• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @compact_wq:	workqueue for page layout background optimization
148  * @release_wq:	workqueue for safe page release
149  * @work:	work_struct for safe page release
150  * @inode:	inode for z3fold pseudo filesystem
151  *
152  * This structure is allocated at pool creation time and maintains metadata
153  * pertaining to a particular z3fold pool.
154  */
155 struct z3fold_pool {
156 	const char *name;
157 	spinlock_t lock;
158 	spinlock_t stale_lock;
159 	struct list_head *unbuddied;
160 	struct list_head lru;
161 	struct list_head stale;
162 	atomic64_t pages_nr;
163 	struct kmem_cache *c_handle;
164 	const struct z3fold_ops *ops;
165 	struct zpool *zpool;
166 	const struct zpool_ops *zpool_ops;
167 	struct workqueue_struct *compact_wq;
168 	struct workqueue_struct *release_wq;
169 	struct work_struct work;
170 	struct inode *inode;
171 };
172 
173 /*
174  * Internal z3fold page flags
175  */
176 enum z3fold_page_flags {
177 	PAGE_HEADLESS = 0,
178 	MIDDLE_CHUNK_MAPPED,
179 	NEEDS_COMPACTING,
180 	PAGE_STALE,
181 	PAGE_CLAIMED, /* by either reclaim or free */
182 };
183 
184 /*
185  * handle flags, go under HANDLE_FLAG_MASK
186  */
187 enum z3fold_handle_flags {
188 	HANDLES_NOFREE = 0,
189 };
190 
191 /*
192  * Forward declarations
193  */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196 
197 /*****************
198  * Helpers
199 *****************/
200 
201 /* Converts an allocation size in bytes to size in z3fold chunks */
size_to_chunks(size_t size)202 static int size_to_chunks(size_t size)
203 {
204 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206 
207 #define for_each_unbuddied_list(_iter, _begin) \
208 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209 
alloc_slots(struct z3fold_pool * pool,gfp_t gfp)210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 							gfp_t gfp)
212 {
213 	struct z3fold_buddy_slots *slots;
214 
215 	slots = kmem_cache_zalloc(pool->c_handle,
216 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217 
218 	if (slots) {
219 		/* It will be freed separately in free_handle(). */
220 		kmemleak_not_leak(slots);
221 		slots->pool = (unsigned long)pool;
222 		rwlock_init(&slots->lock);
223 	}
224 
225 	return slots;
226 }
227 
slots_to_pool(struct z3fold_buddy_slots * s)228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232 
handle_to_slots(unsigned long handle)233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237 
238 /* Lock a z3fold page */
z3fold_page_lock(struct z3fold_header * zhdr)239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 	spin_lock(&zhdr->page_lock);
242 }
243 
244 /* Try to lock a z3fold page */
z3fold_page_trylock(struct z3fold_header * zhdr)245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 	return spin_trylock(&zhdr->page_lock);
248 }
249 
250 /* Unlock a z3fold page */
z3fold_page_unlock(struct z3fold_header * zhdr)251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 	spin_unlock(&zhdr->page_lock);
254 }
255 
256 
__get_z3fold_header(unsigned long handle,bool lock)257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 							bool lock)
259 {
260 	struct z3fold_buddy_slots *slots;
261 	struct z3fold_header *zhdr;
262 	int locked = 0;
263 
264 	if (!(handle & (1 << PAGE_HEADLESS))) {
265 		slots = handle_to_slots(handle);
266 		do {
267 			unsigned long addr;
268 
269 			read_lock(&slots->lock);
270 			addr = *(unsigned long *)handle;
271 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 			if (lock)
273 				locked = z3fold_page_trylock(zhdr);
274 			read_unlock(&slots->lock);
275 			if (locked)
276 				break;
277 			cpu_relax();
278 		} while (lock);
279 	} else {
280 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 	}
282 
283 	return zhdr;
284 }
285 
286 /* Returns the z3fold page where a given handle is stored */
handle_to_z3fold_header(unsigned long h)287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 	return __get_z3fold_header(h, false);
290 }
291 
292 /* return locked z3fold page if it's not headless */
get_z3fold_header(unsigned long h)293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 	return __get_z3fold_header(h, true);
296 }
297 
put_z3fold_header(struct z3fold_header * zhdr)298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 	struct page *page = virt_to_page(zhdr);
301 
302 	if (!test_bit(PAGE_HEADLESS, &page->private))
303 		z3fold_page_unlock(zhdr);
304 }
305 
free_handle(unsigned long handle,struct z3fold_header * zhdr)306 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
307 {
308 	struct z3fold_buddy_slots *slots;
309 	int i;
310 	bool is_free;
311 
312 	if (handle & (1 << PAGE_HEADLESS))
313 		return;
314 
315 	if (WARN_ON(*(unsigned long *)handle == 0))
316 		return;
317 
318 	slots = handle_to_slots(handle);
319 	write_lock(&slots->lock);
320 	*(unsigned long *)handle = 0;
321 
322 	if (test_bit(HANDLES_NOFREE, &slots->pool)) {
323 		write_unlock(&slots->lock);
324 		return; /* simple case, nothing else to do */
325 	}
326 
327 	if (zhdr->slots != slots)
328 		zhdr->foreign_handles--;
329 
330 	is_free = true;
331 	for (i = 0; i <= BUDDY_MASK; i++) {
332 		if (slots->slot[i]) {
333 			is_free = false;
334 			break;
335 		}
336 	}
337 	write_unlock(&slots->lock);
338 
339 	if (is_free) {
340 		struct z3fold_pool *pool = slots_to_pool(slots);
341 
342 		if (zhdr->slots == slots)
343 			zhdr->slots = NULL;
344 		kmem_cache_free(pool->c_handle, slots);
345 	}
346 }
347 
z3fold_init_fs_context(struct fs_context * fc)348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352 
353 static struct file_system_type z3fold_fs = {
354 	.name		= "z3fold",
355 	.init_fs_context = z3fold_init_fs_context,
356 	.kill_sb	= kill_anon_super,
357 };
358 
359 static struct vfsmount *z3fold_mnt;
z3fold_mount(void)360 static int z3fold_mount(void)
361 {
362 	int ret = 0;
363 
364 	z3fold_mnt = kern_mount(&z3fold_fs);
365 	if (IS_ERR(z3fold_mnt))
366 		ret = PTR_ERR(z3fold_mnt);
367 
368 	return ret;
369 }
370 
z3fold_unmount(void)371 static void z3fold_unmount(void)
372 {
373 	kern_unmount(z3fold_mnt);
374 }
375 
376 static const struct address_space_operations z3fold_aops;
z3fold_register_migration(struct z3fold_pool * pool)377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 	if (IS_ERR(pool->inode)) {
381 		pool->inode = NULL;
382 		return 1;
383 	}
384 
385 	pool->inode->i_mapping->private_data = pool;
386 	pool->inode->i_mapping->a_ops = &z3fold_aops;
387 	return 0;
388 }
389 
z3fold_unregister_migration(struct z3fold_pool * pool)390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 	if (pool->inode)
393 		iput(pool->inode);
394  }
395 
396 /* Initializes the z3fold header of a newly allocated z3fold page */
init_z3fold_page(struct page * page,bool headless,struct z3fold_pool * pool,gfp_t gfp)397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 					struct z3fold_pool *pool, gfp_t gfp)
399 {
400 	struct z3fold_header *zhdr = page_address(page);
401 	struct z3fold_buddy_slots *slots;
402 
403 	INIT_LIST_HEAD(&page->lru);
404 	clear_bit(PAGE_HEADLESS, &page->private);
405 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 	clear_bit(NEEDS_COMPACTING, &page->private);
407 	clear_bit(PAGE_STALE, &page->private);
408 	clear_bit(PAGE_CLAIMED, &page->private);
409 	if (headless)
410 		return zhdr;
411 
412 	slots = alloc_slots(pool, gfp);
413 	if (!slots)
414 		return NULL;
415 
416 	spin_lock_init(&zhdr->page_lock);
417 	kref_init(&zhdr->refcount);
418 	zhdr->first_chunks = 0;
419 	zhdr->middle_chunks = 0;
420 	zhdr->last_chunks = 0;
421 	zhdr->first_num = 0;
422 	zhdr->start_middle = 0;
423 	zhdr->cpu = -1;
424 	zhdr->foreign_handles = 0;
425 	zhdr->mapped_count = 0;
426 	zhdr->slots = slots;
427 	zhdr->pool = pool;
428 	INIT_LIST_HEAD(&zhdr->buddy);
429 	INIT_WORK(&zhdr->work, compact_page_work);
430 	return zhdr;
431 }
432 
433 /* Resets the struct page fields and frees the page */
free_z3fold_page(struct page * page,bool headless)434 static void free_z3fold_page(struct page *page, bool headless)
435 {
436 	if (!headless) {
437 		lock_page(page);
438 		__ClearPageMovable(page);
439 		unlock_page(page);
440 	}
441 	ClearPagePrivate(page);
442 	__free_page(page);
443 }
444 
445 /* Helper function to build the index */
__idx(struct z3fold_header * zhdr,enum buddy bud)446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
447 {
448 	return (bud + zhdr->first_num) & BUDDY_MASK;
449 }
450 
451 /*
452  * Encodes the handle of a particular buddy within a z3fold page
453  * Pool lock should be held as this function accesses first_num
454  */
__encode_handle(struct z3fold_header * zhdr,struct z3fold_buddy_slots * slots,enum buddy bud)455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 				struct z3fold_buddy_slots *slots,
457 				enum buddy bud)
458 {
459 	unsigned long h = (unsigned long)zhdr;
460 	int idx = 0;
461 
462 	/*
463 	 * For a headless page, its handle is its pointer with the extra
464 	 * PAGE_HEADLESS bit set
465 	 */
466 	if (bud == HEADLESS)
467 		return h | (1 << PAGE_HEADLESS);
468 
469 	/* otherwise, return pointer to encoded handle */
470 	idx = __idx(zhdr, bud);
471 	h += idx;
472 	if (bud == LAST)
473 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
474 
475 	write_lock(&slots->lock);
476 	slots->slot[idx] = h;
477 	write_unlock(&slots->lock);
478 	return (unsigned long)&slots->slot[idx];
479 }
480 
encode_handle(struct z3fold_header * zhdr,enum buddy bud)481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
482 {
483 	return __encode_handle(zhdr, zhdr->slots, bud);
484 }
485 
486 /* only for LAST bud, returns zero otherwise */
handle_to_chunks(unsigned long handle)487 static unsigned short handle_to_chunks(unsigned long handle)
488 {
489 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 	unsigned long addr;
491 
492 	read_lock(&slots->lock);
493 	addr = *(unsigned long *)handle;
494 	read_unlock(&slots->lock);
495 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
496 }
497 
498 /*
499  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500  *  but that doesn't matter. because the masking will result in the
501  *  correct buddy number.
502  */
handle_to_buddy(unsigned long handle)503 static enum buddy handle_to_buddy(unsigned long handle)
504 {
505 	struct z3fold_header *zhdr;
506 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 	unsigned long addr;
508 
509 	read_lock(&slots->lock);
510 	WARN_ON(handle & (1 << PAGE_HEADLESS));
511 	addr = *(unsigned long *)handle;
512 	read_unlock(&slots->lock);
513 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 	return (addr - zhdr->first_num) & BUDDY_MASK;
515 }
516 
zhdr_to_pool(struct z3fold_header * zhdr)517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
518 {
519 	return zhdr->pool;
520 }
521 
__release_z3fold_page(struct z3fold_header * zhdr,bool locked)522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
523 {
524 	struct page *page = virt_to_page(zhdr);
525 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526 
527 	WARN_ON(!list_empty(&zhdr->buddy));
528 	set_bit(PAGE_STALE, &page->private);
529 	clear_bit(NEEDS_COMPACTING, &page->private);
530 	spin_lock(&pool->lock);
531 	if (!list_empty(&page->lru))
532 		list_del_init(&page->lru);
533 	spin_unlock(&pool->lock);
534 
535 	if (locked)
536 		z3fold_page_unlock(zhdr);
537 
538 	spin_lock(&pool->stale_lock);
539 	list_add(&zhdr->buddy, &pool->stale);
540 	queue_work(pool->release_wq, &pool->work);
541 	spin_unlock(&pool->stale_lock);
542 }
543 
544 static void __attribute__((__unused__))
release_z3fold_page(struct kref * ref)545 			release_z3fold_page(struct kref *ref)
546 {
547 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
548 						refcount);
549 	__release_z3fold_page(zhdr, false);
550 }
551 
release_z3fold_page_locked(struct kref * ref)552 static void release_z3fold_page_locked(struct kref *ref)
553 {
554 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
555 						refcount);
556 	WARN_ON(z3fold_page_trylock(zhdr));
557 	__release_z3fold_page(zhdr, true);
558 }
559 
release_z3fold_page_locked_list(struct kref * ref)560 static void release_z3fold_page_locked_list(struct kref *ref)
561 {
562 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
563 					       refcount);
564 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
565 
566 	spin_lock(&pool->lock);
567 	list_del_init(&zhdr->buddy);
568 	spin_unlock(&pool->lock);
569 
570 	WARN_ON(z3fold_page_trylock(zhdr));
571 	__release_z3fold_page(zhdr, true);
572 }
573 
free_pages_work(struct work_struct * w)574 static void free_pages_work(struct work_struct *w)
575 {
576 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
577 
578 	spin_lock(&pool->stale_lock);
579 	while (!list_empty(&pool->stale)) {
580 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
581 						struct z3fold_header, buddy);
582 		struct page *page = virt_to_page(zhdr);
583 
584 		list_del(&zhdr->buddy);
585 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
586 			continue;
587 		spin_unlock(&pool->stale_lock);
588 		cancel_work_sync(&zhdr->work);
589 		free_z3fold_page(page, false);
590 		cond_resched();
591 		spin_lock(&pool->stale_lock);
592 	}
593 	spin_unlock(&pool->stale_lock);
594 }
595 
596 /*
597  * Returns the number of free chunks in a z3fold page.
598  * NB: can't be used with HEADLESS pages.
599  */
num_free_chunks(struct z3fold_header * zhdr)600 static int num_free_chunks(struct z3fold_header *zhdr)
601 {
602 	int nfree;
603 	/*
604 	 * If there is a middle object, pick up the bigger free space
605 	 * either before or after it. Otherwise just subtract the number
606 	 * of chunks occupied by the first and the last objects.
607 	 */
608 	if (zhdr->middle_chunks != 0) {
609 		int nfree_before = zhdr->first_chunks ?
610 			0 : zhdr->start_middle - ZHDR_CHUNKS;
611 		int nfree_after = zhdr->last_chunks ?
612 			0 : TOTAL_CHUNKS -
613 				(zhdr->start_middle + zhdr->middle_chunks);
614 		nfree = max(nfree_before, nfree_after);
615 	} else
616 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
617 	return nfree;
618 }
619 
620 /* Add to the appropriate unbuddied list */
add_to_unbuddied(struct z3fold_pool * pool,struct z3fold_header * zhdr)621 static inline void add_to_unbuddied(struct z3fold_pool *pool,
622 				struct z3fold_header *zhdr)
623 {
624 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
625 			zhdr->middle_chunks == 0) {
626 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
627 
628 		int freechunks = num_free_chunks(zhdr);
629 		spin_lock(&pool->lock);
630 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
631 		spin_unlock(&pool->lock);
632 		zhdr->cpu = smp_processor_id();
633 		put_cpu_ptr(pool->unbuddied);
634 	}
635 }
636 
get_free_buddy(struct z3fold_header * zhdr,int chunks)637 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
638 {
639 	enum buddy bud = HEADLESS;
640 
641 	if (zhdr->middle_chunks) {
642 		if (!zhdr->first_chunks &&
643 		    chunks <= zhdr->start_middle - ZHDR_CHUNKS)
644 			bud = FIRST;
645 		else if (!zhdr->last_chunks)
646 			bud = LAST;
647 	} else {
648 		if (!zhdr->first_chunks)
649 			bud = FIRST;
650 		else if (!zhdr->last_chunks)
651 			bud = LAST;
652 		else
653 			bud = MIDDLE;
654 	}
655 
656 	return bud;
657 }
658 
mchunk_memmove(struct z3fold_header * zhdr,unsigned short dst_chunk)659 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
660 				unsigned short dst_chunk)
661 {
662 	void *beg = zhdr;
663 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
664 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
665 		       zhdr->middle_chunks << CHUNK_SHIFT);
666 }
667 
buddy_single(struct z3fold_header * zhdr)668 static inline bool buddy_single(struct z3fold_header *zhdr)
669 {
670 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
671 			(zhdr->first_chunks && zhdr->last_chunks) ||
672 			(zhdr->middle_chunks && zhdr->last_chunks));
673 }
674 
compact_single_buddy(struct z3fold_header * zhdr)675 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
676 {
677 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
678 	void *p = zhdr;
679 	unsigned long old_handle = 0;
680 	size_t sz = 0;
681 	struct z3fold_header *new_zhdr = NULL;
682 	int first_idx = __idx(zhdr, FIRST);
683 	int middle_idx = __idx(zhdr, MIDDLE);
684 	int last_idx = __idx(zhdr, LAST);
685 	unsigned short *moved_chunks = NULL;
686 
687 	/*
688 	 * No need to protect slots here -- all the slots are "local" and
689 	 * the page lock is already taken
690 	 */
691 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
692 		p += ZHDR_SIZE_ALIGNED;
693 		sz = zhdr->first_chunks << CHUNK_SHIFT;
694 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
695 		moved_chunks = &zhdr->first_chunks;
696 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
697 		p += zhdr->start_middle << CHUNK_SHIFT;
698 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
699 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
700 		moved_chunks = &zhdr->middle_chunks;
701 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
702 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
703 		sz = zhdr->last_chunks << CHUNK_SHIFT;
704 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
705 		moved_chunks = &zhdr->last_chunks;
706 	}
707 
708 	if (sz > 0) {
709 		enum buddy new_bud = HEADLESS;
710 		short chunks = size_to_chunks(sz);
711 		void *q;
712 
713 		new_zhdr = __z3fold_alloc(pool, sz, false);
714 		if (!new_zhdr)
715 			return NULL;
716 
717 		if (WARN_ON(new_zhdr == zhdr))
718 			goto out_fail;
719 
720 		new_bud = get_free_buddy(new_zhdr, chunks);
721 		q = new_zhdr;
722 		switch (new_bud) {
723 		case FIRST:
724 			new_zhdr->first_chunks = chunks;
725 			q += ZHDR_SIZE_ALIGNED;
726 			break;
727 		case MIDDLE:
728 			new_zhdr->middle_chunks = chunks;
729 			new_zhdr->start_middle =
730 				new_zhdr->first_chunks + ZHDR_CHUNKS;
731 			q += new_zhdr->start_middle << CHUNK_SHIFT;
732 			break;
733 		case LAST:
734 			new_zhdr->last_chunks = chunks;
735 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
736 			break;
737 		default:
738 			goto out_fail;
739 		}
740 		new_zhdr->foreign_handles++;
741 		memcpy(q, p, sz);
742 		write_lock(&zhdr->slots->lock);
743 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
744 			__idx(new_zhdr, new_bud);
745 		if (new_bud == LAST)
746 			*(unsigned long *)old_handle |=
747 					(new_zhdr->last_chunks << BUDDY_SHIFT);
748 		write_unlock(&zhdr->slots->lock);
749 		add_to_unbuddied(pool, new_zhdr);
750 		z3fold_page_unlock(new_zhdr);
751 
752 		*moved_chunks = 0;
753 	}
754 
755 	return new_zhdr;
756 
757 out_fail:
758 	if (new_zhdr) {
759 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
760 			atomic64_dec(&pool->pages_nr);
761 		else {
762 			add_to_unbuddied(pool, new_zhdr);
763 			z3fold_page_unlock(new_zhdr);
764 		}
765 	}
766 	return NULL;
767 
768 }
769 
770 #define BIG_CHUNK_GAP	3
771 /* Has to be called with lock held */
z3fold_compact_page(struct z3fold_header * zhdr)772 static int z3fold_compact_page(struct z3fold_header *zhdr)
773 {
774 	struct page *page = virt_to_page(zhdr);
775 
776 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
777 		return 0; /* can't move middle chunk, it's used */
778 
779 	if (unlikely(PageIsolated(page)))
780 		return 0;
781 
782 	if (zhdr->middle_chunks == 0)
783 		return 0; /* nothing to compact */
784 
785 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
786 		/* move to the beginning */
787 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
788 		zhdr->first_chunks = zhdr->middle_chunks;
789 		zhdr->middle_chunks = 0;
790 		zhdr->start_middle = 0;
791 		zhdr->first_num++;
792 		return 1;
793 	}
794 
795 	/*
796 	 * moving data is expensive, so let's only do that if
797 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
798 	 */
799 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
800 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
801 			BIG_CHUNK_GAP) {
802 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
803 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
804 		return 1;
805 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
806 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
807 					+ zhdr->middle_chunks) >=
808 			BIG_CHUNK_GAP) {
809 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
810 			zhdr->middle_chunks;
811 		mchunk_memmove(zhdr, new_start);
812 		zhdr->start_middle = new_start;
813 		return 1;
814 	}
815 
816 	return 0;
817 }
818 
do_compact_page(struct z3fold_header * zhdr,bool locked)819 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
820 {
821 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
822 	struct page *page;
823 
824 	page = virt_to_page(zhdr);
825 	if (locked)
826 		WARN_ON(z3fold_page_trylock(zhdr));
827 	else
828 		z3fold_page_lock(zhdr);
829 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
830 		z3fold_page_unlock(zhdr);
831 		return;
832 	}
833 	spin_lock(&pool->lock);
834 	list_del_init(&zhdr->buddy);
835 	spin_unlock(&pool->lock);
836 
837 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
838 		atomic64_dec(&pool->pages_nr);
839 		return;
840 	}
841 
842 	if (test_bit(PAGE_STALE, &page->private) ||
843 	    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
844 		z3fold_page_unlock(zhdr);
845 		return;
846 	}
847 
848 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
849 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
850 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
851 			atomic64_dec(&pool->pages_nr);
852 		else {
853 			clear_bit(PAGE_CLAIMED, &page->private);
854 			z3fold_page_unlock(zhdr);
855 		}
856 		return;
857 	}
858 
859 	z3fold_compact_page(zhdr);
860 	add_to_unbuddied(pool, zhdr);
861 	clear_bit(PAGE_CLAIMED, &page->private);
862 	z3fold_page_unlock(zhdr);
863 }
864 
compact_page_work(struct work_struct * w)865 static void compact_page_work(struct work_struct *w)
866 {
867 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
868 						work);
869 
870 	do_compact_page(zhdr, false);
871 }
872 
873 /* returns _locked_ z3fold page header or NULL */
__z3fold_alloc(struct z3fold_pool * pool,size_t size,bool can_sleep)874 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
875 						size_t size, bool can_sleep)
876 {
877 	struct z3fold_header *zhdr = NULL;
878 	struct page *page;
879 	struct list_head *unbuddied;
880 	int chunks = size_to_chunks(size), i;
881 
882 lookup:
883 	/* First, try to find an unbuddied z3fold page. */
884 	unbuddied = get_cpu_ptr(pool->unbuddied);
885 	for_each_unbuddied_list(i, chunks) {
886 		struct list_head *l = &unbuddied[i];
887 
888 		zhdr = list_first_entry_or_null(READ_ONCE(l),
889 					struct z3fold_header, buddy);
890 
891 		if (!zhdr)
892 			continue;
893 
894 		/* Re-check under lock. */
895 		spin_lock(&pool->lock);
896 		l = &unbuddied[i];
897 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
898 						struct z3fold_header, buddy)) ||
899 		    !z3fold_page_trylock(zhdr)) {
900 			spin_unlock(&pool->lock);
901 			zhdr = NULL;
902 			put_cpu_ptr(pool->unbuddied);
903 			if (can_sleep)
904 				cond_resched();
905 			goto lookup;
906 		}
907 		list_del_init(&zhdr->buddy);
908 		zhdr->cpu = -1;
909 		spin_unlock(&pool->lock);
910 
911 		page = virt_to_page(zhdr);
912 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
913 		    test_bit(PAGE_CLAIMED, &page->private)) {
914 			z3fold_page_unlock(zhdr);
915 			zhdr = NULL;
916 			put_cpu_ptr(pool->unbuddied);
917 			if (can_sleep)
918 				cond_resched();
919 			goto lookup;
920 		}
921 
922 		/*
923 		 * this page could not be removed from its unbuddied
924 		 * list while pool lock was held, and then we've taken
925 		 * page lock so kref_put could not be called before
926 		 * we got here, so it's safe to just call kref_get()
927 		 */
928 		kref_get(&zhdr->refcount);
929 		break;
930 	}
931 	put_cpu_ptr(pool->unbuddied);
932 
933 	if (!zhdr) {
934 		int cpu;
935 
936 		/* look for _exact_ match on other cpus' lists */
937 		for_each_online_cpu(cpu) {
938 			struct list_head *l;
939 
940 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
941 			spin_lock(&pool->lock);
942 			l = &unbuddied[chunks];
943 
944 			zhdr = list_first_entry_or_null(READ_ONCE(l),
945 						struct z3fold_header, buddy);
946 
947 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
948 				spin_unlock(&pool->lock);
949 				zhdr = NULL;
950 				continue;
951 			}
952 			list_del_init(&zhdr->buddy);
953 			zhdr->cpu = -1;
954 			spin_unlock(&pool->lock);
955 
956 			page = virt_to_page(zhdr);
957 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
958 			    test_bit(PAGE_CLAIMED, &page->private)) {
959 				z3fold_page_unlock(zhdr);
960 				zhdr = NULL;
961 				if (can_sleep)
962 					cond_resched();
963 				continue;
964 			}
965 			kref_get(&zhdr->refcount);
966 			break;
967 		}
968 	}
969 
970 	if (zhdr && !zhdr->slots)
971 		zhdr->slots = alloc_slots(pool,
972 					can_sleep ? GFP_NOIO : GFP_ATOMIC);
973 	return zhdr;
974 }
975 
976 /*
977  * API Functions
978  */
979 
980 /**
981  * z3fold_create_pool() - create a new z3fold pool
982  * @name:	pool name
983  * @gfp:	gfp flags when allocating the z3fold pool structure
984  * @ops:	user-defined operations for the z3fold pool
985  *
986  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
987  * failed.
988  */
z3fold_create_pool(const char * name,gfp_t gfp,const struct z3fold_ops * ops)989 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
990 		const struct z3fold_ops *ops)
991 {
992 	struct z3fold_pool *pool = NULL;
993 	int i, cpu;
994 
995 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
996 	if (!pool)
997 		goto out;
998 	pool->c_handle = kmem_cache_create("z3fold_handle",
999 				sizeof(struct z3fold_buddy_slots),
1000 				SLOTS_ALIGN, 0, NULL);
1001 	if (!pool->c_handle)
1002 		goto out_c;
1003 	spin_lock_init(&pool->lock);
1004 	spin_lock_init(&pool->stale_lock);
1005 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1006 	if (!pool->unbuddied)
1007 		goto out_pool;
1008 	for_each_possible_cpu(cpu) {
1009 		struct list_head *unbuddied =
1010 				per_cpu_ptr(pool->unbuddied, cpu);
1011 		for_each_unbuddied_list(i, 0)
1012 			INIT_LIST_HEAD(&unbuddied[i]);
1013 	}
1014 	INIT_LIST_HEAD(&pool->lru);
1015 	INIT_LIST_HEAD(&pool->stale);
1016 	atomic64_set(&pool->pages_nr, 0);
1017 	pool->name = name;
1018 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1019 	if (!pool->compact_wq)
1020 		goto out_unbuddied;
1021 	pool->release_wq = create_singlethread_workqueue(pool->name);
1022 	if (!pool->release_wq)
1023 		goto out_wq;
1024 	if (z3fold_register_migration(pool))
1025 		goto out_rwq;
1026 	INIT_WORK(&pool->work, free_pages_work);
1027 	pool->ops = ops;
1028 	return pool;
1029 
1030 out_rwq:
1031 	destroy_workqueue(pool->release_wq);
1032 out_wq:
1033 	destroy_workqueue(pool->compact_wq);
1034 out_unbuddied:
1035 	free_percpu(pool->unbuddied);
1036 out_pool:
1037 	kmem_cache_destroy(pool->c_handle);
1038 out_c:
1039 	kfree(pool);
1040 out:
1041 	return NULL;
1042 }
1043 
1044 /**
1045  * z3fold_destroy_pool() - destroys an existing z3fold pool
1046  * @pool:	the z3fold pool to be destroyed
1047  *
1048  * The pool should be emptied before this function is called.
1049  */
z3fold_destroy_pool(struct z3fold_pool * pool)1050 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1051 {
1052 	kmem_cache_destroy(pool->c_handle);
1053 
1054 	/*
1055 	 * We need to destroy pool->compact_wq before pool->release_wq,
1056 	 * as any pending work on pool->compact_wq will call
1057 	 * queue_work(pool->release_wq, &pool->work).
1058 	 *
1059 	 * There are still outstanding pages until both workqueues are drained,
1060 	 * so we cannot unregister migration until then.
1061 	 */
1062 
1063 	destroy_workqueue(pool->compact_wq);
1064 	destroy_workqueue(pool->release_wq);
1065 	z3fold_unregister_migration(pool);
1066 	free_percpu(pool->unbuddied);
1067 	kfree(pool);
1068 }
1069 
1070 /**
1071  * z3fold_alloc() - allocates a region of a given size
1072  * @pool:	z3fold pool from which to allocate
1073  * @size:	size in bytes of the desired allocation
1074  * @gfp:	gfp flags used if the pool needs to grow
1075  * @handle:	handle of the new allocation
1076  *
1077  * This function will attempt to find a free region in the pool large enough to
1078  * satisfy the allocation request.  A search of the unbuddied lists is
1079  * performed first. If no suitable free region is found, then a new page is
1080  * allocated and added to the pool to satisfy the request.
1081  *
1082  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1083  * as z3fold pool pages.
1084  *
1085  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1086  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1087  * a new page.
1088  */
z3fold_alloc(struct z3fold_pool * pool,size_t size,gfp_t gfp,unsigned long * handle)1089 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1090 			unsigned long *handle)
1091 {
1092 	int chunks = size_to_chunks(size);
1093 	struct z3fold_header *zhdr = NULL;
1094 	struct page *page = NULL;
1095 	enum buddy bud;
1096 	bool can_sleep = gfpflags_allow_blocking(gfp);
1097 
1098 	if (!size)
1099 		return -EINVAL;
1100 
1101 	if (size > PAGE_SIZE)
1102 		return -ENOSPC;
1103 
1104 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1105 		bud = HEADLESS;
1106 	else {
1107 retry:
1108 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1109 		if (zhdr) {
1110 			bud = get_free_buddy(zhdr, chunks);
1111 			if (bud == HEADLESS) {
1112 				if (kref_put(&zhdr->refcount,
1113 					     release_z3fold_page_locked))
1114 					atomic64_dec(&pool->pages_nr);
1115 				else
1116 					z3fold_page_unlock(zhdr);
1117 				pr_err("No free chunks in unbuddied\n");
1118 				WARN_ON(1);
1119 				goto retry;
1120 			}
1121 			page = virt_to_page(zhdr);
1122 			goto found;
1123 		}
1124 		bud = FIRST;
1125 	}
1126 
1127 	page = NULL;
1128 	if (can_sleep) {
1129 		spin_lock(&pool->stale_lock);
1130 		zhdr = list_first_entry_or_null(&pool->stale,
1131 						struct z3fold_header, buddy);
1132 		/*
1133 		 * Before allocating a page, let's see if we can take one from
1134 		 * the stale pages list. cancel_work_sync() can sleep so we
1135 		 * limit this case to the contexts where we can sleep
1136 		 */
1137 		if (zhdr) {
1138 			list_del(&zhdr->buddy);
1139 			spin_unlock(&pool->stale_lock);
1140 			cancel_work_sync(&zhdr->work);
1141 			page = virt_to_page(zhdr);
1142 		} else {
1143 			spin_unlock(&pool->stale_lock);
1144 		}
1145 	}
1146 	if (!page)
1147 		page = alloc_page(gfp);
1148 
1149 	if (!page)
1150 		return -ENOMEM;
1151 
1152 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1153 	if (!zhdr) {
1154 		__free_page(page);
1155 		return -ENOMEM;
1156 	}
1157 	atomic64_inc(&pool->pages_nr);
1158 
1159 	if (bud == HEADLESS) {
1160 		set_bit(PAGE_HEADLESS, &page->private);
1161 		goto headless;
1162 	}
1163 	if (can_sleep) {
1164 		lock_page(page);
1165 		__SetPageMovable(page, pool->inode->i_mapping);
1166 		unlock_page(page);
1167 	} else {
1168 		if (trylock_page(page)) {
1169 			__SetPageMovable(page, pool->inode->i_mapping);
1170 			unlock_page(page);
1171 		}
1172 	}
1173 	z3fold_page_lock(zhdr);
1174 
1175 found:
1176 	if (bud == FIRST)
1177 		zhdr->first_chunks = chunks;
1178 	else if (bud == LAST)
1179 		zhdr->last_chunks = chunks;
1180 	else {
1181 		zhdr->middle_chunks = chunks;
1182 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1183 	}
1184 	add_to_unbuddied(pool, zhdr);
1185 
1186 headless:
1187 	spin_lock(&pool->lock);
1188 	/* Add/move z3fold page to beginning of LRU */
1189 	if (!list_empty(&page->lru))
1190 		list_del(&page->lru);
1191 
1192 	list_add(&page->lru, &pool->lru);
1193 
1194 	*handle = encode_handle(zhdr, bud);
1195 	spin_unlock(&pool->lock);
1196 	if (bud != HEADLESS)
1197 		z3fold_page_unlock(zhdr);
1198 
1199 	return 0;
1200 }
1201 
1202 /**
1203  * z3fold_free() - frees the allocation associated with the given handle
1204  * @pool:	pool in which the allocation resided
1205  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1206  *
1207  * In the case that the z3fold page in which the allocation resides is under
1208  * reclaim, as indicated by the PG_reclaim flag being set, this function
1209  * only sets the first|last_chunks to 0.  The page is actually freed
1210  * once both buddies are evicted (see z3fold_reclaim_page() below).
1211  */
z3fold_free(struct z3fold_pool * pool,unsigned long handle)1212 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1213 {
1214 	struct z3fold_header *zhdr;
1215 	struct page *page;
1216 	enum buddy bud;
1217 	bool page_claimed;
1218 
1219 	zhdr = get_z3fold_header(handle);
1220 	page = virt_to_page(zhdr);
1221 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1222 
1223 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1224 		/* if a headless page is under reclaim, just leave.
1225 		 * NB: we use test_and_set_bit for a reason: if the bit
1226 		 * has not been set before, we release this page
1227 		 * immediately so we don't care about its value any more.
1228 		 */
1229 		if (!page_claimed) {
1230 			spin_lock(&pool->lock);
1231 			list_del(&page->lru);
1232 			spin_unlock(&pool->lock);
1233 			put_z3fold_header(zhdr);
1234 			free_z3fold_page(page, true);
1235 			atomic64_dec(&pool->pages_nr);
1236 		}
1237 		return;
1238 	}
1239 
1240 	/* Non-headless case */
1241 	bud = handle_to_buddy(handle);
1242 
1243 	switch (bud) {
1244 	case FIRST:
1245 		zhdr->first_chunks = 0;
1246 		break;
1247 	case MIDDLE:
1248 		zhdr->middle_chunks = 0;
1249 		break;
1250 	case LAST:
1251 		zhdr->last_chunks = 0;
1252 		break;
1253 	default:
1254 		pr_err("%s: unknown bud %d\n", __func__, bud);
1255 		WARN_ON(1);
1256 		put_z3fold_header(zhdr);
1257 		return;
1258 	}
1259 
1260 	if (!page_claimed)
1261 		free_handle(handle, zhdr);
1262 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1263 		atomic64_dec(&pool->pages_nr);
1264 		return;
1265 	}
1266 	if (page_claimed) {
1267 		/* the page has not been claimed by us */
1268 		z3fold_page_unlock(zhdr);
1269 		return;
1270 	}
1271 	if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1272 		put_z3fold_header(zhdr);
1273 		clear_bit(PAGE_CLAIMED, &page->private);
1274 		return;
1275 	}
1276 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1277 		spin_lock(&pool->lock);
1278 		list_del_init(&zhdr->buddy);
1279 		spin_unlock(&pool->lock);
1280 		zhdr->cpu = -1;
1281 		kref_get(&zhdr->refcount);
1282 		clear_bit(PAGE_CLAIMED, &page->private);
1283 		do_compact_page(zhdr, true);
1284 		return;
1285 	}
1286 	kref_get(&zhdr->refcount);
1287 	clear_bit(PAGE_CLAIMED, &page->private);
1288 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1289 	put_z3fold_header(zhdr);
1290 }
1291 
1292 /**
1293  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1294  * @pool:	pool from which a page will attempt to be evicted
1295  * @retries:	number of pages on the LRU list for which eviction will
1296  *		be attempted before failing
1297  *
1298  * z3fold reclaim is different from normal system reclaim in that it is done
1299  * from the bottom, up. This is because only the bottom layer, z3fold, has
1300  * information on how the allocations are organized within each z3fold page.
1301  * This has the potential to create interesting locking situations between
1302  * z3fold and the user, however.
1303  *
1304  * To avoid these, this is how z3fold_reclaim_page() should be called:
1305  *
1306  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1307  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1308  * call the user-defined eviction handler with the pool and handle as
1309  * arguments.
1310  *
1311  * If the handle can not be evicted, the eviction handler should return
1312  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1313  * appropriate list and try the next z3fold page on the LRU up to
1314  * a user defined number of retries.
1315  *
1316  * If the handle is successfully evicted, the eviction handler should
1317  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1318  * contains logic to delay freeing the page if the page is under reclaim,
1319  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1320  *
1321  * If all buddies in the z3fold page are successfully evicted, then the
1322  * z3fold page can be freed.
1323  *
1324  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1325  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1326  * the retry limit was hit.
1327  */
z3fold_reclaim_page(struct z3fold_pool * pool,unsigned int retries)1328 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1329 {
1330 	int i, ret = -1;
1331 	struct z3fold_header *zhdr = NULL;
1332 	struct page *page = NULL;
1333 	struct list_head *pos;
1334 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1335 	struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1336 
1337 	rwlock_init(&slots.lock);
1338 	slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1339 
1340 	spin_lock(&pool->lock);
1341 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1342 		spin_unlock(&pool->lock);
1343 		return -EINVAL;
1344 	}
1345 	for (i = 0; i < retries; i++) {
1346 		if (list_empty(&pool->lru)) {
1347 			spin_unlock(&pool->lock);
1348 			return -EINVAL;
1349 		}
1350 		list_for_each_prev(pos, &pool->lru) {
1351 			page = list_entry(pos, struct page, lru);
1352 
1353 			zhdr = page_address(page);
1354 			if (test_bit(PAGE_HEADLESS, &page->private)) {
1355 				/*
1356 				 * For non-headless pages, we wait to do this
1357 				 * until we have the page lock to avoid racing
1358 				 * with __z3fold_alloc(). Headless pages don't
1359 				 * have a lock (and __z3fold_alloc() will never
1360 				 * see them), but we still need to test and set
1361 				 * PAGE_CLAIMED to avoid racing with
1362 				 * z3fold_free(), so just do it now before
1363 				 * leaving the loop.
1364 				 */
1365 				if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1366 					continue;
1367 
1368 				break;
1369 			}
1370 
1371 			if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1372 				zhdr = NULL;
1373 				break;
1374 			}
1375 			if (!z3fold_page_trylock(zhdr)) {
1376 				if (kref_put(&zhdr->refcount,
1377 						release_z3fold_page))
1378 					atomic64_dec(&pool->pages_nr);
1379 				zhdr = NULL;
1380 				continue; /* can't evict at this point */
1381 			}
1382 
1383 			/* test_and_set_bit is of course atomic, but we still
1384 			 * need to do it under page lock, otherwise checking
1385 			 * that bit in __z3fold_alloc wouldn't make sense
1386 			 */
1387 			if (zhdr->foreign_handles ||
1388 			    test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1389 				if (kref_put(&zhdr->refcount,
1390 						release_z3fold_page_locked))
1391 					atomic64_dec(&pool->pages_nr);
1392 				else
1393 					z3fold_page_unlock(zhdr);
1394 				zhdr = NULL;
1395 				continue; /* can't evict such page */
1396 			}
1397 			list_del_init(&zhdr->buddy);
1398 			zhdr->cpu = -1;
1399 			break;
1400 		}
1401 
1402 		if (!zhdr)
1403 			break;
1404 
1405 		list_del_init(&page->lru);
1406 		spin_unlock(&pool->lock);
1407 
1408 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1409 			/*
1410 			 * We need encode the handles before unlocking, and
1411 			 * use our local slots structure because z3fold_free
1412 			 * can zero out zhdr->slots and we can't do much
1413 			 * about that
1414 			 */
1415 			first_handle = 0;
1416 			last_handle = 0;
1417 			middle_handle = 0;
1418 			memset(slots.slot, 0, sizeof(slots.slot));
1419 			if (zhdr->first_chunks)
1420 				first_handle = __encode_handle(zhdr, &slots,
1421 								FIRST);
1422 			if (zhdr->middle_chunks)
1423 				middle_handle = __encode_handle(zhdr, &slots,
1424 								MIDDLE);
1425 			if (zhdr->last_chunks)
1426 				last_handle = __encode_handle(zhdr, &slots,
1427 								LAST);
1428 			/*
1429 			 * it's safe to unlock here because we hold a
1430 			 * reference to this page
1431 			 */
1432 			z3fold_page_unlock(zhdr);
1433 		} else {
1434 			first_handle = encode_handle(zhdr, HEADLESS);
1435 			last_handle = middle_handle = 0;
1436 		}
1437 		/* Issue the eviction callback(s) */
1438 		if (middle_handle) {
1439 			ret = pool->ops->evict(pool, middle_handle);
1440 			if (ret)
1441 				goto next;
1442 		}
1443 		if (first_handle) {
1444 			ret = pool->ops->evict(pool, first_handle);
1445 			if (ret)
1446 				goto next;
1447 		}
1448 		if (last_handle) {
1449 			ret = pool->ops->evict(pool, last_handle);
1450 			if (ret)
1451 				goto next;
1452 		}
1453 next:
1454 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1455 			if (ret == 0) {
1456 				free_z3fold_page(page, true);
1457 				atomic64_dec(&pool->pages_nr);
1458 				return 0;
1459 			}
1460 			spin_lock(&pool->lock);
1461 			list_add(&page->lru, &pool->lru);
1462 			spin_unlock(&pool->lock);
1463 			clear_bit(PAGE_CLAIMED, &page->private);
1464 		} else {
1465 			struct z3fold_buddy_slots *slots = zhdr->slots;
1466 			z3fold_page_lock(zhdr);
1467 			if (kref_put(&zhdr->refcount,
1468 					release_z3fold_page_locked)) {
1469 				kmem_cache_free(pool->c_handle, slots);
1470 				atomic64_dec(&pool->pages_nr);
1471 				return 0;
1472 			}
1473 			/*
1474 			 * if we are here, the page is still not completely
1475 			 * free. Take the global pool lock then to be able
1476 			 * to add it back to the lru list
1477 			 */
1478 			spin_lock(&pool->lock);
1479 			list_add(&page->lru, &pool->lru);
1480 			spin_unlock(&pool->lock);
1481 			z3fold_page_unlock(zhdr);
1482 			clear_bit(PAGE_CLAIMED, &page->private);
1483 		}
1484 
1485 		/* We started off locked to we need to lock the pool back */
1486 		spin_lock(&pool->lock);
1487 	}
1488 	spin_unlock(&pool->lock);
1489 	return -EAGAIN;
1490 }
1491 
1492 /**
1493  * z3fold_map() - maps the allocation associated with the given handle
1494  * @pool:	pool in which the allocation resides
1495  * @handle:	handle associated with the allocation to be mapped
1496  *
1497  * Extracts the buddy number from handle and constructs the pointer to the
1498  * correct starting chunk within the page.
1499  *
1500  * Returns: a pointer to the mapped allocation
1501  */
z3fold_map(struct z3fold_pool * pool,unsigned long handle)1502 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1503 {
1504 	struct z3fold_header *zhdr;
1505 	struct page *page;
1506 	void *addr;
1507 	enum buddy buddy;
1508 
1509 	zhdr = get_z3fold_header(handle);
1510 	addr = zhdr;
1511 	page = virt_to_page(zhdr);
1512 
1513 	if (test_bit(PAGE_HEADLESS, &page->private))
1514 		goto out;
1515 
1516 	buddy = handle_to_buddy(handle);
1517 	switch (buddy) {
1518 	case FIRST:
1519 		addr += ZHDR_SIZE_ALIGNED;
1520 		break;
1521 	case MIDDLE:
1522 		addr += zhdr->start_middle << CHUNK_SHIFT;
1523 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1524 		break;
1525 	case LAST:
1526 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1527 		break;
1528 	default:
1529 		pr_err("unknown buddy id %d\n", buddy);
1530 		WARN_ON(1);
1531 		addr = NULL;
1532 		break;
1533 	}
1534 
1535 	if (addr)
1536 		zhdr->mapped_count++;
1537 out:
1538 	put_z3fold_header(zhdr);
1539 	return addr;
1540 }
1541 
1542 /**
1543  * z3fold_unmap() - unmaps the allocation associated with the given handle
1544  * @pool:	pool in which the allocation resides
1545  * @handle:	handle associated with the allocation to be unmapped
1546  */
z3fold_unmap(struct z3fold_pool * pool,unsigned long handle)1547 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1548 {
1549 	struct z3fold_header *zhdr;
1550 	struct page *page;
1551 	enum buddy buddy;
1552 
1553 	zhdr = get_z3fold_header(handle);
1554 	page = virt_to_page(zhdr);
1555 
1556 	if (test_bit(PAGE_HEADLESS, &page->private))
1557 		return;
1558 
1559 	buddy = handle_to_buddy(handle);
1560 	if (buddy == MIDDLE)
1561 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1562 	zhdr->mapped_count--;
1563 	put_z3fold_header(zhdr);
1564 }
1565 
1566 /**
1567  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1568  * @pool:	pool whose size is being queried
1569  *
1570  * Returns: size in pages of the given pool.
1571  */
z3fold_get_pool_size(struct z3fold_pool * pool)1572 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1573 {
1574 	return atomic64_read(&pool->pages_nr);
1575 }
1576 
z3fold_page_isolate(struct page * page,isolate_mode_t mode)1577 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1578 {
1579 	struct z3fold_header *zhdr;
1580 	struct z3fold_pool *pool;
1581 
1582 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1583 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1584 
1585 	if (test_bit(PAGE_HEADLESS, &page->private))
1586 		return false;
1587 
1588 	zhdr = page_address(page);
1589 	z3fold_page_lock(zhdr);
1590 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1591 	    test_bit(PAGE_STALE, &page->private))
1592 		goto out;
1593 
1594 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1595 		goto out;
1596 
1597 	if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1598 		goto out;
1599 	pool = zhdr_to_pool(zhdr);
1600 	spin_lock(&pool->lock);
1601 	if (!list_empty(&zhdr->buddy))
1602 		list_del_init(&zhdr->buddy);
1603 	if (!list_empty(&page->lru))
1604 		list_del_init(&page->lru);
1605 	spin_unlock(&pool->lock);
1606 
1607 	kref_get(&zhdr->refcount);
1608 	z3fold_page_unlock(zhdr);
1609 	return true;
1610 
1611 out:
1612 	z3fold_page_unlock(zhdr);
1613 	return false;
1614 }
1615 
z3fold_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1616 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1617 			       struct page *page, enum migrate_mode mode)
1618 {
1619 	struct z3fold_header *zhdr, *new_zhdr;
1620 	struct z3fold_pool *pool;
1621 	struct address_space *new_mapping;
1622 
1623 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1624 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1625 	VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1626 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1627 
1628 	zhdr = page_address(page);
1629 	pool = zhdr_to_pool(zhdr);
1630 
1631 	if (!z3fold_page_trylock(zhdr))
1632 		return -EAGAIN;
1633 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1634 		z3fold_page_unlock(zhdr);
1635 		clear_bit(PAGE_CLAIMED, &page->private);
1636 		return -EBUSY;
1637 	}
1638 	if (work_pending(&zhdr->work)) {
1639 		z3fold_page_unlock(zhdr);
1640 		return -EAGAIN;
1641 	}
1642 	new_zhdr = page_address(newpage);
1643 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1644 	newpage->private = page->private;
1645 	page->private = 0;
1646 	z3fold_page_unlock(zhdr);
1647 	spin_lock_init(&new_zhdr->page_lock);
1648 	INIT_WORK(&new_zhdr->work, compact_page_work);
1649 	/*
1650 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1651 	 * so we only have to reinitialize it.
1652 	 */
1653 	INIT_LIST_HEAD(&new_zhdr->buddy);
1654 	new_mapping = page_mapping(page);
1655 	__ClearPageMovable(page);
1656 	ClearPagePrivate(page);
1657 
1658 	get_page(newpage);
1659 	z3fold_page_lock(new_zhdr);
1660 	if (new_zhdr->first_chunks)
1661 		encode_handle(new_zhdr, FIRST);
1662 	if (new_zhdr->last_chunks)
1663 		encode_handle(new_zhdr, LAST);
1664 	if (new_zhdr->middle_chunks)
1665 		encode_handle(new_zhdr, MIDDLE);
1666 	set_bit(NEEDS_COMPACTING, &newpage->private);
1667 	new_zhdr->cpu = smp_processor_id();
1668 	spin_lock(&pool->lock);
1669 	list_add(&newpage->lru, &pool->lru);
1670 	spin_unlock(&pool->lock);
1671 	__SetPageMovable(newpage, new_mapping);
1672 	z3fold_page_unlock(new_zhdr);
1673 
1674 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1675 
1676 	page_mapcount_reset(page);
1677 	clear_bit(PAGE_CLAIMED, &page->private);
1678 	put_page(page);
1679 	return 0;
1680 }
1681 
z3fold_page_putback(struct page * page)1682 static void z3fold_page_putback(struct page *page)
1683 {
1684 	struct z3fold_header *zhdr;
1685 	struct z3fold_pool *pool;
1686 
1687 	zhdr = page_address(page);
1688 	pool = zhdr_to_pool(zhdr);
1689 
1690 	z3fold_page_lock(zhdr);
1691 	if (!list_empty(&zhdr->buddy))
1692 		list_del_init(&zhdr->buddy);
1693 	INIT_LIST_HEAD(&page->lru);
1694 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1695 		atomic64_dec(&pool->pages_nr);
1696 		return;
1697 	}
1698 	spin_lock(&pool->lock);
1699 	list_add(&page->lru, &pool->lru);
1700 	spin_unlock(&pool->lock);
1701 	clear_bit(PAGE_CLAIMED, &page->private);
1702 	z3fold_page_unlock(zhdr);
1703 }
1704 
1705 static const struct address_space_operations z3fold_aops = {
1706 	.isolate_page = z3fold_page_isolate,
1707 	.migratepage = z3fold_page_migrate,
1708 	.putback_page = z3fold_page_putback,
1709 };
1710 
1711 /*****************
1712  * zpool
1713  ****************/
1714 
z3fold_zpool_evict(struct z3fold_pool * pool,unsigned long handle)1715 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1716 {
1717 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1718 		return pool->zpool_ops->evict(pool->zpool, handle);
1719 	else
1720 		return -ENOENT;
1721 }
1722 
1723 static const struct z3fold_ops z3fold_zpool_ops = {
1724 	.evict =	z3fold_zpool_evict
1725 };
1726 
z3fold_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)1727 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1728 			       const struct zpool_ops *zpool_ops,
1729 			       struct zpool *zpool)
1730 {
1731 	struct z3fold_pool *pool;
1732 
1733 	pool = z3fold_create_pool(name, gfp,
1734 				zpool_ops ? &z3fold_zpool_ops : NULL);
1735 	if (pool) {
1736 		pool->zpool = zpool;
1737 		pool->zpool_ops = zpool_ops;
1738 	}
1739 	return pool;
1740 }
1741 
z3fold_zpool_destroy(void * pool)1742 static void z3fold_zpool_destroy(void *pool)
1743 {
1744 	z3fold_destroy_pool(pool);
1745 }
1746 
z3fold_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)1747 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1748 			unsigned long *handle)
1749 {
1750 	return z3fold_alloc(pool, size, gfp, handle);
1751 }
z3fold_zpool_free(void * pool,unsigned long handle)1752 static void z3fold_zpool_free(void *pool, unsigned long handle)
1753 {
1754 	z3fold_free(pool, handle);
1755 }
1756 
z3fold_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)1757 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1758 			unsigned int *reclaimed)
1759 {
1760 	unsigned int total = 0;
1761 	int ret = -EINVAL;
1762 
1763 	while (total < pages) {
1764 		ret = z3fold_reclaim_page(pool, 8);
1765 		if (ret < 0)
1766 			break;
1767 		total++;
1768 	}
1769 
1770 	if (reclaimed)
1771 		*reclaimed = total;
1772 
1773 	return ret;
1774 }
1775 
z3fold_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)1776 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1777 			enum zpool_mapmode mm)
1778 {
1779 	return z3fold_map(pool, handle);
1780 }
z3fold_zpool_unmap(void * pool,unsigned long handle)1781 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1782 {
1783 	z3fold_unmap(pool, handle);
1784 }
1785 
z3fold_zpool_total_size(void * pool)1786 static u64 z3fold_zpool_total_size(void *pool)
1787 {
1788 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1789 }
1790 
1791 static struct zpool_driver z3fold_zpool_driver = {
1792 	.type =		"z3fold",
1793 	.owner =	THIS_MODULE,
1794 	.create =	z3fold_zpool_create,
1795 	.destroy =	z3fold_zpool_destroy,
1796 	.malloc =	z3fold_zpool_malloc,
1797 	.free =		z3fold_zpool_free,
1798 	.shrink =	z3fold_zpool_shrink,
1799 	.map =		z3fold_zpool_map,
1800 	.unmap =	z3fold_zpool_unmap,
1801 	.total_size =	z3fold_zpool_total_size,
1802 };
1803 
1804 MODULE_ALIAS("zpool-z3fold");
1805 
init_z3fold(void)1806 static int __init init_z3fold(void)
1807 {
1808 	int ret;
1809 
1810 	/* Make sure the z3fold header is not larger than the page size */
1811 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1812 	ret = z3fold_mount();
1813 	if (ret)
1814 		return ret;
1815 
1816 	zpool_register_driver(&z3fold_zpool_driver);
1817 
1818 	return 0;
1819 }
1820 
exit_z3fold(void)1821 static void __exit exit_z3fold(void)
1822 {
1823 	z3fold_unmount();
1824 	zpool_unregister_driver(&z3fold_zpool_driver);
1825 }
1826 
1827 module_init(init_z3fold);
1828 module_exit(exit_z3fold);
1829 
1830 MODULE_LICENSE("GPL");
1831 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1832 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1833