• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 #include <trace/hooks/net.h>
80 
81 #include "datagram.h"
82 
83 struct kmem_cache *skbuff_head_cache __ro_after_init;
84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
85 #ifdef CONFIG_SKB_EXTENSIONS
86 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
87 #endif
88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
89 EXPORT_SYMBOL(sysctl_max_skb_frags);
90 
91 /**
92  *	skb_panic - private function for out-of-line support
93  *	@skb:	buffer
94  *	@sz:	size
95  *	@addr:	address
96  *	@msg:	skb_over_panic or skb_under_panic
97  *
98  *	Out-of-line support for skb_put() and skb_push().
99  *	Called via the wrapper skb_over_panic() or skb_under_panic().
100  *	Keep out of line to prevent kernel bloat.
101  *	__builtin_return_address is not used because it is not always reliable.
102  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
104 		      const char msg[])
105 {
106 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
107 		 msg, addr, skb->len, sz, skb->head, skb->data,
108 		 (unsigned long)skb->tail, (unsigned long)skb->end,
109 		 skb->dev ? skb->dev->name : "<NULL>");
110 	BUG();
111 }
112 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
119 {
120 	skb_panic(skb, sz, addr, __func__);
121 }
122 
123 /*
124  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
125  * the caller if emergency pfmemalloc reserves are being used. If it is and
126  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
127  * may be used. Otherwise, the packet data may be discarded until enough
128  * memory is free
129  */
130 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
131 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
132 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)133 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
134 			       unsigned long ip, bool *pfmemalloc)
135 {
136 	void *obj;
137 	bool ret_pfmemalloc = false;
138 
139 	/*
140 	 * Try a regular allocation, when that fails and we're not entitled
141 	 * to the reserves, fail.
142 	 */
143 	obj = kmalloc_node_track_caller(size,
144 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
145 					node);
146 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
147 		goto out;
148 
149 	/* Try again but now we are using pfmemalloc reserves */
150 	ret_pfmemalloc = true;
151 	obj = kmalloc_node_track_caller(size, flags, node);
152 
153 out:
154 	if (pfmemalloc)
155 		*pfmemalloc = ret_pfmemalloc;
156 
157 	return obj;
158 }
159 
160 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
161  *	'private' fields and also do memory statistics to find all the
162  *	[BEEP] leaks.
163  *
164  */
165 
166 /**
167  *	__alloc_skb	-	allocate a network buffer
168  *	@size: size to allocate
169  *	@gfp_mask: allocation mask
170  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
171  *		instead of head cache and allocate a cloned (child) skb.
172  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
173  *		allocations in case the data is required for writeback
174  *	@node: numa node to allocate memory on
175  *
176  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
177  *	tail room of at least size bytes. The object has a reference count
178  *	of one. The return is the buffer. On a failure the return is %NULL.
179  *
180  *	Buffers may only be allocated from interrupts using a @gfp_mask of
181  *	%GFP_ATOMIC.
182  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)183 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
184 			    int flags, int node)
185 {
186 	struct kmem_cache *cache;
187 	struct skb_shared_info *shinfo;
188 	struct sk_buff *skb;
189 	u8 *data;
190 	bool pfmemalloc;
191 
192 	cache = (flags & SKB_ALLOC_FCLONE)
193 		? skbuff_fclone_cache : skbuff_head_cache;
194 
195 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
196 		gfp_mask |= __GFP_MEMALLOC;
197 
198 	/* Get the HEAD */
199 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
200 	if (!skb)
201 		goto out;
202 	prefetchw(skb);
203 
204 	/* We do our best to align skb_shared_info on a separate cache
205 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
206 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
207 	 * Both skb->head and skb_shared_info are cache line aligned.
208 	 */
209 	size = SKB_DATA_ALIGN(size);
210 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
211 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
212 	if (!data)
213 		goto nodata;
214 	/* kmalloc(size) might give us more room than requested.
215 	 * Put skb_shared_info exactly at the end of allocated zone,
216 	 * to allow max possible filling before reallocation.
217 	 */
218 	size = SKB_WITH_OVERHEAD(ksize(data));
219 	prefetchw(data + size);
220 
221 	/*
222 	 * Only clear those fields we need to clear, not those that we will
223 	 * actually initialise below. Hence, don't put any more fields after
224 	 * the tail pointer in struct sk_buff!
225 	 */
226 	memset(skb, 0, offsetof(struct sk_buff, tail));
227 	/* Account for allocated memory : skb + skb->head */
228 	skb->truesize = SKB_TRUESIZE(size);
229 	skb->pfmemalloc = pfmemalloc;
230 	refcount_set(&skb->users, 1);
231 	skb->head = data;
232 	skb->data = data;
233 	skb_reset_tail_pointer(skb);
234 	skb->end = skb->tail + size;
235 	skb->mac_header = (typeof(skb->mac_header))~0U;
236 	skb->transport_header = (typeof(skb->transport_header))~0U;
237 
238 	/* make sure we initialize shinfo sequentially */
239 	shinfo = skb_shinfo(skb);
240 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
241 	atomic_set(&shinfo->dataref, 1);
242 
243 	if (flags & SKB_ALLOC_FCLONE) {
244 		struct sk_buff_fclones *fclones;
245 
246 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
247 
248 		skb->fclone = SKB_FCLONE_ORIG;
249 		refcount_set(&fclones->fclone_ref, 1);
250 
251 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
252 	}
253 
254 	skb_set_kcov_handle(skb, kcov_common_handle());
255 
256 out:
257 	return skb;
258 nodata:
259 	kmem_cache_free(cache, skb);
260 	skb = NULL;
261 	goto out;
262 }
263 EXPORT_SYMBOL(__alloc_skb);
264 
265 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)266 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
267 					  void *data, unsigned int frag_size)
268 {
269 	struct skb_shared_info *shinfo;
270 	unsigned int size = frag_size ? : ksize(data);
271 
272 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	/* Assumes caller memset cleared SKB */
275 	skb->truesize = SKB_TRUESIZE(size);
276 	refcount_set(&skb->users, 1);
277 	skb->head = data;
278 	skb->data = data;
279 	skb_reset_tail_pointer(skb);
280 	skb->end = skb->tail + size;
281 	skb->mac_header = (typeof(skb->mac_header))~0U;
282 	skb->transport_header = (typeof(skb->transport_header))~0U;
283 
284 	/* make sure we initialize shinfo sequentially */
285 	shinfo = skb_shinfo(skb);
286 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
287 	atomic_set(&shinfo->dataref, 1);
288 
289 	skb_set_kcov_handle(skb, kcov_common_handle());
290 
291 	return skb;
292 }
293 
294 /**
295  * __build_skb - build a network buffer
296  * @data: data buffer provided by caller
297  * @frag_size: size of data, or 0 if head was kmalloced
298  *
299  * Allocate a new &sk_buff. Caller provides space holding head and
300  * skb_shared_info. @data must have been allocated by kmalloc() only if
301  * @frag_size is 0, otherwise data should come from the page allocator
302  *  or vmalloc()
303  * The return is the new skb buffer.
304  * On a failure the return is %NULL, and @data is not freed.
305  * Notes :
306  *  Before IO, driver allocates only data buffer where NIC put incoming frame
307  *  Driver should add room at head (NET_SKB_PAD) and
308  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
309  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
310  *  before giving packet to stack.
311  *  RX rings only contains data buffers, not full skbs.
312  */
__build_skb(void * data,unsigned int frag_size)313 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
314 {
315 	struct sk_buff *skb;
316 
317 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
318 	if (unlikely(!skb))
319 		return NULL;
320 
321 	memset(skb, 0, offsetof(struct sk_buff, tail));
322 
323 	return __build_skb_around(skb, data, frag_size);
324 }
325 
326 /* build_skb() is wrapper over __build_skb(), that specifically
327  * takes care of skb->head and skb->pfmemalloc
328  * This means that if @frag_size is not zero, then @data must be backed
329  * by a page fragment, not kmalloc() or vmalloc()
330  */
build_skb(void * data,unsigned int frag_size)331 struct sk_buff *build_skb(void *data, unsigned int frag_size)
332 {
333 	struct sk_buff *skb = __build_skb(data, frag_size);
334 
335 	if (skb && frag_size) {
336 		skb->head_frag = 1;
337 		if (page_is_pfmemalloc(virt_to_head_page(data)))
338 			skb->pfmemalloc = 1;
339 	}
340 	return skb;
341 }
342 EXPORT_SYMBOL(build_skb);
343 
344 /**
345  * build_skb_around - build a network buffer around provided skb
346  * @skb: sk_buff provide by caller, must be memset cleared
347  * @data: data buffer provided by caller
348  * @frag_size: size of data, or 0 if head was kmalloced
349  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)350 struct sk_buff *build_skb_around(struct sk_buff *skb,
351 				 void *data, unsigned int frag_size)
352 {
353 	if (unlikely(!skb))
354 		return NULL;
355 
356 	skb = __build_skb_around(skb, data, frag_size);
357 
358 	if (skb && frag_size) {
359 		skb->head_frag = 1;
360 		if (page_is_pfmemalloc(virt_to_head_page(data)))
361 			skb->pfmemalloc = 1;
362 	}
363 	return skb;
364 }
365 EXPORT_SYMBOL(build_skb_around);
366 
367 #define NAPI_SKB_CACHE_SIZE	64
368 
369 struct napi_alloc_cache {
370 	struct page_frag_cache page;
371 	unsigned int skb_count;
372 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
373 };
374 
375 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
376 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
377 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)378 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
379 {
380 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
381 
382 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
383 }
384 
napi_alloc_frag(unsigned int fragsz)385 void *napi_alloc_frag(unsigned int fragsz)
386 {
387 	fragsz = SKB_DATA_ALIGN(fragsz);
388 
389 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
390 }
391 EXPORT_SYMBOL(napi_alloc_frag);
392 
393 /**
394  * netdev_alloc_frag - allocate a page fragment
395  * @fragsz: fragment size
396  *
397  * Allocates a frag from a page for receive buffer.
398  * Uses GFP_ATOMIC allocations.
399  */
netdev_alloc_frag(unsigned int fragsz)400 void *netdev_alloc_frag(unsigned int fragsz)
401 {
402 	struct page_frag_cache *nc;
403 	void *data;
404 
405 	fragsz = SKB_DATA_ALIGN(fragsz);
406 	if (in_irq() || irqs_disabled()) {
407 		nc = this_cpu_ptr(&netdev_alloc_cache);
408 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
409 	} else {
410 		local_bh_disable();
411 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
412 		local_bh_enable();
413 	}
414 	return data;
415 }
416 EXPORT_SYMBOL(netdev_alloc_frag);
417 
418 /**
419  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
420  *	@dev: network device to receive on
421  *	@len: length to allocate
422  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
423  *
424  *	Allocate a new &sk_buff and assign it a usage count of one. The
425  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
426  *	the headroom they think they need without accounting for the
427  *	built in space. The built in space is used for optimisations.
428  *
429  *	%NULL is returned if there is no free memory.
430  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)431 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
432 				   gfp_t gfp_mask)
433 {
434 	struct page_frag_cache *nc;
435 	struct sk_buff *skb;
436 	bool pfmemalloc;
437 	void *data;
438 
439 	len += NET_SKB_PAD;
440 
441 	/* If requested length is either too small or too big,
442 	 * we use kmalloc() for skb->head allocation.
443 	 */
444 	if (len <= SKB_WITH_OVERHEAD(1024) ||
445 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
446 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
447 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
448 		if (!skb)
449 			goto skb_fail;
450 		goto skb_success;
451 	}
452 
453 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
454 	len = SKB_DATA_ALIGN(len);
455 
456 	if (sk_memalloc_socks())
457 		gfp_mask |= __GFP_MEMALLOC;
458 
459 	if (in_irq() || irqs_disabled()) {
460 		nc = this_cpu_ptr(&netdev_alloc_cache);
461 		data = page_frag_alloc(nc, len, gfp_mask);
462 		pfmemalloc = nc->pfmemalloc;
463 	} else {
464 		local_bh_disable();
465 		nc = this_cpu_ptr(&napi_alloc_cache.page);
466 		data = page_frag_alloc(nc, len, gfp_mask);
467 		pfmemalloc = nc->pfmemalloc;
468 		local_bh_enable();
469 	}
470 
471 	if (unlikely(!data))
472 		return NULL;
473 
474 	skb = __build_skb(data, len);
475 	if (unlikely(!skb)) {
476 		skb_free_frag(data);
477 		return NULL;
478 	}
479 
480 	if (pfmemalloc)
481 		skb->pfmemalloc = 1;
482 	skb->head_frag = 1;
483 
484 skb_success:
485 	skb_reserve(skb, NET_SKB_PAD);
486 	skb->dev = dev;
487 
488 skb_fail:
489 	return skb;
490 }
491 EXPORT_SYMBOL(__netdev_alloc_skb);
492 
493 /**
494  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
495  *	@napi: napi instance this buffer was allocated for
496  *	@len: length to allocate
497  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
498  *
499  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
500  *	attempt to allocate the head from a special reserved region used
501  *	only for NAPI Rx allocation.  By doing this we can save several
502  *	CPU cycles by avoiding having to disable and re-enable IRQs.
503  *
504  *	%NULL is returned if there is no free memory.
505  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)506 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
507 				 gfp_t gfp_mask)
508 {
509 	struct napi_alloc_cache *nc;
510 	struct sk_buff *skb;
511 	void *data;
512 
513 	len += NET_SKB_PAD + NET_IP_ALIGN;
514 
515 	/* If requested length is either too small or too big,
516 	 * we use kmalloc() for skb->head allocation.
517 	 */
518 	if (len <= SKB_WITH_OVERHEAD(1024) ||
519 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
520 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
521 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
522 		if (!skb)
523 			goto skb_fail;
524 		goto skb_success;
525 	}
526 
527 	nc = this_cpu_ptr(&napi_alloc_cache);
528 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
529 	len = SKB_DATA_ALIGN(len);
530 
531 	if (sk_memalloc_socks())
532 		gfp_mask |= __GFP_MEMALLOC;
533 
534 	data = page_frag_alloc(&nc->page, len, gfp_mask);
535 	if (unlikely(!data))
536 		return NULL;
537 
538 	skb = __build_skb(data, len);
539 	if (unlikely(!skb)) {
540 		skb_free_frag(data);
541 		return NULL;
542 	}
543 
544 	if (nc->page.pfmemalloc)
545 		skb->pfmemalloc = 1;
546 	skb->head_frag = 1;
547 
548 skb_success:
549 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
550 	skb->dev = napi->dev;
551 
552 skb_fail:
553 	return skb;
554 }
555 EXPORT_SYMBOL(__napi_alloc_skb);
556 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)557 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
558 		     int size, unsigned int truesize)
559 {
560 	skb_fill_page_desc(skb, i, page, off, size);
561 	skb->len += size;
562 	skb->data_len += size;
563 	skb->truesize += truesize;
564 }
565 EXPORT_SYMBOL(skb_add_rx_frag);
566 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)567 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
568 			  unsigned int truesize)
569 {
570 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
571 
572 	skb_frag_size_add(frag, size);
573 	skb->len += size;
574 	skb->data_len += size;
575 	skb->truesize += truesize;
576 }
577 EXPORT_SYMBOL(skb_coalesce_rx_frag);
578 
skb_drop_list(struct sk_buff ** listp)579 static void skb_drop_list(struct sk_buff **listp)
580 {
581 	kfree_skb_list(*listp);
582 	*listp = NULL;
583 }
584 
skb_drop_fraglist(struct sk_buff * skb)585 static inline void skb_drop_fraglist(struct sk_buff *skb)
586 {
587 	skb_drop_list(&skb_shinfo(skb)->frag_list);
588 }
589 
skb_clone_fraglist(struct sk_buff * skb)590 static void skb_clone_fraglist(struct sk_buff *skb)
591 {
592 	struct sk_buff *list;
593 
594 	skb_walk_frags(skb, list)
595 		skb_get(list);
596 }
597 
skb_free_head(struct sk_buff * skb)598 static void skb_free_head(struct sk_buff *skb)
599 {
600 	unsigned char *head = skb->head;
601 
602 	if (skb->head_frag)
603 		skb_free_frag(head);
604 	else
605 		kfree(head);
606 }
607 
skb_release_data(struct sk_buff * skb)608 static void skb_release_data(struct sk_buff *skb)
609 {
610 	struct skb_shared_info *shinfo = skb_shinfo(skb);
611 	int i;
612 
613 	if (skb->cloned &&
614 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
615 			      &shinfo->dataref))
616 		return;
617 
618 	for (i = 0; i < shinfo->nr_frags; i++)
619 		__skb_frag_unref(&shinfo->frags[i]);
620 
621 	if (shinfo->frag_list)
622 		kfree_skb_list(shinfo->frag_list);
623 
624 	skb_zcopy_clear(skb, true);
625 	skb_free_head(skb);
626 }
627 
628 /*
629  *	Free an skbuff by memory without cleaning the state.
630  */
kfree_skbmem(struct sk_buff * skb)631 static void kfree_skbmem(struct sk_buff *skb)
632 {
633 	struct sk_buff_fclones *fclones;
634 
635 	switch (skb->fclone) {
636 	case SKB_FCLONE_UNAVAILABLE:
637 		kmem_cache_free(skbuff_head_cache, skb);
638 		return;
639 
640 	case SKB_FCLONE_ORIG:
641 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
642 
643 		/* We usually free the clone (TX completion) before original skb
644 		 * This test would have no chance to be true for the clone,
645 		 * while here, branch prediction will be good.
646 		 */
647 		if (refcount_read(&fclones->fclone_ref) == 1)
648 			goto fastpath;
649 		break;
650 
651 	default: /* SKB_FCLONE_CLONE */
652 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
653 		break;
654 	}
655 	if (!refcount_dec_and_test(&fclones->fclone_ref))
656 		return;
657 fastpath:
658 	kmem_cache_free(skbuff_fclone_cache, fclones);
659 }
660 
skb_release_head_state(struct sk_buff * skb)661 void skb_release_head_state(struct sk_buff *skb)
662 {
663 	skb_dst_drop(skb);
664 	if (skb->destructor) {
665 		WARN_ON(in_irq());
666 		skb->destructor(skb);
667 	}
668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
669 	nf_conntrack_put(skb_nfct(skb));
670 #endif
671 	skb_ext_put(skb);
672 }
673 
674 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)675 static void skb_release_all(struct sk_buff *skb)
676 {
677 	skb_release_head_state(skb);
678 	if (likely(skb->head))
679 		skb_release_data(skb);
680 }
681 
682 /**
683  *	__kfree_skb - private function
684  *	@skb: buffer
685  *
686  *	Free an sk_buff. Release anything attached to the buffer.
687  *	Clean the state. This is an internal helper function. Users should
688  *	always call kfree_skb
689  */
690 
__kfree_skb(struct sk_buff * skb)691 void __kfree_skb(struct sk_buff *skb)
692 {
693 	skb_release_all(skb);
694 	kfree_skbmem(skb);
695 }
696 EXPORT_SYMBOL(__kfree_skb);
697 
698 /**
699  *	kfree_skb - free an sk_buff
700  *	@skb: buffer to free
701  *
702  *	Drop a reference to the buffer and free it if the usage count has
703  *	hit zero.
704  */
kfree_skb(struct sk_buff * skb)705 void kfree_skb(struct sk_buff *skb)
706 {
707 	if (!skb_unref(skb))
708 		return;
709 
710 	trace_android_vh_kfree_skb(skb);
711 	trace_kfree_skb(skb, __builtin_return_address(0));
712 	__kfree_skb(skb);
713 }
714 EXPORT_SYMBOL(kfree_skb);
715 
kfree_skb_list(struct sk_buff * segs)716 void kfree_skb_list(struct sk_buff *segs)
717 {
718 	while (segs) {
719 		struct sk_buff *next = segs->next;
720 
721 		kfree_skb(segs);
722 		segs = next;
723 	}
724 }
725 EXPORT_SYMBOL(kfree_skb_list);
726 
727 /* Dump skb information and contents.
728  *
729  * Must only be called from net_ratelimit()-ed paths.
730  *
731  * Dumps whole packets if full_pkt, only headers otherwise.
732  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)733 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
734 {
735 	struct skb_shared_info *sh = skb_shinfo(skb);
736 	struct net_device *dev = skb->dev;
737 	struct sock *sk = skb->sk;
738 	struct sk_buff *list_skb;
739 	bool has_mac, has_trans;
740 	int headroom, tailroom;
741 	int i, len, seg_len;
742 
743 	if (full_pkt)
744 		len = skb->len;
745 	else
746 		len = min_t(int, skb->len, MAX_HEADER + 128);
747 
748 	headroom = skb_headroom(skb);
749 	tailroom = skb_tailroom(skb);
750 
751 	has_mac = skb_mac_header_was_set(skb);
752 	has_trans = skb_transport_header_was_set(skb);
753 
754 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
755 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
756 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
757 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
758 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
759 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
760 	       has_mac ? skb->mac_header : -1,
761 	       has_mac ? skb_mac_header_len(skb) : -1,
762 	       skb->network_header,
763 	       has_trans ? skb_network_header_len(skb) : -1,
764 	       has_trans ? skb->transport_header : -1,
765 	       sh->tx_flags, sh->nr_frags,
766 	       sh->gso_size, sh->gso_type, sh->gso_segs,
767 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
768 	       skb->csum_valid, skb->csum_level,
769 	       skb->hash, skb->sw_hash, skb->l4_hash,
770 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
771 
772 	if (dev)
773 		printk("%sdev name=%s feat=%pNF\n",
774 		       level, dev->name, &dev->features);
775 	if (sk)
776 		printk("%ssk family=%hu type=%u proto=%u\n",
777 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
778 
779 	if (full_pkt && headroom)
780 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
781 			       16, 1, skb->head, headroom, false);
782 
783 	seg_len = min_t(int, skb_headlen(skb), len);
784 	if (seg_len)
785 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
786 			       16, 1, skb->data, seg_len, false);
787 	len -= seg_len;
788 
789 	if (full_pkt && tailroom)
790 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
791 			       16, 1, skb_tail_pointer(skb), tailroom, false);
792 
793 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
794 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
795 		u32 p_off, p_len, copied;
796 		struct page *p;
797 		u8 *vaddr;
798 
799 		skb_frag_foreach_page(frag, skb_frag_off(frag),
800 				      skb_frag_size(frag), p, p_off, p_len,
801 				      copied) {
802 			seg_len = min_t(int, p_len, len);
803 			vaddr = kmap_atomic(p);
804 			print_hex_dump(level, "skb frag:     ",
805 				       DUMP_PREFIX_OFFSET,
806 				       16, 1, vaddr + p_off, seg_len, false);
807 			kunmap_atomic(vaddr);
808 			len -= seg_len;
809 			if (!len)
810 				break;
811 		}
812 	}
813 
814 	if (full_pkt && skb_has_frag_list(skb)) {
815 		printk("skb fraglist:\n");
816 		skb_walk_frags(skb, list_skb)
817 			skb_dump(level, list_skb, true);
818 	}
819 }
820 EXPORT_SYMBOL(skb_dump);
821 
822 /**
823  *	skb_tx_error - report an sk_buff xmit error
824  *	@skb: buffer that triggered an error
825  *
826  *	Report xmit error if a device callback is tracking this skb.
827  *	skb must be freed afterwards.
828  */
skb_tx_error(struct sk_buff * skb)829 void skb_tx_error(struct sk_buff *skb)
830 {
831 	skb_zcopy_clear(skb, true);
832 }
833 EXPORT_SYMBOL(skb_tx_error);
834 
835 #ifdef CONFIG_TRACEPOINTS
836 /**
837  *	consume_skb - free an skbuff
838  *	@skb: buffer to free
839  *
840  *	Drop a ref to the buffer and free it if the usage count has hit zero
841  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
842  *	is being dropped after a failure and notes that
843  */
consume_skb(struct sk_buff * skb)844 void consume_skb(struct sk_buff *skb)
845 {
846 	if (!skb_unref(skb))
847 		return;
848 
849 	trace_consume_skb(skb);
850 	__kfree_skb(skb);
851 }
852 EXPORT_SYMBOL(consume_skb);
853 #endif
854 
855 /**
856  *	consume_stateless_skb - free an skbuff, assuming it is stateless
857  *	@skb: buffer to free
858  *
859  *	Alike consume_skb(), but this variant assumes that this is the last
860  *	skb reference and all the head states have been already dropped
861  */
__consume_stateless_skb(struct sk_buff * skb)862 void __consume_stateless_skb(struct sk_buff *skb)
863 {
864 	trace_consume_skb(skb);
865 	skb_release_data(skb);
866 	kfree_skbmem(skb);
867 }
868 
__kfree_skb_flush(void)869 void __kfree_skb_flush(void)
870 {
871 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
872 
873 	/* flush skb_cache if containing objects */
874 	if (nc->skb_count) {
875 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
876 				     nc->skb_cache);
877 		nc->skb_count = 0;
878 	}
879 }
880 
_kfree_skb_defer(struct sk_buff * skb)881 static inline void _kfree_skb_defer(struct sk_buff *skb)
882 {
883 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
884 
885 	/* drop skb->head and call any destructors for packet */
886 	skb_release_all(skb);
887 
888 	/* record skb to CPU local list */
889 	nc->skb_cache[nc->skb_count++] = skb;
890 
891 #ifdef CONFIG_SLUB
892 	/* SLUB writes into objects when freeing */
893 	prefetchw(skb);
894 #endif
895 
896 	/* flush skb_cache if it is filled */
897 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
898 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
899 				     nc->skb_cache);
900 		nc->skb_count = 0;
901 	}
902 }
__kfree_skb_defer(struct sk_buff * skb)903 void __kfree_skb_defer(struct sk_buff *skb)
904 {
905 	_kfree_skb_defer(skb);
906 }
907 
napi_consume_skb(struct sk_buff * skb,int budget)908 void napi_consume_skb(struct sk_buff *skb, int budget)
909 {
910 	/* Zero budget indicate non-NAPI context called us, like netpoll */
911 	if (unlikely(!budget)) {
912 		dev_consume_skb_any(skb);
913 		return;
914 	}
915 
916 	if (!skb_unref(skb))
917 		return;
918 
919 	/* if reaching here SKB is ready to free */
920 	trace_consume_skb(skb);
921 
922 	/* if SKB is a clone, don't handle this case */
923 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
924 		__kfree_skb(skb);
925 		return;
926 	}
927 
928 	_kfree_skb_defer(skb);
929 }
930 EXPORT_SYMBOL(napi_consume_skb);
931 
932 /* Make sure a field is enclosed inside headers_start/headers_end section */
933 #define CHECK_SKB_FIELD(field) \
934 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
935 		     offsetof(struct sk_buff, headers_start));	\
936 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
937 		     offsetof(struct sk_buff, headers_end));	\
938 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)939 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
940 {
941 	new->tstamp		= old->tstamp;
942 	/* We do not copy old->sk */
943 	new->dev		= old->dev;
944 	memcpy(new->cb, old->cb, sizeof(old->cb));
945 	skb_dst_copy(new, old);
946 	__skb_ext_copy(new, old);
947 	__nf_copy(new, old, false);
948 
949 	/* Note : this field could be in headers_start/headers_end section
950 	 * It is not yet because we do not want to have a 16 bit hole
951 	 */
952 	new->queue_mapping = old->queue_mapping;
953 
954 	memcpy(&new->headers_start, &old->headers_start,
955 	       offsetof(struct sk_buff, headers_end) -
956 	       offsetof(struct sk_buff, headers_start));
957 	CHECK_SKB_FIELD(protocol);
958 	CHECK_SKB_FIELD(csum);
959 	CHECK_SKB_FIELD(hash);
960 	CHECK_SKB_FIELD(priority);
961 	CHECK_SKB_FIELD(skb_iif);
962 	CHECK_SKB_FIELD(vlan_proto);
963 	CHECK_SKB_FIELD(vlan_tci);
964 	CHECK_SKB_FIELD(transport_header);
965 	CHECK_SKB_FIELD(network_header);
966 	CHECK_SKB_FIELD(mac_header);
967 	CHECK_SKB_FIELD(inner_protocol);
968 	CHECK_SKB_FIELD(inner_transport_header);
969 	CHECK_SKB_FIELD(inner_network_header);
970 	CHECK_SKB_FIELD(inner_mac_header);
971 	CHECK_SKB_FIELD(mark);
972 #ifdef CONFIG_NETWORK_SECMARK
973 	CHECK_SKB_FIELD(secmark);
974 #endif
975 #ifdef CONFIG_NET_RX_BUSY_POLL
976 	CHECK_SKB_FIELD(napi_id);
977 #endif
978 #ifdef CONFIG_XPS
979 	CHECK_SKB_FIELD(sender_cpu);
980 #endif
981 #ifdef CONFIG_NET_SCHED
982 	CHECK_SKB_FIELD(tc_index);
983 #endif
984 
985 }
986 
987 /*
988  * You should not add any new code to this function.  Add it to
989  * __copy_skb_header above instead.
990  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)991 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
992 {
993 #define C(x) n->x = skb->x
994 
995 	n->next = n->prev = NULL;
996 	n->sk = NULL;
997 	__copy_skb_header(n, skb);
998 
999 	C(len);
1000 	C(data_len);
1001 	C(mac_len);
1002 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1003 	n->cloned = 1;
1004 	n->nohdr = 0;
1005 	n->peeked = 0;
1006 	C(pfmemalloc);
1007 	n->destructor = NULL;
1008 	C(tail);
1009 	C(end);
1010 	C(head);
1011 	C(head_frag);
1012 	C(data);
1013 	C(truesize);
1014 	refcount_set(&n->users, 1);
1015 
1016 	atomic_inc(&(skb_shinfo(skb)->dataref));
1017 	skb->cloned = 1;
1018 
1019 	return n;
1020 #undef C
1021 }
1022 
1023 /**
1024  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1025  * @first: first sk_buff of the msg
1026  */
alloc_skb_for_msg(struct sk_buff * first)1027 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1028 {
1029 	struct sk_buff *n;
1030 
1031 	n = alloc_skb(0, GFP_ATOMIC);
1032 	if (!n)
1033 		return NULL;
1034 
1035 	n->len = first->len;
1036 	n->data_len = first->len;
1037 	n->truesize = first->truesize;
1038 
1039 	skb_shinfo(n)->frag_list = first;
1040 
1041 	__copy_skb_header(n, first);
1042 	n->destructor = NULL;
1043 
1044 	return n;
1045 }
1046 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1047 
1048 /**
1049  *	skb_morph	-	morph one skb into another
1050  *	@dst: the skb to receive the contents
1051  *	@src: the skb to supply the contents
1052  *
1053  *	This is identical to skb_clone except that the target skb is
1054  *	supplied by the user.
1055  *
1056  *	The target skb is returned upon exit.
1057  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1058 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1059 {
1060 	skb_release_all(dst);
1061 	return __skb_clone(dst, src);
1062 }
1063 EXPORT_SYMBOL_GPL(skb_morph);
1064 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1065 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1066 {
1067 	unsigned long max_pg, num_pg, new_pg, old_pg;
1068 	struct user_struct *user;
1069 
1070 	if (capable(CAP_IPC_LOCK) || !size)
1071 		return 0;
1072 
1073 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1074 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1075 	user = mmp->user ? : current_user();
1076 
1077 	do {
1078 		old_pg = atomic_long_read(&user->locked_vm);
1079 		new_pg = old_pg + num_pg;
1080 		if (new_pg > max_pg)
1081 			return -ENOBUFS;
1082 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1083 		 old_pg);
1084 
1085 	if (!mmp->user) {
1086 		mmp->user = get_uid(user);
1087 		mmp->num_pg = num_pg;
1088 	} else {
1089 		mmp->num_pg += num_pg;
1090 	}
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1095 
mm_unaccount_pinned_pages(struct mmpin * mmp)1096 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1097 {
1098 	if (mmp->user) {
1099 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1100 		free_uid(mmp->user);
1101 	}
1102 }
1103 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1104 
sock_zerocopy_alloc(struct sock * sk,size_t size)1105 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1106 {
1107 	struct ubuf_info *uarg;
1108 	struct sk_buff *skb;
1109 
1110 	WARN_ON_ONCE(!in_task());
1111 
1112 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1113 	if (!skb)
1114 		return NULL;
1115 
1116 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1117 	uarg = (void *)skb->cb;
1118 	uarg->mmp.user = NULL;
1119 
1120 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1121 		kfree_skb(skb);
1122 		return NULL;
1123 	}
1124 
1125 	uarg->callback = sock_zerocopy_callback;
1126 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1127 	uarg->len = 1;
1128 	uarg->bytelen = size;
1129 	uarg->zerocopy = 1;
1130 	refcount_set(&uarg->refcnt, 1);
1131 	sock_hold(sk);
1132 
1133 	return uarg;
1134 }
1135 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1136 
skb_from_uarg(struct ubuf_info * uarg)1137 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1138 {
1139 	return container_of((void *)uarg, struct sk_buff, cb);
1140 }
1141 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1142 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1143 					struct ubuf_info *uarg)
1144 {
1145 	if (uarg) {
1146 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1147 		u32 bytelen, next;
1148 
1149 		/* realloc only when socket is locked (TCP, UDP cork),
1150 		 * so uarg->len and sk_zckey access is serialized
1151 		 */
1152 		if (!sock_owned_by_user(sk)) {
1153 			WARN_ON_ONCE(1);
1154 			return NULL;
1155 		}
1156 
1157 		bytelen = uarg->bytelen + size;
1158 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1159 			/* TCP can create new skb to attach new uarg */
1160 			if (sk->sk_type == SOCK_STREAM)
1161 				goto new_alloc;
1162 			return NULL;
1163 		}
1164 
1165 		next = (u32)atomic_read(&sk->sk_zckey);
1166 		if ((u32)(uarg->id + uarg->len) == next) {
1167 			if (mm_account_pinned_pages(&uarg->mmp, size))
1168 				return NULL;
1169 			uarg->len++;
1170 			uarg->bytelen = bytelen;
1171 			atomic_set(&sk->sk_zckey, ++next);
1172 
1173 			/* no extra ref when appending to datagram (MSG_MORE) */
1174 			if (sk->sk_type == SOCK_STREAM)
1175 				sock_zerocopy_get(uarg);
1176 
1177 			return uarg;
1178 		}
1179 	}
1180 
1181 new_alloc:
1182 	return sock_zerocopy_alloc(sk, size);
1183 }
1184 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1185 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1186 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1187 {
1188 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1189 	u32 old_lo, old_hi;
1190 	u64 sum_len;
1191 
1192 	old_lo = serr->ee.ee_info;
1193 	old_hi = serr->ee.ee_data;
1194 	sum_len = old_hi - old_lo + 1ULL + len;
1195 
1196 	if (sum_len >= (1ULL << 32))
1197 		return false;
1198 
1199 	if (lo != old_hi + 1)
1200 		return false;
1201 
1202 	serr->ee.ee_data += len;
1203 	return true;
1204 }
1205 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1206 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1207 {
1208 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1209 	struct sock_exterr_skb *serr;
1210 	struct sock *sk = skb->sk;
1211 	struct sk_buff_head *q;
1212 	unsigned long flags;
1213 	u32 lo, hi;
1214 	u16 len;
1215 
1216 	mm_unaccount_pinned_pages(&uarg->mmp);
1217 
1218 	/* if !len, there was only 1 call, and it was aborted
1219 	 * so do not queue a completion notification
1220 	 */
1221 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1222 		goto release;
1223 
1224 	len = uarg->len;
1225 	lo = uarg->id;
1226 	hi = uarg->id + len - 1;
1227 
1228 	serr = SKB_EXT_ERR(skb);
1229 	memset(serr, 0, sizeof(*serr));
1230 	serr->ee.ee_errno = 0;
1231 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1232 	serr->ee.ee_data = hi;
1233 	serr->ee.ee_info = lo;
1234 	if (!success)
1235 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1236 
1237 	q = &sk->sk_error_queue;
1238 	spin_lock_irqsave(&q->lock, flags);
1239 	tail = skb_peek_tail(q);
1240 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1241 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1242 		__skb_queue_tail(q, skb);
1243 		skb = NULL;
1244 	}
1245 	spin_unlock_irqrestore(&q->lock, flags);
1246 
1247 	sk->sk_error_report(sk);
1248 
1249 release:
1250 	consume_skb(skb);
1251 	sock_put(sk);
1252 }
1253 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1254 
sock_zerocopy_put(struct ubuf_info * uarg)1255 void sock_zerocopy_put(struct ubuf_info *uarg)
1256 {
1257 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1258 		if (uarg->callback)
1259 			uarg->callback(uarg, uarg->zerocopy);
1260 		else
1261 			consume_skb(skb_from_uarg(uarg));
1262 	}
1263 }
1264 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1265 
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1266 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1267 {
1268 	if (uarg) {
1269 		struct sock *sk = skb_from_uarg(uarg)->sk;
1270 
1271 		atomic_dec(&sk->sk_zckey);
1272 		uarg->len--;
1273 
1274 		if (have_uref)
1275 			sock_zerocopy_put(uarg);
1276 	}
1277 }
1278 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1279 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1280 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1281 {
1282 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1283 }
1284 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1285 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1286 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1287 			     struct msghdr *msg, int len,
1288 			     struct ubuf_info *uarg)
1289 {
1290 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1291 	struct iov_iter orig_iter = msg->msg_iter;
1292 	int err, orig_len = skb->len;
1293 
1294 	/* An skb can only point to one uarg. This edge case happens when
1295 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1296 	 */
1297 	if (orig_uarg && uarg != orig_uarg)
1298 		return -EEXIST;
1299 
1300 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1301 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1302 		struct sock *save_sk = skb->sk;
1303 
1304 		/* Streams do not free skb on error. Reset to prev state. */
1305 		msg->msg_iter = orig_iter;
1306 		skb->sk = sk;
1307 		___pskb_trim(skb, orig_len);
1308 		skb->sk = save_sk;
1309 		return err;
1310 	}
1311 
1312 	skb_zcopy_set(skb, uarg, NULL);
1313 	return skb->len - orig_len;
1314 }
1315 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1316 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1317 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1318 			      gfp_t gfp_mask)
1319 {
1320 	if (skb_zcopy(orig)) {
1321 		if (skb_zcopy(nskb)) {
1322 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1323 			if (!gfp_mask) {
1324 				WARN_ON_ONCE(1);
1325 				return -ENOMEM;
1326 			}
1327 			if (skb_uarg(nskb) == skb_uarg(orig))
1328 				return 0;
1329 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1330 				return -EIO;
1331 		}
1332 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1333 	}
1334 	return 0;
1335 }
1336 
1337 /**
1338  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1339  *	@skb: the skb to modify
1340  *	@gfp_mask: allocation priority
1341  *
1342  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1343  *	It will copy all frags into kernel and drop the reference
1344  *	to userspace pages.
1345  *
1346  *	If this function is called from an interrupt gfp_mask() must be
1347  *	%GFP_ATOMIC.
1348  *
1349  *	Returns 0 on success or a negative error code on failure
1350  *	to allocate kernel memory to copy to.
1351  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1352 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1353 {
1354 	int num_frags = skb_shinfo(skb)->nr_frags;
1355 	struct page *page, *head = NULL;
1356 	int i, new_frags;
1357 	u32 d_off;
1358 
1359 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1360 		return -EINVAL;
1361 
1362 	if (!num_frags)
1363 		goto release;
1364 
1365 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1366 	for (i = 0; i < new_frags; i++) {
1367 		page = alloc_page(gfp_mask);
1368 		if (!page) {
1369 			while (head) {
1370 				struct page *next = (struct page *)page_private(head);
1371 				put_page(head);
1372 				head = next;
1373 			}
1374 			return -ENOMEM;
1375 		}
1376 		set_page_private(page, (unsigned long)head);
1377 		head = page;
1378 	}
1379 
1380 	page = head;
1381 	d_off = 0;
1382 	for (i = 0; i < num_frags; i++) {
1383 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1384 		u32 p_off, p_len, copied;
1385 		struct page *p;
1386 		u8 *vaddr;
1387 
1388 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1389 				      p, p_off, p_len, copied) {
1390 			u32 copy, done = 0;
1391 			vaddr = kmap_atomic(p);
1392 
1393 			while (done < p_len) {
1394 				if (d_off == PAGE_SIZE) {
1395 					d_off = 0;
1396 					page = (struct page *)page_private(page);
1397 				}
1398 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1399 				memcpy(page_address(page) + d_off,
1400 				       vaddr + p_off + done, copy);
1401 				done += copy;
1402 				d_off += copy;
1403 			}
1404 			kunmap_atomic(vaddr);
1405 		}
1406 	}
1407 
1408 	/* skb frags release userspace buffers */
1409 	for (i = 0; i < num_frags; i++)
1410 		skb_frag_unref(skb, i);
1411 
1412 	/* skb frags point to kernel buffers */
1413 	for (i = 0; i < new_frags - 1; i++) {
1414 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1415 		head = (struct page *)page_private(head);
1416 	}
1417 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1418 	skb_shinfo(skb)->nr_frags = new_frags;
1419 
1420 release:
1421 	skb_zcopy_clear(skb, false);
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1425 
1426 /**
1427  *	skb_clone	-	duplicate an sk_buff
1428  *	@skb: buffer to clone
1429  *	@gfp_mask: allocation priority
1430  *
1431  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1432  *	copies share the same packet data but not structure. The new
1433  *	buffer has a reference count of 1. If the allocation fails the
1434  *	function returns %NULL otherwise the new buffer is returned.
1435  *
1436  *	If this function is called from an interrupt gfp_mask() must be
1437  *	%GFP_ATOMIC.
1438  */
1439 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1440 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1441 {
1442 	struct sk_buff_fclones *fclones = container_of(skb,
1443 						       struct sk_buff_fclones,
1444 						       skb1);
1445 	struct sk_buff *n;
1446 
1447 	if (skb_orphan_frags(skb, gfp_mask))
1448 		return NULL;
1449 
1450 	if (skb->fclone == SKB_FCLONE_ORIG &&
1451 	    refcount_read(&fclones->fclone_ref) == 1) {
1452 		n = &fclones->skb2;
1453 		refcount_set(&fclones->fclone_ref, 2);
1454 	} else {
1455 		if (skb_pfmemalloc(skb))
1456 			gfp_mask |= __GFP_MEMALLOC;
1457 
1458 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1459 		if (!n)
1460 			return NULL;
1461 
1462 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1463 	}
1464 
1465 	return __skb_clone(n, skb);
1466 }
1467 EXPORT_SYMBOL(skb_clone);
1468 
skb_headers_offset_update(struct sk_buff * skb,int off)1469 void skb_headers_offset_update(struct sk_buff *skb, int off)
1470 {
1471 	/* Only adjust this if it actually is csum_start rather than csum */
1472 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1473 		skb->csum_start += off;
1474 	/* {transport,network,mac}_header and tail are relative to skb->head */
1475 	skb->transport_header += off;
1476 	skb->network_header   += off;
1477 	if (skb_mac_header_was_set(skb))
1478 		skb->mac_header += off;
1479 	skb->inner_transport_header += off;
1480 	skb->inner_network_header += off;
1481 	skb->inner_mac_header += off;
1482 }
1483 EXPORT_SYMBOL(skb_headers_offset_update);
1484 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1485 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1486 {
1487 	__copy_skb_header(new, old);
1488 
1489 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1490 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1491 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1492 }
1493 EXPORT_SYMBOL(skb_copy_header);
1494 
skb_alloc_rx_flag(const struct sk_buff * skb)1495 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1496 {
1497 	if (skb_pfmemalloc(skb))
1498 		return SKB_ALLOC_RX;
1499 	return 0;
1500 }
1501 
1502 /**
1503  *	skb_copy	-	create private copy of an sk_buff
1504  *	@skb: buffer to copy
1505  *	@gfp_mask: allocation priority
1506  *
1507  *	Make a copy of both an &sk_buff and its data. This is used when the
1508  *	caller wishes to modify the data and needs a private copy of the
1509  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1510  *	on success. The returned buffer has a reference count of 1.
1511  *
1512  *	As by-product this function converts non-linear &sk_buff to linear
1513  *	one, so that &sk_buff becomes completely private and caller is allowed
1514  *	to modify all the data of returned buffer. This means that this
1515  *	function is not recommended for use in circumstances when only
1516  *	header is going to be modified. Use pskb_copy() instead.
1517  */
1518 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1519 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1520 {
1521 	int headerlen = skb_headroom(skb);
1522 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1523 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1524 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1525 
1526 	if (!n)
1527 		return NULL;
1528 
1529 	/* Set the data pointer */
1530 	skb_reserve(n, headerlen);
1531 	/* Set the tail pointer and length */
1532 	skb_put(n, skb->len);
1533 
1534 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1535 
1536 	skb_copy_header(n, skb);
1537 	return n;
1538 }
1539 EXPORT_SYMBOL(skb_copy);
1540 
1541 /**
1542  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1543  *	@skb: buffer to copy
1544  *	@headroom: headroom of new skb
1545  *	@gfp_mask: allocation priority
1546  *	@fclone: if true allocate the copy of the skb from the fclone
1547  *	cache instead of the head cache; it is recommended to set this
1548  *	to true for the cases where the copy will likely be cloned
1549  *
1550  *	Make a copy of both an &sk_buff and part of its data, located
1551  *	in header. Fragmented data remain shared. This is used when
1552  *	the caller wishes to modify only header of &sk_buff and needs
1553  *	private copy of the header to alter. Returns %NULL on failure
1554  *	or the pointer to the buffer on success.
1555  *	The returned buffer has a reference count of 1.
1556  */
1557 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1558 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1559 				   gfp_t gfp_mask, bool fclone)
1560 {
1561 	unsigned int size = skb_headlen(skb) + headroom;
1562 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1563 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1564 
1565 	if (!n)
1566 		goto out;
1567 
1568 	/* Set the data pointer */
1569 	skb_reserve(n, headroom);
1570 	/* Set the tail pointer and length */
1571 	skb_put(n, skb_headlen(skb));
1572 	/* Copy the bytes */
1573 	skb_copy_from_linear_data(skb, n->data, n->len);
1574 
1575 	n->truesize += skb->data_len;
1576 	n->data_len  = skb->data_len;
1577 	n->len	     = skb->len;
1578 
1579 	if (skb_shinfo(skb)->nr_frags) {
1580 		int i;
1581 
1582 		if (skb_orphan_frags(skb, gfp_mask) ||
1583 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1584 			kfree_skb(n);
1585 			n = NULL;
1586 			goto out;
1587 		}
1588 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1589 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1590 			skb_frag_ref(skb, i);
1591 		}
1592 		skb_shinfo(n)->nr_frags = i;
1593 	}
1594 
1595 	if (skb_has_frag_list(skb)) {
1596 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1597 		skb_clone_fraglist(n);
1598 	}
1599 
1600 	skb_copy_header(n, skb);
1601 out:
1602 	return n;
1603 }
1604 EXPORT_SYMBOL(__pskb_copy_fclone);
1605 
1606 /**
1607  *	pskb_expand_head - reallocate header of &sk_buff
1608  *	@skb: buffer to reallocate
1609  *	@nhead: room to add at head
1610  *	@ntail: room to add at tail
1611  *	@gfp_mask: allocation priority
1612  *
1613  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1614  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1615  *	reference count of 1. Returns zero in the case of success or error,
1616  *	if expansion failed. In the last case, &sk_buff is not changed.
1617  *
1618  *	All the pointers pointing into skb header may change and must be
1619  *	reloaded after call to this function.
1620  */
1621 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1622 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1623 		     gfp_t gfp_mask)
1624 {
1625 	int i, osize = skb_end_offset(skb);
1626 	int size = osize + nhead + ntail;
1627 	long off;
1628 	u8 *data;
1629 
1630 	BUG_ON(nhead < 0);
1631 
1632 	BUG_ON(skb_shared(skb));
1633 
1634 	size = SKB_DATA_ALIGN(size);
1635 
1636 	if (skb_pfmemalloc(skb))
1637 		gfp_mask |= __GFP_MEMALLOC;
1638 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1639 			       gfp_mask, NUMA_NO_NODE, NULL);
1640 	if (!data)
1641 		goto nodata;
1642 	size = SKB_WITH_OVERHEAD(ksize(data));
1643 
1644 	/* Copy only real data... and, alas, header. This should be
1645 	 * optimized for the cases when header is void.
1646 	 */
1647 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1648 
1649 	memcpy((struct skb_shared_info *)(data + size),
1650 	       skb_shinfo(skb),
1651 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1652 
1653 	/*
1654 	 * if shinfo is shared we must drop the old head gracefully, but if it
1655 	 * is not we can just drop the old head and let the existing refcount
1656 	 * be since all we did is relocate the values
1657 	 */
1658 	if (skb_cloned(skb)) {
1659 		if (skb_orphan_frags(skb, gfp_mask))
1660 			goto nofrags;
1661 		if (skb_zcopy(skb))
1662 			refcount_inc(&skb_uarg(skb)->refcnt);
1663 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1664 			skb_frag_ref(skb, i);
1665 
1666 		if (skb_has_frag_list(skb))
1667 			skb_clone_fraglist(skb);
1668 
1669 		skb_release_data(skb);
1670 	} else {
1671 		skb_free_head(skb);
1672 	}
1673 	off = (data + nhead) - skb->head;
1674 
1675 	skb->head     = data;
1676 	skb->head_frag = 0;
1677 	skb->data    += off;
1678 
1679 	skb_set_end_offset(skb, size);
1680 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1681 	off           = nhead;
1682 #endif
1683 	skb->tail	      += off;
1684 	skb_headers_offset_update(skb, nhead);
1685 	skb->cloned   = 0;
1686 	skb->hdr_len  = 0;
1687 	skb->nohdr    = 0;
1688 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1689 
1690 	skb_metadata_clear(skb);
1691 
1692 	/* It is not generally safe to change skb->truesize.
1693 	 * For the moment, we really care of rx path, or
1694 	 * when skb is orphaned (not attached to a socket).
1695 	 */
1696 	if (!skb->sk || skb->destructor == sock_edemux)
1697 		skb->truesize += size - osize;
1698 
1699 	return 0;
1700 
1701 nofrags:
1702 	kfree(data);
1703 nodata:
1704 	return -ENOMEM;
1705 }
1706 EXPORT_SYMBOL(pskb_expand_head);
1707 
1708 /* Make private copy of skb with writable head and some headroom */
1709 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1710 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1711 {
1712 	struct sk_buff *skb2;
1713 	int delta = headroom - skb_headroom(skb);
1714 
1715 	if (delta <= 0)
1716 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1717 	else {
1718 		skb2 = skb_clone(skb, GFP_ATOMIC);
1719 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1720 					     GFP_ATOMIC)) {
1721 			kfree_skb(skb2);
1722 			skb2 = NULL;
1723 		}
1724 	}
1725 	return skb2;
1726 }
1727 EXPORT_SYMBOL(skb_realloc_headroom);
1728 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1729 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1730 {
1731 	unsigned int saved_end_offset, saved_truesize;
1732 	struct skb_shared_info *shinfo;
1733 	int res;
1734 
1735 	saved_end_offset = skb_end_offset(skb);
1736 	saved_truesize = skb->truesize;
1737 
1738 	res = pskb_expand_head(skb, 0, 0, pri);
1739 	if (res)
1740 		return res;
1741 
1742 	skb->truesize = saved_truesize;
1743 
1744 	if (likely(skb_end_offset(skb) == saved_end_offset))
1745 		return 0;
1746 
1747 	shinfo = skb_shinfo(skb);
1748 
1749 	/* We are about to change back skb->end,
1750 	 * we need to move skb_shinfo() to its new location.
1751 	 */
1752 	memmove(skb->head + saved_end_offset,
1753 		shinfo,
1754 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1755 
1756 	skb_set_end_offset(skb, saved_end_offset);
1757 
1758 	return 0;
1759 }
1760 
1761 /**
1762  *	skb_copy_expand	-	copy and expand sk_buff
1763  *	@skb: buffer to copy
1764  *	@newheadroom: new free bytes at head
1765  *	@newtailroom: new free bytes at tail
1766  *	@gfp_mask: allocation priority
1767  *
1768  *	Make a copy of both an &sk_buff and its data and while doing so
1769  *	allocate additional space.
1770  *
1771  *	This is used when the caller wishes to modify the data and needs a
1772  *	private copy of the data to alter as well as more space for new fields.
1773  *	Returns %NULL on failure or the pointer to the buffer
1774  *	on success. The returned buffer has a reference count of 1.
1775  *
1776  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1777  *	is called from an interrupt.
1778  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1779 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1780 				int newheadroom, int newtailroom,
1781 				gfp_t gfp_mask)
1782 {
1783 	/*
1784 	 *	Allocate the copy buffer
1785 	 */
1786 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1787 					gfp_mask, skb_alloc_rx_flag(skb),
1788 					NUMA_NO_NODE);
1789 	int oldheadroom = skb_headroom(skb);
1790 	int head_copy_len, head_copy_off;
1791 
1792 	if (!n)
1793 		return NULL;
1794 
1795 	skb_reserve(n, newheadroom);
1796 
1797 	/* Set the tail pointer and length */
1798 	skb_put(n, skb->len);
1799 
1800 	head_copy_len = oldheadroom;
1801 	head_copy_off = 0;
1802 	if (newheadroom <= head_copy_len)
1803 		head_copy_len = newheadroom;
1804 	else
1805 		head_copy_off = newheadroom - head_copy_len;
1806 
1807 	/* Copy the linear header and data. */
1808 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1809 			     skb->len + head_copy_len));
1810 
1811 	skb_copy_header(n, skb);
1812 
1813 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1814 
1815 	return n;
1816 }
1817 EXPORT_SYMBOL(skb_copy_expand);
1818 
1819 /**
1820  *	__skb_pad		-	zero pad the tail of an skb
1821  *	@skb: buffer to pad
1822  *	@pad: space to pad
1823  *	@free_on_error: free buffer on error
1824  *
1825  *	Ensure that a buffer is followed by a padding area that is zero
1826  *	filled. Used by network drivers which may DMA or transfer data
1827  *	beyond the buffer end onto the wire.
1828  *
1829  *	May return error in out of memory cases. The skb is freed on error
1830  *	if @free_on_error is true.
1831  */
1832 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1833 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1834 {
1835 	int err;
1836 	int ntail;
1837 
1838 	/* If the skbuff is non linear tailroom is always zero.. */
1839 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1840 		memset(skb->data+skb->len, 0, pad);
1841 		return 0;
1842 	}
1843 
1844 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1845 	if (likely(skb_cloned(skb) || ntail > 0)) {
1846 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1847 		if (unlikely(err))
1848 			goto free_skb;
1849 	}
1850 
1851 	/* FIXME: The use of this function with non-linear skb's really needs
1852 	 * to be audited.
1853 	 */
1854 	err = skb_linearize(skb);
1855 	if (unlikely(err))
1856 		goto free_skb;
1857 
1858 	memset(skb->data + skb->len, 0, pad);
1859 	return 0;
1860 
1861 free_skb:
1862 	if (free_on_error)
1863 		kfree_skb(skb);
1864 	return err;
1865 }
1866 EXPORT_SYMBOL(__skb_pad);
1867 
1868 /**
1869  *	pskb_put - add data to the tail of a potentially fragmented buffer
1870  *	@skb: start of the buffer to use
1871  *	@tail: tail fragment of the buffer to use
1872  *	@len: amount of data to add
1873  *
1874  *	This function extends the used data area of the potentially
1875  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1876  *	@skb itself. If this would exceed the total buffer size the kernel
1877  *	will panic. A pointer to the first byte of the extra data is
1878  *	returned.
1879  */
1880 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1881 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1882 {
1883 	if (tail != skb) {
1884 		skb->data_len += len;
1885 		skb->len += len;
1886 	}
1887 	return skb_put(tail, len);
1888 }
1889 EXPORT_SYMBOL_GPL(pskb_put);
1890 
1891 /**
1892  *	skb_put - add data to a buffer
1893  *	@skb: buffer to use
1894  *	@len: amount of data to add
1895  *
1896  *	This function extends the used data area of the buffer. If this would
1897  *	exceed the total buffer size the kernel will panic. A pointer to the
1898  *	first byte of the extra data is returned.
1899  */
skb_put(struct sk_buff * skb,unsigned int len)1900 void *skb_put(struct sk_buff *skb, unsigned int len)
1901 {
1902 	void *tmp = skb_tail_pointer(skb);
1903 	SKB_LINEAR_ASSERT(skb);
1904 	skb->tail += len;
1905 	skb->len  += len;
1906 	if (unlikely(skb->tail > skb->end))
1907 		skb_over_panic(skb, len, __builtin_return_address(0));
1908 	return tmp;
1909 }
1910 EXPORT_SYMBOL(skb_put);
1911 
1912 /**
1913  *	skb_push - add data to the start of a buffer
1914  *	@skb: buffer to use
1915  *	@len: amount of data to add
1916  *
1917  *	This function extends the used data area of the buffer at the buffer
1918  *	start. If this would exceed the total buffer headroom the kernel will
1919  *	panic. A pointer to the first byte of the extra data is returned.
1920  */
skb_push(struct sk_buff * skb,unsigned int len)1921 void *skb_push(struct sk_buff *skb, unsigned int len)
1922 {
1923 	skb->data -= len;
1924 	skb->len  += len;
1925 	if (unlikely(skb->data < skb->head))
1926 		skb_under_panic(skb, len, __builtin_return_address(0));
1927 	return skb->data;
1928 }
1929 EXPORT_SYMBOL(skb_push);
1930 
1931 /**
1932  *	skb_pull - remove data from the start of a buffer
1933  *	@skb: buffer to use
1934  *	@len: amount of data to remove
1935  *
1936  *	This function removes data from the start of a buffer, returning
1937  *	the memory to the headroom. A pointer to the next data in the buffer
1938  *	is returned. Once the data has been pulled future pushes will overwrite
1939  *	the old data.
1940  */
skb_pull(struct sk_buff * skb,unsigned int len)1941 void *skb_pull(struct sk_buff *skb, unsigned int len)
1942 {
1943 	return skb_pull_inline(skb, len);
1944 }
1945 EXPORT_SYMBOL(skb_pull);
1946 
1947 /**
1948  *	skb_trim - remove end from a buffer
1949  *	@skb: buffer to alter
1950  *	@len: new length
1951  *
1952  *	Cut the length of a buffer down by removing data from the tail. If
1953  *	the buffer is already under the length specified it is not modified.
1954  *	The skb must be linear.
1955  */
skb_trim(struct sk_buff * skb,unsigned int len)1956 void skb_trim(struct sk_buff *skb, unsigned int len)
1957 {
1958 	if (skb->len > len)
1959 		__skb_trim(skb, len);
1960 }
1961 EXPORT_SYMBOL(skb_trim);
1962 
1963 /* Trims skb to length len. It can change skb pointers.
1964  */
1965 
___pskb_trim(struct sk_buff * skb,unsigned int len)1966 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1967 {
1968 	struct sk_buff **fragp;
1969 	struct sk_buff *frag;
1970 	int offset = skb_headlen(skb);
1971 	int nfrags = skb_shinfo(skb)->nr_frags;
1972 	int i;
1973 	int err;
1974 
1975 	if (skb_cloned(skb) &&
1976 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1977 		return err;
1978 
1979 	i = 0;
1980 	if (offset >= len)
1981 		goto drop_pages;
1982 
1983 	for (; i < nfrags; i++) {
1984 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1985 
1986 		if (end < len) {
1987 			offset = end;
1988 			continue;
1989 		}
1990 
1991 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1992 
1993 drop_pages:
1994 		skb_shinfo(skb)->nr_frags = i;
1995 
1996 		for (; i < nfrags; i++)
1997 			skb_frag_unref(skb, i);
1998 
1999 		if (skb_has_frag_list(skb))
2000 			skb_drop_fraglist(skb);
2001 		goto done;
2002 	}
2003 
2004 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2005 	     fragp = &frag->next) {
2006 		int end = offset + frag->len;
2007 
2008 		if (skb_shared(frag)) {
2009 			struct sk_buff *nfrag;
2010 
2011 			nfrag = skb_clone(frag, GFP_ATOMIC);
2012 			if (unlikely(!nfrag))
2013 				return -ENOMEM;
2014 
2015 			nfrag->next = frag->next;
2016 			consume_skb(frag);
2017 			frag = nfrag;
2018 			*fragp = frag;
2019 		}
2020 
2021 		if (end < len) {
2022 			offset = end;
2023 			continue;
2024 		}
2025 
2026 		if (end > len &&
2027 		    unlikely((err = pskb_trim(frag, len - offset))))
2028 			return err;
2029 
2030 		if (frag->next)
2031 			skb_drop_list(&frag->next);
2032 		break;
2033 	}
2034 
2035 done:
2036 	if (len > skb_headlen(skb)) {
2037 		skb->data_len -= skb->len - len;
2038 		skb->len       = len;
2039 	} else {
2040 		skb->len       = len;
2041 		skb->data_len  = 0;
2042 		skb_set_tail_pointer(skb, len);
2043 	}
2044 
2045 	if (!skb->sk || skb->destructor == sock_edemux)
2046 		skb_condense(skb);
2047 	return 0;
2048 }
2049 EXPORT_SYMBOL(___pskb_trim);
2050 
2051 /* Note : use pskb_trim_rcsum() instead of calling this directly
2052  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2053 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2054 {
2055 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2056 		int delta = skb->len - len;
2057 
2058 		skb->csum = csum_block_sub(skb->csum,
2059 					   skb_checksum(skb, len, delta, 0),
2060 					   len);
2061 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2062 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2063 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2064 
2065 		if (offset + sizeof(__sum16) > hdlen)
2066 			return -EINVAL;
2067 	}
2068 	return __pskb_trim(skb, len);
2069 }
2070 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2071 
2072 /**
2073  *	__pskb_pull_tail - advance tail of skb header
2074  *	@skb: buffer to reallocate
2075  *	@delta: number of bytes to advance tail
2076  *
2077  *	The function makes a sense only on a fragmented &sk_buff,
2078  *	it expands header moving its tail forward and copying necessary
2079  *	data from fragmented part.
2080  *
2081  *	&sk_buff MUST have reference count of 1.
2082  *
2083  *	Returns %NULL (and &sk_buff does not change) if pull failed
2084  *	or value of new tail of skb in the case of success.
2085  *
2086  *	All the pointers pointing into skb header may change and must be
2087  *	reloaded after call to this function.
2088  */
2089 
2090 /* Moves tail of skb head forward, copying data from fragmented part,
2091  * when it is necessary.
2092  * 1. It may fail due to malloc failure.
2093  * 2. It may change skb pointers.
2094  *
2095  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2096  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2097 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2098 {
2099 	/* If skb has not enough free space at tail, get new one
2100 	 * plus 128 bytes for future expansions. If we have enough
2101 	 * room at tail, reallocate without expansion only if skb is cloned.
2102 	 */
2103 	int i, k, eat = (skb->tail + delta) - skb->end;
2104 
2105 	if (eat > 0 || skb_cloned(skb)) {
2106 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2107 				     GFP_ATOMIC))
2108 			return NULL;
2109 	}
2110 
2111 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2112 			     skb_tail_pointer(skb), delta));
2113 
2114 	/* Optimization: no fragments, no reasons to preestimate
2115 	 * size of pulled pages. Superb.
2116 	 */
2117 	if (!skb_has_frag_list(skb))
2118 		goto pull_pages;
2119 
2120 	/* Estimate size of pulled pages. */
2121 	eat = delta;
2122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2123 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2124 
2125 		if (size >= eat)
2126 			goto pull_pages;
2127 		eat -= size;
2128 	}
2129 
2130 	/* If we need update frag list, we are in troubles.
2131 	 * Certainly, it is possible to add an offset to skb data,
2132 	 * but taking into account that pulling is expected to
2133 	 * be very rare operation, it is worth to fight against
2134 	 * further bloating skb head and crucify ourselves here instead.
2135 	 * Pure masohism, indeed. 8)8)
2136 	 */
2137 	if (eat) {
2138 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2139 		struct sk_buff *clone = NULL;
2140 		struct sk_buff *insp = NULL;
2141 
2142 		do {
2143 			if (list->len <= eat) {
2144 				/* Eaten as whole. */
2145 				eat -= list->len;
2146 				list = list->next;
2147 				insp = list;
2148 			} else {
2149 				/* Eaten partially. */
2150 				if (skb_is_gso(skb) && !list->head_frag &&
2151 				    skb_headlen(list))
2152 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2153 
2154 				if (skb_shared(list)) {
2155 					/* Sucks! We need to fork list. :-( */
2156 					clone = skb_clone(list, GFP_ATOMIC);
2157 					if (!clone)
2158 						return NULL;
2159 					insp = list->next;
2160 					list = clone;
2161 				} else {
2162 					/* This may be pulled without
2163 					 * problems. */
2164 					insp = list;
2165 				}
2166 				if (!pskb_pull(list, eat)) {
2167 					kfree_skb(clone);
2168 					return NULL;
2169 				}
2170 				break;
2171 			}
2172 		} while (eat);
2173 
2174 		/* Free pulled out fragments. */
2175 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2176 			skb_shinfo(skb)->frag_list = list->next;
2177 			consume_skb(list);
2178 		}
2179 		/* And insert new clone at head. */
2180 		if (clone) {
2181 			clone->next = list;
2182 			skb_shinfo(skb)->frag_list = clone;
2183 		}
2184 	}
2185 	/* Success! Now we may commit changes to skb data. */
2186 
2187 pull_pages:
2188 	eat = delta;
2189 	k = 0;
2190 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2191 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2192 
2193 		if (size <= eat) {
2194 			skb_frag_unref(skb, i);
2195 			eat -= size;
2196 		} else {
2197 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2198 
2199 			*frag = skb_shinfo(skb)->frags[i];
2200 			if (eat) {
2201 				skb_frag_off_add(frag, eat);
2202 				skb_frag_size_sub(frag, eat);
2203 				if (!i)
2204 					goto end;
2205 				eat = 0;
2206 			}
2207 			k++;
2208 		}
2209 	}
2210 	skb_shinfo(skb)->nr_frags = k;
2211 
2212 end:
2213 	skb->tail     += delta;
2214 	skb->data_len -= delta;
2215 
2216 	if (!skb->data_len)
2217 		skb_zcopy_clear(skb, false);
2218 
2219 	return skb_tail_pointer(skb);
2220 }
2221 EXPORT_SYMBOL(__pskb_pull_tail);
2222 
2223 /**
2224  *	skb_copy_bits - copy bits from skb to kernel buffer
2225  *	@skb: source skb
2226  *	@offset: offset in source
2227  *	@to: destination buffer
2228  *	@len: number of bytes to copy
2229  *
2230  *	Copy the specified number of bytes from the source skb to the
2231  *	destination buffer.
2232  *
2233  *	CAUTION ! :
2234  *		If its prototype is ever changed,
2235  *		check arch/{*}/net/{*}.S files,
2236  *		since it is called from BPF assembly code.
2237  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2238 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2239 {
2240 	int start = skb_headlen(skb);
2241 	struct sk_buff *frag_iter;
2242 	int i, copy;
2243 
2244 	if (offset > (int)skb->len - len)
2245 		goto fault;
2246 
2247 	/* Copy header. */
2248 	if ((copy = start - offset) > 0) {
2249 		if (copy > len)
2250 			copy = len;
2251 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2252 		if ((len -= copy) == 0)
2253 			return 0;
2254 		offset += copy;
2255 		to     += copy;
2256 	}
2257 
2258 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2259 		int end;
2260 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2261 
2262 		WARN_ON(start > offset + len);
2263 
2264 		end = start + skb_frag_size(f);
2265 		if ((copy = end - offset) > 0) {
2266 			u32 p_off, p_len, copied;
2267 			struct page *p;
2268 			u8 *vaddr;
2269 
2270 			if (copy > len)
2271 				copy = len;
2272 
2273 			skb_frag_foreach_page(f,
2274 					      skb_frag_off(f) + offset - start,
2275 					      copy, p, p_off, p_len, copied) {
2276 				vaddr = kmap_atomic(p);
2277 				memcpy(to + copied, vaddr + p_off, p_len);
2278 				kunmap_atomic(vaddr);
2279 			}
2280 
2281 			if ((len -= copy) == 0)
2282 				return 0;
2283 			offset += copy;
2284 			to     += copy;
2285 		}
2286 		start = end;
2287 	}
2288 
2289 	skb_walk_frags(skb, frag_iter) {
2290 		int end;
2291 
2292 		WARN_ON(start > offset + len);
2293 
2294 		end = start + frag_iter->len;
2295 		if ((copy = end - offset) > 0) {
2296 			if (copy > len)
2297 				copy = len;
2298 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2299 				goto fault;
2300 			if ((len -= copy) == 0)
2301 				return 0;
2302 			offset += copy;
2303 			to     += copy;
2304 		}
2305 		start = end;
2306 	}
2307 
2308 	if (!len)
2309 		return 0;
2310 
2311 fault:
2312 	return -EFAULT;
2313 }
2314 EXPORT_SYMBOL(skb_copy_bits);
2315 
2316 /*
2317  * Callback from splice_to_pipe(), if we need to release some pages
2318  * at the end of the spd in case we error'ed out in filling the pipe.
2319  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2320 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2321 {
2322 	put_page(spd->pages[i]);
2323 }
2324 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2325 static struct page *linear_to_page(struct page *page, unsigned int *len,
2326 				   unsigned int *offset,
2327 				   struct sock *sk)
2328 {
2329 	struct page_frag *pfrag = sk_page_frag(sk);
2330 
2331 	if (!sk_page_frag_refill(sk, pfrag))
2332 		return NULL;
2333 
2334 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2335 
2336 	memcpy(page_address(pfrag->page) + pfrag->offset,
2337 	       page_address(page) + *offset, *len);
2338 	*offset = pfrag->offset;
2339 	pfrag->offset += *len;
2340 
2341 	return pfrag->page;
2342 }
2343 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2344 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2345 			     struct page *page,
2346 			     unsigned int offset)
2347 {
2348 	return	spd->nr_pages &&
2349 		spd->pages[spd->nr_pages - 1] == page &&
2350 		(spd->partial[spd->nr_pages - 1].offset +
2351 		 spd->partial[spd->nr_pages - 1].len == offset);
2352 }
2353 
2354 /*
2355  * Fill page/offset/length into spd, if it can hold more pages.
2356  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2357 static bool spd_fill_page(struct splice_pipe_desc *spd,
2358 			  struct pipe_inode_info *pipe, struct page *page,
2359 			  unsigned int *len, unsigned int offset,
2360 			  bool linear,
2361 			  struct sock *sk)
2362 {
2363 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2364 		return true;
2365 
2366 	if (linear) {
2367 		page = linear_to_page(page, len, &offset, sk);
2368 		if (!page)
2369 			return true;
2370 	}
2371 	if (spd_can_coalesce(spd, page, offset)) {
2372 		spd->partial[spd->nr_pages - 1].len += *len;
2373 		return false;
2374 	}
2375 	get_page(page);
2376 	spd->pages[spd->nr_pages] = page;
2377 	spd->partial[spd->nr_pages].len = *len;
2378 	spd->partial[spd->nr_pages].offset = offset;
2379 	spd->nr_pages++;
2380 
2381 	return false;
2382 }
2383 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2384 static bool __splice_segment(struct page *page, unsigned int poff,
2385 			     unsigned int plen, unsigned int *off,
2386 			     unsigned int *len,
2387 			     struct splice_pipe_desc *spd, bool linear,
2388 			     struct sock *sk,
2389 			     struct pipe_inode_info *pipe)
2390 {
2391 	if (!*len)
2392 		return true;
2393 
2394 	/* skip this segment if already processed */
2395 	if (*off >= plen) {
2396 		*off -= plen;
2397 		return false;
2398 	}
2399 
2400 	/* ignore any bits we already processed */
2401 	poff += *off;
2402 	plen -= *off;
2403 	*off = 0;
2404 
2405 	do {
2406 		unsigned int flen = min(*len, plen);
2407 
2408 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2409 				  linear, sk))
2410 			return true;
2411 		poff += flen;
2412 		plen -= flen;
2413 		*len -= flen;
2414 	} while (*len && plen);
2415 
2416 	return false;
2417 }
2418 
2419 /*
2420  * Map linear and fragment data from the skb to spd. It reports true if the
2421  * pipe is full or if we already spliced the requested length.
2422  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2423 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2424 			      unsigned int *offset, unsigned int *len,
2425 			      struct splice_pipe_desc *spd, struct sock *sk)
2426 {
2427 	int seg;
2428 	struct sk_buff *iter;
2429 
2430 	/* map the linear part :
2431 	 * If skb->head_frag is set, this 'linear' part is backed by a
2432 	 * fragment, and if the head is not shared with any clones then
2433 	 * we can avoid a copy since we own the head portion of this page.
2434 	 */
2435 	if (__splice_segment(virt_to_page(skb->data),
2436 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2437 			     skb_headlen(skb),
2438 			     offset, len, spd,
2439 			     skb_head_is_locked(skb),
2440 			     sk, pipe))
2441 		return true;
2442 
2443 	/*
2444 	 * then map the fragments
2445 	 */
2446 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2447 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2448 
2449 		if (__splice_segment(skb_frag_page(f),
2450 				     skb_frag_off(f), skb_frag_size(f),
2451 				     offset, len, spd, false, sk, pipe))
2452 			return true;
2453 	}
2454 
2455 	skb_walk_frags(skb, iter) {
2456 		if (*offset >= iter->len) {
2457 			*offset -= iter->len;
2458 			continue;
2459 		}
2460 		/* __skb_splice_bits() only fails if the output has no room
2461 		 * left, so no point in going over the frag_list for the error
2462 		 * case.
2463 		 */
2464 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2465 			return true;
2466 	}
2467 
2468 	return false;
2469 }
2470 
2471 /*
2472  * Map data from the skb to a pipe. Should handle both the linear part,
2473  * the fragments, and the frag list.
2474  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2475 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2476 		    struct pipe_inode_info *pipe, unsigned int tlen,
2477 		    unsigned int flags)
2478 {
2479 	struct partial_page partial[MAX_SKB_FRAGS];
2480 	struct page *pages[MAX_SKB_FRAGS];
2481 	struct splice_pipe_desc spd = {
2482 		.pages = pages,
2483 		.partial = partial,
2484 		.nr_pages_max = MAX_SKB_FRAGS,
2485 		.ops = &nosteal_pipe_buf_ops,
2486 		.spd_release = sock_spd_release,
2487 	};
2488 	int ret = 0;
2489 
2490 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2491 
2492 	if (spd.nr_pages)
2493 		ret = splice_to_pipe(pipe, &spd);
2494 
2495 	return ret;
2496 }
2497 EXPORT_SYMBOL_GPL(skb_splice_bits);
2498 
2499 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2500 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2501 			 int len)
2502 {
2503 	unsigned int orig_len = len;
2504 	struct sk_buff *head = skb;
2505 	unsigned short fragidx;
2506 	int slen, ret;
2507 
2508 do_frag_list:
2509 
2510 	/* Deal with head data */
2511 	while (offset < skb_headlen(skb) && len) {
2512 		struct kvec kv;
2513 		struct msghdr msg;
2514 
2515 		slen = min_t(int, len, skb_headlen(skb) - offset);
2516 		kv.iov_base = skb->data + offset;
2517 		kv.iov_len = slen;
2518 		memset(&msg, 0, sizeof(msg));
2519 		msg.msg_flags = MSG_DONTWAIT;
2520 
2521 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2522 		if (ret <= 0)
2523 			goto error;
2524 
2525 		offset += ret;
2526 		len -= ret;
2527 	}
2528 
2529 	/* All the data was skb head? */
2530 	if (!len)
2531 		goto out;
2532 
2533 	/* Make offset relative to start of frags */
2534 	offset -= skb_headlen(skb);
2535 
2536 	/* Find where we are in frag list */
2537 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2538 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2539 
2540 		if (offset < skb_frag_size(frag))
2541 			break;
2542 
2543 		offset -= skb_frag_size(frag);
2544 	}
2545 
2546 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2547 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2548 
2549 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2550 
2551 		while (slen) {
2552 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2553 						     skb_frag_off(frag) + offset,
2554 						     slen, MSG_DONTWAIT);
2555 			if (ret <= 0)
2556 				goto error;
2557 
2558 			len -= ret;
2559 			offset += ret;
2560 			slen -= ret;
2561 		}
2562 
2563 		offset = 0;
2564 	}
2565 
2566 	if (len) {
2567 		/* Process any frag lists */
2568 
2569 		if (skb == head) {
2570 			if (skb_has_frag_list(skb)) {
2571 				skb = skb_shinfo(skb)->frag_list;
2572 				goto do_frag_list;
2573 			}
2574 		} else if (skb->next) {
2575 			skb = skb->next;
2576 			goto do_frag_list;
2577 		}
2578 	}
2579 
2580 out:
2581 	return orig_len - len;
2582 
2583 error:
2584 	return orig_len == len ? ret : orig_len - len;
2585 }
2586 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2587 
2588 /**
2589  *	skb_store_bits - store bits from kernel buffer to skb
2590  *	@skb: destination buffer
2591  *	@offset: offset in destination
2592  *	@from: source buffer
2593  *	@len: number of bytes to copy
2594  *
2595  *	Copy the specified number of bytes from the source buffer to the
2596  *	destination skb.  This function handles all the messy bits of
2597  *	traversing fragment lists and such.
2598  */
2599 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2600 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2601 {
2602 	int start = skb_headlen(skb);
2603 	struct sk_buff *frag_iter;
2604 	int i, copy;
2605 
2606 	if (offset > (int)skb->len - len)
2607 		goto fault;
2608 
2609 	if ((copy = start - offset) > 0) {
2610 		if (copy > len)
2611 			copy = len;
2612 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2613 		if ((len -= copy) == 0)
2614 			return 0;
2615 		offset += copy;
2616 		from += copy;
2617 	}
2618 
2619 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2620 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2621 		int end;
2622 
2623 		WARN_ON(start > offset + len);
2624 
2625 		end = start + skb_frag_size(frag);
2626 		if ((copy = end - offset) > 0) {
2627 			u32 p_off, p_len, copied;
2628 			struct page *p;
2629 			u8 *vaddr;
2630 
2631 			if (copy > len)
2632 				copy = len;
2633 
2634 			skb_frag_foreach_page(frag,
2635 					      skb_frag_off(frag) + offset - start,
2636 					      copy, p, p_off, p_len, copied) {
2637 				vaddr = kmap_atomic(p);
2638 				memcpy(vaddr + p_off, from + copied, p_len);
2639 				kunmap_atomic(vaddr);
2640 			}
2641 
2642 			if ((len -= copy) == 0)
2643 				return 0;
2644 			offset += copy;
2645 			from += copy;
2646 		}
2647 		start = end;
2648 	}
2649 
2650 	skb_walk_frags(skb, frag_iter) {
2651 		int end;
2652 
2653 		WARN_ON(start > offset + len);
2654 
2655 		end = start + frag_iter->len;
2656 		if ((copy = end - offset) > 0) {
2657 			if (copy > len)
2658 				copy = len;
2659 			if (skb_store_bits(frag_iter, offset - start,
2660 					   from, copy))
2661 				goto fault;
2662 			if ((len -= copy) == 0)
2663 				return 0;
2664 			offset += copy;
2665 			from += copy;
2666 		}
2667 		start = end;
2668 	}
2669 	if (!len)
2670 		return 0;
2671 
2672 fault:
2673 	return -EFAULT;
2674 }
2675 EXPORT_SYMBOL(skb_store_bits);
2676 
2677 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2678 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2679 		      __wsum csum, const struct skb_checksum_ops *ops)
2680 {
2681 	int start = skb_headlen(skb);
2682 	int i, copy = start - offset;
2683 	struct sk_buff *frag_iter;
2684 	int pos = 0;
2685 
2686 	/* Checksum header. */
2687 	if (copy > 0) {
2688 		if (copy > len)
2689 			copy = len;
2690 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2691 				       skb->data + offset, copy, csum);
2692 		if ((len -= copy) == 0)
2693 			return csum;
2694 		offset += copy;
2695 		pos	= copy;
2696 	}
2697 
2698 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2699 		int end;
2700 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2701 
2702 		WARN_ON(start > offset + len);
2703 
2704 		end = start + skb_frag_size(frag);
2705 		if ((copy = end - offset) > 0) {
2706 			u32 p_off, p_len, copied;
2707 			struct page *p;
2708 			__wsum csum2;
2709 			u8 *vaddr;
2710 
2711 			if (copy > len)
2712 				copy = len;
2713 
2714 			skb_frag_foreach_page(frag,
2715 					      skb_frag_off(frag) + offset - start,
2716 					      copy, p, p_off, p_len, copied) {
2717 				vaddr = kmap_atomic(p);
2718 				csum2 = INDIRECT_CALL_1(ops->update,
2719 							csum_partial_ext,
2720 							vaddr + p_off, p_len, 0);
2721 				kunmap_atomic(vaddr);
2722 				csum = INDIRECT_CALL_1(ops->combine,
2723 						       csum_block_add_ext, csum,
2724 						       csum2, pos, p_len);
2725 				pos += p_len;
2726 			}
2727 
2728 			if (!(len -= copy))
2729 				return csum;
2730 			offset += copy;
2731 		}
2732 		start = end;
2733 	}
2734 
2735 	skb_walk_frags(skb, frag_iter) {
2736 		int end;
2737 
2738 		WARN_ON(start > offset + len);
2739 
2740 		end = start + frag_iter->len;
2741 		if ((copy = end - offset) > 0) {
2742 			__wsum csum2;
2743 			if (copy > len)
2744 				copy = len;
2745 			csum2 = __skb_checksum(frag_iter, offset - start,
2746 					       copy, 0, ops);
2747 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2748 					       csum, csum2, pos, copy);
2749 			if ((len -= copy) == 0)
2750 				return csum;
2751 			offset += copy;
2752 			pos    += copy;
2753 		}
2754 		start = end;
2755 	}
2756 	BUG_ON(len);
2757 
2758 	return csum;
2759 }
2760 EXPORT_SYMBOL(__skb_checksum);
2761 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2762 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2763 		    int len, __wsum csum)
2764 {
2765 	const struct skb_checksum_ops ops = {
2766 		.update  = csum_partial_ext,
2767 		.combine = csum_block_add_ext,
2768 	};
2769 
2770 	return __skb_checksum(skb, offset, len, csum, &ops);
2771 }
2772 EXPORT_SYMBOL(skb_checksum);
2773 
2774 /* Both of above in one bottle. */
2775 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2776 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2777 				    u8 *to, int len)
2778 {
2779 	int start = skb_headlen(skb);
2780 	int i, copy = start - offset;
2781 	struct sk_buff *frag_iter;
2782 	int pos = 0;
2783 	__wsum csum = 0;
2784 
2785 	/* Copy header. */
2786 	if (copy > 0) {
2787 		if (copy > len)
2788 			copy = len;
2789 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2790 						 copy);
2791 		if ((len -= copy) == 0)
2792 			return csum;
2793 		offset += copy;
2794 		to     += copy;
2795 		pos	= copy;
2796 	}
2797 
2798 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2799 		int end;
2800 
2801 		WARN_ON(start > offset + len);
2802 
2803 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2804 		if ((copy = end - offset) > 0) {
2805 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2806 			u32 p_off, p_len, copied;
2807 			struct page *p;
2808 			__wsum csum2;
2809 			u8 *vaddr;
2810 
2811 			if (copy > len)
2812 				copy = len;
2813 
2814 			skb_frag_foreach_page(frag,
2815 					      skb_frag_off(frag) + offset - start,
2816 					      copy, p, p_off, p_len, copied) {
2817 				vaddr = kmap_atomic(p);
2818 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2819 								  to + copied,
2820 								  p_len);
2821 				kunmap_atomic(vaddr);
2822 				csum = csum_block_add(csum, csum2, pos);
2823 				pos += p_len;
2824 			}
2825 
2826 			if (!(len -= copy))
2827 				return csum;
2828 			offset += copy;
2829 			to     += copy;
2830 		}
2831 		start = end;
2832 	}
2833 
2834 	skb_walk_frags(skb, frag_iter) {
2835 		__wsum csum2;
2836 		int end;
2837 
2838 		WARN_ON(start > offset + len);
2839 
2840 		end = start + frag_iter->len;
2841 		if ((copy = end - offset) > 0) {
2842 			if (copy > len)
2843 				copy = len;
2844 			csum2 = skb_copy_and_csum_bits(frag_iter,
2845 						       offset - start,
2846 						       to, copy);
2847 			csum = csum_block_add(csum, csum2, pos);
2848 			if ((len -= copy) == 0)
2849 				return csum;
2850 			offset += copy;
2851 			to     += copy;
2852 			pos    += copy;
2853 		}
2854 		start = end;
2855 	}
2856 	BUG_ON(len);
2857 	return csum;
2858 }
2859 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2860 
__skb_checksum_complete_head(struct sk_buff * skb,int len)2861 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2862 {
2863 	__sum16 sum;
2864 
2865 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2866 	/* See comments in __skb_checksum_complete(). */
2867 	if (likely(!sum)) {
2868 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2869 		    !skb->csum_complete_sw)
2870 			netdev_rx_csum_fault(skb->dev, skb);
2871 	}
2872 	if (!skb_shared(skb))
2873 		skb->csum_valid = !sum;
2874 	return sum;
2875 }
2876 EXPORT_SYMBOL(__skb_checksum_complete_head);
2877 
2878 /* This function assumes skb->csum already holds pseudo header's checksum,
2879  * which has been changed from the hardware checksum, for example, by
2880  * __skb_checksum_validate_complete(). And, the original skb->csum must
2881  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2882  *
2883  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2884  * zero. The new checksum is stored back into skb->csum unless the skb is
2885  * shared.
2886  */
__skb_checksum_complete(struct sk_buff * skb)2887 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2888 {
2889 	__wsum csum;
2890 	__sum16 sum;
2891 
2892 	csum = skb_checksum(skb, 0, skb->len, 0);
2893 
2894 	sum = csum_fold(csum_add(skb->csum, csum));
2895 	/* This check is inverted, because we already knew the hardware
2896 	 * checksum is invalid before calling this function. So, if the
2897 	 * re-computed checksum is valid instead, then we have a mismatch
2898 	 * between the original skb->csum and skb_checksum(). This means either
2899 	 * the original hardware checksum is incorrect or we screw up skb->csum
2900 	 * when moving skb->data around.
2901 	 */
2902 	if (likely(!sum)) {
2903 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2904 		    !skb->csum_complete_sw)
2905 			netdev_rx_csum_fault(skb->dev, skb);
2906 	}
2907 
2908 	if (!skb_shared(skb)) {
2909 		/* Save full packet checksum */
2910 		skb->csum = csum;
2911 		skb->ip_summed = CHECKSUM_COMPLETE;
2912 		skb->csum_complete_sw = 1;
2913 		skb->csum_valid = !sum;
2914 	}
2915 
2916 	return sum;
2917 }
2918 EXPORT_SYMBOL(__skb_checksum_complete);
2919 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2920 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2921 {
2922 	net_warn_ratelimited(
2923 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2924 		__func__);
2925 	return 0;
2926 }
2927 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2928 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2929 				       int offset, int len)
2930 {
2931 	net_warn_ratelimited(
2932 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2933 		__func__);
2934 	return 0;
2935 }
2936 
2937 static const struct skb_checksum_ops default_crc32c_ops = {
2938 	.update  = warn_crc32c_csum_update,
2939 	.combine = warn_crc32c_csum_combine,
2940 };
2941 
2942 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2943 	&default_crc32c_ops;
2944 EXPORT_SYMBOL(crc32c_csum_stub);
2945 
2946  /**
2947  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2948  *	@from: source buffer
2949  *
2950  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2951  *	into skb_zerocopy().
2952  */
2953 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2954 skb_zerocopy_headlen(const struct sk_buff *from)
2955 {
2956 	unsigned int hlen = 0;
2957 
2958 	if (!from->head_frag ||
2959 	    skb_headlen(from) < L1_CACHE_BYTES ||
2960 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2961 		hlen = skb_headlen(from);
2962 		if (!hlen)
2963 			hlen = from->len;
2964 	}
2965 
2966 	if (skb_has_frag_list(from))
2967 		hlen = from->len;
2968 
2969 	return hlen;
2970 }
2971 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2972 
2973 /**
2974  *	skb_zerocopy - Zero copy skb to skb
2975  *	@to: destination buffer
2976  *	@from: source buffer
2977  *	@len: number of bytes to copy from source buffer
2978  *	@hlen: size of linear headroom in destination buffer
2979  *
2980  *	Copies up to `len` bytes from `from` to `to` by creating references
2981  *	to the frags in the source buffer.
2982  *
2983  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2984  *	headroom in the `to` buffer.
2985  *
2986  *	Return value:
2987  *	0: everything is OK
2988  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2989  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2990  */
2991 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2992 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2993 {
2994 	int i, j = 0;
2995 	int plen = 0; /* length of skb->head fragment */
2996 	int ret;
2997 	struct page *page;
2998 	unsigned int offset;
2999 
3000 	BUG_ON(!from->head_frag && !hlen);
3001 
3002 	/* dont bother with small payloads */
3003 	if (len <= skb_tailroom(to))
3004 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3005 
3006 	if (hlen) {
3007 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3008 		if (unlikely(ret))
3009 			return ret;
3010 		len -= hlen;
3011 	} else {
3012 		plen = min_t(int, skb_headlen(from), len);
3013 		if (plen) {
3014 			page = virt_to_head_page(from->head);
3015 			offset = from->data - (unsigned char *)page_address(page);
3016 			__skb_fill_page_desc(to, 0, page, offset, plen);
3017 			get_page(page);
3018 			j = 1;
3019 			len -= plen;
3020 		}
3021 	}
3022 
3023 	to->truesize += len + plen;
3024 	to->len += len + plen;
3025 	to->data_len += len + plen;
3026 
3027 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3028 		skb_tx_error(from);
3029 		return -ENOMEM;
3030 	}
3031 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3032 
3033 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3034 		int size;
3035 
3036 		if (!len)
3037 			break;
3038 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3039 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3040 					len);
3041 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3042 		len -= size;
3043 		skb_frag_ref(to, j);
3044 		j++;
3045 	}
3046 	skb_shinfo(to)->nr_frags = j;
3047 
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(skb_zerocopy);
3051 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3052 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3053 {
3054 	__wsum csum;
3055 	long csstart;
3056 
3057 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3058 		csstart = skb_checksum_start_offset(skb);
3059 	else
3060 		csstart = skb_headlen(skb);
3061 
3062 	BUG_ON(csstart > skb_headlen(skb));
3063 
3064 	skb_copy_from_linear_data(skb, to, csstart);
3065 
3066 	csum = 0;
3067 	if (csstart != skb->len)
3068 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3069 					      skb->len - csstart);
3070 
3071 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3072 		long csstuff = csstart + skb->csum_offset;
3073 
3074 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3075 	}
3076 }
3077 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3078 
3079 /**
3080  *	skb_dequeue - remove from the head of the queue
3081  *	@list: list to dequeue from
3082  *
3083  *	Remove the head of the list. The list lock is taken so the function
3084  *	may be used safely with other locking list functions. The head item is
3085  *	returned or %NULL if the list is empty.
3086  */
3087 
skb_dequeue(struct sk_buff_head * list)3088 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3089 {
3090 	unsigned long flags;
3091 	struct sk_buff *result;
3092 
3093 	spin_lock_irqsave(&list->lock, flags);
3094 	result = __skb_dequeue(list);
3095 	spin_unlock_irqrestore(&list->lock, flags);
3096 	return result;
3097 }
3098 EXPORT_SYMBOL(skb_dequeue);
3099 
3100 /**
3101  *	skb_dequeue_tail - remove from the tail of the queue
3102  *	@list: list to dequeue from
3103  *
3104  *	Remove the tail of the list. The list lock is taken so the function
3105  *	may be used safely with other locking list functions. The tail item is
3106  *	returned or %NULL if the list is empty.
3107  */
skb_dequeue_tail(struct sk_buff_head * list)3108 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3109 {
3110 	unsigned long flags;
3111 	struct sk_buff *result;
3112 
3113 	spin_lock_irqsave(&list->lock, flags);
3114 	result = __skb_dequeue_tail(list);
3115 	spin_unlock_irqrestore(&list->lock, flags);
3116 	return result;
3117 }
3118 EXPORT_SYMBOL(skb_dequeue_tail);
3119 
3120 /**
3121  *	skb_queue_purge - empty a list
3122  *	@list: list to empty
3123  *
3124  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3125  *	the list and one reference dropped. This function takes the list
3126  *	lock and is atomic with respect to other list locking functions.
3127  */
skb_queue_purge(struct sk_buff_head * list)3128 void skb_queue_purge(struct sk_buff_head *list)
3129 {
3130 	struct sk_buff *skb;
3131 	while ((skb = skb_dequeue(list)) != NULL)
3132 		kfree_skb(skb);
3133 }
3134 EXPORT_SYMBOL(skb_queue_purge);
3135 
3136 /**
3137  *	skb_rbtree_purge - empty a skb rbtree
3138  *	@root: root of the rbtree to empty
3139  *	Return value: the sum of truesizes of all purged skbs.
3140  *
3141  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3142  *	the list and one reference dropped. This function does not take
3143  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3144  *	out-of-order queue is protected by the socket lock).
3145  */
skb_rbtree_purge(struct rb_root * root)3146 unsigned int skb_rbtree_purge(struct rb_root *root)
3147 {
3148 	struct rb_node *p = rb_first(root);
3149 	unsigned int sum = 0;
3150 
3151 	while (p) {
3152 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3153 
3154 		p = rb_next(p);
3155 		rb_erase(&skb->rbnode, root);
3156 		sum += skb->truesize;
3157 		kfree_skb(skb);
3158 	}
3159 	return sum;
3160 }
3161 
3162 /**
3163  *	skb_queue_head - queue a buffer at the list head
3164  *	@list: list to use
3165  *	@newsk: buffer to queue
3166  *
3167  *	Queue a buffer at the start of the list. This function takes the
3168  *	list lock and can be used safely with other locking &sk_buff functions
3169  *	safely.
3170  *
3171  *	A buffer cannot be placed on two lists at the same time.
3172  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3173 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3174 {
3175 	unsigned long flags;
3176 
3177 	spin_lock_irqsave(&list->lock, flags);
3178 	__skb_queue_head(list, newsk);
3179 	spin_unlock_irqrestore(&list->lock, flags);
3180 }
3181 EXPORT_SYMBOL(skb_queue_head);
3182 
3183 /**
3184  *	skb_queue_tail - queue a buffer at the list tail
3185  *	@list: list to use
3186  *	@newsk: buffer to queue
3187  *
3188  *	Queue a buffer at the tail of the list. This function takes the
3189  *	list lock and can be used safely with other locking &sk_buff functions
3190  *	safely.
3191  *
3192  *	A buffer cannot be placed on two lists at the same time.
3193  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3194 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3195 {
3196 	unsigned long flags;
3197 
3198 	spin_lock_irqsave(&list->lock, flags);
3199 	__skb_queue_tail(list, newsk);
3200 	spin_unlock_irqrestore(&list->lock, flags);
3201 }
3202 EXPORT_SYMBOL(skb_queue_tail);
3203 
3204 /**
3205  *	skb_unlink	-	remove a buffer from a list
3206  *	@skb: buffer to remove
3207  *	@list: list to use
3208  *
3209  *	Remove a packet from a list. The list locks are taken and this
3210  *	function is atomic with respect to other list locked calls
3211  *
3212  *	You must know what list the SKB is on.
3213  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3214 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3215 {
3216 	unsigned long flags;
3217 
3218 	spin_lock_irqsave(&list->lock, flags);
3219 	__skb_unlink(skb, list);
3220 	spin_unlock_irqrestore(&list->lock, flags);
3221 }
3222 EXPORT_SYMBOL(skb_unlink);
3223 
3224 /**
3225  *	skb_append	-	append a buffer
3226  *	@old: buffer to insert after
3227  *	@newsk: buffer to insert
3228  *	@list: list to use
3229  *
3230  *	Place a packet after a given packet in a list. The list locks are taken
3231  *	and this function is atomic with respect to other list locked calls.
3232  *	A buffer cannot be placed on two lists at the same time.
3233  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3234 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3235 {
3236 	unsigned long flags;
3237 
3238 	spin_lock_irqsave(&list->lock, flags);
3239 	__skb_queue_after(list, old, newsk);
3240 	spin_unlock_irqrestore(&list->lock, flags);
3241 }
3242 EXPORT_SYMBOL(skb_append);
3243 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3244 static inline void skb_split_inside_header(struct sk_buff *skb,
3245 					   struct sk_buff* skb1,
3246 					   const u32 len, const int pos)
3247 {
3248 	int i;
3249 
3250 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3251 					 pos - len);
3252 	/* And move data appendix as is. */
3253 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3254 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3255 
3256 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3257 	skb_shinfo(skb)->nr_frags  = 0;
3258 	skb1->data_len		   = skb->data_len;
3259 	skb1->len		   += skb1->data_len;
3260 	skb->data_len		   = 0;
3261 	skb->len		   = len;
3262 	skb_set_tail_pointer(skb, len);
3263 }
3264 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3265 static inline void skb_split_no_header(struct sk_buff *skb,
3266 				       struct sk_buff* skb1,
3267 				       const u32 len, int pos)
3268 {
3269 	int i, k = 0;
3270 	const int nfrags = skb_shinfo(skb)->nr_frags;
3271 
3272 	skb_shinfo(skb)->nr_frags = 0;
3273 	skb1->len		  = skb1->data_len = skb->len - len;
3274 	skb->len		  = len;
3275 	skb->data_len		  = len - pos;
3276 
3277 	for (i = 0; i < nfrags; i++) {
3278 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3279 
3280 		if (pos + size > len) {
3281 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3282 
3283 			if (pos < len) {
3284 				/* Split frag.
3285 				 * We have two variants in this case:
3286 				 * 1. Move all the frag to the second
3287 				 *    part, if it is possible. F.e.
3288 				 *    this approach is mandatory for TUX,
3289 				 *    where splitting is expensive.
3290 				 * 2. Split is accurately. We make this.
3291 				 */
3292 				skb_frag_ref(skb, i);
3293 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3294 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3295 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3296 				skb_shinfo(skb)->nr_frags++;
3297 			}
3298 			k++;
3299 		} else
3300 			skb_shinfo(skb)->nr_frags++;
3301 		pos += size;
3302 	}
3303 	skb_shinfo(skb1)->nr_frags = k;
3304 }
3305 
3306 /**
3307  * skb_split - Split fragmented skb to two parts at length len.
3308  * @skb: the buffer to split
3309  * @skb1: the buffer to receive the second part
3310  * @len: new length for skb
3311  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3312 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3313 {
3314 	int pos = skb_headlen(skb);
3315 
3316 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3317 				      SKBTX_SHARED_FRAG;
3318 	skb_zerocopy_clone(skb1, skb, 0);
3319 	if (len < pos)	/* Split line is inside header. */
3320 		skb_split_inside_header(skb, skb1, len, pos);
3321 	else		/* Second chunk has no header, nothing to copy. */
3322 		skb_split_no_header(skb, skb1, len, pos);
3323 }
3324 EXPORT_SYMBOL(skb_split);
3325 
3326 /* Shifting from/to a cloned skb is a no-go.
3327  *
3328  * Caller cannot keep skb_shinfo related pointers past calling here!
3329  */
skb_prepare_for_shift(struct sk_buff * skb)3330 static int skb_prepare_for_shift(struct sk_buff *skb)
3331 {
3332 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3333 }
3334 
3335 /**
3336  * skb_shift - Shifts paged data partially from skb to another
3337  * @tgt: buffer into which tail data gets added
3338  * @skb: buffer from which the paged data comes from
3339  * @shiftlen: shift up to this many bytes
3340  *
3341  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3342  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3343  * It's up to caller to free skb if everything was shifted.
3344  *
3345  * If @tgt runs out of frags, the whole operation is aborted.
3346  *
3347  * Skb cannot include anything else but paged data while tgt is allowed
3348  * to have non-paged data as well.
3349  *
3350  * TODO: full sized shift could be optimized but that would need
3351  * specialized skb free'er to handle frags without up-to-date nr_frags.
3352  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3353 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3354 {
3355 	int from, to, merge, todo;
3356 	skb_frag_t *fragfrom, *fragto;
3357 
3358 	BUG_ON(shiftlen > skb->len);
3359 
3360 	if (skb_headlen(skb))
3361 		return 0;
3362 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3363 		return 0;
3364 
3365 	todo = shiftlen;
3366 	from = 0;
3367 	to = skb_shinfo(tgt)->nr_frags;
3368 	fragfrom = &skb_shinfo(skb)->frags[from];
3369 
3370 	/* Actual merge is delayed until the point when we know we can
3371 	 * commit all, so that we don't have to undo partial changes
3372 	 */
3373 	if (!to ||
3374 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3375 			      skb_frag_off(fragfrom))) {
3376 		merge = -1;
3377 	} else {
3378 		merge = to - 1;
3379 
3380 		todo -= skb_frag_size(fragfrom);
3381 		if (todo < 0) {
3382 			if (skb_prepare_for_shift(skb) ||
3383 			    skb_prepare_for_shift(tgt))
3384 				return 0;
3385 
3386 			/* All previous frag pointers might be stale! */
3387 			fragfrom = &skb_shinfo(skb)->frags[from];
3388 			fragto = &skb_shinfo(tgt)->frags[merge];
3389 
3390 			skb_frag_size_add(fragto, shiftlen);
3391 			skb_frag_size_sub(fragfrom, shiftlen);
3392 			skb_frag_off_add(fragfrom, shiftlen);
3393 
3394 			goto onlymerged;
3395 		}
3396 
3397 		from++;
3398 	}
3399 
3400 	/* Skip full, not-fitting skb to avoid expensive operations */
3401 	if ((shiftlen == skb->len) &&
3402 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3403 		return 0;
3404 
3405 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3406 		return 0;
3407 
3408 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3409 		if (to == MAX_SKB_FRAGS)
3410 			return 0;
3411 
3412 		fragfrom = &skb_shinfo(skb)->frags[from];
3413 		fragto = &skb_shinfo(tgt)->frags[to];
3414 
3415 		if (todo >= skb_frag_size(fragfrom)) {
3416 			*fragto = *fragfrom;
3417 			todo -= skb_frag_size(fragfrom);
3418 			from++;
3419 			to++;
3420 
3421 		} else {
3422 			__skb_frag_ref(fragfrom);
3423 			skb_frag_page_copy(fragto, fragfrom);
3424 			skb_frag_off_copy(fragto, fragfrom);
3425 			skb_frag_size_set(fragto, todo);
3426 
3427 			skb_frag_off_add(fragfrom, todo);
3428 			skb_frag_size_sub(fragfrom, todo);
3429 			todo = 0;
3430 
3431 			to++;
3432 			break;
3433 		}
3434 	}
3435 
3436 	/* Ready to "commit" this state change to tgt */
3437 	skb_shinfo(tgt)->nr_frags = to;
3438 
3439 	if (merge >= 0) {
3440 		fragfrom = &skb_shinfo(skb)->frags[0];
3441 		fragto = &skb_shinfo(tgt)->frags[merge];
3442 
3443 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3444 		__skb_frag_unref(fragfrom);
3445 	}
3446 
3447 	/* Reposition in the original skb */
3448 	to = 0;
3449 	while (from < skb_shinfo(skb)->nr_frags)
3450 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3451 	skb_shinfo(skb)->nr_frags = to;
3452 
3453 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3454 
3455 onlymerged:
3456 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3457 	 * the other hand might need it if it needs to be resent
3458 	 */
3459 	tgt->ip_summed = CHECKSUM_PARTIAL;
3460 	skb->ip_summed = CHECKSUM_PARTIAL;
3461 
3462 	/* Yak, is it really working this way? Some helper please? */
3463 	skb->len -= shiftlen;
3464 	skb->data_len -= shiftlen;
3465 	skb->truesize -= shiftlen;
3466 	tgt->len += shiftlen;
3467 	tgt->data_len += shiftlen;
3468 	tgt->truesize += shiftlen;
3469 
3470 	return shiftlen;
3471 }
3472 
3473 /**
3474  * skb_prepare_seq_read - Prepare a sequential read of skb data
3475  * @skb: the buffer to read
3476  * @from: lower offset of data to be read
3477  * @to: upper offset of data to be read
3478  * @st: state variable
3479  *
3480  * Initializes the specified state variable. Must be called before
3481  * invoking skb_seq_read() for the first time.
3482  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3483 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3484 			  unsigned int to, struct skb_seq_state *st)
3485 {
3486 	st->lower_offset = from;
3487 	st->upper_offset = to;
3488 	st->root_skb = st->cur_skb = skb;
3489 	st->frag_idx = st->stepped_offset = 0;
3490 	st->frag_data = NULL;
3491 }
3492 EXPORT_SYMBOL(skb_prepare_seq_read);
3493 
3494 /**
3495  * skb_seq_read - Sequentially read skb data
3496  * @consumed: number of bytes consumed by the caller so far
3497  * @data: destination pointer for data to be returned
3498  * @st: state variable
3499  *
3500  * Reads a block of skb data at @consumed relative to the
3501  * lower offset specified to skb_prepare_seq_read(). Assigns
3502  * the head of the data block to @data and returns the length
3503  * of the block or 0 if the end of the skb data or the upper
3504  * offset has been reached.
3505  *
3506  * The caller is not required to consume all of the data
3507  * returned, i.e. @consumed is typically set to the number
3508  * of bytes already consumed and the next call to
3509  * skb_seq_read() will return the remaining part of the block.
3510  *
3511  * Note 1: The size of each block of data returned can be arbitrary,
3512  *       this limitation is the cost for zerocopy sequential
3513  *       reads of potentially non linear data.
3514  *
3515  * Note 2: Fragment lists within fragments are not implemented
3516  *       at the moment, state->root_skb could be replaced with
3517  *       a stack for this purpose.
3518  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3519 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3520 			  struct skb_seq_state *st)
3521 {
3522 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3523 	skb_frag_t *frag;
3524 
3525 	if (unlikely(abs_offset >= st->upper_offset)) {
3526 		if (st->frag_data) {
3527 			kunmap_atomic(st->frag_data);
3528 			st->frag_data = NULL;
3529 		}
3530 		return 0;
3531 	}
3532 
3533 next_skb:
3534 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3535 
3536 	if (abs_offset < block_limit && !st->frag_data) {
3537 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3538 		return block_limit - abs_offset;
3539 	}
3540 
3541 	if (st->frag_idx == 0 && !st->frag_data)
3542 		st->stepped_offset += skb_headlen(st->cur_skb);
3543 
3544 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3545 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3546 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3547 
3548 		if (abs_offset < block_limit) {
3549 			if (!st->frag_data)
3550 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3551 
3552 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3553 				(abs_offset - st->stepped_offset);
3554 
3555 			return block_limit - abs_offset;
3556 		}
3557 
3558 		if (st->frag_data) {
3559 			kunmap_atomic(st->frag_data);
3560 			st->frag_data = NULL;
3561 		}
3562 
3563 		st->frag_idx++;
3564 		st->stepped_offset += skb_frag_size(frag);
3565 	}
3566 
3567 	if (st->frag_data) {
3568 		kunmap_atomic(st->frag_data);
3569 		st->frag_data = NULL;
3570 	}
3571 
3572 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3573 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3574 		st->frag_idx = 0;
3575 		goto next_skb;
3576 	} else if (st->cur_skb->next) {
3577 		st->cur_skb = st->cur_skb->next;
3578 		st->frag_idx = 0;
3579 		goto next_skb;
3580 	}
3581 
3582 	return 0;
3583 }
3584 EXPORT_SYMBOL(skb_seq_read);
3585 
3586 /**
3587  * skb_abort_seq_read - Abort a sequential read of skb data
3588  * @st: state variable
3589  *
3590  * Must be called if skb_seq_read() was not called until it
3591  * returned 0.
3592  */
skb_abort_seq_read(struct skb_seq_state * st)3593 void skb_abort_seq_read(struct skb_seq_state *st)
3594 {
3595 	if (st->frag_data)
3596 		kunmap_atomic(st->frag_data);
3597 }
3598 EXPORT_SYMBOL(skb_abort_seq_read);
3599 
3600 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3601 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3602 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3603 					  struct ts_config *conf,
3604 					  struct ts_state *state)
3605 {
3606 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3607 }
3608 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3609 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3610 {
3611 	skb_abort_seq_read(TS_SKB_CB(state));
3612 }
3613 
3614 /**
3615  * skb_find_text - Find a text pattern in skb data
3616  * @skb: the buffer to look in
3617  * @from: search offset
3618  * @to: search limit
3619  * @config: textsearch configuration
3620  *
3621  * Finds a pattern in the skb data according to the specified
3622  * textsearch configuration. Use textsearch_next() to retrieve
3623  * subsequent occurrences of the pattern. Returns the offset
3624  * to the first occurrence or UINT_MAX if no match was found.
3625  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3626 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3627 			   unsigned int to, struct ts_config *config)
3628 {
3629 	struct ts_state state;
3630 	unsigned int ret;
3631 
3632 	config->get_next_block = skb_ts_get_next_block;
3633 	config->finish = skb_ts_finish;
3634 
3635 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3636 
3637 	ret = textsearch_find(config, &state);
3638 	return (ret <= to - from ? ret : UINT_MAX);
3639 }
3640 EXPORT_SYMBOL(skb_find_text);
3641 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3642 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3643 			 int offset, size_t size)
3644 {
3645 	int i = skb_shinfo(skb)->nr_frags;
3646 
3647 	if (skb_can_coalesce(skb, i, page, offset)) {
3648 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3649 	} else if (i < MAX_SKB_FRAGS) {
3650 		get_page(page);
3651 		skb_fill_page_desc(skb, i, page, offset, size);
3652 	} else {
3653 		return -EMSGSIZE;
3654 	}
3655 
3656 	return 0;
3657 }
3658 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3659 
3660 /**
3661  *	skb_pull_rcsum - pull skb and update receive checksum
3662  *	@skb: buffer to update
3663  *	@len: length of data pulled
3664  *
3665  *	This function performs an skb_pull on the packet and updates
3666  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3667  *	receive path processing instead of skb_pull unless you know
3668  *	that the checksum difference is zero (e.g., a valid IP header)
3669  *	or you are setting ip_summed to CHECKSUM_NONE.
3670  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3671 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3672 {
3673 	unsigned char *data = skb->data;
3674 
3675 	BUG_ON(len > skb->len);
3676 	__skb_pull(skb, len);
3677 	skb_postpull_rcsum(skb, data, len);
3678 	return skb->data;
3679 }
3680 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3681 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3682 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3683 {
3684 	skb_frag_t head_frag;
3685 	struct page *page;
3686 
3687 	page = virt_to_head_page(frag_skb->head);
3688 	__skb_frag_set_page(&head_frag, page);
3689 	skb_frag_off_set(&head_frag, frag_skb->data -
3690 			 (unsigned char *)page_address(page));
3691 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3692 	return head_frag;
3693 }
3694 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3695 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3696 				 netdev_features_t features,
3697 				 unsigned int offset)
3698 {
3699 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3700 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3701 	unsigned int delta_truesize = 0;
3702 	unsigned int delta_len = 0;
3703 	struct sk_buff *tail = NULL;
3704 	struct sk_buff *nskb, *tmp;
3705 	int len_diff, err;
3706 
3707 	skb_push(skb, -skb_network_offset(skb) + offset);
3708 
3709 	/* Ensure the head is writeable before touching the shared info */
3710 	err = skb_unclone(skb, GFP_ATOMIC);
3711 	if (err)
3712 		goto err_linearize;
3713 
3714 	skb_shinfo(skb)->frag_list = NULL;
3715 
3716 	while (list_skb) {
3717 		nskb = list_skb;
3718 		list_skb = list_skb->next;
3719 
3720 		err = 0;
3721 		delta_truesize += nskb->truesize;
3722 		if (skb_shared(nskb)) {
3723 			tmp = skb_clone(nskb, GFP_ATOMIC);
3724 			if (tmp) {
3725 				consume_skb(nskb);
3726 				nskb = tmp;
3727 				err = skb_unclone(nskb, GFP_ATOMIC);
3728 			} else {
3729 				err = -ENOMEM;
3730 			}
3731 		}
3732 
3733 		if (!tail)
3734 			skb->next = nskb;
3735 		else
3736 			tail->next = nskb;
3737 
3738 		if (unlikely(err)) {
3739 			nskb->next = list_skb;
3740 			goto err_linearize;
3741 		}
3742 
3743 		tail = nskb;
3744 
3745 		delta_len += nskb->len;
3746 
3747 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3748 
3749 		skb_release_head_state(nskb);
3750 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3751 		 __copy_skb_header(nskb, skb);
3752 
3753 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3754 		nskb->transport_header += len_diff;
3755 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3756 						 nskb->data - tnl_hlen,
3757 						 offset + tnl_hlen);
3758 
3759 		if (skb_needs_linearize(nskb, features) &&
3760 		    __skb_linearize(nskb))
3761 			goto err_linearize;
3762 	}
3763 
3764 	skb->truesize = skb->truesize - delta_truesize;
3765 	skb->data_len = skb->data_len - delta_len;
3766 	skb->len = skb->len - delta_len;
3767 
3768 	skb_gso_reset(skb);
3769 
3770 	skb->prev = tail;
3771 
3772 	if (skb_needs_linearize(skb, features) &&
3773 	    __skb_linearize(skb))
3774 		goto err_linearize;
3775 
3776 	skb_get(skb);
3777 
3778 	return skb;
3779 
3780 err_linearize:
3781 	kfree_skb_list(skb->next);
3782 	skb->next = NULL;
3783 	return ERR_PTR(-ENOMEM);
3784 }
3785 EXPORT_SYMBOL_GPL(skb_segment_list);
3786 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3787 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3788 {
3789 	if (unlikely(p->len + skb->len >= 65536))
3790 		return -E2BIG;
3791 
3792 	if (NAPI_GRO_CB(p)->last == p)
3793 		skb_shinfo(p)->frag_list = skb;
3794 	else
3795 		NAPI_GRO_CB(p)->last->next = skb;
3796 
3797 	skb_pull(skb, skb_gro_offset(skb));
3798 
3799 	NAPI_GRO_CB(p)->last = skb;
3800 	NAPI_GRO_CB(p)->count++;
3801 	p->data_len += skb->len;
3802 	p->truesize += skb->truesize;
3803 	p->len += skb->len;
3804 
3805 	NAPI_GRO_CB(skb)->same_flow = 1;
3806 
3807 	return 0;
3808 }
3809 
3810 /**
3811  *	skb_segment - Perform protocol segmentation on skb.
3812  *	@head_skb: buffer to segment
3813  *	@features: features for the output path (see dev->features)
3814  *
3815  *	This function performs segmentation on the given skb.  It returns
3816  *	a pointer to the first in a list of new skbs for the segments.
3817  *	In case of error it returns ERR_PTR(err).
3818  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3819 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3820 			    netdev_features_t features)
3821 {
3822 	struct sk_buff *segs = NULL;
3823 	struct sk_buff *tail = NULL;
3824 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3825 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3826 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3827 	unsigned int offset = doffset;
3828 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3829 	unsigned int partial_segs = 0;
3830 	unsigned int headroom;
3831 	unsigned int len = head_skb->len;
3832 	struct sk_buff *frag_skb;
3833 	skb_frag_t *frag;
3834 	__be16 proto;
3835 	bool csum, sg;
3836 	int err = -ENOMEM;
3837 	int i = 0;
3838 	int nfrags, pos;
3839 
3840 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3841 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3842 		struct sk_buff *check_skb;
3843 
3844 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3845 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
3846 				/* gso_size is untrusted, and we have a frag_list with
3847 				 * a linear non head_frag item.
3848 				 *
3849 				 * If head_skb's headlen does not fit requested gso_size,
3850 				 * it means that the frag_list members do NOT terminate
3851 				 * on exact gso_size boundaries. Hence we cannot perform
3852 				 * skb_frag_t page sharing. Therefore we must fallback to
3853 				 * copying the frag_list skbs; we do so by disabling SG.
3854 				 */
3855 				features &= ~NETIF_F_SG;
3856 				break;
3857 			}
3858 		}
3859 	}
3860 
3861 	__skb_push(head_skb, doffset);
3862 	proto = skb_network_protocol(head_skb, NULL);
3863 	if (unlikely(!proto))
3864 		return ERR_PTR(-EINVAL);
3865 
3866 	sg = !!(features & NETIF_F_SG);
3867 	csum = !!can_checksum_protocol(features, proto);
3868 
3869 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3870 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3871 			struct sk_buff *iter;
3872 			unsigned int frag_len;
3873 
3874 			if (!list_skb ||
3875 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3876 				goto normal;
3877 
3878 			/* If we get here then all the required
3879 			 * GSO features except frag_list are supported.
3880 			 * Try to split the SKB to multiple GSO SKBs
3881 			 * with no frag_list.
3882 			 * Currently we can do that only when the buffers don't
3883 			 * have a linear part and all the buffers except
3884 			 * the last are of the same length.
3885 			 */
3886 			frag_len = list_skb->len;
3887 			skb_walk_frags(head_skb, iter) {
3888 				if (frag_len != iter->len && iter->next)
3889 					goto normal;
3890 				if (skb_headlen(iter) && !iter->head_frag)
3891 					goto normal;
3892 
3893 				len -= iter->len;
3894 			}
3895 
3896 			if (len != frag_len)
3897 				goto normal;
3898 		}
3899 
3900 		/* GSO partial only requires that we trim off any excess that
3901 		 * doesn't fit into an MSS sized block, so take care of that
3902 		 * now.
3903 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
3904 		 */
3905 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
3906 		if (partial_segs > 1)
3907 			mss *= partial_segs;
3908 		else
3909 			partial_segs = 0;
3910 	}
3911 
3912 normal:
3913 	headroom = skb_headroom(head_skb);
3914 	pos = skb_headlen(head_skb);
3915 
3916 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
3917 		return ERR_PTR(-ENOMEM);
3918 
3919 	nfrags = skb_shinfo(head_skb)->nr_frags;
3920 	frag = skb_shinfo(head_skb)->frags;
3921 	frag_skb = head_skb;
3922 
3923 	do {
3924 		struct sk_buff *nskb;
3925 		skb_frag_t *nskb_frag;
3926 		int hsize;
3927 		int size;
3928 
3929 		if (unlikely(mss == GSO_BY_FRAGS)) {
3930 			len = list_skb->len;
3931 		} else {
3932 			len = head_skb->len - offset;
3933 			if (len > mss)
3934 				len = mss;
3935 		}
3936 
3937 		hsize = skb_headlen(head_skb) - offset;
3938 		if (hsize < 0)
3939 			hsize = 0;
3940 		if (hsize > len || !sg)
3941 			hsize = len;
3942 
3943 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3944 		    (skb_headlen(list_skb) == len || sg)) {
3945 			BUG_ON(skb_headlen(list_skb) > len);
3946 
3947 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3948 			if (unlikely(!nskb))
3949 				goto err;
3950 
3951 			i = 0;
3952 			nfrags = skb_shinfo(list_skb)->nr_frags;
3953 			frag = skb_shinfo(list_skb)->frags;
3954 			frag_skb = list_skb;
3955 			pos += skb_headlen(list_skb);
3956 
3957 			while (pos < offset + len) {
3958 				BUG_ON(i >= nfrags);
3959 
3960 				size = skb_frag_size(frag);
3961 				if (pos + size > offset + len)
3962 					break;
3963 
3964 				i++;
3965 				pos += size;
3966 				frag++;
3967 			}
3968 
3969 			list_skb = list_skb->next;
3970 
3971 			if (unlikely(pskb_trim(nskb, len))) {
3972 				kfree_skb(nskb);
3973 				goto err;
3974 			}
3975 
3976 			hsize = skb_end_offset(nskb);
3977 			if (skb_cow_head(nskb, doffset + headroom)) {
3978 				kfree_skb(nskb);
3979 				goto err;
3980 			}
3981 
3982 			nskb->truesize += skb_end_offset(nskb) - hsize;
3983 			skb_release_head_state(nskb);
3984 			__skb_push(nskb, doffset);
3985 		} else {
3986 			nskb = __alloc_skb(hsize + doffset + headroom,
3987 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3988 					   NUMA_NO_NODE);
3989 
3990 			if (unlikely(!nskb))
3991 				goto err;
3992 
3993 			skb_reserve(nskb, headroom);
3994 			__skb_put(nskb, doffset);
3995 		}
3996 
3997 		if (segs)
3998 			tail->next = nskb;
3999 		else
4000 			segs = nskb;
4001 		tail = nskb;
4002 
4003 		__copy_skb_header(nskb, head_skb);
4004 
4005 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4006 		skb_reset_mac_len(nskb);
4007 
4008 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4009 						 nskb->data - tnl_hlen,
4010 						 doffset + tnl_hlen);
4011 
4012 		if (nskb->len == len + doffset)
4013 			goto perform_csum_check;
4014 
4015 		if (!sg) {
4016 			if (!csum) {
4017 				if (!nskb->remcsum_offload)
4018 					nskb->ip_summed = CHECKSUM_NONE;
4019 				SKB_GSO_CB(nskb)->csum =
4020 					skb_copy_and_csum_bits(head_skb, offset,
4021 							       skb_put(nskb,
4022 								       len),
4023 							       len);
4024 				SKB_GSO_CB(nskb)->csum_start =
4025 					skb_headroom(nskb) + doffset;
4026 			} else {
4027 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4028 					goto err;
4029 			}
4030 			continue;
4031 		}
4032 
4033 		nskb_frag = skb_shinfo(nskb)->frags;
4034 
4035 		skb_copy_from_linear_data_offset(head_skb, offset,
4036 						 skb_put(nskb, hsize), hsize);
4037 
4038 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4039 					      SKBTX_SHARED_FRAG;
4040 
4041 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4042 			goto err;
4043 
4044 		while (pos < offset + len) {
4045 			if (i >= nfrags) {
4046 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4047 				    skb_zerocopy_clone(nskb, list_skb,
4048 						       GFP_ATOMIC))
4049 					goto err;
4050 
4051 				i = 0;
4052 				nfrags = skb_shinfo(list_skb)->nr_frags;
4053 				frag = skb_shinfo(list_skb)->frags;
4054 				frag_skb = list_skb;
4055 				if (!skb_headlen(list_skb)) {
4056 					BUG_ON(!nfrags);
4057 				} else {
4058 					BUG_ON(!list_skb->head_frag);
4059 
4060 					/* to make room for head_frag. */
4061 					i--;
4062 					frag--;
4063 				}
4064 
4065 				list_skb = list_skb->next;
4066 			}
4067 
4068 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4069 				     MAX_SKB_FRAGS)) {
4070 				net_warn_ratelimited(
4071 					"skb_segment: too many frags: %u %u\n",
4072 					pos, mss);
4073 				err = -EINVAL;
4074 				goto err;
4075 			}
4076 
4077 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4078 			__skb_frag_ref(nskb_frag);
4079 			size = skb_frag_size(nskb_frag);
4080 
4081 			if (pos < offset) {
4082 				skb_frag_off_add(nskb_frag, offset - pos);
4083 				skb_frag_size_sub(nskb_frag, offset - pos);
4084 			}
4085 
4086 			skb_shinfo(nskb)->nr_frags++;
4087 
4088 			if (pos + size <= offset + len) {
4089 				i++;
4090 				frag++;
4091 				pos += size;
4092 			} else {
4093 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4094 				goto skip_fraglist;
4095 			}
4096 
4097 			nskb_frag++;
4098 		}
4099 
4100 skip_fraglist:
4101 		nskb->data_len = len - hsize;
4102 		nskb->len += nskb->data_len;
4103 		nskb->truesize += nskb->data_len;
4104 
4105 perform_csum_check:
4106 		if (!csum) {
4107 			if (skb_has_shared_frag(nskb) &&
4108 			    __skb_linearize(nskb))
4109 				goto err;
4110 
4111 			if (!nskb->remcsum_offload)
4112 				nskb->ip_summed = CHECKSUM_NONE;
4113 			SKB_GSO_CB(nskb)->csum =
4114 				skb_checksum(nskb, doffset,
4115 					     nskb->len - doffset, 0);
4116 			SKB_GSO_CB(nskb)->csum_start =
4117 				skb_headroom(nskb) + doffset;
4118 		}
4119 	} while ((offset += len) < head_skb->len);
4120 
4121 	/* Some callers want to get the end of the list.
4122 	 * Put it in segs->prev to avoid walking the list.
4123 	 * (see validate_xmit_skb_list() for example)
4124 	 */
4125 	segs->prev = tail;
4126 
4127 	if (partial_segs) {
4128 		struct sk_buff *iter;
4129 		int type = skb_shinfo(head_skb)->gso_type;
4130 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4131 
4132 		/* Update type to add partial and then remove dodgy if set */
4133 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4134 		type &= ~SKB_GSO_DODGY;
4135 
4136 		/* Update GSO info and prepare to start updating headers on
4137 		 * our way back down the stack of protocols.
4138 		 */
4139 		for (iter = segs; iter; iter = iter->next) {
4140 			skb_shinfo(iter)->gso_size = gso_size;
4141 			skb_shinfo(iter)->gso_segs = partial_segs;
4142 			skb_shinfo(iter)->gso_type = type;
4143 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4144 		}
4145 
4146 		if (tail->len - doffset <= gso_size)
4147 			skb_shinfo(tail)->gso_size = 0;
4148 		else if (tail != segs)
4149 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4150 	}
4151 
4152 	/* Following permits correct backpressure, for protocols
4153 	 * using skb_set_owner_w().
4154 	 * Idea is to tranfert ownership from head_skb to last segment.
4155 	 */
4156 	if (head_skb->destructor == sock_wfree) {
4157 		swap(tail->truesize, head_skb->truesize);
4158 		swap(tail->destructor, head_skb->destructor);
4159 		swap(tail->sk, head_skb->sk);
4160 	}
4161 	return segs;
4162 
4163 err:
4164 	kfree_skb_list(segs);
4165 	return ERR_PTR(err);
4166 }
4167 EXPORT_SYMBOL_GPL(skb_segment);
4168 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4169 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4170 {
4171 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4172 	unsigned int offset = skb_gro_offset(skb);
4173 	unsigned int headlen = skb_headlen(skb);
4174 	unsigned int len = skb_gro_len(skb);
4175 	unsigned int delta_truesize;
4176 	struct sk_buff *lp;
4177 
4178 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4179 		return -E2BIG;
4180 
4181 	lp = NAPI_GRO_CB(p)->last;
4182 	pinfo = skb_shinfo(lp);
4183 
4184 	if (headlen <= offset) {
4185 		skb_frag_t *frag;
4186 		skb_frag_t *frag2;
4187 		int i = skbinfo->nr_frags;
4188 		int nr_frags = pinfo->nr_frags + i;
4189 
4190 		if (nr_frags > MAX_SKB_FRAGS)
4191 			goto merge;
4192 
4193 		offset -= headlen;
4194 		pinfo->nr_frags = nr_frags;
4195 		skbinfo->nr_frags = 0;
4196 
4197 		frag = pinfo->frags + nr_frags;
4198 		frag2 = skbinfo->frags + i;
4199 		do {
4200 			*--frag = *--frag2;
4201 		} while (--i);
4202 
4203 		skb_frag_off_add(frag, offset);
4204 		skb_frag_size_sub(frag, offset);
4205 
4206 		/* all fragments truesize : remove (head size + sk_buff) */
4207 		delta_truesize = skb->truesize -
4208 				 SKB_TRUESIZE(skb_end_offset(skb));
4209 
4210 		skb->truesize -= skb->data_len;
4211 		skb->len -= skb->data_len;
4212 		skb->data_len = 0;
4213 
4214 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4215 		goto done;
4216 	} else if (skb->head_frag) {
4217 		int nr_frags = pinfo->nr_frags;
4218 		skb_frag_t *frag = pinfo->frags + nr_frags;
4219 		struct page *page = virt_to_head_page(skb->head);
4220 		unsigned int first_size = headlen - offset;
4221 		unsigned int first_offset;
4222 
4223 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4224 			goto merge;
4225 
4226 		first_offset = skb->data -
4227 			       (unsigned char *)page_address(page) +
4228 			       offset;
4229 
4230 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4231 
4232 		__skb_frag_set_page(frag, page);
4233 		skb_frag_off_set(frag, first_offset);
4234 		skb_frag_size_set(frag, first_size);
4235 
4236 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4237 		/* We dont need to clear skbinfo->nr_frags here */
4238 
4239 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4240 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4241 		goto done;
4242 	}
4243 
4244 merge:
4245 	delta_truesize = skb->truesize;
4246 	if (offset > headlen) {
4247 		unsigned int eat = offset - headlen;
4248 
4249 		skb_frag_off_add(&skbinfo->frags[0], eat);
4250 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4251 		skb->data_len -= eat;
4252 		skb->len -= eat;
4253 		offset = headlen;
4254 	}
4255 
4256 	__skb_pull(skb, offset);
4257 
4258 	if (NAPI_GRO_CB(p)->last == p)
4259 		skb_shinfo(p)->frag_list = skb;
4260 	else
4261 		NAPI_GRO_CB(p)->last->next = skb;
4262 	NAPI_GRO_CB(p)->last = skb;
4263 	__skb_header_release(skb);
4264 	lp = p;
4265 
4266 done:
4267 	NAPI_GRO_CB(p)->count++;
4268 	p->data_len += len;
4269 	p->truesize += delta_truesize;
4270 	p->len += len;
4271 	if (lp != p) {
4272 		lp->data_len += len;
4273 		lp->truesize += delta_truesize;
4274 		lp->len += len;
4275 	}
4276 	NAPI_GRO_CB(skb)->same_flow = 1;
4277 	return 0;
4278 }
4279 
4280 #ifdef CONFIG_SKB_EXTENSIONS
4281 #define SKB_EXT_ALIGN_VALUE	8
4282 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4283 
4284 static const u8 skb_ext_type_len[] = {
4285 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4286 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4287 #endif
4288 #ifdef CONFIG_XFRM
4289 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4290 #endif
4291 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4292 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4293 #endif
4294 #if IS_ENABLED(CONFIG_MPTCP)
4295 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4296 #endif
4297 };
4298 
skb_ext_total_length(void)4299 static __always_inline unsigned int skb_ext_total_length(void)
4300 {
4301 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4302 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4303 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4304 #endif
4305 #ifdef CONFIG_XFRM
4306 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4307 #endif
4308 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4309 		skb_ext_type_len[TC_SKB_EXT] +
4310 #endif
4311 #if IS_ENABLED(CONFIG_MPTCP)
4312 		skb_ext_type_len[SKB_EXT_MPTCP] +
4313 #endif
4314 		0;
4315 }
4316 
skb_extensions_init(void)4317 static void skb_extensions_init(void)
4318 {
4319 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4320 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4321 
4322 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4323 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4324 					     0,
4325 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4326 					     NULL);
4327 }
4328 #else
skb_extensions_init(void)4329 static void skb_extensions_init(void) {}
4330 #endif
4331 
skb_init(void)4332 void __init skb_init(void)
4333 {
4334 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4335 					      sizeof(struct sk_buff),
4336 					      0,
4337 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4338 					      offsetof(struct sk_buff, cb),
4339 					      sizeof_field(struct sk_buff, cb),
4340 					      NULL);
4341 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4342 						sizeof(struct sk_buff_fclones),
4343 						0,
4344 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4345 						NULL);
4346 	skb_extensions_init();
4347 }
4348 
4349 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4350 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4351 	       unsigned int recursion_level)
4352 {
4353 	int start = skb_headlen(skb);
4354 	int i, copy = start - offset;
4355 	struct sk_buff *frag_iter;
4356 	int elt = 0;
4357 
4358 	if (unlikely(recursion_level >= 24))
4359 		return -EMSGSIZE;
4360 
4361 	if (copy > 0) {
4362 		if (copy > len)
4363 			copy = len;
4364 		sg_set_buf(sg, skb->data + offset, copy);
4365 		elt++;
4366 		if ((len -= copy) == 0)
4367 			return elt;
4368 		offset += copy;
4369 	}
4370 
4371 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4372 		int end;
4373 
4374 		WARN_ON(start > offset + len);
4375 
4376 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4377 		if ((copy = end - offset) > 0) {
4378 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4379 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4380 				return -EMSGSIZE;
4381 
4382 			if (copy > len)
4383 				copy = len;
4384 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4385 				    skb_frag_off(frag) + offset - start);
4386 			elt++;
4387 			if (!(len -= copy))
4388 				return elt;
4389 			offset += copy;
4390 		}
4391 		start = end;
4392 	}
4393 
4394 	skb_walk_frags(skb, frag_iter) {
4395 		int end, ret;
4396 
4397 		WARN_ON(start > offset + len);
4398 
4399 		end = start + frag_iter->len;
4400 		if ((copy = end - offset) > 0) {
4401 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4402 				return -EMSGSIZE;
4403 
4404 			if (copy > len)
4405 				copy = len;
4406 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4407 					      copy, recursion_level + 1);
4408 			if (unlikely(ret < 0))
4409 				return ret;
4410 			elt += ret;
4411 			if ((len -= copy) == 0)
4412 				return elt;
4413 			offset += copy;
4414 		}
4415 		start = end;
4416 	}
4417 	BUG_ON(len);
4418 	return elt;
4419 }
4420 
4421 /**
4422  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4423  *	@skb: Socket buffer containing the buffers to be mapped
4424  *	@sg: The scatter-gather list to map into
4425  *	@offset: The offset into the buffer's contents to start mapping
4426  *	@len: Length of buffer space to be mapped
4427  *
4428  *	Fill the specified scatter-gather list with mappings/pointers into a
4429  *	region of the buffer space attached to a socket buffer. Returns either
4430  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4431  *	could not fit.
4432  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4433 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4434 {
4435 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4436 
4437 	if (nsg <= 0)
4438 		return nsg;
4439 
4440 	sg_mark_end(&sg[nsg - 1]);
4441 
4442 	return nsg;
4443 }
4444 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4445 
4446 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4447  * sglist without mark the sg which contain last skb data as the end.
4448  * So the caller can mannipulate sg list as will when padding new data after
4449  * the first call without calling sg_unmark_end to expend sg list.
4450  *
4451  * Scenario to use skb_to_sgvec_nomark:
4452  * 1. sg_init_table
4453  * 2. skb_to_sgvec_nomark(payload1)
4454  * 3. skb_to_sgvec_nomark(payload2)
4455  *
4456  * This is equivalent to:
4457  * 1. sg_init_table
4458  * 2. skb_to_sgvec(payload1)
4459  * 3. sg_unmark_end
4460  * 4. skb_to_sgvec(payload2)
4461  *
4462  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4463  * is more preferable.
4464  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4465 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4466 			int offset, int len)
4467 {
4468 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4469 }
4470 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4471 
4472 
4473 
4474 /**
4475  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4476  *	@skb: The socket buffer to check.
4477  *	@tailbits: Amount of trailing space to be added
4478  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4479  *
4480  *	Make sure that the data buffers attached to a socket buffer are
4481  *	writable. If they are not, private copies are made of the data buffers
4482  *	and the socket buffer is set to use these instead.
4483  *
4484  *	If @tailbits is given, make sure that there is space to write @tailbits
4485  *	bytes of data beyond current end of socket buffer.  @trailer will be
4486  *	set to point to the skb in which this space begins.
4487  *
4488  *	The number of scatterlist elements required to completely map the
4489  *	COW'd and extended socket buffer will be returned.
4490  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4491 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4492 {
4493 	int copyflag;
4494 	int elt;
4495 	struct sk_buff *skb1, **skb_p;
4496 
4497 	/* If skb is cloned or its head is paged, reallocate
4498 	 * head pulling out all the pages (pages are considered not writable
4499 	 * at the moment even if they are anonymous).
4500 	 */
4501 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4502 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4503 		return -ENOMEM;
4504 
4505 	/* Easy case. Most of packets will go this way. */
4506 	if (!skb_has_frag_list(skb)) {
4507 		/* A little of trouble, not enough of space for trailer.
4508 		 * This should not happen, when stack is tuned to generate
4509 		 * good frames. OK, on miss we reallocate and reserve even more
4510 		 * space, 128 bytes is fair. */
4511 
4512 		if (skb_tailroom(skb) < tailbits &&
4513 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4514 			return -ENOMEM;
4515 
4516 		/* Voila! */
4517 		*trailer = skb;
4518 		return 1;
4519 	}
4520 
4521 	/* Misery. We are in troubles, going to mincer fragments... */
4522 
4523 	elt = 1;
4524 	skb_p = &skb_shinfo(skb)->frag_list;
4525 	copyflag = 0;
4526 
4527 	while ((skb1 = *skb_p) != NULL) {
4528 		int ntail = 0;
4529 
4530 		/* The fragment is partially pulled by someone,
4531 		 * this can happen on input. Copy it and everything
4532 		 * after it. */
4533 
4534 		if (skb_shared(skb1))
4535 			copyflag = 1;
4536 
4537 		/* If the skb is the last, worry about trailer. */
4538 
4539 		if (skb1->next == NULL && tailbits) {
4540 			if (skb_shinfo(skb1)->nr_frags ||
4541 			    skb_has_frag_list(skb1) ||
4542 			    skb_tailroom(skb1) < tailbits)
4543 				ntail = tailbits + 128;
4544 		}
4545 
4546 		if (copyflag ||
4547 		    skb_cloned(skb1) ||
4548 		    ntail ||
4549 		    skb_shinfo(skb1)->nr_frags ||
4550 		    skb_has_frag_list(skb1)) {
4551 			struct sk_buff *skb2;
4552 
4553 			/* Fuck, we are miserable poor guys... */
4554 			if (ntail == 0)
4555 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4556 			else
4557 				skb2 = skb_copy_expand(skb1,
4558 						       skb_headroom(skb1),
4559 						       ntail,
4560 						       GFP_ATOMIC);
4561 			if (unlikely(skb2 == NULL))
4562 				return -ENOMEM;
4563 
4564 			if (skb1->sk)
4565 				skb_set_owner_w(skb2, skb1->sk);
4566 
4567 			/* Looking around. Are we still alive?
4568 			 * OK, link new skb, drop old one */
4569 
4570 			skb2->next = skb1->next;
4571 			*skb_p = skb2;
4572 			kfree_skb(skb1);
4573 			skb1 = skb2;
4574 		}
4575 		elt++;
4576 		*trailer = skb1;
4577 		skb_p = &skb1->next;
4578 	}
4579 
4580 	return elt;
4581 }
4582 EXPORT_SYMBOL_GPL(skb_cow_data);
4583 
sock_rmem_free(struct sk_buff * skb)4584 static void sock_rmem_free(struct sk_buff *skb)
4585 {
4586 	struct sock *sk = skb->sk;
4587 
4588 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4589 }
4590 
skb_set_err_queue(struct sk_buff * skb)4591 static void skb_set_err_queue(struct sk_buff *skb)
4592 {
4593 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4594 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4595 	 */
4596 	skb->pkt_type = PACKET_OUTGOING;
4597 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4598 }
4599 
4600 /*
4601  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4602  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4603 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4604 {
4605 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4606 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4607 		return -ENOMEM;
4608 
4609 	skb_orphan(skb);
4610 	skb->sk = sk;
4611 	skb->destructor = sock_rmem_free;
4612 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4613 	skb_set_err_queue(skb);
4614 
4615 	/* before exiting rcu section, make sure dst is refcounted */
4616 	skb_dst_force(skb);
4617 
4618 	skb_queue_tail(&sk->sk_error_queue, skb);
4619 	if (!sock_flag(sk, SOCK_DEAD))
4620 		sk->sk_error_report(sk);
4621 	return 0;
4622 }
4623 EXPORT_SYMBOL(sock_queue_err_skb);
4624 
is_icmp_err_skb(const struct sk_buff * skb)4625 static bool is_icmp_err_skb(const struct sk_buff *skb)
4626 {
4627 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4628 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4629 }
4630 
sock_dequeue_err_skb(struct sock * sk)4631 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4632 {
4633 	struct sk_buff_head *q = &sk->sk_error_queue;
4634 	struct sk_buff *skb, *skb_next = NULL;
4635 	bool icmp_next = false;
4636 	unsigned long flags;
4637 
4638 	spin_lock_irqsave(&q->lock, flags);
4639 	skb = __skb_dequeue(q);
4640 	if (skb && (skb_next = skb_peek(q))) {
4641 		icmp_next = is_icmp_err_skb(skb_next);
4642 		if (icmp_next)
4643 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4644 	}
4645 	spin_unlock_irqrestore(&q->lock, flags);
4646 
4647 	if (is_icmp_err_skb(skb) && !icmp_next)
4648 		sk->sk_err = 0;
4649 
4650 	if (skb_next)
4651 		sk->sk_error_report(sk);
4652 
4653 	return skb;
4654 }
4655 EXPORT_SYMBOL(sock_dequeue_err_skb);
4656 
4657 /**
4658  * skb_clone_sk - create clone of skb, and take reference to socket
4659  * @skb: the skb to clone
4660  *
4661  * This function creates a clone of a buffer that holds a reference on
4662  * sk_refcnt.  Buffers created via this function are meant to be
4663  * returned using sock_queue_err_skb, or free via kfree_skb.
4664  *
4665  * When passing buffers allocated with this function to sock_queue_err_skb
4666  * it is necessary to wrap the call with sock_hold/sock_put in order to
4667  * prevent the socket from being released prior to being enqueued on
4668  * the sk_error_queue.
4669  */
skb_clone_sk(struct sk_buff * skb)4670 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4671 {
4672 	struct sock *sk = skb->sk;
4673 	struct sk_buff *clone;
4674 
4675 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4676 		return NULL;
4677 
4678 	clone = skb_clone(skb, GFP_ATOMIC);
4679 	if (!clone) {
4680 		sock_put(sk);
4681 		return NULL;
4682 	}
4683 
4684 	clone->sk = sk;
4685 	clone->destructor = sock_efree;
4686 
4687 	return clone;
4688 }
4689 EXPORT_SYMBOL(skb_clone_sk);
4690 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4691 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4692 					struct sock *sk,
4693 					int tstype,
4694 					bool opt_stats)
4695 {
4696 	struct sock_exterr_skb *serr;
4697 	int err;
4698 
4699 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4700 
4701 	serr = SKB_EXT_ERR(skb);
4702 	memset(serr, 0, sizeof(*serr));
4703 	serr->ee.ee_errno = ENOMSG;
4704 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4705 	serr->ee.ee_info = tstype;
4706 	serr->opt_stats = opt_stats;
4707 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4708 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4709 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4710 		if (sk->sk_protocol == IPPROTO_TCP &&
4711 		    sk->sk_type == SOCK_STREAM)
4712 			serr->ee.ee_data -= sk->sk_tskey;
4713 	}
4714 
4715 	err = sock_queue_err_skb(sk, skb);
4716 
4717 	if (err)
4718 		kfree_skb(skb);
4719 }
4720 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4721 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4722 {
4723 	bool ret;
4724 
4725 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4726 		return true;
4727 
4728 	read_lock_bh(&sk->sk_callback_lock);
4729 	ret = sk->sk_socket && sk->sk_socket->file &&
4730 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4731 	read_unlock_bh(&sk->sk_callback_lock);
4732 	return ret;
4733 }
4734 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4735 void skb_complete_tx_timestamp(struct sk_buff *skb,
4736 			       struct skb_shared_hwtstamps *hwtstamps)
4737 {
4738 	struct sock *sk = skb->sk;
4739 
4740 	if (!skb_may_tx_timestamp(sk, false))
4741 		goto err;
4742 
4743 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4744 	 * but only if the socket refcount is not zero.
4745 	 */
4746 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4747 		*skb_hwtstamps(skb) = *hwtstamps;
4748 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4749 		sock_put(sk);
4750 		return;
4751 	}
4752 
4753 err:
4754 	kfree_skb(skb);
4755 }
4756 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4757 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4758 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4759 		     struct skb_shared_hwtstamps *hwtstamps,
4760 		     struct sock *sk, int tstype)
4761 {
4762 	struct sk_buff *skb;
4763 	bool tsonly, opt_stats = false;
4764 
4765 	if (!sk)
4766 		return;
4767 
4768 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4769 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4770 		return;
4771 
4772 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4773 	if (!skb_may_tx_timestamp(sk, tsonly))
4774 		return;
4775 
4776 	if (tsonly) {
4777 #ifdef CONFIG_INET
4778 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4779 		    sk->sk_protocol == IPPROTO_TCP &&
4780 		    sk->sk_type == SOCK_STREAM) {
4781 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4782 			opt_stats = true;
4783 		} else
4784 #endif
4785 			skb = alloc_skb(0, GFP_ATOMIC);
4786 	} else {
4787 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4788 
4789 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
4790 			kfree_skb(skb);
4791 			return;
4792 		}
4793 	}
4794 	if (!skb)
4795 		return;
4796 
4797 	if (tsonly) {
4798 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4799 					     SKBTX_ANY_TSTAMP;
4800 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4801 	}
4802 
4803 	if (hwtstamps)
4804 		*skb_hwtstamps(skb) = *hwtstamps;
4805 	else
4806 		skb->tstamp = ktime_get_real();
4807 
4808 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4809 }
4810 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4811 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4812 void skb_tstamp_tx(struct sk_buff *orig_skb,
4813 		   struct skb_shared_hwtstamps *hwtstamps)
4814 {
4815 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4816 			       SCM_TSTAMP_SND);
4817 }
4818 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4819 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4820 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4821 {
4822 	struct sock *sk = skb->sk;
4823 	struct sock_exterr_skb *serr;
4824 	int err = 1;
4825 
4826 	skb->wifi_acked_valid = 1;
4827 	skb->wifi_acked = acked;
4828 
4829 	serr = SKB_EXT_ERR(skb);
4830 	memset(serr, 0, sizeof(*serr));
4831 	serr->ee.ee_errno = ENOMSG;
4832 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4833 
4834 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4835 	 * but only if the socket refcount is not zero.
4836 	 */
4837 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4838 		err = sock_queue_err_skb(sk, skb);
4839 		sock_put(sk);
4840 	}
4841 	if (err)
4842 		kfree_skb(skb);
4843 }
4844 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4845 
4846 /**
4847  * skb_partial_csum_set - set up and verify partial csum values for packet
4848  * @skb: the skb to set
4849  * @start: the number of bytes after skb->data to start checksumming.
4850  * @off: the offset from start to place the checksum.
4851  *
4852  * For untrusted partially-checksummed packets, we need to make sure the values
4853  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4854  *
4855  * This function checks and sets those values and skb->ip_summed: if this
4856  * returns false you should drop the packet.
4857  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4858 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4859 {
4860 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4861 	u32 csum_start = skb_headroom(skb) + (u32)start;
4862 
4863 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4864 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4865 				     start, off, skb_headroom(skb), skb_headlen(skb));
4866 		return false;
4867 	}
4868 	skb->ip_summed = CHECKSUM_PARTIAL;
4869 	skb->csum_start = csum_start;
4870 	skb->csum_offset = off;
4871 	skb_set_transport_header(skb, start);
4872 	return true;
4873 }
4874 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4875 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4876 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4877 			       unsigned int max)
4878 {
4879 	if (skb_headlen(skb) >= len)
4880 		return 0;
4881 
4882 	/* If we need to pullup then pullup to the max, so we
4883 	 * won't need to do it again.
4884 	 */
4885 	if (max > skb->len)
4886 		max = skb->len;
4887 
4888 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4889 		return -ENOMEM;
4890 
4891 	if (skb_headlen(skb) < len)
4892 		return -EPROTO;
4893 
4894 	return 0;
4895 }
4896 
4897 #define MAX_TCP_HDR_LEN (15 * 4)
4898 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4899 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4900 				      typeof(IPPROTO_IP) proto,
4901 				      unsigned int off)
4902 {
4903 	int err;
4904 
4905 	switch (proto) {
4906 	case IPPROTO_TCP:
4907 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4908 					  off + MAX_TCP_HDR_LEN);
4909 		if (!err && !skb_partial_csum_set(skb, off,
4910 						  offsetof(struct tcphdr,
4911 							   check)))
4912 			err = -EPROTO;
4913 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4914 
4915 	case IPPROTO_UDP:
4916 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4917 					  off + sizeof(struct udphdr));
4918 		if (!err && !skb_partial_csum_set(skb, off,
4919 						  offsetof(struct udphdr,
4920 							   check)))
4921 			err = -EPROTO;
4922 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4923 	}
4924 
4925 	return ERR_PTR(-EPROTO);
4926 }
4927 
4928 /* This value should be large enough to cover a tagged ethernet header plus
4929  * maximally sized IP and TCP or UDP headers.
4930  */
4931 #define MAX_IP_HDR_LEN 128
4932 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4933 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4934 {
4935 	unsigned int off;
4936 	bool fragment;
4937 	__sum16 *csum;
4938 	int err;
4939 
4940 	fragment = false;
4941 
4942 	err = skb_maybe_pull_tail(skb,
4943 				  sizeof(struct iphdr),
4944 				  MAX_IP_HDR_LEN);
4945 	if (err < 0)
4946 		goto out;
4947 
4948 	if (ip_is_fragment(ip_hdr(skb)))
4949 		fragment = true;
4950 
4951 	off = ip_hdrlen(skb);
4952 
4953 	err = -EPROTO;
4954 
4955 	if (fragment)
4956 		goto out;
4957 
4958 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4959 	if (IS_ERR(csum))
4960 		return PTR_ERR(csum);
4961 
4962 	if (recalculate)
4963 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4964 					   ip_hdr(skb)->daddr,
4965 					   skb->len - off,
4966 					   ip_hdr(skb)->protocol, 0);
4967 	err = 0;
4968 
4969 out:
4970 	return err;
4971 }
4972 
4973 /* This value should be large enough to cover a tagged ethernet header plus
4974  * an IPv6 header, all options, and a maximal TCP or UDP header.
4975  */
4976 #define MAX_IPV6_HDR_LEN 256
4977 
4978 #define OPT_HDR(type, skb, off) \
4979 	(type *)(skb_network_header(skb) + (off))
4980 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4981 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4982 {
4983 	int err;
4984 	u8 nexthdr;
4985 	unsigned int off;
4986 	unsigned int len;
4987 	bool fragment;
4988 	bool done;
4989 	__sum16 *csum;
4990 
4991 	fragment = false;
4992 	done = false;
4993 
4994 	off = sizeof(struct ipv6hdr);
4995 
4996 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4997 	if (err < 0)
4998 		goto out;
4999 
5000 	nexthdr = ipv6_hdr(skb)->nexthdr;
5001 
5002 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5003 	while (off <= len && !done) {
5004 		switch (nexthdr) {
5005 		case IPPROTO_DSTOPTS:
5006 		case IPPROTO_HOPOPTS:
5007 		case IPPROTO_ROUTING: {
5008 			struct ipv6_opt_hdr *hp;
5009 
5010 			err = skb_maybe_pull_tail(skb,
5011 						  off +
5012 						  sizeof(struct ipv6_opt_hdr),
5013 						  MAX_IPV6_HDR_LEN);
5014 			if (err < 0)
5015 				goto out;
5016 
5017 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5018 			nexthdr = hp->nexthdr;
5019 			off += ipv6_optlen(hp);
5020 			break;
5021 		}
5022 		case IPPROTO_AH: {
5023 			struct ip_auth_hdr *hp;
5024 
5025 			err = skb_maybe_pull_tail(skb,
5026 						  off +
5027 						  sizeof(struct ip_auth_hdr),
5028 						  MAX_IPV6_HDR_LEN);
5029 			if (err < 0)
5030 				goto out;
5031 
5032 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5033 			nexthdr = hp->nexthdr;
5034 			off += ipv6_authlen(hp);
5035 			break;
5036 		}
5037 		case IPPROTO_FRAGMENT: {
5038 			struct frag_hdr *hp;
5039 
5040 			err = skb_maybe_pull_tail(skb,
5041 						  off +
5042 						  sizeof(struct frag_hdr),
5043 						  MAX_IPV6_HDR_LEN);
5044 			if (err < 0)
5045 				goto out;
5046 
5047 			hp = OPT_HDR(struct frag_hdr, skb, off);
5048 
5049 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5050 				fragment = true;
5051 
5052 			nexthdr = hp->nexthdr;
5053 			off += sizeof(struct frag_hdr);
5054 			break;
5055 		}
5056 		default:
5057 			done = true;
5058 			break;
5059 		}
5060 	}
5061 
5062 	err = -EPROTO;
5063 
5064 	if (!done || fragment)
5065 		goto out;
5066 
5067 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5068 	if (IS_ERR(csum))
5069 		return PTR_ERR(csum);
5070 
5071 	if (recalculate)
5072 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5073 					 &ipv6_hdr(skb)->daddr,
5074 					 skb->len - off, nexthdr, 0);
5075 	err = 0;
5076 
5077 out:
5078 	return err;
5079 }
5080 
5081 /**
5082  * skb_checksum_setup - set up partial checksum offset
5083  * @skb: the skb to set up
5084  * @recalculate: if true the pseudo-header checksum will be recalculated
5085  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5086 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5087 {
5088 	int err;
5089 
5090 	switch (skb->protocol) {
5091 	case htons(ETH_P_IP):
5092 		err = skb_checksum_setup_ipv4(skb, recalculate);
5093 		break;
5094 
5095 	case htons(ETH_P_IPV6):
5096 		err = skb_checksum_setup_ipv6(skb, recalculate);
5097 		break;
5098 
5099 	default:
5100 		err = -EPROTO;
5101 		break;
5102 	}
5103 
5104 	return err;
5105 }
5106 EXPORT_SYMBOL(skb_checksum_setup);
5107 
5108 /**
5109  * skb_checksum_maybe_trim - maybe trims the given skb
5110  * @skb: the skb to check
5111  * @transport_len: the data length beyond the network header
5112  *
5113  * Checks whether the given skb has data beyond the given transport length.
5114  * If so, returns a cloned skb trimmed to this transport length.
5115  * Otherwise returns the provided skb. Returns NULL in error cases
5116  * (e.g. transport_len exceeds skb length or out-of-memory).
5117  *
5118  * Caller needs to set the skb transport header and free any returned skb if it
5119  * differs from the provided skb.
5120  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5121 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5122 					       unsigned int transport_len)
5123 {
5124 	struct sk_buff *skb_chk;
5125 	unsigned int len = skb_transport_offset(skb) + transport_len;
5126 	int ret;
5127 
5128 	if (skb->len < len)
5129 		return NULL;
5130 	else if (skb->len == len)
5131 		return skb;
5132 
5133 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5134 	if (!skb_chk)
5135 		return NULL;
5136 
5137 	ret = pskb_trim_rcsum(skb_chk, len);
5138 	if (ret) {
5139 		kfree_skb(skb_chk);
5140 		return NULL;
5141 	}
5142 
5143 	return skb_chk;
5144 }
5145 
5146 /**
5147  * skb_checksum_trimmed - validate checksum of an skb
5148  * @skb: the skb to check
5149  * @transport_len: the data length beyond the network header
5150  * @skb_chkf: checksum function to use
5151  *
5152  * Applies the given checksum function skb_chkf to the provided skb.
5153  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5154  *
5155  * If the skb has data beyond the given transport length, then a
5156  * trimmed & cloned skb is checked and returned.
5157  *
5158  * Caller needs to set the skb transport header and free any returned skb if it
5159  * differs from the provided skb.
5160  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5161 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5162 				     unsigned int transport_len,
5163 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5164 {
5165 	struct sk_buff *skb_chk;
5166 	unsigned int offset = skb_transport_offset(skb);
5167 	__sum16 ret;
5168 
5169 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5170 	if (!skb_chk)
5171 		goto err;
5172 
5173 	if (!pskb_may_pull(skb_chk, offset))
5174 		goto err;
5175 
5176 	skb_pull_rcsum(skb_chk, offset);
5177 	ret = skb_chkf(skb_chk);
5178 	skb_push_rcsum(skb_chk, offset);
5179 
5180 	if (ret)
5181 		goto err;
5182 
5183 	return skb_chk;
5184 
5185 err:
5186 	if (skb_chk && skb_chk != skb)
5187 		kfree_skb(skb_chk);
5188 
5189 	return NULL;
5190 
5191 }
5192 EXPORT_SYMBOL(skb_checksum_trimmed);
5193 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5194 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5195 {
5196 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5197 			     skb->dev->name);
5198 }
5199 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5200 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5201 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5202 {
5203 	if (head_stolen) {
5204 		skb_release_head_state(skb);
5205 		kmem_cache_free(skbuff_head_cache, skb);
5206 	} else {
5207 		__kfree_skb(skb);
5208 	}
5209 }
5210 EXPORT_SYMBOL(kfree_skb_partial);
5211 
5212 /**
5213  * skb_try_coalesce - try to merge skb to prior one
5214  * @to: prior buffer
5215  * @from: buffer to add
5216  * @fragstolen: pointer to boolean
5217  * @delta_truesize: how much more was allocated than was requested
5218  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5219 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5220 		      bool *fragstolen, int *delta_truesize)
5221 {
5222 	struct skb_shared_info *to_shinfo, *from_shinfo;
5223 	int i, delta, len = from->len;
5224 
5225 	*fragstolen = false;
5226 
5227 	if (skb_cloned(to))
5228 		return false;
5229 
5230 	if (len <= skb_tailroom(to)) {
5231 		if (len)
5232 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5233 		*delta_truesize = 0;
5234 		return true;
5235 	}
5236 
5237 	to_shinfo = skb_shinfo(to);
5238 	from_shinfo = skb_shinfo(from);
5239 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5240 		return false;
5241 	if (skb_zcopy(to) || skb_zcopy(from))
5242 		return false;
5243 
5244 	if (skb_headlen(from) != 0) {
5245 		struct page *page;
5246 		unsigned int offset;
5247 
5248 		if (to_shinfo->nr_frags +
5249 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5250 			return false;
5251 
5252 		if (skb_head_is_locked(from))
5253 			return false;
5254 
5255 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5256 
5257 		page = virt_to_head_page(from->head);
5258 		offset = from->data - (unsigned char *)page_address(page);
5259 
5260 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5261 				   page, offset, skb_headlen(from));
5262 		*fragstolen = true;
5263 	} else {
5264 		if (to_shinfo->nr_frags +
5265 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5266 			return false;
5267 
5268 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5269 	}
5270 
5271 	WARN_ON_ONCE(delta < len);
5272 
5273 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5274 	       from_shinfo->frags,
5275 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5276 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5277 
5278 	if (!skb_cloned(from))
5279 		from_shinfo->nr_frags = 0;
5280 
5281 	/* if the skb is not cloned this does nothing
5282 	 * since we set nr_frags to 0.
5283 	 */
5284 	for (i = 0; i < from_shinfo->nr_frags; i++)
5285 		__skb_frag_ref(&from_shinfo->frags[i]);
5286 
5287 	to->truesize += delta;
5288 	to->len += len;
5289 	to->data_len += len;
5290 
5291 	*delta_truesize = delta;
5292 	return true;
5293 }
5294 EXPORT_SYMBOL(skb_try_coalesce);
5295 
5296 /**
5297  * skb_scrub_packet - scrub an skb
5298  *
5299  * @skb: buffer to clean
5300  * @xnet: packet is crossing netns
5301  *
5302  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5303  * into/from a tunnel. Some information have to be cleared during these
5304  * operations.
5305  * skb_scrub_packet can also be used to clean a skb before injecting it in
5306  * another namespace (@xnet == true). We have to clear all information in the
5307  * skb that could impact namespace isolation.
5308  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5309 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5310 {
5311 	skb->pkt_type = PACKET_HOST;
5312 	skb->skb_iif = 0;
5313 	skb->ignore_df = 0;
5314 	skb_dst_drop(skb);
5315 	skb_ext_reset(skb);
5316 	nf_reset_ct(skb);
5317 	nf_reset_trace(skb);
5318 
5319 #ifdef CONFIG_NET_SWITCHDEV
5320 	skb->offload_fwd_mark = 0;
5321 	skb->offload_l3_fwd_mark = 0;
5322 #endif
5323 
5324 	if (!xnet)
5325 		return;
5326 
5327 	ipvs_reset(skb);
5328 	skb->mark = 0;
5329 	skb->tstamp = 0;
5330 }
5331 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5332 
5333 /**
5334  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5335  *
5336  * @skb: GSO skb
5337  *
5338  * skb_gso_transport_seglen is used to determine the real size of the
5339  * individual segments, including Layer4 headers (TCP/UDP).
5340  *
5341  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5342  */
skb_gso_transport_seglen(const struct sk_buff * skb)5343 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5344 {
5345 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5346 	unsigned int thlen = 0;
5347 
5348 	if (skb->encapsulation) {
5349 		thlen = skb_inner_transport_header(skb) -
5350 			skb_transport_header(skb);
5351 
5352 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5353 			thlen += inner_tcp_hdrlen(skb);
5354 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5355 		thlen = tcp_hdrlen(skb);
5356 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5357 		thlen = sizeof(struct sctphdr);
5358 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5359 		thlen = sizeof(struct udphdr);
5360 	}
5361 	/* UFO sets gso_size to the size of the fragmentation
5362 	 * payload, i.e. the size of the L4 (UDP) header is already
5363 	 * accounted for.
5364 	 */
5365 	return thlen + shinfo->gso_size;
5366 }
5367 
5368 /**
5369  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5370  *
5371  * @skb: GSO skb
5372  *
5373  * skb_gso_network_seglen is used to determine the real size of the
5374  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5375  *
5376  * The MAC/L2 header is not accounted for.
5377  */
skb_gso_network_seglen(const struct sk_buff * skb)5378 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5379 {
5380 	unsigned int hdr_len = skb_transport_header(skb) -
5381 			       skb_network_header(skb);
5382 
5383 	return hdr_len + skb_gso_transport_seglen(skb);
5384 }
5385 
5386 /**
5387  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5388  *
5389  * @skb: GSO skb
5390  *
5391  * skb_gso_mac_seglen is used to determine the real size of the
5392  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5393  * headers (TCP/UDP).
5394  */
skb_gso_mac_seglen(const struct sk_buff * skb)5395 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5396 {
5397 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5398 
5399 	return hdr_len + skb_gso_transport_seglen(skb);
5400 }
5401 
5402 /**
5403  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5404  *
5405  * There are a couple of instances where we have a GSO skb, and we
5406  * want to determine what size it would be after it is segmented.
5407  *
5408  * We might want to check:
5409  * -    L3+L4+payload size (e.g. IP forwarding)
5410  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5411  *
5412  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5413  *
5414  * @skb: GSO skb
5415  *
5416  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5417  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5418  *
5419  * @max_len: The maximum permissible length.
5420  *
5421  * Returns true if the segmented length <= max length.
5422  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5423 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5424 				      unsigned int seg_len,
5425 				      unsigned int max_len) {
5426 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5427 	const struct sk_buff *iter;
5428 
5429 	if (shinfo->gso_size != GSO_BY_FRAGS)
5430 		return seg_len <= max_len;
5431 
5432 	/* Undo this so we can re-use header sizes */
5433 	seg_len -= GSO_BY_FRAGS;
5434 
5435 	skb_walk_frags(skb, iter) {
5436 		if (seg_len + skb_headlen(iter) > max_len)
5437 			return false;
5438 	}
5439 
5440 	return true;
5441 }
5442 
5443 /**
5444  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5445  *
5446  * @skb: GSO skb
5447  * @mtu: MTU to validate against
5448  *
5449  * skb_gso_validate_network_len validates if a given skb will fit a
5450  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5451  * payload.
5452  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5453 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5454 {
5455 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5456 }
5457 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5458 
5459 /**
5460  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5461  *
5462  * @skb: GSO skb
5463  * @len: length to validate against
5464  *
5465  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5466  * length once split, including L2, L3 and L4 headers and the payload.
5467  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5468 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5469 {
5470 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5471 }
5472 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5473 
skb_reorder_vlan_header(struct sk_buff * skb)5474 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5475 {
5476 	int mac_len, meta_len;
5477 	void *meta;
5478 
5479 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5480 		kfree_skb(skb);
5481 		return NULL;
5482 	}
5483 
5484 	mac_len = skb->data - skb_mac_header(skb);
5485 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5486 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5487 			mac_len - VLAN_HLEN - ETH_TLEN);
5488 	}
5489 
5490 	meta_len = skb_metadata_len(skb);
5491 	if (meta_len) {
5492 		meta = skb_metadata_end(skb) - meta_len;
5493 		memmove(meta + VLAN_HLEN, meta, meta_len);
5494 	}
5495 
5496 	skb->mac_header += VLAN_HLEN;
5497 	return skb;
5498 }
5499 
skb_vlan_untag(struct sk_buff * skb)5500 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5501 {
5502 	struct vlan_hdr *vhdr;
5503 	u16 vlan_tci;
5504 
5505 	if (unlikely(skb_vlan_tag_present(skb))) {
5506 		/* vlan_tci is already set-up so leave this for another time */
5507 		return skb;
5508 	}
5509 
5510 	skb = skb_share_check(skb, GFP_ATOMIC);
5511 	if (unlikely(!skb))
5512 		goto err_free;
5513 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5514 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5515 		goto err_free;
5516 
5517 	vhdr = (struct vlan_hdr *)skb->data;
5518 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5519 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5520 
5521 	skb_pull_rcsum(skb, VLAN_HLEN);
5522 	vlan_set_encap_proto(skb, vhdr);
5523 
5524 	skb = skb_reorder_vlan_header(skb);
5525 	if (unlikely(!skb))
5526 		goto err_free;
5527 
5528 	skb_reset_network_header(skb);
5529 	skb_reset_transport_header(skb);
5530 	skb_reset_mac_len(skb);
5531 
5532 	return skb;
5533 
5534 err_free:
5535 	kfree_skb(skb);
5536 	return NULL;
5537 }
5538 EXPORT_SYMBOL(skb_vlan_untag);
5539 
skb_ensure_writable(struct sk_buff * skb,int write_len)5540 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5541 {
5542 	if (!pskb_may_pull(skb, write_len))
5543 		return -ENOMEM;
5544 
5545 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5546 		return 0;
5547 
5548 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5549 }
5550 EXPORT_SYMBOL(skb_ensure_writable);
5551 
5552 /* remove VLAN header from packet and update csum accordingly.
5553  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5554  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5555 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5556 {
5557 	struct vlan_hdr *vhdr;
5558 	int offset = skb->data - skb_mac_header(skb);
5559 	int err;
5560 
5561 	if (WARN_ONCE(offset,
5562 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5563 		      offset)) {
5564 		return -EINVAL;
5565 	}
5566 
5567 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5568 	if (unlikely(err))
5569 		return err;
5570 
5571 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5572 
5573 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5574 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5575 
5576 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5577 	__skb_pull(skb, VLAN_HLEN);
5578 
5579 	vlan_set_encap_proto(skb, vhdr);
5580 	skb->mac_header += VLAN_HLEN;
5581 
5582 	if (skb_network_offset(skb) < ETH_HLEN)
5583 		skb_set_network_header(skb, ETH_HLEN);
5584 
5585 	skb_reset_mac_len(skb);
5586 
5587 	return err;
5588 }
5589 EXPORT_SYMBOL(__skb_vlan_pop);
5590 
5591 /* Pop a vlan tag either from hwaccel or from payload.
5592  * Expects skb->data at mac header.
5593  */
skb_vlan_pop(struct sk_buff * skb)5594 int skb_vlan_pop(struct sk_buff *skb)
5595 {
5596 	u16 vlan_tci;
5597 	__be16 vlan_proto;
5598 	int err;
5599 
5600 	if (likely(skb_vlan_tag_present(skb))) {
5601 		__vlan_hwaccel_clear_tag(skb);
5602 	} else {
5603 		if (unlikely(!eth_type_vlan(skb->protocol)))
5604 			return 0;
5605 
5606 		err = __skb_vlan_pop(skb, &vlan_tci);
5607 		if (err)
5608 			return err;
5609 	}
5610 	/* move next vlan tag to hw accel tag */
5611 	if (likely(!eth_type_vlan(skb->protocol)))
5612 		return 0;
5613 
5614 	vlan_proto = skb->protocol;
5615 	err = __skb_vlan_pop(skb, &vlan_tci);
5616 	if (unlikely(err))
5617 		return err;
5618 
5619 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5620 	return 0;
5621 }
5622 EXPORT_SYMBOL(skb_vlan_pop);
5623 
5624 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5625  * Expects skb->data at mac header.
5626  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5627 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5628 {
5629 	if (skb_vlan_tag_present(skb)) {
5630 		int offset = skb->data - skb_mac_header(skb);
5631 		int err;
5632 
5633 		if (WARN_ONCE(offset,
5634 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5635 			      offset)) {
5636 			return -EINVAL;
5637 		}
5638 
5639 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5640 					skb_vlan_tag_get(skb));
5641 		if (err)
5642 			return err;
5643 
5644 		skb->protocol = skb->vlan_proto;
5645 		skb->mac_len += VLAN_HLEN;
5646 
5647 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5648 	}
5649 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5650 	return 0;
5651 }
5652 EXPORT_SYMBOL(skb_vlan_push);
5653 
5654 /**
5655  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5656  *
5657  * @skb: Socket buffer to modify
5658  *
5659  * Drop the Ethernet header of @skb.
5660  *
5661  * Expects that skb->data points to the mac header and that no VLAN tags are
5662  * present.
5663  *
5664  * Returns 0 on success, -errno otherwise.
5665  */
skb_eth_pop(struct sk_buff * skb)5666 int skb_eth_pop(struct sk_buff *skb)
5667 {
5668 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5669 	    skb_network_offset(skb) < ETH_HLEN)
5670 		return -EPROTO;
5671 
5672 	skb_pull_rcsum(skb, ETH_HLEN);
5673 	skb_reset_mac_header(skb);
5674 	skb_reset_mac_len(skb);
5675 
5676 	return 0;
5677 }
5678 EXPORT_SYMBOL(skb_eth_pop);
5679 
5680 /**
5681  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5682  *
5683  * @skb: Socket buffer to modify
5684  * @dst: Destination MAC address of the new header
5685  * @src: Source MAC address of the new header
5686  *
5687  * Prepend @skb with a new Ethernet header.
5688  *
5689  * Expects that skb->data points to the mac header, which must be empty.
5690  *
5691  * Returns 0 on success, -errno otherwise.
5692  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5693 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5694 		 const unsigned char *src)
5695 {
5696 	struct ethhdr *eth;
5697 	int err;
5698 
5699 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5700 		return -EPROTO;
5701 
5702 	err = skb_cow_head(skb, sizeof(*eth));
5703 	if (err < 0)
5704 		return err;
5705 
5706 	skb_push(skb, sizeof(*eth));
5707 	skb_reset_mac_header(skb);
5708 	skb_reset_mac_len(skb);
5709 
5710 	eth = eth_hdr(skb);
5711 	ether_addr_copy(eth->h_dest, dst);
5712 	ether_addr_copy(eth->h_source, src);
5713 	eth->h_proto = skb->protocol;
5714 
5715 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5716 
5717 	return 0;
5718 }
5719 EXPORT_SYMBOL(skb_eth_push);
5720 
5721 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5722 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5723 			     __be16 ethertype)
5724 {
5725 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5726 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5727 
5728 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5729 	}
5730 
5731 	hdr->h_proto = ethertype;
5732 }
5733 
5734 /**
5735  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5736  *                   the packet
5737  *
5738  * @skb: buffer
5739  * @mpls_lse: MPLS label stack entry to push
5740  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5741  * @mac_len: length of the MAC header
5742  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5743  *            ethernet
5744  *
5745  * Expects skb->data at mac header.
5746  *
5747  * Returns 0 on success, -errno otherwise.
5748  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5749 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5750 		  int mac_len, bool ethernet)
5751 {
5752 	struct mpls_shim_hdr *lse;
5753 	int err;
5754 
5755 	if (unlikely(!eth_p_mpls(mpls_proto)))
5756 		return -EINVAL;
5757 
5758 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5759 	if (skb->encapsulation)
5760 		return -EINVAL;
5761 
5762 	err = skb_cow_head(skb, MPLS_HLEN);
5763 	if (unlikely(err))
5764 		return err;
5765 
5766 	if (!skb->inner_protocol) {
5767 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5768 		skb_set_inner_protocol(skb, skb->protocol);
5769 	}
5770 
5771 	skb_push(skb, MPLS_HLEN);
5772 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5773 		mac_len);
5774 	skb_reset_mac_header(skb);
5775 	skb_set_network_header(skb, mac_len);
5776 	skb_reset_mac_len(skb);
5777 
5778 	lse = mpls_hdr(skb);
5779 	lse->label_stack_entry = mpls_lse;
5780 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5781 
5782 	if (ethernet && mac_len >= ETH_HLEN)
5783 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5784 	skb->protocol = mpls_proto;
5785 
5786 	return 0;
5787 }
5788 EXPORT_SYMBOL_GPL(skb_mpls_push);
5789 
5790 /**
5791  * skb_mpls_pop() - pop the outermost MPLS header
5792  *
5793  * @skb: buffer
5794  * @next_proto: ethertype of header after popped MPLS header
5795  * @mac_len: length of the MAC header
5796  * @ethernet: flag to indicate if the packet is ethernet
5797  *
5798  * Expects skb->data at mac header.
5799  *
5800  * Returns 0 on success, -errno otherwise.
5801  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5802 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5803 		 bool ethernet)
5804 {
5805 	int err;
5806 
5807 	if (unlikely(!eth_p_mpls(skb->protocol)))
5808 		return 0;
5809 
5810 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5811 	if (unlikely(err))
5812 		return err;
5813 
5814 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5815 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5816 		mac_len);
5817 
5818 	__skb_pull(skb, MPLS_HLEN);
5819 	skb_reset_mac_header(skb);
5820 	skb_set_network_header(skb, mac_len);
5821 
5822 	if (ethernet && mac_len >= ETH_HLEN) {
5823 		struct ethhdr *hdr;
5824 
5825 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5826 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5827 		skb_mod_eth_type(skb, hdr, next_proto);
5828 	}
5829 	skb->protocol = next_proto;
5830 
5831 	return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5834 
5835 /**
5836  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5837  *
5838  * @skb: buffer
5839  * @mpls_lse: new MPLS label stack entry to update to
5840  *
5841  * Expects skb->data at mac header.
5842  *
5843  * Returns 0 on success, -errno otherwise.
5844  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5845 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5846 {
5847 	int err;
5848 
5849 	if (unlikely(!eth_p_mpls(skb->protocol)))
5850 		return -EINVAL;
5851 
5852 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5853 	if (unlikely(err))
5854 		return err;
5855 
5856 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5857 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5858 
5859 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5860 	}
5861 
5862 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5863 
5864 	return 0;
5865 }
5866 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5867 
5868 /**
5869  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5870  *
5871  * @skb: buffer
5872  *
5873  * Expects skb->data at mac header.
5874  *
5875  * Returns 0 on success, -errno otherwise.
5876  */
skb_mpls_dec_ttl(struct sk_buff * skb)5877 int skb_mpls_dec_ttl(struct sk_buff *skb)
5878 {
5879 	u32 lse;
5880 	u8 ttl;
5881 
5882 	if (unlikely(!eth_p_mpls(skb->protocol)))
5883 		return -EINVAL;
5884 
5885 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5886 		return -ENOMEM;
5887 
5888 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5889 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5890 	if (!--ttl)
5891 		return -EINVAL;
5892 
5893 	lse &= ~MPLS_LS_TTL_MASK;
5894 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5895 
5896 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5897 }
5898 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5899 
5900 /**
5901  * alloc_skb_with_frags - allocate skb with page frags
5902  *
5903  * @header_len: size of linear part
5904  * @data_len: needed length in frags
5905  * @max_page_order: max page order desired.
5906  * @errcode: pointer to error code if any
5907  * @gfp_mask: allocation mask
5908  *
5909  * This can be used to allocate a paged skb, given a maximal order for frags.
5910  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5911 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5912 				     unsigned long data_len,
5913 				     int max_page_order,
5914 				     int *errcode,
5915 				     gfp_t gfp_mask)
5916 {
5917 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5918 	unsigned long chunk;
5919 	struct sk_buff *skb;
5920 	struct page *page;
5921 	int i;
5922 
5923 	*errcode = -EMSGSIZE;
5924 	/* Note this test could be relaxed, if we succeed to allocate
5925 	 * high order pages...
5926 	 */
5927 	if (npages > MAX_SKB_FRAGS)
5928 		return NULL;
5929 
5930 	*errcode = -ENOBUFS;
5931 	skb = alloc_skb(header_len, gfp_mask);
5932 	if (!skb)
5933 		return NULL;
5934 
5935 	skb->truesize += npages << PAGE_SHIFT;
5936 
5937 	for (i = 0; npages > 0; i++) {
5938 		int order = max_page_order;
5939 
5940 		while (order) {
5941 			if (npages >= 1 << order) {
5942 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5943 						   __GFP_COMP |
5944 						   __GFP_NOWARN,
5945 						   order);
5946 				if (page)
5947 					goto fill_page;
5948 				/* Do not retry other high order allocations */
5949 				order = 1;
5950 				max_page_order = 0;
5951 			}
5952 			order--;
5953 		}
5954 		page = alloc_page(gfp_mask);
5955 		if (!page)
5956 			goto failure;
5957 fill_page:
5958 		chunk = min_t(unsigned long, data_len,
5959 			      PAGE_SIZE << order);
5960 		skb_fill_page_desc(skb, i, page, 0, chunk);
5961 		data_len -= chunk;
5962 		npages -= 1 << order;
5963 	}
5964 	return skb;
5965 
5966 failure:
5967 	kfree_skb(skb);
5968 	return NULL;
5969 }
5970 EXPORT_SYMBOL(alloc_skb_with_frags);
5971 
5972 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5973 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5974 				    const int headlen, gfp_t gfp_mask)
5975 {
5976 	int i;
5977 	int size = skb_end_offset(skb);
5978 	int new_hlen = headlen - off;
5979 	u8 *data;
5980 
5981 	size = SKB_DATA_ALIGN(size);
5982 
5983 	if (skb_pfmemalloc(skb))
5984 		gfp_mask |= __GFP_MEMALLOC;
5985 	data = kmalloc_reserve(size +
5986 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5987 			       gfp_mask, NUMA_NO_NODE, NULL);
5988 	if (!data)
5989 		return -ENOMEM;
5990 
5991 	size = SKB_WITH_OVERHEAD(ksize(data));
5992 
5993 	/* Copy real data, and all frags */
5994 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5995 	skb->len -= off;
5996 
5997 	memcpy((struct skb_shared_info *)(data + size),
5998 	       skb_shinfo(skb),
5999 	       offsetof(struct skb_shared_info,
6000 			frags[skb_shinfo(skb)->nr_frags]));
6001 	if (skb_cloned(skb)) {
6002 		/* drop the old head gracefully */
6003 		if (skb_orphan_frags(skb, gfp_mask)) {
6004 			kfree(data);
6005 			return -ENOMEM;
6006 		}
6007 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6008 			skb_frag_ref(skb, i);
6009 		if (skb_has_frag_list(skb))
6010 			skb_clone_fraglist(skb);
6011 		skb_release_data(skb);
6012 	} else {
6013 		/* we can reuse existing recount- all we did was
6014 		 * relocate values
6015 		 */
6016 		skb_free_head(skb);
6017 	}
6018 
6019 	skb->head = data;
6020 	skb->data = data;
6021 	skb->head_frag = 0;
6022 	skb_set_end_offset(skb, size);
6023 	skb_set_tail_pointer(skb, skb_headlen(skb));
6024 	skb_headers_offset_update(skb, 0);
6025 	skb->cloned = 0;
6026 	skb->hdr_len = 0;
6027 	skb->nohdr = 0;
6028 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6029 
6030 	return 0;
6031 }
6032 
6033 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6034 
6035 /* carve out the first eat bytes from skb's frag_list. May recurse into
6036  * pskb_carve()
6037  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6038 static int pskb_carve_frag_list(struct sk_buff *skb,
6039 				struct skb_shared_info *shinfo, int eat,
6040 				gfp_t gfp_mask)
6041 {
6042 	struct sk_buff *list = shinfo->frag_list;
6043 	struct sk_buff *clone = NULL;
6044 	struct sk_buff *insp = NULL;
6045 
6046 	do {
6047 		if (!list) {
6048 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6049 			return -EFAULT;
6050 		}
6051 		if (list->len <= eat) {
6052 			/* Eaten as whole. */
6053 			eat -= list->len;
6054 			list = list->next;
6055 			insp = list;
6056 		} else {
6057 			/* Eaten partially. */
6058 			if (skb_shared(list)) {
6059 				clone = skb_clone(list, gfp_mask);
6060 				if (!clone)
6061 					return -ENOMEM;
6062 				insp = list->next;
6063 				list = clone;
6064 			} else {
6065 				/* This may be pulled without problems. */
6066 				insp = list;
6067 			}
6068 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6069 				kfree_skb(clone);
6070 				return -ENOMEM;
6071 			}
6072 			break;
6073 		}
6074 	} while (eat);
6075 
6076 	/* Free pulled out fragments. */
6077 	while ((list = shinfo->frag_list) != insp) {
6078 		shinfo->frag_list = list->next;
6079 		consume_skb(list);
6080 	}
6081 	/* And insert new clone at head. */
6082 	if (clone) {
6083 		clone->next = list;
6084 		shinfo->frag_list = clone;
6085 	}
6086 	return 0;
6087 }
6088 
6089 /* carve off first len bytes from skb. Split line (off) is in the
6090  * non-linear part of skb
6091  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6092 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6093 				       int pos, gfp_t gfp_mask)
6094 {
6095 	int i, k = 0;
6096 	int size = skb_end_offset(skb);
6097 	u8 *data;
6098 	const int nfrags = skb_shinfo(skb)->nr_frags;
6099 	struct skb_shared_info *shinfo;
6100 
6101 	size = SKB_DATA_ALIGN(size);
6102 
6103 	if (skb_pfmemalloc(skb))
6104 		gfp_mask |= __GFP_MEMALLOC;
6105 	data = kmalloc_reserve(size +
6106 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6107 			       gfp_mask, NUMA_NO_NODE, NULL);
6108 	if (!data)
6109 		return -ENOMEM;
6110 
6111 	size = SKB_WITH_OVERHEAD(ksize(data));
6112 
6113 	memcpy((struct skb_shared_info *)(data + size),
6114 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6115 	if (skb_orphan_frags(skb, gfp_mask)) {
6116 		kfree(data);
6117 		return -ENOMEM;
6118 	}
6119 	shinfo = (struct skb_shared_info *)(data + size);
6120 	for (i = 0; i < nfrags; i++) {
6121 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6122 
6123 		if (pos + fsize > off) {
6124 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6125 
6126 			if (pos < off) {
6127 				/* Split frag.
6128 				 * We have two variants in this case:
6129 				 * 1. Move all the frag to the second
6130 				 *    part, if it is possible. F.e.
6131 				 *    this approach is mandatory for TUX,
6132 				 *    where splitting is expensive.
6133 				 * 2. Split is accurately. We make this.
6134 				 */
6135 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6136 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6137 			}
6138 			skb_frag_ref(skb, i);
6139 			k++;
6140 		}
6141 		pos += fsize;
6142 	}
6143 	shinfo->nr_frags = k;
6144 	if (skb_has_frag_list(skb))
6145 		skb_clone_fraglist(skb);
6146 
6147 	/* split line is in frag list */
6148 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6149 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6150 		if (skb_has_frag_list(skb))
6151 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6152 		kfree(data);
6153 		return -ENOMEM;
6154 	}
6155 	skb_release_data(skb);
6156 
6157 	skb->head = data;
6158 	skb->head_frag = 0;
6159 	skb->data = data;
6160 	skb_set_end_offset(skb, size);
6161 	skb_reset_tail_pointer(skb);
6162 	skb_headers_offset_update(skb, 0);
6163 	skb->cloned   = 0;
6164 	skb->hdr_len  = 0;
6165 	skb->nohdr    = 0;
6166 	skb->len -= off;
6167 	skb->data_len = skb->len;
6168 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6169 	return 0;
6170 }
6171 
6172 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6173 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6174 {
6175 	int headlen = skb_headlen(skb);
6176 
6177 	if (len < headlen)
6178 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6179 	else
6180 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6181 }
6182 
6183 /* Extract to_copy bytes starting at off from skb, and return this in
6184  * a new skb
6185  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6186 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6187 			     int to_copy, gfp_t gfp)
6188 {
6189 	struct sk_buff  *clone = skb_clone(skb, gfp);
6190 
6191 	if (!clone)
6192 		return NULL;
6193 
6194 	if (pskb_carve(clone, off, gfp) < 0 ||
6195 	    pskb_trim(clone, to_copy)) {
6196 		kfree_skb(clone);
6197 		return NULL;
6198 	}
6199 	return clone;
6200 }
6201 EXPORT_SYMBOL(pskb_extract);
6202 
6203 /**
6204  * skb_condense - try to get rid of fragments/frag_list if possible
6205  * @skb: buffer
6206  *
6207  * Can be used to save memory before skb is added to a busy queue.
6208  * If packet has bytes in frags and enough tail room in skb->head,
6209  * pull all of them, so that we can free the frags right now and adjust
6210  * truesize.
6211  * Notes:
6212  *	We do not reallocate skb->head thus can not fail.
6213  *	Caller must re-evaluate skb->truesize if needed.
6214  */
skb_condense(struct sk_buff * skb)6215 void skb_condense(struct sk_buff *skb)
6216 {
6217 	if (skb->data_len) {
6218 		if (skb->data_len > skb->end - skb->tail ||
6219 		    skb_cloned(skb))
6220 			return;
6221 
6222 		/* Nice, we can free page frag(s) right now */
6223 		__pskb_pull_tail(skb, skb->data_len);
6224 	}
6225 	/* At this point, skb->truesize might be over estimated,
6226 	 * because skb had a fragment, and fragments do not tell
6227 	 * their truesize.
6228 	 * When we pulled its content into skb->head, fragment
6229 	 * was freed, but __pskb_pull_tail() could not possibly
6230 	 * adjust skb->truesize, not knowing the frag truesize.
6231 	 */
6232 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6233 }
6234 
6235 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6236 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6237 {
6238 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6239 }
6240 
6241 /**
6242  * __skb_ext_alloc - allocate a new skb extensions storage
6243  *
6244  * @flags: See kmalloc().
6245  *
6246  * Returns the newly allocated pointer. The pointer can later attached to a
6247  * skb via __skb_ext_set().
6248  * Note: caller must handle the skb_ext as an opaque data.
6249  */
__skb_ext_alloc(gfp_t flags)6250 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6251 {
6252 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6253 
6254 	if (new) {
6255 		memset(new->offset, 0, sizeof(new->offset));
6256 		refcount_set(&new->refcnt, 1);
6257 	}
6258 
6259 	return new;
6260 }
6261 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6262 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6263 					 unsigned int old_active)
6264 {
6265 	struct skb_ext *new;
6266 
6267 	if (refcount_read(&old->refcnt) == 1)
6268 		return old;
6269 
6270 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6271 	if (!new)
6272 		return NULL;
6273 
6274 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6275 	refcount_set(&new->refcnt, 1);
6276 
6277 #ifdef CONFIG_XFRM
6278 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6279 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6280 		unsigned int i;
6281 
6282 		for (i = 0; i < sp->len; i++)
6283 			xfrm_state_hold(sp->xvec[i]);
6284 	}
6285 #endif
6286 	__skb_ext_put(old);
6287 	return new;
6288 }
6289 
6290 /**
6291  * __skb_ext_set - attach the specified extension storage to this skb
6292  * @skb: buffer
6293  * @id: extension id
6294  * @ext: extension storage previously allocated via __skb_ext_alloc()
6295  *
6296  * Existing extensions, if any, are cleared.
6297  *
6298  * Returns the pointer to the extension.
6299  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6300 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6301 		    struct skb_ext *ext)
6302 {
6303 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6304 
6305 	skb_ext_put(skb);
6306 	newlen = newoff + skb_ext_type_len[id];
6307 	ext->chunks = newlen;
6308 	ext->offset[id] = newoff;
6309 	skb->extensions = ext;
6310 	skb->active_extensions = 1 << id;
6311 	return skb_ext_get_ptr(ext, id);
6312 }
6313 
6314 /**
6315  * skb_ext_add - allocate space for given extension, COW if needed
6316  * @skb: buffer
6317  * @id: extension to allocate space for
6318  *
6319  * Allocates enough space for the given extension.
6320  * If the extension is already present, a pointer to that extension
6321  * is returned.
6322  *
6323  * If the skb was cloned, COW applies and the returned memory can be
6324  * modified without changing the extension space of clones buffers.
6325  *
6326  * Returns pointer to the extension or NULL on allocation failure.
6327  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6328 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6329 {
6330 	struct skb_ext *new, *old = NULL;
6331 	unsigned int newlen, newoff;
6332 
6333 	if (skb->active_extensions) {
6334 		old = skb->extensions;
6335 
6336 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6337 		if (!new)
6338 			return NULL;
6339 
6340 		if (__skb_ext_exist(new, id))
6341 			goto set_active;
6342 
6343 		newoff = new->chunks;
6344 	} else {
6345 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6346 
6347 		new = __skb_ext_alloc(GFP_ATOMIC);
6348 		if (!new)
6349 			return NULL;
6350 	}
6351 
6352 	newlen = newoff + skb_ext_type_len[id];
6353 	new->chunks = newlen;
6354 	new->offset[id] = newoff;
6355 set_active:
6356 	skb->extensions = new;
6357 	skb->active_extensions |= 1 << id;
6358 	return skb_ext_get_ptr(new, id);
6359 }
6360 EXPORT_SYMBOL(skb_ext_add);
6361 
6362 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6363 static void skb_ext_put_sp(struct sec_path *sp)
6364 {
6365 	unsigned int i;
6366 
6367 	for (i = 0; i < sp->len; i++)
6368 		xfrm_state_put(sp->xvec[i]);
6369 }
6370 #endif
6371 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6372 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6373 {
6374 	struct skb_ext *ext = skb->extensions;
6375 
6376 	skb->active_extensions &= ~(1 << id);
6377 	if (skb->active_extensions == 0) {
6378 		skb->extensions = NULL;
6379 		__skb_ext_put(ext);
6380 #ifdef CONFIG_XFRM
6381 	} else if (id == SKB_EXT_SEC_PATH &&
6382 		   refcount_read(&ext->refcnt) == 1) {
6383 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6384 
6385 		skb_ext_put_sp(sp);
6386 		sp->len = 0;
6387 #endif
6388 	}
6389 }
6390 EXPORT_SYMBOL(__skb_ext_del);
6391 
__skb_ext_put(struct skb_ext * ext)6392 void __skb_ext_put(struct skb_ext *ext)
6393 {
6394 	/* If this is last clone, nothing can increment
6395 	 * it after check passes.  Avoids one atomic op.
6396 	 */
6397 	if (refcount_read(&ext->refcnt) == 1)
6398 		goto free_now;
6399 
6400 	if (!refcount_dec_and_test(&ext->refcnt))
6401 		return;
6402 free_now:
6403 #ifdef CONFIG_XFRM
6404 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6405 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6406 #endif
6407 
6408 	kmem_cache_free(skbuff_ext_cache, ext);
6409 }
6410 EXPORT_SYMBOL(__skb_ext_put);
6411 #endif /* CONFIG_SKB_EXTENSIONS */
6412