1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * kernel/stop_machine.c
4 *
5 * Copyright (C) 2008, 2005 IBM Corporation.
6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
7 * Copyright (C) 2010 SUSE Linux Products GmbH
8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/slab.h>
26
27 /* the actual stopper, one per every possible cpu, enabled on online cpus */
28 struct cpu_stopper {
29 struct task_struct *thread;
30
31 raw_spinlock_t lock;
32 bool enabled; /* is this stopper enabled? */
33 struct list_head works; /* list of pending works */
34
35 struct cpu_stop_work stop_work; /* for stop_cpus */
36 };
37
38 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
39 static bool stop_machine_initialized = false;
40
41 /* static data for stop_cpus */
42 static DEFINE_MUTEX(stop_cpus_mutex);
43 static bool stop_cpus_in_progress;
44
cpu_stop_init_done(struct cpu_stop_done * done,unsigned int nr_todo)45 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
46 {
47 memset(done, 0, sizeof(*done));
48 atomic_set(&done->nr_todo, nr_todo);
49 init_completion(&done->completion);
50 }
51
52 /* signal completion unless @done is NULL */
cpu_stop_signal_done(struct cpu_stop_done * done)53 static void cpu_stop_signal_done(struct cpu_stop_done *done)
54 {
55 if (atomic_dec_and_test(&done->nr_todo))
56 complete(&done->completion);
57 }
58
__cpu_stop_queue_work(struct cpu_stopper * stopper,struct cpu_stop_work * work,struct wake_q_head * wakeq)59 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
60 struct cpu_stop_work *work,
61 struct wake_q_head *wakeq)
62 {
63 list_add_tail(&work->list, &stopper->works);
64 wake_q_add(wakeq, stopper->thread);
65 }
66
67 /* queue @work to @stopper. if offline, @work is completed immediately */
cpu_stop_queue_work(unsigned int cpu,struct cpu_stop_work * work)68 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
69 {
70 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
71 DEFINE_WAKE_Q(wakeq);
72 unsigned long flags;
73 bool enabled;
74
75 preempt_disable();
76 raw_spin_lock_irqsave(&stopper->lock, flags);
77 enabled = stopper->enabled;
78 if (enabled)
79 __cpu_stop_queue_work(stopper, work, &wakeq);
80 else if (work->done)
81 cpu_stop_signal_done(work->done);
82 raw_spin_unlock_irqrestore(&stopper->lock, flags);
83
84 wake_up_q(&wakeq);
85 preempt_enable();
86
87 return enabled;
88 }
89
90 /**
91 * stop_one_cpu - stop a cpu
92 * @cpu: cpu to stop
93 * @fn: function to execute
94 * @arg: argument to @fn
95 *
96 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
97 * the highest priority preempting any task on the cpu and
98 * monopolizing it. This function returns after the execution is
99 * complete.
100 *
101 * This function doesn't guarantee @cpu stays online till @fn
102 * completes. If @cpu goes down in the middle, execution may happen
103 * partially or fully on different cpus. @fn should either be ready
104 * for that or the caller should ensure that @cpu stays online until
105 * this function completes.
106 *
107 * CONTEXT:
108 * Might sleep.
109 *
110 * RETURNS:
111 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
112 * otherwise, the return value of @fn.
113 */
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)114 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
115 {
116 struct cpu_stop_done done;
117 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
118
119 cpu_stop_init_done(&done, 1);
120 if (!cpu_stop_queue_work(cpu, &work))
121 return -ENOENT;
122 /*
123 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
124 * cycle by doing a preemption:
125 */
126 cond_resched();
127 wait_for_completion(&done.completion);
128 return done.ret;
129 }
130
131 /* This controls the threads on each CPU. */
132 enum multi_stop_state {
133 /* Dummy starting state for thread. */
134 MULTI_STOP_NONE,
135 /* Awaiting everyone to be scheduled. */
136 MULTI_STOP_PREPARE,
137 /* Disable interrupts. */
138 MULTI_STOP_DISABLE_IRQ,
139 /* Run the function */
140 MULTI_STOP_RUN,
141 /* Exit */
142 MULTI_STOP_EXIT,
143 };
144
145 struct multi_stop_data {
146 cpu_stop_fn_t fn;
147 void *data;
148 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
149 unsigned int num_threads;
150 const struct cpumask *active_cpus;
151
152 enum multi_stop_state state;
153 atomic_t thread_ack;
154 };
155
set_state(struct multi_stop_data * msdata,enum multi_stop_state newstate)156 static void set_state(struct multi_stop_data *msdata,
157 enum multi_stop_state newstate)
158 {
159 /* Reset ack counter. */
160 atomic_set(&msdata->thread_ack, msdata->num_threads);
161 smp_wmb();
162 WRITE_ONCE(msdata->state, newstate);
163 }
164
165 /* Last one to ack a state moves to the next state. */
ack_state(struct multi_stop_data * msdata)166 static void ack_state(struct multi_stop_data *msdata)
167 {
168 if (atomic_dec_and_test(&msdata->thread_ack))
169 set_state(msdata, msdata->state + 1);
170 }
171
stop_machine_yield(const struct cpumask * cpumask)172 notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
173 {
174 cpu_relax();
175 }
176
177 /* This is the cpu_stop function which stops the CPU. */
multi_cpu_stop(void * data)178 static int multi_cpu_stop(void *data)
179 {
180 struct multi_stop_data *msdata = data;
181 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
182 int cpu = smp_processor_id(), err = 0;
183 const struct cpumask *cpumask;
184 unsigned long flags;
185 bool is_active;
186
187 /*
188 * When called from stop_machine_from_inactive_cpu(), irq might
189 * already be disabled. Save the state and restore it on exit.
190 */
191 local_save_flags(flags);
192
193 if (!msdata->active_cpus) {
194 cpumask = cpu_online_mask;
195 is_active = cpu == cpumask_first(cpumask);
196 } else {
197 cpumask = msdata->active_cpus;
198 is_active = cpumask_test_cpu(cpu, cpumask);
199 }
200
201 /* Simple state machine */
202 do {
203 /* Chill out and ensure we re-read multi_stop_state. */
204 stop_machine_yield(cpumask);
205 newstate = READ_ONCE(msdata->state);
206 if (newstate != curstate) {
207 curstate = newstate;
208 switch (curstate) {
209 case MULTI_STOP_DISABLE_IRQ:
210 local_irq_disable();
211 hard_irq_disable();
212 break;
213 case MULTI_STOP_RUN:
214 if (is_active)
215 err = msdata->fn(msdata->data);
216 break;
217 default:
218 break;
219 }
220 ack_state(msdata);
221 } else if (curstate > MULTI_STOP_PREPARE) {
222 /*
223 * At this stage all other CPUs we depend on must spin
224 * in the same loop. Any reason for hard-lockup should
225 * be detected and reported on their side.
226 */
227 touch_nmi_watchdog();
228 }
229 rcu_momentary_dyntick_idle();
230 } while (curstate != MULTI_STOP_EXIT);
231
232 local_irq_restore(flags);
233 return err;
234 }
235
cpu_stop_queue_two_works(int cpu1,struct cpu_stop_work * work1,int cpu2,struct cpu_stop_work * work2)236 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
237 int cpu2, struct cpu_stop_work *work2)
238 {
239 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
240 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
241 DEFINE_WAKE_Q(wakeq);
242 int err;
243
244 retry:
245 /*
246 * The waking up of stopper threads has to happen in the same
247 * scheduling context as the queueing. Otherwise, there is a
248 * possibility of one of the above stoppers being woken up by another
249 * CPU, and preempting us. This will cause us to not wake up the other
250 * stopper forever.
251 */
252 preempt_disable();
253 raw_spin_lock_irq(&stopper1->lock);
254 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
255
256 if (!stopper1->enabled || !stopper2->enabled) {
257 err = -ENOENT;
258 goto unlock;
259 }
260
261 /*
262 * Ensure that if we race with __stop_cpus() the stoppers won't get
263 * queued up in reverse order leading to system deadlock.
264 *
265 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
266 * queued a work on cpu1 but not on cpu2, we hold both locks.
267 *
268 * It can be falsely true but it is safe to spin until it is cleared,
269 * queue_stop_cpus_work() does everything under preempt_disable().
270 */
271 if (unlikely(stop_cpus_in_progress)) {
272 err = -EDEADLK;
273 goto unlock;
274 }
275
276 err = 0;
277 __cpu_stop_queue_work(stopper1, work1, &wakeq);
278 __cpu_stop_queue_work(stopper2, work2, &wakeq);
279
280 unlock:
281 raw_spin_unlock(&stopper2->lock);
282 raw_spin_unlock_irq(&stopper1->lock);
283
284 if (unlikely(err == -EDEADLK)) {
285 preempt_enable();
286
287 while (stop_cpus_in_progress)
288 cpu_relax();
289
290 goto retry;
291 }
292
293 wake_up_q(&wakeq);
294 preempt_enable();
295
296 return err;
297 }
298 /**
299 * stop_two_cpus - stops two cpus
300 * @cpu1: the cpu to stop
301 * @cpu2: the other cpu to stop
302 * @fn: function to execute
303 * @arg: argument to @fn
304 *
305 * Stops both the current and specified CPU and runs @fn on one of them.
306 *
307 * returns when both are completed.
308 */
stop_two_cpus(unsigned int cpu1,unsigned int cpu2,cpu_stop_fn_t fn,void * arg)309 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
310 {
311 struct cpu_stop_done done;
312 struct cpu_stop_work work1, work2;
313 struct multi_stop_data msdata;
314
315 msdata = (struct multi_stop_data){
316 .fn = fn,
317 .data = arg,
318 .num_threads = 2,
319 .active_cpus = cpumask_of(cpu1),
320 };
321
322 work1 = work2 = (struct cpu_stop_work){
323 .fn = multi_cpu_stop,
324 .arg = &msdata,
325 .done = &done
326 };
327
328 cpu_stop_init_done(&done, 2);
329 set_state(&msdata, MULTI_STOP_PREPARE);
330
331 if (cpu1 > cpu2)
332 swap(cpu1, cpu2);
333 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
334 return -ENOENT;
335
336 wait_for_completion(&done.completion);
337 return done.ret;
338 }
339
340 /**
341 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
342 * @cpu: cpu to stop
343 * @fn: function to execute
344 * @arg: argument to @fn
345 * @work_buf: pointer to cpu_stop_work structure
346 *
347 * Similar to stop_one_cpu() but doesn't wait for completion. The
348 * caller is responsible for ensuring @work_buf is currently unused
349 * and will remain untouched until stopper starts executing @fn.
350 *
351 * CONTEXT:
352 * Don't care.
353 *
354 * RETURNS:
355 * true if cpu_stop_work was queued successfully and @fn will be called,
356 * false otherwise.
357 */
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)358 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
359 struct cpu_stop_work *work_buf)
360 {
361 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
362 return cpu_stop_queue_work(cpu, work_buf);
363 }
364 EXPORT_SYMBOL_GPL(stop_one_cpu_nowait);
365
366 /**
367 * stop_one_cpu_async - stop a cpu and wait for completion in a separated
368 * function: stop_wait_work()
369 * @cpu: cpu to stop
370 * @fn: function to execute
371 * @arg: argument to @fn
372 * @work_buf: pointer to cpu_stop_work structure
373 *
374 * CONTEXT:
375 * Might sleep.
376 *
377 * RETURNS:
378 * 0 if cpu_stop_work was queued successfully and @fn will be called.
379 * ENOENT if @fn(@arg) was not executed because @cpu was offline.
380 */
stop_one_cpu_async(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf,struct cpu_stop_done * done)381 int stop_one_cpu_async(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
382 struct cpu_stop_work *work_buf,
383 struct cpu_stop_done *done)
384 {
385 cpu_stop_init_done(done, 1);
386
387 work_buf->done = done;
388 work_buf->fn = fn;
389 work_buf->arg = arg;
390
391 if (cpu_stop_queue_work(cpu, work_buf))
392 return 0;
393
394 work_buf->done = NULL;
395
396 return -ENOENT;
397 }
398
399 /**
400 * cpu_stop_work_wait - wait for a stop initiated by stop_one_cpu_async().
401 * @work_buf: pointer to cpu_stop_work structure
402 *
403 * CONTEXT:
404 * Might sleep.
405 */
cpu_stop_work_wait(struct cpu_stop_work * work_buf)406 void cpu_stop_work_wait(struct cpu_stop_work *work_buf)
407 {
408 struct cpu_stop_done *done = work_buf->done;
409
410 wait_for_completion(&done->completion);
411 work_buf->done = NULL;
412 }
413
queue_stop_cpus_work(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg,struct cpu_stop_done * done)414 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
415 cpu_stop_fn_t fn, void *arg,
416 struct cpu_stop_done *done)
417 {
418 struct cpu_stop_work *work;
419 unsigned int cpu;
420 bool queued = false;
421
422 /*
423 * Disable preemption while queueing to avoid getting
424 * preempted by a stopper which might wait for other stoppers
425 * to enter @fn which can lead to deadlock.
426 */
427 preempt_disable();
428 stop_cpus_in_progress = true;
429 barrier();
430 for_each_cpu(cpu, cpumask) {
431 work = &per_cpu(cpu_stopper.stop_work, cpu);
432 work->fn = fn;
433 work->arg = arg;
434 work->done = done;
435 if (cpu_stop_queue_work(cpu, work))
436 queued = true;
437 }
438 barrier();
439 stop_cpus_in_progress = false;
440 preempt_enable();
441
442 return queued;
443 }
444
__stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)445 static int __stop_cpus(const struct cpumask *cpumask,
446 cpu_stop_fn_t fn, void *arg)
447 {
448 struct cpu_stop_done done;
449
450 cpu_stop_init_done(&done, cpumask_weight(cpumask));
451 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
452 return -ENOENT;
453 wait_for_completion(&done.completion);
454 return done.ret;
455 }
456
457 /**
458 * stop_cpus - stop multiple cpus
459 * @cpumask: cpus to stop
460 * @fn: function to execute
461 * @arg: argument to @fn
462 *
463 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
464 * @fn is run in a process context with the highest priority
465 * preempting any task on the cpu and monopolizing it. This function
466 * returns after all executions are complete.
467 *
468 * This function doesn't guarantee the cpus in @cpumask stay online
469 * till @fn completes. If some cpus go down in the middle, execution
470 * on the cpu may happen partially or fully on different cpus. @fn
471 * should either be ready for that or the caller should ensure that
472 * the cpus stay online until this function completes.
473 *
474 * All stop_cpus() calls are serialized making it safe for @fn to wait
475 * for all cpus to start executing it.
476 *
477 * CONTEXT:
478 * Might sleep.
479 *
480 * RETURNS:
481 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
482 * @cpumask were offline; otherwise, 0 if all executions of @fn
483 * returned 0, any non zero return value if any returned non zero.
484 */
stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)485 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
486 {
487 int ret;
488
489 /* static works are used, process one request at a time */
490 mutex_lock(&stop_cpus_mutex);
491 ret = __stop_cpus(cpumask, fn, arg);
492 mutex_unlock(&stop_cpus_mutex);
493 return ret;
494 }
495
cpu_stop_should_run(unsigned int cpu)496 static int cpu_stop_should_run(unsigned int cpu)
497 {
498 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
499 unsigned long flags;
500 int run;
501
502 raw_spin_lock_irqsave(&stopper->lock, flags);
503 run = !list_empty(&stopper->works);
504 raw_spin_unlock_irqrestore(&stopper->lock, flags);
505 return run;
506 }
507
cpu_stopper_thread(unsigned int cpu)508 static void cpu_stopper_thread(unsigned int cpu)
509 {
510 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
511 struct cpu_stop_work *work;
512
513 repeat:
514 work = NULL;
515 raw_spin_lock_irq(&stopper->lock);
516 if (!list_empty(&stopper->works)) {
517 work = list_first_entry(&stopper->works,
518 struct cpu_stop_work, list);
519 list_del_init(&work->list);
520 }
521 raw_spin_unlock_irq(&stopper->lock);
522
523 if (work) {
524 cpu_stop_fn_t fn = work->fn;
525 void *arg = work->arg;
526 struct cpu_stop_done *done = work->done;
527 int ret;
528
529 /* cpu stop callbacks must not sleep, make in_atomic() == T */
530 preempt_count_inc();
531 ret = fn(arg);
532 if (done) {
533 if (ret)
534 done->ret = ret;
535 cpu_stop_signal_done(done);
536 }
537 preempt_count_dec();
538 WARN_ONCE(preempt_count(),
539 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
540 goto repeat;
541 }
542 }
543
stop_machine_park(int cpu)544 void stop_machine_park(int cpu)
545 {
546 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
547 /*
548 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
549 * the pending works before it parks, until then it is fine to queue
550 * the new works.
551 */
552 stopper->enabled = false;
553 kthread_park(stopper->thread);
554 }
555
556 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
557
cpu_stop_create(unsigned int cpu)558 static void cpu_stop_create(unsigned int cpu)
559 {
560 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
561 }
562
cpu_stop_park(unsigned int cpu)563 static void cpu_stop_park(unsigned int cpu)
564 {
565 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
566
567 WARN_ON(!list_empty(&stopper->works));
568 }
569
stop_machine_unpark(int cpu)570 void stop_machine_unpark(int cpu)
571 {
572 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
573
574 stopper->enabled = true;
575 kthread_unpark(stopper->thread);
576 }
577
578 static struct smp_hotplug_thread cpu_stop_threads = {
579 .store = &cpu_stopper.thread,
580 .thread_should_run = cpu_stop_should_run,
581 .thread_fn = cpu_stopper_thread,
582 .thread_comm = "migration/%u",
583 .create = cpu_stop_create,
584 .park = cpu_stop_park,
585 .selfparking = true,
586 };
587
cpu_stop_init(void)588 static int __init cpu_stop_init(void)
589 {
590 unsigned int cpu;
591
592 for_each_possible_cpu(cpu) {
593 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
594
595 raw_spin_lock_init(&stopper->lock);
596 INIT_LIST_HEAD(&stopper->works);
597 }
598
599 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
600 stop_machine_unpark(raw_smp_processor_id());
601 stop_machine_initialized = true;
602 return 0;
603 }
604 early_initcall(cpu_stop_init);
605
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)606 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
607 const struct cpumask *cpus)
608 {
609 struct multi_stop_data msdata = {
610 .fn = fn,
611 .data = data,
612 .num_threads = num_online_cpus(),
613 .active_cpus = cpus,
614 };
615
616 lockdep_assert_cpus_held();
617
618 if (!stop_machine_initialized) {
619 /*
620 * Handle the case where stop_machine() is called
621 * early in boot before stop_machine() has been
622 * initialized.
623 */
624 unsigned long flags;
625 int ret;
626
627 WARN_ON_ONCE(msdata.num_threads != 1);
628
629 local_irq_save(flags);
630 hard_irq_disable();
631 ret = (*fn)(data);
632 local_irq_restore(flags);
633
634 return ret;
635 }
636
637 /* Set the initial state and stop all online cpus. */
638 set_state(&msdata, MULTI_STOP_PREPARE);
639 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
640 }
641
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)642 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
643 {
644 int ret;
645
646 /* No CPUs can come up or down during this. */
647 cpus_read_lock();
648 ret = stop_machine_cpuslocked(fn, data, cpus);
649 cpus_read_unlock();
650 return ret;
651 }
652 EXPORT_SYMBOL_GPL(stop_machine);
653
654 /**
655 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
656 * @fn: the function to run
657 * @data: the data ptr for the @fn()
658 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
659 *
660 * This is identical to stop_machine() but can be called from a CPU which
661 * is not active. The local CPU is in the process of hotplug (so no other
662 * CPU hotplug can start) and not marked active and doesn't have enough
663 * context to sleep.
664 *
665 * This function provides stop_machine() functionality for such state by
666 * using busy-wait for synchronization and executing @fn directly for local
667 * CPU.
668 *
669 * CONTEXT:
670 * Local CPU is inactive. Temporarily stops all active CPUs.
671 *
672 * RETURNS:
673 * 0 if all executions of @fn returned 0, any non zero return value if any
674 * returned non zero.
675 */
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)676 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
677 const struct cpumask *cpus)
678 {
679 struct multi_stop_data msdata = { .fn = fn, .data = data,
680 .active_cpus = cpus };
681 struct cpu_stop_done done;
682 int ret;
683
684 /* Local CPU must be inactive and CPU hotplug in progress. */
685 BUG_ON(cpu_active(raw_smp_processor_id()));
686 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
687
688 /* No proper task established and can't sleep - busy wait for lock. */
689 while (!mutex_trylock(&stop_cpus_mutex))
690 cpu_relax();
691
692 /* Schedule work on other CPUs and execute directly for local CPU */
693 set_state(&msdata, MULTI_STOP_PREPARE);
694 cpu_stop_init_done(&done, num_active_cpus());
695 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
696 &done);
697 ret = multi_cpu_stop(&msdata);
698
699 /* Busy wait for completion. */
700 while (!completion_done(&done.completion))
701 cpu_relax();
702
703 mutex_unlock(&stop_cpus_mutex);
704 return ret ?: done.ret;
705 }
706