• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 #include <linux/android_kabi.h>
44 #include <linux/android_vendor.h>
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	u8			sabotage_in_done:1;
264 	__u16			frag_max_size;
265 	struct net_device	*physindev;
266 
267 	/* always valid & non-NULL from FORWARD on, for physdev match */
268 	struct net_device	*physoutdev;
269 	union {
270 		/* prerouting: detect dnat in orig/reply direction */
271 		__be32          ipv4_daddr;
272 		struct in6_addr ipv6_daddr;
273 
274 		/* after prerouting + nat detected: store original source
275 		 * mac since neigh resolution overwrites it, only used while
276 		 * skb is out in neigh layer.
277 		 */
278 		char neigh_header[8];
279 	};
280 };
281 #endif
282 
283 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
284 /* Chain in tc_skb_ext will be used to share the tc chain with
285  * ovs recirc_id. It will be set to the current chain by tc
286  * and read by ovs to recirc_id.
287  */
288 struct tc_skb_ext {
289 	__u32 chain;
290 	__u16 mru;
291 };
292 #endif
293 
294 struct sk_buff_head {
295 	/* These two members must be first. */
296 	struct sk_buff	*next;
297 	struct sk_buff	*prev;
298 
299 	__u32		qlen;
300 	spinlock_t	lock;
301 };
302 
303 struct sk_buff;
304 
305 /* To allow 64K frame to be packed as single skb without frag_list we
306  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
307  * buffers which do not start on a page boundary.
308  *
309  * Since GRO uses frags we allocate at least 16 regardless of page
310  * size.
311  */
312 #if (65536/PAGE_SIZE + 1) < 16
313 #define MAX_SKB_FRAGS 16UL
314 #else
315 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
316 #endif
317 extern int sysctl_max_skb_frags;
318 
319 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
320  * segment using its current segmentation instead.
321  */
322 #define GSO_BY_FRAGS	0xFFFF
323 
324 typedef struct bio_vec skb_frag_t;
325 
326 /**
327  * skb_frag_size() - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
skb_frag_size(const skb_frag_t * frag)330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->bv_len;
333 }
334 
335 /**
336  * skb_frag_size_set() - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->bv_len = size;
343 }
344 
345 /**
346  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
skb_frag_size_add(skb_frag_t * frag,int delta)350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->bv_len += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
skb_frag_size_sub(skb_frag_t * frag,int delta)360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->bv_len -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
skb_frag_must_loop(struct page * p)369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->bv_page
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* device driver supports TX zero-copy buffers */
437 	SKBTX_DEV_ZEROCOPY = 1 << 3,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* This indicates at least one fragment might be overwritten
443 	 * (as in vmsplice(), sendfile() ...)
444 	 * If we need to compute a TX checksum, we'll need to copy
445 	 * all frags to avoid possible bad checksum
446 	 */
447 	SKBTX_SHARED_FRAG = 1 << 5,
448 
449 	/* generate software time stamp when entering packet scheduling */
450 	SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452 
453 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
455 				 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457 
458 /*
459  * The callback notifies userspace to release buffers when skb DMA is done in
460  * lower device, the skb last reference should be 0 when calling this.
461  * The zerocopy_success argument is true if zero copy transmit occurred,
462  * false on data copy or out of memory error caused by data copy attempt.
463  * The ctx field is used to track device context.
464  * The desc field is used to track userspace buffer index.
465  */
466 struct ubuf_info {
467 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 	union {
469 		struct {
470 			unsigned long desc;
471 			void *ctx;
472 		};
473 		struct {
474 			u32 id;
475 			u16 len;
476 			u16 zerocopy:1;
477 			u32 bytelen;
478 		};
479 	};
480 	refcount_t refcnt;
481 
482 	struct mmpin {
483 		struct user_struct *user;
484 		unsigned int num_pg;
485 	} mmp;
486 };
487 
488 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489 
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492 
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 					struct ubuf_info *uarg);
496 
sock_zerocopy_get(struct ubuf_info * uarg)497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 	refcount_inc(&uarg->refcnt);
500 }
501 
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504 
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		__unused;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	ANDROID_OEM_DATA_ARRAY(1, 3);
538 
539 	/* must be last field, see pskb_expand_head() */
540 	skb_frag_t	frags[MAX_SKB_FRAGS];
541 };
542 
543 /* We divide dataref into two halves.  The higher 16 bits hold references
544  * to the payload part of skb->data.  The lower 16 bits hold references to
545  * the entire skb->data.  A clone of a headerless skb holds the length of
546  * the header in skb->hdr_len.
547  *
548  * All users must obey the rule that the skb->data reference count must be
549  * greater than or equal to the payload reference count.
550  *
551  * Holding a reference to the payload part means that the user does not
552  * care about modifications to the header part of skb->data.
553  */
554 #define SKB_DATAREF_SHIFT 16
555 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
556 
557 
558 enum {
559 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
560 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
561 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
562 };
563 
564 enum {
565 	SKB_GSO_TCPV4 = 1 << 0,
566 
567 	/* This indicates the skb is from an untrusted source. */
568 	SKB_GSO_DODGY = 1 << 1,
569 
570 	/* This indicates the tcp segment has CWR set. */
571 	SKB_GSO_TCP_ECN = 1 << 2,
572 
573 	SKB_GSO_TCP_FIXEDID = 1 << 3,
574 
575 	SKB_GSO_TCPV6 = 1 << 4,
576 
577 	SKB_GSO_FCOE = 1 << 5,
578 
579 	SKB_GSO_GRE = 1 << 6,
580 
581 	SKB_GSO_GRE_CSUM = 1 << 7,
582 
583 	SKB_GSO_IPXIP4 = 1 << 8,
584 
585 	SKB_GSO_IPXIP6 = 1 << 9,
586 
587 	SKB_GSO_UDP_TUNNEL = 1 << 10,
588 
589 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
590 
591 	SKB_GSO_PARTIAL = 1 << 12,
592 
593 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
594 
595 	SKB_GSO_SCTP = 1 << 14,
596 
597 	SKB_GSO_ESP = 1 << 15,
598 
599 	SKB_GSO_UDP = 1 << 16,
600 
601 	SKB_GSO_UDP_L4 = 1 << 17,
602 
603 	SKB_GSO_FRAGLIST = 1 << 18,
604 };
605 
606 #if BITS_PER_LONG > 32
607 #define NET_SKBUFF_DATA_USES_OFFSET 1
608 #endif
609 
610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
611 typedef unsigned int sk_buff_data_t;
612 #else
613 typedef unsigned char *sk_buff_data_t;
614 #endif
615 
616 /**
617  *	struct sk_buff - socket buffer
618  *	@next: Next buffer in list
619  *	@prev: Previous buffer in list
620  *	@tstamp: Time we arrived/left
621  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
622  *		for retransmit timer
623  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
624  *	@list: queue head
625  *	@sk: Socket we are owned by
626  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
627  *		fragmentation management
628  *	@dev: Device we arrived on/are leaving by
629  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
630  *	@cb: Control buffer. Free for use by every layer. Put private vars here
631  *	@_skb_refdst: destination entry (with norefcount bit)
632  *	@sp: the security path, used for xfrm
633  *	@len: Length of actual data
634  *	@data_len: Data length
635  *	@mac_len: Length of link layer header
636  *	@hdr_len: writable header length of cloned skb
637  *	@csum: Checksum (must include start/offset pair)
638  *	@csum_start: Offset from skb->head where checksumming should start
639  *	@csum_offset: Offset from csum_start where checksum should be stored
640  *	@priority: Packet queueing priority
641  *	@ignore_df: allow local fragmentation
642  *	@cloned: Head may be cloned (check refcnt to be sure)
643  *	@ip_summed: Driver fed us an IP checksum
644  *	@nohdr: Payload reference only, must not modify header
645  *	@pkt_type: Packet class
646  *	@fclone: skbuff clone status
647  *	@ipvs_property: skbuff is owned by ipvs
648  *	@inner_protocol_type: whether the inner protocol is
649  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
650  *	@remcsum_offload: remote checksum offload is enabled
651  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
652  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
653  *	@tc_skip_classify: do not classify packet. set by IFB device
654  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
655  *	@redirected: packet was redirected by packet classifier
656  *	@from_ingress: packet was redirected from the ingress path
657  *	@peeked: this packet has been seen already, so stats have been
658  *		done for it, don't do them again
659  *	@nf_trace: netfilter packet trace flag
660  *	@protocol: Packet protocol from driver
661  *	@destructor: Destruct function
662  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
663  *	@_nfct: Associated connection, if any (with nfctinfo bits)
664  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
665  *	@skb_iif: ifindex of device we arrived on
666  *	@tc_index: Traffic control index
667  *	@hash: the packet hash
668  *	@queue_mapping: Queue mapping for multiqueue devices
669  *	@head_frag: skb was allocated from page fragments,
670  *		not allocated by kmalloc() or vmalloc().
671  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
672  *	@active_extensions: active extensions (skb_ext_id types)
673  *	@ndisc_nodetype: router type (from link layer)
674  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
675  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
676  *		ports.
677  *	@sw_hash: indicates hash was computed in software stack
678  *	@wifi_acked_valid: wifi_acked was set
679  *	@wifi_acked: whether frame was acked on wifi or not
680  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
681  *	@encapsulation: indicates the inner headers in the skbuff are valid
682  *	@encap_hdr_csum: software checksum is needed
683  *	@csum_valid: checksum is already valid
684  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
685  *	@csum_complete_sw: checksum was completed by software
686  *	@csum_level: indicates the number of consecutive checksums found in
687  *		the packet minus one that have been verified as
688  *		CHECKSUM_UNNECESSARY (max 3)
689  *	@scm_io_uring: SKB holds io_uring registered files
690  *	@dst_pending_confirm: need to confirm neighbour
691  *	@decrypted: Decrypted SKB
692  *	@napi_id: id of the NAPI struct this skb came from
693  *	@sender_cpu: (aka @napi_id) source CPU in XPS
694  *	@secmark: security marking
695  *	@mark: Generic packet mark
696  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
697  *		at the tail of an sk_buff
698  *	@vlan_present: VLAN tag is present
699  *	@vlan_proto: vlan encapsulation protocol
700  *	@vlan_tci: vlan tag control information
701  *	@inner_protocol: Protocol (encapsulation)
702  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
703  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
704  *	@inner_transport_header: Inner transport layer header (encapsulation)
705  *	@inner_network_header: Network layer header (encapsulation)
706  *	@inner_mac_header: Link layer header (encapsulation)
707  *	@transport_header: Transport layer header
708  *	@network_header: Network layer header
709  *	@mac_header: Link layer header
710  *	@kcov_handle: KCOV remote handle for remote coverage collection
711  *	@tail: Tail pointer
712  *	@end: End pointer
713  *	@head: Head of buffer
714  *	@data: Data head pointer
715  *	@truesize: Buffer size
716  *	@users: User count - see {datagram,tcp}.c
717  *	@extensions: allocated extensions, valid if active_extensions is nonzero
718  */
719 
720 struct sk_buff {
721 	union {
722 		struct {
723 			/* These two members must be first. */
724 			struct sk_buff		*next;
725 			struct sk_buff		*prev;
726 
727 			union {
728 				struct net_device	*dev;
729 				/* Some protocols might use this space to store information,
730 				 * while device pointer would be NULL.
731 				 * UDP receive path is one user.
732 				 */
733 				unsigned long		dev_scratch;
734 			};
735 		};
736 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
737 		struct list_head	list;
738 	};
739 
740 	union {
741 		struct sock		*sk;
742 		int			ip_defrag_offset;
743 	};
744 
745 	union {
746 		ktime_t		tstamp;
747 		u64		skb_mstamp_ns; /* earliest departure time */
748 	};
749 	/*
750 	 * This is the control buffer. It is free to use for every
751 	 * layer. Please put your private variables there. If you
752 	 * want to keep them across layers you have to do a skb_clone()
753 	 * first. This is owned by whoever has the skb queued ATM.
754 	 */
755 	char			cb[48] __aligned(8);
756 
757 	union {
758 		struct {
759 			unsigned long	_skb_refdst;
760 			void		(*destructor)(struct sk_buff *skb);
761 		};
762 		struct list_head	tcp_tsorted_anchor;
763 	};
764 
765 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
766 	unsigned long		 _nfct;
767 #endif
768 	unsigned int		len,
769 				data_len;
770 	__u16			mac_len,
771 				hdr_len;
772 
773 	/* Following fields are _not_ copied in __copy_skb_header()
774 	 * Note that queue_mapping is here mostly to fill a hole.
775 	 */
776 	__u16			queue_mapping;
777 
778 /* if you move cloned around you also must adapt those constants */
779 #ifdef __BIG_ENDIAN_BITFIELD
780 #define CLONED_MASK	(1 << 7)
781 #else
782 #define CLONED_MASK	1
783 #endif
784 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
785 
786 	/* private: */
787 	__u8			__cloned_offset[0];
788 	/* public: */
789 	__u8			cloned:1,
790 				nohdr:1,
791 				fclone:2,
792 				peeked:1,
793 				head_frag:1,
794 				pfmemalloc:1;
795 #ifdef CONFIG_SKB_EXTENSIONS
796 	__u8			active_extensions;
797 #endif
798 	/* fields enclosed in headers_start/headers_end are copied
799 	 * using a single memcpy() in __copy_skb_header()
800 	 */
801 	/* private: */
802 	__u32			headers_start[0];
803 	/* public: */
804 
805 /* if you move pkt_type around you also must adapt those constants */
806 #ifdef __BIG_ENDIAN_BITFIELD
807 #define PKT_TYPE_MAX	(7 << 5)
808 #else
809 #define PKT_TYPE_MAX	7
810 #endif
811 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
812 
813 	/* private: */
814 	__u8			__pkt_type_offset[0];
815 	/* public: */
816 	__u8			pkt_type:3;
817 	__u8			ignore_df:1;
818 	__u8			nf_trace:1;
819 	__u8			ip_summed:2;
820 	__u8			ooo_okay:1;
821 
822 	__u8			l4_hash:1;
823 	__u8			sw_hash:1;
824 	__u8			wifi_acked_valid:1;
825 	__u8			wifi_acked:1;
826 	__u8			no_fcs:1;
827 	/* Indicates the inner headers are valid in the skbuff. */
828 	__u8			encapsulation:1;
829 	__u8			encap_hdr_csum:1;
830 	__u8			csum_valid:1;
831 
832 #ifdef __BIG_ENDIAN_BITFIELD
833 #define PKT_VLAN_PRESENT_BIT	7
834 #else
835 #define PKT_VLAN_PRESENT_BIT	0
836 #endif
837 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
838 	/* private: */
839 	__u8			__pkt_vlan_present_offset[0];
840 	/* public: */
841 	__u8			vlan_present:1;
842 	__u8			csum_complete_sw:1;
843 	__u8			csum_level:2;
844 	__u8			csum_not_inet:1;
845 	__u8			dst_pending_confirm:1;
846 #ifdef CONFIG_IPV6_NDISC_NODETYPE
847 	__u8			ndisc_nodetype:2;
848 #endif
849 
850 	__u8			ipvs_property:1;
851 	__u8			inner_protocol_type:1;
852 	__u8			remcsum_offload:1;
853 #ifdef CONFIG_NET_SWITCHDEV
854 	__u8			offload_fwd_mark:1;
855 	__u8			offload_l3_fwd_mark:1;
856 #endif
857 #ifdef CONFIG_NET_CLS_ACT
858 	__u8			tc_skip_classify:1;
859 	__u8			tc_at_ingress:1;
860 #endif
861 #ifdef CONFIG_NET_REDIRECT
862 	__u8			redirected:1;
863 	__u8			from_ingress:1;
864 #endif
865 #ifdef CONFIG_TLS_DEVICE
866 	__u8			decrypted:1;
867 #endif
868 
869 #ifdef CONFIG_NET_SCHED
870 	__u16			tc_index;	/* traffic control index */
871 #endif
872 
873 	union {
874 		__wsum		csum;
875 		struct {
876 			__u16	csum_start;
877 			__u16	csum_offset;
878 		};
879 	};
880 	__u32			priority;
881 	int			skb_iif;
882 	__u32			hash;
883 	__be16			vlan_proto;
884 	__u16			vlan_tci;
885 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
886 	union {
887 		unsigned int	napi_id;
888 		unsigned int	sender_cpu;
889 	};
890 #endif
891 #ifdef CONFIG_NETWORK_SECMARK
892 	__u32		secmark;
893 #endif
894 
895 	union {
896 		__u32		mark;
897 		__u32		reserved_tailroom;
898 	};
899 
900 	union {
901 		__be16		inner_protocol;
902 		__u8		inner_ipproto;
903 	};
904 
905 	__u16			inner_transport_header;
906 	__u16			inner_network_header;
907 	__u16			inner_mac_header;
908 
909 	__be16			protocol;
910 	__u16			transport_header;
911 	__u16			network_header;
912 	__u16			mac_header;
913 
914 #ifdef CONFIG_KCOV
915 	u64			kcov_handle;
916 #endif
917 
918 	/* private: */
919 	__u32			headers_end[0];
920 	/* public: */
921 
922 	/* Android KABI preservation.
923 	 *
924 	 * "open coded" version of ANDROID_KABI_USE() to pack more
925 	 * fields/variables into the space that we have.
926 	 *
927 	 * scm_io_uring is from 04df9719df18 ("io_uring/af_unix: defer
928 	 * registered files gc to io_uring release")
929 	 */
930 	_ANDROID_KABI_REPLACE(_ANDROID_KABI_RESERVE(1),
931 			 struct {
932 				__u8 scm_io_uring:1;
933 				__u8 android_kabi_reserved1_padding1;
934 				__u16 android_kabi_reserved1_padding2;
935 				__u32 android_kabi_reserved1_padding3;
936 				});
937 	ANDROID_KABI_RESERVE(2);
938 
939 	/* These elements must be at the end, see alloc_skb() for details.  */
940 	sk_buff_data_t		tail;
941 	sk_buff_data_t		end;
942 	unsigned char		*head,
943 				*data;
944 	unsigned int		truesize;
945 	refcount_t		users;
946 
947 #ifdef CONFIG_SKB_EXTENSIONS
948 	/* only useable after checking ->active_extensions != 0 */
949 	struct skb_ext		*extensions;
950 #endif
951 };
952 
953 #ifdef __KERNEL__
954 /*
955  *	Handling routines are only of interest to the kernel
956  */
957 
958 #define SKB_ALLOC_FCLONE	0x01
959 #define SKB_ALLOC_RX		0x02
960 #define SKB_ALLOC_NAPI		0x04
961 
962 /**
963  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
964  * @skb: buffer
965  */
skb_pfmemalloc(const struct sk_buff * skb)966 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
967 {
968 	return unlikely(skb->pfmemalloc);
969 }
970 
971 /*
972  * skb might have a dst pointer attached, refcounted or not.
973  * _skb_refdst low order bit is set if refcount was _not_ taken
974  */
975 #define SKB_DST_NOREF	1UL
976 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
977 
978 /**
979  * skb_dst - returns skb dst_entry
980  * @skb: buffer
981  *
982  * Returns skb dst_entry, regardless of reference taken or not.
983  */
skb_dst(const struct sk_buff * skb)984 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
985 {
986 	/* If refdst was not refcounted, check we still are in a
987 	 * rcu_read_lock section
988 	 */
989 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
990 		!rcu_read_lock_held() &&
991 		!rcu_read_lock_bh_held());
992 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
993 }
994 
995 /**
996  * skb_dst_set - sets skb dst
997  * @skb: buffer
998  * @dst: dst entry
999  *
1000  * Sets skb dst, assuming a reference was taken on dst and should
1001  * be released by skb_dst_drop()
1002  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1003 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1004 {
1005 	skb->_skb_refdst = (unsigned long)dst;
1006 }
1007 
1008 /**
1009  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1010  * @skb: buffer
1011  * @dst: dst entry
1012  *
1013  * Sets skb dst, assuming a reference was not taken on dst.
1014  * If dst entry is cached, we do not take reference and dst_release
1015  * will be avoided by refdst_drop. If dst entry is not cached, we take
1016  * reference, so that last dst_release can destroy the dst immediately.
1017  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1018 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1019 {
1020 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1021 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1022 }
1023 
1024 /**
1025  * skb_dst_is_noref - Test if skb dst isn't refcounted
1026  * @skb: buffer
1027  */
skb_dst_is_noref(const struct sk_buff * skb)1028 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1029 {
1030 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1031 }
1032 
1033 /**
1034  * skb_rtable - Returns the skb &rtable
1035  * @skb: buffer
1036  */
skb_rtable(const struct sk_buff * skb)1037 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1038 {
1039 	return (struct rtable *)skb_dst(skb);
1040 }
1041 
1042 /* For mangling skb->pkt_type from user space side from applications
1043  * such as nft, tc, etc, we only allow a conservative subset of
1044  * possible pkt_types to be set.
1045 */
skb_pkt_type_ok(u32 ptype)1046 static inline bool skb_pkt_type_ok(u32 ptype)
1047 {
1048 	return ptype <= PACKET_OTHERHOST;
1049 }
1050 
1051 /**
1052  * skb_napi_id - Returns the skb's NAPI id
1053  * @skb: buffer
1054  */
skb_napi_id(const struct sk_buff * skb)1055 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1056 {
1057 #ifdef CONFIG_NET_RX_BUSY_POLL
1058 	return skb->napi_id;
1059 #else
1060 	return 0;
1061 #endif
1062 }
1063 
1064 /**
1065  * skb_unref - decrement the skb's reference count
1066  * @skb: buffer
1067  *
1068  * Returns true if we can free the skb.
1069  */
skb_unref(struct sk_buff * skb)1070 static inline bool skb_unref(struct sk_buff *skb)
1071 {
1072 	if (unlikely(!skb))
1073 		return false;
1074 	if (likely(refcount_read(&skb->users) == 1))
1075 		smp_rmb();
1076 	else if (likely(!refcount_dec_and_test(&skb->users)))
1077 		return false;
1078 
1079 	return true;
1080 }
1081 
1082 void skb_release_head_state(struct sk_buff *skb);
1083 void kfree_skb(struct sk_buff *skb);
1084 void kfree_skb_list(struct sk_buff *segs);
1085 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1086 void skb_tx_error(struct sk_buff *skb);
1087 
1088 #ifdef CONFIG_TRACEPOINTS
1089 void consume_skb(struct sk_buff *skb);
1090 #else
consume_skb(struct sk_buff * skb)1091 static inline void consume_skb(struct sk_buff *skb)
1092 {
1093 	return kfree_skb(skb);
1094 }
1095 #endif
1096 
1097 void __consume_stateless_skb(struct sk_buff *skb);
1098 void  __kfree_skb(struct sk_buff *skb);
1099 extern struct kmem_cache *skbuff_head_cache;
1100 
1101 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1102 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1103 		      bool *fragstolen, int *delta_truesize);
1104 
1105 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1106 			    int node);
1107 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1108 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1109 struct sk_buff *build_skb_around(struct sk_buff *skb,
1110 				 void *data, unsigned int frag_size);
1111 
1112 /**
1113  * alloc_skb - allocate a network buffer
1114  * @size: size to allocate
1115  * @priority: allocation mask
1116  *
1117  * This function is a convenient wrapper around __alloc_skb().
1118  */
alloc_skb(unsigned int size,gfp_t priority)1119 static inline struct sk_buff *alloc_skb(unsigned int size,
1120 					gfp_t priority)
1121 {
1122 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1123 }
1124 
1125 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1126 				     unsigned long data_len,
1127 				     int max_page_order,
1128 				     int *errcode,
1129 				     gfp_t gfp_mask);
1130 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1131 
1132 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1133 struct sk_buff_fclones {
1134 	struct sk_buff	skb1;
1135 
1136 	struct sk_buff	skb2;
1137 
1138 	refcount_t	fclone_ref;
1139 };
1140 
1141 /**
1142  *	skb_fclone_busy - check if fclone is busy
1143  *	@sk: socket
1144  *	@skb: buffer
1145  *
1146  * Returns true if skb is a fast clone, and its clone is not freed.
1147  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1148  * so we also check that this didnt happen.
1149  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1150 static inline bool skb_fclone_busy(const struct sock *sk,
1151 				   const struct sk_buff *skb)
1152 {
1153 	const struct sk_buff_fclones *fclones;
1154 
1155 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1156 
1157 	return skb->fclone == SKB_FCLONE_ORIG &&
1158 	       refcount_read(&fclones->fclone_ref) > 1 &&
1159 	       fclones->skb2.sk == sk;
1160 }
1161 
1162 /**
1163  * alloc_skb_fclone - allocate a network buffer from fclone cache
1164  * @size: size to allocate
1165  * @priority: allocation mask
1166  *
1167  * This function is a convenient wrapper around __alloc_skb().
1168  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1169 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1170 					       gfp_t priority)
1171 {
1172 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1173 }
1174 
1175 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1176 void skb_headers_offset_update(struct sk_buff *skb, int off);
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1178 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1179 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1180 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1181 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1182 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1183 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1184 					  gfp_t gfp_mask)
1185 {
1186 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1187 }
1188 
1189 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1190 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1191 				     unsigned int headroom);
1192 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1193 				int newtailroom, gfp_t priority);
1194 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1195 				     int offset, int len);
1196 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1197 			      int offset, int len);
1198 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1199 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1200 
1201 /**
1202  *	skb_pad			-	zero pad the tail of an skb
1203  *	@skb: buffer to pad
1204  *	@pad: space to pad
1205  *
1206  *	Ensure that a buffer is followed by a padding area that is zero
1207  *	filled. Used by network drivers which may DMA or transfer data
1208  *	beyond the buffer end onto the wire.
1209  *
1210  *	May return error in out of memory cases. The skb is freed on error.
1211  */
skb_pad(struct sk_buff * skb,int pad)1212 static inline int skb_pad(struct sk_buff *skb, int pad)
1213 {
1214 	return __skb_pad(skb, pad, true);
1215 }
1216 #define dev_kfree_skb(a)	consume_skb(a)
1217 
1218 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1219 			 int offset, size_t size);
1220 
1221 struct skb_seq_state {
1222 	__u32		lower_offset;
1223 	__u32		upper_offset;
1224 	__u32		frag_idx;
1225 	__u32		stepped_offset;
1226 	struct sk_buff	*root_skb;
1227 	struct sk_buff	*cur_skb;
1228 	__u8		*frag_data;
1229 };
1230 
1231 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1232 			  unsigned int to, struct skb_seq_state *st);
1233 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1234 			  struct skb_seq_state *st);
1235 void skb_abort_seq_read(struct skb_seq_state *st);
1236 
1237 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1238 			   unsigned int to, struct ts_config *config);
1239 
1240 /*
1241  * Packet hash types specify the type of hash in skb_set_hash.
1242  *
1243  * Hash types refer to the protocol layer addresses which are used to
1244  * construct a packet's hash. The hashes are used to differentiate or identify
1245  * flows of the protocol layer for the hash type. Hash types are either
1246  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1247  *
1248  * Properties of hashes:
1249  *
1250  * 1) Two packets in different flows have different hash values
1251  * 2) Two packets in the same flow should have the same hash value
1252  *
1253  * A hash at a higher layer is considered to be more specific. A driver should
1254  * set the most specific hash possible.
1255  *
1256  * A driver cannot indicate a more specific hash than the layer at which a hash
1257  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1258  *
1259  * A driver may indicate a hash level which is less specific than the
1260  * actual layer the hash was computed on. For instance, a hash computed
1261  * at L4 may be considered an L3 hash. This should only be done if the
1262  * driver can't unambiguously determine that the HW computed the hash at
1263  * the higher layer. Note that the "should" in the second property above
1264  * permits this.
1265  */
1266 enum pkt_hash_types {
1267 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1268 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1269 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1270 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1271 };
1272 
skb_clear_hash(struct sk_buff * skb)1273 static inline void skb_clear_hash(struct sk_buff *skb)
1274 {
1275 	skb->hash = 0;
1276 	skb->sw_hash = 0;
1277 	skb->l4_hash = 0;
1278 }
1279 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1280 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1281 {
1282 	if (!skb->l4_hash)
1283 		skb_clear_hash(skb);
1284 }
1285 
1286 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1287 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1288 {
1289 	skb->l4_hash = is_l4;
1290 	skb->sw_hash = is_sw;
1291 	skb->hash = hash;
1292 }
1293 
1294 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1295 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1296 {
1297 	/* Used by drivers to set hash from HW */
1298 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1299 }
1300 
1301 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1302 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1303 {
1304 	__skb_set_hash(skb, hash, true, is_l4);
1305 }
1306 
1307 void __skb_get_hash(struct sk_buff *skb);
1308 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1309 u32 skb_get_poff(const struct sk_buff *skb);
1310 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1311 		   const struct flow_keys_basic *keys, int hlen);
1312 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1313 			    void *data, int hlen_proto);
1314 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1315 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1316 					int thoff, u8 ip_proto)
1317 {
1318 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1319 }
1320 
1321 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1322 			     const struct flow_dissector_key *key,
1323 			     unsigned int key_count);
1324 
1325 struct bpf_flow_dissector;
1326 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1327 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1328 
1329 bool __skb_flow_dissect(const struct net *net,
1330 			const struct sk_buff *skb,
1331 			struct flow_dissector *flow_dissector,
1332 			void *target_container,
1333 			void *data, __be16 proto, int nhoff, int hlen,
1334 			unsigned int flags);
1335 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1336 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1337 				    struct flow_dissector *flow_dissector,
1338 				    void *target_container, unsigned int flags)
1339 {
1340 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1341 				  target_container, NULL, 0, 0, 0, flags);
1342 }
1343 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1344 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1345 					      struct flow_keys *flow,
1346 					      unsigned int flags)
1347 {
1348 	memset(flow, 0, sizeof(*flow));
1349 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1350 				  flow, NULL, 0, 0, 0, flags);
1351 }
1352 
1353 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1354 skb_flow_dissect_flow_keys_basic(const struct net *net,
1355 				 const struct sk_buff *skb,
1356 				 struct flow_keys_basic *flow, void *data,
1357 				 __be16 proto, int nhoff, int hlen,
1358 				 unsigned int flags)
1359 {
1360 	memset(flow, 0, sizeof(*flow));
1361 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1362 				  data, proto, nhoff, hlen, flags);
1363 }
1364 
1365 void skb_flow_dissect_meta(const struct sk_buff *skb,
1366 			   struct flow_dissector *flow_dissector,
1367 			   void *target_container);
1368 
1369 /* Gets a skb connection tracking info, ctinfo map should be a
1370  * map of mapsize to translate enum ip_conntrack_info states
1371  * to user states.
1372  */
1373 void
1374 skb_flow_dissect_ct(const struct sk_buff *skb,
1375 		    struct flow_dissector *flow_dissector,
1376 		    void *target_container,
1377 		    u16 *ctinfo_map,
1378 		    size_t mapsize);
1379 void
1380 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1381 			     struct flow_dissector *flow_dissector,
1382 			     void *target_container);
1383 
1384 void skb_flow_dissect_hash(const struct sk_buff *skb,
1385 			   struct flow_dissector *flow_dissector,
1386 			   void *target_container);
1387 
skb_get_hash(struct sk_buff * skb)1388 static inline __u32 skb_get_hash(struct sk_buff *skb)
1389 {
1390 	if (!skb->l4_hash && !skb->sw_hash)
1391 		__skb_get_hash(skb);
1392 
1393 	return skb->hash;
1394 }
1395 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1396 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1397 {
1398 	if (!skb->l4_hash && !skb->sw_hash) {
1399 		struct flow_keys keys;
1400 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1401 
1402 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1403 	}
1404 
1405 	return skb->hash;
1406 }
1407 
1408 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1409 			   const siphash_key_t *perturb);
1410 
skb_get_hash_raw(const struct sk_buff * skb)1411 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1412 {
1413 	return skb->hash;
1414 }
1415 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1416 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1417 {
1418 	to->hash = from->hash;
1419 	to->sw_hash = from->sw_hash;
1420 	to->l4_hash = from->l4_hash;
1421 };
1422 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1423 static inline void skb_copy_decrypted(struct sk_buff *to,
1424 				      const struct sk_buff *from)
1425 {
1426 #ifdef CONFIG_TLS_DEVICE
1427 	to->decrypted = from->decrypted;
1428 #endif
1429 }
1430 
1431 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1433 {
1434 	return skb->head + skb->end;
1435 }
1436 
skb_end_offset(const struct sk_buff * skb)1437 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1438 {
1439 	return skb->end;
1440 }
1441 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1442 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1443 {
1444 	skb->end = offset;
1445 }
1446 #else
skb_end_pointer(const struct sk_buff * skb)1447 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1448 {
1449 	return skb->end;
1450 }
1451 
skb_end_offset(const struct sk_buff * skb)1452 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1453 {
1454 	return skb->end - skb->head;
1455 }
1456 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1457 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1458 {
1459 	skb->end = skb->head + offset;
1460 }
1461 #endif
1462 
1463 /* Internal */
1464 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1465 
skb_hwtstamps(struct sk_buff * skb)1466 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1467 {
1468 	return &skb_shinfo(skb)->hwtstamps;
1469 }
1470 
skb_zcopy(struct sk_buff * skb)1471 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1472 {
1473 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1474 
1475 	return is_zcopy ? skb_uarg(skb) : NULL;
1476 }
1477 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1478 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1479 				 bool *have_ref)
1480 {
1481 	if (skb && uarg && !skb_zcopy(skb)) {
1482 		if (unlikely(have_ref && *have_ref))
1483 			*have_ref = false;
1484 		else
1485 			sock_zerocopy_get(uarg);
1486 		skb_shinfo(skb)->destructor_arg = uarg;
1487 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1488 	}
1489 }
1490 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1491 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1492 {
1493 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1494 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1495 }
1496 
skb_zcopy_is_nouarg(struct sk_buff * skb)1497 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1498 {
1499 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1500 }
1501 
skb_zcopy_get_nouarg(struct sk_buff * skb)1502 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1503 {
1504 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1505 }
1506 
1507 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1508 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1509 {
1510 	struct ubuf_info *uarg = skb_zcopy(skb);
1511 
1512 	if (uarg) {
1513 		if (skb_zcopy_is_nouarg(skb)) {
1514 			/* no notification callback */
1515 		} else if (uarg->callback == sock_zerocopy_callback) {
1516 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1517 			sock_zerocopy_put(uarg);
1518 		} else {
1519 			uarg->callback(uarg, zerocopy);
1520 		}
1521 
1522 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1523 	}
1524 }
1525 
1526 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1527 static inline void skb_zcopy_abort(struct sk_buff *skb)
1528 {
1529 	struct ubuf_info *uarg = skb_zcopy(skb);
1530 
1531 	if (uarg) {
1532 		sock_zerocopy_put_abort(uarg, false);
1533 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1534 	}
1535 }
1536 
skb_mark_not_on_list(struct sk_buff * skb)1537 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1538 {
1539 	skb->next = NULL;
1540 }
1541 
1542 /* Iterate through singly-linked GSO fragments of an skb. */
1543 #define skb_list_walk_safe(first, skb, next_skb)                               \
1544 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1545 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1546 
skb_list_del_init(struct sk_buff * skb)1547 static inline void skb_list_del_init(struct sk_buff *skb)
1548 {
1549 	__list_del_entry(&skb->list);
1550 	skb_mark_not_on_list(skb);
1551 }
1552 
1553 /**
1554  *	skb_queue_empty - check if a queue is empty
1555  *	@list: queue head
1556  *
1557  *	Returns true if the queue is empty, false otherwise.
1558  */
skb_queue_empty(const struct sk_buff_head * list)1559 static inline int skb_queue_empty(const struct sk_buff_head *list)
1560 {
1561 	return list->next == (const struct sk_buff *) list;
1562 }
1563 
1564 /**
1565  *	skb_queue_empty_lockless - check if a queue is empty
1566  *	@list: queue head
1567  *
1568  *	Returns true if the queue is empty, false otherwise.
1569  *	This variant can be used in lockless contexts.
1570  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1571 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1572 {
1573 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1574 }
1575 
1576 
1577 /**
1578  *	skb_queue_is_last - check if skb is the last entry in the queue
1579  *	@list: queue head
1580  *	@skb: buffer
1581  *
1582  *	Returns true if @skb is the last buffer on the list.
1583  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1584 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1585 				     const struct sk_buff *skb)
1586 {
1587 	return skb->next == (const struct sk_buff *) list;
1588 }
1589 
1590 /**
1591  *	skb_queue_is_first - check if skb is the first entry in the queue
1592  *	@list: queue head
1593  *	@skb: buffer
1594  *
1595  *	Returns true if @skb is the first buffer on the list.
1596  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1597 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1598 				      const struct sk_buff *skb)
1599 {
1600 	return skb->prev == (const struct sk_buff *) list;
1601 }
1602 
1603 /**
1604  *	skb_queue_next - return the next packet in the queue
1605  *	@list: queue head
1606  *	@skb: current buffer
1607  *
1608  *	Return the next packet in @list after @skb.  It is only valid to
1609  *	call this if skb_queue_is_last() evaluates to false.
1610  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1611 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1612 					     const struct sk_buff *skb)
1613 {
1614 	/* This BUG_ON may seem severe, but if we just return then we
1615 	 * are going to dereference garbage.
1616 	 */
1617 	BUG_ON(skb_queue_is_last(list, skb));
1618 	return skb->next;
1619 }
1620 
1621 /**
1622  *	skb_queue_prev - return the prev packet in the queue
1623  *	@list: queue head
1624  *	@skb: current buffer
1625  *
1626  *	Return the prev packet in @list before @skb.  It is only valid to
1627  *	call this if skb_queue_is_first() evaluates to false.
1628  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1629 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1630 					     const struct sk_buff *skb)
1631 {
1632 	/* This BUG_ON may seem severe, but if we just return then we
1633 	 * are going to dereference garbage.
1634 	 */
1635 	BUG_ON(skb_queue_is_first(list, skb));
1636 	return skb->prev;
1637 }
1638 
1639 /**
1640  *	skb_get - reference buffer
1641  *	@skb: buffer to reference
1642  *
1643  *	Makes another reference to a socket buffer and returns a pointer
1644  *	to the buffer.
1645  */
skb_get(struct sk_buff * skb)1646 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1647 {
1648 	refcount_inc(&skb->users);
1649 	return skb;
1650 }
1651 
1652 /*
1653  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1654  */
1655 
1656 /**
1657  *	skb_cloned - is the buffer a clone
1658  *	@skb: buffer to check
1659  *
1660  *	Returns true if the buffer was generated with skb_clone() and is
1661  *	one of multiple shared copies of the buffer. Cloned buffers are
1662  *	shared data so must not be written to under normal circumstances.
1663  */
skb_cloned(const struct sk_buff * skb)1664 static inline int skb_cloned(const struct sk_buff *skb)
1665 {
1666 	return skb->cloned &&
1667 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1668 }
1669 
skb_unclone(struct sk_buff * skb,gfp_t pri)1670 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1671 {
1672 	might_sleep_if(gfpflags_allow_blocking(pri));
1673 
1674 	if (skb_cloned(skb))
1675 		return pskb_expand_head(skb, 0, 0, pri);
1676 
1677 	return 0;
1678 }
1679 
1680 /* This variant of skb_unclone() makes sure skb->truesize
1681  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1682  *
1683  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1684  * when various debugging features are in place.
1685  */
1686 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1687 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1688 {
1689 	might_sleep_if(gfpflags_allow_blocking(pri));
1690 
1691 	if (skb_cloned(skb))
1692 		return __skb_unclone_keeptruesize(skb, pri);
1693 	return 0;
1694 }
1695 
1696 /**
1697  *	skb_header_cloned - is the header a clone
1698  *	@skb: buffer to check
1699  *
1700  *	Returns true if modifying the header part of the buffer requires
1701  *	the data to be copied.
1702  */
skb_header_cloned(const struct sk_buff * skb)1703 static inline int skb_header_cloned(const struct sk_buff *skb)
1704 {
1705 	int dataref;
1706 
1707 	if (!skb->cloned)
1708 		return 0;
1709 
1710 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1711 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1712 	return dataref != 1;
1713 }
1714 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1715 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1716 {
1717 	might_sleep_if(gfpflags_allow_blocking(pri));
1718 
1719 	if (skb_header_cloned(skb))
1720 		return pskb_expand_head(skb, 0, 0, pri);
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  *	__skb_header_release - release reference to header
1727  *	@skb: buffer to operate on
1728  */
__skb_header_release(struct sk_buff * skb)1729 static inline void __skb_header_release(struct sk_buff *skb)
1730 {
1731 	skb->nohdr = 1;
1732 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1733 }
1734 
1735 
1736 /**
1737  *	skb_shared - is the buffer shared
1738  *	@skb: buffer to check
1739  *
1740  *	Returns true if more than one person has a reference to this
1741  *	buffer.
1742  */
skb_shared(const struct sk_buff * skb)1743 static inline int skb_shared(const struct sk_buff *skb)
1744 {
1745 	return refcount_read(&skb->users) != 1;
1746 }
1747 
1748 /**
1749  *	skb_share_check - check if buffer is shared and if so clone it
1750  *	@skb: buffer to check
1751  *	@pri: priority for memory allocation
1752  *
1753  *	If the buffer is shared the buffer is cloned and the old copy
1754  *	drops a reference. A new clone with a single reference is returned.
1755  *	If the buffer is not shared the original buffer is returned. When
1756  *	being called from interrupt status or with spinlocks held pri must
1757  *	be GFP_ATOMIC.
1758  *
1759  *	NULL is returned on a memory allocation failure.
1760  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1761 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1762 {
1763 	might_sleep_if(gfpflags_allow_blocking(pri));
1764 	if (skb_shared(skb)) {
1765 		struct sk_buff *nskb = skb_clone(skb, pri);
1766 
1767 		if (likely(nskb))
1768 			consume_skb(skb);
1769 		else
1770 			kfree_skb(skb);
1771 		skb = nskb;
1772 	}
1773 	return skb;
1774 }
1775 
1776 /*
1777  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1778  *	packets to handle cases where we have a local reader and forward
1779  *	and a couple of other messy ones. The normal one is tcpdumping
1780  *	a packet thats being forwarded.
1781  */
1782 
1783 /**
1784  *	skb_unshare - make a copy of a shared buffer
1785  *	@skb: buffer to check
1786  *	@pri: priority for memory allocation
1787  *
1788  *	If the socket buffer is a clone then this function creates a new
1789  *	copy of the data, drops a reference count on the old copy and returns
1790  *	the new copy with the reference count at 1. If the buffer is not a clone
1791  *	the original buffer is returned. When called with a spinlock held or
1792  *	from interrupt state @pri must be %GFP_ATOMIC
1793  *
1794  *	%NULL is returned on a memory allocation failure.
1795  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1796 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1797 					  gfp_t pri)
1798 {
1799 	might_sleep_if(gfpflags_allow_blocking(pri));
1800 	if (skb_cloned(skb)) {
1801 		struct sk_buff *nskb = skb_copy(skb, pri);
1802 
1803 		/* Free our shared copy */
1804 		if (likely(nskb))
1805 			consume_skb(skb);
1806 		else
1807 			kfree_skb(skb);
1808 		skb = nskb;
1809 	}
1810 	return skb;
1811 }
1812 
1813 /**
1814  *	skb_peek - peek at the head of an &sk_buff_head
1815  *	@list_: list to peek at
1816  *
1817  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1818  *	be careful with this one. A peek leaves the buffer on the
1819  *	list and someone else may run off with it. You must hold
1820  *	the appropriate locks or have a private queue to do this.
1821  *
1822  *	Returns %NULL for an empty list or a pointer to the head element.
1823  *	The reference count is not incremented and the reference is therefore
1824  *	volatile. Use with caution.
1825  */
skb_peek(const struct sk_buff_head * list_)1826 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1827 {
1828 	struct sk_buff *skb = list_->next;
1829 
1830 	if (skb == (struct sk_buff *)list_)
1831 		skb = NULL;
1832 	return skb;
1833 }
1834 
1835 /**
1836  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1837  *	@list_: list to peek at
1838  *
1839  *	Like skb_peek(), but the caller knows that the list is not empty.
1840  */
__skb_peek(const struct sk_buff_head * list_)1841 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1842 {
1843 	return list_->next;
1844 }
1845 
1846 /**
1847  *	skb_peek_next - peek skb following the given one from a queue
1848  *	@skb: skb to start from
1849  *	@list_: list to peek at
1850  *
1851  *	Returns %NULL when the end of the list is met or a pointer to the
1852  *	next element. The reference count is not incremented and the
1853  *	reference is therefore volatile. Use with caution.
1854  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1855 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1856 		const struct sk_buff_head *list_)
1857 {
1858 	struct sk_buff *next = skb->next;
1859 
1860 	if (next == (struct sk_buff *)list_)
1861 		next = NULL;
1862 	return next;
1863 }
1864 
1865 /**
1866  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1867  *	@list_: list to peek at
1868  *
1869  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1870  *	be careful with this one. A peek leaves the buffer on the
1871  *	list and someone else may run off with it. You must hold
1872  *	the appropriate locks or have a private queue to do this.
1873  *
1874  *	Returns %NULL for an empty list or a pointer to the tail element.
1875  *	The reference count is not incremented and the reference is therefore
1876  *	volatile. Use with caution.
1877  */
skb_peek_tail(const struct sk_buff_head * list_)1878 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1879 {
1880 	struct sk_buff *skb = READ_ONCE(list_->prev);
1881 
1882 	if (skb == (struct sk_buff *)list_)
1883 		skb = NULL;
1884 	return skb;
1885 
1886 }
1887 
1888 /**
1889  *	skb_queue_len	- get queue length
1890  *	@list_: list to measure
1891  *
1892  *	Return the length of an &sk_buff queue.
1893  */
skb_queue_len(const struct sk_buff_head * list_)1894 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1895 {
1896 	return list_->qlen;
1897 }
1898 
1899 /**
1900  *	skb_queue_len_lockless	- get queue length
1901  *	@list_: list to measure
1902  *
1903  *	Return the length of an &sk_buff queue.
1904  *	This variant can be used in lockless contexts.
1905  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1906 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1907 {
1908 	return READ_ONCE(list_->qlen);
1909 }
1910 
1911 /**
1912  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1913  *	@list: queue to initialize
1914  *
1915  *	This initializes only the list and queue length aspects of
1916  *	an sk_buff_head object.  This allows to initialize the list
1917  *	aspects of an sk_buff_head without reinitializing things like
1918  *	the spinlock.  It can also be used for on-stack sk_buff_head
1919  *	objects where the spinlock is known to not be used.
1920  */
__skb_queue_head_init(struct sk_buff_head * list)1921 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1922 {
1923 	list->prev = list->next = (struct sk_buff *)list;
1924 	list->qlen = 0;
1925 }
1926 
1927 /*
1928  * This function creates a split out lock class for each invocation;
1929  * this is needed for now since a whole lot of users of the skb-queue
1930  * infrastructure in drivers have different locking usage (in hardirq)
1931  * than the networking core (in softirq only). In the long run either the
1932  * network layer or drivers should need annotation to consolidate the
1933  * main types of usage into 3 classes.
1934  */
skb_queue_head_init(struct sk_buff_head * list)1935 static inline void skb_queue_head_init(struct sk_buff_head *list)
1936 {
1937 	spin_lock_init(&list->lock);
1938 	__skb_queue_head_init(list);
1939 }
1940 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1941 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1942 		struct lock_class_key *class)
1943 {
1944 	skb_queue_head_init(list);
1945 	lockdep_set_class(&list->lock, class);
1946 }
1947 
1948 /*
1949  *	Insert an sk_buff on a list.
1950  *
1951  *	The "__skb_xxxx()" functions are the non-atomic ones that
1952  *	can only be called with interrupts disabled.
1953  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1954 static inline void __skb_insert(struct sk_buff *newsk,
1955 				struct sk_buff *prev, struct sk_buff *next,
1956 				struct sk_buff_head *list)
1957 {
1958 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1959 	 * for the opposite READ_ONCE()
1960 	 */
1961 	WRITE_ONCE(newsk->next, next);
1962 	WRITE_ONCE(newsk->prev, prev);
1963 	WRITE_ONCE(next->prev, newsk);
1964 	WRITE_ONCE(prev->next, newsk);
1965 	WRITE_ONCE(list->qlen, list->qlen + 1);
1966 }
1967 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1968 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1969 				      struct sk_buff *prev,
1970 				      struct sk_buff *next)
1971 {
1972 	struct sk_buff *first = list->next;
1973 	struct sk_buff *last = list->prev;
1974 
1975 	WRITE_ONCE(first->prev, prev);
1976 	WRITE_ONCE(prev->next, first);
1977 
1978 	WRITE_ONCE(last->next, next);
1979 	WRITE_ONCE(next->prev, last);
1980 }
1981 
1982 /**
1983  *	skb_queue_splice - join two skb lists, this is designed for stacks
1984  *	@list: the new list to add
1985  *	@head: the place to add it in the first list
1986  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1987 static inline void skb_queue_splice(const struct sk_buff_head *list,
1988 				    struct sk_buff_head *head)
1989 {
1990 	if (!skb_queue_empty(list)) {
1991 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1992 		head->qlen += list->qlen;
1993 	}
1994 }
1995 
1996 /**
1997  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1998  *	@list: the new list to add
1999  *	@head: the place to add it in the first list
2000  *
2001  *	The list at @list is reinitialised
2002  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2003 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2004 					 struct sk_buff_head *head)
2005 {
2006 	if (!skb_queue_empty(list)) {
2007 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2008 		head->qlen += list->qlen;
2009 		__skb_queue_head_init(list);
2010 	}
2011 }
2012 
2013 /**
2014  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2015  *	@list: the new list to add
2016  *	@head: the place to add it in the first list
2017  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2018 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2019 					 struct sk_buff_head *head)
2020 {
2021 	if (!skb_queue_empty(list)) {
2022 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2023 		head->qlen += list->qlen;
2024 	}
2025 }
2026 
2027 /**
2028  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2029  *	@list: the new list to add
2030  *	@head: the place to add it in the first list
2031  *
2032  *	Each of the lists is a queue.
2033  *	The list at @list is reinitialised
2034  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2035 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2036 					      struct sk_buff_head *head)
2037 {
2038 	if (!skb_queue_empty(list)) {
2039 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2040 		head->qlen += list->qlen;
2041 		__skb_queue_head_init(list);
2042 	}
2043 }
2044 
2045 /**
2046  *	__skb_queue_after - queue a buffer at the list head
2047  *	@list: list to use
2048  *	@prev: place after this buffer
2049  *	@newsk: buffer to queue
2050  *
2051  *	Queue a buffer int the middle of a list. This function takes no locks
2052  *	and you must therefore hold required locks before calling it.
2053  *
2054  *	A buffer cannot be placed on two lists at the same time.
2055  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2056 static inline void __skb_queue_after(struct sk_buff_head *list,
2057 				     struct sk_buff *prev,
2058 				     struct sk_buff *newsk)
2059 {
2060 	__skb_insert(newsk, prev, prev->next, list);
2061 }
2062 
2063 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2064 		struct sk_buff_head *list);
2065 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2066 static inline void __skb_queue_before(struct sk_buff_head *list,
2067 				      struct sk_buff *next,
2068 				      struct sk_buff *newsk)
2069 {
2070 	__skb_insert(newsk, next->prev, next, list);
2071 }
2072 
2073 /**
2074  *	__skb_queue_head - queue a buffer at the list head
2075  *	@list: list to use
2076  *	@newsk: buffer to queue
2077  *
2078  *	Queue a buffer at the start of a list. This function takes no locks
2079  *	and you must therefore hold required locks before calling it.
2080  *
2081  *	A buffer cannot be placed on two lists at the same time.
2082  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2083 static inline void __skb_queue_head(struct sk_buff_head *list,
2084 				    struct sk_buff *newsk)
2085 {
2086 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2087 }
2088 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2089 
2090 /**
2091  *	__skb_queue_tail - queue a buffer at the list tail
2092  *	@list: list to use
2093  *	@newsk: buffer to queue
2094  *
2095  *	Queue a buffer at the end of a list. This function takes no locks
2096  *	and you must therefore hold required locks before calling it.
2097  *
2098  *	A buffer cannot be placed on two lists at the same time.
2099  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2100 static inline void __skb_queue_tail(struct sk_buff_head *list,
2101 				   struct sk_buff *newsk)
2102 {
2103 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2104 }
2105 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2106 
2107 /*
2108  * remove sk_buff from list. _Must_ be called atomically, and with
2109  * the list known..
2110  */
2111 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2112 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2113 {
2114 	struct sk_buff *next, *prev;
2115 
2116 	WRITE_ONCE(list->qlen, list->qlen - 1);
2117 	next	   = skb->next;
2118 	prev	   = skb->prev;
2119 	skb->next  = skb->prev = NULL;
2120 	WRITE_ONCE(next->prev, prev);
2121 	WRITE_ONCE(prev->next, next);
2122 }
2123 
2124 /**
2125  *	__skb_dequeue - remove from the head of the queue
2126  *	@list: list to dequeue from
2127  *
2128  *	Remove the head of the list. This function does not take any locks
2129  *	so must be used with appropriate locks held only. The head item is
2130  *	returned or %NULL if the list is empty.
2131  */
__skb_dequeue(struct sk_buff_head * list)2132 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2133 {
2134 	struct sk_buff *skb = skb_peek(list);
2135 	if (skb)
2136 		__skb_unlink(skb, list);
2137 	return skb;
2138 }
2139 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2140 
2141 /**
2142  *	__skb_dequeue_tail - remove from the tail of the queue
2143  *	@list: list to dequeue from
2144  *
2145  *	Remove the tail of the list. This function does not take any locks
2146  *	so must be used with appropriate locks held only. The tail item is
2147  *	returned or %NULL if the list is empty.
2148  */
__skb_dequeue_tail(struct sk_buff_head * list)2149 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2150 {
2151 	struct sk_buff *skb = skb_peek_tail(list);
2152 	if (skb)
2153 		__skb_unlink(skb, list);
2154 	return skb;
2155 }
2156 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2157 
2158 
skb_is_nonlinear(const struct sk_buff * skb)2159 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2160 {
2161 	return skb->data_len;
2162 }
2163 
skb_headlen(const struct sk_buff * skb)2164 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2165 {
2166 	return skb->len - skb->data_len;
2167 }
2168 
__skb_pagelen(const struct sk_buff * skb)2169 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2170 {
2171 	unsigned int i, len = 0;
2172 
2173 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2174 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2175 	return len;
2176 }
2177 
skb_pagelen(const struct sk_buff * skb)2178 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2179 {
2180 	return skb_headlen(skb) + __skb_pagelen(skb);
2181 }
2182 
2183 /**
2184  * __skb_fill_page_desc - initialise a paged fragment in an skb
2185  * @skb: buffer containing fragment to be initialised
2186  * @i: paged fragment index to initialise
2187  * @page: the page to use for this fragment
2188  * @off: the offset to the data with @page
2189  * @size: the length of the data
2190  *
2191  * Initialises the @i'th fragment of @skb to point to &size bytes at
2192  * offset @off within @page.
2193  *
2194  * Does not take any additional reference on the fragment.
2195  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2196 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2197 					struct page *page, int off, int size)
2198 {
2199 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200 
2201 	/*
2202 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2203 	 * that not all callers have unique ownership of the page but rely
2204 	 * on page_is_pfmemalloc doing the right thing(tm).
2205 	 */
2206 	frag->bv_page		  = page;
2207 	frag->bv_offset		  = off;
2208 	skb_frag_size_set(frag, size);
2209 
2210 	page = compound_head(page);
2211 	if (page_is_pfmemalloc(page))
2212 		skb->pfmemalloc	= true;
2213 }
2214 
2215 /**
2216  * skb_fill_page_desc - initialise a paged fragment in an skb
2217  * @skb: buffer containing fragment to be initialised
2218  * @i: paged fragment index to initialise
2219  * @page: the page to use for this fragment
2220  * @off: the offset to the data with @page
2221  * @size: the length of the data
2222  *
2223  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2224  * @skb to point to @size bytes at offset @off within @page. In
2225  * addition updates @skb such that @i is the last fragment.
2226  *
2227  * Does not take any additional reference on the fragment.
2228  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2229 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2230 				      struct page *page, int off, int size)
2231 {
2232 	__skb_fill_page_desc(skb, i, page, off, size);
2233 	skb_shinfo(skb)->nr_frags = i + 1;
2234 }
2235 
2236 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2237 		     int size, unsigned int truesize);
2238 
2239 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2240 			  unsigned int truesize);
2241 
2242 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2243 
2244 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2245 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2246 {
2247 	return skb->head + skb->tail;
2248 }
2249 
skb_reset_tail_pointer(struct sk_buff * skb)2250 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2251 {
2252 	skb->tail = skb->data - skb->head;
2253 }
2254 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2255 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2256 {
2257 	skb_reset_tail_pointer(skb);
2258 	skb->tail += offset;
2259 }
2260 
2261 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2262 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2263 {
2264 	return skb->tail;
2265 }
2266 
skb_reset_tail_pointer(struct sk_buff * skb)2267 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2268 {
2269 	skb->tail = skb->data;
2270 }
2271 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2272 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2273 {
2274 	skb->tail = skb->data + offset;
2275 }
2276 
2277 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2278 
skb_assert_len(struct sk_buff * skb)2279 static inline void skb_assert_len(struct sk_buff *skb)
2280 {
2281 #ifdef CONFIG_DEBUG_NET
2282 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2283 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2284 #endif /* CONFIG_DEBUG_NET */
2285 }
2286 
2287 /*
2288  *	Add data to an sk_buff
2289  */
2290 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2291 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2292 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2293 {
2294 	void *tmp = skb_tail_pointer(skb);
2295 	SKB_LINEAR_ASSERT(skb);
2296 	skb->tail += len;
2297 	skb->len  += len;
2298 	return tmp;
2299 }
2300 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2301 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2302 {
2303 	void *tmp = __skb_put(skb, len);
2304 
2305 	memset(tmp, 0, len);
2306 	return tmp;
2307 }
2308 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2309 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2310 				   unsigned int len)
2311 {
2312 	void *tmp = __skb_put(skb, len);
2313 
2314 	memcpy(tmp, data, len);
2315 	return tmp;
2316 }
2317 
__skb_put_u8(struct sk_buff * skb,u8 val)2318 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2319 {
2320 	*(u8 *)__skb_put(skb, 1) = val;
2321 }
2322 
skb_put_zero(struct sk_buff * skb,unsigned int len)2323 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2324 {
2325 	void *tmp = skb_put(skb, len);
2326 
2327 	memset(tmp, 0, len);
2328 
2329 	return tmp;
2330 }
2331 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2332 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2333 				 unsigned int len)
2334 {
2335 	void *tmp = skb_put(skb, len);
2336 
2337 	memcpy(tmp, data, len);
2338 
2339 	return tmp;
2340 }
2341 
skb_put_u8(struct sk_buff * skb,u8 val)2342 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2343 {
2344 	*(u8 *)skb_put(skb, 1) = val;
2345 }
2346 
2347 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2348 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2349 {
2350 	skb->data -= len;
2351 	skb->len  += len;
2352 	return skb->data;
2353 }
2354 
2355 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2356 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2357 {
2358 	skb->len -= len;
2359 	BUG_ON(skb->len < skb->data_len);
2360 	return skb->data += len;
2361 }
2362 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2363 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2364 {
2365 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2366 }
2367 
2368 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2369 
__pskb_pull(struct sk_buff * skb,unsigned int len)2370 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2371 {
2372 	if (len > skb_headlen(skb) &&
2373 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2374 		return NULL;
2375 	skb->len -= len;
2376 	return skb->data += len;
2377 }
2378 
pskb_pull(struct sk_buff * skb,unsigned int len)2379 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2380 {
2381 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2382 }
2383 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2384 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2385 {
2386 	if (likely(len <= skb_headlen(skb)))
2387 		return true;
2388 	if (unlikely(len > skb->len))
2389 		return false;
2390 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2391 }
2392 
2393 void skb_condense(struct sk_buff *skb);
2394 
2395 /**
2396  *	skb_headroom - bytes at buffer head
2397  *	@skb: buffer to check
2398  *
2399  *	Return the number of bytes of free space at the head of an &sk_buff.
2400  */
skb_headroom(const struct sk_buff * skb)2401 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2402 {
2403 	return skb->data - skb->head;
2404 }
2405 
2406 /**
2407  *	skb_tailroom - bytes at buffer end
2408  *	@skb: buffer to check
2409  *
2410  *	Return the number of bytes of free space at the tail of an sk_buff
2411  */
skb_tailroom(const struct sk_buff * skb)2412 static inline int skb_tailroom(const struct sk_buff *skb)
2413 {
2414 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2415 }
2416 
2417 /**
2418  *	skb_availroom - bytes at buffer end
2419  *	@skb: buffer to check
2420  *
2421  *	Return the number of bytes of free space at the tail of an sk_buff
2422  *	allocated by sk_stream_alloc()
2423  */
skb_availroom(const struct sk_buff * skb)2424 static inline int skb_availroom(const struct sk_buff *skb)
2425 {
2426 	if (skb_is_nonlinear(skb))
2427 		return 0;
2428 
2429 	return skb->end - skb->tail - skb->reserved_tailroom;
2430 }
2431 
2432 /**
2433  *	skb_reserve - adjust headroom
2434  *	@skb: buffer to alter
2435  *	@len: bytes to move
2436  *
2437  *	Increase the headroom of an empty &sk_buff by reducing the tail
2438  *	room. This is only allowed for an empty buffer.
2439  */
skb_reserve(struct sk_buff * skb,int len)2440 static inline void skb_reserve(struct sk_buff *skb, int len)
2441 {
2442 	skb->data += len;
2443 	skb->tail += len;
2444 }
2445 
2446 /**
2447  *	skb_tailroom_reserve - adjust reserved_tailroom
2448  *	@skb: buffer to alter
2449  *	@mtu: maximum amount of headlen permitted
2450  *	@needed_tailroom: minimum amount of reserved_tailroom
2451  *
2452  *	Set reserved_tailroom so that headlen can be as large as possible but
2453  *	not larger than mtu and tailroom cannot be smaller than
2454  *	needed_tailroom.
2455  *	The required headroom should already have been reserved before using
2456  *	this function.
2457  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2458 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2459 					unsigned int needed_tailroom)
2460 {
2461 	SKB_LINEAR_ASSERT(skb);
2462 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2463 		/* use at most mtu */
2464 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2465 	else
2466 		/* use up to all available space */
2467 		skb->reserved_tailroom = needed_tailroom;
2468 }
2469 
2470 #define ENCAP_TYPE_ETHER	0
2471 #define ENCAP_TYPE_IPPROTO	1
2472 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2473 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2474 					  __be16 protocol)
2475 {
2476 	skb->inner_protocol = protocol;
2477 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2478 }
2479 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2480 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2481 					 __u8 ipproto)
2482 {
2483 	skb->inner_ipproto = ipproto;
2484 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2485 }
2486 
skb_reset_inner_headers(struct sk_buff * skb)2487 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2488 {
2489 	skb->inner_mac_header = skb->mac_header;
2490 	skb->inner_network_header = skb->network_header;
2491 	skb->inner_transport_header = skb->transport_header;
2492 }
2493 
skb_reset_mac_len(struct sk_buff * skb)2494 static inline void skb_reset_mac_len(struct sk_buff *skb)
2495 {
2496 	skb->mac_len = skb->network_header - skb->mac_header;
2497 }
2498 
skb_inner_transport_header(const struct sk_buff * skb)2499 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2500 							*skb)
2501 {
2502 	return skb->head + skb->inner_transport_header;
2503 }
2504 
skb_inner_transport_offset(const struct sk_buff * skb)2505 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2506 {
2507 	return skb_inner_transport_header(skb) - skb->data;
2508 }
2509 
skb_reset_inner_transport_header(struct sk_buff * skb)2510 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2511 {
2512 	skb->inner_transport_header = skb->data - skb->head;
2513 }
2514 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2515 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2516 						   const int offset)
2517 {
2518 	skb_reset_inner_transport_header(skb);
2519 	skb->inner_transport_header += offset;
2520 }
2521 
skb_inner_network_header(const struct sk_buff * skb)2522 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2523 {
2524 	return skb->head + skb->inner_network_header;
2525 }
2526 
skb_reset_inner_network_header(struct sk_buff * skb)2527 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2528 {
2529 	skb->inner_network_header = skb->data - skb->head;
2530 }
2531 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2532 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2533 						const int offset)
2534 {
2535 	skb_reset_inner_network_header(skb);
2536 	skb->inner_network_header += offset;
2537 }
2538 
skb_inner_mac_header(const struct sk_buff * skb)2539 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2540 {
2541 	return skb->head + skb->inner_mac_header;
2542 }
2543 
skb_reset_inner_mac_header(struct sk_buff * skb)2544 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2545 {
2546 	skb->inner_mac_header = skb->data - skb->head;
2547 }
2548 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2549 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2550 					    const int offset)
2551 {
2552 	skb_reset_inner_mac_header(skb);
2553 	skb->inner_mac_header += offset;
2554 }
skb_transport_header_was_set(const struct sk_buff * skb)2555 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2556 {
2557 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2558 }
2559 
skb_transport_header(const struct sk_buff * skb)2560 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2561 {
2562 	return skb->head + skb->transport_header;
2563 }
2564 
skb_reset_transport_header(struct sk_buff * skb)2565 static inline void skb_reset_transport_header(struct sk_buff *skb)
2566 {
2567 	skb->transport_header = skb->data - skb->head;
2568 }
2569 
skb_set_transport_header(struct sk_buff * skb,const int offset)2570 static inline void skb_set_transport_header(struct sk_buff *skb,
2571 					    const int offset)
2572 {
2573 	skb_reset_transport_header(skb);
2574 	skb->transport_header += offset;
2575 }
2576 
skb_network_header(const struct sk_buff * skb)2577 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2578 {
2579 	return skb->head + skb->network_header;
2580 }
2581 
skb_reset_network_header(struct sk_buff * skb)2582 static inline void skb_reset_network_header(struct sk_buff *skb)
2583 {
2584 	skb->network_header = skb->data - skb->head;
2585 }
2586 
skb_set_network_header(struct sk_buff * skb,const int offset)2587 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2588 {
2589 	skb_reset_network_header(skb);
2590 	skb->network_header += offset;
2591 }
2592 
skb_mac_header(const struct sk_buff * skb)2593 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2594 {
2595 	return skb->head + skb->mac_header;
2596 }
2597 
skb_mac_offset(const struct sk_buff * skb)2598 static inline int skb_mac_offset(const struct sk_buff *skb)
2599 {
2600 	return skb_mac_header(skb) - skb->data;
2601 }
2602 
skb_mac_header_len(const struct sk_buff * skb)2603 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2604 {
2605 	return skb->network_header - skb->mac_header;
2606 }
2607 
skb_mac_header_was_set(const struct sk_buff * skb)2608 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2609 {
2610 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2611 }
2612 
skb_unset_mac_header(struct sk_buff * skb)2613 static inline void skb_unset_mac_header(struct sk_buff *skb)
2614 {
2615 	skb->mac_header = (typeof(skb->mac_header))~0U;
2616 }
2617 
skb_reset_mac_header(struct sk_buff * skb)2618 static inline void skb_reset_mac_header(struct sk_buff *skb)
2619 {
2620 	skb->mac_header = skb->data - skb->head;
2621 }
2622 
skb_set_mac_header(struct sk_buff * skb,const int offset)2623 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2624 {
2625 	skb_reset_mac_header(skb);
2626 	skb->mac_header += offset;
2627 }
2628 
skb_pop_mac_header(struct sk_buff * skb)2629 static inline void skb_pop_mac_header(struct sk_buff *skb)
2630 {
2631 	skb->mac_header = skb->network_header;
2632 }
2633 
skb_probe_transport_header(struct sk_buff * skb)2634 static inline void skb_probe_transport_header(struct sk_buff *skb)
2635 {
2636 	struct flow_keys_basic keys;
2637 
2638 	if (skb_transport_header_was_set(skb))
2639 		return;
2640 
2641 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2642 					     NULL, 0, 0, 0, 0))
2643 		skb_set_transport_header(skb, keys.control.thoff);
2644 }
2645 
skb_mac_header_rebuild(struct sk_buff * skb)2646 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2647 {
2648 	if (skb_mac_header_was_set(skb)) {
2649 		const unsigned char *old_mac = skb_mac_header(skb);
2650 
2651 		skb_set_mac_header(skb, -skb->mac_len);
2652 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2653 	}
2654 }
2655 
skb_checksum_start_offset(const struct sk_buff * skb)2656 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2657 {
2658 	return skb->csum_start - skb_headroom(skb);
2659 }
2660 
skb_checksum_start(const struct sk_buff * skb)2661 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2662 {
2663 	return skb->head + skb->csum_start;
2664 }
2665 
skb_transport_offset(const struct sk_buff * skb)2666 static inline int skb_transport_offset(const struct sk_buff *skb)
2667 {
2668 	return skb_transport_header(skb) - skb->data;
2669 }
2670 
skb_network_header_len(const struct sk_buff * skb)2671 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2672 {
2673 	return skb->transport_header - skb->network_header;
2674 }
2675 
skb_inner_network_header_len(const struct sk_buff * skb)2676 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2677 {
2678 	return skb->inner_transport_header - skb->inner_network_header;
2679 }
2680 
skb_network_offset(const struct sk_buff * skb)2681 static inline int skb_network_offset(const struct sk_buff *skb)
2682 {
2683 	return skb_network_header(skb) - skb->data;
2684 }
2685 
skb_inner_network_offset(const struct sk_buff * skb)2686 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2687 {
2688 	return skb_inner_network_header(skb) - skb->data;
2689 }
2690 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2691 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2692 {
2693 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2694 }
2695 
2696 /*
2697  * CPUs often take a performance hit when accessing unaligned memory
2698  * locations. The actual performance hit varies, it can be small if the
2699  * hardware handles it or large if we have to take an exception and fix it
2700  * in software.
2701  *
2702  * Since an ethernet header is 14 bytes network drivers often end up with
2703  * the IP header at an unaligned offset. The IP header can be aligned by
2704  * shifting the start of the packet by 2 bytes. Drivers should do this
2705  * with:
2706  *
2707  * skb_reserve(skb, NET_IP_ALIGN);
2708  *
2709  * The downside to this alignment of the IP header is that the DMA is now
2710  * unaligned. On some architectures the cost of an unaligned DMA is high
2711  * and this cost outweighs the gains made by aligning the IP header.
2712  *
2713  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2714  * to be overridden.
2715  */
2716 #ifndef NET_IP_ALIGN
2717 #define NET_IP_ALIGN	2
2718 #endif
2719 
2720 /*
2721  * The networking layer reserves some headroom in skb data (via
2722  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2723  * the header has to grow. In the default case, if the header has to grow
2724  * 32 bytes or less we avoid the reallocation.
2725  *
2726  * Unfortunately this headroom changes the DMA alignment of the resulting
2727  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2728  * on some architectures. An architecture can override this value,
2729  * perhaps setting it to a cacheline in size (since that will maintain
2730  * cacheline alignment of the DMA). It must be a power of 2.
2731  *
2732  * Various parts of the networking layer expect at least 32 bytes of
2733  * headroom, you should not reduce this.
2734  *
2735  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2736  * to reduce average number of cache lines per packet.
2737  * get_rps_cpu() for example only access one 64 bytes aligned block :
2738  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2739  */
2740 #ifndef NET_SKB_PAD
2741 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2742 #endif
2743 
2744 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2745 
__skb_set_length(struct sk_buff * skb,unsigned int len)2746 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2747 {
2748 	if (WARN_ON(skb_is_nonlinear(skb)))
2749 		return;
2750 	skb->len = len;
2751 	skb_set_tail_pointer(skb, len);
2752 }
2753 
__skb_trim(struct sk_buff * skb,unsigned int len)2754 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2755 {
2756 	__skb_set_length(skb, len);
2757 }
2758 
2759 void skb_trim(struct sk_buff *skb, unsigned int len);
2760 
__pskb_trim(struct sk_buff * skb,unsigned int len)2761 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2762 {
2763 	if (skb->data_len)
2764 		return ___pskb_trim(skb, len);
2765 	__skb_trim(skb, len);
2766 	return 0;
2767 }
2768 
pskb_trim(struct sk_buff * skb,unsigned int len)2769 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2770 {
2771 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2772 }
2773 
2774 /**
2775  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2776  *	@skb: buffer to alter
2777  *	@len: new length
2778  *
2779  *	This is identical to pskb_trim except that the caller knows that
2780  *	the skb is not cloned so we should never get an error due to out-
2781  *	of-memory.
2782  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2783 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2784 {
2785 	int err = pskb_trim(skb, len);
2786 	BUG_ON(err);
2787 }
2788 
__skb_grow(struct sk_buff * skb,unsigned int len)2789 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2790 {
2791 	unsigned int diff = len - skb->len;
2792 
2793 	if (skb_tailroom(skb) < diff) {
2794 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2795 					   GFP_ATOMIC);
2796 		if (ret)
2797 			return ret;
2798 	}
2799 	__skb_set_length(skb, len);
2800 	return 0;
2801 }
2802 
2803 /**
2804  *	skb_orphan - orphan a buffer
2805  *	@skb: buffer to orphan
2806  *
2807  *	If a buffer currently has an owner then we call the owner's
2808  *	destructor function and make the @skb unowned. The buffer continues
2809  *	to exist but is no longer charged to its former owner.
2810  */
skb_orphan(struct sk_buff * skb)2811 static inline void skb_orphan(struct sk_buff *skb)
2812 {
2813 	if (skb->destructor) {
2814 		skb->destructor(skb);
2815 		skb->destructor = NULL;
2816 		skb->sk		= NULL;
2817 	} else {
2818 		BUG_ON(skb->sk);
2819 	}
2820 }
2821 
2822 /**
2823  *	skb_orphan_frags - orphan the frags contained in a buffer
2824  *	@skb: buffer to orphan frags from
2825  *	@gfp_mask: allocation mask for replacement pages
2826  *
2827  *	For each frag in the SKB which needs a destructor (i.e. has an
2828  *	owner) create a copy of that frag and release the original
2829  *	page by calling the destructor.
2830  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2831 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2832 {
2833 	if (likely(!skb_zcopy(skb)))
2834 		return 0;
2835 	if (!skb_zcopy_is_nouarg(skb) &&
2836 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2837 		return 0;
2838 	return skb_copy_ubufs(skb, gfp_mask);
2839 }
2840 
2841 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2842 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2843 {
2844 	if (likely(!skb_zcopy(skb)))
2845 		return 0;
2846 	return skb_copy_ubufs(skb, gfp_mask);
2847 }
2848 
2849 /**
2850  *	__skb_queue_purge - empty a list
2851  *	@list: list to empty
2852  *
2853  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2854  *	the list and one reference dropped. This function does not take the
2855  *	list lock and the caller must hold the relevant locks to use it.
2856  */
__skb_queue_purge(struct sk_buff_head * list)2857 static inline void __skb_queue_purge(struct sk_buff_head *list)
2858 {
2859 	struct sk_buff *skb;
2860 	while ((skb = __skb_dequeue(list)) != NULL)
2861 		kfree_skb(skb);
2862 }
2863 void skb_queue_purge(struct sk_buff_head *list);
2864 
2865 unsigned int skb_rbtree_purge(struct rb_root *root);
2866 
2867 void *netdev_alloc_frag(unsigned int fragsz);
2868 
2869 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2870 				   gfp_t gfp_mask);
2871 
2872 /**
2873  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2874  *	@dev: network device to receive on
2875  *	@length: length to allocate
2876  *
2877  *	Allocate a new &sk_buff and assign it a usage count of one. The
2878  *	buffer has unspecified headroom built in. Users should allocate
2879  *	the headroom they think they need without accounting for the
2880  *	built in space. The built in space is used for optimisations.
2881  *
2882  *	%NULL is returned if there is no free memory. Although this function
2883  *	allocates memory it can be called from an interrupt.
2884  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2885 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2886 					       unsigned int length)
2887 {
2888 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2889 }
2890 
2891 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2892 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2893 					      gfp_t gfp_mask)
2894 {
2895 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2896 }
2897 
2898 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2899 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2900 {
2901 	return netdev_alloc_skb(NULL, length);
2902 }
2903 
2904 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2905 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2906 		unsigned int length, gfp_t gfp)
2907 {
2908 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2909 
2910 	if (NET_IP_ALIGN && skb)
2911 		skb_reserve(skb, NET_IP_ALIGN);
2912 	return skb;
2913 }
2914 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2915 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2916 		unsigned int length)
2917 {
2918 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2919 }
2920 
skb_free_frag(void * addr)2921 static inline void skb_free_frag(void *addr)
2922 {
2923 	page_frag_free(addr);
2924 }
2925 
2926 void *napi_alloc_frag(unsigned int fragsz);
2927 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2928 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2929 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2930 					     unsigned int length)
2931 {
2932 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2933 }
2934 void napi_consume_skb(struct sk_buff *skb, int budget);
2935 
2936 void __kfree_skb_flush(void);
2937 void __kfree_skb_defer(struct sk_buff *skb);
2938 
2939 /**
2940  * __dev_alloc_pages - allocate page for network Rx
2941  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2942  * @order: size of the allocation
2943  *
2944  * Allocate a new page.
2945  *
2946  * %NULL is returned if there is no free memory.
2947 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2948 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2949 					     unsigned int order)
2950 {
2951 	/* This piece of code contains several assumptions.
2952 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2953 	 * 2.  The expectation is the user wants a compound page.
2954 	 * 3.  If requesting a order 0 page it will not be compound
2955 	 *     due to the check to see if order has a value in prep_new_page
2956 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2957 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2958 	 */
2959 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2960 
2961 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2962 }
2963 
dev_alloc_pages(unsigned int order)2964 static inline struct page *dev_alloc_pages(unsigned int order)
2965 {
2966 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2967 }
2968 
2969 /**
2970  * __dev_alloc_page - allocate a page for network Rx
2971  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2972  *
2973  * Allocate a new page.
2974  *
2975  * %NULL is returned if there is no free memory.
2976  */
__dev_alloc_page(gfp_t gfp_mask)2977 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2978 {
2979 	return __dev_alloc_pages(gfp_mask, 0);
2980 }
2981 
dev_alloc_page(void)2982 static inline struct page *dev_alloc_page(void)
2983 {
2984 	return dev_alloc_pages(0);
2985 }
2986 
2987 /**
2988  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2989  *	@page: The page that was allocated from skb_alloc_page
2990  *	@skb: The skb that may need pfmemalloc set
2991  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2992 static inline void skb_propagate_pfmemalloc(struct page *page,
2993 					     struct sk_buff *skb)
2994 {
2995 	if (page_is_pfmemalloc(page))
2996 		skb->pfmemalloc = true;
2997 }
2998 
2999 /**
3000  * skb_frag_off() - Returns the offset of a skb fragment
3001  * @frag: the paged fragment
3002  */
skb_frag_off(const skb_frag_t * frag)3003 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3004 {
3005 	return frag->bv_offset;
3006 }
3007 
3008 /**
3009  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3010  * @frag: skb fragment
3011  * @delta: value to add
3012  */
skb_frag_off_add(skb_frag_t * frag,int delta)3013 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3014 {
3015 	frag->bv_offset += delta;
3016 }
3017 
3018 /**
3019  * skb_frag_off_set() - Sets the offset of a skb fragment
3020  * @frag: skb fragment
3021  * @offset: offset of fragment
3022  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3023 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3024 {
3025 	frag->bv_offset = offset;
3026 }
3027 
3028 /**
3029  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3030  * @fragto: skb fragment where offset is set
3031  * @fragfrom: skb fragment offset is copied from
3032  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3033 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3034 				     const skb_frag_t *fragfrom)
3035 {
3036 	fragto->bv_offset = fragfrom->bv_offset;
3037 }
3038 
3039 /**
3040  * skb_frag_page - retrieve the page referred to by a paged fragment
3041  * @frag: the paged fragment
3042  *
3043  * Returns the &struct page associated with @frag.
3044  */
skb_frag_page(const skb_frag_t * frag)3045 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3046 {
3047 	return frag->bv_page;
3048 }
3049 
3050 /**
3051  * __skb_frag_ref - take an addition reference on a paged fragment.
3052  * @frag: the paged fragment
3053  *
3054  * Takes an additional reference on the paged fragment @frag.
3055  */
__skb_frag_ref(skb_frag_t * frag)3056 static inline void __skb_frag_ref(skb_frag_t *frag)
3057 {
3058 	get_page(skb_frag_page(frag));
3059 }
3060 
3061 /**
3062  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3063  * @skb: the buffer
3064  * @f: the fragment offset.
3065  *
3066  * Takes an additional reference on the @f'th paged fragment of @skb.
3067  */
skb_frag_ref(struct sk_buff * skb,int f)3068 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3069 {
3070 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3071 }
3072 
3073 /**
3074  * __skb_frag_unref - release a reference on a paged fragment.
3075  * @frag: the paged fragment
3076  *
3077  * Releases a reference on the paged fragment @frag.
3078  */
__skb_frag_unref(skb_frag_t * frag)3079 static inline void __skb_frag_unref(skb_frag_t *frag)
3080 {
3081 	put_page(skb_frag_page(frag));
3082 }
3083 
3084 /**
3085  * skb_frag_unref - release a reference on a paged fragment of an skb.
3086  * @skb: the buffer
3087  * @f: the fragment offset
3088  *
3089  * Releases a reference on the @f'th paged fragment of @skb.
3090  */
skb_frag_unref(struct sk_buff * skb,int f)3091 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3092 {
3093 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3094 }
3095 
3096 /**
3097  * skb_frag_address - gets the address of the data contained in a paged fragment
3098  * @frag: the paged fragment buffer
3099  *
3100  * Returns the address of the data within @frag. The page must already
3101  * be mapped.
3102  */
skb_frag_address(const skb_frag_t * frag)3103 static inline void *skb_frag_address(const skb_frag_t *frag)
3104 {
3105 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3106 }
3107 
3108 /**
3109  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3110  * @frag: the paged fragment buffer
3111  *
3112  * Returns the address of the data within @frag. Checks that the page
3113  * is mapped and returns %NULL otherwise.
3114  */
skb_frag_address_safe(const skb_frag_t * frag)3115 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3116 {
3117 	void *ptr = page_address(skb_frag_page(frag));
3118 	if (unlikely(!ptr))
3119 		return NULL;
3120 
3121 	return ptr + skb_frag_off(frag);
3122 }
3123 
3124 /**
3125  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3126  * @fragto: skb fragment where page is set
3127  * @fragfrom: skb fragment page is copied from
3128  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3129 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3130 				      const skb_frag_t *fragfrom)
3131 {
3132 	fragto->bv_page = fragfrom->bv_page;
3133 }
3134 
3135 /**
3136  * __skb_frag_set_page - sets the page contained in a paged fragment
3137  * @frag: the paged fragment
3138  * @page: the page to set
3139  *
3140  * Sets the fragment @frag to contain @page.
3141  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3142 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3143 {
3144 	frag->bv_page = page;
3145 }
3146 
3147 /**
3148  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3149  * @skb: the buffer
3150  * @f: the fragment offset
3151  * @page: the page to set
3152  *
3153  * Sets the @f'th fragment of @skb to contain @page.
3154  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3155 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3156 				     struct page *page)
3157 {
3158 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3159 }
3160 
3161 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3162 
3163 /**
3164  * skb_frag_dma_map - maps a paged fragment via the DMA API
3165  * @dev: the device to map the fragment to
3166  * @frag: the paged fragment to map
3167  * @offset: the offset within the fragment (starting at the
3168  *          fragment's own offset)
3169  * @size: the number of bytes to map
3170  * @dir: the direction of the mapping (``PCI_DMA_*``)
3171  *
3172  * Maps the page associated with @frag to @device.
3173  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3174 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3175 					  const skb_frag_t *frag,
3176 					  size_t offset, size_t size,
3177 					  enum dma_data_direction dir)
3178 {
3179 	return dma_map_page(dev, skb_frag_page(frag),
3180 			    skb_frag_off(frag) + offset, size, dir);
3181 }
3182 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3183 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3184 					gfp_t gfp_mask)
3185 {
3186 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3187 }
3188 
3189 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3190 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3191 						  gfp_t gfp_mask)
3192 {
3193 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3194 }
3195 
3196 
3197 /**
3198  *	skb_clone_writable - is the header of a clone writable
3199  *	@skb: buffer to check
3200  *	@len: length up to which to write
3201  *
3202  *	Returns true if modifying the header part of the cloned buffer
3203  *	does not requires the data to be copied.
3204  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3205 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3206 {
3207 	return !skb_header_cloned(skb) &&
3208 	       skb_headroom(skb) + len <= skb->hdr_len;
3209 }
3210 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3211 static inline int skb_try_make_writable(struct sk_buff *skb,
3212 					unsigned int write_len)
3213 {
3214 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3215 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3216 }
3217 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3218 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3219 			    int cloned)
3220 {
3221 	int delta = 0;
3222 
3223 	if (headroom > skb_headroom(skb))
3224 		delta = headroom - skb_headroom(skb);
3225 
3226 	if (delta || cloned)
3227 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3228 					GFP_ATOMIC);
3229 	return 0;
3230 }
3231 
3232 /**
3233  *	skb_cow - copy header of skb when it is required
3234  *	@skb: buffer to cow
3235  *	@headroom: needed headroom
3236  *
3237  *	If the skb passed lacks sufficient headroom or its data part
3238  *	is shared, data is reallocated. If reallocation fails, an error
3239  *	is returned and original skb is not changed.
3240  *
3241  *	The result is skb with writable area skb->head...skb->tail
3242  *	and at least @headroom of space at head.
3243  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3244 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3245 {
3246 	return __skb_cow(skb, headroom, skb_cloned(skb));
3247 }
3248 
3249 /**
3250  *	skb_cow_head - skb_cow but only making the head writable
3251  *	@skb: buffer to cow
3252  *	@headroom: needed headroom
3253  *
3254  *	This function is identical to skb_cow except that we replace the
3255  *	skb_cloned check by skb_header_cloned.  It should be used when
3256  *	you only need to push on some header and do not need to modify
3257  *	the data.
3258  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3259 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3260 {
3261 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3262 }
3263 
3264 /**
3265  *	skb_padto	- pad an skbuff up to a minimal size
3266  *	@skb: buffer to pad
3267  *	@len: minimal length
3268  *
3269  *	Pads up a buffer to ensure the trailing bytes exist and are
3270  *	blanked. If the buffer already contains sufficient data it
3271  *	is untouched. Otherwise it is extended. Returns zero on
3272  *	success. The skb is freed on error.
3273  */
skb_padto(struct sk_buff * skb,unsigned int len)3274 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3275 {
3276 	unsigned int size = skb->len;
3277 	if (likely(size >= len))
3278 		return 0;
3279 	return skb_pad(skb, len - size);
3280 }
3281 
3282 /**
3283  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3284  *	@skb: buffer to pad
3285  *	@len: minimal length
3286  *	@free_on_error: free buffer on error
3287  *
3288  *	Pads up a buffer to ensure the trailing bytes exist and are
3289  *	blanked. If the buffer already contains sufficient data it
3290  *	is untouched. Otherwise it is extended. Returns zero on
3291  *	success. The skb is freed on error if @free_on_error is true.
3292  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3293 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3294 					       unsigned int len,
3295 					       bool free_on_error)
3296 {
3297 	unsigned int size = skb->len;
3298 
3299 	if (unlikely(size < len)) {
3300 		len -= size;
3301 		if (__skb_pad(skb, len, free_on_error))
3302 			return -ENOMEM;
3303 		__skb_put(skb, len);
3304 	}
3305 	return 0;
3306 }
3307 
3308 /**
3309  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3310  *	@skb: buffer to pad
3311  *	@len: minimal length
3312  *
3313  *	Pads up a buffer to ensure the trailing bytes exist and are
3314  *	blanked. If the buffer already contains sufficient data it
3315  *	is untouched. Otherwise it is extended. Returns zero on
3316  *	success. The skb is freed on error.
3317  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3318 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3319 {
3320 	return __skb_put_padto(skb, len, true);
3321 }
3322 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3323 static inline int skb_add_data(struct sk_buff *skb,
3324 			       struct iov_iter *from, int copy)
3325 {
3326 	const int off = skb->len;
3327 
3328 	if (skb->ip_summed == CHECKSUM_NONE) {
3329 		__wsum csum = 0;
3330 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3331 					         &csum, from)) {
3332 			skb->csum = csum_block_add(skb->csum, csum, off);
3333 			return 0;
3334 		}
3335 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3336 		return 0;
3337 
3338 	__skb_trim(skb, off);
3339 	return -EFAULT;
3340 }
3341 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3342 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3343 				    const struct page *page, int off)
3344 {
3345 	if (skb_zcopy(skb))
3346 		return false;
3347 	if (i) {
3348 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3349 
3350 		return page == skb_frag_page(frag) &&
3351 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3352 	}
3353 	return false;
3354 }
3355 
__skb_linearize(struct sk_buff * skb)3356 static inline int __skb_linearize(struct sk_buff *skb)
3357 {
3358 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3359 }
3360 
3361 /**
3362  *	skb_linearize - convert paged skb to linear one
3363  *	@skb: buffer to linarize
3364  *
3365  *	If there is no free memory -ENOMEM is returned, otherwise zero
3366  *	is returned and the old skb data released.
3367  */
skb_linearize(struct sk_buff * skb)3368 static inline int skb_linearize(struct sk_buff *skb)
3369 {
3370 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3371 }
3372 
3373 /**
3374  * skb_has_shared_frag - can any frag be overwritten
3375  * @skb: buffer to test
3376  *
3377  * Return true if the skb has at least one frag that might be modified
3378  * by an external entity (as in vmsplice()/sendfile())
3379  */
skb_has_shared_frag(const struct sk_buff * skb)3380 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3381 {
3382 	return skb_is_nonlinear(skb) &&
3383 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3384 }
3385 
3386 /**
3387  *	skb_linearize_cow - make sure skb is linear and writable
3388  *	@skb: buffer to process
3389  *
3390  *	If there is no free memory -ENOMEM is returned, otherwise zero
3391  *	is returned and the old skb data released.
3392  */
skb_linearize_cow(struct sk_buff * skb)3393 static inline int skb_linearize_cow(struct sk_buff *skb)
3394 {
3395 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3396 	       __skb_linearize(skb) : 0;
3397 }
3398 
3399 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3400 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3401 		     unsigned int off)
3402 {
3403 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3404 		skb->csum = csum_block_sub(skb->csum,
3405 					   csum_partial(start, len, 0), off);
3406 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3407 		 skb_checksum_start_offset(skb) < 0)
3408 		skb->ip_summed = CHECKSUM_NONE;
3409 }
3410 
3411 /**
3412  *	skb_postpull_rcsum - update checksum for received skb after pull
3413  *	@skb: buffer to update
3414  *	@start: start of data before pull
3415  *	@len: length of data pulled
3416  *
3417  *	After doing a pull on a received packet, you need to call this to
3418  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3419  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3420  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3421 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3422 				      const void *start, unsigned int len)
3423 {
3424 	__skb_postpull_rcsum(skb, start, len, 0);
3425 }
3426 
3427 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3428 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3429 		     unsigned int off)
3430 {
3431 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3432 		skb->csum = csum_block_add(skb->csum,
3433 					   csum_partial(start, len, 0), off);
3434 }
3435 
3436 /**
3437  *	skb_postpush_rcsum - update checksum for received skb after push
3438  *	@skb: buffer to update
3439  *	@start: start of data after push
3440  *	@len: length of data pushed
3441  *
3442  *	After doing a push on a received packet, you need to call this to
3443  *	update the CHECKSUM_COMPLETE checksum.
3444  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3445 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3446 				      const void *start, unsigned int len)
3447 {
3448 	__skb_postpush_rcsum(skb, start, len, 0);
3449 }
3450 
3451 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3452 
3453 /**
3454  *	skb_push_rcsum - push skb and update receive checksum
3455  *	@skb: buffer to update
3456  *	@len: length of data pulled
3457  *
3458  *	This function performs an skb_push on the packet and updates
3459  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3460  *	receive path processing instead of skb_push unless you know
3461  *	that the checksum difference is zero (e.g., a valid IP header)
3462  *	or you are setting ip_summed to CHECKSUM_NONE.
3463  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3464 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3465 {
3466 	skb_push(skb, len);
3467 	skb_postpush_rcsum(skb, skb->data, len);
3468 	return skb->data;
3469 }
3470 
3471 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3472 /**
3473  *	pskb_trim_rcsum - trim received skb and update checksum
3474  *	@skb: buffer to trim
3475  *	@len: new length
3476  *
3477  *	This is exactly the same as pskb_trim except that it ensures the
3478  *	checksum of received packets are still valid after the operation.
3479  *	It can change skb pointers.
3480  */
3481 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3482 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3483 {
3484 	if (likely(len >= skb->len))
3485 		return 0;
3486 	return pskb_trim_rcsum_slow(skb, len);
3487 }
3488 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3489 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3490 {
3491 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3492 		skb->ip_summed = CHECKSUM_NONE;
3493 	__skb_trim(skb, len);
3494 	return 0;
3495 }
3496 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3497 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3498 {
3499 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3500 		skb->ip_summed = CHECKSUM_NONE;
3501 	return __skb_grow(skb, len);
3502 }
3503 
3504 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3505 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3506 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3507 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3508 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3509 
3510 #define skb_queue_walk(queue, skb) \
3511 		for (skb = (queue)->next;					\
3512 		     skb != (struct sk_buff *)(queue);				\
3513 		     skb = skb->next)
3514 
3515 #define skb_queue_walk_safe(queue, skb, tmp)					\
3516 		for (skb = (queue)->next, tmp = skb->next;			\
3517 		     skb != (struct sk_buff *)(queue);				\
3518 		     skb = tmp, tmp = skb->next)
3519 
3520 #define skb_queue_walk_from(queue, skb)						\
3521 		for (; skb != (struct sk_buff *)(queue);			\
3522 		     skb = skb->next)
3523 
3524 #define skb_rbtree_walk(skb, root)						\
3525 		for (skb = skb_rb_first(root); skb != NULL;			\
3526 		     skb = skb_rb_next(skb))
3527 
3528 #define skb_rbtree_walk_from(skb)						\
3529 		for (; skb != NULL;						\
3530 		     skb = skb_rb_next(skb))
3531 
3532 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3533 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3534 		     skb = tmp)
3535 
3536 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3537 		for (tmp = skb->next;						\
3538 		     skb != (struct sk_buff *)(queue);				\
3539 		     skb = tmp, tmp = skb->next)
3540 
3541 #define skb_queue_reverse_walk(queue, skb) \
3542 		for (skb = (queue)->prev;					\
3543 		     skb != (struct sk_buff *)(queue);				\
3544 		     skb = skb->prev)
3545 
3546 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3547 		for (skb = (queue)->prev, tmp = skb->prev;			\
3548 		     skb != (struct sk_buff *)(queue);				\
3549 		     skb = tmp, tmp = skb->prev)
3550 
3551 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3552 		for (tmp = skb->prev;						\
3553 		     skb != (struct sk_buff *)(queue);				\
3554 		     skb = tmp, tmp = skb->prev)
3555 
skb_has_frag_list(const struct sk_buff * skb)3556 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3557 {
3558 	return skb_shinfo(skb)->frag_list != NULL;
3559 }
3560 
skb_frag_list_init(struct sk_buff * skb)3561 static inline void skb_frag_list_init(struct sk_buff *skb)
3562 {
3563 	skb_shinfo(skb)->frag_list = NULL;
3564 }
3565 
3566 #define skb_walk_frags(skb, iter)	\
3567 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3568 
3569 
3570 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3571 				int *err, long *timeo_p,
3572 				const struct sk_buff *skb);
3573 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3574 					  struct sk_buff_head *queue,
3575 					  unsigned int flags,
3576 					  int *off, int *err,
3577 					  struct sk_buff **last);
3578 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3579 					struct sk_buff_head *queue,
3580 					unsigned int flags, int *off, int *err,
3581 					struct sk_buff **last);
3582 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3583 				    struct sk_buff_head *sk_queue,
3584 				    unsigned int flags, int *off, int *err);
3585 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3586 				  int *err);
3587 __poll_t datagram_poll(struct file *file, struct socket *sock,
3588 			   struct poll_table_struct *wait);
3589 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3590 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3591 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3592 					struct msghdr *msg, int size)
3593 {
3594 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3595 }
3596 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3597 				   struct msghdr *msg);
3598 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3599 			   struct iov_iter *to, int len,
3600 			   struct ahash_request *hash);
3601 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3602 				 struct iov_iter *from, int len);
3603 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3604 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3605 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3606 static inline void skb_free_datagram_locked(struct sock *sk,
3607 					    struct sk_buff *skb)
3608 {
3609 	__skb_free_datagram_locked(sk, skb, 0);
3610 }
3611 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3612 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3613 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3614 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3615 			      int len);
3616 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3617 		    struct pipe_inode_info *pipe, unsigned int len,
3618 		    unsigned int flags);
3619 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3620 			 int len);
3621 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3622 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3623 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3624 		 int len, int hlen);
3625 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3626 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3627 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3628 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3629 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3630 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3631 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3632 				 unsigned int offset);
3633 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3634 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3635 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3636 int skb_vlan_pop(struct sk_buff *skb);
3637 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3638 int skb_eth_pop(struct sk_buff *skb);
3639 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3640 		 const unsigned char *src);
3641 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3642 		  int mac_len, bool ethernet);
3643 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3644 		 bool ethernet);
3645 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3646 int skb_mpls_dec_ttl(struct sk_buff *skb);
3647 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3648 			     gfp_t gfp);
3649 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3650 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3651 {
3652 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3653 }
3654 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3655 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3656 {
3657 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3658 }
3659 
3660 struct skb_checksum_ops {
3661 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3662 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3663 };
3664 
3665 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3666 
3667 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3668 		      __wsum csum, const struct skb_checksum_ops *ops);
3669 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3670 		    __wsum csum);
3671 
3672 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3673 __skb_header_pointer(const struct sk_buff *skb, int offset,
3674 		     int len, void *data, int hlen, void *buffer)
3675 {
3676 	if (hlen - offset >= len)
3677 		return data + offset;
3678 
3679 	if (!skb ||
3680 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3681 		return NULL;
3682 
3683 	return buffer;
3684 }
3685 
3686 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3687 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3688 {
3689 	return __skb_header_pointer(skb, offset, len, skb->data,
3690 				    skb_headlen(skb), buffer);
3691 }
3692 
3693 /**
3694  *	skb_needs_linearize - check if we need to linearize a given skb
3695  *			      depending on the given device features.
3696  *	@skb: socket buffer to check
3697  *	@features: net device features
3698  *
3699  *	Returns true if either:
3700  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3701  *	2. skb is fragmented and the device does not support SG.
3702  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3703 static inline bool skb_needs_linearize(struct sk_buff *skb,
3704 				       netdev_features_t features)
3705 {
3706 	return skb_is_nonlinear(skb) &&
3707 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3708 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3709 }
3710 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3711 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3712 					     void *to,
3713 					     const unsigned int len)
3714 {
3715 	memcpy(to, skb->data, len);
3716 }
3717 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3718 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3719 						    const int offset, void *to,
3720 						    const unsigned int len)
3721 {
3722 	memcpy(to, skb->data + offset, len);
3723 }
3724 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3725 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3726 					   const void *from,
3727 					   const unsigned int len)
3728 {
3729 	memcpy(skb->data, from, len);
3730 }
3731 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3732 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3733 						  const int offset,
3734 						  const void *from,
3735 						  const unsigned int len)
3736 {
3737 	memcpy(skb->data + offset, from, len);
3738 }
3739 
3740 void skb_init(void);
3741 
skb_get_ktime(const struct sk_buff * skb)3742 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3743 {
3744 	return skb->tstamp;
3745 }
3746 
3747 /**
3748  *	skb_get_timestamp - get timestamp from a skb
3749  *	@skb: skb to get stamp from
3750  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3751  *
3752  *	Timestamps are stored in the skb as offsets to a base timestamp.
3753  *	This function converts the offset back to a struct timeval and stores
3754  *	it in stamp.
3755  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3756 static inline void skb_get_timestamp(const struct sk_buff *skb,
3757 				     struct __kernel_old_timeval *stamp)
3758 {
3759 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3760 }
3761 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3762 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3763 					 struct __kernel_sock_timeval *stamp)
3764 {
3765 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3766 
3767 	stamp->tv_sec = ts.tv_sec;
3768 	stamp->tv_usec = ts.tv_nsec / 1000;
3769 }
3770 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3771 static inline void skb_get_timestampns(const struct sk_buff *skb,
3772 				       struct __kernel_old_timespec *stamp)
3773 {
3774 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3775 
3776 	stamp->tv_sec = ts.tv_sec;
3777 	stamp->tv_nsec = ts.tv_nsec;
3778 }
3779 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3780 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3781 					   struct __kernel_timespec *stamp)
3782 {
3783 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3784 
3785 	stamp->tv_sec = ts.tv_sec;
3786 	stamp->tv_nsec = ts.tv_nsec;
3787 }
3788 
__net_timestamp(struct sk_buff * skb)3789 static inline void __net_timestamp(struct sk_buff *skb)
3790 {
3791 	skb->tstamp = ktime_get_real();
3792 }
3793 
net_timedelta(ktime_t t)3794 static inline ktime_t net_timedelta(ktime_t t)
3795 {
3796 	return ktime_sub(ktime_get_real(), t);
3797 }
3798 
net_invalid_timestamp(void)3799 static inline ktime_t net_invalid_timestamp(void)
3800 {
3801 	return 0;
3802 }
3803 
skb_metadata_len(const struct sk_buff * skb)3804 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3805 {
3806 	return skb_shinfo(skb)->meta_len;
3807 }
3808 
skb_metadata_end(const struct sk_buff * skb)3809 static inline void *skb_metadata_end(const struct sk_buff *skb)
3810 {
3811 	return skb_mac_header(skb);
3812 }
3813 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3814 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3815 					  const struct sk_buff *skb_b,
3816 					  u8 meta_len)
3817 {
3818 	const void *a = skb_metadata_end(skb_a);
3819 	const void *b = skb_metadata_end(skb_b);
3820 	/* Using more efficient varaiant than plain call to memcmp(). */
3821 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3822 	u64 diffs = 0;
3823 
3824 	switch (meta_len) {
3825 #define __it(x, op) (x -= sizeof(u##op))
3826 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3827 	case 32: diffs |= __it_diff(a, b, 64);
3828 		fallthrough;
3829 	case 24: diffs |= __it_diff(a, b, 64);
3830 		fallthrough;
3831 	case 16: diffs |= __it_diff(a, b, 64);
3832 		fallthrough;
3833 	case  8: diffs |= __it_diff(a, b, 64);
3834 		break;
3835 	case 28: diffs |= __it_diff(a, b, 64);
3836 		fallthrough;
3837 	case 20: diffs |= __it_diff(a, b, 64);
3838 		fallthrough;
3839 	case 12: diffs |= __it_diff(a, b, 64);
3840 		fallthrough;
3841 	case  4: diffs |= __it_diff(a, b, 32);
3842 		break;
3843 	}
3844 	return diffs;
3845 #else
3846 	return memcmp(a - meta_len, b - meta_len, meta_len);
3847 #endif
3848 }
3849 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3850 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3851 					const struct sk_buff *skb_b)
3852 {
3853 	u8 len_a = skb_metadata_len(skb_a);
3854 	u8 len_b = skb_metadata_len(skb_b);
3855 
3856 	if (!(len_a | len_b))
3857 		return false;
3858 
3859 	return len_a != len_b ?
3860 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3861 }
3862 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3863 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3864 {
3865 	skb_shinfo(skb)->meta_len = meta_len;
3866 }
3867 
skb_metadata_clear(struct sk_buff * skb)3868 static inline void skb_metadata_clear(struct sk_buff *skb)
3869 {
3870 	skb_metadata_set(skb, 0);
3871 }
3872 
3873 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3874 
3875 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3876 
3877 void skb_clone_tx_timestamp(struct sk_buff *skb);
3878 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3879 
3880 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3881 
skb_clone_tx_timestamp(struct sk_buff * skb)3882 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3883 {
3884 }
3885 
skb_defer_rx_timestamp(struct sk_buff * skb)3886 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3887 {
3888 	return false;
3889 }
3890 
3891 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3892 
3893 /**
3894  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3895  *
3896  * PHY drivers may accept clones of transmitted packets for
3897  * timestamping via their phy_driver.txtstamp method. These drivers
3898  * must call this function to return the skb back to the stack with a
3899  * timestamp.
3900  *
3901  * @skb: clone of the original outgoing packet
3902  * @hwtstamps: hardware time stamps
3903  *
3904  */
3905 void skb_complete_tx_timestamp(struct sk_buff *skb,
3906 			       struct skb_shared_hwtstamps *hwtstamps);
3907 
3908 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3909 		     struct skb_shared_hwtstamps *hwtstamps,
3910 		     struct sock *sk, int tstype);
3911 
3912 /**
3913  * skb_tstamp_tx - queue clone of skb with send time stamps
3914  * @orig_skb:	the original outgoing packet
3915  * @hwtstamps:	hardware time stamps, may be NULL if not available
3916  *
3917  * If the skb has a socket associated, then this function clones the
3918  * skb (thus sharing the actual data and optional structures), stores
3919  * the optional hardware time stamping information (if non NULL) or
3920  * generates a software time stamp (otherwise), then queues the clone
3921  * to the error queue of the socket.  Errors are silently ignored.
3922  */
3923 void skb_tstamp_tx(struct sk_buff *orig_skb,
3924 		   struct skb_shared_hwtstamps *hwtstamps);
3925 
3926 /**
3927  * skb_tx_timestamp() - Driver hook for transmit timestamping
3928  *
3929  * Ethernet MAC Drivers should call this function in their hard_xmit()
3930  * function immediately before giving the sk_buff to the MAC hardware.
3931  *
3932  * Specifically, one should make absolutely sure that this function is
3933  * called before TX completion of this packet can trigger.  Otherwise
3934  * the packet could potentially already be freed.
3935  *
3936  * @skb: A socket buffer.
3937  */
skb_tx_timestamp(struct sk_buff * skb)3938 static inline void skb_tx_timestamp(struct sk_buff *skb)
3939 {
3940 	skb_clone_tx_timestamp(skb);
3941 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3942 		skb_tstamp_tx(skb, NULL);
3943 }
3944 
3945 /**
3946  * skb_complete_wifi_ack - deliver skb with wifi status
3947  *
3948  * @skb: the original outgoing packet
3949  * @acked: ack status
3950  *
3951  */
3952 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3953 
3954 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3955 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3956 
skb_csum_unnecessary(const struct sk_buff * skb)3957 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3958 {
3959 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3960 		skb->csum_valid ||
3961 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3962 		 skb_checksum_start_offset(skb) >= 0));
3963 }
3964 
3965 /**
3966  *	skb_checksum_complete - Calculate checksum of an entire packet
3967  *	@skb: packet to process
3968  *
3969  *	This function calculates the checksum over the entire packet plus
3970  *	the value of skb->csum.  The latter can be used to supply the
3971  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3972  *	checksum.
3973  *
3974  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3975  *	this function can be used to verify that checksum on received
3976  *	packets.  In that case the function should return zero if the
3977  *	checksum is correct.  In particular, this function will return zero
3978  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3979  *	hardware has already verified the correctness of the checksum.
3980  */
skb_checksum_complete(struct sk_buff * skb)3981 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3982 {
3983 	return skb_csum_unnecessary(skb) ?
3984 	       0 : __skb_checksum_complete(skb);
3985 }
3986 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3987 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3988 {
3989 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3990 		if (skb->csum_level == 0)
3991 			skb->ip_summed = CHECKSUM_NONE;
3992 		else
3993 			skb->csum_level--;
3994 	}
3995 }
3996 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3997 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3998 {
3999 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4000 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4001 			skb->csum_level++;
4002 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4003 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4004 		skb->csum_level = 0;
4005 	}
4006 }
4007 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4008 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4009 {
4010 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4011 		skb->ip_summed = CHECKSUM_NONE;
4012 		skb->csum_level = 0;
4013 	}
4014 }
4015 
4016 /* Check if we need to perform checksum complete validation.
4017  *
4018  * Returns true if checksum complete is needed, false otherwise
4019  * (either checksum is unnecessary or zero checksum is allowed).
4020  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4021 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4022 						  bool zero_okay,
4023 						  __sum16 check)
4024 {
4025 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4026 		skb->csum_valid = 1;
4027 		__skb_decr_checksum_unnecessary(skb);
4028 		return false;
4029 	}
4030 
4031 	return true;
4032 }
4033 
4034 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4035  * in checksum_init.
4036  */
4037 #define CHECKSUM_BREAK 76
4038 
4039 /* Unset checksum-complete
4040  *
4041  * Unset checksum complete can be done when packet is being modified
4042  * (uncompressed for instance) and checksum-complete value is
4043  * invalidated.
4044  */
skb_checksum_complete_unset(struct sk_buff * skb)4045 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4046 {
4047 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4048 		skb->ip_summed = CHECKSUM_NONE;
4049 }
4050 
4051 /* Validate (init) checksum based on checksum complete.
4052  *
4053  * Return values:
4054  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4055  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4056  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4057  *   non-zero: value of invalid checksum
4058  *
4059  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4060 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4061 						       bool complete,
4062 						       __wsum psum)
4063 {
4064 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4065 		if (!csum_fold(csum_add(psum, skb->csum))) {
4066 			skb->csum_valid = 1;
4067 			return 0;
4068 		}
4069 	}
4070 
4071 	skb->csum = psum;
4072 
4073 	if (complete || skb->len <= CHECKSUM_BREAK) {
4074 		__sum16 csum;
4075 
4076 		csum = __skb_checksum_complete(skb);
4077 		skb->csum_valid = !csum;
4078 		return csum;
4079 	}
4080 
4081 	return 0;
4082 }
4083 
null_compute_pseudo(struct sk_buff * skb,int proto)4084 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4085 {
4086 	return 0;
4087 }
4088 
4089 /* Perform checksum validate (init). Note that this is a macro since we only
4090  * want to calculate the pseudo header which is an input function if necessary.
4091  * First we try to validate without any computation (checksum unnecessary) and
4092  * then calculate based on checksum complete calling the function to compute
4093  * pseudo header.
4094  *
4095  * Return values:
4096  *   0: checksum is validated or try to in skb_checksum_complete
4097  *   non-zero: value of invalid checksum
4098  */
4099 #define __skb_checksum_validate(skb, proto, complete,			\
4100 				zero_okay, check, compute_pseudo)	\
4101 ({									\
4102 	__sum16 __ret = 0;						\
4103 	skb->csum_valid = 0;						\
4104 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4105 		__ret = __skb_checksum_validate_complete(skb,		\
4106 				complete, compute_pseudo(skb, proto));	\
4107 	__ret;								\
4108 })
4109 
4110 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4111 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4112 
4113 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4114 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4115 
4116 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4117 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4118 
4119 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4120 					 compute_pseudo)		\
4121 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4122 
4123 #define skb_checksum_simple_validate(skb)				\
4124 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4125 
__skb_checksum_convert_check(struct sk_buff * skb)4126 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4127 {
4128 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4129 }
4130 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4131 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4132 {
4133 	skb->csum = ~pseudo;
4134 	skb->ip_summed = CHECKSUM_COMPLETE;
4135 }
4136 
4137 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4138 do {									\
4139 	if (__skb_checksum_convert_check(skb))				\
4140 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4141 } while (0)
4142 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4143 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4144 					      u16 start, u16 offset)
4145 {
4146 	skb->ip_summed = CHECKSUM_PARTIAL;
4147 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4148 	skb->csum_offset = offset - start;
4149 }
4150 
4151 /* Update skbuf and packet to reflect the remote checksum offload operation.
4152  * When called, ptr indicates the starting point for skb->csum when
4153  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4154  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4155  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4156 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4157 				       int start, int offset, bool nopartial)
4158 {
4159 	__wsum delta;
4160 
4161 	if (!nopartial) {
4162 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4163 		return;
4164 	}
4165 
4166 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4167 		__skb_checksum_complete(skb);
4168 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4169 	}
4170 
4171 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4172 
4173 	/* Adjust skb->csum since we changed the packet */
4174 	skb->csum = csum_add(skb->csum, delta);
4175 }
4176 
skb_nfct(const struct sk_buff * skb)4177 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4178 {
4179 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4180 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4181 #else
4182 	return NULL;
4183 #endif
4184 }
4185 
skb_get_nfct(const struct sk_buff * skb)4186 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4187 {
4188 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4189 	return skb->_nfct;
4190 #else
4191 	return 0UL;
4192 #endif
4193 }
4194 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4195 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4196 {
4197 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4198 	skb->_nfct = nfct;
4199 #endif
4200 }
4201 
4202 #ifdef CONFIG_SKB_EXTENSIONS
4203 enum skb_ext_id {
4204 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4205 	SKB_EXT_BRIDGE_NF,
4206 #endif
4207 #ifdef CONFIG_XFRM
4208 	SKB_EXT_SEC_PATH,
4209 #endif
4210 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4211 	TC_SKB_EXT,
4212 #endif
4213 #if IS_ENABLED(CONFIG_MPTCP)
4214 	SKB_EXT_MPTCP,
4215 #endif
4216 	SKB_EXT_NUM, /* must be last */
4217 };
4218 
4219 /**
4220  *	struct skb_ext - sk_buff extensions
4221  *	@refcnt: 1 on allocation, deallocated on 0
4222  *	@offset: offset to add to @data to obtain extension address
4223  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4224  *	@data: start of extension data, variable sized
4225  *
4226  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4227  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4228  */
4229 struct skb_ext {
4230 	refcount_t refcnt;
4231 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4232 	u8 chunks;		/* same */
4233 	char data[] __aligned(8);
4234 };
4235 
4236 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4237 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4238 		    struct skb_ext *ext);
4239 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4240 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4241 void __skb_ext_put(struct skb_ext *ext);
4242 
skb_ext_put(struct sk_buff * skb)4243 static inline void skb_ext_put(struct sk_buff *skb)
4244 {
4245 	if (skb->active_extensions)
4246 		__skb_ext_put(skb->extensions);
4247 }
4248 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4249 static inline void __skb_ext_copy(struct sk_buff *dst,
4250 				  const struct sk_buff *src)
4251 {
4252 	dst->active_extensions = src->active_extensions;
4253 
4254 	if (src->active_extensions) {
4255 		struct skb_ext *ext = src->extensions;
4256 
4257 		refcount_inc(&ext->refcnt);
4258 		dst->extensions = ext;
4259 	}
4260 }
4261 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4262 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4263 {
4264 	skb_ext_put(dst);
4265 	__skb_ext_copy(dst, src);
4266 }
4267 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4268 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4269 {
4270 	return !!ext->offset[i];
4271 }
4272 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4273 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4274 {
4275 	return skb->active_extensions & (1 << id);
4276 }
4277 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4278 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4279 {
4280 	if (skb_ext_exist(skb, id))
4281 		__skb_ext_del(skb, id);
4282 }
4283 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4284 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4285 {
4286 	if (skb_ext_exist(skb, id)) {
4287 		struct skb_ext *ext = skb->extensions;
4288 
4289 		return (void *)ext + (ext->offset[id] << 3);
4290 	}
4291 
4292 	return NULL;
4293 }
4294 
skb_ext_reset(struct sk_buff * skb)4295 static inline void skb_ext_reset(struct sk_buff *skb)
4296 {
4297 	if (unlikely(skb->active_extensions)) {
4298 		__skb_ext_put(skb->extensions);
4299 		skb->active_extensions = 0;
4300 	}
4301 }
4302 
skb_has_extensions(struct sk_buff * skb)4303 static inline bool skb_has_extensions(struct sk_buff *skb)
4304 {
4305 	return unlikely(skb->active_extensions);
4306 }
4307 #else
skb_ext_put(struct sk_buff * skb)4308 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4309 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4310 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4311 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4312 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4313 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4314 #endif /* CONFIG_SKB_EXTENSIONS */
4315 
nf_reset_ct(struct sk_buff * skb)4316 static inline void nf_reset_ct(struct sk_buff *skb)
4317 {
4318 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4319 	nf_conntrack_put(skb_nfct(skb));
4320 	skb->_nfct = 0;
4321 #endif
4322 }
4323 
nf_reset_trace(struct sk_buff * skb)4324 static inline void nf_reset_trace(struct sk_buff *skb)
4325 {
4326 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4327 	skb->nf_trace = 0;
4328 #endif
4329 }
4330 
ipvs_reset(struct sk_buff * skb)4331 static inline void ipvs_reset(struct sk_buff *skb)
4332 {
4333 #if IS_ENABLED(CONFIG_IP_VS)
4334 	skb->ipvs_property = 0;
4335 #endif
4336 }
4337 
4338 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4339 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4340 			     bool copy)
4341 {
4342 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4343 	dst->_nfct = src->_nfct;
4344 	nf_conntrack_get(skb_nfct(src));
4345 #endif
4346 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4347 	if (copy)
4348 		dst->nf_trace = src->nf_trace;
4349 #endif
4350 }
4351 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4352 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4353 {
4354 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4355 	nf_conntrack_put(skb_nfct(dst));
4356 #endif
4357 	__nf_copy(dst, src, true);
4358 }
4359 
4360 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4361 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4362 {
4363 	to->secmark = from->secmark;
4364 }
4365 
skb_init_secmark(struct sk_buff * skb)4366 static inline void skb_init_secmark(struct sk_buff *skb)
4367 {
4368 	skb->secmark = 0;
4369 }
4370 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4371 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4372 { }
4373 
skb_init_secmark(struct sk_buff * skb)4374 static inline void skb_init_secmark(struct sk_buff *skb)
4375 { }
4376 #endif
4377 
secpath_exists(const struct sk_buff * skb)4378 static inline int secpath_exists(const struct sk_buff *skb)
4379 {
4380 #ifdef CONFIG_XFRM
4381 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4382 #else
4383 	return 0;
4384 #endif
4385 }
4386 
skb_irq_freeable(const struct sk_buff * skb)4387 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4388 {
4389 	return !skb->destructor &&
4390 		!secpath_exists(skb) &&
4391 		!skb_nfct(skb) &&
4392 		!skb->_skb_refdst &&
4393 		!skb_has_frag_list(skb);
4394 }
4395 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4396 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4397 {
4398 	skb->queue_mapping = queue_mapping;
4399 }
4400 
skb_get_queue_mapping(const struct sk_buff * skb)4401 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4402 {
4403 	return skb->queue_mapping;
4404 }
4405 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4406 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4407 {
4408 	to->queue_mapping = from->queue_mapping;
4409 }
4410 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4411 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4412 {
4413 	skb->queue_mapping = rx_queue + 1;
4414 }
4415 
skb_get_rx_queue(const struct sk_buff * skb)4416 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4417 {
4418 	return skb->queue_mapping - 1;
4419 }
4420 
skb_rx_queue_recorded(const struct sk_buff * skb)4421 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4422 {
4423 	return skb->queue_mapping != 0;
4424 }
4425 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4426 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4427 {
4428 	skb->dst_pending_confirm = val;
4429 }
4430 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4431 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4432 {
4433 	return skb->dst_pending_confirm != 0;
4434 }
4435 
skb_sec_path(const struct sk_buff * skb)4436 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4437 {
4438 #ifdef CONFIG_XFRM
4439 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4440 #else
4441 	return NULL;
4442 #endif
4443 }
4444 
4445 /* Keeps track of mac header offset relative to skb->head.
4446  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4447  * For non-tunnel skb it points to skb_mac_header() and for
4448  * tunnel skb it points to outer mac header.
4449  * Keeps track of level of encapsulation of network headers.
4450  */
4451 struct skb_gso_cb {
4452 	union {
4453 		int	mac_offset;
4454 		int	data_offset;
4455 	};
4456 	int	encap_level;
4457 	__wsum	csum;
4458 	__u16	csum_start;
4459 };
4460 #define SKB_GSO_CB_OFFSET	32
4461 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4462 
skb_tnl_header_len(const struct sk_buff * inner_skb)4463 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4464 {
4465 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4466 		SKB_GSO_CB(inner_skb)->mac_offset;
4467 }
4468 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4469 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4470 {
4471 	int new_headroom, headroom;
4472 	int ret;
4473 
4474 	headroom = skb_headroom(skb);
4475 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4476 	if (ret)
4477 		return ret;
4478 
4479 	new_headroom = skb_headroom(skb);
4480 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4481 	return 0;
4482 }
4483 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4484 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4485 {
4486 	/* Do not update partial checksums if remote checksum is enabled. */
4487 	if (skb->remcsum_offload)
4488 		return;
4489 
4490 	SKB_GSO_CB(skb)->csum = res;
4491 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4492 }
4493 
4494 /* Compute the checksum for a gso segment. First compute the checksum value
4495  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4496  * then add in skb->csum (checksum from csum_start to end of packet).
4497  * skb->csum and csum_start are then updated to reflect the checksum of the
4498  * resultant packet starting from the transport header-- the resultant checksum
4499  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4500  * header.
4501  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4502 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4503 {
4504 	unsigned char *csum_start = skb_transport_header(skb);
4505 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4506 	__wsum partial = SKB_GSO_CB(skb)->csum;
4507 
4508 	SKB_GSO_CB(skb)->csum = res;
4509 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4510 
4511 	return csum_fold(csum_partial(csum_start, plen, partial));
4512 }
4513 
skb_is_gso(const struct sk_buff * skb)4514 static inline bool skb_is_gso(const struct sk_buff *skb)
4515 {
4516 	return skb_shinfo(skb)->gso_size;
4517 }
4518 
4519 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4520 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4521 {
4522 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4523 }
4524 
4525 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4526 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4527 {
4528 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4529 }
4530 
4531 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4532 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4533 {
4534 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4535 }
4536 
skb_gso_reset(struct sk_buff * skb)4537 static inline void skb_gso_reset(struct sk_buff *skb)
4538 {
4539 	skb_shinfo(skb)->gso_size = 0;
4540 	skb_shinfo(skb)->gso_segs = 0;
4541 	skb_shinfo(skb)->gso_type = 0;
4542 }
4543 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4544 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4545 					 u16 increment)
4546 {
4547 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4548 		return;
4549 	shinfo->gso_size += increment;
4550 }
4551 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4552 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4553 					 u16 decrement)
4554 {
4555 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4556 		return;
4557 	shinfo->gso_size -= decrement;
4558 }
4559 
4560 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4561 
skb_warn_if_lro(const struct sk_buff * skb)4562 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4563 {
4564 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4565 	 * wanted then gso_type will be set. */
4566 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4567 
4568 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4569 	    unlikely(shinfo->gso_type == 0)) {
4570 		__skb_warn_lro_forwarding(skb);
4571 		return true;
4572 	}
4573 	return false;
4574 }
4575 
skb_forward_csum(struct sk_buff * skb)4576 static inline void skb_forward_csum(struct sk_buff *skb)
4577 {
4578 	/* Unfortunately we don't support this one.  Any brave souls? */
4579 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4580 		skb->ip_summed = CHECKSUM_NONE;
4581 }
4582 
4583 /**
4584  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4585  * @skb: skb to check
4586  *
4587  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4588  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4589  * use this helper, to document places where we make this assertion.
4590  */
skb_checksum_none_assert(const struct sk_buff * skb)4591 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4592 {
4593 #ifdef DEBUG
4594 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4595 #endif
4596 }
4597 
4598 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4599 
4600 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4601 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4602 				     unsigned int transport_len,
4603 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4604 
4605 /**
4606  * skb_head_is_locked - Determine if the skb->head is locked down
4607  * @skb: skb to check
4608  *
4609  * The head on skbs build around a head frag can be removed if they are
4610  * not cloned.  This function returns true if the skb head is locked down
4611  * due to either being allocated via kmalloc, or by being a clone with
4612  * multiple references to the head.
4613  */
skb_head_is_locked(const struct sk_buff * skb)4614 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4615 {
4616 	return !skb->head_frag || skb_cloned(skb);
4617 }
4618 
4619 /* Local Checksum Offload.
4620  * Compute outer checksum based on the assumption that the
4621  * inner checksum will be offloaded later.
4622  * See Documentation/networking/checksum-offloads.rst for
4623  * explanation of how this works.
4624  * Fill in outer checksum adjustment (e.g. with sum of outer
4625  * pseudo-header) before calling.
4626  * Also ensure that inner checksum is in linear data area.
4627  */
lco_csum(struct sk_buff * skb)4628 static inline __wsum lco_csum(struct sk_buff *skb)
4629 {
4630 	unsigned char *csum_start = skb_checksum_start(skb);
4631 	unsigned char *l4_hdr = skb_transport_header(skb);
4632 	__wsum partial;
4633 
4634 	/* Start with complement of inner checksum adjustment */
4635 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4636 						    skb->csum_offset));
4637 
4638 	/* Add in checksum of our headers (incl. outer checksum
4639 	 * adjustment filled in by caller) and return result.
4640 	 */
4641 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4642 }
4643 
skb_is_redirected(const struct sk_buff * skb)4644 static inline bool skb_is_redirected(const struct sk_buff *skb)
4645 {
4646 #ifdef CONFIG_NET_REDIRECT
4647 	return skb->redirected;
4648 #else
4649 	return false;
4650 #endif
4651 }
4652 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4653 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4654 {
4655 #ifdef CONFIG_NET_REDIRECT
4656 	skb->redirected = 1;
4657 	skb->from_ingress = from_ingress;
4658 	if (skb->from_ingress)
4659 		skb->tstamp = 0;
4660 #endif
4661 }
4662 
skb_reset_redirect(struct sk_buff * skb)4663 static inline void skb_reset_redirect(struct sk_buff *skb)
4664 {
4665 #ifdef CONFIG_NET_REDIRECT
4666 	skb->redirected = 0;
4667 #endif
4668 }
4669 
skb_csum_is_sctp(struct sk_buff * skb)4670 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4671 {
4672 	return skb->csum_not_inet;
4673 }
4674 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4675 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4676 				       const u64 kcov_handle)
4677 {
4678 #ifdef CONFIG_KCOV
4679 	skb->kcov_handle = kcov_handle;
4680 #endif
4681 }
4682 
skb_get_kcov_handle(struct sk_buff * skb)4683 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4684 {
4685 #ifdef CONFIG_KCOV
4686 	return skb->kcov_handle;
4687 #else
4688 	return 0;
4689 #endif
4690 }
4691 
4692 #endif	/* __KERNEL__ */
4693 #endif	/* _LINUX_SKBUFF_H */
4694