1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26
27 /*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31 static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
63
64 static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69 } swap_cache_info;
70
total_swapcache_pages(void)71 unsigned long total_swapcache_pages(void)
72 {
73 unsigned int i, j, nr;
74 unsigned long ret = 0;
75 struct address_space *spaces;
76 struct swap_info_struct *si;
77
78 for (i = 0; i < MAX_SWAPFILES; i++) {
79 swp_entry_t entry = swp_entry(i, 1);
80
81 /* Avoid get_swap_device() to warn for bad swap entry */
82 if (!swp_swap_info(entry))
83 continue;
84 /* Prevent swapoff to free swapper_spaces */
85 si = get_swap_device(entry);
86 if (!si)
87 continue;
88 nr = nr_swapper_spaces[i];
89 spaces = swapper_spaces[i];
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
92 put_swap_device(si);
93 }
94 return ret;
95 }
96 EXPORT_SYMBOL_GPL(total_swapcache_pages);
97
98 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
99
show_swap_cache_info(void)100 void show_swap_cache_info(void)
101 {
102 printk("%lu pages in swap cache\n", total_swapcache_pages());
103 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
104 swap_cache_info.add_total, swap_cache_info.del_total,
105 swap_cache_info.find_success, swap_cache_info.find_total);
106 printk("Free swap = %ldkB\n",
107 get_nr_swap_pages() << (PAGE_SHIFT - 10));
108 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
109 }
110
get_shadow_from_swap_cache(swp_entry_t entry)111 void *get_shadow_from_swap_cache(swp_entry_t entry)
112 {
113 struct address_space *address_space = swap_address_space(entry);
114 pgoff_t idx = swp_offset(entry);
115 struct page *page;
116
117 page = find_get_entry(address_space, idx);
118 if (xa_is_value(page))
119 return page;
120 if (page)
121 put_page(page);
122 return NULL;
123 }
124
125 /*
126 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
127 * but sets SwapCache flag and private instead of mapping and index.
128 */
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp,void ** shadowp)129 int add_to_swap_cache(struct page *page, swp_entry_t entry,
130 gfp_t gfp, void **shadowp)
131 {
132 struct address_space *address_space = swap_address_space(entry);
133 pgoff_t idx = swp_offset(entry);
134 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
135 unsigned long i, nr = thp_nr_pages(page);
136 void *old;
137
138 VM_BUG_ON_PAGE(!PageLocked(page), page);
139 VM_BUG_ON_PAGE(PageSwapCache(page), page);
140 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
141
142 page_ref_add(page, nr);
143 SetPageSwapCache(page);
144
145 do {
146 unsigned long nr_shadows = 0;
147
148 xas_lock_irq(&xas);
149 xas_create_range(&xas);
150 if (xas_error(&xas))
151 goto unlock;
152 for (i = 0; i < nr; i++) {
153 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
154 old = xas_load(&xas);
155 if (xa_is_value(old)) {
156 nr_shadows++;
157 if (shadowp)
158 *shadowp = old;
159 }
160 set_page_private(page + i, entry.val + i);
161 xas_store(&xas, page);
162 xas_next(&xas);
163 }
164 address_space->nrexceptional -= nr_shadows;
165 address_space->nrpages += nr;
166 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
167 ADD_CACHE_INFO(add_total, nr);
168 unlock:
169 xas_unlock_irq(&xas);
170 } while (xas_nomem(&xas, gfp));
171
172 if (!xas_error(&xas))
173 return 0;
174
175 ClearPageSwapCache(page);
176 page_ref_sub(page, nr);
177 return xas_error(&xas);
178 }
179
180 /*
181 * This must be called only on pages that have
182 * been verified to be in the swap cache.
183 */
__delete_from_swap_cache(struct page * page,swp_entry_t entry,void * shadow)184 void __delete_from_swap_cache(struct page *page,
185 swp_entry_t entry, void *shadow)
186 {
187 struct address_space *address_space = swap_address_space(entry);
188 int i, nr = thp_nr_pages(page);
189 pgoff_t idx = swp_offset(entry);
190 XA_STATE(xas, &address_space->i_pages, idx);
191
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
194 VM_BUG_ON_PAGE(PageWriteback(page), page);
195
196 for (i = 0; i < nr; i++) {
197 void *entry = xas_store(&xas, shadow);
198 VM_BUG_ON_PAGE(entry != page, entry);
199 set_page_private(page + i, 0);
200 xas_next(&xas);
201 }
202 ClearPageSwapCache(page);
203 if (shadow)
204 address_space->nrexceptional += nr;
205 address_space->nrpages -= nr;
206 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
207 ADD_CACHE_INFO(del_total, nr);
208 }
209
210 /**
211 * add_to_swap - allocate swap space for a page
212 * @page: page we want to move to swap
213 *
214 * Allocate swap space for the page and add the page to the
215 * swap cache. Caller needs to hold the page lock.
216 */
add_to_swap(struct page * page)217 int add_to_swap(struct page *page)
218 {
219 swp_entry_t entry;
220 int err;
221
222 VM_BUG_ON_PAGE(!PageLocked(page), page);
223 VM_BUG_ON_PAGE(!PageUptodate(page), page);
224
225 entry = get_swap_page(page);
226 if (!entry.val)
227 return 0;
228
229 /*
230 * XArray node allocations from PF_MEMALLOC contexts could
231 * completely exhaust the page allocator. __GFP_NOMEMALLOC
232 * stops emergency reserves from being allocated.
233 *
234 * TODO: this could cause a theoretical memory reclaim
235 * deadlock in the swap out path.
236 */
237 /*
238 * Add it to the swap cache.
239 */
240 err = add_to_swap_cache(page, entry,
241 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
242 if (err)
243 /*
244 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
245 * clear SWAP_HAS_CACHE flag.
246 */
247 goto fail;
248 /*
249 * Normally the page will be dirtied in unmap because its pte should be
250 * dirty. A special case is MADV_FREE page. The page's pte could have
251 * dirty bit cleared but the page's SwapBacked bit is still set because
252 * clearing the dirty bit and SwapBacked bit has no lock protected. For
253 * such page, unmap will not set dirty bit for it, so page reclaim will
254 * not write the page out. This can cause data corruption when the page
255 * is swap in later. Always setting the dirty bit for the page solves
256 * the problem.
257 */
258 set_page_dirty(page);
259
260 return 1;
261
262 fail:
263 put_swap_page(page, entry);
264 return 0;
265 }
266
267 /*
268 * This must be called only on pages that have
269 * been verified to be in the swap cache and locked.
270 * It will never put the page into the free list,
271 * the caller has a reference on the page.
272 */
delete_from_swap_cache(struct page * page)273 void delete_from_swap_cache(struct page *page)
274 {
275 swp_entry_t entry = { .val = page_private(page) };
276 struct address_space *address_space = swap_address_space(entry);
277
278 xa_lock_irq(&address_space->i_pages);
279 __delete_from_swap_cache(page, entry, NULL);
280 xa_unlock_irq(&address_space->i_pages);
281
282 put_swap_page(page, entry);
283 page_ref_sub(page, thp_nr_pages(page));
284 }
285
clear_shadow_from_swap_cache(int type,unsigned long begin,unsigned long end)286 void clear_shadow_from_swap_cache(int type, unsigned long begin,
287 unsigned long end)
288 {
289 unsigned long curr = begin;
290 void *old;
291
292 for (;;) {
293 unsigned long nr_shadows = 0;
294 swp_entry_t entry = swp_entry(type, curr);
295 struct address_space *address_space = swap_address_space(entry);
296 XA_STATE(xas, &address_space->i_pages, curr);
297
298 xa_lock_irq(&address_space->i_pages);
299 xas_for_each(&xas, old, end) {
300 if (!xa_is_value(old))
301 continue;
302 xas_store(&xas, NULL);
303 nr_shadows++;
304 }
305 address_space->nrexceptional -= nr_shadows;
306 xa_unlock_irq(&address_space->i_pages);
307
308 /* search the next swapcache until we meet end */
309 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
310 curr++;
311 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
312 if (curr > end)
313 break;
314 }
315 }
316
317 /*
318 * If we are the only user, then try to free up the swap cache.
319 *
320 * Its ok to check for PageSwapCache without the page lock
321 * here because we are going to recheck again inside
322 * try_to_free_swap() _with_ the lock.
323 * - Marcelo
324 */
free_swap_cache(struct page * page)325 static inline void free_swap_cache(struct page *page)
326 {
327 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
328 try_to_free_swap(page);
329 unlock_page(page);
330 }
331 }
332
333 /*
334 * Perform a free_page(), also freeing any swap cache associated with
335 * this page if it is the last user of the page.
336 */
free_page_and_swap_cache(struct page * page)337 void free_page_and_swap_cache(struct page *page)
338 {
339 free_swap_cache(page);
340 if (!is_huge_zero_page(page))
341 put_page(page);
342 }
343
344 /*
345 * Passed an array of pages, drop them all from swapcache and then release
346 * them. They are removed from the LRU and freed if this is their last use.
347 */
free_pages_and_swap_cache(struct page ** pages,int nr)348 void free_pages_and_swap_cache(struct page **pages, int nr)
349 {
350 struct page **pagep = pages;
351 int i;
352
353 lru_add_drain();
354 for (i = 0; i < nr; i++)
355 free_swap_cache(pagep[i]);
356 release_pages(pagep, nr);
357 }
358
swap_use_vma_readahead(void)359 static inline bool swap_use_vma_readahead(void)
360 {
361 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
362 }
363
364 /*
365 * Lookup a swap entry in the swap cache. A found page will be returned
366 * unlocked and with its refcount incremented - we rely on the kernel
367 * lock getting page table operations atomic even if we drop the page
368 * lock before returning.
369 */
lookup_swap_cache(swp_entry_t entry,struct vm_area_struct * vma,unsigned long addr)370 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
371 unsigned long addr)
372 {
373 struct page *page;
374 struct swap_info_struct *si;
375
376 si = get_swap_device(entry);
377 if (!si)
378 return NULL;
379 page = find_get_page(swap_address_space(entry), swp_offset(entry));
380 put_swap_device(si);
381
382 INC_CACHE_INFO(find_total);
383 if (page) {
384 bool vma_ra = swap_use_vma_readahead();
385 bool readahead;
386
387 INC_CACHE_INFO(find_success);
388 /*
389 * At the moment, we don't support PG_readahead for anon THP
390 * so let's bail out rather than confusing the readahead stat.
391 */
392 if (unlikely(PageTransCompound(page)))
393 return page;
394
395 readahead = TestClearPageReadahead(page);
396 if (vma && vma_ra) {
397 unsigned long ra_val;
398 int win, hits;
399
400 ra_val = GET_SWAP_RA_VAL(vma);
401 win = SWAP_RA_WIN(ra_val);
402 hits = SWAP_RA_HITS(ra_val);
403 if (readahead)
404 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
405 atomic_long_set(&vma->swap_readahead_info,
406 SWAP_RA_VAL(addr, win, hits));
407 }
408
409 if (readahead) {
410 count_vm_event(SWAP_RA_HIT);
411 if (!vma || !vma_ra)
412 atomic_inc(&swapin_readahead_hits);
413 }
414 }
415
416 return page;
417 }
418
419 /**
420 * find_get_incore_page - Find and get a page from the page or swap caches.
421 * @mapping: The address_space to search.
422 * @index: The page cache index.
423 *
424 * This differs from find_get_page() in that it will also look for the
425 * page in the swap cache.
426 *
427 * Return: The found page or %NULL.
428 */
find_get_incore_page(struct address_space * mapping,pgoff_t index)429 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
430 {
431 swp_entry_t swp;
432 struct swap_info_struct *si;
433 struct page *page = find_get_entry(mapping, index);
434
435 if (!page)
436 return page;
437 if (!xa_is_value(page))
438 return find_subpage(page, index);
439 if (!shmem_mapping(mapping))
440 return NULL;
441
442 swp = radix_to_swp_entry(page);
443 /* Prevent swapoff from happening to us */
444 si = get_swap_device(swp);
445 if (!si)
446 return NULL;
447 page = find_get_page(swap_address_space(swp), swp_offset(swp));
448 put_swap_device(si);
449 return page;
450 }
451
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool * new_page_allocated)452 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
453 struct vm_area_struct *vma, unsigned long addr,
454 bool *new_page_allocated)
455 {
456 struct swap_info_struct *si;
457 struct page *page;
458 void *shadow = NULL;
459
460 *new_page_allocated = false;
461
462 for (;;) {
463 int err;
464 /*
465 * First check the swap cache. Since this is normally
466 * called after lookup_swap_cache() failed, re-calling
467 * that would confuse statistics.
468 */
469 si = get_swap_device(entry);
470 if (!si)
471 return NULL;
472 page = find_get_page(swap_address_space(entry),
473 swp_offset(entry));
474 put_swap_device(si);
475 if (page)
476 return page;
477
478 /*
479 * Just skip read ahead for unused swap slot.
480 * During swap_off when swap_slot_cache is disabled,
481 * we have to handle the race between putting
482 * swap entry in swap cache and marking swap slot
483 * as SWAP_HAS_CACHE. That's done in later part of code or
484 * else swap_off will be aborted if we return NULL.
485 */
486 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
487 return NULL;
488
489 /*
490 * Get a new page to read into from swap. Allocate it now,
491 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
492 * cause any racers to loop around until we add it to cache.
493 */
494 page = alloc_page_vma(gfp_mask, vma, addr);
495 if (!page)
496 return NULL;
497
498 /*
499 * Swap entry may have been freed since our caller observed it.
500 */
501 err = swapcache_prepare(entry);
502 if (!err)
503 break;
504
505 put_page(page);
506 if (err != -EEXIST)
507 return NULL;
508
509 /*
510 * We might race against __delete_from_swap_cache(), and
511 * stumble across a swap_map entry whose SWAP_HAS_CACHE
512 * has not yet been cleared. Or race against another
513 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
514 * in swap_map, but not yet added its page to swap cache.
515 */
516 schedule_timeout_uninterruptible(1);
517 }
518
519 /*
520 * The swap entry is ours to swap in. Prepare the new page.
521 */
522
523 __SetPageLocked(page);
524 __SetPageSwapBacked(page);
525
526 /* May fail (-ENOMEM) if XArray node allocation failed. */
527 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
528 put_swap_page(page, entry);
529 goto fail_unlock;
530 }
531
532 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
533 delete_from_swap_cache(page);
534 goto fail_unlock;
535 }
536
537 if (shadow)
538 workingset_refault(page, shadow);
539
540 /* Caller will initiate read into locked page */
541 SetPageWorkingset(page);
542 lru_cache_add(page);
543 *new_page_allocated = true;
544 return page;
545
546 fail_unlock:
547 unlock_page(page);
548 put_page(page);
549 return NULL;
550 }
551
552 /*
553 * Locate a page of swap in physical memory, reserving swap cache space
554 * and reading the disk if it is not already cached.
555 * A failure return means that either the page allocation failed or that
556 * the swap entry is no longer in use.
557 */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool do_poll)558 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
559 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
560 {
561 bool page_was_allocated;
562 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
563 vma, addr, &page_was_allocated);
564
565 if (page_was_allocated)
566 swap_readpage(retpage, do_poll);
567
568 return retpage;
569 }
570
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)571 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
572 unsigned long offset,
573 int hits,
574 int max_pages,
575 int prev_win)
576 {
577 unsigned int pages, last_ra;
578
579 /*
580 * This heuristic has been found to work well on both sequential and
581 * random loads, swapping to hard disk or to SSD: please don't ask
582 * what the "+ 2" means, it just happens to work well, that's all.
583 */
584 pages = hits + 2;
585 if (pages == 2) {
586 /*
587 * We can have no readahead hits to judge by: but must not get
588 * stuck here forever, so check for an adjacent offset instead
589 * (and don't even bother to check whether swap type is same).
590 */
591 if (offset != prev_offset + 1 && offset != prev_offset - 1)
592 pages = 1;
593 } else {
594 unsigned int roundup = 4;
595 while (roundup < pages)
596 roundup <<= 1;
597 pages = roundup;
598 }
599
600 if (pages > max_pages)
601 pages = max_pages;
602
603 /* Don't shrink readahead too fast */
604 last_ra = prev_win / 2;
605 if (pages < last_ra)
606 pages = last_ra;
607
608 return pages;
609 }
610
swapin_nr_pages(unsigned long offset)611 static unsigned long swapin_nr_pages(unsigned long offset)
612 {
613 static unsigned long prev_offset;
614 unsigned int hits, pages, max_pages;
615 static atomic_t last_readahead_pages;
616
617 max_pages = 1 << READ_ONCE(page_cluster);
618 if (max_pages <= 1)
619 return 1;
620
621 hits = atomic_xchg(&swapin_readahead_hits, 0);
622 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
623 max_pages,
624 atomic_read(&last_readahead_pages));
625 if (!hits)
626 WRITE_ONCE(prev_offset, offset);
627 atomic_set(&last_readahead_pages, pages);
628
629 return pages;
630 }
631
632 /**
633 * swap_cluster_readahead - swap in pages in hope we need them soon
634 * @entry: swap entry of this memory
635 * @gfp_mask: memory allocation flags
636 * @vmf: fault information
637 *
638 * Returns the struct page for entry and addr, after queueing swapin.
639 *
640 * Primitive swap readahead code. We simply read an aligned block of
641 * (1 << page_cluster) entries in the swap area. This method is chosen
642 * because it doesn't cost us any seek time. We also make sure to queue
643 * the 'original' request together with the readahead ones...
644 *
645 * This has been extended to use the NUMA policies from the mm triggering
646 * the readahead.
647 *
648 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
649 * This is needed to ensure the VMA will not be freed in our back. In the case
650 * of the speculative page fault handler, this cannot happen, even if we don't
651 * hold the mmap_sem. Callees are assumed to take care of reading VMA's fields
652 * using READ_ONCE() to read consistent values.
653 */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)654 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
655 struct vm_fault *vmf)
656 {
657 struct page *page;
658 unsigned long entry_offset = swp_offset(entry);
659 unsigned long offset = entry_offset;
660 unsigned long start_offset, end_offset;
661 unsigned long mask;
662 struct swap_info_struct *si = swp_swap_info(entry);
663 struct blk_plug plug;
664 bool do_poll = true, page_allocated;
665 struct vm_area_struct *vma = vmf->vma;
666 unsigned long addr = vmf->address;
667
668 mask = swapin_nr_pages(offset) - 1;
669 if (!mask)
670 goto skip;
671
672 /* Test swap type to make sure the dereference is safe */
673 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
674 struct inode *inode = si->swap_file->f_mapping->host;
675 if (inode_read_congested(inode))
676 goto skip;
677 }
678
679 do_poll = false;
680 /* Read a page_cluster sized and aligned cluster around offset. */
681 start_offset = offset & ~mask;
682 end_offset = offset | mask;
683 if (!start_offset) /* First page is swap header. */
684 start_offset++;
685 if (end_offset >= si->max)
686 end_offset = si->max - 1;
687
688 blk_start_plug(&plug);
689 for (offset = start_offset; offset <= end_offset ; offset++) {
690 /* Ok, do the async read-ahead now */
691 page = __read_swap_cache_async(
692 swp_entry(swp_type(entry), offset),
693 gfp_mask, vma, addr, &page_allocated);
694 if (!page)
695 continue;
696 if (page_allocated) {
697 swap_readpage(page, false);
698 if (offset != entry_offset) {
699 SetPageReadahead(page);
700 count_vm_event(SWAP_RA);
701 }
702 }
703 put_page(page);
704 }
705 blk_finish_plug(&plug);
706
707 lru_add_drain(); /* Push any new pages onto the LRU now */
708 skip:
709 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
710 }
711
init_swap_address_space(unsigned int type,unsigned long nr_pages)712 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
713 {
714 struct address_space *spaces, *space;
715 unsigned int i, nr;
716
717 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
718 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
719 if (!spaces)
720 return -ENOMEM;
721 for (i = 0; i < nr; i++) {
722 space = spaces + i;
723 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
724 atomic_set(&space->i_mmap_writable, 0);
725 space->a_ops = &swap_aops;
726 /* swap cache doesn't use writeback related tags */
727 mapping_set_no_writeback_tags(space);
728 }
729 nr_swapper_spaces[type] = nr;
730 swapper_spaces[type] = spaces;
731
732 return 0;
733 }
734
exit_swap_address_space(unsigned int type)735 void exit_swap_address_space(unsigned int type)
736 {
737 kvfree(swapper_spaces[type]);
738 nr_swapper_spaces[type] = 0;
739 swapper_spaces[type] = NULL;
740 }
741
swap_ra_clamp_pfn(struct vm_area_struct * vma,unsigned long faddr,unsigned long lpfn,unsigned long rpfn,unsigned long * start,unsigned long * end)742 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
743 unsigned long faddr,
744 unsigned long lpfn,
745 unsigned long rpfn,
746 unsigned long *start,
747 unsigned long *end)
748 {
749 *start = max3(lpfn, PFN_DOWN(READ_ONCE(vma->vm_start)),
750 PFN_DOWN(faddr & PMD_MASK));
751 *end = min3(rpfn, PFN_DOWN(READ_ONCE(vma->vm_end)),
752 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
753 }
754
swap_ra_info(struct vm_fault * vmf,struct vma_swap_readahead * ra_info)755 static void swap_ra_info(struct vm_fault *vmf,
756 struct vma_swap_readahead *ra_info)
757 {
758 struct vm_area_struct *vma = vmf->vma;
759 unsigned long ra_val;
760 swp_entry_t entry;
761 unsigned long faddr, pfn, fpfn;
762 unsigned long start, end;
763 pte_t *pte, *orig_pte;
764 unsigned int max_win, hits, prev_win, win, left;
765 #ifndef CONFIG_64BIT
766 pte_t *tpte;
767 #endif
768
769 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
770 SWAP_RA_ORDER_CEILING);
771 if (max_win == 1) {
772 ra_info->win = 1;
773 return;
774 }
775
776 faddr = vmf->address;
777 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
778 entry = pte_to_swp_entry(*pte);
779 if ((unlikely(non_swap_entry(entry)))) {
780 pte_unmap(orig_pte);
781 return;
782 }
783
784 fpfn = PFN_DOWN(faddr);
785 ra_val = GET_SWAP_RA_VAL(vma);
786 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
787 prev_win = SWAP_RA_WIN(ra_val);
788 hits = SWAP_RA_HITS(ra_val);
789 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
790 max_win, prev_win);
791 atomic_long_set(&vma->swap_readahead_info,
792 SWAP_RA_VAL(faddr, win, 0));
793
794 if (win == 1) {
795 pte_unmap(orig_pte);
796 return;
797 }
798
799 /* Copy the PTEs because the page table may be unmapped */
800 if (fpfn == pfn + 1)
801 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
802 else if (pfn == fpfn + 1)
803 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
804 &start, &end);
805 else {
806 left = (win - 1) / 2;
807 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
808 &start, &end);
809 }
810 ra_info->nr_pte = end - start;
811 ra_info->offset = fpfn - start;
812 pte -= ra_info->offset;
813 #ifdef CONFIG_64BIT
814 ra_info->ptes = pte;
815 #else
816 tpte = ra_info->ptes;
817 for (pfn = start; pfn != end; pfn++)
818 *tpte++ = *pte++;
819 #endif
820 pte_unmap(orig_pte);
821 }
822
823 /**
824 * swap_vma_readahead - swap in pages in hope we need them soon
825 * @fentry: swap entry of this memory
826 * @gfp_mask: memory allocation flags
827 * @vmf: fault information
828 *
829 * Returns the struct page for entry and addr, after queueing swapin.
830 *
831 * Primitive swap readahead code. We simply read in a few pages whoes
832 * virtual addresses are around the fault address in the same vma.
833 *
834 * Caller must hold read mmap_lock if vmf->vma is not NULL.
835 *
836 */
swap_vma_readahead(swp_entry_t fentry,gfp_t gfp_mask,struct vm_fault * vmf)837 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
838 struct vm_fault *vmf)
839 {
840 struct blk_plug plug;
841 struct vm_area_struct *vma = vmf->vma;
842 struct page *page;
843 pte_t *pte, pentry;
844 swp_entry_t entry;
845 unsigned int i;
846 bool page_allocated;
847 struct vma_swap_readahead ra_info = {0,};
848
849 swap_ra_info(vmf, &ra_info);
850 if (ra_info.win == 1)
851 goto skip;
852
853 blk_start_plug(&plug);
854 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
855 i++, pte++) {
856 pentry = *pte;
857 if (pte_none(pentry))
858 continue;
859 if (pte_present(pentry))
860 continue;
861 entry = pte_to_swp_entry(pentry);
862 if (unlikely(non_swap_entry(entry)))
863 continue;
864 page = __read_swap_cache_async(entry, gfp_mask, vma,
865 vmf->address, &page_allocated);
866 if (!page)
867 continue;
868 if (page_allocated) {
869 swap_readpage(page, false);
870 if (i != ra_info.offset) {
871 SetPageReadahead(page);
872 count_vm_event(SWAP_RA);
873 }
874 }
875 put_page(page);
876 }
877 blk_finish_plug(&plug);
878 lru_add_drain();
879 skip:
880 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
881 ra_info.win == 1);
882 }
883
884 /**
885 * swapin_readahead - swap in pages in hope we need them soon
886 * @entry: swap entry of this memory
887 * @gfp_mask: memory allocation flags
888 * @vmf: fault information
889 *
890 * Returns the struct page for entry and addr, after queueing swapin.
891 *
892 * It's a main entry function for swap readahead. By the configuration,
893 * it will read ahead blocks by cluster-based(ie, physical disk based)
894 * or vma-based(ie, virtual address based on faulty address) readahead.
895 */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)896 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
897 struct vm_fault *vmf)
898 {
899 return swap_use_vma_readahead() ?
900 swap_vma_readahead(entry, gfp_mask, vmf) :
901 swap_cluster_readahead(entry, gfp_mask, vmf);
902 }
903
904 #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)905 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
906 struct kobj_attribute *attr, char *buf)
907 {
908 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
909 }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)910 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
911 struct kobj_attribute *attr,
912 const char *buf, size_t count)
913 {
914 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
915 enable_vma_readahead = true;
916 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
917 enable_vma_readahead = false;
918 else
919 return -EINVAL;
920
921 return count;
922 }
923 static struct kobj_attribute vma_ra_enabled_attr =
924 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
925 vma_ra_enabled_store);
926
927 static struct attribute *swap_attrs[] = {
928 &vma_ra_enabled_attr.attr,
929 NULL,
930 };
931
932 static struct attribute_group swap_attr_group = {
933 .attrs = swap_attrs,
934 };
935
swap_init_sysfs(void)936 static int __init swap_init_sysfs(void)
937 {
938 int err;
939 struct kobject *swap_kobj;
940
941 swap_kobj = kobject_create_and_add("swap", mm_kobj);
942 if (!swap_kobj) {
943 pr_err("failed to create swap kobject\n");
944 return -ENOMEM;
945 }
946 err = sysfs_create_group(swap_kobj, &swap_attr_group);
947 if (err) {
948 pr_err("failed to register swap group\n");
949 goto delete_obj;
950 }
951 return 0;
952
953 delete_obj:
954 kobject_put(swap_kobj);
955 return err;
956 }
957 subsys_initcall(swap_init_sysfs);
958 #endif
959