1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 International Business Machines, Corp.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions handle all input from the IP layer into SCTP.
13 *
14 * Please send any bug reports or fixes you make to the
15 * email address(es):
16 * lksctp developers <linux-sctp@vger.kernel.org>
17 *
18 * Written or modified by:
19 * La Monte H.P. Yarroll <piggy@acm.org>
20 * Karl Knutson <karl@athena.chicago.il.us>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Jon Grimm <jgrimm@us.ibm.com>
23 * Hui Huang <hui.huang@nokia.com>
24 * Daisy Chang <daisyc@us.ibm.com>
25 * Sridhar Samudrala <sri@us.ibm.com>
26 * Ardelle Fan <ardelle.fan@intel.com>
27 */
28
29 #include <linux/types.h>
30 #include <linux/list.h> /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/time.h> /* For struct timeval */
34 #include <linux/slab.h>
35 #include <net/ip.h>
36 #include <net/icmp.h>
37 #include <net/snmp.h>
38 #include <net/sock.h>
39 #include <net/xfrm.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/sm.h>
42 #include <net/sctp/checksum.h>
43 #include <net/net_namespace.h>
44 #include <linux/rhashtable.h>
45 #include <net/sock_reuseport.h>
46
47 /* Forward declarations for internal helpers. */
48 static int sctp_rcv_ootb(struct sk_buff *);
49 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50 struct sk_buff *skb,
51 const union sctp_addr *paddr,
52 const union sctp_addr *laddr,
53 struct sctp_transport **transportp);
54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55 struct net *net, struct sk_buff *skb,
56 const union sctp_addr *laddr,
57 const union sctp_addr *daddr);
58 static struct sctp_association *__sctp_lookup_association(
59 struct net *net,
60 const union sctp_addr *local,
61 const union sctp_addr *peer,
62 struct sctp_transport **pt);
63
64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65
66
67 /* Calculate the SCTP checksum of an SCTP packet. */
sctp_rcv_checksum(struct net * net,struct sk_buff * skb)68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69 {
70 struct sctphdr *sh = sctp_hdr(skb);
71 __le32 cmp = sh->checksum;
72 __le32 val = sctp_compute_cksum(skb, 0);
73
74 if (val != cmp) {
75 /* CRC failure, dump it. */
76 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77 return -1;
78 }
79 return 0;
80 }
81
82 /*
83 * This is the routine which IP calls when receiving an SCTP packet.
84 */
sctp_rcv(struct sk_buff * skb)85 int sctp_rcv(struct sk_buff *skb)
86 {
87 struct sock *sk;
88 struct sctp_association *asoc;
89 struct sctp_endpoint *ep = NULL;
90 struct sctp_ep_common *rcvr;
91 struct sctp_transport *transport = NULL;
92 struct sctp_chunk *chunk;
93 union sctp_addr src;
94 union sctp_addr dest;
95 int bound_dev_if;
96 int family;
97 struct sctp_af *af;
98 struct net *net = dev_net(skb->dev);
99 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
100
101 if (skb->pkt_type != PACKET_HOST)
102 goto discard_it;
103
104 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
105
106 /* If packet is too small to contain a single chunk, let's not
107 * waste time on it anymore.
108 */
109 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
110 skb_transport_offset(skb))
111 goto discard_it;
112
113 /* If the packet is fragmented and we need to do crc checking,
114 * it's better to just linearize it otherwise crc computing
115 * takes longer.
116 */
117 if ((!is_gso && skb_linearize(skb)) ||
118 !pskb_may_pull(skb, sizeof(struct sctphdr)))
119 goto discard_it;
120
121 /* Pull up the IP header. */
122 __skb_pull(skb, skb_transport_offset(skb));
123
124 skb->csum_valid = 0; /* Previous value not applicable */
125 if (skb_csum_unnecessary(skb))
126 __skb_decr_checksum_unnecessary(skb);
127 else if (!sctp_checksum_disable &&
128 !is_gso &&
129 sctp_rcv_checksum(net, skb) < 0)
130 goto discard_it;
131 skb->csum_valid = 1;
132
133 __skb_pull(skb, sizeof(struct sctphdr));
134
135 family = ipver2af(ip_hdr(skb)->version);
136 af = sctp_get_af_specific(family);
137 if (unlikely(!af))
138 goto discard_it;
139 SCTP_INPUT_CB(skb)->af = af;
140
141 /* Initialize local addresses for lookups. */
142 af->from_skb(&src, skb, 1);
143 af->from_skb(&dest, skb, 0);
144
145 /* If the packet is to or from a non-unicast address,
146 * silently discard the packet.
147 *
148 * This is not clearly defined in the RFC except in section
149 * 8.4 - OOTB handling. However, based on the book "Stream Control
150 * Transmission Protocol" 2.1, "It is important to note that the
151 * IP address of an SCTP transport address must be a routable
152 * unicast address. In other words, IP multicast addresses and
153 * IP broadcast addresses cannot be used in an SCTP transport
154 * address."
155 */
156 if (!af->addr_valid(&src, NULL, skb) ||
157 !af->addr_valid(&dest, NULL, skb))
158 goto discard_it;
159
160 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
161
162 if (!asoc)
163 ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
164
165 /* Retrieve the common input handling substructure. */
166 rcvr = asoc ? &asoc->base : &ep->base;
167 sk = rcvr->sk;
168
169 /*
170 * If a frame arrives on an interface and the receiving socket is
171 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
172 */
173 bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
174 if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) {
175 if (transport) {
176 sctp_transport_put(transport);
177 asoc = NULL;
178 transport = NULL;
179 } else {
180 sctp_endpoint_put(ep);
181 ep = NULL;
182 }
183 sk = net->sctp.ctl_sock;
184 ep = sctp_sk(sk)->ep;
185 sctp_endpoint_hold(ep);
186 rcvr = &ep->base;
187 }
188
189 /*
190 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
191 * An SCTP packet is called an "out of the blue" (OOTB)
192 * packet if it is correctly formed, i.e., passed the
193 * receiver's checksum check, but the receiver is not
194 * able to identify the association to which this
195 * packet belongs.
196 */
197 if (!asoc) {
198 if (sctp_rcv_ootb(skb)) {
199 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
200 goto discard_release;
201 }
202 }
203
204 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
205 goto discard_release;
206 nf_reset_ct(skb);
207
208 if (sk_filter(sk, skb))
209 goto discard_release;
210
211 /* Create an SCTP packet structure. */
212 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
213 if (!chunk)
214 goto discard_release;
215 SCTP_INPUT_CB(skb)->chunk = chunk;
216
217 /* Remember what endpoint is to handle this packet. */
218 chunk->rcvr = rcvr;
219
220 /* Remember the SCTP header. */
221 chunk->sctp_hdr = sctp_hdr(skb);
222
223 /* Set the source and destination addresses of the incoming chunk. */
224 sctp_init_addrs(chunk, &src, &dest);
225
226 /* Remember where we came from. */
227 chunk->transport = transport;
228
229 /* Acquire access to the sock lock. Note: We are safe from other
230 * bottom halves on this lock, but a user may be in the lock too,
231 * so check if it is busy.
232 */
233 bh_lock_sock(sk);
234
235 if (sk != rcvr->sk) {
236 /* Our cached sk is different from the rcvr->sk. This is
237 * because migrate()/accept() may have moved the association
238 * to a new socket and released all the sockets. So now we
239 * are holding a lock on the old socket while the user may
240 * be doing something with the new socket. Switch our veiw
241 * of the current sk.
242 */
243 bh_unlock_sock(sk);
244 sk = rcvr->sk;
245 bh_lock_sock(sk);
246 }
247
248 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
249 if (sctp_add_backlog(sk, skb)) {
250 bh_unlock_sock(sk);
251 sctp_chunk_free(chunk);
252 skb = NULL; /* sctp_chunk_free already freed the skb */
253 goto discard_release;
254 }
255 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
256 } else {
257 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
258 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
259 }
260
261 bh_unlock_sock(sk);
262
263 /* Release the asoc/ep ref we took in the lookup calls. */
264 if (transport)
265 sctp_transport_put(transport);
266 else
267 sctp_endpoint_put(ep);
268
269 return 0;
270
271 discard_it:
272 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
273 kfree_skb(skb);
274 return 0;
275
276 discard_release:
277 /* Release the asoc/ep ref we took in the lookup calls. */
278 if (transport)
279 sctp_transport_put(transport);
280 else
281 sctp_endpoint_put(ep);
282
283 goto discard_it;
284 }
285
286 /* Process the backlog queue of the socket. Every skb on
287 * the backlog holds a ref on an association or endpoint.
288 * We hold this ref throughout the state machine to make
289 * sure that the structure we need is still around.
290 */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)291 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
292 {
293 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
294 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
295 struct sctp_transport *t = chunk->transport;
296 struct sctp_ep_common *rcvr = NULL;
297 int backloged = 0;
298
299 rcvr = chunk->rcvr;
300
301 /* If the rcvr is dead then the association or endpoint
302 * has been deleted and we can safely drop the chunk
303 * and refs that we are holding.
304 */
305 if (rcvr->dead) {
306 sctp_chunk_free(chunk);
307 goto done;
308 }
309
310 if (unlikely(rcvr->sk != sk)) {
311 /* In this case, the association moved from one socket to
312 * another. We are currently sitting on the backlog of the
313 * old socket, so we need to move.
314 * However, since we are here in the process context we
315 * need to take make sure that the user doesn't own
316 * the new socket when we process the packet.
317 * If the new socket is user-owned, queue the chunk to the
318 * backlog of the new socket without dropping any refs.
319 * Otherwise, we can safely push the chunk on the inqueue.
320 */
321
322 sk = rcvr->sk;
323 local_bh_disable();
324 bh_lock_sock(sk);
325
326 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
327 if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
328 sctp_chunk_free(chunk);
329 else
330 backloged = 1;
331 } else
332 sctp_inq_push(inqueue, chunk);
333
334 bh_unlock_sock(sk);
335 local_bh_enable();
336
337 /* If the chunk was backloged again, don't drop refs */
338 if (backloged)
339 return 0;
340 } else {
341 if (!sctp_newsk_ready(sk)) {
342 if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
343 return 0;
344 sctp_chunk_free(chunk);
345 } else {
346 sctp_inq_push(inqueue, chunk);
347 }
348 }
349
350 done:
351 /* Release the refs we took in sctp_add_backlog */
352 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
353 sctp_transport_put(t);
354 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
355 sctp_endpoint_put(sctp_ep(rcvr));
356 else
357 BUG();
358
359 return 0;
360 }
361
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)362 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
363 {
364 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
365 struct sctp_transport *t = chunk->transport;
366 struct sctp_ep_common *rcvr = chunk->rcvr;
367 int ret;
368
369 ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
370 if (!ret) {
371 /* Hold the assoc/ep while hanging on the backlog queue.
372 * This way, we know structures we need will not disappear
373 * from us
374 */
375 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
376 sctp_transport_hold(t);
377 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
378 sctp_endpoint_hold(sctp_ep(rcvr));
379 else
380 BUG();
381 }
382 return ret;
383
384 }
385
386 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
388 struct sctp_transport *t, __u32 pmtu)
389 {
390 if (!t || (t->pathmtu <= pmtu))
391 return;
392
393 if (sock_owned_by_user(sk)) {
394 atomic_set(&t->mtu_info, pmtu);
395 asoc->pmtu_pending = 1;
396 t->pmtu_pending = 1;
397 return;
398 }
399
400 if (!(t->param_flags & SPP_PMTUD_ENABLE))
401 /* We can't allow retransmitting in such case, as the
402 * retransmission would be sized just as before, and thus we
403 * would get another icmp, and retransmit again.
404 */
405 return;
406
407 /* Update transports view of the MTU. Return if no update was needed.
408 * If an update wasn't needed/possible, it also doesn't make sense to
409 * try to retransmit now.
410 */
411 if (!sctp_transport_update_pmtu(t, pmtu))
412 return;
413
414 /* Update association pmtu. */
415 sctp_assoc_sync_pmtu(asoc);
416
417 /* Retransmit with the new pmtu setting. */
418 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
419 }
420
sctp_icmp_redirect(struct sock * sk,struct sctp_transport * t,struct sk_buff * skb)421 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
422 struct sk_buff *skb)
423 {
424 struct dst_entry *dst;
425
426 if (sock_owned_by_user(sk) || !t)
427 return;
428 dst = sctp_transport_dst_check(t);
429 if (dst)
430 dst->ops->redirect(dst, sk, skb);
431 }
432
433 /*
434 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
435 *
436 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
437 * or a "Protocol Unreachable" treat this message as an abort
438 * with the T bit set.
439 *
440 * This function sends an event to the state machine, which will abort the
441 * association.
442 *
443 */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)444 void sctp_icmp_proto_unreachable(struct sock *sk,
445 struct sctp_association *asoc,
446 struct sctp_transport *t)
447 {
448 if (sock_owned_by_user(sk)) {
449 if (timer_pending(&t->proto_unreach_timer))
450 return;
451 else {
452 if (!mod_timer(&t->proto_unreach_timer,
453 jiffies + (HZ/20)))
454 sctp_transport_hold(t);
455 }
456 } else {
457 struct net *net = sock_net(sk);
458
459 pr_debug("%s: unrecognized next header type "
460 "encountered!\n", __func__);
461
462 if (del_timer(&t->proto_unreach_timer))
463 sctp_transport_put(t);
464
465 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
466 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
467 asoc->state, asoc->ep, asoc, t,
468 GFP_ATOMIC);
469 }
470 }
471
472 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(struct net * net,int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)473 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
474 struct sctphdr *sctphdr,
475 struct sctp_association **app,
476 struct sctp_transport **tpp)
477 {
478 struct sctp_init_chunk *chunkhdr, _chunkhdr;
479 union sctp_addr saddr;
480 union sctp_addr daddr;
481 struct sctp_af *af;
482 struct sock *sk = NULL;
483 struct sctp_association *asoc;
484 struct sctp_transport *transport = NULL;
485 __u32 vtag = ntohl(sctphdr->vtag);
486
487 *app = NULL; *tpp = NULL;
488
489 af = sctp_get_af_specific(family);
490 if (unlikely(!af)) {
491 return NULL;
492 }
493
494 /* Initialize local addresses for lookups. */
495 af->from_skb(&saddr, skb, 1);
496 af->from_skb(&daddr, skb, 0);
497
498 /* Look for an association that matches the incoming ICMP error
499 * packet.
500 */
501 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
502 if (!asoc)
503 return NULL;
504
505 sk = asoc->base.sk;
506
507 /* RFC 4960, Appendix C. ICMP Handling
508 *
509 * ICMP6) An implementation MUST validate that the Verification Tag
510 * contained in the ICMP message matches the Verification Tag of
511 * the peer. If the Verification Tag is not 0 and does NOT
512 * match, discard the ICMP message. If it is 0 and the ICMP
513 * message contains enough bytes to verify that the chunk type is
514 * an INIT chunk and that the Initiate Tag matches the tag of the
515 * peer, continue with ICMP7. If the ICMP message is too short
516 * or the chunk type or the Initiate Tag does not match, silently
517 * discard the packet.
518 */
519 if (vtag == 0) {
520 /* chunk header + first 4 octects of init header */
521 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
522 sizeof(struct sctphdr),
523 sizeof(struct sctp_chunkhdr) +
524 sizeof(__be32), &_chunkhdr);
525 if (!chunkhdr ||
526 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
527 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
528 goto out;
529
530 } else if (vtag != asoc->c.peer_vtag) {
531 goto out;
532 }
533
534 bh_lock_sock(sk);
535
536 /* If too many ICMPs get dropped on busy
537 * servers this needs to be solved differently.
538 */
539 if (sock_owned_by_user(sk))
540 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
541
542 *app = asoc;
543 *tpp = transport;
544 return sk;
545
546 out:
547 sctp_transport_put(transport);
548 return NULL;
549 }
550
551 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_transport * t)552 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
553 __releases(&((__sk)->sk_lock.slock))
554 {
555 bh_unlock_sock(sk);
556 sctp_transport_put(t);
557 }
558
559 /*
560 * This routine is called by the ICMP module when it gets some
561 * sort of error condition. If err < 0 then the socket should
562 * be closed and the error returned to the user. If err > 0
563 * it's just the icmp type << 8 | icmp code. After adjustment
564 * header points to the first 8 bytes of the sctp header. We need
565 * to find the appropriate port.
566 *
567 * The locking strategy used here is very "optimistic". When
568 * someone else accesses the socket the ICMP is just dropped
569 * and for some paths there is no check at all.
570 * A more general error queue to queue errors for later handling
571 * is probably better.
572 *
573 */
sctp_v4_err(struct sk_buff * skb,__u32 info)574 int sctp_v4_err(struct sk_buff *skb, __u32 info)
575 {
576 const struct iphdr *iph = (const struct iphdr *)skb->data;
577 const int ihlen = iph->ihl * 4;
578 const int type = icmp_hdr(skb)->type;
579 const int code = icmp_hdr(skb)->code;
580 struct sock *sk;
581 struct sctp_association *asoc = NULL;
582 struct sctp_transport *transport;
583 struct inet_sock *inet;
584 __u16 saveip, savesctp;
585 int err;
586 struct net *net = dev_net(skb->dev);
587
588 /* Fix up skb to look at the embedded net header. */
589 saveip = skb->network_header;
590 savesctp = skb->transport_header;
591 skb_reset_network_header(skb);
592 skb_set_transport_header(skb, ihlen);
593 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
594 /* Put back, the original values. */
595 skb->network_header = saveip;
596 skb->transport_header = savesctp;
597 if (!sk) {
598 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
599 return -ENOENT;
600 }
601 /* Warning: The sock lock is held. Remember to call
602 * sctp_err_finish!
603 */
604
605 switch (type) {
606 case ICMP_PARAMETERPROB:
607 err = EPROTO;
608 break;
609 case ICMP_DEST_UNREACH:
610 if (code > NR_ICMP_UNREACH)
611 goto out_unlock;
612
613 /* PMTU discovery (RFC1191) */
614 if (ICMP_FRAG_NEEDED == code) {
615 sctp_icmp_frag_needed(sk, asoc, transport,
616 SCTP_TRUNC4(info));
617 goto out_unlock;
618 } else {
619 if (ICMP_PROT_UNREACH == code) {
620 sctp_icmp_proto_unreachable(sk, asoc,
621 transport);
622 goto out_unlock;
623 }
624 }
625 err = icmp_err_convert[code].errno;
626 break;
627 case ICMP_TIME_EXCEEDED:
628 /* Ignore any time exceeded errors due to fragment reassembly
629 * timeouts.
630 */
631 if (ICMP_EXC_FRAGTIME == code)
632 goto out_unlock;
633
634 err = EHOSTUNREACH;
635 break;
636 case ICMP_REDIRECT:
637 sctp_icmp_redirect(sk, transport, skb);
638 /* Fall through to out_unlock. */
639 default:
640 goto out_unlock;
641 }
642
643 inet = inet_sk(sk);
644 if (!sock_owned_by_user(sk) && inet->recverr) {
645 sk->sk_err = err;
646 sk->sk_error_report(sk);
647 } else { /* Only an error on timeout */
648 sk->sk_err_soft = err;
649 }
650
651 out_unlock:
652 sctp_err_finish(sk, transport);
653 return 0;
654 }
655
656 /*
657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
658 *
659 * This function scans all the chunks in the OOTB packet to determine if
660 * the packet should be discarded right away. If a response might be needed
661 * for this packet, or, if further processing is possible, the packet will
662 * be queued to a proper inqueue for the next phase of handling.
663 *
664 * Output:
665 * Return 0 - If further processing is needed.
666 * Return 1 - If the packet can be discarded right away.
667 */
sctp_rcv_ootb(struct sk_buff * skb)668 static int sctp_rcv_ootb(struct sk_buff *skb)
669 {
670 struct sctp_chunkhdr *ch, _ch;
671 int ch_end, offset = 0;
672
673 /* Scan through all the chunks in the packet. */
674 do {
675 /* Make sure we have at least the header there */
676 if (offset + sizeof(_ch) > skb->len)
677 break;
678
679 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
680
681 /* Break out if chunk length is less then minimal. */
682 if (!ch || ntohs(ch->length) < sizeof(_ch))
683 break;
684
685 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
686 if (ch_end > skb->len)
687 break;
688
689 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
690 * receiver MUST silently discard the OOTB packet and take no
691 * further action.
692 */
693 if (SCTP_CID_ABORT == ch->type)
694 goto discard;
695
696 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
697 * chunk, the receiver should silently discard the packet
698 * and take no further action.
699 */
700 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
701 goto discard;
702
703 /* RFC 4460, 2.11.2
704 * This will discard packets with INIT chunk bundled as
705 * subsequent chunks in the packet. When INIT is first,
706 * the normal INIT processing will discard the chunk.
707 */
708 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
709 goto discard;
710
711 offset = ch_end;
712 } while (ch_end < skb->len);
713
714 return 0;
715
716 discard:
717 return 1;
718 }
719
720 /* Insert endpoint into the hash table. */
__sctp_hash_endpoint(struct sctp_endpoint * ep)721 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
722 {
723 struct sock *sk = ep->base.sk;
724 struct net *net = sock_net(sk);
725 struct sctp_hashbucket *head;
726 struct sctp_ep_common *epb;
727
728 epb = &ep->base;
729 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
730 head = &sctp_ep_hashtable[epb->hashent];
731
732 if (sk->sk_reuseport) {
733 bool any = sctp_is_ep_boundall(sk);
734 struct sctp_ep_common *epb2;
735 struct list_head *list;
736 int cnt = 0, err = 1;
737
738 list_for_each(list, &ep->base.bind_addr.address_list)
739 cnt++;
740
741 sctp_for_each_hentry(epb2, &head->chain) {
742 struct sock *sk2 = epb2->sk;
743
744 if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
745 !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
746 !sk2->sk_reuseport)
747 continue;
748
749 err = sctp_bind_addrs_check(sctp_sk(sk2),
750 sctp_sk(sk), cnt);
751 if (!err) {
752 err = reuseport_add_sock(sk, sk2, any);
753 if (err)
754 return err;
755 break;
756 } else if (err < 0) {
757 return err;
758 }
759 }
760
761 if (err) {
762 err = reuseport_alloc(sk, any);
763 if (err)
764 return err;
765 }
766 }
767
768 write_lock(&head->lock);
769 hlist_add_head(&epb->node, &head->chain);
770 write_unlock(&head->lock);
771 return 0;
772 }
773
774 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)775 int sctp_hash_endpoint(struct sctp_endpoint *ep)
776 {
777 int err;
778
779 local_bh_disable();
780 err = __sctp_hash_endpoint(ep);
781 local_bh_enable();
782
783 return err;
784 }
785
786 /* Remove endpoint from the hash table. */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)787 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
788 {
789 struct sock *sk = ep->base.sk;
790 struct sctp_hashbucket *head;
791 struct sctp_ep_common *epb;
792
793 epb = &ep->base;
794
795 epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
796
797 head = &sctp_ep_hashtable[epb->hashent];
798
799 if (rcu_access_pointer(sk->sk_reuseport_cb))
800 reuseport_detach_sock(sk);
801
802 write_lock(&head->lock);
803 hlist_del_init(&epb->node);
804 write_unlock(&head->lock);
805 }
806
807 /* Remove endpoint from the hash. Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)808 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
809 {
810 local_bh_disable();
811 __sctp_unhash_endpoint(ep);
812 local_bh_enable();
813 }
814
sctp_hashfn(const struct net * net,__be16 lport,const union sctp_addr * paddr,__u32 seed)815 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
816 const union sctp_addr *paddr, __u32 seed)
817 {
818 __u32 addr;
819
820 if (paddr->sa.sa_family == AF_INET6)
821 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
822 else
823 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
824
825 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
826 (__force __u32)lport, net_hash_mix(net), seed);
827 }
828
829 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,const union sctp_addr * paddr)830 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
831 struct net *net, struct sk_buff *skb,
832 const union sctp_addr *laddr,
833 const union sctp_addr *paddr)
834 {
835 struct sctp_hashbucket *head;
836 struct sctp_ep_common *epb;
837 struct sctp_endpoint *ep;
838 struct sock *sk;
839 __be16 lport;
840 int hash;
841
842 lport = laddr->v4.sin_port;
843 hash = sctp_ep_hashfn(net, ntohs(lport));
844 head = &sctp_ep_hashtable[hash];
845 read_lock(&head->lock);
846 sctp_for_each_hentry(epb, &head->chain) {
847 ep = sctp_ep(epb);
848 if (sctp_endpoint_is_match(ep, net, laddr))
849 goto hit;
850 }
851
852 ep = sctp_sk(net->sctp.ctl_sock)->ep;
853
854 hit:
855 sk = ep->base.sk;
856 if (sk->sk_reuseport) {
857 __u32 phash = sctp_hashfn(net, lport, paddr, 0);
858
859 sk = reuseport_select_sock(sk, phash, skb,
860 sizeof(struct sctphdr));
861 if (sk)
862 ep = sctp_sk(sk)->ep;
863 }
864 sctp_endpoint_hold(ep);
865 read_unlock(&head->lock);
866 return ep;
867 }
868
869 /* rhashtable for transport */
870 struct sctp_hash_cmp_arg {
871 const union sctp_addr *paddr;
872 const struct net *net;
873 __be16 lport;
874 };
875
sctp_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)876 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
877 const void *ptr)
878 {
879 struct sctp_transport *t = (struct sctp_transport *)ptr;
880 const struct sctp_hash_cmp_arg *x = arg->key;
881 int err = 1;
882
883 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
884 return err;
885 if (!sctp_transport_hold(t))
886 return err;
887
888 if (!net_eq(t->asoc->base.net, x->net))
889 goto out;
890 if (x->lport != htons(t->asoc->base.bind_addr.port))
891 goto out;
892
893 err = 0;
894 out:
895 sctp_transport_put(t);
896 return err;
897 }
898
sctp_hash_obj(const void * data,u32 len,u32 seed)899 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
900 {
901 const struct sctp_transport *t = data;
902
903 return sctp_hashfn(t->asoc->base.net,
904 htons(t->asoc->base.bind_addr.port),
905 &t->ipaddr, seed);
906 }
907
sctp_hash_key(const void * data,u32 len,u32 seed)908 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
909 {
910 const struct sctp_hash_cmp_arg *x = data;
911
912 return sctp_hashfn(x->net, x->lport, x->paddr, seed);
913 }
914
915 static const struct rhashtable_params sctp_hash_params = {
916 .head_offset = offsetof(struct sctp_transport, node),
917 .hashfn = sctp_hash_key,
918 .obj_hashfn = sctp_hash_obj,
919 .obj_cmpfn = sctp_hash_cmp,
920 .automatic_shrinking = true,
921 };
922
sctp_transport_hashtable_init(void)923 int sctp_transport_hashtable_init(void)
924 {
925 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
926 }
927
sctp_transport_hashtable_destroy(void)928 void sctp_transport_hashtable_destroy(void)
929 {
930 rhltable_destroy(&sctp_transport_hashtable);
931 }
932
sctp_hash_transport(struct sctp_transport * t)933 int sctp_hash_transport(struct sctp_transport *t)
934 {
935 struct sctp_transport *transport;
936 struct rhlist_head *tmp, *list;
937 struct sctp_hash_cmp_arg arg;
938 int err;
939
940 if (t->asoc->temp)
941 return 0;
942
943 arg.net = t->asoc->base.net;
944 arg.paddr = &t->ipaddr;
945 arg.lport = htons(t->asoc->base.bind_addr.port);
946
947 rcu_read_lock();
948 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
949 sctp_hash_params);
950
951 rhl_for_each_entry_rcu(transport, tmp, list, node)
952 if (transport->asoc->ep == t->asoc->ep) {
953 rcu_read_unlock();
954 return -EEXIST;
955 }
956 rcu_read_unlock();
957
958 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
959 &t->node, sctp_hash_params);
960 if (err)
961 pr_err_once("insert transport fail, errno %d\n", err);
962
963 return err;
964 }
965
sctp_unhash_transport(struct sctp_transport * t)966 void sctp_unhash_transport(struct sctp_transport *t)
967 {
968 if (t->asoc->temp)
969 return;
970
971 rhltable_remove(&sctp_transport_hashtable, &t->node,
972 sctp_hash_params);
973 }
974
975 /* return a transport with holding it */
sctp_addrs_lookup_transport(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)976 struct sctp_transport *sctp_addrs_lookup_transport(
977 struct net *net,
978 const union sctp_addr *laddr,
979 const union sctp_addr *paddr)
980 {
981 struct rhlist_head *tmp, *list;
982 struct sctp_transport *t;
983 struct sctp_hash_cmp_arg arg = {
984 .paddr = paddr,
985 .net = net,
986 .lport = laddr->v4.sin_port,
987 };
988
989 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
990 sctp_hash_params);
991
992 rhl_for_each_entry_rcu(t, tmp, list, node) {
993 if (!sctp_transport_hold(t))
994 continue;
995
996 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
997 laddr, sctp_sk(t->asoc->base.sk)))
998 return t;
999 sctp_transport_put(t);
1000 }
1001
1002 return NULL;
1003 }
1004
1005 /* return a transport without holding it, as it's only used under sock lock */
sctp_epaddr_lookup_transport(const struct sctp_endpoint * ep,const union sctp_addr * paddr)1006 struct sctp_transport *sctp_epaddr_lookup_transport(
1007 const struct sctp_endpoint *ep,
1008 const union sctp_addr *paddr)
1009 {
1010 struct rhlist_head *tmp, *list;
1011 struct sctp_transport *t;
1012 struct sctp_hash_cmp_arg arg = {
1013 .paddr = paddr,
1014 .net = ep->base.net,
1015 .lport = htons(ep->base.bind_addr.port),
1016 };
1017
1018 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1019 sctp_hash_params);
1020
1021 rhl_for_each_entry_rcu(t, tmp, list, node)
1022 if (ep == t->asoc->ep)
1023 return t;
1024
1025 return NULL;
1026 }
1027
1028 /* Look up an association. */
__sctp_lookup_association(struct net * net,const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)1029 static struct sctp_association *__sctp_lookup_association(
1030 struct net *net,
1031 const union sctp_addr *local,
1032 const union sctp_addr *peer,
1033 struct sctp_transport **pt)
1034 {
1035 struct sctp_transport *t;
1036 struct sctp_association *asoc = NULL;
1037
1038 t = sctp_addrs_lookup_transport(net, local, peer);
1039 if (!t)
1040 goto out;
1041
1042 asoc = t->asoc;
1043 *pt = t;
1044
1045 out:
1046 return asoc;
1047 }
1048
1049 /* Look up an association. protected by RCU read lock */
1050 static
sctp_lookup_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)1051 struct sctp_association *sctp_lookup_association(struct net *net,
1052 const union sctp_addr *laddr,
1053 const union sctp_addr *paddr,
1054 struct sctp_transport **transportp)
1055 {
1056 struct sctp_association *asoc;
1057
1058 rcu_read_lock();
1059 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1060 rcu_read_unlock();
1061
1062 return asoc;
1063 }
1064
1065 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr)1066 bool sctp_has_association(struct net *net,
1067 const union sctp_addr *laddr,
1068 const union sctp_addr *paddr)
1069 {
1070 struct sctp_transport *transport;
1071
1072 if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1073 sctp_transport_put(transport);
1074 return true;
1075 }
1076
1077 return false;
1078 }
1079
1080 /*
1081 * SCTP Implementors Guide, 2.18 Handling of address
1082 * parameters within the INIT or INIT-ACK.
1083 *
1084 * D) When searching for a matching TCB upon reception of an INIT
1085 * or INIT-ACK chunk the receiver SHOULD use not only the
1086 * source address of the packet (containing the INIT or
1087 * INIT-ACK) but the receiver SHOULD also use all valid
1088 * address parameters contained within the chunk.
1089 *
1090 * 2.18.3 Solution description
1091 *
1092 * This new text clearly specifies to an implementor the need
1093 * to look within the INIT or INIT-ACK. Any implementation that
1094 * does not do this, may not be able to establish associations
1095 * in certain circumstances.
1096 *
1097 */
__sctp_rcv_init_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1098 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1099 struct sk_buff *skb,
1100 const union sctp_addr *laddr, struct sctp_transport **transportp)
1101 {
1102 struct sctp_association *asoc;
1103 union sctp_addr addr;
1104 union sctp_addr *paddr = &addr;
1105 struct sctphdr *sh = sctp_hdr(skb);
1106 union sctp_params params;
1107 struct sctp_init_chunk *init;
1108 struct sctp_af *af;
1109
1110 /*
1111 * This code will NOT touch anything inside the chunk--it is
1112 * strictly READ-ONLY.
1113 *
1114 * RFC 2960 3 SCTP packet Format
1115 *
1116 * Multiple chunks can be bundled into one SCTP packet up to
1117 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1118 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1119 * other chunk in a packet. See Section 6.10 for more details
1120 * on chunk bundling.
1121 */
1122
1123 /* Find the start of the TLVs and the end of the chunk. This is
1124 * the region we search for address parameters.
1125 */
1126 init = (struct sctp_init_chunk *)skb->data;
1127
1128 /* Walk the parameters looking for embedded addresses. */
1129 sctp_walk_params(params, init, init_hdr.params) {
1130
1131 /* Note: Ignoring hostname addresses. */
1132 af = sctp_get_af_specific(param_type2af(params.p->type));
1133 if (!af)
1134 continue;
1135
1136 if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
1137 continue;
1138
1139 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1140 if (asoc)
1141 return asoc;
1142 }
1143
1144 return NULL;
1145 }
1146
1147 /* ADD-IP, Section 5.2
1148 * When an endpoint receives an ASCONF Chunk from the remote peer
1149 * special procedures may be needed to identify the association the
1150 * ASCONF Chunk is associated with. To properly find the association
1151 * the following procedures SHOULD be followed:
1152 *
1153 * D2) If the association is not found, use the address found in the
1154 * Address Parameter TLV combined with the port number found in the
1155 * SCTP common header. If found proceed to rule D4.
1156 *
1157 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1158 * address found in the ASCONF Address Parameter TLV of each of the
1159 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1160 */
__sctp_rcv_asconf_lookup(struct net * net,struct sctp_chunkhdr * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)1161 static struct sctp_association *__sctp_rcv_asconf_lookup(
1162 struct net *net,
1163 struct sctp_chunkhdr *ch,
1164 const union sctp_addr *laddr,
1165 __be16 peer_port,
1166 struct sctp_transport **transportp)
1167 {
1168 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1169 struct sctp_af *af;
1170 union sctp_addr_param *param;
1171 union sctp_addr paddr;
1172
1173 if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
1174 return NULL;
1175
1176 /* Skip over the ADDIP header and find the Address parameter */
1177 param = (union sctp_addr_param *)(asconf + 1);
1178
1179 af = sctp_get_af_specific(param_type2af(param->p.type));
1180 if (unlikely(!af))
1181 return NULL;
1182
1183 if (!af->from_addr_param(&paddr, param, peer_port, 0))
1184 return NULL;
1185
1186 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1187 }
1188
1189
1190 /* SCTP-AUTH, Section 6.3:
1191 * If the receiver does not find a STCB for a packet containing an AUTH
1192 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1193 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1194 * association.
1195 *
1196 * This means that any chunks that can help us identify the association need
1197 * to be looked at to find this association.
1198 */
__sctp_rcv_walk_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1199 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1200 struct sk_buff *skb,
1201 const union sctp_addr *laddr,
1202 struct sctp_transport **transportp)
1203 {
1204 struct sctp_association *asoc = NULL;
1205 struct sctp_chunkhdr *ch;
1206 int have_auth = 0;
1207 unsigned int chunk_num = 1;
1208 __u8 *ch_end;
1209
1210 /* Walk through the chunks looking for AUTH or ASCONF chunks
1211 * to help us find the association.
1212 */
1213 ch = (struct sctp_chunkhdr *)skb->data;
1214 do {
1215 /* Break out if chunk length is less then minimal. */
1216 if (ntohs(ch->length) < sizeof(*ch))
1217 break;
1218
1219 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1220 if (ch_end > skb_tail_pointer(skb))
1221 break;
1222
1223 switch (ch->type) {
1224 case SCTP_CID_AUTH:
1225 have_auth = chunk_num;
1226 break;
1227
1228 case SCTP_CID_COOKIE_ECHO:
1229 /* If a packet arrives containing an AUTH chunk as
1230 * a first chunk, a COOKIE-ECHO chunk as the second
1231 * chunk, and possibly more chunks after them, and
1232 * the receiver does not have an STCB for that
1233 * packet, then authentication is based on
1234 * the contents of the COOKIE- ECHO chunk.
1235 */
1236 if (have_auth == 1 && chunk_num == 2)
1237 return NULL;
1238 break;
1239
1240 case SCTP_CID_ASCONF:
1241 if (have_auth || net->sctp.addip_noauth)
1242 asoc = __sctp_rcv_asconf_lookup(
1243 net, ch, laddr,
1244 sctp_hdr(skb)->source,
1245 transportp);
1246 default:
1247 break;
1248 }
1249
1250 if (asoc)
1251 break;
1252
1253 ch = (struct sctp_chunkhdr *)ch_end;
1254 chunk_num++;
1255 } while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
1256
1257 return asoc;
1258 }
1259
1260 /*
1261 * There are circumstances when we need to look inside the SCTP packet
1262 * for information to help us find the association. Examples
1263 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1264 * chunks.
1265 */
__sctp_rcv_lookup_harder(struct net * net,struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1266 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1267 struct sk_buff *skb,
1268 const union sctp_addr *laddr,
1269 struct sctp_transport **transportp)
1270 {
1271 struct sctp_chunkhdr *ch;
1272
1273 /* We do not allow GSO frames here as we need to linearize and
1274 * then cannot guarantee frame boundaries. This shouldn't be an
1275 * issue as packets hitting this are mostly INIT or INIT-ACK and
1276 * those cannot be on GSO-style anyway.
1277 */
1278 if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1279 return NULL;
1280
1281 ch = (struct sctp_chunkhdr *)skb->data;
1282
1283 /* The code below will attempt to walk the chunk and extract
1284 * parameter information. Before we do that, we need to verify
1285 * that the chunk length doesn't cause overflow. Otherwise, we'll
1286 * walk off the end.
1287 */
1288 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1289 return NULL;
1290
1291 /* If this is INIT/INIT-ACK look inside the chunk too. */
1292 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1293 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1294
1295 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1296 }
1297
1298 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct net * net,struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1299 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1300 struct sk_buff *skb,
1301 const union sctp_addr *paddr,
1302 const union sctp_addr *laddr,
1303 struct sctp_transport **transportp)
1304 {
1305 struct sctp_association *asoc;
1306
1307 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1308 if (asoc)
1309 goto out;
1310
1311 /* Further lookup for INIT/INIT-ACK packets.
1312 * SCTP Implementors Guide, 2.18 Handling of address
1313 * parameters within the INIT or INIT-ACK.
1314 */
1315 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1316 if (asoc)
1317 goto out;
1318
1319 if (paddr->sa.sa_family == AF_INET)
1320 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1321 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1322 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1323 else
1324 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1325 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1326 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1327
1328 out:
1329 return asoc;
1330 }
1331