /* Calculate the SCTP checksum of an SCTP packet.  */
sctp_rcv_checksum(struct net * net,struct sk_buff * skb)68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69 {
70 	struct sctphdr *sh = sctp_hdr(skb);
71 	__le32 cmp = sh->checksum;
72 	__le32 val = sctp_compute_cksum(skb, 0);
73 
74 	if (val != cmp) {
75 		/* CRC failure, dump it. */
76 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77 		return -1;
78 	}
79 	return 0;
80 }
81 
82 /*
83  * This is the routine which IP calls when receiving an SCTP packet.
84  */
sctp_rcv(struct sk_buff * skb)85 int sctp_rcv(struct sk_buff *skb)
86 {
87 	struct sock *sk;
88 	struct sctp_association *asoc;
89 	struct sctp_endpoint *ep = NULL;
90 	struct sctp_ep_common *rcvr;
91 	struct sctp_transport *transport = NULL;
92 	struct sctp_chunk *chunk;
93 	union sctp_addr src;
94 	union sctp_addr dest;
95 	int bound_dev_if;
96 	int family;
97 	struct sctp_af *af;
98 	struct net *net = dev_net(skb->dev);
99 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
100 
101 	if (skb->pkt_type != PACKET_HOST)
102 		goto discard_it;
103 
104 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
105 
106 	/* If packet is too small to contain a single chunk, let's not
107 	 * waste time on it anymore.
108 	 */
109 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
110 		       skb_transport_offset(skb))
111 		goto discard_it;
112 
113 	/* If the packet is fragmented and we need to do crc checking,
114 	 * it's better to just linearize it otherwise crc computing
115 	 * takes longer.
116 	 */
117 	if ((!is_gso && skb_linearize(skb)) ||
118 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
119 		goto discard_it;
120 
121 	/* Pull up the IP header. */
122 	__skb_pull(skb, skb_transport_offset(skb));
123 
124 	skb->csum_valid = 0; /* Previous value not applicable */
125 	if (skb_csum_unnecessary(skb))
126 		__skb_decr_checksum_unnecessary(skb);
127 	else if (!sctp_checksum_disable &&
128 		 !is_gso &&
129 		 sctp_rcv_checksum(net, skb) < 0)
130 		goto discard_it;
131 	skb->csum_valid = 1;
132 
133 	__skb_pull(skb, sizeof(struct sctphdr));
134 
135 	family = ipver2af(ip_hdr(skb)->version);
136 	af = sctp_get_af_specific(family);
137 	if (unlikely(!af))
138 		goto discard_it;
139 	SCTP_INPUT_CB(skb)->af = af;
140 
141 	/* Initialize local addresses for lookups. */
142 	af->from_skb(&src, skb, 1);
143 	af->from_skb(&dest, skb, 0);
144 
145 	/* If the packet is to or from a non-unicast address,
146 	 * silently discard the packet.
147 	 *
148 	 * This is not clearly defined in the RFC except in section
149 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
150 	 * Transmission Protocol" 2.1, "It is important to note that the
151 	 * IP address of an SCTP transport address must be a routable
152 	 * unicast address.  In other words, IP multicast addresses and
153 	 * IP broadcast addresses cannot be used in an SCTP transport
154 	 * address."
155 	 */
156 	if (!af->addr_valid(&src, NULL, skb) ||
157 	    !af->addr_valid(&dest, NULL, skb))
158 		goto discard_it;
159 
160 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
161 
162 	if (!asoc)
163 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
164 
165 	/* Retrieve the common input handling substructure. */
166 	rcvr = asoc ? &asoc->base : &ep->base;
167 	sk = rcvr->sk;
168 
169 	/*
170 	 * If a frame arrives on an interface and the receiving socket is
171 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
172 	 */
173 	bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
174 	if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) {
175 		if (transport) {
176 			sctp_transport_put(transport);
177 			asoc = NULL;
178 			transport = NULL;
179 		} else {
180 			sctp_endpoint_put(ep);
181 			ep = NULL;
182 		}
183 		sk = net->sctp.ctl_sock;
184 		ep = sctp_sk(sk)->ep;
185 		sctp_endpoint_hold(ep);
186 		rcvr = &ep->base;
187 	}
188 
189 	/*
190 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
191 	 * An SCTP packet is called an "out of the blue" (OOTB)
192 	 * packet if it is correctly formed, i.e., passed the
193 	 * receiver's checksum check, but the receiver is not
194 	 * able to identify the association to which this
195 	 * packet belongs.
196 	 */
197 	if (!asoc) {
198 		if (sctp_rcv_ootb(skb)) {
199 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
200 			goto discard_release;
201 		}
202 	}
203 
204 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
205 		goto discard_release;
206 	nf_reset_ct(skb);
207 
208 	if (sk_filter(sk, skb))
209 		goto discard_release;
210 
211 	/* Create an SCTP packet structure. */
212 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
213 	if (!chunk)
214 		goto discard_release;
215 	SCTP_INPUT_CB(skb)->chunk = chunk;
216 
217 	/* Remember what endpoint is to handle this packet. */
218 	chunk->rcvr = rcvr;
219 
220 	/* Remember the SCTP header. */
221 	chunk->sctp_hdr = sctp_hdr(skb);
222 
223 	/* Set the source and destination addresses of the incoming chunk.  */
224 	sctp_init_addrs(chunk, &src, &dest);
225 
226 	/* Remember where we came from.  */
227 	chunk->transport = transport;
228 
229 	/* Acquire access to the sock lock. Note: We are safe from other
230 	 * bottom halves on this lock, but a user may be in the lock too,
231 	 * so check if it is busy.
232 	 */
233 	bh_lock_sock(sk);
234 
235 	if (sk != rcvr->sk) {
236 		/* Our cached sk is different from the rcvr->sk.  This is
237 		 * because migrate()/accept() may have moved the association
238 		 * to a new socket and released all the sockets.  So now we
239 		 * are holding a lock on the old socket while the user may
240 		 * be doing something with the new socket.  Switch our veiw
241 		 * of the current sk.
242 		 */
243 		bh_unlock_sock(sk);
244 		sk = rcvr->sk;
245 		bh_lock_sock(sk);
246 	}
247 
248 	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
249 		if (sctp_add_backlog(sk, skb)) {
250 			bh_unlock_sock(sk);
251 			sctp_chunk_free(chunk);
252 			skb = NULL; /* sctp_chunk_free already freed the skb */
253 			goto discard_release;
254 		}
255 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
256 	} else {
257 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
258 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
259 	}
260 
261 	bh_unlock_sock(sk);
262 
263 	/* Release the asoc/ep ref we took in the lookup calls. */
264 	if (transport)
265 		sctp_transport_put(transport);
266 	else
267 		sctp_endpoint_put(ep);
268 
269 	return 0;
270 
271 discard_it:
272 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
273 	kfree_skb(skb);
274 	return 0;
275 
276 discard_release:
277 	/* Release the asoc/ep ref we took in the lookup calls. */
278 	if (transport)
279 		sctp_transport_put(transport);
280 	else
281 		sctp_endpoint_put(ep);
282 
283 	goto discard_it;
284 }
285 
286 /* Process the backlog queue of the socket.  Every skb on
287  * the backlog holds a ref on an association or endpoint.
288  * We hold this ref throughout the state machine to make
289  * sure that the structure we need is still around.
290  */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)291 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
292 {
293 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
294 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
295 	struct sctp_transport *t = chunk->transport;
296 	struct sctp_ep_common *rcvr = NULL;
297 	int backloged = 0;
298 
299 	rcvr = chunk->rcvr;
300 
301 	/* If the rcvr is dead then the association or endpoint
302 	 * has been deleted and we can safely drop the chunk
303 	 * and refs that we are holding.
304 	 */
305 	if (rcvr->dead) {
306 		sctp_chunk_free(chunk);
307 		goto done;
308 	}
309 
310 	if (unlikely(rcvr->sk != sk)) {
311 		/* In this case, the association moved from one socket to
312 		 * another.  We are currently sitting on the backlog of the
313 		 * old socket, so we need to move.
314 		 * However, since we are here in the process context we
315 		 * need to take make sure that the user doesn't own
316 		 * the new socket when we process the packet.
317 		 * If the new socket is user-owned, queue the chunk to the
318 		 * backlog of the new socket without dropping any refs.
319 		 * Otherwise, we can safely push the chunk on the inqueue.
320 		 */
321 
322 		sk = rcvr->sk;
323 		local_bh_disable();
324 		bh_lock_sock(sk);
325 
326 		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
327 			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
328 				sctp_chunk_free(chunk);
329 			else
330 				backloged = 1;
331 		} else
332 			sctp_inq_push(inqueue, chunk);
333 
334 		bh_unlock_sock(sk);
335 		local_bh_enable();
336 
337 		/* If the chunk was backloged again, don't drop refs */
338 		if (backloged)
339 			return 0;
340 	} else {
341 		if (!sctp_newsk_ready(sk)) {
342 			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
343 				return 0;
344 			sctp_chunk_free(chunk);
345 		} else {
346 			sctp_inq_push(inqueue, chunk);
347 		}
348 	}
349 
350 done:
351 	/* Release the refs we took in sctp_add_backlog */
352 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
353 		sctp_transport_put(t);
354 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
355 		sctp_endpoint_put(sctp_ep(rcvr));
356 	else
357 		BUG();
358 
359 	return 0;
360 }
361 
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)362 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
363 {
364 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
365 	struct sctp_transport *t = chunk->transport;
366 	struct sctp_ep_common *rcvr = chunk->rcvr;
367 	int ret;
368 
369 	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
370 	if (!ret) {
371 		/* Hold the assoc/ep while hanging on the backlog queue.
372 		 * This way, we know structures we need will not disappear
373 		 * from us
374 		 */
375 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
376 			sctp_transport_hold(t);
377 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
378 			sctp_endpoint_hold(sctp_ep(rcvr));
379 		else
380 			BUG();
381 	}
382 	return ret;
383 
384 }
385 
386 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
388 			   struct sctp_transport *t, __u32 pmtu)
389 {
390 	if (!t || (t->pathmtu <= pmtu))
391 		return;
392 
393 	if (sock_owned_by_user(sk)) {
394 		atomic_set(&t->mtu_info, pmtu);
395 		asoc->pmtu_pending = 1;
396 		t->pmtu_pending = 1;
397 		return;
398 	}
399 
400 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
401 		/* We can't allow retransmitting in such case, as the
402 		 * retransmission would be sized just as before, and thus we
403 		 * would get another icmp, and retransmit again.
404 		 */
405 		return;
406 
407 	/* Update transports view of the MTU. Return if no update was needed.
408 	 * If an update wasn't needed/possible, it also doesn't make sense to
409 	 * try to retransmit now.
410 	 */
411 	if (!sctp_transport_update_pmtu(t, pmtu))
412 		return;
413 
414 	/* Update association pmtu. */
415 	sctp_assoc_sync_pmtu(asoc);
416 
417 	/* Retransmit with the new pmtu setting. */
418 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
419 }
420 
sctp_icmp_redirect(struct sock * sk,struct sctp_transport * t,struct sk_buff * skb)421 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
422 			struct sk_buff *skb)
423 {
424 	struct dst_entry *dst;
425 
426 	if (sock_owned_by_user(sk) || !t)
427 		return;
428 	dst = sctp_transport_dst_check(t);
429 	if (dst)
430 		dst->ops->redirect(dst, sk, skb);
431 }
432 
433 /*
434  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
435  *
436  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
437  *        or a "Protocol Unreachable" treat this message as an abort
438  *        with the T bit set.
439  *
440  * This function sends an event to the state machine, which will abort the
441  * association.
442  *
443  */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)444 void sctp_icmp_proto_unreachable(struct sock *sk,
445 			   struct sctp_association *asoc,
446 			   struct sctp_transport *t)
447 {
448 	if (sock_owned_by_user(sk)) {
449 		if (timer_pending(&t->proto_unreach_timer))
450 			return;
451 		else {
452 			if (!mod_timer(&t->proto_unreach_timer,
453 						jiffies + (HZ/20)))
454 				sctp_transport_hold(t);
455 		}
456 	} else {
457 		struct net *net = sock_net(sk);
458 
459 		pr_debug("%s: unrecognized next header type "
460 			 "encountered!\n", __func__);
461 
462 		if (del_timer(&t->proto_unreach_timer))
463 			sctp_transport_put(t);
464 
465 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
466 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
467 			   asoc->state, asoc->ep, asoc, t,
468 			   GFP_ATOMIC);
469 	}
470 }
471 
472 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(struct net * net,int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)473 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
474 			     struct sctphdr *sctphdr,
475 			     struct sctp_association **app,
476 			     struct sctp_transport **tpp)
477 {
478 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
479 	union sctp_addr saddr;
480 	union sctp_addr daddr;
481 	struct sctp_af *af;
482 	struct sock *sk = NULL;
483 	struct sctp_association *asoc;
484 	struct sctp_transport *transport = NULL;
485 	__u32 vtag = ntohl(sctphdr->vtag);
486 
487 	*app = NULL; *tpp = NULL;
488 
489 	af = sctp_get_af_specific(family);
490 	if (unlikely(!af)) {
491 		return NULL;
492 	}
493 
494 	/* Initialize local addresses for lookups. */
495 	af->from_skb(&saddr, skb, 1);
496 	af->from_skb(&daddr, skb, 0);
497 
498 	/* Look for an association that matches the incoming ICMP error
499 	 * packet.
500 	 */
501 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
502 	if (!asoc)
503 		return NULL;
504 
505 	sk = asoc->base.sk;
506 
507 	/* RFC 4960, Appendix C. ICMP Handling
508 	 *
509 	 * ICMP6) An implementation MUST validate that the Verification Tag
510 	 * contained in the ICMP message matches the Verification Tag of
511 	 * the peer.  If the Verification Tag is not 0 and does NOT
512 	 * match, discard the ICMP message.  If it is 0 and the ICMP
513 	 * message contains enough bytes to verify that the chunk type is
514 	 * an INIT chunk and that the Initiate Tag matches the tag of the
515 	 * peer, continue with ICMP7.  If the ICMP message is too short
516 	 * or the chunk type or the Initiate Tag does not match, silently
517 	 * discard the packet.
518 	 */
519 	if (vtag == 0) {
520 		/* chunk header + first 4 octects of init header */
521 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
522 					      sizeof(struct sctphdr),
523 					      sizeof(struct sctp_chunkhdr) +
524 					      sizeof(__be32), &_chunkhdr);
525 		if (!chunkhdr ||
526 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
527 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
528 			goto out;
529 
530 	} else if (vtag != asoc->c.peer_vtag) {
531 		goto out;
532 	}
533 
534 	bh_lock_sock(sk);
535 
536 	/* If too many ICMPs get dropped on busy
537 	 * servers this needs to be solved differently.
538 	 */
539 	if (sock_owned_by_user(sk))
540 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
541 
542 	*app = asoc;
543 	*tpp = transport;
544 	return sk;
545 
546 out:
547 	sctp_transport_put(transport);
548 	return NULL;
549 }
550 
551 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_transport * t)552 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
553 	__releases(&((__sk)->sk_lock.slock))
554 {
555 	bh_unlock_sock(sk);
556 	sctp_transport_put(t);
557 }
558 
559 /*
560  * This routine is called by the ICMP module when it gets some
561  * sort of error condition.  If err < 0 then the socket should
562  * be closed and the error returned to the user.  If err > 0
563  * it's just the icmp type << 8 | icmp code.  After adjustment
564  * header points to the first 8 bytes of the sctp header.  We need
565  * to find the appropriate port.
566  *
567  * The locking strategy used here is very "optimistic". When
568  * someone else accesses the socket the ICMP is just dropped
569  * and for some paths there is no check at all.
570  * A more general error queue to queue errors for later handling
571  * is probably better.
572  *
573  */
sctp_v4_err(struct sk_buff * skb,__u32 info)574 int sctp_v4_err(struct sk_buff *skb, __u32 info)
575 {
576 	const struct iphdr *iph = (const struct iphdr *)skb->data;
577 	const int ihlen = iph->ihl * 4;
578 	const int type = icmp_hdr(skb)->type;
579 	const int code = icmp_hdr(skb)->code;
580 	struct sock *sk;
581 	struct sctp_association *asoc = NULL;
582 	struct sctp_transport *transport;
583 	struct inet_sock *inet;
584 	__u16 saveip, savesctp;
585 	int err;
586 	struct net *net = dev_net(skb->dev);
587 
588 	/* Fix up skb to look at the embedded net header. */
589 	saveip = skb->network_header;
590 	savesctp = skb->transport_header;
591 	skb_reset_network_header(skb);
592 	skb_set_transport_header(skb, ihlen);
593 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
594 	/* Put back, the original values. */
595 	skb->network_header = saveip;
596 	skb->transport_header = savesctp;
597 	if (!sk) {
598 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
599 		return -ENOENT;
600 	}
601 	/* Warning:  The sock lock is held.  Remember to call
602 	 * sctp_err_finish!
603 	 */
604 
605 	switch (type) {
606 	case ICMP_PARAMETERPROB:
607 		err = EPROTO;
608 		break;
609 	case ICMP_DEST_UNREACH:
610 		if (code > NR_ICMP_UNREACH)
611 			goto out_unlock;
612 
613 		/* PMTU discovery (RFC1191) */
614 		if (ICMP_FRAG_NEEDED == code) {
615 			sctp_icmp_frag_needed(sk, asoc, transport,
616 					      SCTP_TRUNC4(info));
617 			goto out_unlock;
618 		} else {
619 			if (ICMP_PROT_UNREACH == code) {
620 				sctp_icmp_proto_unreachable(sk, asoc,
621 							    transport);
622 				goto out_unlock;
623 			}
624 		}
625 		err = icmp_err_convert[code].errno;
626 		break;
627 	case ICMP_TIME_EXCEEDED:
628 		/* Ignore any time exceeded errors due to fragment reassembly
629 		 * timeouts.
630 		 */
631 		if (ICMP_EXC_FRAGTIME == code)
632 			goto out_unlock;
633 
634 		err = EHOSTUNREACH;
635 		break;
636 	case ICMP_REDIRECT:
637 		sctp_icmp_redirect(sk, transport, skb);
638 		/* Fall through to out_unlock. */
639 	default:
640 		goto out_unlock;
641 	}
642 
643 	inet = inet_sk(sk);
644 	if (!sock_owned_by_user(sk) && inet->recverr) {
645 		sk->sk_err = err;
646 		sk->sk_error_report(sk);
647 	} else {  /* Only an error on timeout */
648 		sk->sk_err_soft = err;
649 	}
650 
651 out_unlock:
652 	sctp_err_finish(sk, transport);
653 	return 0;
654 }
655 
656 /*
657  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
658  *
659  * This function scans all the chunks in the OOTB packet to determine if
660  * the packet should be discarded right away.  If a response might be needed
661  * for this packet, or, if further processing is possible, the packet will
662  * be queued to a proper inqueue for the next phase of handling.
663  *
664  * Output:
665  * Return 0 - If further processing is needed.
666  * Return 1 - If the packet can be discarded right away.
667  */
sctp_rcv_ootb(struct sk_buff * skb)668 static int sctp_rcv_ootb(struct sk_buff *skb)
669 {
670 	struct sctp_chunkhdr *ch, _ch;
671 	int ch_end, offset = 0;
672 
673 	/* Scan through all the chunks in the packet.  */
674 	do {
675 		/* Make sure we have at least the header there */
676 		if (offset + sizeof(_ch) > skb->len)
677 			break;
678 
679 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
680 
681 		/* Break out if chunk length is less then minimal. */
682 		if (!ch || ntohs(ch->length) < sizeof(_ch))
683 			break;
684 
685 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
686 		if (ch_end > skb->len)
687 			break;
688 
689 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
690 		 * receiver MUST silently discard the OOTB packet and take no
691 		 * further action.
692 		 */
693 		if (SCTP_CID_ABORT == ch->type)
694 			goto discard;
695 
696 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
697 		 * chunk, the receiver should silently discard the packet
698 		 * and take no further action.
699 		 */
700 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
701 			goto discard;
702 
703 		/* RFC 4460, 2.11.2
704 		 * This will discard packets with INIT chunk bundled as
705 		 * subsequent chunks in the packet.  When INIT is first,
706 		 * the normal INIT processing will discard the chunk.
707 		 */
708 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
709 			goto discard;
710 
711 		offset = ch_end;
712 	} while (ch_end < skb->len);
713 
714 	return 0;
715 
716 discard:
717 	return 1;
718 }
719 
720 /* Insert endpoint into the hash table.  */
__sctp_hash_endpoint(struct sctp_endpoint * ep)721 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
722 {
723 	struct sock *sk = ep->base.sk;
724 	struct net *net = sock_net(sk);
725 	struct sctp_hashbucket *head;
726 	struct sctp_ep_common *epb;
727 
728 	epb = &ep->base;
729 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
730 	head = &sctp_ep_hashtable[epb->hashent];
731 
732 	if (sk->sk_reuseport) {
733 		bool any = sctp_is_ep_boundall(sk);
734 		struct sctp_ep_common *epb2;
735 		struct list_head *list;
736 		int cnt = 0, err = 1;
737 
738 		list_for_each(list, &ep->base.bind_addr.address_list)
739 			cnt++;
740 
741 		sctp_for_each_hentry(epb2, &head->chain) {
742 			struct sock *sk2 = epb2->sk;
743 
744 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
745 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
746 			    !sk2->sk_reuseport)
747 				continue;
748 
749 			err = sctp_bind_addrs_check(sctp_sk(sk2),
750 						    sctp_sk(sk), cnt);
751 			if (!err) {
752 				err = reuseport_add_sock(sk, sk2, any);
753 				if (err)
754 					return err;
755 				break;
756 			} else if (err < 0) {
757 				return err;
758 			}
759 		}
760 
761 		if (err) {
762 			err = reuseport_alloc(sk, any);
763 			if (err)
764 				return err;
765 		}
766 	}
767 
768 	write_lock(&head->lock);
769 	hlist_add_head(&epb->node, &head->chain);
770 	write_unlock(&head->lock);
771 	return 0;
772 }
773 
774 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)775 int sctp_hash_endpoint(struct sctp_endpoint *ep)
776 {
777 	int err;
778 
779 	local_bh_disable();
780 	err = __sctp_hash_endpoint(ep);
781 	local_bh_enable();
782 
783 	return err;
784 }
785 
786 /* Remove endpoint from the hash table.  */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)787 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
788 {
789 	struct sock *sk = ep->base.sk;
790 	struct sctp_hashbucket *head;
791 	struct sctp_ep_common *epb;
792 
793 	epb = &ep->base;
794 
795 	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
796 
797 	head = &sctp_ep_hashtable[epb->hashent];
798 
799 	if (rcu_access_pointer(sk->sk_reuseport_cb))
800 		reuseport_detach_sock(sk);
801 
802 	write_lock(&head->lock);
803 	hlist_del_init(&epb->node);
804 	write_unlock(&head->lock);
805 }
806 
807 /* Remove endpoint from the hash.  Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)808 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
809 {
810 	local_bh_disable();
811 	__sctp_unhash_endpoint(ep);
812 	local_bh_enable();
813 }
814 
sctp_hashfn(const struct net * net,__be16 lport,const union sctp_addr * paddr,__u32 seed)815 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
816 				const union sctp_addr *paddr, __u32 seed)
817 {
818 	__u32 addr;
819 
820 	if (paddr->sa.sa_family == AF_INET6)
821 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
822 	else
823 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
824 
825 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
826 			     (__force __u32)lport, net_hash_mix(net), seed);
827 }
828 
829 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,const union sctp_addr * paddr)830 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
831 					struct net *net, struct sk_buff *skb,
832 					const union sctp_addr *laddr,
833 					const union sctp_addr *paddr)
834 {
835 	struct sctp_hashbucket *head;
836 	struct sctp_ep_common *epb;
837 	struct sctp_endpoint *ep;
838 	struct sock *sk;
839 	__be16 lport;
840 	int hash;
841 
842 	lport = laddr->v4.sin_port;
843 	hash = sctp_ep_hashfn(net, ntohs(lport));
844 	head = &sctp_ep_hashtable[hash];
845 	read_lock(&head->lock);
846 	sctp_for_each_hentry(epb, &head->chain) {
847 		ep = sctp_ep(epb);
848 		if (sctp_endpoint_is_match(ep, net, laddr))
849 			goto hit;
850 	}
851 
852 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
853 
854 hit:
855 	sk = ep->base.sk;
856 	if (sk->sk_reuseport) {
857 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
858 
859 		sk = reuseport_select_sock(sk, phash, skb,
860 					   sizeof(struct sctphdr));
861 		if (sk)
862 			ep = sctp_sk(sk)->ep;
863 	}
864 	sctp_endpoint_hold(ep);
865 	read_unlock(&head->lock);
866 	return ep;
867 }
868 
869 /* rhashtable for transport */
870 struct sctp_hash_cmp_arg {
871 	const union sctp_addr	*paddr;
872 	const struct net	*net;
873 	__be16			lport;
874 };
875 
sctp_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)876 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
877 				const void *ptr)
878 {
879 	struct sctp_transport *t = (struct sctp_transport *)ptr;
880 	const struct sctp_hash_cmp_arg *x = arg->key;
881 	int err = 1;
882 
883 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
884 		return err;
885 	if (!sctp_transport_hold(t))
886 		return err;
887 
888 	if (!net_eq(t->asoc->base.net, x->net))
889 		goto out;
890 	if (x->lport != htons(t->asoc->base.bind_addr.port))
891 		goto out;
892 
893 	err = 0;
894 out:
895 	sctp_transport_put(t);
896 	return err;
897 }
898 
sctp_hash_obj(const void * data,u32 len,u32 seed)899 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
900 {
901 	const struct sctp_transport *t = data;
902 
903 	return sctp_hashfn(t->asoc->base.net,
904 			   htons(t->asoc->base.bind_addr.port),
905 			   &t->ipaddr, seed);
906 }
907 
sctp_hash_key(const void * data,u32 len,u32 seed)908 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
909 {
910 	const struct sctp_hash_cmp_arg *x = data;
911 
912 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
913 }
914 
915 static const struct rhashtable_params sctp_hash_params = {
916 	.head_offset		= offsetof(struct sctp_transport, node),
917 	.hashfn			= sctp_hash_key,
918 	.obj_hashfn		= sctp_hash_obj,
919 	.obj_cmpfn		= sctp_hash_cmp,
920 	.automatic_shrinking	= true,
921 };
922 
sctp_transport_hashtable_init(void)923 int sctp_transport_hashtable_init(void)
924 {
925 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
926 }
927 
sctp_transport_hashtable_destroy(void)928 void sctp_transport_hashtable_destroy(void)
929 {
930 	rhltable_destroy(&sctp_transport_hashtable);
931 }
932 
sctp_hash_transport(struct sctp_transport * t)933 int sctp_hash_transport(struct sctp_transport *t)
934 {
935 	struct sctp_transport *transport;
936 	struct rhlist_head *tmp, *list;
937 	struct sctp_hash_cmp_arg arg;
938 	int err;
939 
940 	if (t->asoc->temp)
941 		return 0;
942 
943 	arg.net   = t->asoc->base.net;
944 	arg.paddr = &t->ipaddr;
945 	arg.lport = htons(t->asoc->base.bind_addr.port);
946 
947 	rcu_read_lock();
948 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
949 			       sctp_hash_params);
950 
951 	rhl_for_each_entry_rcu(transport, tmp, list, node)
952 		if (transport->asoc->ep == t->asoc->ep) {
953 			rcu_read_unlock();
954 			return -EEXIST;
955 		}
956 	rcu_read_unlock();
957 
958 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
959 				  &t->node, sctp_hash_params);
960 	if (err)
961 		pr_err_once("insert transport fail, errno %d\n", err);
962 
963 	return err;
964 }
965 
sctp_unhash_transport(struct sctp_transport * t)966 void sctp_unhash_transport(struct sctp_transport *t)
967 {
968 	if (t->asoc->temp)
969 		return;
970 
971 	rhltable_remove(&sctp_transport_hashtable, &t->node,
972 			sctp_hash_params);
973 }
974 
975 /* return a transport with holding it */
sctp_addrs_lookup_transport(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)976 struct sctp_transport *sctp_addrs_lookup_transport(
977 				struct net *net,
978 				const union sctp_addr *laddr,
979 				const union sctp_addr *paddr)
980 {
981 	struct rhlist_head *tmp, *list;
982 	struct sctp_transport *t;
983 	struct sctp_hash_cmp_arg arg = {
984 		.paddr = paddr,
985 		.net   = net,
986 		.lport = laddr->v4.sin_port,
987 	};
988 
989 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
990 			       sctp_hash_params);
991 
992 	rhl_for_each_entry_rcu(t, tmp, list, node) {
993 		if (!sctp_transport_hold(t))
994 			continue;
995 
996 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
997 					 laddr, sctp_sk(t->asoc->base.sk)))
998 			return t;
999 		sctp_transport_put(t);
1000 	}
1001 
1002 	return NULL;
1003 }
1004 
1005 /* return a transport without holding it, as it's only used under sock lock */
sctp_epaddr_lookup_transport(const struct sctp_endpoint * ep,const union sctp_addr * paddr)1006 struct sctp_transport *sctp_epaddr_lookup_transport(
1007 				const struct sctp_endpoint *ep,
1008 				const union sctp_addr *paddr)
1009 {
1010 	struct rhlist_head *tmp, *list;
1011 	struct sctp_transport *t;
1012 	struct sctp_hash_cmp_arg arg = {
1013 		.paddr = paddr,
1014 		.net   = ep->base.net,
1015 		.lport = htons(ep->base.bind_addr.port),
1016 	};
1017 
1018 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1019 			       sctp_hash_params);
1020 
1021 	rhl_for_each_entry_rcu(t, tmp, list, node)
1022 		if (ep == t->asoc->ep)
1023 			return t;
1024 
1025 	return NULL;
1026 }
1027 
1028 /* Look up an association. */
__sctp_lookup_association(struct net * net,const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)1029 static struct sctp_association *__sctp_lookup_association(
1030 					struct net *net,
1031 					const union sctp_addr *local,
1032 					const union sctp_addr *peer,
1033 					struct sctp_transport **pt)
1034 {
1035 	struct sctp_transport *t;
1036 	struct sctp_association *asoc = NULL;
1037 
1038 	t = sctp_addrs_lookup_transport(net, local, peer);
1039 	if (!t)
1040 		goto out;
1041 
1042 	asoc = t->asoc;
1043 	*pt = t;
1044 
1045 out:
1046 	return asoc;
1047 }
1048 
1049 /* Look up an association. protected by RCU read lock */
1050 static
sctp_lookup_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)1051 struct sctp_association *sctp_lookup_association(struct net *net,
1052 						 const union sctp_addr *laddr,
1053 						 const union sctp_addr *paddr,
1054 						 struct sctp_transport **transportp)
1055 {
1056 	struct sctp_association *asoc;
1057 
1058 	rcu_read_lock();
1059 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1060 	rcu_read_unlock();
1061 
1062 	return asoc;
1063 }
1064 
1065 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)1066 bool sctp_has_association(struct net *net,
1067 			  const union sctp_addr *laddr,
1068 			  const union sctp_addr *paddr)
1069 {
1070 	struct sctp_transport *transport;
1071 
1072 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1073 		sctp_transport_put(transport);
1074 		return true;
1075 	}
1076 
1077 	return false;
1078 }
1079 
1080 /*
1081  * SCTP Implementors Guide, 2.18 Handling of address
1082  * parameters within the INIT or INIT-ACK.
1083  *
1084  * D) When searching for a matching TCB upon reception of an INIT
1085  *    or INIT-ACK chunk the receiver SHOULD use not only the
1086  *    source address of the packet (containing the INIT or
1087  *    INIT-ACK) but the receiver SHOULD also use all valid
1088  *    address parameters contained within the chunk.
1089  *
1090  * 2.18.3 Solution description
1091  *
1092  * This new text clearly specifies to an implementor the need
1093  * to look within the INIT or INIT-ACK. Any implementation that
1094  * does not do this, may not be able to establish associations
1095  * in certain circumstances.
1096  *
1097  */
__sctp_rcv_init_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1098 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1099 	struct sk_buff *skb,
1100 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1101 {
1102 	struct sctp_association *asoc;
1103 	union sctp_addr addr;
1104 	union sctp_addr *paddr = &addr;
1105 	struct sctphdr *sh = sctp_hdr(skb);
1106 	union sctp_params params;
1107 	struct sctp_init_chunk *init;
1108 	struct sctp_af *af;
1109 
1110 	/*
1111 	 * This code will NOT touch anything inside the chunk--it is
1112 	 * strictly READ-ONLY.
1113 	 *
1114 	 * RFC 2960 3  SCTP packet Format
1115 	 *
1116 	 * Multiple chunks can be bundled into one SCTP packet up to
1117 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1118 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1119 	 * other chunk in a packet.  See Section 6.10 for more details
1120 	 * on chunk bundling.
1121 	 */
1122 
1123 	/* Find the start of the TLVs and the end of the chunk.  This is
1124 	 * the region we search for address parameters.
1125 	 */
1126 	init = (struct sctp_init_chunk *)skb->data;
1127 
1128 	/* Walk the parameters looking for embedded addresses. */
1129 	sctp_walk_params(params, init, init_hdr.params) {
1130 
1131 		/* Note: Ignoring hostname addresses. */
1132 		af = sctp_get_af_specific(param_type2af(params.p->type));
1133 		if (!af)
1134 			continue;
1135 
1136 		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1137 			continue;
1138 
1139 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1140 		if (asoc)
1141 			return asoc;
1142 	}
1143 
1144 	return NULL;
1145 }
1146 
1147 /* ADD-IP, Section 5.2
1148  * When an endpoint receives an ASCONF Chunk from the remote peer
1149  * special procedures may be needed to identify the association the
1150  * ASCONF Chunk is associated with. To properly find the association
1151  * the following procedures SHOULD be followed:
1152  *
1153  * D2) If the association is not found, use the address found in the
1154  * Address Parameter TLV combined with the port number found in the
1155  * SCTP common header. If found proceed to rule D4.
1156  *
1157  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1158  * address found in the ASCONF Address Parameter TLV of each of the
1159  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1160  */
__sctp_rcv_asconf_lookup(struct net * net,struct sctp_chunkhdr * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)1161 static struct sctp_association *__sctp_rcv_asconf_lookup(
1162 					struct net *net,
1163 					struct sctp_chunkhdr *ch,
1164 					const union sctp_addr *laddr,
1165 					__be16 peer_port,
1166 					struct sctp_transport **transportp)
1167 {
1168 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1169 	struct sctp_af *af;
1170 	union sctp_addr_param *param;
1171 	union sctp_addr paddr;
1172 
1173 	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1174 		return NULL;
1175 
1176 	/* Skip over the ADDIP header and find the Address parameter */
1177 	param = (union sctp_addr_param *)(asconf + 1);
1178 
1179 	af = sctp_get_af_specific(param_type2af(param->p.type));
1180 	if (unlikely(!af))
1181 		return NULL;
1182 
1183 	if (!af->from_addr_param(&paddr, param, peer_port, 0))
1184 		return NULL;
1185 
1186 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1187 }
1188 
1189 
1190 /* SCTP-AUTH, Section 6.3:
1191 *    If the receiver does not find a STCB for a packet containing an AUTH
1192 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1193 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1194 *    association.
1195 *
1196 * This means that any chunks that can help us identify the association need
1197 * to be looked at to find this association.
1198 */
__sctp_rcv_walk_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1199 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1200 				      struct sk_buff *skb,
1201 				      const union sctp_addr *laddr,
1202 				      struct sctp_transport **transportp)
1203 {
1204 	struct sctp_association *asoc = NULL;
1205 	struct sctp_chunkhdr *ch;
1206 	int have_auth = 0;
1207 	unsigned int chunk_num = 1;
1208 	__u8 *ch_end;
1209 
1210 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1211 	 * to help us find the association.
1212 	 */
1213 	ch = (struct sctp_chunkhdr *)skb->data;
1214 	do {
1215 		/* Break out if chunk length is less then minimal. */
1216 		if (ntohs(ch->length) < sizeof(*ch))
1217 			break;
1218 
1219 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1220 		if (ch_end > skb_tail_pointer(skb))
1221 			break;
1222 
1223 		switch (ch->type) {
1224 		case SCTP_CID_AUTH:
1225 			have_auth = chunk_num;
1226 			break;
1227 
1228 		case SCTP_CID_COOKIE_ECHO:
1229 			/* If a packet arrives containing an AUTH chunk as
1230 			 * a first chunk, a COOKIE-ECHO chunk as the second
1231 			 * chunk, and possibly more chunks after them, and
1232 			 * the receiver does not have an STCB for that
1233 			 * packet, then authentication is based on
1234 			 * the contents of the COOKIE- ECHO chunk.
1235 			 */
1236 			if (have_auth == 1 && chunk_num == 2)
1237 				return NULL;
1238 			break;
1239 
1240 		case SCTP_CID_ASCONF:
1241 			if (have_auth || net->sctp.addip_noauth)
1242 				asoc = __sctp_rcv_asconf_lookup(
1243 						net, ch, laddr,
1244 						sctp_hdr(skb)->source,
1245 						transportp);
1246 		default:
1247 			break;
1248 		}
1249 
1250 		if (asoc)
1251 			break;
1252 
1253 		ch = (struct sctp_chunkhdr *)ch_end;
1254 		chunk_num++;
1255 	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1256 
1257 	return asoc;
1258 }
1259 
1260 /*
1261  * There are circumstances when we need to look inside the SCTP packet
1262  * for information to help us find the association.   Examples
1263  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1264  * chunks.
1265  */
__sctp_rcv_lookup_harder(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1266 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1267 				      struct sk_buff *skb,
1268 				      const union sctp_addr *laddr,
1269 				      struct sctp_transport **transportp)
1270 {
1271 	struct sctp_chunkhdr *ch;
1272 
1273 	/* We do not allow GSO frames here as we need to linearize and
1274 	 * then cannot guarantee frame boundaries. This shouldn't be an
1275 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1276 	 * those cannot be on GSO-style anyway.
1277 	 */
1278 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1279 		return NULL;
1280 
1281 	ch = (struct sctp_chunkhdr *)skb->data;
1282 
1283 	/* The code below will attempt to walk the chunk and extract
1284 	 * parameter information.  Before we do that, we need to verify
1285 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1286 	 * walk off the end.
1287 	 */
1288 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1289 		return NULL;
1290 
1291 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1292 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1293 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1294 
1295 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1296 }
1297 
1298 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1299 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1300 				      struct sk_buff *skb,
1301 				      const union sctp_addr *paddr,
1302 				      const union sctp_addr *laddr,
1303 				      struct sctp_transport **transportp)
1304 {
1305 	struct sctp_association *asoc;
1306 
1307 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1308 	if (asoc)
1309 		goto out;
1310 
1311 	/* Further lookup for INIT/INIT-ACK packets.
1312 	 * SCTP Implementors Guide, 2.18 Handling of address
1313 	 * parameters within the INIT or INIT-ACK.
1314 	 */
1315 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1316 	if (asoc)
1317 		goto out;
1318 
1319 	if (paddr->sa.sa_family == AF_INET)
1320 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1321 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1322 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1323 	else
1324 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1325 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1326 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1327 
1328 out:
1329 	return asoc;
1330 }
1331