1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/mm.h>
46 #include <linux/mempolicy.h>
47
48 #include <linux/compat.h>
49 #include <linux/syscalls.h>
50 #include <linux/kprobes.h>
51 #include <linux/user_namespace.h>
52 #include <linux/time_namespace.h>
53 #include <linux/binfmts.h>
54
55 #include <linux/sched.h>
56 #include <linux/sched/autogroup.h>
57 #include <linux/sched/loadavg.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/mm.h>
60 #include <linux/sched/coredump.h>
61 #include <linux/sched/task.h>
62 #include <linux/sched/cputime.h>
63 #include <linux/rcupdate.h>
64 #include <linux/uidgid.h>
65 #include <linux/cred.h>
66
67 #include <linux/nospec.h>
68
69 #include <linux/kmsg_dump.h>
70 /* Move somewhere else to avoid recompiling? */
71 #include <generated/utsrelease.h>
72
73 #include <linux/uaccess.h>
74 #include <asm/io.h>
75 #include <asm/unistd.h>
76
77 #include "uid16.h"
78
79 #include <trace/hooks/sys.h>
80
81 #ifndef SET_UNALIGN_CTL
82 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef GET_UNALIGN_CTL
85 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef SET_FPEMU_CTL
88 # define SET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef GET_FPEMU_CTL
91 # define GET_FPEMU_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef SET_FPEXC_CTL
94 # define SET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_FPEXC_CTL
97 # define GET_FPEXC_CTL(a, b) (-EINVAL)
98 #endif
99 #ifndef GET_ENDIAN
100 # define GET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef SET_ENDIAN
103 # define SET_ENDIAN(a, b) (-EINVAL)
104 #endif
105 #ifndef GET_TSC_CTL
106 # define GET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef SET_TSC_CTL
109 # define SET_TSC_CTL(a) (-EINVAL)
110 #endif
111 #ifndef GET_FP_MODE
112 # define GET_FP_MODE(a) (-EINVAL)
113 #endif
114 #ifndef SET_FP_MODE
115 # define SET_FP_MODE(a,b) (-EINVAL)
116 #endif
117 #ifndef SVE_SET_VL
118 # define SVE_SET_VL(a) (-EINVAL)
119 #endif
120 #ifndef SVE_GET_VL
121 # define SVE_GET_VL() (-EINVAL)
122 #endif
123 #ifndef PAC_RESET_KEYS
124 # define PAC_RESET_KEYS(a, b) (-EINVAL)
125 #endif
126 #ifndef PAC_SET_ENABLED_KEYS
127 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
128 #endif
129 #ifndef PAC_GET_ENABLED_KEYS
130 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
131 #endif
132 #ifndef SET_TAGGED_ADDR_CTRL
133 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
134 #endif
135 #ifndef GET_TAGGED_ADDR_CTRL
136 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
137 #endif
138
139 /*
140 * this is where the system-wide overflow UID and GID are defined, for
141 * architectures that now have 32-bit UID/GID but didn't in the past
142 */
143
144 int overflowuid = DEFAULT_OVERFLOWUID;
145 int overflowgid = DEFAULT_OVERFLOWGID;
146
147 EXPORT_SYMBOL(overflowuid);
148 EXPORT_SYMBOL(overflowgid);
149
150 /*
151 * the same as above, but for filesystems which can only store a 16-bit
152 * UID and GID. as such, this is needed on all architectures
153 */
154
155 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
156 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
157
158 EXPORT_SYMBOL(fs_overflowuid);
159 EXPORT_SYMBOL(fs_overflowgid);
160
161 /*
162 * Returns true if current's euid is same as p's uid or euid,
163 * or has CAP_SYS_NICE to p's user_ns.
164 *
165 * Called with rcu_read_lock, creds are safe
166 */
set_one_prio_perm(struct task_struct * p)167 static bool set_one_prio_perm(struct task_struct *p)
168 {
169 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
170
171 if (uid_eq(pcred->uid, cred->euid) ||
172 uid_eq(pcred->euid, cred->euid))
173 return true;
174 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
175 return true;
176 return false;
177 }
178
179 /*
180 * set the priority of a task
181 * - the caller must hold the RCU read lock
182 */
set_one_prio(struct task_struct * p,int niceval,int error)183 static int set_one_prio(struct task_struct *p, int niceval, int error)
184 {
185 int no_nice;
186
187 if (!set_one_prio_perm(p)) {
188 error = -EPERM;
189 goto out;
190 }
191 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
192 error = -EACCES;
193 goto out;
194 }
195 no_nice = security_task_setnice(p, niceval);
196 if (no_nice) {
197 error = no_nice;
198 goto out;
199 }
200 if (error == -ESRCH)
201 error = 0;
202 set_user_nice(p, niceval);
203 out:
204 return error;
205 }
206
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)207 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
208 {
209 struct task_struct *g, *p;
210 struct user_struct *user;
211 const struct cred *cred = current_cred();
212 int error = -EINVAL;
213 struct pid *pgrp;
214 kuid_t uid;
215
216 if (which > PRIO_USER || which < PRIO_PROCESS)
217 goto out;
218
219 /* normalize: avoid signed division (rounding problems) */
220 error = -ESRCH;
221 if (niceval < MIN_NICE)
222 niceval = MIN_NICE;
223 if (niceval > MAX_NICE)
224 niceval = MAX_NICE;
225
226 rcu_read_lock();
227 read_lock(&tasklist_lock);
228 switch (which) {
229 case PRIO_PROCESS:
230 if (who)
231 p = find_task_by_vpid(who);
232 else
233 p = current;
234 if (p)
235 error = set_one_prio(p, niceval, error);
236 break;
237 case PRIO_PGRP:
238 if (who)
239 pgrp = find_vpid(who);
240 else
241 pgrp = task_pgrp(current);
242 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
243 error = set_one_prio(p, niceval, error);
244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 break;
246 case PRIO_USER:
247 uid = make_kuid(cred->user_ns, who);
248 user = cred->user;
249 if (!who)
250 uid = cred->uid;
251 else if (!uid_eq(uid, cred->uid)) {
252 user = find_user(uid);
253 if (!user)
254 goto out_unlock; /* No processes for this user */
255 }
256 do_each_thread(g, p) {
257 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
258 error = set_one_prio(p, niceval, error);
259 } while_each_thread(g, p);
260 if (!uid_eq(uid, cred->uid))
261 free_uid(user); /* For find_user() */
262 break;
263 }
264 out_unlock:
265 read_unlock(&tasklist_lock);
266 rcu_read_unlock();
267 out:
268 return error;
269 }
270
271 /*
272 * Ugh. To avoid negative return values, "getpriority()" will
273 * not return the normal nice-value, but a negated value that
274 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
275 * to stay compatible.
276 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)277 SYSCALL_DEFINE2(getpriority, int, which, int, who)
278 {
279 struct task_struct *g, *p;
280 struct user_struct *user;
281 const struct cred *cred = current_cred();
282 long niceval, retval = -ESRCH;
283 struct pid *pgrp;
284 kuid_t uid;
285
286 if (which > PRIO_USER || which < PRIO_PROCESS)
287 return -EINVAL;
288
289 rcu_read_lock();
290 read_lock(&tasklist_lock);
291 switch (which) {
292 case PRIO_PROCESS:
293 if (who)
294 p = find_task_by_vpid(who);
295 else
296 p = current;
297 if (p) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 }
302 break;
303 case PRIO_PGRP:
304 if (who)
305 pgrp = find_vpid(who);
306 else
307 pgrp = task_pgrp(current);
308 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
309 niceval = nice_to_rlimit(task_nice(p));
310 if (niceval > retval)
311 retval = niceval;
312 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
313 break;
314 case PRIO_USER:
315 uid = make_kuid(cred->user_ns, who);
316 user = cred->user;
317 if (!who)
318 uid = cred->uid;
319 else if (!uid_eq(uid, cred->uid)) {
320 user = find_user(uid);
321 if (!user)
322 goto out_unlock; /* No processes for this user */
323 }
324 do_each_thread(g, p) {
325 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
326 niceval = nice_to_rlimit(task_nice(p));
327 if (niceval > retval)
328 retval = niceval;
329 }
330 } while_each_thread(g, p);
331 if (!uid_eq(uid, cred->uid))
332 free_uid(user); /* for find_user() */
333 break;
334 }
335 out_unlock:
336 read_unlock(&tasklist_lock);
337 rcu_read_unlock();
338
339 return retval;
340 }
341
342 /*
343 * Unprivileged users may change the real gid to the effective gid
344 * or vice versa. (BSD-style)
345 *
346 * If you set the real gid at all, or set the effective gid to a value not
347 * equal to the real gid, then the saved gid is set to the new effective gid.
348 *
349 * This makes it possible for a setgid program to completely drop its
350 * privileges, which is often a useful assertion to make when you are doing
351 * a security audit over a program.
352 *
353 * The general idea is that a program which uses just setregid() will be
354 * 100% compatible with BSD. A program which uses just setgid() will be
355 * 100% compatible with POSIX with saved IDs.
356 *
357 * SMP: There are not races, the GIDs are checked only by filesystem
358 * operations (as far as semantic preservation is concerned).
359 */
360 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)361 long __sys_setregid(gid_t rgid, gid_t egid)
362 {
363 struct user_namespace *ns = current_user_ns();
364 const struct cred *old;
365 struct cred *new;
366 int retval;
367 kgid_t krgid, kegid;
368
369 krgid = make_kgid(ns, rgid);
370 kegid = make_kgid(ns, egid);
371
372 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
373 return -EINVAL;
374 if ((egid != (gid_t) -1) && !gid_valid(kegid))
375 return -EINVAL;
376
377 new = prepare_creds();
378 if (!new)
379 return -ENOMEM;
380 old = current_cred();
381
382 retval = -EPERM;
383 if (rgid != (gid_t) -1) {
384 if (gid_eq(old->gid, krgid) ||
385 gid_eq(old->egid, krgid) ||
386 ns_capable_setid(old->user_ns, CAP_SETGID))
387 new->gid = krgid;
388 else
389 goto error;
390 }
391 if (egid != (gid_t) -1) {
392 if (gid_eq(old->gid, kegid) ||
393 gid_eq(old->egid, kegid) ||
394 gid_eq(old->sgid, kegid) ||
395 ns_capable_setid(old->user_ns, CAP_SETGID))
396 new->egid = kegid;
397 else
398 goto error;
399 }
400
401 if (rgid != (gid_t) -1 ||
402 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
403 new->sgid = new->egid;
404 new->fsgid = new->egid;
405
406 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
407 if (retval < 0)
408 goto error;
409
410 return commit_creds(new);
411
412 error:
413 abort_creds(new);
414 return retval;
415 }
416
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)417 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
418 {
419 return __sys_setregid(rgid, egid);
420 }
421
422 /*
423 * setgid() is implemented like SysV w/ SAVED_IDS
424 *
425 * SMP: Same implicit races as above.
426 */
__sys_setgid(gid_t gid)427 long __sys_setgid(gid_t gid)
428 {
429 struct user_namespace *ns = current_user_ns();
430 const struct cred *old;
431 struct cred *new;
432 int retval;
433 kgid_t kgid;
434
435 kgid = make_kgid(ns, gid);
436 if (!gid_valid(kgid))
437 return -EINVAL;
438
439 new = prepare_creds();
440 if (!new)
441 return -ENOMEM;
442 old = current_cred();
443
444 retval = -EPERM;
445 if (ns_capable_setid(old->user_ns, CAP_SETGID))
446 new->gid = new->egid = new->sgid = new->fsgid = kgid;
447 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
448 new->egid = new->fsgid = kgid;
449 else
450 goto error;
451
452 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
453 if (retval < 0)
454 goto error;
455
456 return commit_creds(new);
457
458 error:
459 abort_creds(new);
460 return retval;
461 }
462
SYSCALL_DEFINE1(setgid,gid_t,gid)463 SYSCALL_DEFINE1(setgid, gid_t, gid)
464 {
465 return __sys_setgid(gid);
466 }
467
468 /*
469 * change the user struct in a credentials set to match the new UID
470 */
set_user(struct cred * new)471 static int set_user(struct cred *new)
472 {
473 struct user_struct *new_user;
474
475 new_user = alloc_uid(new->uid);
476 if (!new_user)
477 return -EAGAIN;
478
479 /*
480 * We don't fail in case of NPROC limit excess here because too many
481 * poorly written programs don't check set*uid() return code, assuming
482 * it never fails if called by root. We may still enforce NPROC limit
483 * for programs doing set*uid()+execve() by harmlessly deferring the
484 * failure to the execve() stage.
485 */
486 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
487 new_user != INIT_USER)
488 current->flags |= PF_NPROC_EXCEEDED;
489 else
490 current->flags &= ~PF_NPROC_EXCEEDED;
491
492 free_uid(new->user);
493 new->user = new_user;
494 return 0;
495 }
496
497 /*
498 * Unprivileged users may change the real uid to the effective uid
499 * or vice versa. (BSD-style)
500 *
501 * If you set the real uid at all, or set the effective uid to a value not
502 * equal to the real uid, then the saved uid is set to the new effective uid.
503 *
504 * This makes it possible for a setuid program to completely drop its
505 * privileges, which is often a useful assertion to make when you are doing
506 * a security audit over a program.
507 *
508 * The general idea is that a program which uses just setreuid() will be
509 * 100% compatible with BSD. A program which uses just setuid() will be
510 * 100% compatible with POSIX with saved IDs.
511 */
__sys_setreuid(uid_t ruid,uid_t euid)512 long __sys_setreuid(uid_t ruid, uid_t euid)
513 {
514 struct user_namespace *ns = current_user_ns();
515 const struct cred *old;
516 struct cred *new;
517 int retval;
518 kuid_t kruid, keuid;
519
520 kruid = make_kuid(ns, ruid);
521 keuid = make_kuid(ns, euid);
522
523 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
524 return -EINVAL;
525 if ((euid != (uid_t) -1) && !uid_valid(keuid))
526 return -EINVAL;
527
528 new = prepare_creds();
529 if (!new)
530 return -ENOMEM;
531 old = current_cred();
532
533 retval = -EPERM;
534 if (ruid != (uid_t) -1) {
535 new->uid = kruid;
536 if (!uid_eq(old->uid, kruid) &&
537 !uid_eq(old->euid, kruid) &&
538 !ns_capable_setid(old->user_ns, CAP_SETUID))
539 goto error;
540 }
541
542 if (euid != (uid_t) -1) {
543 new->euid = keuid;
544 if (!uid_eq(old->uid, keuid) &&
545 !uid_eq(old->euid, keuid) &&
546 !uid_eq(old->suid, keuid) &&
547 !ns_capable_setid(old->user_ns, CAP_SETUID))
548 goto error;
549 }
550
551 if (!uid_eq(new->uid, old->uid)) {
552 retval = set_user(new);
553 if (retval < 0)
554 goto error;
555 }
556 if (ruid != (uid_t) -1 ||
557 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
558 new->suid = new->euid;
559 new->fsuid = new->euid;
560
561 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
562 if (retval < 0)
563 goto error;
564
565 return commit_creds(new);
566
567 error:
568 abort_creds(new);
569 return retval;
570 }
571
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)572 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
573 {
574 return __sys_setreuid(ruid, euid);
575 }
576
577 /*
578 * setuid() is implemented like SysV with SAVED_IDS
579 *
580 * Note that SAVED_ID's is deficient in that a setuid root program
581 * like sendmail, for example, cannot set its uid to be a normal
582 * user and then switch back, because if you're root, setuid() sets
583 * the saved uid too. If you don't like this, blame the bright people
584 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
585 * will allow a root program to temporarily drop privileges and be able to
586 * regain them by swapping the real and effective uid.
587 */
__sys_setuid(uid_t uid)588 long __sys_setuid(uid_t uid)
589 {
590 struct user_namespace *ns = current_user_ns();
591 const struct cred *old;
592 struct cred *new;
593 int retval;
594 kuid_t kuid;
595
596 kuid = make_kuid(ns, uid);
597 if (!uid_valid(kuid))
598 return -EINVAL;
599
600 new = prepare_creds();
601 if (!new)
602 return -ENOMEM;
603 old = current_cred();
604
605 retval = -EPERM;
606 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
607 new->suid = new->uid = kuid;
608 if (!uid_eq(kuid, old->uid)) {
609 retval = set_user(new);
610 if (retval < 0)
611 goto error;
612 }
613 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
614 goto error;
615 }
616
617 new->fsuid = new->euid = kuid;
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
620 if (retval < 0)
621 goto error;
622
623 return commit_creds(new);
624
625 error:
626 abort_creds(new);
627 return retval;
628 }
629
SYSCALL_DEFINE1(setuid,uid_t,uid)630 SYSCALL_DEFINE1(setuid, uid_t, uid)
631 {
632 return __sys_setuid(uid);
633 }
634
635
636 /*
637 * This function implements a generic ability to update ruid, euid,
638 * and suid. This allows you to implement the 4.4 compatible seteuid().
639 */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)640 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
641 {
642 struct user_namespace *ns = current_user_ns();
643 const struct cred *old;
644 struct cred *new;
645 int retval;
646 kuid_t kruid, keuid, ksuid;
647 bool ruid_new, euid_new, suid_new;
648
649 kruid = make_kuid(ns, ruid);
650 keuid = make_kuid(ns, euid);
651 ksuid = make_kuid(ns, suid);
652
653 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
654 return -EINVAL;
655
656 if ((euid != (uid_t) -1) && !uid_valid(keuid))
657 return -EINVAL;
658
659 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
660 return -EINVAL;
661
662 old = current_cred();
663
664 /* check for no-op */
665 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
666 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
667 uid_eq(keuid, old->fsuid))) &&
668 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
669 return 0;
670
671 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
672 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
673 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
674 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
675 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
676 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
677 if ((ruid_new || euid_new || suid_new) &&
678 !ns_capable_setid(old->user_ns, CAP_SETUID))
679 return -EPERM;
680
681 new = prepare_creds();
682 if (!new)
683 return -ENOMEM;
684
685 if (ruid != (uid_t) -1) {
686 new->uid = kruid;
687 if (!uid_eq(kruid, old->uid)) {
688 retval = set_user(new);
689 if (retval < 0)
690 goto error;
691 }
692 }
693 if (euid != (uid_t) -1)
694 new->euid = keuid;
695 if (suid != (uid_t) -1)
696 new->suid = ksuid;
697 new->fsuid = new->euid;
698
699 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
700 if (retval < 0)
701 goto error;
702
703 return commit_creds(new);
704
705 error:
706 abort_creds(new);
707 return retval;
708 }
709
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)710 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
711 {
712 return __sys_setresuid(ruid, euid, suid);
713 }
714
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)715 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
716 {
717 const struct cred *cred = current_cred();
718 int retval;
719 uid_t ruid, euid, suid;
720
721 ruid = from_kuid_munged(cred->user_ns, cred->uid);
722 euid = from_kuid_munged(cred->user_ns, cred->euid);
723 suid = from_kuid_munged(cred->user_ns, cred->suid);
724
725 retval = put_user(ruid, ruidp);
726 if (!retval) {
727 retval = put_user(euid, euidp);
728 if (!retval)
729 return put_user(suid, suidp);
730 }
731 return retval;
732 }
733
734 /*
735 * Same as above, but for rgid, egid, sgid.
736 */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)737 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
738 {
739 struct user_namespace *ns = current_user_ns();
740 const struct cred *old;
741 struct cred *new;
742 int retval;
743 kgid_t krgid, kegid, ksgid;
744 bool rgid_new, egid_new, sgid_new;
745
746 krgid = make_kgid(ns, rgid);
747 kegid = make_kgid(ns, egid);
748 ksgid = make_kgid(ns, sgid);
749
750 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
751 return -EINVAL;
752 if ((egid != (gid_t) -1) && !gid_valid(kegid))
753 return -EINVAL;
754 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
755 return -EINVAL;
756
757 old = current_cred();
758
759 /* check for no-op */
760 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
761 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
762 gid_eq(kegid, old->fsgid))) &&
763 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
764 return 0;
765
766 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
767 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
768 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
769 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
770 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
771 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
772 if ((rgid_new || egid_new || sgid_new) &&
773 !ns_capable_setid(old->user_ns, CAP_SETGID))
774 return -EPERM;
775
776 new = prepare_creds();
777 if (!new)
778 return -ENOMEM;
779
780 if (rgid != (gid_t) -1)
781 new->gid = krgid;
782 if (egid != (gid_t) -1)
783 new->egid = kegid;
784 if (sgid != (gid_t) -1)
785 new->sgid = ksgid;
786 new->fsgid = new->egid;
787
788 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
789 if (retval < 0)
790 goto error;
791
792 return commit_creds(new);
793
794 error:
795 abort_creds(new);
796 return retval;
797 }
798
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)799 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
800 {
801 return __sys_setresgid(rgid, egid, sgid);
802 }
803
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)804 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
805 {
806 const struct cred *cred = current_cred();
807 int retval;
808 gid_t rgid, egid, sgid;
809
810 rgid = from_kgid_munged(cred->user_ns, cred->gid);
811 egid = from_kgid_munged(cred->user_ns, cred->egid);
812 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
813
814 retval = put_user(rgid, rgidp);
815 if (!retval) {
816 retval = put_user(egid, egidp);
817 if (!retval)
818 retval = put_user(sgid, sgidp);
819 }
820
821 return retval;
822 }
823
824
825 /*
826 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
827 * is used for "access()" and for the NFS daemon (letting nfsd stay at
828 * whatever uid it wants to). It normally shadows "euid", except when
829 * explicitly set by setfsuid() or for access..
830 */
__sys_setfsuid(uid_t uid)831 long __sys_setfsuid(uid_t uid)
832 {
833 const struct cred *old;
834 struct cred *new;
835 uid_t old_fsuid;
836 kuid_t kuid;
837
838 old = current_cred();
839 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
840
841 kuid = make_kuid(old->user_ns, uid);
842 if (!uid_valid(kuid))
843 return old_fsuid;
844
845 new = prepare_creds();
846 if (!new)
847 return old_fsuid;
848
849 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
850 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
851 ns_capable_setid(old->user_ns, CAP_SETUID)) {
852 if (!uid_eq(kuid, old->fsuid)) {
853 new->fsuid = kuid;
854 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
855 goto change_okay;
856 }
857 }
858
859 abort_creds(new);
860 return old_fsuid;
861
862 change_okay:
863 commit_creds(new);
864 return old_fsuid;
865 }
866
SYSCALL_DEFINE1(setfsuid,uid_t,uid)867 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
868 {
869 return __sys_setfsuid(uid);
870 }
871
872 /*
873 * Samma på svenska..
874 */
__sys_setfsgid(gid_t gid)875 long __sys_setfsgid(gid_t gid)
876 {
877 const struct cred *old;
878 struct cred *new;
879 gid_t old_fsgid;
880 kgid_t kgid;
881
882 old = current_cred();
883 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
884
885 kgid = make_kgid(old->user_ns, gid);
886 if (!gid_valid(kgid))
887 return old_fsgid;
888
889 new = prepare_creds();
890 if (!new)
891 return old_fsgid;
892
893 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
894 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
895 ns_capable_setid(old->user_ns, CAP_SETGID)) {
896 if (!gid_eq(kgid, old->fsgid)) {
897 new->fsgid = kgid;
898 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
899 goto change_okay;
900 }
901 }
902
903 abort_creds(new);
904 return old_fsgid;
905
906 change_okay:
907 commit_creds(new);
908 return old_fsgid;
909 }
910
SYSCALL_DEFINE1(setfsgid,gid_t,gid)911 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
912 {
913 return __sys_setfsgid(gid);
914 }
915 #endif /* CONFIG_MULTIUSER */
916
917 /**
918 * sys_getpid - return the thread group id of the current process
919 *
920 * Note, despite the name, this returns the tgid not the pid. The tgid and
921 * the pid are identical unless CLONE_THREAD was specified on clone() in
922 * which case the tgid is the same in all threads of the same group.
923 *
924 * This is SMP safe as current->tgid does not change.
925 */
SYSCALL_DEFINE0(getpid)926 SYSCALL_DEFINE0(getpid)
927 {
928 return task_tgid_vnr(current);
929 }
930
931 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)932 SYSCALL_DEFINE0(gettid)
933 {
934 return task_pid_vnr(current);
935 }
936
937 /*
938 * Accessing ->real_parent is not SMP-safe, it could
939 * change from under us. However, we can use a stale
940 * value of ->real_parent under rcu_read_lock(), see
941 * release_task()->call_rcu(delayed_put_task_struct).
942 */
SYSCALL_DEFINE0(getppid)943 SYSCALL_DEFINE0(getppid)
944 {
945 int pid;
946
947 rcu_read_lock();
948 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
949 rcu_read_unlock();
950
951 return pid;
952 }
953
SYSCALL_DEFINE0(getuid)954 SYSCALL_DEFINE0(getuid)
955 {
956 /* Only we change this so SMP safe */
957 return from_kuid_munged(current_user_ns(), current_uid());
958 }
959
SYSCALL_DEFINE0(geteuid)960 SYSCALL_DEFINE0(geteuid)
961 {
962 /* Only we change this so SMP safe */
963 return from_kuid_munged(current_user_ns(), current_euid());
964 }
965
SYSCALL_DEFINE0(getgid)966 SYSCALL_DEFINE0(getgid)
967 {
968 /* Only we change this so SMP safe */
969 return from_kgid_munged(current_user_ns(), current_gid());
970 }
971
SYSCALL_DEFINE0(getegid)972 SYSCALL_DEFINE0(getegid)
973 {
974 /* Only we change this so SMP safe */
975 return from_kgid_munged(current_user_ns(), current_egid());
976 }
977
do_sys_times(struct tms * tms)978 static void do_sys_times(struct tms *tms)
979 {
980 u64 tgutime, tgstime, cutime, cstime;
981
982 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
983 cutime = current->signal->cutime;
984 cstime = current->signal->cstime;
985 tms->tms_utime = nsec_to_clock_t(tgutime);
986 tms->tms_stime = nsec_to_clock_t(tgstime);
987 tms->tms_cutime = nsec_to_clock_t(cutime);
988 tms->tms_cstime = nsec_to_clock_t(cstime);
989 }
990
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)991 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
992 {
993 if (tbuf) {
994 struct tms tmp;
995
996 do_sys_times(&tmp);
997 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
998 return -EFAULT;
999 }
1000 force_successful_syscall_return();
1001 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1002 }
1003
1004 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1005 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1006 {
1007 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1008 }
1009
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1010 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1011 {
1012 if (tbuf) {
1013 struct tms tms;
1014 struct compat_tms tmp;
1015
1016 do_sys_times(&tms);
1017 /* Convert our struct tms to the compat version. */
1018 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1019 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1020 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1021 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1022 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1023 return -EFAULT;
1024 }
1025 force_successful_syscall_return();
1026 return compat_jiffies_to_clock_t(jiffies);
1027 }
1028 #endif
1029
1030 /*
1031 * This needs some heavy checking ...
1032 * I just haven't the stomach for it. I also don't fully
1033 * understand sessions/pgrp etc. Let somebody who does explain it.
1034 *
1035 * OK, I think I have the protection semantics right.... this is really
1036 * only important on a multi-user system anyway, to make sure one user
1037 * can't send a signal to a process owned by another. -TYT, 12/12/91
1038 *
1039 * !PF_FORKNOEXEC check to conform completely to POSIX.
1040 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1041 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1042 {
1043 struct task_struct *p;
1044 struct task_struct *group_leader = current->group_leader;
1045 struct pid *pgrp;
1046 int err;
1047
1048 if (!pid)
1049 pid = task_pid_vnr(group_leader);
1050 if (!pgid)
1051 pgid = pid;
1052 if (pgid < 0)
1053 return -EINVAL;
1054 rcu_read_lock();
1055
1056 /* From this point forward we keep holding onto the tasklist lock
1057 * so that our parent does not change from under us. -DaveM
1058 */
1059 write_lock_irq(&tasklist_lock);
1060
1061 err = -ESRCH;
1062 p = find_task_by_vpid(pid);
1063 if (!p)
1064 goto out;
1065
1066 err = -EINVAL;
1067 if (!thread_group_leader(p))
1068 goto out;
1069
1070 if (same_thread_group(p->real_parent, group_leader)) {
1071 err = -EPERM;
1072 if (task_session(p) != task_session(group_leader))
1073 goto out;
1074 err = -EACCES;
1075 if (!(p->flags & PF_FORKNOEXEC))
1076 goto out;
1077 } else {
1078 err = -ESRCH;
1079 if (p != group_leader)
1080 goto out;
1081 }
1082
1083 err = -EPERM;
1084 if (p->signal->leader)
1085 goto out;
1086
1087 pgrp = task_pid(p);
1088 if (pgid != pid) {
1089 struct task_struct *g;
1090
1091 pgrp = find_vpid(pgid);
1092 g = pid_task(pgrp, PIDTYPE_PGID);
1093 if (!g || task_session(g) != task_session(group_leader))
1094 goto out;
1095 }
1096
1097 err = security_task_setpgid(p, pgid);
1098 if (err)
1099 goto out;
1100
1101 if (task_pgrp(p) != pgrp)
1102 change_pid(p, PIDTYPE_PGID, pgrp);
1103
1104 err = 0;
1105 out:
1106 /* All paths lead to here, thus we are safe. -DaveM */
1107 write_unlock_irq(&tasklist_lock);
1108 rcu_read_unlock();
1109 return err;
1110 }
1111
do_getpgid(pid_t pid)1112 static int do_getpgid(pid_t pid)
1113 {
1114 struct task_struct *p;
1115 struct pid *grp;
1116 int retval;
1117
1118 rcu_read_lock();
1119 if (!pid)
1120 grp = task_pgrp(current);
1121 else {
1122 retval = -ESRCH;
1123 p = find_task_by_vpid(pid);
1124 if (!p)
1125 goto out;
1126 grp = task_pgrp(p);
1127 if (!grp)
1128 goto out;
1129
1130 retval = security_task_getpgid(p);
1131 if (retval)
1132 goto out;
1133 }
1134 retval = pid_vnr(grp);
1135 out:
1136 rcu_read_unlock();
1137 return retval;
1138 }
1139
SYSCALL_DEFINE1(getpgid,pid_t,pid)1140 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1141 {
1142 return do_getpgid(pid);
1143 }
1144
1145 #ifdef __ARCH_WANT_SYS_GETPGRP
1146
SYSCALL_DEFINE0(getpgrp)1147 SYSCALL_DEFINE0(getpgrp)
1148 {
1149 return do_getpgid(0);
1150 }
1151
1152 #endif
1153
SYSCALL_DEFINE1(getsid,pid_t,pid)1154 SYSCALL_DEFINE1(getsid, pid_t, pid)
1155 {
1156 struct task_struct *p;
1157 struct pid *sid;
1158 int retval;
1159
1160 rcu_read_lock();
1161 if (!pid)
1162 sid = task_session(current);
1163 else {
1164 retval = -ESRCH;
1165 p = find_task_by_vpid(pid);
1166 if (!p)
1167 goto out;
1168 sid = task_session(p);
1169 if (!sid)
1170 goto out;
1171
1172 retval = security_task_getsid(p);
1173 if (retval)
1174 goto out;
1175 }
1176 retval = pid_vnr(sid);
1177 out:
1178 rcu_read_unlock();
1179 return retval;
1180 }
1181
set_special_pids(struct pid * pid)1182 static void set_special_pids(struct pid *pid)
1183 {
1184 struct task_struct *curr = current->group_leader;
1185
1186 if (task_session(curr) != pid)
1187 change_pid(curr, PIDTYPE_SID, pid);
1188
1189 if (task_pgrp(curr) != pid)
1190 change_pid(curr, PIDTYPE_PGID, pid);
1191 }
1192
ksys_setsid(void)1193 int ksys_setsid(void)
1194 {
1195 struct task_struct *group_leader = current->group_leader;
1196 struct pid *sid = task_pid(group_leader);
1197 pid_t session = pid_vnr(sid);
1198 int err = -EPERM;
1199
1200 write_lock_irq(&tasklist_lock);
1201 /* Fail if I am already a session leader */
1202 if (group_leader->signal->leader)
1203 goto out;
1204
1205 /* Fail if a process group id already exists that equals the
1206 * proposed session id.
1207 */
1208 if (pid_task(sid, PIDTYPE_PGID))
1209 goto out;
1210
1211 group_leader->signal->leader = 1;
1212 set_special_pids(sid);
1213
1214 proc_clear_tty(group_leader);
1215
1216 err = session;
1217 out:
1218 write_unlock_irq(&tasklist_lock);
1219 if (err > 0) {
1220 proc_sid_connector(group_leader);
1221 sched_autogroup_create_attach(group_leader);
1222 }
1223 return err;
1224 }
1225
SYSCALL_DEFINE0(setsid)1226 SYSCALL_DEFINE0(setsid)
1227 {
1228 return ksys_setsid();
1229 }
1230
1231 DECLARE_RWSEM(uts_sem);
1232
1233 #ifdef COMPAT_UTS_MACHINE
1234 #define override_architecture(name) \
1235 (personality(current->personality) == PER_LINUX32 && \
1236 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1237 sizeof(COMPAT_UTS_MACHINE)))
1238 #else
1239 #define override_architecture(name) 0
1240 #endif
1241
1242 /*
1243 * Work around broken programs that cannot handle "Linux 3.0".
1244 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1245 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1246 * 2.6.60.
1247 */
override_release(char __user * release,size_t len)1248 static int override_release(char __user *release, size_t len)
1249 {
1250 int ret = 0;
1251
1252 if (current->personality & UNAME26) {
1253 const char *rest = UTS_RELEASE;
1254 char buf[65] = { 0 };
1255 int ndots = 0;
1256 unsigned v;
1257 size_t copy;
1258
1259 while (*rest) {
1260 if (*rest == '.' && ++ndots >= 3)
1261 break;
1262 if (!isdigit(*rest) && *rest != '.')
1263 break;
1264 rest++;
1265 }
1266 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1267 copy = clamp_t(size_t, len, 1, sizeof(buf));
1268 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1269 ret = copy_to_user(release, buf, copy + 1);
1270 }
1271 return ret;
1272 }
1273
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1274 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1275 {
1276 struct new_utsname tmp;
1277
1278 down_read(&uts_sem);
1279 memcpy(&tmp, utsname(), sizeof(tmp));
1280 up_read(&uts_sem);
1281 if (copy_to_user(name, &tmp, sizeof(tmp)))
1282 return -EFAULT;
1283
1284 if (override_release(name->release, sizeof(name->release)))
1285 return -EFAULT;
1286 if (override_architecture(name))
1287 return -EFAULT;
1288 return 0;
1289 }
1290
1291 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1292 /*
1293 * Old cruft
1294 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1295 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1296 {
1297 struct old_utsname tmp;
1298
1299 if (!name)
1300 return -EFAULT;
1301
1302 down_read(&uts_sem);
1303 memcpy(&tmp, utsname(), sizeof(tmp));
1304 up_read(&uts_sem);
1305 if (copy_to_user(name, &tmp, sizeof(tmp)))
1306 return -EFAULT;
1307
1308 if (override_release(name->release, sizeof(name->release)))
1309 return -EFAULT;
1310 if (override_architecture(name))
1311 return -EFAULT;
1312 return 0;
1313 }
1314
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1315 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1316 {
1317 struct oldold_utsname tmp;
1318
1319 if (!name)
1320 return -EFAULT;
1321
1322 memset(&tmp, 0, sizeof(tmp));
1323
1324 down_read(&uts_sem);
1325 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1326 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1327 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1328 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1329 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1330 up_read(&uts_sem);
1331 if (copy_to_user(name, &tmp, sizeof(tmp)))
1332 return -EFAULT;
1333
1334 if (override_architecture(name))
1335 return -EFAULT;
1336 if (override_release(name->release, sizeof(name->release)))
1337 return -EFAULT;
1338 return 0;
1339 }
1340 #endif
1341
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1342 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1343 {
1344 int errno;
1345 char tmp[__NEW_UTS_LEN];
1346
1347 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1348 return -EPERM;
1349
1350 if (len < 0 || len > __NEW_UTS_LEN)
1351 return -EINVAL;
1352 errno = -EFAULT;
1353 if (!copy_from_user(tmp, name, len)) {
1354 struct new_utsname *u;
1355
1356 down_write(&uts_sem);
1357 u = utsname();
1358 memcpy(u->nodename, tmp, len);
1359 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1360 errno = 0;
1361 uts_proc_notify(UTS_PROC_HOSTNAME);
1362 up_write(&uts_sem);
1363 }
1364 return errno;
1365 }
1366
1367 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1368
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1369 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1370 {
1371 int i;
1372 struct new_utsname *u;
1373 char tmp[__NEW_UTS_LEN + 1];
1374
1375 if (len < 0)
1376 return -EINVAL;
1377 down_read(&uts_sem);
1378 u = utsname();
1379 i = 1 + strlen(u->nodename);
1380 if (i > len)
1381 i = len;
1382 memcpy(tmp, u->nodename, i);
1383 up_read(&uts_sem);
1384 if (copy_to_user(name, tmp, i))
1385 return -EFAULT;
1386 return 0;
1387 }
1388
1389 #endif
1390
1391 /*
1392 * Only setdomainname; getdomainname can be implemented by calling
1393 * uname()
1394 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1395 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1396 {
1397 int errno;
1398 char tmp[__NEW_UTS_LEN];
1399
1400 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1401 return -EPERM;
1402 if (len < 0 || len > __NEW_UTS_LEN)
1403 return -EINVAL;
1404
1405 errno = -EFAULT;
1406 if (!copy_from_user(tmp, name, len)) {
1407 struct new_utsname *u;
1408
1409 down_write(&uts_sem);
1410 u = utsname();
1411 memcpy(u->domainname, tmp, len);
1412 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1413 errno = 0;
1414 uts_proc_notify(UTS_PROC_DOMAINNAME);
1415 up_write(&uts_sem);
1416 }
1417 return errno;
1418 }
1419
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1420 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1421 {
1422 struct rlimit value;
1423 int ret;
1424
1425 ret = do_prlimit(current, resource, NULL, &value);
1426 if (!ret)
1427 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1428
1429 return ret;
1430 }
1431
1432 #ifdef CONFIG_COMPAT
1433
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1434 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1435 struct compat_rlimit __user *, rlim)
1436 {
1437 struct rlimit r;
1438 struct compat_rlimit r32;
1439
1440 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1441 return -EFAULT;
1442
1443 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1444 r.rlim_cur = RLIM_INFINITY;
1445 else
1446 r.rlim_cur = r32.rlim_cur;
1447 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1448 r.rlim_max = RLIM_INFINITY;
1449 else
1450 r.rlim_max = r32.rlim_max;
1451 return do_prlimit(current, resource, &r, NULL);
1452 }
1453
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1454 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1455 struct compat_rlimit __user *, rlim)
1456 {
1457 struct rlimit r;
1458 int ret;
1459
1460 ret = do_prlimit(current, resource, NULL, &r);
1461 if (!ret) {
1462 struct compat_rlimit r32;
1463 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1464 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1465 else
1466 r32.rlim_cur = r.rlim_cur;
1467 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1468 r32.rlim_max = COMPAT_RLIM_INFINITY;
1469 else
1470 r32.rlim_max = r.rlim_max;
1471
1472 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1473 return -EFAULT;
1474 }
1475 return ret;
1476 }
1477
1478 #endif
1479
1480 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1481
1482 /*
1483 * Back compatibility for getrlimit. Needed for some apps.
1484 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1485 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1486 struct rlimit __user *, rlim)
1487 {
1488 struct rlimit x;
1489 if (resource >= RLIM_NLIMITS)
1490 return -EINVAL;
1491
1492 resource = array_index_nospec(resource, RLIM_NLIMITS);
1493 task_lock(current->group_leader);
1494 x = current->signal->rlim[resource];
1495 task_unlock(current->group_leader);
1496 if (x.rlim_cur > 0x7FFFFFFF)
1497 x.rlim_cur = 0x7FFFFFFF;
1498 if (x.rlim_max > 0x7FFFFFFF)
1499 x.rlim_max = 0x7FFFFFFF;
1500 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1501 }
1502
1503 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1504 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1505 struct compat_rlimit __user *, rlim)
1506 {
1507 struct rlimit r;
1508
1509 if (resource >= RLIM_NLIMITS)
1510 return -EINVAL;
1511
1512 resource = array_index_nospec(resource, RLIM_NLIMITS);
1513 task_lock(current->group_leader);
1514 r = current->signal->rlim[resource];
1515 task_unlock(current->group_leader);
1516 if (r.rlim_cur > 0x7FFFFFFF)
1517 r.rlim_cur = 0x7FFFFFFF;
1518 if (r.rlim_max > 0x7FFFFFFF)
1519 r.rlim_max = 0x7FFFFFFF;
1520
1521 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1522 put_user(r.rlim_max, &rlim->rlim_max))
1523 return -EFAULT;
1524 return 0;
1525 }
1526 #endif
1527
1528 #endif
1529
rlim64_is_infinity(__u64 rlim64)1530 static inline bool rlim64_is_infinity(__u64 rlim64)
1531 {
1532 #if BITS_PER_LONG < 64
1533 return rlim64 >= ULONG_MAX;
1534 #else
1535 return rlim64 == RLIM64_INFINITY;
1536 #endif
1537 }
1538
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1539 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1540 {
1541 if (rlim->rlim_cur == RLIM_INFINITY)
1542 rlim64->rlim_cur = RLIM64_INFINITY;
1543 else
1544 rlim64->rlim_cur = rlim->rlim_cur;
1545 if (rlim->rlim_max == RLIM_INFINITY)
1546 rlim64->rlim_max = RLIM64_INFINITY;
1547 else
1548 rlim64->rlim_max = rlim->rlim_max;
1549 }
1550
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1551 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1552 {
1553 if (rlim64_is_infinity(rlim64->rlim_cur))
1554 rlim->rlim_cur = RLIM_INFINITY;
1555 else
1556 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1557 if (rlim64_is_infinity(rlim64->rlim_max))
1558 rlim->rlim_max = RLIM_INFINITY;
1559 else
1560 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1561 }
1562
1563 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1564 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1565 struct rlimit *new_rlim, struct rlimit *old_rlim)
1566 {
1567 struct rlimit *rlim;
1568 int retval = 0;
1569
1570 if (resource >= RLIM_NLIMITS)
1571 return -EINVAL;
1572 resource = array_index_nospec(resource, RLIM_NLIMITS);
1573
1574 if (new_rlim) {
1575 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1576 return -EINVAL;
1577 if (resource == RLIMIT_NOFILE &&
1578 new_rlim->rlim_max > sysctl_nr_open)
1579 return -EPERM;
1580 }
1581
1582 /* protect tsk->signal and tsk->sighand from disappearing */
1583 read_lock(&tasklist_lock);
1584 if (!tsk->sighand) {
1585 retval = -ESRCH;
1586 goto out;
1587 }
1588
1589 rlim = tsk->signal->rlim + resource;
1590 task_lock(tsk->group_leader);
1591 if (new_rlim) {
1592 /* Keep the capable check against init_user_ns until
1593 cgroups can contain all limits */
1594 if (new_rlim->rlim_max > rlim->rlim_max &&
1595 !capable(CAP_SYS_RESOURCE))
1596 retval = -EPERM;
1597 if (!retval)
1598 retval = security_task_setrlimit(tsk, resource, new_rlim);
1599 }
1600 if (!retval) {
1601 if (old_rlim)
1602 *old_rlim = *rlim;
1603 if (new_rlim)
1604 *rlim = *new_rlim;
1605 }
1606 task_unlock(tsk->group_leader);
1607
1608 /*
1609 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1610 * infite. In case of RLIM_INFINITY the posix CPU timer code
1611 * ignores the rlimit.
1612 */
1613 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1614 new_rlim->rlim_cur != RLIM_INFINITY &&
1615 IS_ENABLED(CONFIG_POSIX_TIMERS))
1616 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1617 out:
1618 read_unlock(&tasklist_lock);
1619 return retval;
1620 }
1621
1622 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1623 static int check_prlimit_permission(struct task_struct *task,
1624 unsigned int flags)
1625 {
1626 const struct cred *cred = current_cred(), *tcred;
1627 bool id_match;
1628
1629 if (current == task)
1630 return 0;
1631
1632 tcred = __task_cred(task);
1633 id_match = (uid_eq(cred->uid, tcred->euid) &&
1634 uid_eq(cred->uid, tcred->suid) &&
1635 uid_eq(cred->uid, tcred->uid) &&
1636 gid_eq(cred->gid, tcred->egid) &&
1637 gid_eq(cred->gid, tcred->sgid) &&
1638 gid_eq(cred->gid, tcred->gid));
1639 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1640 return -EPERM;
1641
1642 return security_task_prlimit(cred, tcred, flags);
1643 }
1644
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1645 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1646 const struct rlimit64 __user *, new_rlim,
1647 struct rlimit64 __user *, old_rlim)
1648 {
1649 struct rlimit64 old64, new64;
1650 struct rlimit old, new;
1651 struct task_struct *tsk;
1652 unsigned int checkflags = 0;
1653 int ret;
1654
1655 if (old_rlim)
1656 checkflags |= LSM_PRLIMIT_READ;
1657
1658 if (new_rlim) {
1659 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1660 return -EFAULT;
1661 rlim64_to_rlim(&new64, &new);
1662 checkflags |= LSM_PRLIMIT_WRITE;
1663 }
1664
1665 rcu_read_lock();
1666 tsk = pid ? find_task_by_vpid(pid) : current;
1667 if (!tsk) {
1668 rcu_read_unlock();
1669 return -ESRCH;
1670 }
1671 ret = check_prlimit_permission(tsk, checkflags);
1672 if (ret) {
1673 rcu_read_unlock();
1674 return ret;
1675 }
1676 get_task_struct(tsk);
1677 rcu_read_unlock();
1678
1679 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1680 old_rlim ? &old : NULL);
1681
1682 if (!ret && old_rlim) {
1683 rlim_to_rlim64(&old, &old64);
1684 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1685 ret = -EFAULT;
1686 }
1687
1688 put_task_struct(tsk);
1689 return ret;
1690 }
1691
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1692 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1693 {
1694 struct rlimit new_rlim;
1695
1696 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1697 return -EFAULT;
1698 return do_prlimit(current, resource, &new_rlim, NULL);
1699 }
1700
1701 /*
1702 * It would make sense to put struct rusage in the task_struct,
1703 * except that would make the task_struct be *really big*. After
1704 * task_struct gets moved into malloc'ed memory, it would
1705 * make sense to do this. It will make moving the rest of the information
1706 * a lot simpler! (Which we're not doing right now because we're not
1707 * measuring them yet).
1708 *
1709 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1710 * races with threads incrementing their own counters. But since word
1711 * reads are atomic, we either get new values or old values and we don't
1712 * care which for the sums. We always take the siglock to protect reading
1713 * the c* fields from p->signal from races with exit.c updating those
1714 * fields when reaping, so a sample either gets all the additions of a
1715 * given child after it's reaped, or none so this sample is before reaping.
1716 *
1717 * Locking:
1718 * We need to take the siglock for CHILDEREN, SELF and BOTH
1719 * for the cases current multithreaded, non-current single threaded
1720 * non-current multithreaded. Thread traversal is now safe with
1721 * the siglock held.
1722 * Strictly speaking, we donot need to take the siglock if we are current and
1723 * single threaded, as no one else can take our signal_struct away, no one
1724 * else can reap the children to update signal->c* counters, and no one else
1725 * can race with the signal-> fields. If we do not take any lock, the
1726 * signal-> fields could be read out of order while another thread was just
1727 * exiting. So we should place a read memory barrier when we avoid the lock.
1728 * On the writer side, write memory barrier is implied in __exit_signal
1729 * as __exit_signal releases the siglock spinlock after updating the signal->
1730 * fields. But we don't do this yet to keep things simple.
1731 *
1732 */
1733
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1734 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1735 {
1736 r->ru_nvcsw += t->nvcsw;
1737 r->ru_nivcsw += t->nivcsw;
1738 r->ru_minflt += t->min_flt;
1739 r->ru_majflt += t->maj_flt;
1740 r->ru_inblock += task_io_get_inblock(t);
1741 r->ru_oublock += task_io_get_oublock(t);
1742 }
1743
getrusage(struct task_struct * p,int who,struct rusage * r)1744 void getrusage(struct task_struct *p, int who, struct rusage *r)
1745 {
1746 struct task_struct *t;
1747 unsigned long flags;
1748 u64 tgutime, tgstime, utime, stime;
1749 unsigned long maxrss;
1750 struct mm_struct *mm;
1751 struct signal_struct *sig = p->signal;
1752 unsigned int seq = 0;
1753
1754 retry:
1755 memset(r, 0, sizeof(*r));
1756 utime = stime = 0;
1757 maxrss = 0;
1758
1759 if (who == RUSAGE_THREAD) {
1760 task_cputime_adjusted(current, &utime, &stime);
1761 accumulate_thread_rusage(p, r);
1762 maxrss = sig->maxrss;
1763 goto out_thread;
1764 }
1765
1766 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1767
1768 switch (who) {
1769 case RUSAGE_BOTH:
1770 case RUSAGE_CHILDREN:
1771 utime = sig->cutime;
1772 stime = sig->cstime;
1773 r->ru_nvcsw = sig->cnvcsw;
1774 r->ru_nivcsw = sig->cnivcsw;
1775 r->ru_minflt = sig->cmin_flt;
1776 r->ru_majflt = sig->cmaj_flt;
1777 r->ru_inblock = sig->cinblock;
1778 r->ru_oublock = sig->coublock;
1779 maxrss = sig->cmaxrss;
1780
1781 if (who == RUSAGE_CHILDREN)
1782 break;
1783 fallthrough;
1784
1785 case RUSAGE_SELF:
1786 r->ru_nvcsw += sig->nvcsw;
1787 r->ru_nivcsw += sig->nivcsw;
1788 r->ru_minflt += sig->min_flt;
1789 r->ru_majflt += sig->maj_flt;
1790 r->ru_inblock += sig->inblock;
1791 r->ru_oublock += sig->oublock;
1792 if (maxrss < sig->maxrss)
1793 maxrss = sig->maxrss;
1794
1795 rcu_read_lock();
1796 __for_each_thread(sig, t)
1797 accumulate_thread_rusage(t, r);
1798 rcu_read_unlock();
1799
1800 break;
1801
1802 default:
1803 BUG();
1804 }
1805
1806 if (need_seqretry(&sig->stats_lock, seq)) {
1807 seq = 1;
1808 goto retry;
1809 }
1810 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1811
1812 if (who == RUSAGE_CHILDREN)
1813 goto out_children;
1814
1815 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1816 utime += tgutime;
1817 stime += tgstime;
1818
1819 out_thread:
1820 mm = get_task_mm(p);
1821 if (mm) {
1822 setmax_mm_hiwater_rss(&maxrss, mm);
1823 mmput(mm);
1824 }
1825
1826 out_children:
1827 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1828 r->ru_utime = ns_to_kernel_old_timeval(utime);
1829 r->ru_stime = ns_to_kernel_old_timeval(stime);
1830 }
1831
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1832 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1833 {
1834 struct rusage r;
1835
1836 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1837 who != RUSAGE_THREAD)
1838 return -EINVAL;
1839
1840 getrusage(current, who, &r);
1841 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1842 }
1843
1844 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1845 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1846 {
1847 struct rusage r;
1848
1849 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1850 who != RUSAGE_THREAD)
1851 return -EINVAL;
1852
1853 getrusage(current, who, &r);
1854 return put_compat_rusage(&r, ru);
1855 }
1856 #endif
1857
SYSCALL_DEFINE1(umask,int,mask)1858 SYSCALL_DEFINE1(umask, int, mask)
1859 {
1860 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1861 return mask;
1862 }
1863
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1864 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1865 {
1866 struct fd exe;
1867 struct file *old_exe, *exe_file;
1868 struct inode *inode;
1869 int err;
1870
1871 exe = fdget(fd);
1872 if (!exe.file)
1873 return -EBADF;
1874
1875 inode = file_inode(exe.file);
1876
1877 /*
1878 * Because the original mm->exe_file points to executable file, make
1879 * sure that this one is executable as well, to avoid breaking an
1880 * overall picture.
1881 */
1882 err = -EACCES;
1883 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1884 goto exit;
1885
1886 err = inode_permission(inode, MAY_EXEC);
1887 if (err)
1888 goto exit;
1889
1890 /*
1891 * Forbid mm->exe_file change if old file still mapped.
1892 */
1893 exe_file = get_mm_exe_file(mm);
1894 err = -EBUSY;
1895 if (exe_file) {
1896 struct vm_area_struct *vma;
1897
1898 mmap_read_lock(mm);
1899 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1900 if (!vma->vm_file)
1901 continue;
1902 if (path_equal(&vma->vm_file->f_path,
1903 &exe_file->f_path))
1904 goto exit_err;
1905 }
1906
1907 mmap_read_unlock(mm);
1908 fput(exe_file);
1909 }
1910
1911 err = 0;
1912 /* set the new file, lockless */
1913 get_file(exe.file);
1914 old_exe = xchg(&mm->exe_file, exe.file);
1915 if (old_exe)
1916 fput(old_exe);
1917 exit:
1918 fdput(exe);
1919 return err;
1920 exit_err:
1921 mmap_read_unlock(mm);
1922 fput(exe_file);
1923 goto exit;
1924 }
1925
1926 /*
1927 * Check arithmetic relations of passed addresses.
1928 *
1929 * WARNING: we don't require any capability here so be very careful
1930 * in what is allowed for modification from userspace.
1931 */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1932 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1933 {
1934 unsigned long mmap_max_addr = TASK_SIZE;
1935 int error = -EINVAL, i;
1936
1937 static const unsigned char offsets[] = {
1938 offsetof(struct prctl_mm_map, start_code),
1939 offsetof(struct prctl_mm_map, end_code),
1940 offsetof(struct prctl_mm_map, start_data),
1941 offsetof(struct prctl_mm_map, end_data),
1942 offsetof(struct prctl_mm_map, start_brk),
1943 offsetof(struct prctl_mm_map, brk),
1944 offsetof(struct prctl_mm_map, start_stack),
1945 offsetof(struct prctl_mm_map, arg_start),
1946 offsetof(struct prctl_mm_map, arg_end),
1947 offsetof(struct prctl_mm_map, env_start),
1948 offsetof(struct prctl_mm_map, env_end),
1949 };
1950
1951 /*
1952 * Make sure the members are not somewhere outside
1953 * of allowed address space.
1954 */
1955 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1956 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1957
1958 if ((unsigned long)val >= mmap_max_addr ||
1959 (unsigned long)val < mmap_min_addr)
1960 goto out;
1961 }
1962
1963 /*
1964 * Make sure the pairs are ordered.
1965 */
1966 #define __prctl_check_order(__m1, __op, __m2) \
1967 ((unsigned long)prctl_map->__m1 __op \
1968 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1969 error = __prctl_check_order(start_code, <, end_code);
1970 error |= __prctl_check_order(start_data,<=, end_data);
1971 error |= __prctl_check_order(start_brk, <=, brk);
1972 error |= __prctl_check_order(arg_start, <=, arg_end);
1973 error |= __prctl_check_order(env_start, <=, env_end);
1974 if (error)
1975 goto out;
1976 #undef __prctl_check_order
1977
1978 error = -EINVAL;
1979
1980 /*
1981 * Neither we should allow to override limits if they set.
1982 */
1983 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1984 prctl_map->start_brk, prctl_map->end_data,
1985 prctl_map->start_data))
1986 goto out;
1987
1988 error = 0;
1989 out:
1990 return error;
1991 }
1992
1993 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1994 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1995 {
1996 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1997 unsigned long user_auxv[AT_VECTOR_SIZE];
1998 struct mm_struct *mm = current->mm;
1999 int error;
2000
2001 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2002 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2003
2004 if (opt == PR_SET_MM_MAP_SIZE)
2005 return put_user((unsigned int)sizeof(prctl_map),
2006 (unsigned int __user *)addr);
2007
2008 if (data_size != sizeof(prctl_map))
2009 return -EINVAL;
2010
2011 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2012 return -EFAULT;
2013
2014 error = validate_prctl_map_addr(&prctl_map);
2015 if (error)
2016 return error;
2017
2018 if (prctl_map.auxv_size) {
2019 /*
2020 * Someone is trying to cheat the auxv vector.
2021 */
2022 if (!prctl_map.auxv ||
2023 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2024 return -EINVAL;
2025
2026 memset(user_auxv, 0, sizeof(user_auxv));
2027 if (copy_from_user(user_auxv,
2028 (const void __user *)prctl_map.auxv,
2029 prctl_map.auxv_size))
2030 return -EFAULT;
2031
2032 /* Last entry must be AT_NULL as specification requires */
2033 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2034 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2035 }
2036
2037 if (prctl_map.exe_fd != (u32)-1) {
2038 /*
2039 * Check if the current user is checkpoint/restore capable.
2040 * At the time of this writing, it checks for CAP_SYS_ADMIN
2041 * or CAP_CHECKPOINT_RESTORE.
2042 * Note that a user with access to ptrace can masquerade an
2043 * arbitrary program as any executable, even setuid ones.
2044 * This may have implications in the tomoyo subsystem.
2045 */
2046 if (!checkpoint_restore_ns_capable(current_user_ns()))
2047 return -EPERM;
2048
2049 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2050 if (error)
2051 return error;
2052 }
2053
2054 /*
2055 * arg_lock protects concurent updates but we still need mmap_lock for
2056 * read to exclude races with sys_brk.
2057 */
2058 mmap_read_lock(mm);
2059
2060 /*
2061 * We don't validate if these members are pointing to
2062 * real present VMAs because application may have correspond
2063 * VMAs already unmapped and kernel uses these members for statistics
2064 * output in procfs mostly, except
2065 *
2066 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2067 * for VMAs when updating these memvers so anything wrong written
2068 * here cause kernel to swear at userspace program but won't lead
2069 * to any problem in kernel itself
2070 */
2071
2072 spin_lock(&mm->arg_lock);
2073 mm->start_code = prctl_map.start_code;
2074 mm->end_code = prctl_map.end_code;
2075 mm->start_data = prctl_map.start_data;
2076 mm->end_data = prctl_map.end_data;
2077 mm->start_brk = prctl_map.start_brk;
2078 mm->brk = prctl_map.brk;
2079 mm->start_stack = prctl_map.start_stack;
2080 mm->arg_start = prctl_map.arg_start;
2081 mm->arg_end = prctl_map.arg_end;
2082 mm->env_start = prctl_map.env_start;
2083 mm->env_end = prctl_map.env_end;
2084 spin_unlock(&mm->arg_lock);
2085
2086 /*
2087 * Note this update of @saved_auxv is lockless thus
2088 * if someone reads this member in procfs while we're
2089 * updating -- it may get partly updated results. It's
2090 * known and acceptable trade off: we leave it as is to
2091 * not introduce additional locks here making the kernel
2092 * more complex.
2093 */
2094 if (prctl_map.auxv_size)
2095 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2096
2097 mmap_read_unlock(mm);
2098 return 0;
2099 }
2100 #endif /* CONFIG_CHECKPOINT_RESTORE */
2101
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2102 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2103 unsigned long len)
2104 {
2105 /*
2106 * This doesn't move the auxiliary vector itself since it's pinned to
2107 * mm_struct, but it permits filling the vector with new values. It's
2108 * up to the caller to provide sane values here, otherwise userspace
2109 * tools which use this vector might be unhappy.
2110 */
2111 unsigned long user_auxv[AT_VECTOR_SIZE];
2112
2113 if (len > sizeof(user_auxv))
2114 return -EINVAL;
2115
2116 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2117 return -EFAULT;
2118
2119 /* Make sure the last entry is always AT_NULL */
2120 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2121 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2122
2123 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2124
2125 task_lock(current);
2126 memcpy(mm->saved_auxv, user_auxv, len);
2127 task_unlock(current);
2128
2129 return 0;
2130 }
2131
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2132 static int prctl_set_mm(int opt, unsigned long addr,
2133 unsigned long arg4, unsigned long arg5)
2134 {
2135 struct mm_struct *mm = current->mm;
2136 struct prctl_mm_map prctl_map = {
2137 .auxv = NULL,
2138 .auxv_size = 0,
2139 .exe_fd = -1,
2140 };
2141 struct vm_area_struct *vma;
2142 int error;
2143
2144 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2145 opt != PR_SET_MM_MAP &&
2146 opt != PR_SET_MM_MAP_SIZE)))
2147 return -EINVAL;
2148
2149 #ifdef CONFIG_CHECKPOINT_RESTORE
2150 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2151 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2152 #endif
2153
2154 if (!capable(CAP_SYS_RESOURCE))
2155 return -EPERM;
2156
2157 if (opt == PR_SET_MM_EXE_FILE)
2158 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2159
2160 if (opt == PR_SET_MM_AUXV)
2161 return prctl_set_auxv(mm, addr, arg4);
2162
2163 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2164 return -EINVAL;
2165
2166 error = -EINVAL;
2167
2168 /*
2169 * arg_lock protects concurent updates of arg boundaries, we need
2170 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2171 * validation.
2172 */
2173 mmap_read_lock(mm);
2174 vma = find_vma(mm, addr);
2175
2176 spin_lock(&mm->arg_lock);
2177 prctl_map.start_code = mm->start_code;
2178 prctl_map.end_code = mm->end_code;
2179 prctl_map.start_data = mm->start_data;
2180 prctl_map.end_data = mm->end_data;
2181 prctl_map.start_brk = mm->start_brk;
2182 prctl_map.brk = mm->brk;
2183 prctl_map.start_stack = mm->start_stack;
2184 prctl_map.arg_start = mm->arg_start;
2185 prctl_map.arg_end = mm->arg_end;
2186 prctl_map.env_start = mm->env_start;
2187 prctl_map.env_end = mm->env_end;
2188
2189 switch (opt) {
2190 case PR_SET_MM_START_CODE:
2191 prctl_map.start_code = addr;
2192 break;
2193 case PR_SET_MM_END_CODE:
2194 prctl_map.end_code = addr;
2195 break;
2196 case PR_SET_MM_START_DATA:
2197 prctl_map.start_data = addr;
2198 break;
2199 case PR_SET_MM_END_DATA:
2200 prctl_map.end_data = addr;
2201 break;
2202 case PR_SET_MM_START_STACK:
2203 prctl_map.start_stack = addr;
2204 break;
2205 case PR_SET_MM_START_BRK:
2206 prctl_map.start_brk = addr;
2207 break;
2208 case PR_SET_MM_BRK:
2209 prctl_map.brk = addr;
2210 break;
2211 case PR_SET_MM_ARG_START:
2212 prctl_map.arg_start = addr;
2213 break;
2214 case PR_SET_MM_ARG_END:
2215 prctl_map.arg_end = addr;
2216 break;
2217 case PR_SET_MM_ENV_START:
2218 prctl_map.env_start = addr;
2219 break;
2220 case PR_SET_MM_ENV_END:
2221 prctl_map.env_end = addr;
2222 break;
2223 default:
2224 goto out;
2225 }
2226
2227 error = validate_prctl_map_addr(&prctl_map);
2228 if (error)
2229 goto out;
2230
2231 switch (opt) {
2232 /*
2233 * If command line arguments and environment
2234 * are placed somewhere else on stack, we can
2235 * set them up here, ARG_START/END to setup
2236 * command line argumets and ENV_START/END
2237 * for environment.
2238 */
2239 case PR_SET_MM_START_STACK:
2240 case PR_SET_MM_ARG_START:
2241 case PR_SET_MM_ARG_END:
2242 case PR_SET_MM_ENV_START:
2243 case PR_SET_MM_ENV_END:
2244 if (!vma) {
2245 error = -EFAULT;
2246 goto out;
2247 }
2248 }
2249
2250 mm->start_code = prctl_map.start_code;
2251 mm->end_code = prctl_map.end_code;
2252 mm->start_data = prctl_map.start_data;
2253 mm->end_data = prctl_map.end_data;
2254 mm->start_brk = prctl_map.start_brk;
2255 mm->brk = prctl_map.brk;
2256 mm->start_stack = prctl_map.start_stack;
2257 mm->arg_start = prctl_map.arg_start;
2258 mm->arg_end = prctl_map.arg_end;
2259 mm->env_start = prctl_map.env_start;
2260 mm->env_end = prctl_map.env_end;
2261
2262 error = 0;
2263 out:
2264 spin_unlock(&mm->arg_lock);
2265 mmap_read_unlock(mm);
2266 return error;
2267 }
2268
2269 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2270 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2271 {
2272 return put_user(me->clear_child_tid, tid_addr);
2273 }
2274 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2275 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2276 {
2277 return -EINVAL;
2278 }
2279 #endif
2280
propagate_has_child_subreaper(struct task_struct * p,void * data)2281 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2282 {
2283 /*
2284 * If task has has_child_subreaper - all its decendants
2285 * already have these flag too and new decendants will
2286 * inherit it on fork, skip them.
2287 *
2288 * If we've found child_reaper - skip descendants in
2289 * it's subtree as they will never get out pidns.
2290 */
2291 if (p->signal->has_child_subreaper ||
2292 is_child_reaper(task_pid(p)))
2293 return 0;
2294
2295 p->signal->has_child_subreaper = 1;
2296 return 1;
2297 }
2298
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2299 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2300 {
2301 return -EINVAL;
2302 }
2303
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2304 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2305 unsigned long ctrl)
2306 {
2307 return -EINVAL;
2308 }
2309
2310 #ifdef CONFIG_MMU
prctl_update_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,const char __user * name_addr)2311 static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2312 struct vm_area_struct **prev,
2313 unsigned long start, unsigned long end,
2314 const char __user *name_addr)
2315 {
2316 struct mm_struct *mm = vma->vm_mm;
2317 int error = 0;
2318 pgoff_t pgoff;
2319
2320 if (name_addr == vma_get_anon_name(vma)) {
2321 *prev = vma;
2322 goto out;
2323 }
2324
2325 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2326 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2327 vma->vm_file, pgoff, vma_policy(vma),
2328 vma->vm_userfaultfd_ctx, name_addr);
2329 if (*prev) {
2330 vma = *prev;
2331 goto success;
2332 }
2333
2334 *prev = vma;
2335
2336 if (start != vma->vm_start) {
2337 error = split_vma(mm, vma, start, 1);
2338 if (error)
2339 goto out;
2340 }
2341
2342 if (end != vma->vm_end) {
2343 error = split_vma(mm, vma, end, 0);
2344 if (error)
2345 goto out;
2346 }
2347
2348 success:
2349 if (!vma->vm_file)
2350 vma->anon_name = name_addr;
2351
2352 out:
2353 if (error == -ENOMEM)
2354 error = -EAGAIN;
2355 return error;
2356 }
2357
prctl_set_vma_anon_name(unsigned long start,unsigned long end,unsigned long arg)2358 static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2359 unsigned long arg)
2360 {
2361 unsigned long tmp;
2362 struct vm_area_struct *vma, *prev;
2363 int unmapped_error = 0;
2364 int error = -EINVAL;
2365
2366 /*
2367 * If the interval [start,end) covers some unmapped address
2368 * ranges, just ignore them, but return -ENOMEM at the end.
2369 * - this matches the handling in madvise.
2370 */
2371 vma = find_vma_prev(current->mm, start, &prev);
2372 if (vma && start > vma->vm_start)
2373 prev = vma;
2374
2375 for (;;) {
2376 /* Still start < end. */
2377 error = -ENOMEM;
2378 if (!vma)
2379 return error;
2380
2381 /* Here start < (end|vma->vm_end). */
2382 if (start < vma->vm_start) {
2383 unmapped_error = -ENOMEM;
2384 start = vma->vm_start;
2385 if (start >= end)
2386 return error;
2387 }
2388
2389 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2390 tmp = vma->vm_end;
2391 if (end < tmp)
2392 tmp = end;
2393
2394 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2395 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2396 (const char __user *)arg);
2397 if (error)
2398 return error;
2399 start = tmp;
2400 if (prev && start < prev->vm_end)
2401 start = prev->vm_end;
2402 error = unmapped_error;
2403 if (start >= end)
2404 return error;
2405 if (prev)
2406 vma = prev->vm_next;
2407 else /* madvise_remove dropped mmap_lock */
2408 vma = find_vma(current->mm, start);
2409 }
2410 }
2411
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2412 static int prctl_set_vma(unsigned long opt, unsigned long start,
2413 unsigned long len_in, unsigned long arg)
2414 {
2415 struct mm_struct *mm = current->mm;
2416 int error;
2417 unsigned long len;
2418 unsigned long end;
2419
2420 if (start & ~PAGE_MASK)
2421 return -EINVAL;
2422 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2423
2424 /* Check to see whether len was rounded up from small -ve to zero */
2425 if (len_in && !len)
2426 return -EINVAL;
2427
2428 end = start + len;
2429 if (end < start)
2430 return -EINVAL;
2431
2432 if (end == start)
2433 return 0;
2434
2435 mmap_write_lock(mm);
2436
2437 switch (opt) {
2438 case PR_SET_VMA_ANON_NAME:
2439 error = prctl_set_vma_anon_name(start, end, arg);
2440 break;
2441 default:
2442 error = -EINVAL;
2443 }
2444
2445 mmap_write_unlock(mm);
2446
2447 return error;
2448 }
2449 #else /* CONFIG_MMU */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2450 static int prctl_set_vma(unsigned long opt, unsigned long start,
2451 unsigned long len_in, unsigned long arg)
2452 {
2453 return -EINVAL;
2454 }
2455 #endif
2456
2457 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2458
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2459 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2460 unsigned long, arg4, unsigned long, arg5)
2461 {
2462 struct task_struct *me = current;
2463 unsigned char comm[sizeof(me->comm)];
2464 long error;
2465
2466 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2467 if (error != -ENOSYS)
2468 return error;
2469
2470 error = 0;
2471 switch (option) {
2472 case PR_SET_PDEATHSIG:
2473 if (!valid_signal(arg2)) {
2474 error = -EINVAL;
2475 break;
2476 }
2477 me->pdeath_signal = arg2;
2478 break;
2479 case PR_GET_PDEATHSIG:
2480 error = put_user(me->pdeath_signal, (int __user *)arg2);
2481 break;
2482 case PR_GET_DUMPABLE:
2483 error = get_dumpable(me->mm);
2484 break;
2485 case PR_SET_DUMPABLE:
2486 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2487 error = -EINVAL;
2488 break;
2489 }
2490 set_dumpable(me->mm, arg2);
2491 break;
2492
2493 case PR_SET_UNALIGN:
2494 error = SET_UNALIGN_CTL(me, arg2);
2495 break;
2496 case PR_GET_UNALIGN:
2497 error = GET_UNALIGN_CTL(me, arg2);
2498 break;
2499 case PR_SET_FPEMU:
2500 error = SET_FPEMU_CTL(me, arg2);
2501 break;
2502 case PR_GET_FPEMU:
2503 error = GET_FPEMU_CTL(me, arg2);
2504 break;
2505 case PR_SET_FPEXC:
2506 error = SET_FPEXC_CTL(me, arg2);
2507 break;
2508 case PR_GET_FPEXC:
2509 error = GET_FPEXC_CTL(me, arg2);
2510 break;
2511 case PR_GET_TIMING:
2512 error = PR_TIMING_STATISTICAL;
2513 break;
2514 case PR_SET_TIMING:
2515 if (arg2 != PR_TIMING_STATISTICAL)
2516 error = -EINVAL;
2517 break;
2518 case PR_SET_NAME:
2519 comm[sizeof(me->comm) - 1] = 0;
2520 if (strncpy_from_user(comm, (char __user *)arg2,
2521 sizeof(me->comm) - 1) < 0)
2522 return -EFAULT;
2523 set_task_comm(me, comm);
2524 proc_comm_connector(me);
2525 break;
2526 case PR_GET_NAME:
2527 get_task_comm(comm, me);
2528 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2529 return -EFAULT;
2530 break;
2531 case PR_GET_ENDIAN:
2532 error = GET_ENDIAN(me, arg2);
2533 break;
2534 case PR_SET_ENDIAN:
2535 error = SET_ENDIAN(me, arg2);
2536 break;
2537 case PR_GET_SECCOMP:
2538 error = prctl_get_seccomp();
2539 break;
2540 case PR_SET_SECCOMP:
2541 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2542 break;
2543 case PR_GET_TSC:
2544 error = GET_TSC_CTL(arg2);
2545 break;
2546 case PR_SET_TSC:
2547 error = SET_TSC_CTL(arg2);
2548 break;
2549 case PR_TASK_PERF_EVENTS_DISABLE:
2550 error = perf_event_task_disable();
2551 break;
2552 case PR_TASK_PERF_EVENTS_ENABLE:
2553 error = perf_event_task_enable();
2554 break;
2555 case PR_GET_TIMERSLACK:
2556 if (current->timer_slack_ns > ULONG_MAX)
2557 error = ULONG_MAX;
2558 else
2559 error = current->timer_slack_ns;
2560 break;
2561 case PR_SET_TIMERSLACK:
2562 if (arg2 <= 0)
2563 current->timer_slack_ns =
2564 current->default_timer_slack_ns;
2565 else
2566 current->timer_slack_ns = arg2;
2567 break;
2568 case PR_MCE_KILL:
2569 if (arg4 | arg5)
2570 return -EINVAL;
2571 switch (arg2) {
2572 case PR_MCE_KILL_CLEAR:
2573 if (arg3 != 0)
2574 return -EINVAL;
2575 current->flags &= ~PF_MCE_PROCESS;
2576 break;
2577 case PR_MCE_KILL_SET:
2578 current->flags |= PF_MCE_PROCESS;
2579 if (arg3 == PR_MCE_KILL_EARLY)
2580 current->flags |= PF_MCE_EARLY;
2581 else if (arg3 == PR_MCE_KILL_LATE)
2582 current->flags &= ~PF_MCE_EARLY;
2583 else if (arg3 == PR_MCE_KILL_DEFAULT)
2584 current->flags &=
2585 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2586 else
2587 return -EINVAL;
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592 break;
2593 case PR_MCE_KILL_GET:
2594 if (arg2 | arg3 | arg4 | arg5)
2595 return -EINVAL;
2596 if (current->flags & PF_MCE_PROCESS)
2597 error = (current->flags & PF_MCE_EARLY) ?
2598 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2599 else
2600 error = PR_MCE_KILL_DEFAULT;
2601 break;
2602 case PR_SET_MM:
2603 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2604 break;
2605 case PR_GET_TID_ADDRESS:
2606 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2607 break;
2608 case PR_SET_CHILD_SUBREAPER:
2609 me->signal->is_child_subreaper = !!arg2;
2610 if (!arg2)
2611 break;
2612
2613 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2614 break;
2615 case PR_GET_CHILD_SUBREAPER:
2616 error = put_user(me->signal->is_child_subreaper,
2617 (int __user *)arg2);
2618 break;
2619 case PR_SET_NO_NEW_PRIVS:
2620 if (arg2 != 1 || arg3 || arg4 || arg5)
2621 return -EINVAL;
2622
2623 task_set_no_new_privs(current);
2624 break;
2625 case PR_GET_NO_NEW_PRIVS:
2626 if (arg2 || arg3 || arg4 || arg5)
2627 return -EINVAL;
2628 return task_no_new_privs(current) ? 1 : 0;
2629 case PR_GET_THP_DISABLE:
2630 if (arg2 || arg3 || arg4 || arg5)
2631 return -EINVAL;
2632 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2633 break;
2634 case PR_SET_THP_DISABLE:
2635 if (arg3 || arg4 || arg5)
2636 return -EINVAL;
2637 if (mmap_write_lock_killable(me->mm))
2638 return -EINTR;
2639 if (arg2)
2640 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2641 else
2642 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2643 mmap_write_unlock(me->mm);
2644 break;
2645 case PR_MPX_ENABLE_MANAGEMENT:
2646 case PR_MPX_DISABLE_MANAGEMENT:
2647 /* No longer implemented: */
2648 return -EINVAL;
2649 case PR_SET_FP_MODE:
2650 error = SET_FP_MODE(me, arg2);
2651 break;
2652 case PR_GET_FP_MODE:
2653 error = GET_FP_MODE(me);
2654 break;
2655 case PR_SVE_SET_VL:
2656 error = SVE_SET_VL(arg2);
2657 break;
2658 case PR_SVE_GET_VL:
2659 error = SVE_GET_VL();
2660 break;
2661 case PR_GET_SPECULATION_CTRL:
2662 if (arg3 || arg4 || arg5)
2663 return -EINVAL;
2664 error = arch_prctl_spec_ctrl_get(me, arg2);
2665 break;
2666 case PR_SET_SPECULATION_CTRL:
2667 if (arg4 || arg5)
2668 return -EINVAL;
2669 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2670 break;
2671 case PR_SET_VMA:
2672 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2673 break;
2674 case PR_PAC_RESET_KEYS:
2675 if (arg3 || arg4 || arg5)
2676 return -EINVAL;
2677 error = PAC_RESET_KEYS(me, arg2);
2678 break;
2679 case PR_PAC_SET_ENABLED_KEYS:
2680 if (arg4 || arg5)
2681 return -EINVAL;
2682 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2683 break;
2684 case PR_PAC_GET_ENABLED_KEYS:
2685 if (arg2 || arg3 || arg4 || arg5)
2686 return -EINVAL;
2687 error = PAC_GET_ENABLED_KEYS(me);
2688 break;
2689 case PR_SET_TAGGED_ADDR_CTRL:
2690 if (arg3 || arg4 || arg5)
2691 return -EINVAL;
2692 error = SET_TAGGED_ADDR_CTRL(arg2);
2693 break;
2694 case PR_GET_TAGGED_ADDR_CTRL:
2695 if (arg2 || arg3 || arg4 || arg5)
2696 return -EINVAL;
2697 error = GET_TAGGED_ADDR_CTRL();
2698 break;
2699 case PR_SET_IO_FLUSHER:
2700 if (!capable(CAP_SYS_RESOURCE))
2701 return -EPERM;
2702
2703 if (arg3 || arg4 || arg5)
2704 return -EINVAL;
2705
2706 if (arg2 == 1)
2707 current->flags |= PR_IO_FLUSHER;
2708 else if (!arg2)
2709 current->flags &= ~PR_IO_FLUSHER;
2710 else
2711 return -EINVAL;
2712 break;
2713 case PR_GET_IO_FLUSHER:
2714 if (!capable(CAP_SYS_RESOURCE))
2715 return -EPERM;
2716
2717 if (arg2 || arg3 || arg4 || arg5)
2718 return -EINVAL;
2719
2720 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2721 break;
2722 default:
2723 error = -EINVAL;
2724 break;
2725 }
2726 trace_android_vh_syscall_prctl_finished(option, me);
2727 return error;
2728 }
2729
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2730 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2731 struct getcpu_cache __user *, unused)
2732 {
2733 int err = 0;
2734 int cpu = raw_smp_processor_id();
2735
2736 if (cpup)
2737 err |= put_user(cpu, cpup);
2738 if (nodep)
2739 err |= put_user(cpu_to_node(cpu), nodep);
2740 return err ? -EFAULT : 0;
2741 }
2742
2743 /**
2744 * do_sysinfo - fill in sysinfo struct
2745 * @info: pointer to buffer to fill
2746 */
do_sysinfo(struct sysinfo * info)2747 static int do_sysinfo(struct sysinfo *info)
2748 {
2749 unsigned long mem_total, sav_total;
2750 unsigned int mem_unit, bitcount;
2751 struct timespec64 tp;
2752
2753 memset(info, 0, sizeof(struct sysinfo));
2754
2755 ktime_get_boottime_ts64(&tp);
2756 timens_add_boottime(&tp);
2757 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2758
2759 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2760
2761 info->procs = nr_threads;
2762
2763 si_meminfo(info);
2764 si_swapinfo(info);
2765
2766 /*
2767 * If the sum of all the available memory (i.e. ram + swap)
2768 * is less than can be stored in a 32 bit unsigned long then
2769 * we can be binary compatible with 2.2.x kernels. If not,
2770 * well, in that case 2.2.x was broken anyways...
2771 *
2772 * -Erik Andersen <andersee@debian.org>
2773 */
2774
2775 mem_total = info->totalram + info->totalswap;
2776 if (mem_total < info->totalram || mem_total < info->totalswap)
2777 goto out;
2778 bitcount = 0;
2779 mem_unit = info->mem_unit;
2780 while (mem_unit > 1) {
2781 bitcount++;
2782 mem_unit >>= 1;
2783 sav_total = mem_total;
2784 mem_total <<= 1;
2785 if (mem_total < sav_total)
2786 goto out;
2787 }
2788
2789 /*
2790 * If mem_total did not overflow, multiply all memory values by
2791 * info->mem_unit and set it to 1. This leaves things compatible
2792 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2793 * kernels...
2794 */
2795
2796 info->mem_unit = 1;
2797 info->totalram <<= bitcount;
2798 info->freeram <<= bitcount;
2799 info->sharedram <<= bitcount;
2800 info->bufferram <<= bitcount;
2801 info->totalswap <<= bitcount;
2802 info->freeswap <<= bitcount;
2803 info->totalhigh <<= bitcount;
2804 info->freehigh <<= bitcount;
2805
2806 out:
2807 return 0;
2808 }
2809
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2810 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2811 {
2812 struct sysinfo val;
2813
2814 do_sysinfo(&val);
2815
2816 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2817 return -EFAULT;
2818
2819 return 0;
2820 }
2821
2822 #ifdef CONFIG_COMPAT
2823 struct compat_sysinfo {
2824 s32 uptime;
2825 u32 loads[3];
2826 u32 totalram;
2827 u32 freeram;
2828 u32 sharedram;
2829 u32 bufferram;
2830 u32 totalswap;
2831 u32 freeswap;
2832 u16 procs;
2833 u16 pad;
2834 u32 totalhigh;
2835 u32 freehigh;
2836 u32 mem_unit;
2837 char _f[20-2*sizeof(u32)-sizeof(int)];
2838 };
2839
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2840 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2841 {
2842 struct sysinfo s;
2843 struct compat_sysinfo s_32;
2844
2845 do_sysinfo(&s);
2846
2847 /* Check to see if any memory value is too large for 32-bit and scale
2848 * down if needed
2849 */
2850 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2851 int bitcount = 0;
2852
2853 while (s.mem_unit < PAGE_SIZE) {
2854 s.mem_unit <<= 1;
2855 bitcount++;
2856 }
2857
2858 s.totalram >>= bitcount;
2859 s.freeram >>= bitcount;
2860 s.sharedram >>= bitcount;
2861 s.bufferram >>= bitcount;
2862 s.totalswap >>= bitcount;
2863 s.freeswap >>= bitcount;
2864 s.totalhigh >>= bitcount;
2865 s.freehigh >>= bitcount;
2866 }
2867
2868 memset(&s_32, 0, sizeof(s_32));
2869 s_32.uptime = s.uptime;
2870 s_32.loads[0] = s.loads[0];
2871 s_32.loads[1] = s.loads[1];
2872 s_32.loads[2] = s.loads[2];
2873 s_32.totalram = s.totalram;
2874 s_32.freeram = s.freeram;
2875 s_32.sharedram = s.sharedram;
2876 s_32.bufferram = s.bufferram;
2877 s_32.totalswap = s.totalswap;
2878 s_32.freeswap = s.freeswap;
2879 s_32.procs = s.procs;
2880 s_32.totalhigh = s.totalhigh;
2881 s_32.freehigh = s.freehigh;
2882 s_32.mem_unit = s.mem_unit;
2883 if (copy_to_user(info, &s_32, sizeof(s_32)))
2884 return -EFAULT;
2885 return 0;
2886 }
2887 #endif /* CONFIG_COMPAT */
2888