• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 
65 enum ipi_msg_type {
66 	IPI_WAKEUP,
67 	IPI_TIMER,
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_IRQ_WORK,
72 	IPI_COMPLETION,
73 	NR_IPI,
74 	/*
75 	 * CPU_BACKTRACE is special and not included in NR_IPI
76 	 * or tracable with trace_ipi_*
77 	 */
78 	IPI_CPU_BACKTRACE = NR_IPI,
79 	/*
80 	 * SGI8-15 can be reserved by secure firmware, and thus may
81 	 * not be usable by the kernel. Please keep the above limited
82 	 * to at most 8 entries.
83 	 */
84 	MAX_IPI
85 };
86 
87 static int ipi_irq_base __read_mostly;
88 static int nr_ipi __read_mostly = NR_IPI;
89 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
90 
91 static void ipi_setup(int cpu);
92 
93 static DECLARE_COMPLETION(cpu_running);
94 
95 static struct smp_operations smp_ops __ro_after_init;
96 
smp_set_ops(const struct smp_operations * ops)97 void __init smp_set_ops(const struct smp_operations *ops)
98 {
99 	if (ops)
100 		smp_ops = *ops;
101 };
102 
get_arch_pgd(pgd_t * pgd)103 static unsigned long get_arch_pgd(pgd_t *pgd)
104 {
105 #ifdef CONFIG_ARM_LPAE
106 	return __phys_to_pfn(virt_to_phys(pgd));
107 #else
108 	return virt_to_phys(pgd);
109 #endif
110 }
111 
112 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)113 static int secondary_biglittle_prepare(unsigned int cpu)
114 {
115 	if (!cpu_vtable[cpu])
116 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
117 
118 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
119 }
120 
secondary_biglittle_init(void)121 static void secondary_biglittle_init(void)
122 {
123 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
124 }
125 #else
secondary_biglittle_prepare(unsigned int cpu)126 static int secondary_biglittle_prepare(unsigned int cpu)
127 {
128 	return 0;
129 }
130 
secondary_biglittle_init(void)131 static void secondary_biglittle_init(void)
132 {
133 }
134 #endif
135 
__cpu_up(unsigned int cpu,struct task_struct * idle)136 int __cpu_up(unsigned int cpu, struct task_struct *idle)
137 {
138 	int ret;
139 
140 	if (!smp_ops.smp_boot_secondary)
141 		return -ENOSYS;
142 
143 	ret = secondary_biglittle_prepare(cpu);
144 	if (ret)
145 		return ret;
146 
147 	/*
148 	 * We need to tell the secondary core where to find
149 	 * its stack and the page tables.
150 	 */
151 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
152 #ifdef CONFIG_ARM_MPU
153 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
154 #endif
155 
156 #ifdef CONFIG_MMU
157 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
158 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
159 #endif
160 	sync_cache_w(&secondary_data);
161 
162 	/*
163 	 * Now bring the CPU into our world.
164 	 */
165 	ret = smp_ops.smp_boot_secondary(cpu, idle);
166 	if (ret == 0) {
167 		/*
168 		 * CPU was successfully started, wait for it
169 		 * to come online or time out.
170 		 */
171 		wait_for_completion_timeout(&cpu_running,
172 						 msecs_to_jiffies(1000));
173 
174 		if (!cpu_online(cpu)) {
175 			pr_crit("CPU%u: failed to come online\n", cpu);
176 			ret = -EIO;
177 		}
178 	} else {
179 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
180 	}
181 
182 
183 	memset(&secondary_data, 0, sizeof(secondary_data));
184 	return ret;
185 }
186 
187 /* platform specific SMP operations */
smp_init_cpus(void)188 void __init smp_init_cpus(void)
189 {
190 	if (smp_ops.smp_init_cpus)
191 		smp_ops.smp_init_cpus();
192 }
193 
platform_can_secondary_boot(void)194 int platform_can_secondary_boot(void)
195 {
196 	return !!smp_ops.smp_boot_secondary;
197 }
198 
platform_can_cpu_hotplug(void)199 int platform_can_cpu_hotplug(void)
200 {
201 #ifdef CONFIG_HOTPLUG_CPU
202 	if (smp_ops.cpu_kill)
203 		return 1;
204 #endif
205 
206 	return 0;
207 }
208 
209 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)210 static int platform_cpu_kill(unsigned int cpu)
211 {
212 	if (smp_ops.cpu_kill)
213 		return smp_ops.cpu_kill(cpu);
214 	return 1;
215 }
216 
platform_cpu_disable(unsigned int cpu)217 static int platform_cpu_disable(unsigned int cpu)
218 {
219 	if (smp_ops.cpu_disable)
220 		return smp_ops.cpu_disable(cpu);
221 
222 	return 0;
223 }
224 
platform_can_hotplug_cpu(unsigned int cpu)225 int platform_can_hotplug_cpu(unsigned int cpu)
226 {
227 	/* cpu_die must be specified to support hotplug */
228 	if (!smp_ops.cpu_die)
229 		return 0;
230 
231 	if (smp_ops.cpu_can_disable)
232 		return smp_ops.cpu_can_disable(cpu);
233 
234 	/*
235 	 * By default, allow disabling all CPUs except the first one,
236 	 * since this is special on a lot of platforms, e.g. because
237 	 * of clock tick interrupts.
238 	 */
239 	return cpu != 0;
240 }
241 
ipi_teardown(int cpu)242 static void ipi_teardown(int cpu)
243 {
244 	int i;
245 
246 	if (WARN_ON_ONCE(!ipi_irq_base))
247 		return;
248 
249 	for (i = 0; i < nr_ipi; i++)
250 		disable_percpu_irq(ipi_irq_base + i);
251 }
252 
253 /*
254  * __cpu_disable runs on the processor to be shutdown.
255  */
__cpu_disable(void)256 int __cpu_disable(void)
257 {
258 	unsigned int cpu = smp_processor_id();
259 	int ret;
260 
261 	ret = platform_cpu_disable(cpu);
262 	if (ret)
263 		return ret;
264 
265 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
266 	remove_cpu_topology(cpu);
267 #endif
268 
269 	/*
270 	 * Take this CPU offline.  Once we clear this, we can't return,
271 	 * and we must not schedule until we're ready to give up the cpu.
272 	 */
273 	set_cpu_online(cpu, false);
274 	ipi_teardown(cpu);
275 
276 	/*
277 	 * OK - migrate IRQs away from this CPU
278 	 */
279 	irq_migrate_all_off_this_cpu();
280 
281 	/*
282 	 * Flush user cache and TLB mappings, and then remove this CPU
283 	 * from the vm mask set of all processes.
284 	 *
285 	 * Caches are flushed to the Level of Unification Inner Shareable
286 	 * to write-back dirty lines to unified caches shared by all CPUs.
287 	 */
288 	flush_cache_louis();
289 	local_flush_tlb_all();
290 
291 	return 0;
292 }
293 
294 /*
295  * called on the thread which is asking for a CPU to be shutdown -
296  * waits until shutdown has completed, or it is timed out.
297  */
__cpu_die(unsigned int cpu)298 void __cpu_die(unsigned int cpu)
299 {
300 	if (!cpu_wait_death(cpu, 5)) {
301 		pr_err("CPU%u: cpu didn't die\n", cpu);
302 		return;
303 	}
304 	pr_debug("CPU%u: shutdown\n", cpu);
305 
306 	clear_tasks_mm_cpumask(cpu);
307 	/*
308 	 * platform_cpu_kill() is generally expected to do the powering off
309 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
310 	 * be done by the CPU which is dying in preference to supporting
311 	 * this call, but that means there is _no_ synchronisation between
312 	 * the requesting CPU and the dying CPU actually losing power.
313 	 */
314 	if (!platform_cpu_kill(cpu))
315 		pr_err("CPU%u: unable to kill\n", cpu);
316 }
317 
318 /*
319  * Called from the idle thread for the CPU which has been shutdown.
320  *
321  * Note that we disable IRQs here, but do not re-enable them
322  * before returning to the caller. This is also the behaviour
323  * of the other hotplug-cpu capable cores, so presumably coming
324  * out of idle fixes this.
325  */
arch_cpu_idle_dead(void)326 void arch_cpu_idle_dead(void)
327 {
328 	unsigned int cpu = smp_processor_id();
329 
330 	idle_task_exit();
331 
332 	local_irq_disable();
333 
334 	/*
335 	 * Flush the data out of the L1 cache for this CPU.  This must be
336 	 * before the completion to ensure that data is safely written out
337 	 * before platform_cpu_kill() gets called - which may disable
338 	 * *this* CPU and power down its cache.
339 	 */
340 	flush_cache_louis();
341 
342 	/*
343 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
344 	 * this returns, power and/or clocks can be removed at any point
345 	 * from this CPU and its cache by platform_cpu_kill().
346 	 */
347 	(void)cpu_report_death();
348 
349 	/*
350 	 * Ensure that the cache lines associated with that completion are
351 	 * written out.  This covers the case where _this_ CPU is doing the
352 	 * powering down, to ensure that the completion is visible to the
353 	 * CPU waiting for this one.
354 	 */
355 	flush_cache_louis();
356 
357 	/*
358 	 * The actual CPU shutdown procedure is at least platform (if not
359 	 * CPU) specific.  This may remove power, or it may simply spin.
360 	 *
361 	 * Platforms are generally expected *NOT* to return from this call,
362 	 * although there are some which do because they have no way to
363 	 * power down the CPU.  These platforms are the _only_ reason we
364 	 * have a return path which uses the fragment of assembly below.
365 	 *
366 	 * The return path should not be used for platforms which can
367 	 * power off the CPU.
368 	 */
369 	if (smp_ops.cpu_die)
370 		smp_ops.cpu_die(cpu);
371 
372 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
373 		cpu);
374 
375 	/*
376 	 * Do not return to the idle loop - jump back to the secondary
377 	 * cpu initialisation.  There's some initialisation which needs
378 	 * to be repeated to undo the effects of taking the CPU offline.
379 	 */
380 	__asm__("mov	sp, %0\n"
381 	"	mov	fp, #0\n"
382 	"	b	secondary_start_kernel"
383 		:
384 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
385 }
386 #endif /* CONFIG_HOTPLUG_CPU */
387 
388 /*
389  * Called by both boot and secondaries to move global data into
390  * per-processor storage.
391  */
smp_store_cpu_info(unsigned int cpuid)392 static void smp_store_cpu_info(unsigned int cpuid)
393 {
394 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395 
396 	cpu_info->loops_per_jiffy = loops_per_jiffy;
397 	cpu_info->cpuid = read_cpuid_id();
398 
399 	store_cpu_topology(cpuid);
400 	check_cpu_icache_size(cpuid);
401 }
402 
403 /*
404  * This is the secondary CPU boot entry.  We're using this CPUs
405  * idle thread stack, but a set of temporary page tables.
406  */
secondary_start_kernel(void)407 asmlinkage void secondary_start_kernel(void)
408 {
409 	struct mm_struct *mm = &init_mm;
410 	unsigned int cpu;
411 
412 	secondary_biglittle_init();
413 
414 	/*
415 	 * The identity mapping is uncached (strongly ordered), so
416 	 * switch away from it before attempting any exclusive accesses.
417 	 */
418 	cpu_switch_mm(mm->pgd, mm);
419 	local_flush_bp_all();
420 	enter_lazy_tlb(mm, current);
421 	local_flush_tlb_all();
422 
423 	/*
424 	 * All kernel threads share the same mm context; grab a
425 	 * reference and switch to it.
426 	 */
427 	cpu = smp_processor_id();
428 	mmgrab(mm);
429 	current->active_mm = mm;
430 	cpumask_set_cpu(cpu, mm_cpumask(mm));
431 
432 	cpu_init();
433 
434 #ifndef CONFIG_MMU
435 	setup_vectors_base();
436 #endif
437 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
438 
439 	trace_hardirqs_off();
440 
441 	/*
442 	 * Give the platform a chance to do its own initialisation.
443 	 */
444 	if (smp_ops.smp_secondary_init)
445 		smp_ops.smp_secondary_init(cpu);
446 
447 	notify_cpu_starting(cpu);
448 
449 	ipi_setup(cpu);
450 
451 	calibrate_delay();
452 
453 	smp_store_cpu_info(cpu);
454 
455 	/*
456 	 * OK, now it's safe to let the boot CPU continue.  Wait for
457 	 * the CPU migration code to notice that the CPU is online
458 	 * before we continue - which happens after __cpu_up returns.
459 	 */
460 	set_cpu_online(cpu, true);
461 
462 	check_other_bugs();
463 
464 	complete(&cpu_running);
465 
466 	local_irq_enable();
467 	local_fiq_enable();
468 	local_abt_enable();
469 
470 	/*
471 	 * OK, it's off to the idle thread for us
472 	 */
473 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
474 }
475 
smp_cpus_done(unsigned int max_cpus)476 void __init smp_cpus_done(unsigned int max_cpus)
477 {
478 	int cpu;
479 	unsigned long bogosum = 0;
480 
481 	for_each_online_cpu(cpu)
482 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
483 
484 	printk(KERN_INFO "SMP: Total of %d processors activated "
485 	       "(%lu.%02lu BogoMIPS).\n",
486 	       num_online_cpus(),
487 	       bogosum / (500000/HZ),
488 	       (bogosum / (5000/HZ)) % 100);
489 
490 	hyp_mode_check();
491 }
492 
smp_prepare_boot_cpu(void)493 void __init smp_prepare_boot_cpu(void)
494 {
495 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
496 }
497 
smp_prepare_cpus(unsigned int max_cpus)498 void __init smp_prepare_cpus(unsigned int max_cpus)
499 {
500 	unsigned int ncores = num_possible_cpus();
501 
502 	init_cpu_topology();
503 
504 	smp_store_cpu_info(smp_processor_id());
505 
506 	/*
507 	 * are we trying to boot more cores than exist?
508 	 */
509 	if (max_cpus > ncores)
510 		max_cpus = ncores;
511 	if (ncores > 1 && max_cpus) {
512 		/*
513 		 * Initialise the present map, which describes the set of CPUs
514 		 * actually populated at the present time. A platform should
515 		 * re-initialize the map in the platforms smp_prepare_cpus()
516 		 * if present != possible (e.g. physical hotplug).
517 		 */
518 		init_cpu_present(cpu_possible_mask);
519 
520 		/*
521 		 * Initialise the SCU if there are more than one CPU
522 		 * and let them know where to start.
523 		 */
524 		if (smp_ops.smp_prepare_cpus)
525 			smp_ops.smp_prepare_cpus(max_cpus);
526 	}
527 }
528 
529 static const char *ipi_types[NR_IPI] __tracepoint_string = {
530 #define S(x,s)	[x] = s
531 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
532 	S(IPI_TIMER, "Timer broadcast interrupts"),
533 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
534 	S(IPI_CALL_FUNC, "Function call interrupts"),
535 	S(IPI_CPU_STOP, "CPU stop interrupts"),
536 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
537 	S(IPI_COMPLETION, "completion interrupts"),
538 };
539 
540 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
541 
show_ipi_list(struct seq_file * p,int prec)542 void show_ipi_list(struct seq_file *p, int prec)
543 {
544 	unsigned int cpu, i;
545 
546 	for (i = 0; i < NR_IPI; i++) {
547 		unsigned int irq;
548 
549 		if (!ipi_desc[i])
550 			continue;
551 
552 		irq = irq_desc_get_irq(ipi_desc[i]);
553 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
554 
555 		for_each_online_cpu(cpu)
556 			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
557 
558 		seq_printf(p, " %s\n", ipi_types[i]);
559 	}
560 }
561 
arch_send_call_function_ipi_mask(const struct cpumask * mask)562 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
563 {
564 	smp_cross_call(mask, IPI_CALL_FUNC);
565 }
566 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)567 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
568 {
569 	smp_cross_call(mask, IPI_WAKEUP);
570 }
571 
arch_send_call_function_single_ipi(int cpu)572 void arch_send_call_function_single_ipi(int cpu)
573 {
574 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
575 }
576 
577 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)578 void arch_irq_work_raise(void)
579 {
580 	if (arch_irq_work_has_interrupt())
581 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
582 }
583 #endif
584 
585 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)586 void tick_broadcast(const struct cpumask *mask)
587 {
588 	smp_cross_call(mask, IPI_TIMER);
589 }
590 #endif
591 
592 static DEFINE_RAW_SPINLOCK(stop_lock);
593 
594 /*
595  * ipi_cpu_stop - handle IPI from smp_send_stop()
596  */
ipi_cpu_stop(unsigned int cpu)597 static void ipi_cpu_stop(unsigned int cpu)
598 {
599 	if (system_state <= SYSTEM_RUNNING) {
600 		raw_spin_lock(&stop_lock);
601 		pr_crit("CPU%u: stopping\n", cpu);
602 		dump_stack();
603 		raw_spin_unlock(&stop_lock);
604 	}
605 
606 	set_cpu_online(cpu, false);
607 
608 	local_fiq_disable();
609 	local_irq_disable();
610 
611 	while (1) {
612 		cpu_relax();
613 		wfe();
614 	}
615 }
616 
617 static DEFINE_PER_CPU(struct completion *, cpu_completion);
618 
register_ipi_completion(struct completion * completion,int cpu)619 int register_ipi_completion(struct completion *completion, int cpu)
620 {
621 	per_cpu(cpu_completion, cpu) = completion;
622 	return IPI_COMPLETION;
623 }
624 
ipi_complete(unsigned int cpu)625 static void ipi_complete(unsigned int cpu)
626 {
627 	complete(per_cpu(cpu_completion, cpu));
628 }
629 
630 /*
631  * Main handler for inter-processor interrupts
632  */
do_IPI(int ipinr,struct pt_regs * regs)633 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
634 {
635 	handle_IPI(ipinr, regs);
636 }
637 
do_handle_IPI(int ipinr)638 static void do_handle_IPI(int ipinr)
639 {
640 	unsigned int cpu = smp_processor_id();
641 
642 	if ((unsigned)ipinr < NR_IPI)
643 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
644 
645 	switch (ipinr) {
646 	case IPI_WAKEUP:
647 		break;
648 
649 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
650 	case IPI_TIMER:
651 		tick_receive_broadcast();
652 		break;
653 #endif
654 
655 	case IPI_RESCHEDULE:
656 		scheduler_ipi();
657 		break;
658 
659 	case IPI_CALL_FUNC:
660 		generic_smp_call_function_interrupt();
661 		break;
662 
663 	case IPI_CPU_STOP:
664 		ipi_cpu_stop(cpu);
665 		break;
666 
667 #ifdef CONFIG_IRQ_WORK
668 	case IPI_IRQ_WORK:
669 		irq_work_run();
670 		break;
671 #endif
672 
673 	case IPI_COMPLETION:
674 		ipi_complete(cpu);
675 		break;
676 
677 	case IPI_CPU_BACKTRACE:
678 		printk_nmi_enter();
679 		nmi_cpu_backtrace(get_irq_regs());
680 		printk_nmi_exit();
681 		break;
682 
683 	default:
684 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
685 		        cpu, ipinr);
686 		break;
687 	}
688 
689 	if ((unsigned)ipinr < NR_IPI)
690 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
691 }
692 
693 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)694 void handle_IPI(int ipinr, struct pt_regs *regs)
695 {
696 	struct pt_regs *old_regs = set_irq_regs(regs);
697 
698 	irq_enter();
699 	do_handle_IPI(ipinr);
700 	irq_exit();
701 
702 	set_irq_regs(old_regs);
703 }
704 
ipi_handler(int irq,void * data)705 static irqreturn_t ipi_handler(int irq, void *data)
706 {
707 	do_handle_IPI(irq - ipi_irq_base);
708 	return IRQ_HANDLED;
709 }
710 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)711 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
712 {
713 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
714 	__ipi_send_mask(ipi_desc[ipinr], target);
715 }
716 
ipi_setup(int cpu)717 static void ipi_setup(int cpu)
718 {
719 	int i;
720 
721 	if (WARN_ON_ONCE(!ipi_irq_base))
722 		return;
723 
724 	for (i = 0; i < nr_ipi; i++)
725 		enable_percpu_irq(ipi_irq_base + i, 0);
726 }
727 
set_smp_ipi_range(int ipi_base,int n)728 void __init set_smp_ipi_range(int ipi_base, int n)
729 {
730 	int i;
731 
732 	WARN_ON(n < MAX_IPI);
733 	nr_ipi = min(n, MAX_IPI);
734 
735 	for (i = 0; i < nr_ipi; i++) {
736 		int err;
737 
738 		err = request_percpu_irq(ipi_base + i, ipi_handler,
739 					 "IPI", &irq_stat);
740 		WARN_ON(err);
741 
742 		ipi_desc[i] = irq_to_desc(ipi_base + i);
743 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
744 
745 		/* The recheduling IPI is special... */
746 		if (i == IPI_RESCHEDULE)
747 			__irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
748 	}
749 
750 	ipi_irq_base = ipi_base;
751 
752 	/* Setup the boot CPU immediately */
753 	ipi_setup(smp_processor_id());
754 }
755 
smp_send_reschedule(int cpu)756 void smp_send_reschedule(int cpu)
757 {
758 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
759 }
760 
smp_send_stop(void)761 void smp_send_stop(void)
762 {
763 	unsigned long timeout;
764 	struct cpumask mask;
765 
766 	cpumask_copy(&mask, cpu_online_mask);
767 	cpumask_clear_cpu(smp_processor_id(), &mask);
768 	if (!cpumask_empty(&mask))
769 		smp_cross_call(&mask, IPI_CPU_STOP);
770 
771 	/* Wait up to one second for other CPUs to stop */
772 	timeout = USEC_PER_SEC;
773 	while (num_online_cpus() > 1 && timeout--)
774 		udelay(1);
775 
776 	if (num_online_cpus() > 1)
777 		pr_warn("SMP: failed to stop secondary CPUs\n");
778 }
779 
780 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
781  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
782  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
783  * kdump fails. So split out the panic_smp_self_stop() and add
784  * set_cpu_online(smp_processor_id(), false).
785  */
panic_smp_self_stop(void)786 void panic_smp_self_stop(void)
787 {
788 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
789 	         smp_processor_id());
790 	set_cpu_online(smp_processor_id(), false);
791 	while (1)
792 		cpu_relax();
793 }
794 
795 /*
796  * not supported here
797  */
setup_profiling_timer(unsigned int multiplier)798 int setup_profiling_timer(unsigned int multiplier)
799 {
800 	return -EINVAL;
801 }
802 
803 #ifdef CONFIG_CPU_FREQ
804 
805 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
806 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
807 static unsigned long global_l_p_j_ref;
808 static unsigned long global_l_p_j_ref_freq;
809 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)810 static int cpufreq_callback(struct notifier_block *nb,
811 					unsigned long val, void *data)
812 {
813 	struct cpufreq_freqs *freq = data;
814 	struct cpumask *cpus = freq->policy->cpus;
815 	int cpu, first = cpumask_first(cpus);
816 	unsigned int lpj;
817 
818 	if (freq->flags & CPUFREQ_CONST_LOOPS)
819 		return NOTIFY_OK;
820 
821 	if (!per_cpu(l_p_j_ref, first)) {
822 		for_each_cpu(cpu, cpus) {
823 			per_cpu(l_p_j_ref, cpu) =
824 				per_cpu(cpu_data, cpu).loops_per_jiffy;
825 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
826 		}
827 
828 		if (!global_l_p_j_ref) {
829 			global_l_p_j_ref = loops_per_jiffy;
830 			global_l_p_j_ref_freq = freq->old;
831 		}
832 	}
833 
834 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
835 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
836 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
837 						global_l_p_j_ref_freq,
838 						freq->new);
839 
840 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
841 				    per_cpu(l_p_j_ref_freq, first), freq->new);
842 		for_each_cpu(cpu, cpus)
843 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
844 	}
845 	return NOTIFY_OK;
846 }
847 
848 static struct notifier_block cpufreq_notifier = {
849 	.notifier_call  = cpufreq_callback,
850 };
851 
register_cpufreq_notifier(void)852 static int __init register_cpufreq_notifier(void)
853 {
854 	return cpufreq_register_notifier(&cpufreq_notifier,
855 						CPUFREQ_TRANSITION_NOTIFIER);
856 }
857 core_initcall(register_cpufreq_notifier);
858 
859 #endif
860 
raise_nmi(cpumask_t * mask)861 static void raise_nmi(cpumask_t *mask)
862 {
863 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
864 }
865 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)866 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
867 {
868 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
869 }
870