1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
10
11 #include "sfp.h"
12
13 struct sfp_quirk {
14 const char *vendor;
15 const char *part;
16 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
17 };
18
19 /**
20 * struct sfp_bus - internal representation of a sfp bus
21 */
22 struct sfp_bus {
23 /* private: */
24 struct kref kref;
25 struct list_head node;
26 struct fwnode_handle *fwnode;
27
28 const struct sfp_socket_ops *socket_ops;
29 struct device *sfp_dev;
30 struct sfp *sfp;
31 const struct sfp_quirk *sfp_quirk;
32
33 const struct sfp_upstream_ops *upstream_ops;
34 void *upstream;
35 struct phy_device *phydev;
36
37 bool registered;
38 bool started;
39 };
40
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes)41 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 unsigned long *modes)
43 {
44 phylink_set(modes, 2500baseX_Full);
45 }
46
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes)47 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
48 unsigned long *modes)
49 {
50 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
51 * types including 10G Ethernet which is not truth. So clear all claimed
52 * modes and set only one mode which module supports: 1000baseX_Full.
53 */
54 phylink_zero(modes);
55 phylink_set(modes, 1000baseX_Full);
56 }
57
58 static const struct sfp_quirk sfp_quirks[] = {
59 {
60 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
61 // incorrectly report 2500MBd NRZ in their EEPROM
62 .vendor = "ALCATELLUCENT",
63 .part = "G010SP",
64 .modes = sfp_quirk_2500basex,
65 }, {
66 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
67 // report 3.2GBd NRZ in their EEPROM
68 .vendor = "ALCATELLUCENT",
69 .part = "3FE46541AA",
70 .modes = sfp_quirk_2500basex,
71 }, {
72 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
73 // NRZ in their EEPROM
74 .vendor = "HUAWEI",
75 .part = "MA5671A",
76 .modes = sfp_quirk_2500basex,
77 }, {
78 // Lantech 8330-262D-E can operate at 2500base-X, but
79 // incorrectly report 2500MBd NRZ in their EEPROM
80 .vendor = "Lantech",
81 .part = "8330-262D-E",
82 .modes = sfp_quirk_2500basex,
83 }, {
84 .vendor = "UBNT",
85 .part = "UF-INSTANT",
86 .modes = sfp_quirk_ubnt_uf_instant,
87 },
88 };
89
sfp_strlen(const char * str,size_t maxlen)90 static size_t sfp_strlen(const char *str, size_t maxlen)
91 {
92 size_t size, i;
93
94 /* Trailing characters should be filled with space chars */
95 for (i = 0, size = 0; i < maxlen; i++)
96 if (str[i] != ' ')
97 size = i + 1;
98
99 return size;
100 }
101
sfp_match(const char * qs,const char * str,size_t len)102 static bool sfp_match(const char *qs, const char *str, size_t len)
103 {
104 if (!qs)
105 return true;
106 if (strlen(qs) != len)
107 return false;
108 return !strncmp(qs, str, len);
109 }
110
sfp_lookup_quirk(const struct sfp_eeprom_id * id)111 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
112 {
113 const struct sfp_quirk *q;
114 unsigned int i;
115 size_t vs, ps;
116
117 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
118 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
119
120 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
121 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
122 sfp_match(q->part, id->base.vendor_pn, ps))
123 return q;
124
125 return NULL;
126 }
127
128 /**
129 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
130 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
131 * @id: a pointer to the module's &struct sfp_eeprom_id
132 * @support: optional pointer to an array of unsigned long for the
133 * ethtool support mask
134 *
135 * Parse the EEPROM identification given in @id, and return one of
136 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
137 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
138 * the connector type.
139 *
140 * If the port type is not known, returns %PORT_OTHER.
141 */
sfp_parse_port(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)142 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
143 unsigned long *support)
144 {
145 int port;
146
147 /* port is the physical connector, set this from the connector field. */
148 switch (id->base.connector) {
149 case SFF8024_CONNECTOR_SC:
150 case SFF8024_CONNECTOR_FIBERJACK:
151 case SFF8024_CONNECTOR_LC:
152 case SFF8024_CONNECTOR_MT_RJ:
153 case SFF8024_CONNECTOR_MU:
154 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
155 case SFF8024_CONNECTOR_MPO_1X12:
156 case SFF8024_CONNECTOR_MPO_2X16:
157 port = PORT_FIBRE;
158 break;
159
160 case SFF8024_CONNECTOR_RJ45:
161 port = PORT_TP;
162 break;
163
164 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
165 port = PORT_DA;
166 break;
167
168 case SFF8024_CONNECTOR_UNSPEC:
169 if (id->base.e1000_base_t) {
170 port = PORT_TP;
171 break;
172 }
173 fallthrough;
174 case SFF8024_CONNECTOR_SG: /* guess */
175 case SFF8024_CONNECTOR_HSSDC_II:
176 case SFF8024_CONNECTOR_NOSEPARATE:
177 case SFF8024_CONNECTOR_MXC_2X16:
178 port = PORT_OTHER;
179 break;
180 default:
181 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
182 id->base.connector);
183 port = PORT_OTHER;
184 break;
185 }
186
187 if (support) {
188 switch (port) {
189 case PORT_FIBRE:
190 phylink_set(support, FIBRE);
191 break;
192
193 case PORT_TP:
194 phylink_set(support, TP);
195 break;
196 }
197 }
198
199 return port;
200 }
201 EXPORT_SYMBOL_GPL(sfp_parse_port);
202
203 /**
204 * sfp_may_have_phy() - indicate whether the module may have a PHY
205 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
206 * @id: a pointer to the module's &struct sfp_eeprom_id
207 *
208 * Parse the EEPROM identification given in @id, and return whether
209 * this module may have a PHY.
210 */
sfp_may_have_phy(struct sfp_bus * bus,const struct sfp_eeprom_id * id)211 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
212 {
213 if (id->base.e1000_base_t)
214 return true;
215
216 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
217 switch (id->base.extended_cc) {
218 case SFF8024_ECC_10GBASE_T_SFI:
219 case SFF8024_ECC_10GBASE_T_SR:
220 case SFF8024_ECC_5GBASE_T:
221 case SFF8024_ECC_2_5GBASE_T:
222 return true;
223 }
224 }
225
226 return false;
227 }
228 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
229
230 /**
231 * sfp_parse_support() - Parse the eeprom id for supported link modes
232 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
233 * @id: a pointer to the module's &struct sfp_eeprom_id
234 * @support: pointer to an array of unsigned long for the ethtool support mask
235 *
236 * Parse the EEPROM identification information and derive the supported
237 * ethtool link modes for the module.
238 */
sfp_parse_support(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)239 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
240 unsigned long *support)
241 {
242 unsigned int br_min, br_nom, br_max;
243 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
244
245 /* Decode the bitrate information to MBd */
246 br_min = br_nom = br_max = 0;
247 if (id->base.br_nominal) {
248 if (id->base.br_nominal != 255) {
249 br_nom = id->base.br_nominal * 100;
250 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
251 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
252 } else if (id->ext.br_max) {
253 br_nom = 250 * id->ext.br_max;
254 br_max = br_nom + br_nom * id->ext.br_min / 100;
255 br_min = br_nom - br_nom * id->ext.br_min / 100;
256 }
257
258 /* When using passive cables, in case neither BR,min nor BR,max
259 * are specified, set br_min to 0 as the nominal value is then
260 * used as the maximum.
261 */
262 if (br_min == br_max && id->base.sfp_ct_passive)
263 br_min = 0;
264 }
265
266 /* Set ethtool support from the compliance fields. */
267 if (id->base.e10g_base_sr)
268 phylink_set(modes, 10000baseSR_Full);
269 if (id->base.e10g_base_lr)
270 phylink_set(modes, 10000baseLR_Full);
271 if (id->base.e10g_base_lrm)
272 phylink_set(modes, 10000baseLRM_Full);
273 if (id->base.e10g_base_er)
274 phylink_set(modes, 10000baseER_Full);
275 if (id->base.e1000_base_sx ||
276 id->base.e1000_base_lx ||
277 id->base.e1000_base_cx)
278 phylink_set(modes, 1000baseX_Full);
279 if (id->base.e1000_base_t) {
280 phylink_set(modes, 1000baseT_Half);
281 phylink_set(modes, 1000baseT_Full);
282 }
283
284 /* 1000Base-PX or 1000Base-BX10 */
285 if ((id->base.e_base_px || id->base.e_base_bx10) &&
286 br_min <= 1300 && br_max >= 1200)
287 phylink_set(modes, 1000baseX_Full);
288
289 /* For active or passive cables, select the link modes
290 * based on the bit rates and the cable compliance bytes.
291 */
292 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
293 /* This may look odd, but some manufacturers use 12000MBd */
294 if (br_min <= 12000 && br_max >= 10300)
295 phylink_set(modes, 10000baseCR_Full);
296 if (br_min <= 3200 && br_max >= 3100)
297 phylink_set(modes, 2500baseX_Full);
298 if (br_min <= 1300 && br_max >= 1200)
299 phylink_set(modes, 1000baseX_Full);
300 }
301 if (id->base.sfp_ct_passive) {
302 if (id->base.passive.sff8431_app_e)
303 phylink_set(modes, 10000baseCR_Full);
304 }
305 if (id->base.sfp_ct_active) {
306 if (id->base.active.sff8431_app_e ||
307 id->base.active.sff8431_lim) {
308 phylink_set(modes, 10000baseCR_Full);
309 }
310 }
311
312 switch (id->base.extended_cc) {
313 case SFF8024_ECC_UNSPEC:
314 break;
315 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
316 phylink_set(modes, 100000baseSR4_Full);
317 phylink_set(modes, 25000baseSR_Full);
318 break;
319 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
320 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
321 phylink_set(modes, 100000baseLR4_ER4_Full);
322 break;
323 case SFF8024_ECC_100GBASE_CR4:
324 phylink_set(modes, 100000baseCR4_Full);
325 fallthrough;
326 case SFF8024_ECC_25GBASE_CR_S:
327 case SFF8024_ECC_25GBASE_CR_N:
328 phylink_set(modes, 25000baseCR_Full);
329 break;
330 case SFF8024_ECC_10GBASE_T_SFI:
331 case SFF8024_ECC_10GBASE_T_SR:
332 phylink_set(modes, 10000baseT_Full);
333 break;
334 case SFF8024_ECC_5GBASE_T:
335 phylink_set(modes, 5000baseT_Full);
336 break;
337 case SFF8024_ECC_2_5GBASE_T:
338 phylink_set(modes, 2500baseT_Full);
339 break;
340 default:
341 dev_warn(bus->sfp_dev,
342 "Unknown/unsupported extended compliance code: 0x%02x\n",
343 id->base.extended_cc);
344 break;
345 }
346
347 /* For fibre channel SFP, derive possible BaseX modes */
348 if (id->base.fc_speed_100 ||
349 id->base.fc_speed_200 ||
350 id->base.fc_speed_400) {
351 if (id->base.br_nominal >= 31)
352 phylink_set(modes, 2500baseX_Full);
353 if (id->base.br_nominal >= 12)
354 phylink_set(modes, 1000baseX_Full);
355 }
356
357 /* If we haven't discovered any modes that this module supports, try
358 * the bitrate to determine supported modes. Some BiDi modules (eg,
359 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
360 * wavelengths, so do not set any transceiver bits.
361 */
362 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
363 /* If the bit rate allows 1000baseX */
364 if (br_nom && br_min <= 1300 && br_max >= 1200)
365 phylink_set(modes, 1000baseX_Full);
366 }
367
368 if (bus->sfp_quirk)
369 bus->sfp_quirk->modes(id, modes);
370
371 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
372
373 phylink_set(support, Autoneg);
374 phylink_set(support, Pause);
375 phylink_set(support, Asym_Pause);
376 }
377 EXPORT_SYMBOL_GPL(sfp_parse_support);
378
379 /**
380 * sfp_select_interface() - Select appropriate phy_interface_t mode
381 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
382 * @link_modes: ethtool link modes mask
383 *
384 * Derive the phy_interface_t mode for the SFP module from the link
385 * modes mask.
386 */
sfp_select_interface(struct sfp_bus * bus,unsigned long * link_modes)387 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
388 unsigned long *link_modes)
389 {
390 if (phylink_test(link_modes, 10000baseCR_Full) ||
391 phylink_test(link_modes, 10000baseSR_Full) ||
392 phylink_test(link_modes, 10000baseLR_Full) ||
393 phylink_test(link_modes, 10000baseLRM_Full) ||
394 phylink_test(link_modes, 10000baseER_Full) ||
395 phylink_test(link_modes, 10000baseT_Full))
396 return PHY_INTERFACE_MODE_10GBASER;
397
398 if (phylink_test(link_modes, 2500baseX_Full))
399 return PHY_INTERFACE_MODE_2500BASEX;
400
401 if (phylink_test(link_modes, 1000baseT_Half) ||
402 phylink_test(link_modes, 1000baseT_Full))
403 return PHY_INTERFACE_MODE_SGMII;
404
405 if (phylink_test(link_modes, 1000baseX_Full))
406 return PHY_INTERFACE_MODE_1000BASEX;
407
408 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
409
410 return PHY_INTERFACE_MODE_NA;
411 }
412 EXPORT_SYMBOL_GPL(sfp_select_interface);
413
414 static LIST_HEAD(sfp_buses);
415 static DEFINE_MUTEX(sfp_mutex);
416
sfp_get_upstream_ops(struct sfp_bus * bus)417 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
418 {
419 return bus->registered ? bus->upstream_ops : NULL;
420 }
421
sfp_bus_get(struct fwnode_handle * fwnode)422 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
423 {
424 struct sfp_bus *sfp, *new, *found = NULL;
425
426 new = kzalloc(sizeof(*new), GFP_KERNEL);
427
428 mutex_lock(&sfp_mutex);
429
430 list_for_each_entry(sfp, &sfp_buses, node) {
431 if (sfp->fwnode == fwnode) {
432 kref_get(&sfp->kref);
433 found = sfp;
434 break;
435 }
436 }
437
438 if (!found && new) {
439 kref_init(&new->kref);
440 new->fwnode = fwnode;
441 list_add(&new->node, &sfp_buses);
442 found = new;
443 new = NULL;
444 }
445
446 mutex_unlock(&sfp_mutex);
447
448 kfree(new);
449
450 return found;
451 }
452
sfp_bus_release(struct kref * kref)453 static void sfp_bus_release(struct kref *kref)
454 {
455 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
456
457 list_del(&bus->node);
458 mutex_unlock(&sfp_mutex);
459 kfree(bus);
460 }
461
462 /**
463 * sfp_bus_put() - put a reference on the &struct sfp_bus
464 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
465 *
466 * Put a reference on the &struct sfp_bus and free the underlying structure
467 * if this was the last reference.
468 */
sfp_bus_put(struct sfp_bus * bus)469 void sfp_bus_put(struct sfp_bus *bus)
470 {
471 if (bus)
472 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
473 }
474 EXPORT_SYMBOL_GPL(sfp_bus_put);
475
sfp_register_bus(struct sfp_bus * bus)476 static int sfp_register_bus(struct sfp_bus *bus)
477 {
478 const struct sfp_upstream_ops *ops = bus->upstream_ops;
479 int ret;
480
481 if (ops) {
482 if (ops->link_down)
483 ops->link_down(bus->upstream);
484 if (ops->connect_phy && bus->phydev) {
485 ret = ops->connect_phy(bus->upstream, bus->phydev);
486 if (ret)
487 return ret;
488 }
489 }
490 bus->registered = true;
491 bus->socket_ops->attach(bus->sfp);
492 if (bus->started)
493 bus->socket_ops->start(bus->sfp);
494 bus->upstream_ops->attach(bus->upstream, bus);
495 return 0;
496 }
497
sfp_unregister_bus(struct sfp_bus * bus)498 static void sfp_unregister_bus(struct sfp_bus *bus)
499 {
500 const struct sfp_upstream_ops *ops = bus->upstream_ops;
501
502 if (bus->registered) {
503 bus->upstream_ops->detach(bus->upstream, bus);
504 if (bus->started)
505 bus->socket_ops->stop(bus->sfp);
506 bus->socket_ops->detach(bus->sfp);
507 if (bus->phydev && ops && ops->disconnect_phy)
508 ops->disconnect_phy(bus->upstream);
509 }
510 bus->registered = false;
511 }
512
513 /**
514 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
515 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
516 * @modinfo: a &struct ethtool_modinfo
517 *
518 * Fill in the type and eeprom_len parameters in @modinfo for a module on
519 * the sfp bus specified by @bus.
520 *
521 * Returns 0 on success or a negative errno number.
522 */
sfp_get_module_info(struct sfp_bus * bus,struct ethtool_modinfo * modinfo)523 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
524 {
525 return bus->socket_ops->module_info(bus->sfp, modinfo);
526 }
527 EXPORT_SYMBOL_GPL(sfp_get_module_info);
528
529 /**
530 * sfp_get_module_eeprom() - Read the SFP module EEPROM
531 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
532 * @ee: a &struct ethtool_eeprom
533 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
534 *
535 * Read the EEPROM as specified by the supplied @ee. See the documentation
536 * for &struct ethtool_eeprom for the region to be read.
537 *
538 * Returns 0 on success or a negative errno number.
539 */
sfp_get_module_eeprom(struct sfp_bus * bus,struct ethtool_eeprom * ee,u8 * data)540 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
541 u8 *data)
542 {
543 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
544 }
545 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
546
547 /**
548 * sfp_upstream_start() - Inform the SFP that the network device is up
549 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
550 *
551 * Inform the SFP socket that the network device is now up, so that the
552 * module can be enabled by allowing TX_DISABLE to be deasserted. This
553 * should be called from the network device driver's &struct net_device_ops
554 * ndo_open() method.
555 */
sfp_upstream_start(struct sfp_bus * bus)556 void sfp_upstream_start(struct sfp_bus *bus)
557 {
558 if (bus->registered)
559 bus->socket_ops->start(bus->sfp);
560 bus->started = true;
561 }
562 EXPORT_SYMBOL_GPL(sfp_upstream_start);
563
564 /**
565 * sfp_upstream_stop() - Inform the SFP that the network device is down
566 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
567 *
568 * Inform the SFP socket that the network device is now up, so that the
569 * module can be disabled by asserting TX_DISABLE, disabling the laser
570 * in optical modules. This should be called from the network device
571 * driver's &struct net_device_ops ndo_stop() method.
572 */
sfp_upstream_stop(struct sfp_bus * bus)573 void sfp_upstream_stop(struct sfp_bus *bus)
574 {
575 if (bus->registered)
576 bus->socket_ops->stop(bus->sfp);
577 bus->started = false;
578 }
579 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
580
sfp_upstream_clear(struct sfp_bus * bus)581 static void sfp_upstream_clear(struct sfp_bus *bus)
582 {
583 bus->upstream_ops = NULL;
584 bus->upstream = NULL;
585 }
586
587 /**
588 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
589 * @fwnode: firmware node for the parent device (MAC or PHY)
590 *
591 * Parse the parent device's firmware node for a SFP bus, and locate
592 * the sfp_bus structure, incrementing its reference count. This must
593 * be put via sfp_bus_put() when done.
594 *
595 * Returns:
596 * - on success, a pointer to the sfp_bus structure,
597 * - %NULL if no SFP is specified,
598 * - on failure, an error pointer value:
599 *
600 * - corresponding to the errors detailed for
601 * fwnode_property_get_reference_args().
602 * - %-ENOMEM if we failed to allocate the bus.
603 * - an error from the upstream's connect_phy() method.
604 */
sfp_bus_find_fwnode(struct fwnode_handle * fwnode)605 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
606 {
607 struct fwnode_reference_args ref;
608 struct sfp_bus *bus;
609 int ret;
610
611 ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
612 0, 0, &ref);
613 if (ret == -ENOENT)
614 return NULL;
615 else if (ret < 0)
616 return ERR_PTR(ret);
617
618 if (!fwnode_device_is_available(ref.fwnode)) {
619 fwnode_handle_put(ref.fwnode);
620 return NULL;
621 }
622
623 bus = sfp_bus_get(ref.fwnode);
624 fwnode_handle_put(ref.fwnode);
625 if (!bus)
626 return ERR_PTR(-ENOMEM);
627
628 return bus;
629 }
630 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
631
632 /**
633 * sfp_bus_add_upstream() - parse and register the neighbouring device
634 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
635 * @upstream: the upstream private data
636 * @ops: the upstream's &struct sfp_upstream_ops
637 *
638 * Add upstream driver for the SFP bus, and if the bus is complete, register
639 * the SFP bus using sfp_register_upstream(). This takes a reference on the
640 * bus, so it is safe to put the bus after this call.
641 *
642 * Returns:
643 * - on success, a pointer to the sfp_bus structure,
644 * - %NULL if no SFP is specified,
645 * - on failure, an error pointer value:
646 *
647 * - corresponding to the errors detailed for
648 * fwnode_property_get_reference_args().
649 * - %-ENOMEM if we failed to allocate the bus.
650 * - an error from the upstream's connect_phy() method.
651 */
sfp_bus_add_upstream(struct sfp_bus * bus,void * upstream,const struct sfp_upstream_ops * ops)652 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
653 const struct sfp_upstream_ops *ops)
654 {
655 int ret;
656
657 /* If no bus, return success */
658 if (!bus)
659 return 0;
660
661 rtnl_lock();
662 kref_get(&bus->kref);
663 bus->upstream_ops = ops;
664 bus->upstream = upstream;
665
666 if (bus->sfp) {
667 ret = sfp_register_bus(bus);
668 if (ret)
669 sfp_upstream_clear(bus);
670 } else {
671 ret = 0;
672 }
673 rtnl_unlock();
674
675 if (ret)
676 sfp_bus_put(bus);
677
678 return ret;
679 }
680 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
681
682 /**
683 * sfp_bus_del_upstream() - Delete a sfp bus
684 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
685 *
686 * Delete a previously registered upstream connection for the SFP
687 * module. @bus should have been added by sfp_bus_add_upstream().
688 */
sfp_bus_del_upstream(struct sfp_bus * bus)689 void sfp_bus_del_upstream(struct sfp_bus *bus)
690 {
691 if (bus) {
692 rtnl_lock();
693 if (bus->sfp)
694 sfp_unregister_bus(bus);
695 sfp_upstream_clear(bus);
696 rtnl_unlock();
697
698 sfp_bus_put(bus);
699 }
700 }
701 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
702
703 /* Socket driver entry points */
sfp_add_phy(struct sfp_bus * bus,struct phy_device * phydev)704 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
705 {
706 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
707 int ret = 0;
708
709 if (ops && ops->connect_phy)
710 ret = ops->connect_phy(bus->upstream, phydev);
711
712 if (ret == 0)
713 bus->phydev = phydev;
714
715 return ret;
716 }
717 EXPORT_SYMBOL_GPL(sfp_add_phy);
718
sfp_remove_phy(struct sfp_bus * bus)719 void sfp_remove_phy(struct sfp_bus *bus)
720 {
721 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
722
723 if (ops && ops->disconnect_phy)
724 ops->disconnect_phy(bus->upstream);
725 bus->phydev = NULL;
726 }
727 EXPORT_SYMBOL_GPL(sfp_remove_phy);
728
sfp_link_up(struct sfp_bus * bus)729 void sfp_link_up(struct sfp_bus *bus)
730 {
731 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
732
733 if (ops && ops->link_up)
734 ops->link_up(bus->upstream);
735 }
736 EXPORT_SYMBOL_GPL(sfp_link_up);
737
sfp_link_down(struct sfp_bus * bus)738 void sfp_link_down(struct sfp_bus *bus)
739 {
740 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
741
742 if (ops && ops->link_down)
743 ops->link_down(bus->upstream);
744 }
745 EXPORT_SYMBOL_GPL(sfp_link_down);
746
sfp_module_insert(struct sfp_bus * bus,const struct sfp_eeprom_id * id)747 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
748 {
749 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
750 int ret = 0;
751
752 bus->sfp_quirk = sfp_lookup_quirk(id);
753
754 if (ops && ops->module_insert)
755 ret = ops->module_insert(bus->upstream, id);
756
757 return ret;
758 }
759 EXPORT_SYMBOL_GPL(sfp_module_insert);
760
sfp_module_remove(struct sfp_bus * bus)761 void sfp_module_remove(struct sfp_bus *bus)
762 {
763 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
764
765 if (ops && ops->module_remove)
766 ops->module_remove(bus->upstream);
767
768 bus->sfp_quirk = NULL;
769 }
770 EXPORT_SYMBOL_GPL(sfp_module_remove);
771
sfp_module_start(struct sfp_bus * bus)772 int sfp_module_start(struct sfp_bus *bus)
773 {
774 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
775 int ret = 0;
776
777 if (ops && ops->module_start)
778 ret = ops->module_start(bus->upstream);
779
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(sfp_module_start);
783
sfp_module_stop(struct sfp_bus * bus)784 void sfp_module_stop(struct sfp_bus *bus)
785 {
786 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
787
788 if (ops && ops->module_stop)
789 ops->module_stop(bus->upstream);
790 }
791 EXPORT_SYMBOL_GPL(sfp_module_stop);
792
sfp_socket_clear(struct sfp_bus * bus)793 static void sfp_socket_clear(struct sfp_bus *bus)
794 {
795 bus->sfp_dev = NULL;
796 bus->sfp = NULL;
797 bus->socket_ops = NULL;
798 }
799
sfp_register_socket(struct device * dev,struct sfp * sfp,const struct sfp_socket_ops * ops)800 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
801 const struct sfp_socket_ops *ops)
802 {
803 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
804 int ret = 0;
805
806 if (bus) {
807 rtnl_lock();
808 bus->sfp_dev = dev;
809 bus->sfp = sfp;
810 bus->socket_ops = ops;
811
812 if (bus->upstream_ops) {
813 ret = sfp_register_bus(bus);
814 if (ret)
815 sfp_socket_clear(bus);
816 }
817 rtnl_unlock();
818 }
819
820 if (ret) {
821 sfp_bus_put(bus);
822 bus = NULL;
823 }
824
825 return bus;
826 }
827 EXPORT_SYMBOL_GPL(sfp_register_socket);
828
sfp_unregister_socket(struct sfp_bus * bus)829 void sfp_unregister_socket(struct sfp_bus *bus)
830 {
831 rtnl_lock();
832 if (bus->upstream_ops)
833 sfp_unregister_bus(bus);
834 sfp_socket_clear(bus);
835 rtnl_unlock();
836
837 sfp_bus_put(bus);
838 }
839 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
840