1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
34
35 /*
36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39 * long will also starve other vCPUs. We have to also make sure that the page
40 * tables are not freed while we released the lock.
41 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 phys_addr_t end,
44 int (*fn)(struct kvm_pgtable *, u64, u64),
45 bool resched)
46 {
47 int ret;
48 u64 next;
49
50 do {
51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 if (!pgt)
53 return -EINVAL;
54
55 next = stage2_pgd_addr_end(kvm, addr, end);
56 ret = fn(pgt, addr, next - addr);
57 if (ret)
58 break;
59
60 if (resched && next != end)
61 cond_resched_lock(&kvm->mmu_lock);
62 } while (addr = next, addr != end);
63
64 return ret;
65 }
66
67 #define stage2_apply_range_resched(kvm, addr, end, fn) \
68 stage2_apply_range(kvm, addr, end, fn, true)
69
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74
75 /**
76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77 * @kvm: pointer to kvm structure.
78 *
79 * Interface to HYP function to flush all VM TLB entries
80 */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84 }
85
kvm_is_device_pfn(unsigned long pfn)86 static bool kvm_is_device_pfn(unsigned long pfn)
87 {
88 return !pfn_valid(pfn);
89 }
90
stage2_memcache_zalloc_page(void * arg)91 static void *stage2_memcache_zalloc_page(void *arg)
92 {
93 struct kvm_mmu_memory_cache *mc = arg;
94
95 /* Allocated with __GFP_ZERO, so no need to zero */
96 return kvm_mmu_memory_cache_alloc(mc);
97 }
98
kvm_host_zalloc_pages_exact(size_t size)99 static void *kvm_host_zalloc_pages_exact(size_t size)
100 {
101 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
102 }
103
kvm_host_get_page(void * addr)104 static void kvm_host_get_page(void *addr)
105 {
106 get_page(virt_to_page(addr));
107 }
108
kvm_host_put_page(void * addr)109 static void kvm_host_put_page(void *addr)
110 {
111 put_page(virt_to_page(addr));
112 }
113
kvm_host_page_count(void * addr)114 static int kvm_host_page_count(void *addr)
115 {
116 return page_count(virt_to_page(addr));
117 }
118
kvm_host_pa(void * addr)119 static phys_addr_t kvm_host_pa(void *addr)
120 {
121 return __pa(addr);
122 }
123
kvm_host_va(phys_addr_t phys)124 static void *kvm_host_va(phys_addr_t phys)
125 {
126 return __va(phys);
127 }
128
129 /*
130 * Unmapping vs dcache management:
131 *
132 * If a guest maps certain memory pages as uncached, all writes will
133 * bypass the data cache and go directly to RAM. However, the CPUs
134 * can still speculate reads (not writes) and fill cache lines with
135 * data.
136 *
137 * Those cache lines will be *clean* cache lines though, so a
138 * clean+invalidate operation is equivalent to an invalidate
139 * operation, because no cache lines are marked dirty.
140 *
141 * Those clean cache lines could be filled prior to an uncached write
142 * by the guest, and the cache coherent IO subsystem would therefore
143 * end up writing old data to disk.
144 *
145 * This is why right after unmapping a page/section and invalidating
146 * the corresponding TLBs, we flush to make sure the IO subsystem will
147 * never hit in the cache.
148 *
149 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
150 * we then fully enforce cacheability of RAM, no matter what the guest
151 * does.
152 */
153 /**
154 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
155 * @mmu: The KVM stage-2 MMU pointer
156 * @start: The intermediate physical base address of the range to unmap
157 * @size: The size of the area to unmap
158 * @may_block: Whether or not we are permitted to block
159 *
160 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
161 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
162 * destroying the VM), otherwise another faulting VCPU may come in and mess
163 * with things behind our backs.
164 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)165 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
166 bool may_block)
167 {
168 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
169 phys_addr_t end = start + size;
170
171 assert_spin_locked(&kvm->mmu_lock);
172 WARN_ON(size & ~PAGE_MASK);
173 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
174 may_block));
175 }
176
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)177 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
178 {
179 __unmap_stage2_range(mmu, start, size, true);
180 }
181
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)182 static void stage2_flush_memslot(struct kvm *kvm,
183 struct kvm_memory_slot *memslot)
184 {
185 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
186 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
187
188 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
189 }
190
191 /**
192 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
193 * @kvm: The struct kvm pointer
194 *
195 * Go through the stage 2 page tables and invalidate any cache lines
196 * backing memory already mapped to the VM.
197 */
stage2_flush_vm(struct kvm * kvm)198 static void stage2_flush_vm(struct kvm *kvm)
199 {
200 struct kvm_memslots *slots;
201 struct kvm_memory_slot *memslot;
202 int idx;
203
204 idx = srcu_read_lock(&kvm->srcu);
205 spin_lock(&kvm->mmu_lock);
206
207 slots = kvm_memslots(kvm);
208 kvm_for_each_memslot(memslot, slots)
209 stage2_flush_memslot(kvm, memslot);
210
211 spin_unlock(&kvm->mmu_lock);
212 srcu_read_unlock(&kvm->srcu, idx);
213 }
214
215 /**
216 * free_hyp_pgds - free Hyp-mode page tables
217 */
free_hyp_pgds(void)218 void free_hyp_pgds(void)
219 {
220 mutex_lock(&kvm_hyp_pgd_mutex);
221 if (hyp_pgtable) {
222 kvm_pgtable_hyp_destroy(hyp_pgtable);
223 kfree(hyp_pgtable);
224 hyp_pgtable = NULL;
225 }
226 mutex_unlock(&kvm_hyp_pgd_mutex);
227 }
228
kvm_host_owns_hyp_mappings(void)229 static bool kvm_host_owns_hyp_mappings(void)
230 {
231 if (static_branch_likely(&kvm_protected_mode_initialized))
232 return false;
233
234 /*
235 * This can happen at boot time when __create_hyp_mappings() is called
236 * after the hyp protection has been enabled, but the static key has
237 * not been flipped yet.
238 */
239 if (!hyp_pgtable && is_protected_kvm_enabled())
240 return false;
241
242 WARN_ON(!hyp_pgtable);
243
244 return true;
245 }
246
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)247 static int __create_hyp_mappings(unsigned long start, unsigned long size,
248 unsigned long phys, enum kvm_pgtable_prot prot)
249 {
250 int err;
251
252 if (!kvm_host_owns_hyp_mappings()) {
253 return kvm_call_hyp_nvhe(__pkvm_create_mappings,
254 start, size, phys, prot);
255 }
256
257 mutex_lock(&kvm_hyp_pgd_mutex);
258 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
259 mutex_unlock(&kvm_hyp_pgd_mutex);
260
261 return err;
262 }
263
kvm_kaddr_to_phys(void * kaddr)264 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
265 {
266 if (!is_vmalloc_addr(kaddr)) {
267 BUG_ON(!virt_addr_valid(kaddr));
268 return __pa(kaddr);
269 } else {
270 return page_to_phys(vmalloc_to_page(kaddr)) +
271 offset_in_page(kaddr);
272 }
273 }
274
275 /**
276 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
277 * @from: The virtual kernel start address of the range
278 * @to: The virtual kernel end address of the range (exclusive)
279 * @prot: The protection to be applied to this range
280 *
281 * The same virtual address as the kernel virtual address is also used
282 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
283 * physical pages.
284 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)285 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
286 {
287 phys_addr_t phys_addr;
288 unsigned long virt_addr;
289 unsigned long start = kern_hyp_va((unsigned long)from);
290 unsigned long end = kern_hyp_va((unsigned long)to);
291
292 if (is_kernel_in_hyp_mode())
293 return 0;
294
295 start = start & PAGE_MASK;
296 end = PAGE_ALIGN(end);
297
298 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
299 int err;
300
301 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
302 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
303 prot);
304 if (err)
305 return err;
306 }
307
308 return 0;
309 }
310
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)311 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
312 unsigned long *haddr,
313 enum kvm_pgtable_prot prot)
314 {
315 unsigned long base;
316 int ret = 0;
317
318 if (!kvm_host_owns_hyp_mappings()) {
319 base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
320 phys_addr, size, prot);
321 if (IS_ERR_OR_NULL((void *)base))
322 return PTR_ERR((void *)base);
323 *haddr = base;
324
325 return 0;
326 }
327
328 mutex_lock(&kvm_hyp_pgd_mutex);
329
330 /*
331 * This assumes that we have enough space below the idmap
332 * page to allocate our VAs. If not, the check below will
333 * kick. A potential alternative would be to detect that
334 * overflow and switch to an allocation above the idmap.
335 *
336 * The allocated size is always a multiple of PAGE_SIZE.
337 */
338 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
339 base = io_map_base - size;
340
341 /*
342 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
343 * allocating the new area, as it would indicate we've
344 * overflowed the idmap/IO address range.
345 */
346 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
347 ret = -ENOMEM;
348 else
349 io_map_base = base;
350
351 mutex_unlock(&kvm_hyp_pgd_mutex);
352
353 if (ret)
354 goto out;
355
356 ret = __create_hyp_mappings(base, size, phys_addr, prot);
357 if (ret)
358 goto out;
359
360 *haddr = base + offset_in_page(phys_addr);
361 out:
362 return ret;
363 }
364
365 /**
366 * create_hyp_io_mappings - Map IO into both kernel and HYP
367 * @phys_addr: The physical start address which gets mapped
368 * @size: Size of the region being mapped
369 * @kaddr: Kernel VA for this mapping
370 * @haddr: HYP VA for this mapping
371 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)372 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
373 void __iomem **kaddr,
374 void __iomem **haddr)
375 {
376 unsigned long addr;
377 int ret;
378
379 *kaddr = ioremap(phys_addr, size);
380 if (!*kaddr)
381 return -ENOMEM;
382
383 if (is_kernel_in_hyp_mode()) {
384 *haddr = *kaddr;
385 return 0;
386 }
387
388 ret = __create_hyp_private_mapping(phys_addr, size,
389 &addr, PAGE_HYP_DEVICE);
390 if (ret) {
391 iounmap(*kaddr);
392 *kaddr = NULL;
393 *haddr = NULL;
394 return ret;
395 }
396
397 *haddr = (void __iomem *)addr;
398 return 0;
399 }
400
401 /**
402 * create_hyp_exec_mappings - Map an executable range into HYP
403 * @phys_addr: The physical start address which gets mapped
404 * @size: Size of the region being mapped
405 * @haddr: HYP VA for this mapping
406 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)407 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
408 void **haddr)
409 {
410 unsigned long addr;
411 int ret;
412
413 BUG_ON(is_kernel_in_hyp_mode());
414
415 ret = __create_hyp_private_mapping(phys_addr, size,
416 &addr, PAGE_HYP_EXEC);
417 if (ret) {
418 *haddr = NULL;
419 return ret;
420 }
421
422 *haddr = (void *)addr;
423 return 0;
424 }
425
426 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
427 .zalloc_page = stage2_memcache_zalloc_page,
428 .zalloc_pages_exact = kvm_host_zalloc_pages_exact,
429 .free_pages_exact = free_pages_exact,
430 .get_page = kvm_host_get_page,
431 .put_page = kvm_host_put_page,
432 .page_count = kvm_host_page_count,
433 .phys_to_virt = kvm_host_va,
434 .virt_to_phys = kvm_host_pa,
435 };
436
437 /**
438 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
439 * @kvm: The pointer to the KVM structure
440 * @mmu: The pointer to the s2 MMU structure
441 *
442 * Allocates only the stage-2 HW PGD level table(s).
443 * Note we don't need locking here as this is only called when the VM is
444 * created, which can only be done once.
445 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)446 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
447 {
448 int cpu, err;
449 struct kvm_pgtable *pgt;
450
451 if (mmu->pgt != NULL) {
452 kvm_err("kvm_arch already initialized?\n");
453 return -EINVAL;
454 }
455
456 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
457 if (!pgt)
458 return -ENOMEM;
459
460 err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
461 if (err)
462 goto out_free_pgtable;
463
464 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
465 if (!mmu->last_vcpu_ran) {
466 err = -ENOMEM;
467 goto out_destroy_pgtable;
468 }
469
470 for_each_possible_cpu(cpu)
471 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
472
473 mmu->arch = &kvm->arch;
474 mmu->pgt = pgt;
475 mmu->pgd_phys = __pa(pgt->pgd);
476 mmu->vmid.vmid_gen = 0;
477 return 0;
478
479 out_destroy_pgtable:
480 kvm_pgtable_stage2_destroy(pgt);
481 out_free_pgtable:
482 kfree(pgt);
483 return err;
484 }
485
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)486 static void stage2_unmap_memslot(struct kvm *kvm,
487 struct kvm_memory_slot *memslot)
488 {
489 hva_t hva = memslot->userspace_addr;
490 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
491 phys_addr_t size = PAGE_SIZE * memslot->npages;
492 hva_t reg_end = hva + size;
493
494 /*
495 * A memory region could potentially cover multiple VMAs, and any holes
496 * between them, so iterate over all of them to find out if we should
497 * unmap any of them.
498 *
499 * +--------------------------------------------+
500 * +---------------+----------------+ +----------------+
501 * | : VMA 1 | VMA 2 | | VMA 3 : |
502 * +---------------+----------------+ +----------------+
503 * | memory region |
504 * +--------------------------------------------+
505 */
506 do {
507 struct vm_area_struct *vma = find_vma(current->mm, hva);
508 hva_t vm_start, vm_end;
509
510 if (!vma || vma->vm_start >= reg_end)
511 break;
512
513 /*
514 * Take the intersection of this VMA with the memory region
515 */
516 vm_start = max(hva, vma->vm_start);
517 vm_end = min(reg_end, vma->vm_end);
518
519 if (!(vma->vm_flags & VM_PFNMAP)) {
520 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
521 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
522 }
523 hva = vm_end;
524 } while (hva < reg_end);
525 }
526
527 /**
528 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
529 * @kvm: The struct kvm pointer
530 *
531 * Go through the memregions and unmap any regular RAM
532 * backing memory already mapped to the VM.
533 */
stage2_unmap_vm(struct kvm * kvm)534 void stage2_unmap_vm(struct kvm *kvm)
535 {
536 struct kvm_memslots *slots;
537 struct kvm_memory_slot *memslot;
538 int idx;
539
540 idx = srcu_read_lock(&kvm->srcu);
541 mmap_read_lock(current->mm);
542 spin_lock(&kvm->mmu_lock);
543
544 slots = kvm_memslots(kvm);
545 kvm_for_each_memslot(memslot, slots)
546 stage2_unmap_memslot(kvm, memslot);
547
548 spin_unlock(&kvm->mmu_lock);
549 mmap_read_unlock(current->mm);
550 srcu_read_unlock(&kvm->srcu, idx);
551 }
552
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)553 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
554 {
555 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
556 struct kvm_pgtable *pgt = NULL;
557
558 spin_lock(&kvm->mmu_lock);
559 pgt = mmu->pgt;
560 if (pgt) {
561 mmu->pgd_phys = 0;
562 mmu->pgt = NULL;
563 free_percpu(mmu->last_vcpu_ran);
564 }
565 spin_unlock(&kvm->mmu_lock);
566
567 if (pgt) {
568 kvm_pgtable_stage2_destroy(pgt);
569 kfree(pgt);
570 }
571 }
572
573 /**
574 * kvm_phys_addr_ioremap - map a device range to guest IPA
575 *
576 * @kvm: The KVM pointer
577 * @guest_ipa: The IPA at which to insert the mapping
578 * @pa: The physical address of the device
579 * @size: The size of the mapping
580 * @writable: Whether or not to create a writable mapping
581 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)582 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
583 phys_addr_t pa, unsigned long size, bool writable)
584 {
585 phys_addr_t addr;
586 int ret = 0;
587 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
588 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
589 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
590 KVM_PGTABLE_PROT_R |
591 (writable ? KVM_PGTABLE_PROT_W : 0);
592
593 size += offset_in_page(guest_ipa);
594 guest_ipa &= PAGE_MASK;
595
596 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
597 ret = kvm_mmu_topup_memory_cache(&cache,
598 kvm_mmu_cache_min_pages(kvm));
599 if (ret)
600 break;
601
602 spin_lock(&kvm->mmu_lock);
603 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
604 &cache);
605 spin_unlock(&kvm->mmu_lock);
606 if (ret)
607 break;
608
609 pa += PAGE_SIZE;
610 }
611
612 kvm_mmu_free_memory_cache(&cache);
613 return ret;
614 }
615
616 /**
617 * stage2_wp_range() - write protect stage2 memory region range
618 * @mmu: The KVM stage-2 MMU pointer
619 * @addr: Start address of range
620 * @end: End address of range
621 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)622 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
623 {
624 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
625 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
626 }
627
628 /**
629 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
630 * @kvm: The KVM pointer
631 * @slot: The memory slot to write protect
632 *
633 * Called to start logging dirty pages after memory region
634 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
635 * all present PUD, PMD and PTEs are write protected in the memory region.
636 * Afterwards read of dirty page log can be called.
637 *
638 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
639 * serializing operations for VM memory regions.
640 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)641 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
642 {
643 struct kvm_memslots *slots = kvm_memslots(kvm);
644 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
645 phys_addr_t start, end;
646
647 if (WARN_ON_ONCE(!memslot))
648 return;
649
650 start = memslot->base_gfn << PAGE_SHIFT;
651 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
652
653 spin_lock(&kvm->mmu_lock);
654 stage2_wp_range(&kvm->arch.mmu, start, end);
655 spin_unlock(&kvm->mmu_lock);
656 kvm_flush_remote_tlbs(kvm);
657 }
658
659 /**
660 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
661 * @kvm: The KVM pointer
662 * @slot: The memory slot associated with mask
663 * @gfn_offset: The gfn offset in memory slot
664 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
665 * slot to be write protected
666 *
667 * Walks bits set in mask write protects the associated pte's. Caller must
668 * acquire kvm_mmu_lock.
669 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)670 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
671 struct kvm_memory_slot *slot,
672 gfn_t gfn_offset, unsigned long mask)
673 {
674 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
675 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
676 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
677
678 stage2_wp_range(&kvm->arch.mmu, start, end);
679 }
680
681 /*
682 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
683 * dirty pages.
684 *
685 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
686 * enable dirty logging for them.
687 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)688 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
689 struct kvm_memory_slot *slot,
690 gfn_t gfn_offset, unsigned long mask)
691 {
692 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
693 }
694
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)695 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
696 {
697 __clean_dcache_guest_page(pfn, size);
698 }
699
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)700 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
701 {
702 __invalidate_icache_guest_page(pfn, size);
703 }
704
kvm_send_hwpoison_signal(unsigned long address,short lsb)705 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
706 {
707 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
708 }
709
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)710 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
711 unsigned long hva,
712 unsigned long map_size)
713 {
714 gpa_t gpa_start;
715 hva_t uaddr_start, uaddr_end;
716 size_t size;
717
718 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
719 if (map_size == PAGE_SIZE)
720 return true;
721
722 size = memslot->npages * PAGE_SIZE;
723
724 gpa_start = memslot->base_gfn << PAGE_SHIFT;
725
726 uaddr_start = memslot->userspace_addr;
727 uaddr_end = uaddr_start + size;
728
729 /*
730 * Pages belonging to memslots that don't have the same alignment
731 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
732 * PMD/PUD entries, because we'll end up mapping the wrong pages.
733 *
734 * Consider a layout like the following:
735 *
736 * memslot->userspace_addr:
737 * +-----+--------------------+--------------------+---+
738 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
739 * +-----+--------------------+--------------------+---+
740 *
741 * memslot->base_gfn << PAGE_SHIFT:
742 * +---+--------------------+--------------------+-----+
743 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
744 * +---+--------------------+--------------------+-----+
745 *
746 * If we create those stage-2 blocks, we'll end up with this incorrect
747 * mapping:
748 * d -> f
749 * e -> g
750 * f -> h
751 */
752 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
753 return false;
754
755 /*
756 * Next, let's make sure we're not trying to map anything not covered
757 * by the memslot. This means we have to prohibit block size mappings
758 * for the beginning and end of a non-block aligned and non-block sized
759 * memory slot (illustrated by the head and tail parts of the
760 * userspace view above containing pages 'abcde' and 'xyz',
761 * respectively).
762 *
763 * Note that it doesn't matter if we do the check using the
764 * userspace_addr or the base_gfn, as both are equally aligned (per
765 * the check above) and equally sized.
766 */
767 return (hva & ~(map_size - 1)) >= uaddr_start &&
768 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
769 }
770
771 /*
772 * Check if the given hva is backed by a transparent huge page (THP) and
773 * whether it can be mapped using block mapping in stage2. If so, adjust
774 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
775 * supported. This will need to be updated to support other THP sizes.
776 *
777 * Returns the size of the mapping.
778 */
779 static unsigned long
transparent_hugepage_adjust(struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)780 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
781 unsigned long hva, kvm_pfn_t *pfnp,
782 phys_addr_t *ipap)
783 {
784 kvm_pfn_t pfn = *pfnp;
785
786 /*
787 * Make sure the adjustment is done only for THP pages. Also make
788 * sure that the HVA and IPA are sufficiently aligned and that the
789 * block map is contained within the memslot.
790 */
791 if (kvm_is_transparent_hugepage(pfn) &&
792 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
793 /*
794 * The address we faulted on is backed by a transparent huge
795 * page. However, because we map the compound huge page and
796 * not the individual tail page, we need to transfer the
797 * refcount to the head page. We have to be careful that the
798 * THP doesn't start to split while we are adjusting the
799 * refcounts.
800 *
801 * We are sure this doesn't happen, because mmu_notifier_retry
802 * was successful and we are holding the mmu_lock, so if this
803 * THP is trying to split, it will be blocked in the mmu
804 * notifier before touching any of the pages, specifically
805 * before being able to call __split_huge_page_refcount().
806 *
807 * We can therefore safely transfer the refcount from PG_tail
808 * to PG_head and switch the pfn from a tail page to the head
809 * page accordingly.
810 */
811 *ipap &= PMD_MASK;
812 kvm_release_pfn_clean(pfn);
813 pfn &= ~(PTRS_PER_PMD - 1);
814 kvm_get_pfn(pfn);
815 *pfnp = pfn;
816
817 return PMD_SIZE;
818 }
819
820 /* Use page mapping if we cannot use block mapping. */
821 return PAGE_SIZE;
822 }
823
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)824 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
825 struct kvm_memory_slot *memslot, unsigned long hva,
826 unsigned long fault_status)
827 {
828 int ret = 0;
829 bool write_fault, writable, force_pte = false;
830 bool exec_fault;
831 bool device = false;
832 unsigned long mmu_seq;
833 struct kvm *kvm = vcpu->kvm;
834 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
835 struct vm_area_struct *vma;
836 short vma_shift;
837 gfn_t gfn;
838 kvm_pfn_t pfn;
839 bool logging_active = memslot_is_logging(memslot);
840 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
841 unsigned long vma_pagesize, fault_granule;
842 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
843 struct kvm_pgtable *pgt;
844
845 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
846 write_fault = kvm_is_write_fault(vcpu);
847 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
848 VM_BUG_ON(write_fault && exec_fault);
849
850 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
851 kvm_err("Unexpected L2 read permission error\n");
852 return -EFAULT;
853 }
854
855 /* Let's check if we will get back a huge page backed by hugetlbfs */
856 mmap_read_lock(current->mm);
857 vma = find_vma_intersection(current->mm, hva, hva + 1);
858 if (unlikely(!vma)) {
859 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
860 mmap_read_unlock(current->mm);
861 return -EFAULT;
862 }
863
864 if (is_vm_hugetlb_page(vma))
865 vma_shift = huge_page_shift(hstate_vma(vma));
866 else
867 vma_shift = PAGE_SHIFT;
868
869 if (logging_active ||
870 (vma->vm_flags & VM_PFNMAP)) {
871 force_pte = true;
872 vma_shift = PAGE_SHIFT;
873 }
874
875 switch (vma_shift) {
876 #ifndef __PAGETABLE_PMD_FOLDED
877 case PUD_SHIFT:
878 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
879 break;
880 fallthrough;
881 #endif
882 case CONT_PMD_SHIFT:
883 vma_shift = PMD_SHIFT;
884 fallthrough;
885 case PMD_SHIFT:
886 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
887 break;
888 fallthrough;
889 case CONT_PTE_SHIFT:
890 vma_shift = PAGE_SHIFT;
891 force_pte = true;
892 fallthrough;
893 case PAGE_SHIFT:
894 break;
895 default:
896 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
897 }
898
899 vma_pagesize = 1UL << vma_shift;
900 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
901 fault_ipa &= ~(vma_pagesize - 1);
902
903 gfn = fault_ipa >> PAGE_SHIFT;
904 mmap_read_unlock(current->mm);
905
906 /*
907 * Permission faults just need to update the existing leaf entry,
908 * and so normally don't require allocations from the memcache. The
909 * only exception to this is when dirty logging is enabled at runtime
910 * and a write fault needs to collapse a block entry into a table.
911 */
912 if (fault_status != FSC_PERM || (logging_active && write_fault)) {
913 ret = kvm_mmu_topup_memory_cache(memcache,
914 kvm_mmu_cache_min_pages(kvm));
915 if (ret)
916 return ret;
917 }
918
919 mmu_seq = vcpu->kvm->mmu_notifier_seq;
920 /*
921 * Ensure the read of mmu_notifier_seq happens before we call
922 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
923 * the page we just got a reference to gets unmapped before we have a
924 * chance to grab the mmu_lock, which ensure that if the page gets
925 * unmapped afterwards, the call to kvm_unmap_hva will take it away
926 * from us again properly. This smp_rmb() interacts with the smp_wmb()
927 * in kvm_mmu_notifier_invalidate_<page|range_end>.
928 */
929 smp_rmb();
930
931 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
932 if (pfn == KVM_PFN_ERR_HWPOISON) {
933 kvm_send_hwpoison_signal(hva, vma_shift);
934 return 0;
935 }
936 if (is_error_noslot_pfn(pfn))
937 return -EFAULT;
938
939 if (kvm_is_device_pfn(pfn)) {
940 device = true;
941 force_pte = true;
942 } else if (logging_active && !write_fault) {
943 /*
944 * Only actually map the page as writable if this was a write
945 * fault.
946 */
947 writable = false;
948 }
949
950 if (exec_fault && device)
951 return -ENOEXEC;
952
953 spin_lock(&kvm->mmu_lock);
954 pgt = vcpu->arch.hw_mmu->pgt;
955 if (mmu_notifier_retry(kvm, mmu_seq))
956 goto out_unlock;
957
958 /*
959 * If we are not forced to use page mapping, check if we are
960 * backed by a THP and thus use block mapping if possible.
961 */
962 if (vma_pagesize == PAGE_SIZE && !force_pte)
963 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
964 &pfn, &fault_ipa);
965 if (writable)
966 prot |= KVM_PGTABLE_PROT_W;
967
968 if (fault_status != FSC_PERM && !device)
969 clean_dcache_guest_page(pfn, vma_pagesize);
970
971 if (exec_fault) {
972 prot |= KVM_PGTABLE_PROT_X;
973 invalidate_icache_guest_page(pfn, vma_pagesize);
974 }
975
976 if (device)
977 prot |= KVM_PGTABLE_PROT_DEVICE;
978 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
979 prot |= KVM_PGTABLE_PROT_X;
980
981 /*
982 * Under the premise of getting a FSC_PERM fault, we just need to relax
983 * permissions only if vma_pagesize equals fault_granule. Otherwise,
984 * kvm_pgtable_stage2_map() should be called to change block size.
985 */
986 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
987 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
988 } else {
989 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
990 __pfn_to_phys(pfn), prot,
991 memcache);
992 }
993
994 /* Mark the page dirty only if the fault is handled successfully */
995 if (writable && !ret) {
996 kvm_set_pfn_dirty(pfn);
997 mark_page_dirty(kvm, gfn);
998 }
999
1000 out_unlock:
1001 spin_unlock(&kvm->mmu_lock);
1002 kvm_set_pfn_accessed(pfn);
1003 kvm_release_pfn_clean(pfn);
1004 return ret != -EAGAIN ? ret : 0;
1005 }
1006
1007 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1008 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1009 {
1010 pte_t pte;
1011 kvm_pte_t kpte;
1012 struct kvm_s2_mmu *mmu;
1013
1014 trace_kvm_access_fault(fault_ipa);
1015
1016 spin_lock(&vcpu->kvm->mmu_lock);
1017 mmu = vcpu->arch.hw_mmu;
1018 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1019 spin_unlock(&vcpu->kvm->mmu_lock);
1020
1021 pte = __pte(kpte);
1022 if (pte_valid(pte))
1023 kvm_set_pfn_accessed(pte_pfn(pte));
1024 }
1025
1026 /**
1027 * kvm_handle_guest_abort - handles all 2nd stage aborts
1028 * @vcpu: the VCPU pointer
1029 *
1030 * Any abort that gets to the host is almost guaranteed to be caused by a
1031 * missing second stage translation table entry, which can mean that either the
1032 * guest simply needs more memory and we must allocate an appropriate page or it
1033 * can mean that the guest tried to access I/O memory, which is emulated by user
1034 * space. The distinction is based on the IPA causing the fault and whether this
1035 * memory region has been registered as standard RAM by user space.
1036 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1037 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1038 {
1039 unsigned long fault_status;
1040 phys_addr_t fault_ipa;
1041 struct kvm_memory_slot *memslot;
1042 unsigned long hva;
1043 bool is_iabt, write_fault, writable;
1044 gfn_t gfn;
1045 int ret, idx;
1046
1047 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1048
1049 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1050 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1051
1052 /* Synchronous External Abort? */
1053 if (kvm_vcpu_abt_issea(vcpu)) {
1054 /*
1055 * For RAS the host kernel may handle this abort.
1056 * There is no need to pass the error into the guest.
1057 */
1058 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1059 kvm_inject_vabt(vcpu);
1060
1061 return 1;
1062 }
1063
1064 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1065 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1066
1067 /* Check the stage-2 fault is trans. fault or write fault */
1068 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1069 fault_status != FSC_ACCESS) {
1070 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1071 kvm_vcpu_trap_get_class(vcpu),
1072 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1073 (unsigned long)kvm_vcpu_get_esr(vcpu));
1074 return -EFAULT;
1075 }
1076
1077 idx = srcu_read_lock(&vcpu->kvm->srcu);
1078
1079 gfn = fault_ipa >> PAGE_SHIFT;
1080 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1081 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1082 write_fault = kvm_is_write_fault(vcpu);
1083 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1084 /*
1085 * The guest has put either its instructions or its page-tables
1086 * somewhere it shouldn't have. Userspace won't be able to do
1087 * anything about this (there's no syndrome for a start), so
1088 * re-inject the abort back into the guest.
1089 */
1090 if (is_iabt) {
1091 ret = -ENOEXEC;
1092 goto out;
1093 }
1094
1095 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1096 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1097 ret = 1;
1098 goto out_unlock;
1099 }
1100
1101 /*
1102 * Check for a cache maintenance operation. Since we
1103 * ended-up here, we know it is outside of any memory
1104 * slot. But we can't find out if that is for a device,
1105 * or if the guest is just being stupid. The only thing
1106 * we know for sure is that this range cannot be cached.
1107 *
1108 * So let's assume that the guest is just being
1109 * cautious, and skip the instruction.
1110 */
1111 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1112 kvm_incr_pc(vcpu);
1113 ret = 1;
1114 goto out_unlock;
1115 }
1116
1117 /*
1118 * The IPA is reported as [MAX:12], so we need to
1119 * complement it with the bottom 12 bits from the
1120 * faulting VA. This is always 12 bits, irrespective
1121 * of the page size.
1122 */
1123 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1124 ret = io_mem_abort(vcpu, fault_ipa);
1125 goto out_unlock;
1126 }
1127
1128 /* Userspace should not be able to register out-of-bounds IPAs */
1129 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1130
1131 if (fault_status == FSC_ACCESS) {
1132 handle_access_fault(vcpu, fault_ipa);
1133 ret = 1;
1134 goto out_unlock;
1135 }
1136
1137 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1138 if (ret == 0)
1139 ret = 1;
1140 out:
1141 if (ret == -ENOEXEC) {
1142 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1143 ret = 1;
1144 }
1145 out_unlock:
1146 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1147 return ret;
1148 }
1149
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1150 static int handle_hva_to_gpa(struct kvm *kvm,
1151 unsigned long start,
1152 unsigned long end,
1153 int (*handler)(struct kvm *kvm,
1154 gpa_t gpa, u64 size,
1155 void *data),
1156 void *data)
1157 {
1158 struct kvm_memslots *slots;
1159 struct kvm_memory_slot *memslot;
1160 int ret = 0;
1161
1162 slots = kvm_memslots(kvm);
1163
1164 /* we only care about the pages that the guest sees */
1165 kvm_for_each_memslot(memslot, slots) {
1166 unsigned long hva_start, hva_end;
1167 gfn_t gpa;
1168
1169 hva_start = max(start, memslot->userspace_addr);
1170 hva_end = min(end, memslot->userspace_addr +
1171 (memslot->npages << PAGE_SHIFT));
1172 if (hva_start >= hva_end)
1173 continue;
1174
1175 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1176 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1177 }
1178
1179 return ret;
1180 }
1181
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1182 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1183 {
1184 unsigned flags = *(unsigned *)data;
1185 bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1186
1187 __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1188 return 0;
1189 }
1190
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1191 int kvm_unmap_hva_range(struct kvm *kvm,
1192 unsigned long start, unsigned long end, unsigned flags)
1193 {
1194 if (!kvm->arch.mmu.pgt)
1195 return 0;
1196
1197 trace_kvm_unmap_hva_range(start, end);
1198 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1199 return 0;
1200 }
1201
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1202 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1203 {
1204 kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1205
1206 WARN_ON(size != PAGE_SIZE);
1207
1208 /*
1209 * The MMU notifiers will have unmapped a huge PMD before calling
1210 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1211 * therefore we never need to clear out a huge PMD through this
1212 * calling path and a memcache is not required.
1213 */
1214 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
1215 __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1216 return 0;
1217 }
1218
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1219 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1220 {
1221 unsigned long end = hva + PAGE_SIZE;
1222 kvm_pfn_t pfn = pte_pfn(pte);
1223
1224 if (!kvm->arch.mmu.pgt)
1225 return 0;
1226
1227 trace_kvm_set_spte_hva(hva);
1228
1229 /*
1230 * We've moved a page around, probably through CoW, so let's treat it
1231 * just like a translation fault and clean the cache to the PoC.
1232 */
1233 clean_dcache_guest_page(pfn, PAGE_SIZE);
1234 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1235 return 0;
1236 }
1237
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1238 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1239 {
1240 pte_t pte;
1241 kvm_pte_t kpte;
1242
1243 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1244 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
1245 pte = __pte(kpte);
1246 return pte_valid(pte) && pte_young(pte);
1247 }
1248
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1249 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1250 {
1251 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1252 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1253 }
1254
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1255 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1256 {
1257 if (!kvm->arch.mmu.pgt)
1258 return 0;
1259 trace_kvm_age_hva(start, end);
1260 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1261 }
1262
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1263 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1264 {
1265 if (!kvm->arch.mmu.pgt)
1266 return 0;
1267 trace_kvm_test_age_hva(hva);
1268 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1269 kvm_test_age_hva_handler, NULL);
1270 }
1271
kvm_mmu_get_httbr(void)1272 phys_addr_t kvm_mmu_get_httbr(void)
1273 {
1274 return __pa(hyp_pgtable->pgd);
1275 }
1276
kvm_get_idmap_vector(void)1277 phys_addr_t kvm_get_idmap_vector(void)
1278 {
1279 return hyp_idmap_vector;
1280 }
1281
kvm_map_idmap_text(void)1282 static int kvm_map_idmap_text(void)
1283 {
1284 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1285 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1286 PAGE_HYP_EXEC);
1287 if (err)
1288 kvm_err("Failed to idmap %lx-%lx\n",
1289 hyp_idmap_start, hyp_idmap_end);
1290
1291 return err;
1292 }
1293
kvm_hyp_zalloc_page(void * arg)1294 static void *kvm_hyp_zalloc_page(void *arg)
1295 {
1296 return (void *)get_zeroed_page(GFP_KERNEL);
1297 }
1298
1299 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1300 .zalloc_page = kvm_hyp_zalloc_page,
1301 .get_page = kvm_host_get_page,
1302 .put_page = kvm_host_put_page,
1303 .phys_to_virt = kvm_host_va,
1304 .virt_to_phys = kvm_host_pa,
1305 };
1306
kvm_mmu_init(u32 * hyp_va_bits)1307 int kvm_mmu_init(u32 *hyp_va_bits)
1308 {
1309 int err;
1310
1311 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1312 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1313 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1314 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1315 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1316
1317 /*
1318 * We rely on the linker script to ensure at build time that the HYP
1319 * init code does not cross a page boundary.
1320 */
1321 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1322
1323 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1324 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1325 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1326 kvm_debug("HYP VA range: %lx:%lx\n",
1327 kern_hyp_va(PAGE_OFFSET),
1328 kern_hyp_va((unsigned long)high_memory - 1));
1329
1330 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1331 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1332 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1333 /*
1334 * The idmap page is intersecting with the VA space,
1335 * it is not safe to continue further.
1336 */
1337 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1338 err = -EINVAL;
1339 goto out;
1340 }
1341
1342 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1343 if (!hyp_pgtable) {
1344 kvm_err("Hyp mode page-table not allocated\n");
1345 err = -ENOMEM;
1346 goto out;
1347 }
1348
1349 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1350 if (err)
1351 goto out_free_pgtable;
1352
1353 err = kvm_map_idmap_text();
1354 if (err)
1355 goto out_destroy_pgtable;
1356
1357 io_map_base = hyp_idmap_start;
1358 return 0;
1359
1360 out_destroy_pgtable:
1361 kvm_pgtable_hyp_destroy(hyp_pgtable);
1362 out_free_pgtable:
1363 kfree(hyp_pgtable);
1364 hyp_pgtable = NULL;
1365 out:
1366 return err;
1367 }
1368
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1369 void kvm_arch_commit_memory_region(struct kvm *kvm,
1370 const struct kvm_userspace_memory_region *mem,
1371 struct kvm_memory_slot *old,
1372 const struct kvm_memory_slot *new,
1373 enum kvm_mr_change change)
1374 {
1375 /*
1376 * At this point memslot has been committed and there is an
1377 * allocated dirty_bitmap[], dirty pages will be tracked while the
1378 * memory slot is write protected.
1379 */
1380 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1381 /*
1382 * If we're with initial-all-set, we don't need to write
1383 * protect any pages because they're all reported as dirty.
1384 * Huge pages and normal pages will be write protect gradually.
1385 */
1386 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1387 kvm_mmu_wp_memory_region(kvm, mem->slot);
1388 }
1389 }
1390 }
1391
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1392 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1393 struct kvm_memory_slot *memslot,
1394 const struct kvm_userspace_memory_region *mem,
1395 enum kvm_mr_change change)
1396 {
1397 hva_t hva = mem->userspace_addr;
1398 hva_t reg_end = hva + mem->memory_size;
1399 bool writable = !(mem->flags & KVM_MEM_READONLY);
1400 int ret = 0;
1401
1402 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1403 change != KVM_MR_FLAGS_ONLY)
1404 return 0;
1405
1406 /*
1407 * Prevent userspace from creating a memory region outside of the IPA
1408 * space addressable by the KVM guest IPA space.
1409 */
1410 if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1411 return -EFAULT;
1412
1413 mmap_read_lock(current->mm);
1414 /*
1415 * A memory region could potentially cover multiple VMAs, and any holes
1416 * between them, so iterate over all of them to find out if we can map
1417 * any of them right now.
1418 *
1419 * +--------------------------------------------+
1420 * +---------------+----------------+ +----------------+
1421 * | : VMA 1 | VMA 2 | | VMA 3 : |
1422 * +---------------+----------------+ +----------------+
1423 * | memory region |
1424 * +--------------------------------------------+
1425 */
1426 do {
1427 struct vm_area_struct *vma = find_vma(current->mm, hva);
1428 hva_t vm_start, vm_end;
1429
1430 if (!vma || vma->vm_start >= reg_end)
1431 break;
1432
1433 /*
1434 * Take the intersection of this VMA with the memory region
1435 */
1436 vm_start = max(hva, vma->vm_start);
1437 vm_end = min(reg_end, vma->vm_end);
1438
1439 if (vma->vm_flags & VM_PFNMAP) {
1440 gpa_t gpa = mem->guest_phys_addr +
1441 (vm_start - mem->userspace_addr);
1442 phys_addr_t pa;
1443
1444 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1445 pa += vm_start - vma->vm_start;
1446
1447 /* IO region dirty page logging not allowed */
1448 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1449 ret = -EINVAL;
1450 goto out;
1451 }
1452
1453 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1454 vm_end - vm_start,
1455 writable);
1456 if (ret)
1457 break;
1458 }
1459 hva = vm_end;
1460 } while (hva < reg_end);
1461
1462 if (change == KVM_MR_FLAGS_ONLY)
1463 goto out;
1464
1465 spin_lock(&kvm->mmu_lock);
1466 if (ret)
1467 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1468 else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1469 stage2_flush_memslot(kvm, memslot);
1470 spin_unlock(&kvm->mmu_lock);
1471 out:
1472 mmap_read_unlock(current->mm);
1473 return ret;
1474 }
1475
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1476 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1477 {
1478 }
1479
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1480 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1481 {
1482 }
1483
kvm_arch_flush_shadow_all(struct kvm * kvm)1484 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1485 {
1486 kvm_free_stage2_pgd(&kvm->arch.mmu);
1487 }
1488
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1489 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1490 struct kvm_memory_slot *slot)
1491 {
1492 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1493 phys_addr_t size = slot->npages << PAGE_SHIFT;
1494
1495 spin_lock(&kvm->mmu_lock);
1496 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1497 spin_unlock(&kvm->mmu_lock);
1498 }
1499
1500 /*
1501 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1502 *
1503 * Main problems:
1504 * - S/W ops are local to a CPU (not broadcast)
1505 * - We have line migration behind our back (speculation)
1506 * - System caches don't support S/W at all (damn!)
1507 *
1508 * In the face of the above, the best we can do is to try and convert
1509 * S/W ops to VA ops. Because the guest is not allowed to infer the
1510 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1511 * which is a rather good thing for us.
1512 *
1513 * Also, it is only used when turning caches on/off ("The expected
1514 * usage of the cache maintenance instructions that operate by set/way
1515 * is associated with the cache maintenance instructions associated
1516 * with the powerdown and powerup of caches, if this is required by
1517 * the implementation.").
1518 *
1519 * We use the following policy:
1520 *
1521 * - If we trap a S/W operation, we enable VM trapping to detect
1522 * caches being turned on/off, and do a full clean.
1523 *
1524 * - We flush the caches on both caches being turned on and off.
1525 *
1526 * - Once the caches are enabled, we stop trapping VM ops.
1527 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1528 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1529 {
1530 unsigned long hcr = *vcpu_hcr(vcpu);
1531
1532 /*
1533 * If this is the first time we do a S/W operation
1534 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1535 * VM trapping.
1536 *
1537 * Otherwise, rely on the VM trapping to wait for the MMU +
1538 * Caches to be turned off. At that point, we'll be able to
1539 * clean the caches again.
1540 */
1541 if (!(hcr & HCR_TVM)) {
1542 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1543 vcpu_has_cache_enabled(vcpu));
1544 stage2_flush_vm(vcpu->kvm);
1545 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1546 }
1547 }
1548
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1549 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1550 {
1551 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1552
1553 /*
1554 * If switching the MMU+caches on, need to invalidate the caches.
1555 * If switching it off, need to clean the caches.
1556 * Clean + invalidate does the trick always.
1557 */
1558 if (now_enabled != was_enabled)
1559 stage2_flush_vm(vcpu->kvm);
1560
1561 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1562 if (now_enabled)
1563 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1564
1565 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1566 }
1567