• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 // ff-protocol-latter - a part of driver for RME Fireface series
3 //
4 // Copyright (c) 2019 Takashi Sakamoto
5 //
6 // Licensed under the terms of the GNU General Public License, version 2.
7 
8 #include <linux/delay.h>
9 
10 #include "ff.h"
11 
12 #define LATTER_STF		0xffff00000004ULL
13 #define LATTER_ISOC_CHANNELS	0xffff00000008ULL
14 #define LATTER_ISOC_START	0xffff0000000cULL
15 #define LATTER_FETCH_MODE	0xffff00000010ULL
16 #define LATTER_SYNC_STATUS	0x0000801c0000ULL
17 
18 // The content of sync status register differs between models.
19 //
20 // Fireface UCX:
21 //  0xf0000000: (unidentified)
22 //  0x0f000000: effective rate of sampling clock
23 //  0x00f00000: detected rate of word clock on BNC interface
24 //  0x000f0000: detected rate of ADAT or S/PDIF on optical interface
25 //  0x0000f000: detected rate of S/PDIF on coaxial interface
26 //  0x00000e00: effective source of sampling clock
27 //    0x00000e00: Internal
28 //    0x00000800: (unidentified)
29 //    0x00000600: Word clock on BNC interface
30 //    0x00000400: ADAT on optical interface
31 //    0x00000200: S/PDIF on coaxial or optical interface
32 //  0x00000100: Optical interface is used for ADAT signal
33 //  0x00000080: (unidentified)
34 //  0x00000040: Synchronized to word clock on BNC interface
35 //  0x00000020: Synchronized to ADAT or S/PDIF on optical interface
36 //  0x00000010: Synchronized to S/PDIF on coaxial interface
37 //  0x00000008: (unidentified)
38 //  0x00000004: Lock word clock on BNC interface
39 //  0x00000002: Lock ADAT or S/PDIF on optical interface
40 //  0x00000001: Lock S/PDIF on coaxial interface
41 //
42 // Fireface 802 (and perhaps UFX):
43 //   0xf0000000: effective rate of sampling clock
44 //   0x0f000000: detected rate of ADAT-B on 2nd optical interface
45 //   0x00f00000: detected rate of ADAT-A on 1st optical interface
46 //   0x000f0000: detected rate of AES/EBU on XLR or coaxial interface
47 //   0x0000f000: detected rate of word clock on BNC interface
48 //   0x00000e00: effective source of sampling clock
49 //     0x00000e00: internal
50 //     0x00000800: ADAT-B
51 //     0x00000600: ADAT-A
52 //     0x00000400: AES/EBU
53 //     0x00000200: Word clock
54 //   0x00000080: Synchronized to ADAT-B on 2nd optical interface
55 //   0x00000040: Synchronized to ADAT-A on 1st optical interface
56 //   0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface
57 //   0x00000010: Synchronized to word clock on BNC interface
58 //   0x00000008: Lock ADAT-B on 2nd optical interface
59 //   0x00000004: Lock ADAT-A on 1st optical interface
60 //   0x00000002: Lock AES/EBU on XLR or 2nd optical interface
61 //   0x00000001: Lock word clock on BNC interface
62 //
63 // The pattern for rate bits:
64 //   0x00: 32.0 kHz
65 //   0x01: 44.1 kHz
66 //   0x02: 48.0 kHz
67 //   0x04: 64.0 kHz
68 //   0x05: 88.2 kHz
69 //   0x06: 96.0 kHz
70 //   0x08: 128.0 kHz
71 //   0x09: 176.4 kHz
72 //   0x0a: 192.0 kHz
parse_clock_bits(u32 data,unsigned int * rate,enum snd_ff_clock_src * src,enum snd_ff_unit_version unit_version)73 static int parse_clock_bits(u32 data, unsigned int *rate,
74 			    enum snd_ff_clock_src *src,
75 			    enum snd_ff_unit_version unit_version)
76 {
77 	static const struct {
78 		unsigned int rate;
79 		u32 flag;
80 	} *rate_entry, rate_entries[] = {
81 		{ 32000,	0x00, },
82 		{ 44100,	0x01, },
83 		{ 48000,	0x02, },
84 		{ 64000,	0x04, },
85 		{ 88200,	0x05, },
86 		{ 96000,	0x06, },
87 		{ 128000,	0x08, },
88 		{ 176400,	0x09, },
89 		{ 192000,	0x0a, },
90 	};
91 	static const struct {
92 		enum snd_ff_clock_src src;
93 		u32 flag;
94 	} *clk_entry, *clk_entries, ucx_clk_entries[] = {
95 		{ SND_FF_CLOCK_SRC_SPDIF,	0x00000200, },
96 		{ SND_FF_CLOCK_SRC_ADAT1,	0x00000400, },
97 		{ SND_FF_CLOCK_SRC_WORD,	0x00000600, },
98 		{ SND_FF_CLOCK_SRC_INTERNAL,	0x00000e00, },
99 	}, ufx_ff802_clk_entries[] = {
100 		{ SND_FF_CLOCK_SRC_WORD,	0x00000200, },
101 		{ SND_FF_CLOCK_SRC_SPDIF,	0x00000400, },
102 		{ SND_FF_CLOCK_SRC_ADAT1,	0x00000600, },
103 		{ SND_FF_CLOCK_SRC_ADAT2,	0x00000800, },
104 		{ SND_FF_CLOCK_SRC_INTERNAL,	0x00000e00, },
105 	};
106 	u32 rate_bits;
107 	unsigned int clk_entry_count;
108 	int i;
109 
110 	if (unit_version == SND_FF_UNIT_VERSION_UCX) {
111 		rate_bits = (data & 0x0f000000) >> 24;
112 		clk_entries = ucx_clk_entries;
113 		clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
114 	} else {
115 		rate_bits = (data & 0xf0000000) >> 28;
116 		clk_entries = ufx_ff802_clk_entries;
117 		clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
118 	}
119 
120 	for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
121 		rate_entry = rate_entries + i;
122 		if (rate_bits == rate_entry->flag) {
123 			*rate = rate_entry->rate;
124 			break;
125 		}
126 	}
127 	if (i == ARRAY_SIZE(rate_entries))
128 		return -EIO;
129 
130 	for (i = 0; i < clk_entry_count; ++i) {
131 		clk_entry = clk_entries + i;
132 		if ((data & 0x000e00) == clk_entry->flag) {
133 			*src = clk_entry->src;
134 			break;
135 		}
136 	}
137 	if (i == clk_entry_count)
138 		return -EIO;
139 
140 	return 0;
141 }
142 
latter_get_clock(struct snd_ff * ff,unsigned int * rate,enum snd_ff_clock_src * src)143 static int latter_get_clock(struct snd_ff *ff, unsigned int *rate,
144 			   enum snd_ff_clock_src *src)
145 {
146 	__le32 reg;
147 	u32 data;
148 	int err;
149 
150 	err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
151 				 LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
152 	if (err < 0)
153 		return err;
154 	data = le32_to_cpu(reg);
155 
156 	return parse_clock_bits(data, rate, src, ff->unit_version);
157 }
158 
latter_switch_fetching_mode(struct snd_ff * ff,bool enable)159 static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable)
160 {
161 	u32 data;
162 	__le32 reg;
163 
164 	if (enable)
165 		data = 0x00000000;
166 	else
167 		data = 0xffffffff;
168 	reg = cpu_to_le32(data);
169 
170 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
171 				  LATTER_FETCH_MODE, &reg, sizeof(reg), 0);
172 }
173 
latter_allocate_resources(struct snd_ff * ff,unsigned int rate)174 static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate)
175 {
176 	enum snd_ff_stream_mode mode;
177 	unsigned int code;
178 	__le32 reg;
179 	unsigned int count;
180 	int i;
181 	int err;
182 
183 	// Set the number of data blocks transferred in a second.
184 	if (rate % 48000 == 0)
185 		code = 0x04;
186 	else if (rate % 44100 == 0)
187 		code = 0x02;
188 	else if (rate % 32000 == 0)
189 		code = 0x00;
190 	else
191 		return -EINVAL;
192 
193 	if (rate >= 64000 && rate < 128000)
194 		code |= 0x08;
195 	else if (rate >= 128000)
196 		code |= 0x10;
197 
198 	reg = cpu_to_le32(code);
199 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
200 				 LATTER_STF, &reg, sizeof(reg), 0);
201 	if (err < 0)
202 		return err;
203 
204 	// Confirm to shift transmission clock.
205 	count = 0;
206 	while (count++ < 10) {
207 		unsigned int curr_rate;
208 		enum snd_ff_clock_src src;
209 
210 		err = latter_get_clock(ff, &curr_rate, &src);
211 		if (err < 0)
212 			return err;
213 
214 		if (curr_rate == rate)
215 			break;
216 	}
217 	if (count > 10)
218 		return -ETIMEDOUT;
219 
220 	for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) {
221 		if (rate == amdtp_rate_table[i])
222 			break;
223 	}
224 	if (i == ARRAY_SIZE(amdtp_rate_table))
225 		return -EINVAL;
226 
227 	err = snd_ff_stream_get_multiplier_mode(i, &mode);
228 	if (err < 0)
229 		return err;
230 
231 	// Keep resources for in-stream.
232 	ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
233 	err = fw_iso_resources_allocate(&ff->tx_resources,
234 			amdtp_stream_get_max_payload(&ff->tx_stream),
235 			fw_parent_device(ff->unit)->max_speed);
236 	if (err < 0)
237 		return err;
238 
239 	// Keep resources for out-stream.
240 	ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
241 	err = fw_iso_resources_allocate(&ff->rx_resources,
242 			amdtp_stream_get_max_payload(&ff->rx_stream),
243 			fw_parent_device(ff->unit)->max_speed);
244 	if (err < 0)
245 		fw_iso_resources_free(&ff->tx_resources);
246 
247 	return err;
248 }
249 
latter_begin_session(struct snd_ff * ff,unsigned int rate)250 static int latter_begin_session(struct snd_ff *ff, unsigned int rate)
251 {
252 	unsigned int generation = ff->rx_resources.generation;
253 	unsigned int flag;
254 	u32 data;
255 	__le32 reg;
256 	int err;
257 
258 	if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
259 		// For Fireface UCX. Always use the maximum number of data
260 		// channels in data block of packet.
261 		if (rate >= 32000 && rate <= 48000)
262 			flag = 0x92;
263 		else if (rate >= 64000 && rate <= 96000)
264 			flag = 0x8e;
265 		else if (rate >= 128000 && rate <= 192000)
266 			flag = 0x8c;
267 		else
268 			return -EINVAL;
269 	} else {
270 		// For Fireface UFX and 802. Due to bandwidth limitation on
271 		// IEEE 1394a (400 Mbps), Analog 1-12 and AES are available
272 		// without any ADAT at quadruple speed.
273 		if (rate >= 32000 && rate <= 48000)
274 			flag = 0x9e;
275 		else if (rate >= 64000 && rate <= 96000)
276 			flag = 0x96;
277 		else if (rate >= 128000 && rate <= 192000)
278 			flag = 0x8e;
279 		else
280 			return -EINVAL;
281 	}
282 
283 	if (generation != fw_parent_device(ff->unit)->card->generation) {
284 		err = fw_iso_resources_update(&ff->tx_resources);
285 		if (err < 0)
286 			return err;
287 
288 		err = fw_iso_resources_update(&ff->rx_resources);
289 		if (err < 0)
290 			return err;
291 	}
292 
293 	data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel;
294 	reg = cpu_to_le32(data);
295 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
296 				 LATTER_ISOC_CHANNELS, &reg, sizeof(reg), 0);
297 	if (err < 0)
298 		return err;
299 
300 	reg = cpu_to_le32(flag);
301 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
302 				  LATTER_ISOC_START, &reg, sizeof(reg), 0);
303 }
304 
latter_finish_session(struct snd_ff * ff)305 static void latter_finish_session(struct snd_ff *ff)
306 {
307 	__le32 reg;
308 
309 	reg = cpu_to_le32(0x00000000);
310 	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
311 			   LATTER_ISOC_START, &reg, sizeof(reg), 0);
312 }
313 
latter_dump_status(struct snd_ff * ff,struct snd_info_buffer * buffer)314 static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
315 {
316 	static const struct {
317 		char *const label;
318 		u32 locked_mask;
319 		u32 synced_mask;
320 	} *clk_entry, *clk_entries, ucx_clk_entries[] = {
321 		{ "S/PDIF",	0x00000001, 0x00000010, },
322 		{ "ADAT",	0x00000002, 0x00000020, },
323 		{ "WDClk",	0x00000004, 0x00000040, },
324 	}, ufx_ff802_clk_entries[] = {
325 		{ "WDClk",	0x00000001, 0x00000010, },
326 		{ "AES/EBU",	0x00000002, 0x00000020, },
327 		{ "ADAT-A",	0x00000004, 0x00000040, },
328 		{ "ADAT-B",	0x00000008, 0x00000080, },
329 	};
330 	__le32 reg;
331 	u32 data;
332 	unsigned int rate;
333 	enum snd_ff_clock_src src;
334 	const char *label;
335 	unsigned int clk_entry_count;
336 	int i;
337 	int err;
338 
339 	err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
340 				 LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
341 	if (err < 0)
342 		return;
343 	data = le32_to_cpu(reg);
344 
345 	snd_iprintf(buffer, "External source detection:\n");
346 
347 	if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
348 		clk_entries = ucx_clk_entries;
349 		clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
350 	} else {
351 		clk_entries = ufx_ff802_clk_entries;
352 		clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
353 	}
354 
355 	for (i = 0; i < clk_entry_count; ++i) {
356 		clk_entry = clk_entries + i;
357 		snd_iprintf(buffer, "%s: ", clk_entry->label);
358 		if (data & clk_entry->locked_mask) {
359 			if (data & clk_entry->synced_mask)
360 				snd_iprintf(buffer, "sync\n");
361 			else
362 				snd_iprintf(buffer, "lock\n");
363 		} else {
364 			snd_iprintf(buffer, "none\n");
365 		}
366 	}
367 
368 	err = parse_clock_bits(data, &rate, &src, ff->unit_version);
369 	if (err < 0)
370 		return;
371 	label = snd_ff_proc_get_clk_label(src);
372 	if (!label)
373 		return;
374 
375 	snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate);
376 }
377 
378 // NOTE: transactions are transferred within 0x00-0x7f in allocated range of
379 // address. This seems to be for check of discontinuity in receiver side.
380 //
381 // Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of
382 // destination address by bit flags in quadlet register (little endian) at
383 // 0x'ffff'0000'0014:
384 //
385 // bit flags: offset of destination address
386 // - 0x00002000: 0x'....'....'0000'0000
387 // - 0x00004000: 0x'....'....'0000'0080
388 // - 0x00008000: 0x'....'....'0000'0100
389 // - 0x00010000: 0x'....'....'0000'0180
390 //
391 // Drivers can suppress the device to transfer asynchronous transactions by
392 // clear these bit flags.
393 //
394 // Actually, the register is write-only and includes the other settings such as
395 // input attenuation. This driver allocates for the first option
396 // (0x'....'....'0000'0000) and expects userspace application to configure the
397 // register for it.
latter_handle_midi_msg(struct snd_ff * ff,unsigned int offset,__le32 * buf,size_t length)398 static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset,
399 				   __le32 *buf, size_t length)
400 {
401 	u32 data = le32_to_cpu(*buf);
402 	unsigned int index = (data & 0x000000f0) >> 4;
403 	u8 byte[3];
404 	struct snd_rawmidi_substream *substream;
405 	unsigned int len;
406 
407 	if (index >= ff->spec->midi_in_ports)
408 		return;
409 
410 	switch (data & 0x0000000f) {
411 	case 0x00000008:
412 	case 0x00000009:
413 	case 0x0000000a:
414 	case 0x0000000b:
415 	case 0x0000000e:
416 		len = 3;
417 		break;
418 	case 0x0000000c:
419 	case 0x0000000d:
420 		len = 2;
421 		break;
422 	default:
423 		len = data & 0x00000003;
424 		if (len == 0)
425 			len = 3;
426 		break;
427 	}
428 
429 	byte[0] = (data & 0x0000ff00) >> 8;
430 	byte[1] = (data & 0x00ff0000) >> 16;
431 	byte[2] = (data & 0xff000000) >> 24;
432 
433 	substream = READ_ONCE(ff->tx_midi_substreams[index]);
434 	if (substream)
435 		snd_rawmidi_receive(substream, byte, len);
436 }
437 
438 /*
439  * When return minus value, given argument is not MIDI status.
440  * When return 0, given argument is a beginning of system exclusive.
441  * When return the others, given argument is MIDI data.
442  */
calculate_message_bytes(u8 status)443 static inline int calculate_message_bytes(u8 status)
444 {
445 	switch (status) {
446 	case 0xf6:	/* Tune request. */
447 	case 0xf8:	/* Timing clock. */
448 	case 0xfa:	/* Start. */
449 	case 0xfb:	/* Continue. */
450 	case 0xfc:	/* Stop. */
451 	case 0xfe:	/* Active sensing. */
452 	case 0xff:	/* System reset. */
453 		return 1;
454 	case 0xf1:	/* MIDI time code quarter frame. */
455 	case 0xf3:	/* Song select. */
456 		return 2;
457 	case 0xf2:	/* Song position pointer. */
458 		return 3;
459 	case 0xf0:	/* Exclusive. */
460 		return 0;
461 	case 0xf7:	/* End of exclusive. */
462 		break;
463 	case 0xf4:	/* Undefined. */
464 	case 0xf5:	/* Undefined. */
465 	case 0xf9:	/* Undefined. */
466 	case 0xfd:	/* Undefined. */
467 		break;
468 	default:
469 		switch (status & 0xf0) {
470 		case 0x80:	/* Note on. */
471 		case 0x90:	/* Note off. */
472 		case 0xa0:	/* Polyphonic key pressure. */
473 		case 0xb0:	/* Control change and Mode change. */
474 		case 0xe0:	/* Pitch bend change. */
475 			return 3;
476 		case 0xc0:	/* Program change. */
477 		case 0xd0:	/* Channel pressure. */
478 			return 2;
479 		default:
480 		break;
481 		}
482 	break;
483 	}
484 
485 	return -EINVAL;
486 }
487 
latter_fill_midi_msg(struct snd_ff * ff,struct snd_rawmidi_substream * substream,unsigned int port)488 static int latter_fill_midi_msg(struct snd_ff *ff,
489 				struct snd_rawmidi_substream *substream,
490 				unsigned int port)
491 {
492 	u32 data = {0};
493 	u8 *buf = (u8 *)&data;
494 	int consumed;
495 
496 	buf[0] = port << 4;
497 	consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3);
498 	if (consumed <= 0)
499 		return consumed;
500 
501 	if (!ff->on_sysex[port]) {
502 		if (buf[1] != 0xf0) {
503 			if (consumed < calculate_message_bytes(buf[1]))
504 				return 0;
505 		} else {
506 			// The beginning of exclusives.
507 			ff->on_sysex[port] = true;
508 		}
509 
510 		buf[0] |= consumed;
511 	} else {
512 		if (buf[1] != 0xf7) {
513 			if (buf[2] == 0xf7 || buf[3] == 0xf7) {
514 				// Transfer end code at next time.
515 				consumed -= 1;
516 			}
517 
518 			buf[0] |= consumed;
519 		} else {
520 			// The end of exclusives.
521 			ff->on_sysex[port] = false;
522 			consumed = 1;
523 			buf[0] |= 0x0f;
524 		}
525 	}
526 
527 	ff->msg_buf[port][0] = cpu_to_le32(data);
528 	ff->rx_bytes[port] = consumed;
529 
530 	return 1;
531 }
532 
533 const struct snd_ff_protocol snd_ff_protocol_latter = {
534 	.handle_midi_msg	= latter_handle_midi_msg,
535 	.fill_midi_msg		= latter_fill_midi_msg,
536 	.get_clock		= latter_get_clock,
537 	.switch_fetching_mode	= latter_switch_fetching_mode,
538 	.allocate_resources	= latter_allocate_resources,
539 	.begin_session		= latter_begin_session,
540 	.finish_session		= latter_finish_session,
541 	.dump_status		= latter_dump_status,
542 };
543