1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
57
58 /*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63 struct secondary_data secondary_data;
64
65 enum ipi_msg_type {
66 IPI_WAKEUP,
67 IPI_TIMER,
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
70 IPI_CPU_STOP,
71 IPI_IRQ_WORK,
72 IPI_COMPLETION,
73 NR_IPI,
74 /*
75 * CPU_BACKTRACE is special and not included in NR_IPI
76 * or tracable with trace_ipi_*
77 */
78 IPI_CPU_BACKTRACE = NR_IPI,
79 /*
80 * SGI8-15 can be reserved by secure firmware, and thus may
81 * not be usable by the kernel. Please keep the above limited
82 * to at most 8 entries.
83 */
84 MAX_IPI
85 };
86
87 static int ipi_irq_base __read_mostly;
88 static int nr_ipi __read_mostly = NR_IPI;
89 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
90
91 static void ipi_setup(int cpu);
92
93 static DECLARE_COMPLETION(cpu_running);
94
95 static struct smp_operations smp_ops __ro_after_init;
96
smp_set_ops(const struct smp_operations * ops)97 void __init smp_set_ops(const struct smp_operations *ops)
98 {
99 if (ops)
100 smp_ops = *ops;
101 };
102
get_arch_pgd(pgd_t * pgd)103 static unsigned long get_arch_pgd(pgd_t *pgd)
104 {
105 #ifdef CONFIG_ARM_LPAE
106 return __phys_to_pfn(virt_to_phys(pgd));
107 #else
108 return virt_to_phys(pgd);
109 #endif
110 }
111
112 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)113 static int secondary_biglittle_prepare(unsigned int cpu)
114 {
115 if (!cpu_vtable[cpu])
116 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
117
118 return cpu_vtable[cpu] ? 0 : -ENOMEM;
119 }
120
secondary_biglittle_init(void)121 static void secondary_biglittle_init(void)
122 {
123 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
124 }
125 #else
secondary_biglittle_prepare(unsigned int cpu)126 static int secondary_biglittle_prepare(unsigned int cpu)
127 {
128 return 0;
129 }
130
secondary_biglittle_init(void)131 static void secondary_biglittle_init(void)
132 {
133 }
134 #endif
135
__cpu_up(unsigned int cpu,struct task_struct * idle)136 int __cpu_up(unsigned int cpu, struct task_struct *idle)
137 {
138 int ret;
139
140 if (!smp_ops.smp_boot_secondary)
141 return -ENOSYS;
142
143 ret = secondary_biglittle_prepare(cpu);
144 if (ret)
145 return ret;
146
147 /*
148 * We need to tell the secondary core where to find
149 * its stack and the page tables.
150 */
151 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
152 #ifdef CONFIG_ARM_MPU
153 secondary_data.mpu_rgn_info = &mpu_rgn_info;
154 #endif
155
156 #ifdef CONFIG_MMU
157 secondary_data.pgdir = virt_to_phys(idmap_pgd);
158 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
159 #endif
160 sync_cache_w(&secondary_data);
161
162 /*
163 * Now bring the CPU into our world.
164 */
165 ret = smp_ops.smp_boot_secondary(cpu, idle);
166 if (ret == 0) {
167 /*
168 * CPU was successfully started, wait for it
169 * to come online or time out.
170 */
171 wait_for_completion_timeout(&cpu_running,
172 msecs_to_jiffies(1000));
173
174 if (!cpu_online(cpu)) {
175 pr_crit("CPU%u: failed to come online\n", cpu);
176 ret = -EIO;
177 }
178 } else {
179 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
180 }
181
182
183 memset(&secondary_data, 0, sizeof(secondary_data));
184 return ret;
185 }
186
187 /* platform specific SMP operations */
smp_init_cpus(void)188 void __init smp_init_cpus(void)
189 {
190 if (smp_ops.smp_init_cpus)
191 smp_ops.smp_init_cpus();
192 }
193
platform_can_secondary_boot(void)194 int platform_can_secondary_boot(void)
195 {
196 return !!smp_ops.smp_boot_secondary;
197 }
198
platform_can_cpu_hotplug(void)199 int platform_can_cpu_hotplug(void)
200 {
201 #ifdef CONFIG_HOTPLUG_CPU
202 if (smp_ops.cpu_kill)
203 return 1;
204 #endif
205
206 return 0;
207 }
208
209 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)210 static int platform_cpu_kill(unsigned int cpu)
211 {
212 if (smp_ops.cpu_kill)
213 return smp_ops.cpu_kill(cpu);
214 return 1;
215 }
216
platform_cpu_disable(unsigned int cpu)217 static int platform_cpu_disable(unsigned int cpu)
218 {
219 if (smp_ops.cpu_disable)
220 return smp_ops.cpu_disable(cpu);
221
222 return 0;
223 }
224
platform_can_hotplug_cpu(unsigned int cpu)225 int platform_can_hotplug_cpu(unsigned int cpu)
226 {
227 /* cpu_die must be specified to support hotplug */
228 if (!smp_ops.cpu_die)
229 return 0;
230
231 if (smp_ops.cpu_can_disable)
232 return smp_ops.cpu_can_disable(cpu);
233
234 /*
235 * By default, allow disabling all CPUs except the first one,
236 * since this is special on a lot of platforms, e.g. because
237 * of clock tick interrupts.
238 */
239 return cpu != 0;
240 }
241
ipi_teardown(int cpu)242 static void ipi_teardown(int cpu)
243 {
244 int i;
245
246 if (WARN_ON_ONCE(!ipi_irq_base))
247 return;
248
249 for (i = 0; i < nr_ipi; i++)
250 disable_percpu_irq(ipi_irq_base + i);
251 }
252
253 /*
254 * __cpu_disable runs on the processor to be shutdown.
255 */
__cpu_disable(void)256 int __cpu_disable(void)
257 {
258 unsigned int cpu = smp_processor_id();
259 int ret;
260
261 ret = platform_cpu_disable(cpu);
262 if (ret)
263 return ret;
264
265 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
266 remove_cpu_topology(cpu);
267 #endif
268
269 /*
270 * Take this CPU offline. Once we clear this, we can't return,
271 * and we must not schedule until we're ready to give up the cpu.
272 */
273 set_cpu_online(cpu, false);
274 ipi_teardown(cpu);
275
276 /*
277 * OK - migrate IRQs away from this CPU
278 */
279 irq_migrate_all_off_this_cpu();
280
281 /*
282 * Flush user cache and TLB mappings, and then remove this CPU
283 * from the vm mask set of all processes.
284 *
285 * Caches are flushed to the Level of Unification Inner Shareable
286 * to write-back dirty lines to unified caches shared by all CPUs.
287 */
288 flush_cache_louis();
289 local_flush_tlb_all();
290
291 return 0;
292 }
293
294 /*
295 * called on the thread which is asking for a CPU to be shutdown -
296 * waits until shutdown has completed, or it is timed out.
297 */
__cpu_die(unsigned int cpu)298 void __cpu_die(unsigned int cpu)
299 {
300 if (!cpu_wait_death(cpu, 5)) {
301 pr_err("CPU%u: cpu didn't die\n", cpu);
302 return;
303 }
304 pr_debug("CPU%u: shutdown\n", cpu);
305
306 clear_tasks_mm_cpumask(cpu);
307 /*
308 * platform_cpu_kill() is generally expected to do the powering off
309 * and/or cutting of clocks to the dying CPU. Optionally, this may
310 * be done by the CPU which is dying in preference to supporting
311 * this call, but that means there is _no_ synchronisation between
312 * the requesting CPU and the dying CPU actually losing power.
313 */
314 if (!platform_cpu_kill(cpu))
315 pr_err("CPU%u: unable to kill\n", cpu);
316 }
317
318 /*
319 * Called from the idle thread for the CPU which has been shutdown.
320 *
321 * Note that we disable IRQs here, but do not re-enable them
322 * before returning to the caller. This is also the behaviour
323 * of the other hotplug-cpu capable cores, so presumably coming
324 * out of idle fixes this.
325 */
arch_cpu_idle_dead(void)326 void arch_cpu_idle_dead(void)
327 {
328 unsigned int cpu = smp_processor_id();
329
330 idle_task_exit();
331
332 local_irq_disable();
333
334 /*
335 * Flush the data out of the L1 cache for this CPU. This must be
336 * before the completion to ensure that data is safely written out
337 * before platform_cpu_kill() gets called - which may disable
338 * *this* CPU and power down its cache.
339 */
340 flush_cache_louis();
341
342 /*
343 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
344 * this returns, power and/or clocks can be removed at any point
345 * from this CPU and its cache by platform_cpu_kill().
346 */
347 (void)cpu_report_death();
348
349 /*
350 * Ensure that the cache lines associated with that completion are
351 * written out. This covers the case where _this_ CPU is doing the
352 * powering down, to ensure that the completion is visible to the
353 * CPU waiting for this one.
354 */
355 flush_cache_louis();
356
357 /*
358 * The actual CPU shutdown procedure is at least platform (if not
359 * CPU) specific. This may remove power, or it may simply spin.
360 *
361 * Platforms are generally expected *NOT* to return from this call,
362 * although there are some which do because they have no way to
363 * power down the CPU. These platforms are the _only_ reason we
364 * have a return path which uses the fragment of assembly below.
365 *
366 * The return path should not be used for platforms which can
367 * power off the CPU.
368 */
369 if (smp_ops.cpu_die)
370 smp_ops.cpu_die(cpu);
371
372 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
373 cpu);
374
375 /*
376 * Do not return to the idle loop - jump back to the secondary
377 * cpu initialisation. There's some initialisation which needs
378 * to be repeated to undo the effects of taking the CPU offline.
379 */
380 __asm__("mov sp, %0\n"
381 " mov fp, #0\n"
382 " b secondary_start_kernel"
383 :
384 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
385 }
386 #endif /* CONFIG_HOTPLUG_CPU */
387
388 /*
389 * Called by both boot and secondaries to move global data into
390 * per-processor storage.
391 */
smp_store_cpu_info(unsigned int cpuid)392 static void smp_store_cpu_info(unsigned int cpuid)
393 {
394 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395
396 cpu_info->loops_per_jiffy = loops_per_jiffy;
397 cpu_info->cpuid = read_cpuid_id();
398
399 store_cpu_topology(cpuid);
400 check_cpu_icache_size(cpuid);
401 }
402
403 /*
404 * This is the secondary CPU boot entry. We're using this CPUs
405 * idle thread stack, but a set of temporary page tables.
406 */
secondary_start_kernel(void)407 asmlinkage void secondary_start_kernel(void)
408 {
409 struct mm_struct *mm = &init_mm;
410 unsigned int cpu;
411
412 secondary_biglittle_init();
413
414 /*
415 * The identity mapping is uncached (strongly ordered), so
416 * switch away from it before attempting any exclusive accesses.
417 */
418 cpu_switch_mm(mm->pgd, mm);
419 local_flush_bp_all();
420 enter_lazy_tlb(mm, current);
421 local_flush_tlb_all();
422
423 /*
424 * All kernel threads share the same mm context; grab a
425 * reference and switch to it.
426 */
427 cpu = smp_processor_id();
428 mmgrab(mm);
429 current->active_mm = mm;
430 cpumask_set_cpu(cpu, mm_cpumask(mm));
431
432 cpu_init();
433
434 #ifndef CONFIG_MMU
435 setup_vectors_base();
436 #endif
437 pr_debug("CPU%u: Booted secondary processor\n", cpu);
438
439 trace_hardirqs_off();
440
441 /*
442 * Give the platform a chance to do its own initialisation.
443 */
444 if (smp_ops.smp_secondary_init)
445 smp_ops.smp_secondary_init(cpu);
446
447 notify_cpu_starting(cpu);
448
449 ipi_setup(cpu);
450
451 calibrate_delay();
452
453 smp_store_cpu_info(cpu);
454
455 /*
456 * OK, now it's safe to let the boot CPU continue. Wait for
457 * the CPU migration code to notice that the CPU is online
458 * before we continue - which happens after __cpu_up returns.
459 */
460 set_cpu_online(cpu, true);
461
462 check_other_bugs();
463
464 complete(&cpu_running);
465
466 local_irq_enable();
467 local_fiq_enable();
468 local_abt_enable();
469
470 /*
471 * OK, it's off to the idle thread for us
472 */
473 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
474 }
475
smp_cpus_done(unsigned int max_cpus)476 void __init smp_cpus_done(unsigned int max_cpus)
477 {
478 int cpu;
479 unsigned long bogosum = 0;
480
481 for_each_online_cpu(cpu)
482 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
483
484 printk(KERN_INFO "SMP: Total of %d processors activated "
485 "(%lu.%02lu BogoMIPS).\n",
486 num_online_cpus(),
487 bogosum / (500000/HZ),
488 (bogosum / (5000/HZ)) % 100);
489
490 hyp_mode_check();
491 }
492
smp_prepare_boot_cpu(void)493 void __init smp_prepare_boot_cpu(void)
494 {
495 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
496 }
497
smp_prepare_cpus(unsigned int max_cpus)498 void __init smp_prepare_cpus(unsigned int max_cpus)
499 {
500 unsigned int ncores = num_possible_cpus();
501
502 init_cpu_topology();
503
504 smp_store_cpu_info(smp_processor_id());
505
506 /*
507 * are we trying to boot more cores than exist?
508 */
509 if (max_cpus > ncores)
510 max_cpus = ncores;
511 if (ncores > 1 && max_cpus) {
512 /*
513 * Initialise the present map, which describes the set of CPUs
514 * actually populated at the present time. A platform should
515 * re-initialize the map in the platforms smp_prepare_cpus()
516 * if present != possible (e.g. physical hotplug).
517 */
518 init_cpu_present(cpu_possible_mask);
519
520 /*
521 * Initialise the SCU if there are more than one CPU
522 * and let them know where to start.
523 */
524 if (smp_ops.smp_prepare_cpus)
525 smp_ops.smp_prepare_cpus(max_cpus);
526 }
527 }
528
529 static const char *ipi_types[NR_IPI] __tracepoint_string = {
530 #define S(x,s) [x] = s
531 S(IPI_WAKEUP, "CPU wakeup interrupts"),
532 S(IPI_TIMER, "Timer broadcast interrupts"),
533 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
534 S(IPI_CALL_FUNC, "Function call interrupts"),
535 S(IPI_CPU_STOP, "CPU stop interrupts"),
536 S(IPI_IRQ_WORK, "IRQ work interrupts"),
537 S(IPI_COMPLETION, "completion interrupts"),
538 };
539
540 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
541
show_ipi_list(struct seq_file * p,int prec)542 void show_ipi_list(struct seq_file *p, int prec)
543 {
544 unsigned int cpu, i;
545
546 for (i = 0; i < NR_IPI; i++) {
547 unsigned int irq;
548
549 if (!ipi_desc[i])
550 continue;
551
552 irq = irq_desc_get_irq(ipi_desc[i]);
553 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
554
555 for_each_online_cpu(cpu)
556 seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
557
558 seq_printf(p, " %s\n", ipi_types[i]);
559 }
560 }
561
arch_send_call_function_ipi_mask(const struct cpumask * mask)562 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
563 {
564 smp_cross_call(mask, IPI_CALL_FUNC);
565 }
566
arch_send_wakeup_ipi_mask(const struct cpumask * mask)567 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
568 {
569 smp_cross_call(mask, IPI_WAKEUP);
570 }
571
arch_send_call_function_single_ipi(int cpu)572 void arch_send_call_function_single_ipi(int cpu)
573 {
574 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
575 }
576
577 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)578 void arch_irq_work_raise(void)
579 {
580 if (arch_irq_work_has_interrupt())
581 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
582 }
583 #endif
584
585 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)586 void tick_broadcast(const struct cpumask *mask)
587 {
588 smp_cross_call(mask, IPI_TIMER);
589 }
590 #endif
591
592 static DEFINE_RAW_SPINLOCK(stop_lock);
593
594 /*
595 * ipi_cpu_stop - handle IPI from smp_send_stop()
596 */
ipi_cpu_stop(unsigned int cpu)597 static void ipi_cpu_stop(unsigned int cpu)
598 {
599 if (system_state <= SYSTEM_RUNNING) {
600 raw_spin_lock(&stop_lock);
601 pr_crit("CPU%u: stopping\n", cpu);
602 dump_stack();
603 raw_spin_unlock(&stop_lock);
604 }
605
606 set_cpu_online(cpu, false);
607
608 local_fiq_disable();
609 local_irq_disable();
610
611 while (1) {
612 cpu_relax();
613 wfe();
614 }
615 }
616
617 static DEFINE_PER_CPU(struct completion *, cpu_completion);
618
register_ipi_completion(struct completion * completion,int cpu)619 int register_ipi_completion(struct completion *completion, int cpu)
620 {
621 per_cpu(cpu_completion, cpu) = completion;
622 return IPI_COMPLETION;
623 }
624
ipi_complete(unsigned int cpu)625 static void ipi_complete(unsigned int cpu)
626 {
627 complete(per_cpu(cpu_completion, cpu));
628 }
629
630 /*
631 * Main handler for inter-processor interrupts
632 */
do_IPI(int ipinr,struct pt_regs * regs)633 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
634 {
635 handle_IPI(ipinr, regs);
636 }
637
do_handle_IPI(int ipinr)638 static void do_handle_IPI(int ipinr)
639 {
640 unsigned int cpu = smp_processor_id();
641
642 if ((unsigned)ipinr < NR_IPI)
643 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
644
645 switch (ipinr) {
646 case IPI_WAKEUP:
647 break;
648
649 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
650 case IPI_TIMER:
651 tick_receive_broadcast();
652 break;
653 #endif
654
655 case IPI_RESCHEDULE:
656 scheduler_ipi();
657 break;
658
659 case IPI_CALL_FUNC:
660 generic_smp_call_function_interrupt();
661 break;
662
663 case IPI_CPU_STOP:
664 ipi_cpu_stop(cpu);
665 break;
666
667 #ifdef CONFIG_IRQ_WORK
668 case IPI_IRQ_WORK:
669 irq_work_run();
670 break;
671 #endif
672
673 case IPI_COMPLETION:
674 ipi_complete(cpu);
675 break;
676
677 case IPI_CPU_BACKTRACE:
678 printk_nmi_enter();
679 nmi_cpu_backtrace(get_irq_regs());
680 printk_nmi_exit();
681 break;
682
683 default:
684 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
685 cpu, ipinr);
686 break;
687 }
688
689 if ((unsigned)ipinr < NR_IPI)
690 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
691 }
692
693 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)694 void handle_IPI(int ipinr, struct pt_regs *regs)
695 {
696 struct pt_regs *old_regs = set_irq_regs(regs);
697
698 irq_enter();
699 do_handle_IPI(ipinr);
700 irq_exit();
701
702 set_irq_regs(old_regs);
703 }
704
ipi_handler(int irq,void * data)705 static irqreturn_t ipi_handler(int irq, void *data)
706 {
707 do_handle_IPI(irq - ipi_irq_base);
708 return IRQ_HANDLED;
709 }
710
smp_cross_call(const struct cpumask * target,unsigned int ipinr)711 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
712 {
713 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
714 __ipi_send_mask(ipi_desc[ipinr], target);
715 }
716
ipi_setup(int cpu)717 static void ipi_setup(int cpu)
718 {
719 int i;
720
721 if (WARN_ON_ONCE(!ipi_irq_base))
722 return;
723
724 for (i = 0; i < nr_ipi; i++)
725 enable_percpu_irq(ipi_irq_base + i, 0);
726 }
727
set_smp_ipi_range(int ipi_base,int n)728 void __init set_smp_ipi_range(int ipi_base, int n)
729 {
730 int i;
731
732 WARN_ON(n < MAX_IPI);
733 nr_ipi = min(n, MAX_IPI);
734
735 for (i = 0; i < nr_ipi; i++) {
736 int err;
737
738 err = request_percpu_irq(ipi_base + i, ipi_handler,
739 "IPI", &irq_stat);
740 WARN_ON(err);
741
742 ipi_desc[i] = irq_to_desc(ipi_base + i);
743 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
744
745 /* The recheduling IPI is special... */
746 if (i == IPI_RESCHEDULE)
747 __irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
748 }
749
750 ipi_irq_base = ipi_base;
751
752 /* Setup the boot CPU immediately */
753 ipi_setup(smp_processor_id());
754 }
755
smp_send_reschedule(int cpu)756 void smp_send_reschedule(int cpu)
757 {
758 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
759 }
760
smp_send_stop(void)761 void smp_send_stop(void)
762 {
763 unsigned long timeout;
764 struct cpumask mask;
765
766 cpumask_copy(&mask, cpu_online_mask);
767 cpumask_clear_cpu(smp_processor_id(), &mask);
768 if (!cpumask_empty(&mask))
769 smp_cross_call(&mask, IPI_CPU_STOP);
770
771 /* Wait up to one second for other CPUs to stop */
772 timeout = USEC_PER_SEC;
773 while (num_online_cpus() > 1 && timeout--)
774 udelay(1);
775
776 if (num_online_cpus() > 1)
777 pr_warn("SMP: failed to stop secondary CPUs\n");
778 }
779
780 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
781 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
782 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
783 * kdump fails. So split out the panic_smp_self_stop() and add
784 * set_cpu_online(smp_processor_id(), false).
785 */
panic_smp_self_stop(void)786 void panic_smp_self_stop(void)
787 {
788 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
789 smp_processor_id());
790 set_cpu_online(smp_processor_id(), false);
791 while (1)
792 cpu_relax();
793 }
794
795 /*
796 * not supported here
797 */
setup_profiling_timer(unsigned int multiplier)798 int setup_profiling_timer(unsigned int multiplier)
799 {
800 return -EINVAL;
801 }
802
803 #ifdef CONFIG_CPU_FREQ
804
805 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
806 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
807 static unsigned long global_l_p_j_ref;
808 static unsigned long global_l_p_j_ref_freq;
809
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)810 static int cpufreq_callback(struct notifier_block *nb,
811 unsigned long val, void *data)
812 {
813 struct cpufreq_freqs *freq = data;
814 struct cpumask *cpus = freq->policy->cpus;
815 int cpu, first = cpumask_first(cpus);
816 unsigned int lpj;
817
818 if (freq->flags & CPUFREQ_CONST_LOOPS)
819 return NOTIFY_OK;
820
821 if (!per_cpu(l_p_j_ref, first)) {
822 for_each_cpu(cpu, cpus) {
823 per_cpu(l_p_j_ref, cpu) =
824 per_cpu(cpu_data, cpu).loops_per_jiffy;
825 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
826 }
827
828 if (!global_l_p_j_ref) {
829 global_l_p_j_ref = loops_per_jiffy;
830 global_l_p_j_ref_freq = freq->old;
831 }
832 }
833
834 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
835 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
836 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
837 global_l_p_j_ref_freq,
838 freq->new);
839
840 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
841 per_cpu(l_p_j_ref_freq, first), freq->new);
842 for_each_cpu(cpu, cpus)
843 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
844 }
845 return NOTIFY_OK;
846 }
847
848 static struct notifier_block cpufreq_notifier = {
849 .notifier_call = cpufreq_callback,
850 };
851
register_cpufreq_notifier(void)852 static int __init register_cpufreq_notifier(void)
853 {
854 return cpufreq_register_notifier(&cpufreq_notifier,
855 CPUFREQ_TRANSITION_NOTIFIER);
856 }
857 core_initcall(register_cpufreq_notifier);
858
859 #endif
860
raise_nmi(cpumask_t * mask)861 static void raise_nmi(cpumask_t *mask)
862 {
863 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
864 }
865
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)866 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
867 {
868 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
869 }
870