• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22 
23 #include "trace.h"
24 
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27 
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31 
32 static unsigned long io_map_base;
33 
34 
35 /*
36  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39  * long will also starve other vCPUs. We have to also make sure that the page
40  * tables are not freed while we released the lock.
41  */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 			      phys_addr_t end,
44 			      int (*fn)(struct kvm_pgtable *, u64, u64),
45 			      bool resched)
46 {
47 	int ret;
48 	u64 next;
49 
50 	do {
51 		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 		if (!pgt)
53 			return -EINVAL;
54 
55 		next = stage2_pgd_addr_end(kvm, addr, end);
56 		ret = fn(pgt, addr, next - addr);
57 		if (ret)
58 			break;
59 
60 		if (resched && next != end)
61 			cond_resched_lock(&kvm->mmu_lock);
62 	} while (addr = next, addr != end);
63 
64 	return ret;
65 }
66 
67 #define stage2_apply_range_resched(kvm, addr, end, fn)			\
68 	stage2_apply_range(kvm, addr, end, fn, true)
69 
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74 
75 /**
76  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77  * @kvm:	pointer to kvm structure.
78  *
79  * Interface to HYP function to flush all VM TLB entries
80  */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 }
85 
kvm_is_device_pfn(unsigned long pfn)86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 	return !pfn_valid(pfn);
89 }
90 
stage2_memcache_zalloc_page(void * arg)91 static void *stage2_memcache_zalloc_page(void *arg)
92 {
93 	struct kvm_mmu_memory_cache *mc = arg;
94 
95 	/* Allocated with __GFP_ZERO, so no need to zero */
96 	return kvm_mmu_memory_cache_alloc(mc);
97 }
98 
kvm_host_zalloc_pages_exact(size_t size)99 static void *kvm_host_zalloc_pages_exact(size_t size)
100 {
101 	return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
102 }
103 
kvm_host_get_page(void * addr)104 static void kvm_host_get_page(void *addr)
105 {
106 	get_page(virt_to_page(addr));
107 }
108 
kvm_host_put_page(void * addr)109 static void kvm_host_put_page(void *addr)
110 {
111 	put_page(virt_to_page(addr));
112 }
113 
kvm_host_page_count(void * addr)114 static int kvm_host_page_count(void *addr)
115 {
116 	return page_count(virt_to_page(addr));
117 }
118 
kvm_host_pa(void * addr)119 static phys_addr_t kvm_host_pa(void *addr)
120 {
121 	return __pa(addr);
122 }
123 
kvm_host_va(phys_addr_t phys)124 static void *kvm_host_va(phys_addr_t phys)
125 {
126 	return __va(phys);
127 }
128 
129 /*
130  * Unmapping vs dcache management:
131  *
132  * If a guest maps certain memory pages as uncached, all writes will
133  * bypass the data cache and go directly to RAM.  However, the CPUs
134  * can still speculate reads (not writes) and fill cache lines with
135  * data.
136  *
137  * Those cache lines will be *clean* cache lines though, so a
138  * clean+invalidate operation is equivalent to an invalidate
139  * operation, because no cache lines are marked dirty.
140  *
141  * Those clean cache lines could be filled prior to an uncached write
142  * by the guest, and the cache coherent IO subsystem would therefore
143  * end up writing old data to disk.
144  *
145  * This is why right after unmapping a page/section and invalidating
146  * the corresponding TLBs, we flush to make sure the IO subsystem will
147  * never hit in the cache.
148  *
149  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
150  * we then fully enforce cacheability of RAM, no matter what the guest
151  * does.
152  */
153 /**
154  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
155  * @mmu:   The KVM stage-2 MMU pointer
156  * @start: The intermediate physical base address of the range to unmap
157  * @size:  The size of the area to unmap
158  * @may_block: Whether or not we are permitted to block
159  *
160  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
161  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
162  * destroying the VM), otherwise another faulting VCPU may come in and mess
163  * with things behind our backs.
164  */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)165 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
166 				 bool may_block)
167 {
168 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
169 	phys_addr_t end = start + size;
170 
171 	assert_spin_locked(&kvm->mmu_lock);
172 	WARN_ON(size & ~PAGE_MASK);
173 	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
174 				   may_block));
175 }
176 
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)177 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
178 {
179 	__unmap_stage2_range(mmu, start, size, true);
180 }
181 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)182 static void stage2_flush_memslot(struct kvm *kvm,
183 				 struct kvm_memory_slot *memslot)
184 {
185 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
186 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
187 
188 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
189 }
190 
191 /**
192  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
193  * @kvm: The struct kvm pointer
194  *
195  * Go through the stage 2 page tables and invalidate any cache lines
196  * backing memory already mapped to the VM.
197  */
stage2_flush_vm(struct kvm * kvm)198 static void stage2_flush_vm(struct kvm *kvm)
199 {
200 	struct kvm_memslots *slots;
201 	struct kvm_memory_slot *memslot;
202 	int idx;
203 
204 	idx = srcu_read_lock(&kvm->srcu);
205 	spin_lock(&kvm->mmu_lock);
206 
207 	slots = kvm_memslots(kvm);
208 	kvm_for_each_memslot(memslot, slots)
209 		stage2_flush_memslot(kvm, memslot);
210 
211 	spin_unlock(&kvm->mmu_lock);
212 	srcu_read_unlock(&kvm->srcu, idx);
213 }
214 
215 /**
216  * free_hyp_pgds - free Hyp-mode page tables
217  */
free_hyp_pgds(void)218 void free_hyp_pgds(void)
219 {
220 	mutex_lock(&kvm_hyp_pgd_mutex);
221 	if (hyp_pgtable) {
222 		kvm_pgtable_hyp_destroy(hyp_pgtable);
223 		kfree(hyp_pgtable);
224 		hyp_pgtable = NULL;
225 	}
226 	mutex_unlock(&kvm_hyp_pgd_mutex);
227 }
228 
kvm_host_owns_hyp_mappings(void)229 static bool kvm_host_owns_hyp_mappings(void)
230 {
231 	if (static_branch_likely(&kvm_protected_mode_initialized))
232 		return false;
233 
234 	/*
235 	 * This can happen at boot time when __create_hyp_mappings() is called
236 	 * after the hyp protection has been enabled, but the static key has
237 	 * not been flipped yet.
238 	 */
239 	if (!hyp_pgtable && is_protected_kvm_enabled())
240 		return false;
241 
242 	WARN_ON(!hyp_pgtable);
243 
244 	return true;
245 }
246 
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)247 static int __create_hyp_mappings(unsigned long start, unsigned long size,
248 				 unsigned long phys, enum kvm_pgtable_prot prot)
249 {
250 	int err;
251 
252 	if (!kvm_host_owns_hyp_mappings()) {
253 		return kvm_call_hyp_nvhe(__pkvm_create_mappings,
254 					 start, size, phys, prot);
255 	}
256 
257 	mutex_lock(&kvm_hyp_pgd_mutex);
258 	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
259 	mutex_unlock(&kvm_hyp_pgd_mutex);
260 
261 	return err;
262 }
263 
kvm_kaddr_to_phys(void * kaddr)264 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
265 {
266 	if (!is_vmalloc_addr(kaddr)) {
267 		BUG_ON(!virt_addr_valid(kaddr));
268 		return __pa(kaddr);
269 	} else {
270 		return page_to_phys(vmalloc_to_page(kaddr)) +
271 		       offset_in_page(kaddr);
272 	}
273 }
274 
275 /**
276  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
277  * @from:	The virtual kernel start address of the range
278  * @to:		The virtual kernel end address of the range (exclusive)
279  * @prot:	The protection to be applied to this range
280  *
281  * The same virtual address as the kernel virtual address is also used
282  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
283  * physical pages.
284  */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)285 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
286 {
287 	phys_addr_t phys_addr;
288 	unsigned long virt_addr;
289 	unsigned long start = kern_hyp_va((unsigned long)from);
290 	unsigned long end = kern_hyp_va((unsigned long)to);
291 
292 	if (is_kernel_in_hyp_mode())
293 		return 0;
294 
295 	start = start & PAGE_MASK;
296 	end = PAGE_ALIGN(end);
297 
298 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
299 		int err;
300 
301 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
302 		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
303 					    prot);
304 		if (err)
305 			return err;
306 	}
307 
308 	return 0;
309 }
310 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)311 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
312 					unsigned long *haddr,
313 					enum kvm_pgtable_prot prot)
314 {
315 	unsigned long base;
316 	int ret = 0;
317 
318 	if (!kvm_host_owns_hyp_mappings()) {
319 		base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
320 					 phys_addr, size, prot);
321 		if (IS_ERR_OR_NULL((void *)base))
322 			return PTR_ERR((void *)base);
323 		*haddr = base;
324 
325 		return 0;
326 	}
327 
328 	mutex_lock(&kvm_hyp_pgd_mutex);
329 
330 	/*
331 	 * This assumes that we have enough space below the idmap
332 	 * page to allocate our VAs. If not, the check below will
333 	 * kick. A potential alternative would be to detect that
334 	 * overflow and switch to an allocation above the idmap.
335 	 *
336 	 * The allocated size is always a multiple of PAGE_SIZE.
337 	 */
338 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
339 	base = io_map_base - size;
340 
341 	/*
342 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
343 	 * allocating the new area, as it would indicate we've
344 	 * overflowed the idmap/IO address range.
345 	 */
346 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
347 		ret = -ENOMEM;
348 	else
349 		io_map_base = base;
350 
351 	mutex_unlock(&kvm_hyp_pgd_mutex);
352 
353 	if (ret)
354 		goto out;
355 
356 	ret = __create_hyp_mappings(base, size, phys_addr, prot);
357 	if (ret)
358 		goto out;
359 
360 	*haddr = base + offset_in_page(phys_addr);
361 out:
362 	return ret;
363 }
364 
365 /**
366  * create_hyp_io_mappings - Map IO into both kernel and HYP
367  * @phys_addr:	The physical start address which gets mapped
368  * @size:	Size of the region being mapped
369  * @kaddr:	Kernel VA for this mapping
370  * @haddr:	HYP VA for this mapping
371  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)372 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
373 			   void __iomem **kaddr,
374 			   void __iomem **haddr)
375 {
376 	unsigned long addr;
377 	int ret;
378 
379 	*kaddr = ioremap(phys_addr, size);
380 	if (!*kaddr)
381 		return -ENOMEM;
382 
383 	if (is_kernel_in_hyp_mode()) {
384 		*haddr = *kaddr;
385 		return 0;
386 	}
387 
388 	ret = __create_hyp_private_mapping(phys_addr, size,
389 					   &addr, PAGE_HYP_DEVICE);
390 	if (ret) {
391 		iounmap(*kaddr);
392 		*kaddr = NULL;
393 		*haddr = NULL;
394 		return ret;
395 	}
396 
397 	*haddr = (void __iomem *)addr;
398 	return 0;
399 }
400 
401 /**
402  * create_hyp_exec_mappings - Map an executable range into HYP
403  * @phys_addr:	The physical start address which gets mapped
404  * @size:	Size of the region being mapped
405  * @haddr:	HYP VA for this mapping
406  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)407 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
408 			     void **haddr)
409 {
410 	unsigned long addr;
411 	int ret;
412 
413 	BUG_ON(is_kernel_in_hyp_mode());
414 
415 	ret = __create_hyp_private_mapping(phys_addr, size,
416 					   &addr, PAGE_HYP_EXEC);
417 	if (ret) {
418 		*haddr = NULL;
419 		return ret;
420 	}
421 
422 	*haddr = (void *)addr;
423 	return 0;
424 }
425 
426 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
427 	.zalloc_page		= stage2_memcache_zalloc_page,
428 	.zalloc_pages_exact	= kvm_host_zalloc_pages_exact,
429 	.free_pages_exact	= free_pages_exact,
430 	.get_page		= kvm_host_get_page,
431 	.put_page		= kvm_host_put_page,
432 	.page_count		= kvm_host_page_count,
433 	.phys_to_virt		= kvm_host_va,
434 	.virt_to_phys		= kvm_host_pa,
435 };
436 
437 /**
438  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
439  * @kvm:	The pointer to the KVM structure
440  * @mmu:	The pointer to the s2 MMU structure
441  *
442  * Allocates only the stage-2 HW PGD level table(s).
443  * Note we don't need locking here as this is only called when the VM is
444  * created, which can only be done once.
445  */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)446 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
447 {
448 	int cpu, err;
449 	struct kvm_pgtable *pgt;
450 
451 	if (mmu->pgt != NULL) {
452 		kvm_err("kvm_arch already initialized?\n");
453 		return -EINVAL;
454 	}
455 
456 	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
457 	if (!pgt)
458 		return -ENOMEM;
459 
460 	err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
461 	if (err)
462 		goto out_free_pgtable;
463 
464 	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
465 	if (!mmu->last_vcpu_ran) {
466 		err = -ENOMEM;
467 		goto out_destroy_pgtable;
468 	}
469 
470 	for_each_possible_cpu(cpu)
471 		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
472 
473 	mmu->arch = &kvm->arch;
474 	mmu->pgt = pgt;
475 	mmu->pgd_phys = __pa(pgt->pgd);
476 	mmu->vmid.vmid_gen = 0;
477 	return 0;
478 
479 out_destroy_pgtable:
480 	kvm_pgtable_stage2_destroy(pgt);
481 out_free_pgtable:
482 	kfree(pgt);
483 	return err;
484 }
485 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)486 static void stage2_unmap_memslot(struct kvm *kvm,
487 				 struct kvm_memory_slot *memslot)
488 {
489 	hva_t hva = memslot->userspace_addr;
490 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
491 	phys_addr_t size = PAGE_SIZE * memslot->npages;
492 	hva_t reg_end = hva + size;
493 
494 	/*
495 	 * A memory region could potentially cover multiple VMAs, and any holes
496 	 * between them, so iterate over all of them to find out if we should
497 	 * unmap any of them.
498 	 *
499 	 *     +--------------------------------------------+
500 	 * +---------------+----------------+   +----------------+
501 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
502 	 * +---------------+----------------+   +----------------+
503 	 *     |               memory region                |
504 	 *     +--------------------------------------------+
505 	 */
506 	do {
507 		struct vm_area_struct *vma = find_vma(current->mm, hva);
508 		hva_t vm_start, vm_end;
509 
510 		if (!vma || vma->vm_start >= reg_end)
511 			break;
512 
513 		/*
514 		 * Take the intersection of this VMA with the memory region
515 		 */
516 		vm_start = max(hva, vma->vm_start);
517 		vm_end = min(reg_end, vma->vm_end);
518 
519 		if (!(vma->vm_flags & VM_PFNMAP)) {
520 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
521 			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
522 		}
523 		hva = vm_end;
524 	} while (hva < reg_end);
525 }
526 
527 /**
528  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
529  * @kvm: The struct kvm pointer
530  *
531  * Go through the memregions and unmap any regular RAM
532  * backing memory already mapped to the VM.
533  */
stage2_unmap_vm(struct kvm * kvm)534 void stage2_unmap_vm(struct kvm *kvm)
535 {
536 	struct kvm_memslots *slots;
537 	struct kvm_memory_slot *memslot;
538 	int idx;
539 
540 	idx = srcu_read_lock(&kvm->srcu);
541 	mmap_read_lock(current->mm);
542 	spin_lock(&kvm->mmu_lock);
543 
544 	slots = kvm_memslots(kvm);
545 	kvm_for_each_memslot(memslot, slots)
546 		stage2_unmap_memslot(kvm, memslot);
547 
548 	spin_unlock(&kvm->mmu_lock);
549 	mmap_read_unlock(current->mm);
550 	srcu_read_unlock(&kvm->srcu, idx);
551 }
552 
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)553 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
554 {
555 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
556 	struct kvm_pgtable *pgt = NULL;
557 
558 	spin_lock(&kvm->mmu_lock);
559 	pgt = mmu->pgt;
560 	if (pgt) {
561 		mmu->pgd_phys = 0;
562 		mmu->pgt = NULL;
563 		free_percpu(mmu->last_vcpu_ran);
564 	}
565 	spin_unlock(&kvm->mmu_lock);
566 
567 	if (pgt) {
568 		kvm_pgtable_stage2_destroy(pgt);
569 		kfree(pgt);
570 	}
571 }
572 
573 /**
574  * kvm_phys_addr_ioremap - map a device range to guest IPA
575  *
576  * @kvm:	The KVM pointer
577  * @guest_ipa:	The IPA at which to insert the mapping
578  * @pa:		The physical address of the device
579  * @size:	The size of the mapping
580  * @writable:   Whether or not to create a writable mapping
581  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)582 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
583 			  phys_addr_t pa, unsigned long size, bool writable)
584 {
585 	phys_addr_t addr;
586 	int ret = 0;
587 	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
588 	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
589 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
590 				     KVM_PGTABLE_PROT_R |
591 				     (writable ? KVM_PGTABLE_PROT_W : 0);
592 
593 	size += offset_in_page(guest_ipa);
594 	guest_ipa &= PAGE_MASK;
595 
596 	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
597 		ret = kvm_mmu_topup_memory_cache(&cache,
598 						 kvm_mmu_cache_min_pages(kvm));
599 		if (ret)
600 			break;
601 
602 		spin_lock(&kvm->mmu_lock);
603 		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
604 					     &cache);
605 		spin_unlock(&kvm->mmu_lock);
606 		if (ret)
607 			break;
608 
609 		pa += PAGE_SIZE;
610 	}
611 
612 	kvm_mmu_free_memory_cache(&cache);
613 	return ret;
614 }
615 
616 /**
617  * stage2_wp_range() - write protect stage2 memory region range
618  * @mmu:        The KVM stage-2 MMU pointer
619  * @addr:	Start address of range
620  * @end:	End address of range
621  */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)622 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
623 {
624 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
625 	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
626 }
627 
628 /**
629  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
630  * @kvm:	The KVM pointer
631  * @slot:	The memory slot to write protect
632  *
633  * Called to start logging dirty pages after memory region
634  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
635  * all present PUD, PMD and PTEs are write protected in the memory region.
636  * Afterwards read of dirty page log can be called.
637  *
638  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
639  * serializing operations for VM memory regions.
640  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)641 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
642 {
643 	struct kvm_memslots *slots = kvm_memslots(kvm);
644 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
645 	phys_addr_t start, end;
646 
647 	if (WARN_ON_ONCE(!memslot))
648 		return;
649 
650 	start = memslot->base_gfn << PAGE_SHIFT;
651 	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
652 
653 	spin_lock(&kvm->mmu_lock);
654 	stage2_wp_range(&kvm->arch.mmu, start, end);
655 	spin_unlock(&kvm->mmu_lock);
656 	kvm_flush_remote_tlbs(kvm);
657 }
658 
659 /**
660  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
661  * @kvm:	The KVM pointer
662  * @slot:	The memory slot associated with mask
663  * @gfn_offset:	The gfn offset in memory slot
664  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
665  *		slot to be write protected
666  *
667  * Walks bits set in mask write protects the associated pte's. Caller must
668  * acquire kvm_mmu_lock.
669  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)670 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
671 		struct kvm_memory_slot *slot,
672 		gfn_t gfn_offset, unsigned long mask)
673 {
674 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
675 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
676 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
677 
678 	stage2_wp_range(&kvm->arch.mmu, start, end);
679 }
680 
681 /*
682  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
683  * dirty pages.
684  *
685  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
686  * enable dirty logging for them.
687  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)688 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
689 		struct kvm_memory_slot *slot,
690 		gfn_t gfn_offset, unsigned long mask)
691 {
692 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
693 }
694 
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)695 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
696 {
697 	__clean_dcache_guest_page(pfn, size);
698 }
699 
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)700 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
701 {
702 	__invalidate_icache_guest_page(pfn, size);
703 }
704 
kvm_send_hwpoison_signal(unsigned long address,short lsb)705 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
706 {
707 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
708 }
709 
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)710 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
711 					       unsigned long hva,
712 					       unsigned long map_size)
713 {
714 	gpa_t gpa_start;
715 	hva_t uaddr_start, uaddr_end;
716 	size_t size;
717 
718 	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
719 	if (map_size == PAGE_SIZE)
720 		return true;
721 
722 	size = memslot->npages * PAGE_SIZE;
723 
724 	gpa_start = memslot->base_gfn << PAGE_SHIFT;
725 
726 	uaddr_start = memslot->userspace_addr;
727 	uaddr_end = uaddr_start + size;
728 
729 	/*
730 	 * Pages belonging to memslots that don't have the same alignment
731 	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
732 	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
733 	 *
734 	 * Consider a layout like the following:
735 	 *
736 	 *    memslot->userspace_addr:
737 	 *    +-----+--------------------+--------------------+---+
738 	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
739 	 *    +-----+--------------------+--------------------+---+
740 	 *
741 	 *    memslot->base_gfn << PAGE_SHIFT:
742 	 *      +---+--------------------+--------------------+-----+
743 	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
744 	 *      +---+--------------------+--------------------+-----+
745 	 *
746 	 * If we create those stage-2 blocks, we'll end up with this incorrect
747 	 * mapping:
748 	 *   d -> f
749 	 *   e -> g
750 	 *   f -> h
751 	 */
752 	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
753 		return false;
754 
755 	/*
756 	 * Next, let's make sure we're not trying to map anything not covered
757 	 * by the memslot. This means we have to prohibit block size mappings
758 	 * for the beginning and end of a non-block aligned and non-block sized
759 	 * memory slot (illustrated by the head and tail parts of the
760 	 * userspace view above containing pages 'abcde' and 'xyz',
761 	 * respectively).
762 	 *
763 	 * Note that it doesn't matter if we do the check using the
764 	 * userspace_addr or the base_gfn, as both are equally aligned (per
765 	 * the check above) and equally sized.
766 	 */
767 	return (hva & ~(map_size - 1)) >= uaddr_start &&
768 	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
769 }
770 
771 /*
772  * Check if the given hva is backed by a transparent huge page (THP) and
773  * whether it can be mapped using block mapping in stage2. If so, adjust
774  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
775  * supported. This will need to be updated to support other THP sizes.
776  *
777  * Returns the size of the mapping.
778  */
779 static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)780 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
781 			    unsigned long hva, kvm_pfn_t *pfnp,
782 			    phys_addr_t *ipap)
783 {
784 	kvm_pfn_t pfn = *pfnp;
785 
786 	/*
787 	 * Make sure the adjustment is done only for THP pages. Also make
788 	 * sure that the HVA and IPA are sufficiently aligned and that the
789 	 * block map is contained within the memslot.
790 	 */
791 	if (kvm_is_transparent_hugepage(pfn) &&
792 	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
793 		/*
794 		 * The address we faulted on is backed by a transparent huge
795 		 * page.  However, because we map the compound huge page and
796 		 * not the individual tail page, we need to transfer the
797 		 * refcount to the head page.  We have to be careful that the
798 		 * THP doesn't start to split while we are adjusting the
799 		 * refcounts.
800 		 *
801 		 * We are sure this doesn't happen, because mmu_notifier_retry
802 		 * was successful and we are holding the mmu_lock, so if this
803 		 * THP is trying to split, it will be blocked in the mmu
804 		 * notifier before touching any of the pages, specifically
805 		 * before being able to call __split_huge_page_refcount().
806 		 *
807 		 * We can therefore safely transfer the refcount from PG_tail
808 		 * to PG_head and switch the pfn from a tail page to the head
809 		 * page accordingly.
810 		 */
811 		*ipap &= PMD_MASK;
812 		kvm_release_pfn_clean(pfn);
813 		pfn &= ~(PTRS_PER_PMD - 1);
814 		kvm_get_pfn(pfn);
815 		*pfnp = pfn;
816 
817 		return PMD_SIZE;
818 	}
819 
820 	/* Use page mapping if we cannot use block mapping. */
821 	return PAGE_SIZE;
822 }
823 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)824 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
825 			  struct kvm_memory_slot *memslot, unsigned long hva,
826 			  unsigned long fault_status)
827 {
828 	int ret = 0;
829 	bool write_fault, writable, force_pte = false;
830 	bool exec_fault;
831 	bool device = false;
832 	unsigned long mmu_seq;
833 	struct kvm *kvm = vcpu->kvm;
834 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
835 	struct vm_area_struct *vma;
836 	short vma_shift;
837 	gfn_t gfn;
838 	kvm_pfn_t pfn;
839 	bool logging_active = memslot_is_logging(memslot);
840 	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
841 	unsigned long vma_pagesize, fault_granule;
842 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
843 	struct kvm_pgtable *pgt;
844 
845 	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
846 	write_fault = kvm_is_write_fault(vcpu);
847 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
848 	VM_BUG_ON(write_fault && exec_fault);
849 
850 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
851 		kvm_err("Unexpected L2 read permission error\n");
852 		return -EFAULT;
853 	}
854 
855 	/* Let's check if we will get back a huge page backed by hugetlbfs */
856 	mmap_read_lock(current->mm);
857 	vma = find_vma_intersection(current->mm, hva, hva + 1);
858 	if (unlikely(!vma)) {
859 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
860 		mmap_read_unlock(current->mm);
861 		return -EFAULT;
862 	}
863 
864 	if (is_vm_hugetlb_page(vma))
865 		vma_shift = huge_page_shift(hstate_vma(vma));
866 	else
867 		vma_shift = PAGE_SHIFT;
868 
869 	if (logging_active ||
870 	    (vma->vm_flags & VM_PFNMAP)) {
871 		force_pte = true;
872 		vma_shift = PAGE_SHIFT;
873 	}
874 
875 	switch (vma_shift) {
876 #ifndef __PAGETABLE_PMD_FOLDED
877 	case PUD_SHIFT:
878 		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
879 			break;
880 		fallthrough;
881 #endif
882 	case CONT_PMD_SHIFT:
883 		vma_shift = PMD_SHIFT;
884 		fallthrough;
885 	case PMD_SHIFT:
886 		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
887 			break;
888 		fallthrough;
889 	case CONT_PTE_SHIFT:
890 		vma_shift = PAGE_SHIFT;
891 		force_pte = true;
892 		fallthrough;
893 	case PAGE_SHIFT:
894 		break;
895 	default:
896 		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
897 	}
898 
899 	vma_pagesize = 1UL << vma_shift;
900 	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
901 		fault_ipa &= ~(vma_pagesize - 1);
902 
903 	gfn = fault_ipa >> PAGE_SHIFT;
904 	mmap_read_unlock(current->mm);
905 
906 	/*
907 	 * Permission faults just need to update the existing leaf entry,
908 	 * and so normally don't require allocations from the memcache. The
909 	 * only exception to this is when dirty logging is enabled at runtime
910 	 * and a write fault needs to collapse a block entry into a table.
911 	 */
912 	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
913 		ret = kvm_mmu_topup_memory_cache(memcache,
914 						 kvm_mmu_cache_min_pages(kvm));
915 		if (ret)
916 			return ret;
917 	}
918 
919 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
920 	/*
921 	 * Ensure the read of mmu_notifier_seq happens before we call
922 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
923 	 * the page we just got a reference to gets unmapped before we have a
924 	 * chance to grab the mmu_lock, which ensure that if the page gets
925 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
926 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
927 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
928 	 */
929 	smp_rmb();
930 
931 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
932 	if (pfn == KVM_PFN_ERR_HWPOISON) {
933 		kvm_send_hwpoison_signal(hva, vma_shift);
934 		return 0;
935 	}
936 	if (is_error_noslot_pfn(pfn))
937 		return -EFAULT;
938 
939 	if (kvm_is_device_pfn(pfn)) {
940 		device = true;
941 		force_pte = true;
942 	} else if (logging_active && !write_fault) {
943 		/*
944 		 * Only actually map the page as writable if this was a write
945 		 * fault.
946 		 */
947 		writable = false;
948 	}
949 
950 	if (exec_fault && device)
951 		return -ENOEXEC;
952 
953 	spin_lock(&kvm->mmu_lock);
954 	pgt = vcpu->arch.hw_mmu->pgt;
955 	if (mmu_notifier_retry(kvm, mmu_seq))
956 		goto out_unlock;
957 
958 	/*
959 	 * If we are not forced to use page mapping, check if we are
960 	 * backed by a THP and thus use block mapping if possible.
961 	 */
962 	if (vma_pagesize == PAGE_SIZE && !force_pte)
963 		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
964 							   &pfn, &fault_ipa);
965 	if (writable)
966 		prot |= KVM_PGTABLE_PROT_W;
967 
968 	if (fault_status != FSC_PERM && !device)
969 		clean_dcache_guest_page(pfn, vma_pagesize);
970 
971 	if (exec_fault) {
972 		prot |= KVM_PGTABLE_PROT_X;
973 		invalidate_icache_guest_page(pfn, vma_pagesize);
974 	}
975 
976 	if (device)
977 		prot |= KVM_PGTABLE_PROT_DEVICE;
978 	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
979 		prot |= KVM_PGTABLE_PROT_X;
980 
981 	/*
982 	 * Under the premise of getting a FSC_PERM fault, we just need to relax
983 	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
984 	 * kvm_pgtable_stage2_map() should be called to change block size.
985 	 */
986 	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
987 		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
988 	} else {
989 		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
990 					     __pfn_to_phys(pfn), prot,
991 					     memcache);
992 	}
993 
994 	/* Mark the page dirty only if the fault is handled successfully */
995 	if (writable && !ret) {
996 		kvm_set_pfn_dirty(pfn);
997 		mark_page_dirty(kvm, gfn);
998 	}
999 
1000 out_unlock:
1001 	spin_unlock(&kvm->mmu_lock);
1002 	kvm_set_pfn_accessed(pfn);
1003 	kvm_release_pfn_clean(pfn);
1004 	return ret != -EAGAIN ? ret : 0;
1005 }
1006 
1007 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1008 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1009 {
1010 	pte_t pte;
1011 	kvm_pte_t kpte;
1012 	struct kvm_s2_mmu *mmu;
1013 
1014 	trace_kvm_access_fault(fault_ipa);
1015 
1016 	spin_lock(&vcpu->kvm->mmu_lock);
1017 	mmu = vcpu->arch.hw_mmu;
1018 	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1019 	spin_unlock(&vcpu->kvm->mmu_lock);
1020 
1021 	pte = __pte(kpte);
1022 	if (pte_valid(pte))
1023 		kvm_set_pfn_accessed(pte_pfn(pte));
1024 }
1025 
1026 /**
1027  * kvm_handle_guest_abort - handles all 2nd stage aborts
1028  * @vcpu:	the VCPU pointer
1029  *
1030  * Any abort that gets to the host is almost guaranteed to be caused by a
1031  * missing second stage translation table entry, which can mean that either the
1032  * guest simply needs more memory and we must allocate an appropriate page or it
1033  * can mean that the guest tried to access I/O memory, which is emulated by user
1034  * space. The distinction is based on the IPA causing the fault and whether this
1035  * memory region has been registered as standard RAM by user space.
1036  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1037 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1038 {
1039 	unsigned long fault_status;
1040 	phys_addr_t fault_ipa;
1041 	struct kvm_memory_slot *memslot;
1042 	unsigned long hva;
1043 	bool is_iabt, write_fault, writable;
1044 	gfn_t gfn;
1045 	int ret, idx;
1046 
1047 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1048 
1049 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1050 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1051 
1052 	/* Synchronous External Abort? */
1053 	if (kvm_vcpu_abt_issea(vcpu)) {
1054 		/*
1055 		 * For RAS the host kernel may handle this abort.
1056 		 * There is no need to pass the error into the guest.
1057 		 */
1058 		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1059 			kvm_inject_vabt(vcpu);
1060 
1061 		return 1;
1062 	}
1063 
1064 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1065 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1066 
1067 	/* Check the stage-2 fault is trans. fault or write fault */
1068 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1069 	    fault_status != FSC_ACCESS) {
1070 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1071 			kvm_vcpu_trap_get_class(vcpu),
1072 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1073 			(unsigned long)kvm_vcpu_get_esr(vcpu));
1074 		return -EFAULT;
1075 	}
1076 
1077 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1078 
1079 	gfn = fault_ipa >> PAGE_SHIFT;
1080 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1081 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1082 	write_fault = kvm_is_write_fault(vcpu);
1083 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1084 		/*
1085 		 * The guest has put either its instructions or its page-tables
1086 		 * somewhere it shouldn't have. Userspace won't be able to do
1087 		 * anything about this (there's no syndrome for a start), so
1088 		 * re-inject the abort back into the guest.
1089 		 */
1090 		if (is_iabt) {
1091 			ret = -ENOEXEC;
1092 			goto out;
1093 		}
1094 
1095 		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1096 			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1097 			ret = 1;
1098 			goto out_unlock;
1099 		}
1100 
1101 		/*
1102 		 * Check for a cache maintenance operation. Since we
1103 		 * ended-up here, we know it is outside of any memory
1104 		 * slot. But we can't find out if that is for a device,
1105 		 * or if the guest is just being stupid. The only thing
1106 		 * we know for sure is that this range cannot be cached.
1107 		 *
1108 		 * So let's assume that the guest is just being
1109 		 * cautious, and skip the instruction.
1110 		 */
1111 		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1112 			kvm_incr_pc(vcpu);
1113 			ret = 1;
1114 			goto out_unlock;
1115 		}
1116 
1117 		/*
1118 		 * The IPA is reported as [MAX:12], so we need to
1119 		 * complement it with the bottom 12 bits from the
1120 		 * faulting VA. This is always 12 bits, irrespective
1121 		 * of the page size.
1122 		 */
1123 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1124 		ret = io_mem_abort(vcpu, fault_ipa);
1125 		goto out_unlock;
1126 	}
1127 
1128 	/* Userspace should not be able to register out-of-bounds IPAs */
1129 	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1130 
1131 	if (fault_status == FSC_ACCESS) {
1132 		handle_access_fault(vcpu, fault_ipa);
1133 		ret = 1;
1134 		goto out_unlock;
1135 	}
1136 
1137 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1138 	if (ret == 0)
1139 		ret = 1;
1140 out:
1141 	if (ret == -ENOEXEC) {
1142 		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1143 		ret = 1;
1144 	}
1145 out_unlock:
1146 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1147 	return ret;
1148 }
1149 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1150 static int handle_hva_to_gpa(struct kvm *kvm,
1151 			     unsigned long start,
1152 			     unsigned long end,
1153 			     int (*handler)(struct kvm *kvm,
1154 					    gpa_t gpa, u64 size,
1155 					    void *data),
1156 			     void *data)
1157 {
1158 	struct kvm_memslots *slots;
1159 	struct kvm_memory_slot *memslot;
1160 	int ret = 0;
1161 
1162 	slots = kvm_memslots(kvm);
1163 
1164 	/* we only care about the pages that the guest sees */
1165 	kvm_for_each_memslot(memslot, slots) {
1166 		unsigned long hva_start, hva_end;
1167 		gfn_t gpa;
1168 
1169 		hva_start = max(start, memslot->userspace_addr);
1170 		hva_end = min(end, memslot->userspace_addr +
1171 					(memslot->npages << PAGE_SHIFT));
1172 		if (hva_start >= hva_end)
1173 			continue;
1174 
1175 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1176 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1177 	}
1178 
1179 	return ret;
1180 }
1181 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1182 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1183 {
1184 	unsigned flags = *(unsigned *)data;
1185 	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1186 
1187 	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1188 	return 0;
1189 }
1190 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1191 int kvm_unmap_hva_range(struct kvm *kvm,
1192 			unsigned long start, unsigned long end, unsigned flags)
1193 {
1194 	if (!kvm->arch.mmu.pgt)
1195 		return 0;
1196 
1197 	trace_kvm_unmap_hva_range(start, end);
1198 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1199 	return 0;
1200 }
1201 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1202 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1203 {
1204 	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1205 
1206 	WARN_ON(size != PAGE_SIZE);
1207 
1208 	/*
1209 	 * The MMU notifiers will have unmapped a huge PMD before calling
1210 	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1211 	 * therefore we never need to clear out a huge PMD through this
1212 	 * calling path and a memcache is not required.
1213 	 */
1214 	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
1215 			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1216 	return 0;
1217 }
1218 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1219 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1220 {
1221 	unsigned long end = hva + PAGE_SIZE;
1222 	kvm_pfn_t pfn = pte_pfn(pte);
1223 
1224 	if (!kvm->arch.mmu.pgt)
1225 		return 0;
1226 
1227 	trace_kvm_set_spte_hva(hva);
1228 
1229 	/*
1230 	 * We've moved a page around, probably through CoW, so let's treat it
1231 	 * just like a translation fault and clean the cache to the PoC.
1232 	 */
1233 	clean_dcache_guest_page(pfn, PAGE_SIZE);
1234 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1235 	return 0;
1236 }
1237 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1238 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1239 {
1240 	pte_t pte;
1241 	kvm_pte_t kpte;
1242 
1243 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1244 	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
1245 	pte = __pte(kpte);
1246 	return pte_valid(pte) && pte_young(pte);
1247 }
1248 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1249 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1250 {
1251 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1252 	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1253 }
1254 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1255 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1256 {
1257 	if (!kvm->arch.mmu.pgt)
1258 		return 0;
1259 	trace_kvm_age_hva(start, end);
1260 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1261 }
1262 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1263 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1264 {
1265 	if (!kvm->arch.mmu.pgt)
1266 		return 0;
1267 	trace_kvm_test_age_hva(hva);
1268 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1269 				 kvm_test_age_hva_handler, NULL);
1270 }
1271 
kvm_mmu_get_httbr(void)1272 phys_addr_t kvm_mmu_get_httbr(void)
1273 {
1274 	return __pa(hyp_pgtable->pgd);
1275 }
1276 
kvm_get_idmap_vector(void)1277 phys_addr_t kvm_get_idmap_vector(void)
1278 {
1279 	return hyp_idmap_vector;
1280 }
1281 
kvm_map_idmap_text(void)1282 static int kvm_map_idmap_text(void)
1283 {
1284 	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1285 	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1286 					PAGE_HYP_EXEC);
1287 	if (err)
1288 		kvm_err("Failed to idmap %lx-%lx\n",
1289 			hyp_idmap_start, hyp_idmap_end);
1290 
1291 	return err;
1292 }
1293 
kvm_hyp_zalloc_page(void * arg)1294 static void *kvm_hyp_zalloc_page(void *arg)
1295 {
1296 	return (void *)get_zeroed_page(GFP_KERNEL);
1297 }
1298 
1299 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1300 	.zalloc_page		= kvm_hyp_zalloc_page,
1301 	.get_page		= kvm_host_get_page,
1302 	.put_page		= kvm_host_put_page,
1303 	.phys_to_virt		= kvm_host_va,
1304 	.virt_to_phys		= kvm_host_pa,
1305 };
1306 
kvm_mmu_init(u32 * hyp_va_bits)1307 int kvm_mmu_init(u32 *hyp_va_bits)
1308 {
1309 	int err;
1310 
1311 	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1312 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1313 	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1314 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1315 	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1316 
1317 	/*
1318 	 * We rely on the linker script to ensure at build time that the HYP
1319 	 * init code does not cross a page boundary.
1320 	 */
1321 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1322 
1323 	*hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1324 	kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1325 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1326 	kvm_debug("HYP VA range: %lx:%lx\n",
1327 		  kern_hyp_va(PAGE_OFFSET),
1328 		  kern_hyp_va((unsigned long)high_memory - 1));
1329 
1330 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1331 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1332 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1333 		/*
1334 		 * The idmap page is intersecting with the VA space,
1335 		 * it is not safe to continue further.
1336 		 */
1337 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1338 		err = -EINVAL;
1339 		goto out;
1340 	}
1341 
1342 	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1343 	if (!hyp_pgtable) {
1344 		kvm_err("Hyp mode page-table not allocated\n");
1345 		err = -ENOMEM;
1346 		goto out;
1347 	}
1348 
1349 	err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1350 	if (err)
1351 		goto out_free_pgtable;
1352 
1353 	err = kvm_map_idmap_text();
1354 	if (err)
1355 		goto out_destroy_pgtable;
1356 
1357 	io_map_base = hyp_idmap_start;
1358 	return 0;
1359 
1360 out_destroy_pgtable:
1361 	kvm_pgtable_hyp_destroy(hyp_pgtable);
1362 out_free_pgtable:
1363 	kfree(hyp_pgtable);
1364 	hyp_pgtable = NULL;
1365 out:
1366 	return err;
1367 }
1368 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1369 void kvm_arch_commit_memory_region(struct kvm *kvm,
1370 				   const struct kvm_userspace_memory_region *mem,
1371 				   struct kvm_memory_slot *old,
1372 				   const struct kvm_memory_slot *new,
1373 				   enum kvm_mr_change change)
1374 {
1375 	/*
1376 	 * At this point memslot has been committed and there is an
1377 	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1378 	 * memory slot is write protected.
1379 	 */
1380 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1381 		/*
1382 		 * If we're with initial-all-set, we don't need to write
1383 		 * protect any pages because they're all reported as dirty.
1384 		 * Huge pages and normal pages will be write protect gradually.
1385 		 */
1386 		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1387 			kvm_mmu_wp_memory_region(kvm, mem->slot);
1388 		}
1389 	}
1390 }
1391 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1392 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1393 				   struct kvm_memory_slot *memslot,
1394 				   const struct kvm_userspace_memory_region *mem,
1395 				   enum kvm_mr_change change)
1396 {
1397 	hva_t hva = mem->userspace_addr;
1398 	hva_t reg_end = hva + mem->memory_size;
1399 	bool writable = !(mem->flags & KVM_MEM_READONLY);
1400 	int ret = 0;
1401 
1402 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1403 			change != KVM_MR_FLAGS_ONLY)
1404 		return 0;
1405 
1406 	/*
1407 	 * Prevent userspace from creating a memory region outside of the IPA
1408 	 * space addressable by the KVM guest IPA space.
1409 	 */
1410 	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1411 		return -EFAULT;
1412 
1413 	mmap_read_lock(current->mm);
1414 	/*
1415 	 * A memory region could potentially cover multiple VMAs, and any holes
1416 	 * between them, so iterate over all of them to find out if we can map
1417 	 * any of them right now.
1418 	 *
1419 	 *     +--------------------------------------------+
1420 	 * +---------------+----------------+   +----------------+
1421 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1422 	 * +---------------+----------------+   +----------------+
1423 	 *     |               memory region                |
1424 	 *     +--------------------------------------------+
1425 	 */
1426 	do {
1427 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1428 		hva_t vm_start, vm_end;
1429 
1430 		if (!vma || vma->vm_start >= reg_end)
1431 			break;
1432 
1433 		/*
1434 		 * Take the intersection of this VMA with the memory region
1435 		 */
1436 		vm_start = max(hva, vma->vm_start);
1437 		vm_end = min(reg_end, vma->vm_end);
1438 
1439 		if (vma->vm_flags & VM_PFNMAP) {
1440 			gpa_t gpa = mem->guest_phys_addr +
1441 				    (vm_start - mem->userspace_addr);
1442 			phys_addr_t pa;
1443 
1444 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1445 			pa += vm_start - vma->vm_start;
1446 
1447 			/* IO region dirty page logging not allowed */
1448 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1449 				ret = -EINVAL;
1450 				goto out;
1451 			}
1452 
1453 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1454 						    vm_end - vm_start,
1455 						    writable);
1456 			if (ret)
1457 				break;
1458 		}
1459 		hva = vm_end;
1460 	} while (hva < reg_end);
1461 
1462 	if (change == KVM_MR_FLAGS_ONLY)
1463 		goto out;
1464 
1465 	spin_lock(&kvm->mmu_lock);
1466 	if (ret)
1467 		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1468 	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1469 		stage2_flush_memslot(kvm, memslot);
1470 	spin_unlock(&kvm->mmu_lock);
1471 out:
1472 	mmap_read_unlock(current->mm);
1473 	return ret;
1474 }
1475 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1476 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1477 {
1478 }
1479 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1480 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1481 {
1482 }
1483 
kvm_arch_flush_shadow_all(struct kvm * kvm)1484 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1485 {
1486 	kvm_free_stage2_pgd(&kvm->arch.mmu);
1487 }
1488 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1489 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1490 				   struct kvm_memory_slot *slot)
1491 {
1492 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1493 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1494 
1495 	spin_lock(&kvm->mmu_lock);
1496 	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1497 	spin_unlock(&kvm->mmu_lock);
1498 }
1499 
1500 /*
1501  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1502  *
1503  * Main problems:
1504  * - S/W ops are local to a CPU (not broadcast)
1505  * - We have line migration behind our back (speculation)
1506  * - System caches don't support S/W at all (damn!)
1507  *
1508  * In the face of the above, the best we can do is to try and convert
1509  * S/W ops to VA ops. Because the guest is not allowed to infer the
1510  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1511  * which is a rather good thing for us.
1512  *
1513  * Also, it is only used when turning caches on/off ("The expected
1514  * usage of the cache maintenance instructions that operate by set/way
1515  * is associated with the cache maintenance instructions associated
1516  * with the powerdown and powerup of caches, if this is required by
1517  * the implementation.").
1518  *
1519  * We use the following policy:
1520  *
1521  * - If we trap a S/W operation, we enable VM trapping to detect
1522  *   caches being turned on/off, and do a full clean.
1523  *
1524  * - We flush the caches on both caches being turned on and off.
1525  *
1526  * - Once the caches are enabled, we stop trapping VM ops.
1527  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1528 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1529 {
1530 	unsigned long hcr = *vcpu_hcr(vcpu);
1531 
1532 	/*
1533 	 * If this is the first time we do a S/W operation
1534 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1535 	 * VM trapping.
1536 	 *
1537 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1538 	 * Caches to be turned off. At that point, we'll be able to
1539 	 * clean the caches again.
1540 	 */
1541 	if (!(hcr & HCR_TVM)) {
1542 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1543 					vcpu_has_cache_enabled(vcpu));
1544 		stage2_flush_vm(vcpu->kvm);
1545 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1546 	}
1547 }
1548 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1549 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1550 {
1551 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1552 
1553 	/*
1554 	 * If switching the MMU+caches on, need to invalidate the caches.
1555 	 * If switching it off, need to clean the caches.
1556 	 * Clean + invalidate does the trick always.
1557 	 */
1558 	if (now_enabled != was_enabled)
1559 		stage2_flush_vm(vcpu->kvm);
1560 
1561 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1562 	if (now_enabled)
1563 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1564 
1565 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1566 }
1567