• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
enable_restore_image_protection(void)46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
hibernate_restore_protection_begin(void)51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
hibernate_restore_protection_end(void)56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
hibernate_restore_protect_page(void * page_address)61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
hibernate_restore_unprotect_page(void * page_address)67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
hibernate_restore_protection_begin(void)73 static inline void hibernate_restore_protection_begin(void) {}
hibernate_restore_protection_end(void)74 static inline void hibernate_restore_protection_end(void) {}
hibernate_restore_protect_page(void * page_address)75 static inline void hibernate_restore_protect_page(void *page_address) {}
hibernate_restore_unprotect_page(void * page_address)76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
78 
79 static int swsusp_page_is_free(struct page *);
80 static void swsusp_set_page_forbidden(struct page *);
81 static void swsusp_unset_page_forbidden(struct page *);
82 
83 /*
84  * Number of bytes to reserve for memory allocations made by device drivers
85  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
86  * cause image creation to fail (tunable via /sys/power/reserved_size).
87  */
88 unsigned long reserved_size;
89 
hibernate_reserved_size_init(void)90 void __init hibernate_reserved_size_init(void)
91 {
92 	reserved_size = SPARE_PAGES * PAGE_SIZE;
93 }
94 
95 /*
96  * Preferred image size in bytes (tunable via /sys/power/image_size).
97  * When it is set to N, swsusp will do its best to ensure the image
98  * size will not exceed N bytes, but if that is impossible, it will
99  * try to create the smallest image possible.
100  */
101 unsigned long image_size;
102 
hibernate_image_size_init(void)103 void __init hibernate_image_size_init(void)
104 {
105 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
106 }
107 
108 /*
109  * List of PBEs needed for restoring the pages that were allocated before
110  * the suspend and included in the suspend image, but have also been
111  * allocated by the "resume" kernel, so their contents cannot be written
112  * directly to their "original" page frames.
113  */
114 struct pbe *restore_pblist;
115 
116 /* struct linked_page is used to build chains of pages */
117 
118 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
119 
120 struct linked_page {
121 	struct linked_page *next;
122 	char data[LINKED_PAGE_DATA_SIZE];
123 } __packed;
124 
125 /*
126  * List of "safe" pages (ie. pages that were not used by the image kernel
127  * before hibernation) that may be used as temporary storage for image kernel
128  * memory contents.
129  */
130 static struct linked_page *safe_pages_list;
131 
132 /* Pointer to an auxiliary buffer (1 page) */
133 static void *buffer;
134 
135 #define PG_ANY		0
136 #define PG_SAFE		1
137 #define PG_UNSAFE_CLEAR	1
138 #define PG_UNSAFE_KEEP	0
139 
140 static unsigned int allocated_unsafe_pages;
141 
142 /**
143  * get_image_page - Allocate a page for a hibernation image.
144  * @gfp_mask: GFP mask for the allocation.
145  * @safe_needed: Get pages that were not used before hibernation (restore only)
146  *
147  * During image restoration, for storing the PBE list and the image data, we can
148  * only use memory pages that do not conflict with the pages used before
149  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
150  * using allocated_unsafe_pages.
151  *
152  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
153  * swsusp_free() can release it.
154  */
get_image_page(gfp_t gfp_mask,int safe_needed)155 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
156 {
157 	void *res;
158 
159 	res = (void *)get_zeroed_page(gfp_mask);
160 	if (safe_needed)
161 		while (res && swsusp_page_is_free(virt_to_page(res))) {
162 			/* The page is unsafe, mark it for swsusp_free() */
163 			swsusp_set_page_forbidden(virt_to_page(res));
164 			allocated_unsafe_pages++;
165 			res = (void *)get_zeroed_page(gfp_mask);
166 		}
167 	if (res) {
168 		swsusp_set_page_forbidden(virt_to_page(res));
169 		swsusp_set_page_free(virt_to_page(res));
170 	}
171 	return res;
172 }
173 
__get_safe_page(gfp_t gfp_mask)174 static void *__get_safe_page(gfp_t gfp_mask)
175 {
176 	if (safe_pages_list) {
177 		void *ret = safe_pages_list;
178 
179 		safe_pages_list = safe_pages_list->next;
180 		memset(ret, 0, PAGE_SIZE);
181 		return ret;
182 	}
183 	return get_image_page(gfp_mask, PG_SAFE);
184 }
185 
get_safe_page(gfp_t gfp_mask)186 unsigned long get_safe_page(gfp_t gfp_mask)
187 {
188 	return (unsigned long)__get_safe_page(gfp_mask);
189 }
190 
alloc_image_page(gfp_t gfp_mask)191 static struct page *alloc_image_page(gfp_t gfp_mask)
192 {
193 	struct page *page;
194 
195 	page = alloc_page(gfp_mask);
196 	if (page) {
197 		swsusp_set_page_forbidden(page);
198 		swsusp_set_page_free(page);
199 	}
200 	return page;
201 }
202 
recycle_safe_page(void * page_address)203 static void recycle_safe_page(void *page_address)
204 {
205 	struct linked_page *lp = page_address;
206 
207 	lp->next = safe_pages_list;
208 	safe_pages_list = lp;
209 }
210 
211 /**
212  * free_image_page - Free a page allocated for hibernation image.
213  * @addr: Address of the page to free.
214  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
215  *
216  * The page to free should have been allocated by get_image_page() (page flags
217  * set by it are affected).
218  */
free_image_page(void * addr,int clear_nosave_free)219 static inline void free_image_page(void *addr, int clear_nosave_free)
220 {
221 	struct page *page;
222 
223 	BUG_ON(!virt_addr_valid(addr));
224 
225 	page = virt_to_page(addr);
226 
227 	swsusp_unset_page_forbidden(page);
228 	if (clear_nosave_free)
229 		swsusp_unset_page_free(page);
230 
231 	__free_page(page);
232 }
233 
free_list_of_pages(struct linked_page * list,int clear_page_nosave)234 static inline void free_list_of_pages(struct linked_page *list,
235 				      int clear_page_nosave)
236 {
237 	while (list) {
238 		struct linked_page *lp = list->next;
239 
240 		free_image_page(list, clear_page_nosave);
241 		list = lp;
242 	}
243 }
244 
245 /*
246  * struct chain_allocator is used for allocating small objects out of
247  * a linked list of pages called 'the chain'.
248  *
249  * The chain grows each time when there is no room for a new object in
250  * the current page.  The allocated objects cannot be freed individually.
251  * It is only possible to free them all at once, by freeing the entire
252  * chain.
253  *
254  * NOTE: The chain allocator may be inefficient if the allocated objects
255  * are not much smaller than PAGE_SIZE.
256  */
257 struct chain_allocator {
258 	struct linked_page *chain;	/* the chain */
259 	unsigned int used_space;	/* total size of objects allocated out
260 					   of the current page */
261 	gfp_t gfp_mask;		/* mask for allocating pages */
262 	int safe_needed;	/* if set, only "safe" pages are allocated */
263 };
264 
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)265 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
266 		       int safe_needed)
267 {
268 	ca->chain = NULL;
269 	ca->used_space = LINKED_PAGE_DATA_SIZE;
270 	ca->gfp_mask = gfp_mask;
271 	ca->safe_needed = safe_needed;
272 }
273 
chain_alloc(struct chain_allocator * ca,unsigned int size)274 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
275 {
276 	void *ret;
277 
278 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
279 		struct linked_page *lp;
280 
281 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
282 					get_image_page(ca->gfp_mask, PG_ANY);
283 		if (!lp)
284 			return NULL;
285 
286 		lp->next = ca->chain;
287 		ca->chain = lp;
288 		ca->used_space = 0;
289 	}
290 	ret = ca->chain->data + ca->used_space;
291 	ca->used_space += size;
292 	return ret;
293 }
294 
295 /**
296  * Data types related to memory bitmaps.
297  *
298  * Memory bitmap is a structure consiting of many linked lists of
299  * objects.  The main list's elements are of type struct zone_bitmap
300  * and each of them corresonds to one zone.  For each zone bitmap
301  * object there is a list of objects of type struct bm_block that
302  * represent each blocks of bitmap in which information is stored.
303  *
304  * struct memory_bitmap contains a pointer to the main list of zone
305  * bitmap objects, a struct bm_position used for browsing the bitmap,
306  * and a pointer to the list of pages used for allocating all of the
307  * zone bitmap objects and bitmap block objects.
308  *
309  * NOTE: It has to be possible to lay out the bitmap in memory
310  * using only allocations of order 0.  Additionally, the bitmap is
311  * designed to work with arbitrary number of zones (this is over the
312  * top for now, but let's avoid making unnecessary assumptions ;-).
313  *
314  * struct zone_bitmap contains a pointer to a list of bitmap block
315  * objects and a pointer to the bitmap block object that has been
316  * most recently used for setting bits.  Additionally, it contains the
317  * PFNs that correspond to the start and end of the represented zone.
318  *
319  * struct bm_block contains a pointer to the memory page in which
320  * information is stored (in the form of a block of bitmap)
321  * It also contains the pfns that correspond to the start and end of
322  * the represented memory area.
323  *
324  * The memory bitmap is organized as a radix tree to guarantee fast random
325  * access to the bits. There is one radix tree for each zone (as returned
326  * from create_mem_extents).
327  *
328  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
329  * two linked lists for the nodes of the tree, one for the inner nodes and
330  * one for the leave nodes. The linked leave nodes are used for fast linear
331  * access of the memory bitmap.
332  *
333  * The struct rtree_node represents one node of the radix tree.
334  */
335 
336 #define BM_END_OF_MAP	(~0UL)
337 
338 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
339 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
340 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
341 
342 /*
343  * struct rtree_node is a wrapper struct to link the nodes
344  * of the rtree together for easy linear iteration over
345  * bits and easy freeing
346  */
347 struct rtree_node {
348 	struct list_head list;
349 	unsigned long *data;
350 };
351 
352 /*
353  * struct mem_zone_bm_rtree represents a bitmap used for one
354  * populated memory zone.
355  */
356 struct mem_zone_bm_rtree {
357 	struct list_head list;		/* Link Zones together         */
358 	struct list_head nodes;		/* Radix Tree inner nodes      */
359 	struct list_head leaves;	/* Radix Tree leaves           */
360 	unsigned long start_pfn;	/* Zone start page frame       */
361 	unsigned long end_pfn;		/* Zone end page frame + 1     */
362 	struct rtree_node *rtree;	/* Radix Tree Root             */
363 	int levels;			/* Number of Radix Tree Levels */
364 	unsigned int blocks;		/* Number of Bitmap Blocks     */
365 };
366 
367 /* strcut bm_position is used for browsing memory bitmaps */
368 
369 struct bm_position {
370 	struct mem_zone_bm_rtree *zone;
371 	struct rtree_node *node;
372 	unsigned long node_pfn;
373 	int node_bit;
374 };
375 
376 struct memory_bitmap {
377 	struct list_head zones;
378 	struct linked_page *p_list;	/* list of pages used to store zone
379 					   bitmap objects and bitmap block
380 					   objects */
381 	struct bm_position cur;	/* most recently used bit position */
382 };
383 
384 /* Functions that operate on memory bitmaps */
385 
386 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
387 #if BITS_PER_LONG == 32
388 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
389 #else
390 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
391 #endif
392 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
393 
394 /**
395  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
396  *
397  * This function is used to allocate inner nodes as well as the
398  * leave nodes of the radix tree. It also adds the node to the
399  * corresponding linked list passed in by the *list parameter.
400  */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)401 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
402 					   struct chain_allocator *ca,
403 					   struct list_head *list)
404 {
405 	struct rtree_node *node;
406 
407 	node = chain_alloc(ca, sizeof(struct rtree_node));
408 	if (!node)
409 		return NULL;
410 
411 	node->data = get_image_page(gfp_mask, safe_needed);
412 	if (!node->data)
413 		return NULL;
414 
415 	list_add_tail(&node->list, list);
416 
417 	return node;
418 }
419 
420 /**
421  * add_rtree_block - Add a new leave node to the radix tree.
422  *
423  * The leave nodes need to be allocated in order to keep the leaves
424  * linked list in order. This is guaranteed by the zone->blocks
425  * counter.
426  */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)427 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
428 			   int safe_needed, struct chain_allocator *ca)
429 {
430 	struct rtree_node *node, *block, **dst;
431 	unsigned int levels_needed, block_nr;
432 	int i;
433 
434 	block_nr = zone->blocks;
435 	levels_needed = 0;
436 
437 	/* How many levels do we need for this block nr? */
438 	while (block_nr) {
439 		levels_needed += 1;
440 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
441 	}
442 
443 	/* Make sure the rtree has enough levels */
444 	for (i = zone->levels; i < levels_needed; i++) {
445 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
446 					&zone->nodes);
447 		if (!node)
448 			return -ENOMEM;
449 
450 		node->data[0] = (unsigned long)zone->rtree;
451 		zone->rtree = node;
452 		zone->levels += 1;
453 	}
454 
455 	/* Allocate new block */
456 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
457 	if (!block)
458 		return -ENOMEM;
459 
460 	/* Now walk the rtree to insert the block */
461 	node = zone->rtree;
462 	dst = &zone->rtree;
463 	block_nr = zone->blocks;
464 	for (i = zone->levels; i > 0; i--) {
465 		int index;
466 
467 		if (!node) {
468 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
469 						&zone->nodes);
470 			if (!node)
471 				return -ENOMEM;
472 			*dst = node;
473 		}
474 
475 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
476 		index &= BM_RTREE_LEVEL_MASK;
477 		dst = (struct rtree_node **)&((*dst)->data[index]);
478 		node = *dst;
479 	}
480 
481 	zone->blocks += 1;
482 	*dst = block;
483 
484 	return 0;
485 }
486 
487 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
488 			       int clear_nosave_free);
489 
490 /**
491  * create_zone_bm_rtree - Create a radix tree for one zone.
492  *
493  * Allocated the mem_zone_bm_rtree structure and initializes it.
494  * This function also allocated and builds the radix tree for the
495  * zone.
496  */
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)497 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
498 						      int safe_needed,
499 						      struct chain_allocator *ca,
500 						      unsigned long start,
501 						      unsigned long end)
502 {
503 	struct mem_zone_bm_rtree *zone;
504 	unsigned int i, nr_blocks;
505 	unsigned long pages;
506 
507 	pages = end - start;
508 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
509 	if (!zone)
510 		return NULL;
511 
512 	INIT_LIST_HEAD(&zone->nodes);
513 	INIT_LIST_HEAD(&zone->leaves);
514 	zone->start_pfn = start;
515 	zone->end_pfn = end;
516 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
517 
518 	for (i = 0; i < nr_blocks; i++) {
519 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
520 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
521 			return NULL;
522 		}
523 	}
524 
525 	return zone;
526 }
527 
528 /**
529  * free_zone_bm_rtree - Free the memory of the radix tree.
530  *
531  * Free all node pages of the radix tree. The mem_zone_bm_rtree
532  * structure itself is not freed here nor are the rtree_node
533  * structs.
534  */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)535 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
536 			       int clear_nosave_free)
537 {
538 	struct rtree_node *node;
539 
540 	list_for_each_entry(node, &zone->nodes, list)
541 		free_image_page(node->data, clear_nosave_free);
542 
543 	list_for_each_entry(node, &zone->leaves, list)
544 		free_image_page(node->data, clear_nosave_free);
545 }
546 
memory_bm_position_reset(struct memory_bitmap * bm)547 static void memory_bm_position_reset(struct memory_bitmap *bm)
548 {
549 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
550 				  list);
551 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
552 				  struct rtree_node, list);
553 	bm->cur.node_pfn = 0;
554 	bm->cur.node_bit = 0;
555 }
556 
557 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
558 
559 struct mem_extent {
560 	struct list_head hook;
561 	unsigned long start;
562 	unsigned long end;
563 };
564 
565 /**
566  * free_mem_extents - Free a list of memory extents.
567  * @list: List of extents to free.
568  */
free_mem_extents(struct list_head * list)569 static void free_mem_extents(struct list_head *list)
570 {
571 	struct mem_extent *ext, *aux;
572 
573 	list_for_each_entry_safe(ext, aux, list, hook) {
574 		list_del(&ext->hook);
575 		kfree(ext);
576 	}
577 }
578 
579 /**
580  * create_mem_extents - Create a list of memory extents.
581  * @list: List to put the extents into.
582  * @gfp_mask: Mask to use for memory allocations.
583  *
584  * The extents represent contiguous ranges of PFNs.
585  */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)586 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
587 {
588 	struct zone *zone;
589 
590 	INIT_LIST_HEAD(list);
591 
592 	for_each_populated_zone(zone) {
593 		unsigned long zone_start, zone_end;
594 		struct mem_extent *ext, *cur, *aux;
595 
596 		zone_start = zone->zone_start_pfn;
597 		zone_end = zone_end_pfn(zone);
598 
599 		list_for_each_entry(ext, list, hook)
600 			if (zone_start <= ext->end)
601 				break;
602 
603 		if (&ext->hook == list || zone_end < ext->start) {
604 			/* New extent is necessary */
605 			struct mem_extent *new_ext;
606 
607 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
608 			if (!new_ext) {
609 				free_mem_extents(list);
610 				return -ENOMEM;
611 			}
612 			new_ext->start = zone_start;
613 			new_ext->end = zone_end;
614 			list_add_tail(&new_ext->hook, &ext->hook);
615 			continue;
616 		}
617 
618 		/* Merge this zone's range of PFNs with the existing one */
619 		if (zone_start < ext->start)
620 			ext->start = zone_start;
621 		if (zone_end > ext->end)
622 			ext->end = zone_end;
623 
624 		/* More merging may be possible */
625 		cur = ext;
626 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
627 			if (zone_end < cur->start)
628 				break;
629 			if (zone_end < cur->end)
630 				ext->end = cur->end;
631 			list_del(&cur->hook);
632 			kfree(cur);
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  * memory_bm_create - Allocate memory for a memory bitmap.
641  */
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)642 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
643 			    int safe_needed)
644 {
645 	struct chain_allocator ca;
646 	struct list_head mem_extents;
647 	struct mem_extent *ext;
648 	int error;
649 
650 	chain_init(&ca, gfp_mask, safe_needed);
651 	INIT_LIST_HEAD(&bm->zones);
652 
653 	error = create_mem_extents(&mem_extents, gfp_mask);
654 	if (error)
655 		return error;
656 
657 	list_for_each_entry(ext, &mem_extents, hook) {
658 		struct mem_zone_bm_rtree *zone;
659 
660 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
661 					    ext->start, ext->end);
662 		if (!zone) {
663 			error = -ENOMEM;
664 			goto Error;
665 		}
666 		list_add_tail(&zone->list, &bm->zones);
667 	}
668 
669 	bm->p_list = ca.chain;
670 	memory_bm_position_reset(bm);
671  Exit:
672 	free_mem_extents(&mem_extents);
673 	return error;
674 
675  Error:
676 	bm->p_list = ca.chain;
677 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
678 	goto Exit;
679 }
680 
681 /**
682  * memory_bm_free - Free memory occupied by the memory bitmap.
683  * @bm: Memory bitmap.
684  */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)685 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
686 {
687 	struct mem_zone_bm_rtree *zone;
688 
689 	list_for_each_entry(zone, &bm->zones, list)
690 		free_zone_bm_rtree(zone, clear_nosave_free);
691 
692 	free_list_of_pages(bm->p_list, clear_nosave_free);
693 
694 	INIT_LIST_HEAD(&bm->zones);
695 }
696 
697 /**
698  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
699  *
700  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
701  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
702  *
703  * Walk the radix tree to find the page containing the bit that represents @pfn
704  * and return the position of the bit in @addr and @bit_nr.
705  */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)706 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
707 			      void **addr, unsigned int *bit_nr)
708 {
709 	struct mem_zone_bm_rtree *curr, *zone;
710 	struct rtree_node *node;
711 	int i, block_nr;
712 
713 	zone = bm->cur.zone;
714 
715 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
716 		goto zone_found;
717 
718 	zone = NULL;
719 
720 	/* Find the right zone */
721 	list_for_each_entry(curr, &bm->zones, list) {
722 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
723 			zone = curr;
724 			break;
725 		}
726 	}
727 
728 	if (!zone)
729 		return -EFAULT;
730 
731 zone_found:
732 	/*
733 	 * We have found the zone. Now walk the radix tree to find the leaf node
734 	 * for our PFN.
735 	 */
736 
737 	/*
738 	 * If the zone we wish to scan is the current zone and the
739 	 * pfn falls into the current node then we do not need to walk
740 	 * the tree.
741 	 */
742 	node = bm->cur.node;
743 	if (zone == bm->cur.zone &&
744 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
745 		goto node_found;
746 
747 	node      = zone->rtree;
748 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
749 
750 	for (i = zone->levels; i > 0; i--) {
751 		int index;
752 
753 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
754 		index &= BM_RTREE_LEVEL_MASK;
755 		BUG_ON(node->data[index] == 0);
756 		node = (struct rtree_node *)node->data[index];
757 	}
758 
759 node_found:
760 	/* Update last position */
761 	bm->cur.zone = zone;
762 	bm->cur.node = node;
763 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
764 
765 	/* Set return values */
766 	*addr = node->data;
767 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
768 
769 	return 0;
770 }
771 
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)772 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
773 {
774 	void *addr;
775 	unsigned int bit;
776 	int error;
777 
778 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
779 	BUG_ON(error);
780 	set_bit(bit, addr);
781 }
782 
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)783 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
784 {
785 	void *addr;
786 	unsigned int bit;
787 	int error;
788 
789 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
790 	if (!error)
791 		set_bit(bit, addr);
792 
793 	return error;
794 }
795 
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)796 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
797 {
798 	void *addr;
799 	unsigned int bit;
800 	int error;
801 
802 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
803 	BUG_ON(error);
804 	clear_bit(bit, addr);
805 }
806 
memory_bm_clear_current(struct memory_bitmap * bm)807 static void memory_bm_clear_current(struct memory_bitmap *bm)
808 {
809 	int bit;
810 
811 	bit = max(bm->cur.node_bit - 1, 0);
812 	clear_bit(bit, bm->cur.node->data);
813 }
814 
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)815 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817 	void *addr;
818 	unsigned int bit;
819 	int error;
820 
821 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822 	BUG_ON(error);
823 	return test_bit(bit, addr);
824 }
825 
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)826 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
827 {
828 	void *addr;
829 	unsigned int bit;
830 
831 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
832 }
833 
834 /*
835  * rtree_next_node - Jump to the next leaf node.
836  *
837  * Set the position to the beginning of the next node in the
838  * memory bitmap. This is either the next node in the current
839  * zone's radix tree or the first node in the radix tree of the
840  * next zone.
841  *
842  * Return true if there is a next node, false otherwise.
843  */
rtree_next_node(struct memory_bitmap * bm)844 static bool rtree_next_node(struct memory_bitmap *bm)
845 {
846 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
847 		bm->cur.node = list_entry(bm->cur.node->list.next,
848 					  struct rtree_node, list);
849 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
850 		bm->cur.node_bit  = 0;
851 		touch_softlockup_watchdog();
852 		return true;
853 	}
854 
855 	/* No more nodes, goto next zone */
856 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
857 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
858 				  struct mem_zone_bm_rtree, list);
859 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
860 					  struct rtree_node, list);
861 		bm->cur.node_pfn = 0;
862 		bm->cur.node_bit = 0;
863 		return true;
864 	}
865 
866 	/* No more zones */
867 	return false;
868 }
869 
870 /**
871  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
872  * @bm: Memory bitmap.
873  *
874  * Starting from the last returned position this function searches for the next
875  * set bit in @bm and returns the PFN represented by it.  If no more bits are
876  * set, BM_END_OF_MAP is returned.
877  *
878  * It is required to run memory_bm_position_reset() before the first call to
879  * this function for the given memory bitmap.
880  */
memory_bm_next_pfn(struct memory_bitmap * bm)881 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
882 {
883 	unsigned long bits, pfn, pages;
884 	int bit;
885 
886 	do {
887 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
888 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
889 		bit	  = find_next_bit(bm->cur.node->data, bits,
890 					  bm->cur.node_bit);
891 		if (bit < bits) {
892 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
893 			bm->cur.node_bit = bit + 1;
894 			return pfn;
895 		}
896 	} while (rtree_next_node(bm));
897 
898 	return BM_END_OF_MAP;
899 }
900 
901 /*
902  * This structure represents a range of page frames the contents of which
903  * should not be saved during hibernation.
904  */
905 struct nosave_region {
906 	struct list_head list;
907 	unsigned long start_pfn;
908 	unsigned long end_pfn;
909 };
910 
911 static LIST_HEAD(nosave_regions);
912 
recycle_zone_bm_rtree(struct mem_zone_bm_rtree * zone)913 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
914 {
915 	struct rtree_node *node;
916 
917 	list_for_each_entry(node, &zone->nodes, list)
918 		recycle_safe_page(node->data);
919 
920 	list_for_each_entry(node, &zone->leaves, list)
921 		recycle_safe_page(node->data);
922 }
923 
memory_bm_recycle(struct memory_bitmap * bm)924 static void memory_bm_recycle(struct memory_bitmap *bm)
925 {
926 	struct mem_zone_bm_rtree *zone;
927 	struct linked_page *p_list;
928 
929 	list_for_each_entry(zone, &bm->zones, list)
930 		recycle_zone_bm_rtree(zone);
931 
932 	p_list = bm->p_list;
933 	while (p_list) {
934 		struct linked_page *lp = p_list;
935 
936 		p_list = lp->next;
937 		recycle_safe_page(lp);
938 	}
939 }
940 
941 /**
942  * register_nosave_region - Register a region of unsaveable memory.
943  *
944  * Register a range of page frames the contents of which should not be saved
945  * during hibernation (to be used in the early initialization code).
946  */
register_nosave_region(unsigned long start_pfn,unsigned long end_pfn)947 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
948 {
949 	struct nosave_region *region;
950 
951 	if (start_pfn >= end_pfn)
952 		return;
953 
954 	if (!list_empty(&nosave_regions)) {
955 		/* Try to extend the previous region (they should be sorted) */
956 		region = list_entry(nosave_regions.prev,
957 					struct nosave_region, list);
958 		if (region->end_pfn == start_pfn) {
959 			region->end_pfn = end_pfn;
960 			goto Report;
961 		}
962 	}
963 	/* This allocation cannot fail */
964 	region = memblock_alloc(sizeof(struct nosave_region),
965 				SMP_CACHE_BYTES);
966 	if (!region)
967 		panic("%s: Failed to allocate %zu bytes\n", __func__,
968 		      sizeof(struct nosave_region));
969 	region->start_pfn = start_pfn;
970 	region->end_pfn = end_pfn;
971 	list_add_tail(&region->list, &nosave_regions);
972  Report:
973 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
974 		(unsigned long long) start_pfn << PAGE_SHIFT,
975 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
976 }
977 
978 /*
979  * Set bits in this map correspond to the page frames the contents of which
980  * should not be saved during the suspend.
981  */
982 static struct memory_bitmap *forbidden_pages_map;
983 
984 /* Set bits in this map correspond to free page frames. */
985 static struct memory_bitmap *free_pages_map;
986 
987 /*
988  * Each page frame allocated for creating the image is marked by setting the
989  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
990  */
991 
swsusp_set_page_free(struct page * page)992 void swsusp_set_page_free(struct page *page)
993 {
994 	if (free_pages_map)
995 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
996 }
997 
swsusp_page_is_free(struct page * page)998 static int swsusp_page_is_free(struct page *page)
999 {
1000 	return free_pages_map ?
1001 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1002 }
1003 
swsusp_unset_page_free(struct page * page)1004 void swsusp_unset_page_free(struct page *page)
1005 {
1006 	if (free_pages_map)
1007 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1008 }
1009 
swsusp_set_page_forbidden(struct page * page)1010 static void swsusp_set_page_forbidden(struct page *page)
1011 {
1012 	if (forbidden_pages_map)
1013 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1014 }
1015 
swsusp_page_is_forbidden(struct page * page)1016 int swsusp_page_is_forbidden(struct page *page)
1017 {
1018 	return forbidden_pages_map ?
1019 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1020 }
1021 
swsusp_unset_page_forbidden(struct page * page)1022 static void swsusp_unset_page_forbidden(struct page *page)
1023 {
1024 	if (forbidden_pages_map)
1025 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1026 }
1027 
1028 /**
1029  * mark_nosave_pages - Mark pages that should not be saved.
1030  * @bm: Memory bitmap.
1031  *
1032  * Set the bits in @bm that correspond to the page frames the contents of which
1033  * should not be saved.
1034  */
mark_nosave_pages(struct memory_bitmap * bm)1035 static void mark_nosave_pages(struct memory_bitmap *bm)
1036 {
1037 	struct nosave_region *region;
1038 
1039 	if (list_empty(&nosave_regions))
1040 		return;
1041 
1042 	list_for_each_entry(region, &nosave_regions, list) {
1043 		unsigned long pfn;
1044 
1045 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1046 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1047 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1048 				- 1);
1049 
1050 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1051 			if (pfn_valid(pfn)) {
1052 				/*
1053 				 * It is safe to ignore the result of
1054 				 * mem_bm_set_bit_check() here, since we won't
1055 				 * touch the PFNs for which the error is
1056 				 * returned anyway.
1057 				 */
1058 				mem_bm_set_bit_check(bm, pfn);
1059 			}
1060 	}
1061 }
1062 
1063 /**
1064  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1065  *
1066  * Create bitmaps needed for marking page frames that should not be saved and
1067  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1068  * only modified if everything goes well, because we don't want the bits to be
1069  * touched before both bitmaps are set up.
1070  */
create_basic_memory_bitmaps(void)1071 int create_basic_memory_bitmaps(void)
1072 {
1073 	struct memory_bitmap *bm1, *bm2;
1074 	int error = 0;
1075 
1076 	if (forbidden_pages_map && free_pages_map)
1077 		return 0;
1078 	else
1079 		BUG_ON(forbidden_pages_map || free_pages_map);
1080 
1081 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1082 	if (!bm1)
1083 		return -ENOMEM;
1084 
1085 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1086 	if (error)
1087 		goto Free_first_object;
1088 
1089 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1090 	if (!bm2)
1091 		goto Free_first_bitmap;
1092 
1093 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1094 	if (error)
1095 		goto Free_second_object;
1096 
1097 	forbidden_pages_map = bm1;
1098 	free_pages_map = bm2;
1099 	mark_nosave_pages(forbidden_pages_map);
1100 
1101 	pr_debug("Basic memory bitmaps created\n");
1102 
1103 	return 0;
1104 
1105  Free_second_object:
1106 	kfree(bm2);
1107  Free_first_bitmap:
1108  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1109  Free_first_object:
1110 	kfree(bm1);
1111 	return -ENOMEM;
1112 }
1113 
1114 /**
1115  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1116  *
1117  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1118  * auxiliary pointers are necessary so that the bitmaps themselves are not
1119  * referred to while they are being freed.
1120  */
free_basic_memory_bitmaps(void)1121 void free_basic_memory_bitmaps(void)
1122 {
1123 	struct memory_bitmap *bm1, *bm2;
1124 
1125 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1126 		return;
1127 
1128 	bm1 = forbidden_pages_map;
1129 	bm2 = free_pages_map;
1130 	forbidden_pages_map = NULL;
1131 	free_pages_map = NULL;
1132 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1133 	kfree(bm1);
1134 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1135 	kfree(bm2);
1136 
1137 	pr_debug("Basic memory bitmaps freed\n");
1138 }
1139 
clear_or_poison_free_page(struct page * page)1140 static void clear_or_poison_free_page(struct page *page)
1141 {
1142 	if (page_poisoning_enabled_static())
1143 		__kernel_poison_pages(page, 1);
1144 	else if (want_init_on_free())
1145 		clear_highpage(page);
1146 }
1147 
clear_or_poison_free_pages(void)1148 void clear_or_poison_free_pages(void)
1149 {
1150 	struct memory_bitmap *bm = free_pages_map;
1151 	unsigned long pfn;
1152 
1153 	if (WARN_ON(!(free_pages_map)))
1154 		return;
1155 
1156 	if (page_poisoning_enabled() || want_init_on_free()) {
1157 		memory_bm_position_reset(bm);
1158 		pfn = memory_bm_next_pfn(bm);
1159 		while (pfn != BM_END_OF_MAP) {
1160 			if (pfn_valid(pfn))
1161 				clear_or_poison_free_page(pfn_to_page(pfn));
1162 
1163 			pfn = memory_bm_next_pfn(bm);
1164 		}
1165 		memory_bm_position_reset(bm);
1166 		pr_info("free pages cleared after restore\n");
1167 	}
1168 }
1169 
1170 /**
1171  * snapshot_additional_pages - Estimate the number of extra pages needed.
1172  * @zone: Memory zone to carry out the computation for.
1173  *
1174  * Estimate the number of additional pages needed for setting up a hibernation
1175  * image data structures for @zone (usually, the returned value is greater than
1176  * the exact number).
1177  */
snapshot_additional_pages(struct zone * zone)1178 unsigned int snapshot_additional_pages(struct zone *zone)
1179 {
1180 	unsigned int rtree, nodes;
1181 
1182 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1183 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1184 			      LINKED_PAGE_DATA_SIZE);
1185 	while (nodes > 1) {
1186 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1187 		rtree += nodes;
1188 	}
1189 
1190 	return 2 * rtree;
1191 }
1192 
1193 #ifdef CONFIG_HIGHMEM
1194 /**
1195  * count_free_highmem_pages - Compute the total number of free highmem pages.
1196  *
1197  * The returned number is system-wide.
1198  */
count_free_highmem_pages(void)1199 static unsigned int count_free_highmem_pages(void)
1200 {
1201 	struct zone *zone;
1202 	unsigned int cnt = 0;
1203 
1204 	for_each_populated_zone(zone)
1205 		if (is_highmem(zone))
1206 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1207 
1208 	return cnt;
1209 }
1210 
1211 /**
1212  * saveable_highmem_page - Check if a highmem page is saveable.
1213  *
1214  * Determine whether a highmem page should be included in a hibernation image.
1215  *
1216  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1217  * and it isn't part of a free chunk of pages.
1218  */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1219 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1220 {
1221 	struct page *page;
1222 
1223 	if (!pfn_valid(pfn))
1224 		return NULL;
1225 
1226 	page = pfn_to_online_page(pfn);
1227 	if (!page || page_zone(page) != zone)
1228 		return NULL;
1229 
1230 	BUG_ON(!PageHighMem(page));
1231 
1232 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1233 		return NULL;
1234 
1235 	if (PageReserved(page) || PageOffline(page))
1236 		return NULL;
1237 
1238 	if (page_is_guard(page))
1239 		return NULL;
1240 
1241 	return page;
1242 }
1243 
1244 /**
1245  * count_highmem_pages - Compute the total number of saveable highmem pages.
1246  */
count_highmem_pages(void)1247 static unsigned int count_highmem_pages(void)
1248 {
1249 	struct zone *zone;
1250 	unsigned int n = 0;
1251 
1252 	for_each_populated_zone(zone) {
1253 		unsigned long pfn, max_zone_pfn;
1254 
1255 		if (!is_highmem(zone))
1256 			continue;
1257 
1258 		mark_free_pages(zone);
1259 		max_zone_pfn = zone_end_pfn(zone);
1260 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1261 			if (saveable_highmem_page(zone, pfn))
1262 				n++;
1263 	}
1264 	return n;
1265 }
1266 #else
saveable_highmem_page(struct zone * z,unsigned long p)1267 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1268 {
1269 	return NULL;
1270 }
1271 #endif /* CONFIG_HIGHMEM */
1272 
1273 /**
1274  * saveable_page - Check if the given page is saveable.
1275  *
1276  * Determine whether a non-highmem page should be included in a hibernation
1277  * image.
1278  *
1279  * We should save the page if it isn't Nosave, and is not in the range
1280  * of pages statically defined as 'unsaveable', and it isn't part of
1281  * a free chunk of pages.
1282  */
saveable_page(struct zone * zone,unsigned long pfn)1283 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1284 {
1285 	struct page *page;
1286 
1287 	if (!pfn_valid(pfn))
1288 		return NULL;
1289 
1290 	page = pfn_to_online_page(pfn);
1291 	if (!page || page_zone(page) != zone)
1292 		return NULL;
1293 
1294 	BUG_ON(PageHighMem(page));
1295 
1296 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1297 		return NULL;
1298 
1299 	if (PageOffline(page))
1300 		return NULL;
1301 
1302 	if (PageReserved(page)
1303 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1304 		return NULL;
1305 
1306 	if (page_is_guard(page))
1307 		return NULL;
1308 
1309 	return page;
1310 }
1311 
1312 /**
1313  * count_data_pages - Compute the total number of saveable non-highmem pages.
1314  */
count_data_pages(void)1315 static unsigned int count_data_pages(void)
1316 {
1317 	struct zone *zone;
1318 	unsigned long pfn, max_zone_pfn;
1319 	unsigned int n = 0;
1320 
1321 	for_each_populated_zone(zone) {
1322 		if (is_highmem(zone))
1323 			continue;
1324 
1325 		mark_free_pages(zone);
1326 		max_zone_pfn = zone_end_pfn(zone);
1327 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1328 			if (saveable_page(zone, pfn))
1329 				n++;
1330 	}
1331 	return n;
1332 }
1333 
1334 /*
1335  * This is needed, because copy_page and memcpy are not usable for copying
1336  * task structs.
1337  */
do_copy_page(long * dst,long * src)1338 static inline void do_copy_page(long *dst, long *src)
1339 {
1340 	int n;
1341 
1342 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1343 		*dst++ = *src++;
1344 }
1345 
1346 /**
1347  * safe_copy_page - Copy a page in a safe way.
1348  *
1349  * Check if the page we are going to copy is marked as present in the kernel
1350  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1351  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1352  * always returns 'true'.
1353  */
safe_copy_page(void * dst,struct page * s_page)1354 static void safe_copy_page(void *dst, struct page *s_page)
1355 {
1356 	if (kernel_page_present(s_page)) {
1357 		do_copy_page(dst, page_address(s_page));
1358 	} else {
1359 		kernel_map_pages(s_page, 1, 1);
1360 		do_copy_page(dst, page_address(s_page));
1361 		kernel_map_pages(s_page, 1, 0);
1362 	}
1363 }
1364 
1365 #ifdef CONFIG_HIGHMEM
page_is_saveable(struct zone * zone,unsigned long pfn)1366 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1367 {
1368 	return is_highmem(zone) ?
1369 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1370 }
1371 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1372 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1373 {
1374 	struct page *s_page, *d_page;
1375 	void *src, *dst;
1376 
1377 	s_page = pfn_to_page(src_pfn);
1378 	d_page = pfn_to_page(dst_pfn);
1379 	if (PageHighMem(s_page)) {
1380 		src = kmap_atomic(s_page);
1381 		dst = kmap_atomic(d_page);
1382 		do_copy_page(dst, src);
1383 		kunmap_atomic(dst);
1384 		kunmap_atomic(src);
1385 	} else {
1386 		if (PageHighMem(d_page)) {
1387 			/*
1388 			 * The page pointed to by src may contain some kernel
1389 			 * data modified by kmap_atomic()
1390 			 */
1391 			safe_copy_page(buffer, s_page);
1392 			dst = kmap_atomic(d_page);
1393 			copy_page(dst, buffer);
1394 			kunmap_atomic(dst);
1395 		} else {
1396 			safe_copy_page(page_address(d_page), s_page);
1397 		}
1398 	}
1399 }
1400 #else
1401 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1402 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1403 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1404 {
1405 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1406 				pfn_to_page(src_pfn));
1407 }
1408 #endif /* CONFIG_HIGHMEM */
1409 
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1410 static void copy_data_pages(struct memory_bitmap *copy_bm,
1411 			    struct memory_bitmap *orig_bm)
1412 {
1413 	struct zone *zone;
1414 	unsigned long pfn;
1415 
1416 	for_each_populated_zone(zone) {
1417 		unsigned long max_zone_pfn;
1418 
1419 		mark_free_pages(zone);
1420 		max_zone_pfn = zone_end_pfn(zone);
1421 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1422 			if (page_is_saveable(zone, pfn))
1423 				memory_bm_set_bit(orig_bm, pfn);
1424 	}
1425 	memory_bm_position_reset(orig_bm);
1426 	memory_bm_position_reset(copy_bm);
1427 	for(;;) {
1428 		pfn = memory_bm_next_pfn(orig_bm);
1429 		if (unlikely(pfn == BM_END_OF_MAP))
1430 			break;
1431 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1432 	}
1433 }
1434 
1435 /* Total number of image pages */
1436 static unsigned int nr_copy_pages;
1437 /* Number of pages needed for saving the original pfns of the image pages */
1438 static unsigned int nr_meta_pages;
1439 /*
1440  * Numbers of normal and highmem page frames allocated for hibernation image
1441  * before suspending devices.
1442  */
1443 static unsigned int alloc_normal, alloc_highmem;
1444 /*
1445  * Memory bitmap used for marking saveable pages (during hibernation) or
1446  * hibernation image pages (during restore)
1447  */
1448 static struct memory_bitmap orig_bm;
1449 /*
1450  * Memory bitmap used during hibernation for marking allocated page frames that
1451  * will contain copies of saveable pages.  During restore it is initially used
1452  * for marking hibernation image pages, but then the set bits from it are
1453  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1454  * used for marking "safe" highmem pages, but it has to be reinitialized for
1455  * this purpose.
1456  */
1457 static struct memory_bitmap copy_bm;
1458 
1459 /**
1460  * swsusp_free - Free pages allocated for hibernation image.
1461  *
1462  * Image pages are alocated before snapshot creation, so they need to be
1463  * released after resume.
1464  */
swsusp_free(void)1465 void swsusp_free(void)
1466 {
1467 	unsigned long fb_pfn, fr_pfn;
1468 
1469 	if (!forbidden_pages_map || !free_pages_map)
1470 		goto out;
1471 
1472 	memory_bm_position_reset(forbidden_pages_map);
1473 	memory_bm_position_reset(free_pages_map);
1474 
1475 loop:
1476 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1477 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1478 
1479 	/*
1480 	 * Find the next bit set in both bitmaps. This is guaranteed to
1481 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1482 	 */
1483 	do {
1484 		if (fb_pfn < fr_pfn)
1485 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1486 		if (fr_pfn < fb_pfn)
1487 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1488 	} while (fb_pfn != fr_pfn);
1489 
1490 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1491 		struct page *page = pfn_to_page(fr_pfn);
1492 
1493 		memory_bm_clear_current(forbidden_pages_map);
1494 		memory_bm_clear_current(free_pages_map);
1495 		hibernate_restore_unprotect_page(page_address(page));
1496 		__free_page(page);
1497 		goto loop;
1498 	}
1499 
1500 out:
1501 	nr_copy_pages = 0;
1502 	nr_meta_pages = 0;
1503 	restore_pblist = NULL;
1504 	buffer = NULL;
1505 	alloc_normal = 0;
1506 	alloc_highmem = 0;
1507 	hibernate_restore_protection_end();
1508 }
1509 
1510 /* Helper functions used for the shrinking of memory. */
1511 
1512 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1513 
1514 /**
1515  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1516  * @nr_pages: Number of page frames to allocate.
1517  * @mask: GFP flags to use for the allocation.
1518  *
1519  * Return value: Number of page frames actually allocated
1520  */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1521 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1522 {
1523 	unsigned long nr_alloc = 0;
1524 
1525 	while (nr_pages > 0) {
1526 		struct page *page;
1527 
1528 		page = alloc_image_page(mask);
1529 		if (!page)
1530 			break;
1531 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1532 		if (PageHighMem(page))
1533 			alloc_highmem++;
1534 		else
1535 			alloc_normal++;
1536 		nr_pages--;
1537 		nr_alloc++;
1538 	}
1539 
1540 	return nr_alloc;
1541 }
1542 
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1543 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1544 					      unsigned long avail_normal)
1545 {
1546 	unsigned long alloc;
1547 
1548 	if (avail_normal <= alloc_normal)
1549 		return 0;
1550 
1551 	alloc = avail_normal - alloc_normal;
1552 	if (nr_pages < alloc)
1553 		alloc = nr_pages;
1554 
1555 	return preallocate_image_pages(alloc, GFP_IMAGE);
1556 }
1557 
1558 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1559 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1560 {
1561 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1562 }
1563 
1564 /**
1565  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1566  */
__fraction(u64 x,u64 multiplier,u64 base)1567 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1568 {
1569 	return div64_u64(x * multiplier, base);
1570 }
1571 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1572 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1573 						  unsigned long highmem,
1574 						  unsigned long total)
1575 {
1576 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1577 
1578 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1579 }
1580 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1581 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1582 {
1583 	return 0;
1584 }
1585 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1586 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1587 							 unsigned long highmem,
1588 							 unsigned long total)
1589 {
1590 	return 0;
1591 }
1592 #endif /* CONFIG_HIGHMEM */
1593 
1594 /**
1595  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1596  */
free_unnecessary_pages(void)1597 static unsigned long free_unnecessary_pages(void)
1598 {
1599 	unsigned long save, to_free_normal, to_free_highmem, free;
1600 
1601 	save = count_data_pages();
1602 	if (alloc_normal >= save) {
1603 		to_free_normal = alloc_normal - save;
1604 		save = 0;
1605 	} else {
1606 		to_free_normal = 0;
1607 		save -= alloc_normal;
1608 	}
1609 	save += count_highmem_pages();
1610 	if (alloc_highmem >= save) {
1611 		to_free_highmem = alloc_highmem - save;
1612 	} else {
1613 		to_free_highmem = 0;
1614 		save -= alloc_highmem;
1615 		if (to_free_normal > save)
1616 			to_free_normal -= save;
1617 		else
1618 			to_free_normal = 0;
1619 	}
1620 	free = to_free_normal + to_free_highmem;
1621 
1622 	memory_bm_position_reset(&copy_bm);
1623 
1624 	while (to_free_normal > 0 || to_free_highmem > 0) {
1625 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1626 		struct page *page = pfn_to_page(pfn);
1627 
1628 		if (PageHighMem(page)) {
1629 			if (!to_free_highmem)
1630 				continue;
1631 			to_free_highmem--;
1632 			alloc_highmem--;
1633 		} else {
1634 			if (!to_free_normal)
1635 				continue;
1636 			to_free_normal--;
1637 			alloc_normal--;
1638 		}
1639 		memory_bm_clear_bit(&copy_bm, pfn);
1640 		swsusp_unset_page_forbidden(page);
1641 		swsusp_unset_page_free(page);
1642 		__free_page(page);
1643 	}
1644 
1645 	return free;
1646 }
1647 
1648 /**
1649  * minimum_image_size - Estimate the minimum acceptable size of an image.
1650  * @saveable: Number of saveable pages in the system.
1651  *
1652  * We want to avoid attempting to free too much memory too hard, so estimate the
1653  * minimum acceptable size of a hibernation image to use as the lower limit for
1654  * preallocating memory.
1655  *
1656  * We assume that the minimum image size should be proportional to
1657  *
1658  * [number of saveable pages] - [number of pages that can be freed in theory]
1659  *
1660  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1661  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1662  */
minimum_image_size(unsigned long saveable)1663 static unsigned long minimum_image_size(unsigned long saveable)
1664 {
1665 	unsigned long size;
1666 
1667 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1668 		+ global_node_page_state(NR_ACTIVE_ANON)
1669 		+ global_node_page_state(NR_INACTIVE_ANON)
1670 		+ global_node_page_state(NR_ACTIVE_FILE)
1671 		+ global_node_page_state(NR_INACTIVE_FILE);
1672 
1673 	return saveable <= size ? 0 : saveable - size;
1674 }
1675 
1676 /**
1677  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1678  *
1679  * To create a hibernation image it is necessary to make a copy of every page
1680  * frame in use.  We also need a number of page frames to be free during
1681  * hibernation for allocations made while saving the image and for device
1682  * drivers, in case they need to allocate memory from their hibernation
1683  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1684  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1685  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1686  * total number of available page frames and allocate at least
1687  *
1688  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1689  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1690  *
1691  * of them, which corresponds to the maximum size of a hibernation image.
1692  *
1693  * If image_size is set below the number following from the above formula,
1694  * the preallocation of memory is continued until the total number of saveable
1695  * pages in the system is below the requested image size or the minimum
1696  * acceptable image size returned by minimum_image_size(), whichever is greater.
1697  */
hibernate_preallocate_memory(void)1698 int hibernate_preallocate_memory(void)
1699 {
1700 	struct zone *zone;
1701 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1702 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1703 	ktime_t start, stop;
1704 	int error;
1705 
1706 	pr_info("Preallocating image memory\n");
1707 	start = ktime_get();
1708 
1709 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1710 	if (error) {
1711 		pr_err("Cannot allocate original bitmap\n");
1712 		goto err_out;
1713 	}
1714 
1715 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1716 	if (error) {
1717 		pr_err("Cannot allocate copy bitmap\n");
1718 		goto err_out;
1719 	}
1720 
1721 	alloc_normal = 0;
1722 	alloc_highmem = 0;
1723 
1724 	/* Count the number of saveable data pages. */
1725 	save_highmem = count_highmem_pages();
1726 	saveable = count_data_pages();
1727 
1728 	/*
1729 	 * Compute the total number of page frames we can use (count) and the
1730 	 * number of pages needed for image metadata (size).
1731 	 */
1732 	count = saveable;
1733 	saveable += save_highmem;
1734 	highmem = save_highmem;
1735 	size = 0;
1736 	for_each_populated_zone(zone) {
1737 		size += snapshot_additional_pages(zone);
1738 		if (is_highmem(zone))
1739 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1740 		else
1741 			count += zone_page_state(zone, NR_FREE_PAGES);
1742 	}
1743 	avail_normal = count;
1744 	count += highmem;
1745 	count -= totalreserve_pages;
1746 
1747 	/* Compute the maximum number of saveable pages to leave in memory. */
1748 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1749 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1750 	/* Compute the desired number of image pages specified by image_size. */
1751 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1752 	if (size > max_size)
1753 		size = max_size;
1754 	/*
1755 	 * If the desired number of image pages is at least as large as the
1756 	 * current number of saveable pages in memory, allocate page frames for
1757 	 * the image and we're done.
1758 	 */
1759 	if (size >= saveable) {
1760 		pages = preallocate_image_highmem(save_highmem);
1761 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1762 		goto out;
1763 	}
1764 
1765 	/* Estimate the minimum size of the image. */
1766 	pages = minimum_image_size(saveable);
1767 	/*
1768 	 * To avoid excessive pressure on the normal zone, leave room in it to
1769 	 * accommodate an image of the minimum size (unless it's already too
1770 	 * small, in which case don't preallocate pages from it at all).
1771 	 */
1772 	if (avail_normal > pages)
1773 		avail_normal -= pages;
1774 	else
1775 		avail_normal = 0;
1776 	if (size < pages)
1777 		size = min_t(unsigned long, pages, max_size);
1778 
1779 	/*
1780 	 * Let the memory management subsystem know that we're going to need a
1781 	 * large number of page frames to allocate and make it free some memory.
1782 	 * NOTE: If this is not done, performance will be hurt badly in some
1783 	 * test cases.
1784 	 */
1785 	shrink_all_memory(saveable - size);
1786 
1787 	/*
1788 	 * The number of saveable pages in memory was too high, so apply some
1789 	 * pressure to decrease it.  First, make room for the largest possible
1790 	 * image and fail if that doesn't work.  Next, try to decrease the size
1791 	 * of the image as much as indicated by 'size' using allocations from
1792 	 * highmem and non-highmem zones separately.
1793 	 */
1794 	pages_highmem = preallocate_image_highmem(highmem / 2);
1795 	alloc = count - max_size;
1796 	if (alloc > pages_highmem)
1797 		alloc -= pages_highmem;
1798 	else
1799 		alloc = 0;
1800 	pages = preallocate_image_memory(alloc, avail_normal);
1801 	if (pages < alloc) {
1802 		/* We have exhausted non-highmem pages, try highmem. */
1803 		alloc -= pages;
1804 		pages += pages_highmem;
1805 		pages_highmem = preallocate_image_highmem(alloc);
1806 		if (pages_highmem < alloc) {
1807 			pr_err("Image allocation is %lu pages short\n",
1808 				alloc - pages_highmem);
1809 			goto err_out;
1810 		}
1811 		pages += pages_highmem;
1812 		/*
1813 		 * size is the desired number of saveable pages to leave in
1814 		 * memory, so try to preallocate (all memory - size) pages.
1815 		 */
1816 		alloc = (count - pages) - size;
1817 		pages += preallocate_image_highmem(alloc);
1818 	} else {
1819 		/*
1820 		 * There are approximately max_size saveable pages at this point
1821 		 * and we want to reduce this number down to size.
1822 		 */
1823 		alloc = max_size - size;
1824 		size = preallocate_highmem_fraction(alloc, highmem, count);
1825 		pages_highmem += size;
1826 		alloc -= size;
1827 		size = preallocate_image_memory(alloc, avail_normal);
1828 		pages_highmem += preallocate_image_highmem(alloc - size);
1829 		pages += pages_highmem + size;
1830 	}
1831 
1832 	/*
1833 	 * We only need as many page frames for the image as there are saveable
1834 	 * pages in memory, but we have allocated more.  Release the excessive
1835 	 * ones now.
1836 	 */
1837 	pages -= free_unnecessary_pages();
1838 
1839  out:
1840 	stop = ktime_get();
1841 	pr_info("Allocated %lu pages for snapshot\n", pages);
1842 	swsusp_show_speed(start, stop, pages, "Allocated");
1843 
1844 	return 0;
1845 
1846  err_out:
1847 	swsusp_free();
1848 	return -ENOMEM;
1849 }
1850 
1851 #ifdef CONFIG_HIGHMEM
1852 /**
1853  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1854  *
1855  * Compute the number of non-highmem pages that will be necessary for creating
1856  * copies of highmem pages.
1857  */
count_pages_for_highmem(unsigned int nr_highmem)1858 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1859 {
1860 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1861 
1862 	if (free_highmem >= nr_highmem)
1863 		nr_highmem = 0;
1864 	else
1865 		nr_highmem -= free_highmem;
1866 
1867 	return nr_highmem;
1868 }
1869 #else
count_pages_for_highmem(unsigned int nr_highmem)1870 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1871 #endif /* CONFIG_HIGHMEM */
1872 
1873 /**
1874  * enough_free_mem - Check if there is enough free memory for the image.
1875  */
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1876 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1877 {
1878 	struct zone *zone;
1879 	unsigned int free = alloc_normal;
1880 
1881 	for_each_populated_zone(zone)
1882 		if (!is_highmem(zone))
1883 			free += zone_page_state(zone, NR_FREE_PAGES);
1884 
1885 	nr_pages += count_pages_for_highmem(nr_highmem);
1886 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1887 		 nr_pages, PAGES_FOR_IO, free);
1888 
1889 	return free > nr_pages + PAGES_FOR_IO;
1890 }
1891 
1892 #ifdef CONFIG_HIGHMEM
1893 /**
1894  * get_highmem_buffer - Allocate a buffer for highmem pages.
1895  *
1896  * If there are some highmem pages in the hibernation image, we may need a
1897  * buffer to copy them and/or load their data.
1898  */
get_highmem_buffer(int safe_needed)1899 static inline int get_highmem_buffer(int safe_needed)
1900 {
1901 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1902 	return buffer ? 0 : -ENOMEM;
1903 }
1904 
1905 /**
1906  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1907  *
1908  * Try to allocate as many pages as needed, but if the number of free highmem
1909  * pages is less than that, allocate them all.
1910  */
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1911 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1912 					       unsigned int nr_highmem)
1913 {
1914 	unsigned int to_alloc = count_free_highmem_pages();
1915 
1916 	if (to_alloc > nr_highmem)
1917 		to_alloc = nr_highmem;
1918 
1919 	nr_highmem -= to_alloc;
1920 	while (to_alloc-- > 0) {
1921 		struct page *page;
1922 
1923 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1924 		memory_bm_set_bit(bm, page_to_pfn(page));
1925 	}
1926 	return nr_highmem;
1927 }
1928 #else
get_highmem_buffer(int safe_needed)1929 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1930 
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1931 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1932 					       unsigned int n) { return 0; }
1933 #endif /* CONFIG_HIGHMEM */
1934 
1935 /**
1936  * swsusp_alloc - Allocate memory for hibernation image.
1937  *
1938  * We first try to allocate as many highmem pages as there are
1939  * saveable highmem pages in the system.  If that fails, we allocate
1940  * non-highmem pages for the copies of the remaining highmem ones.
1941  *
1942  * In this approach it is likely that the copies of highmem pages will
1943  * also be located in the high memory, because of the way in which
1944  * copy_data_pages() works.
1945  */
swsusp_alloc(struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1946 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1947 			unsigned int nr_pages, unsigned int nr_highmem)
1948 {
1949 	if (nr_highmem > 0) {
1950 		if (get_highmem_buffer(PG_ANY))
1951 			goto err_out;
1952 		if (nr_highmem > alloc_highmem) {
1953 			nr_highmem -= alloc_highmem;
1954 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1955 		}
1956 	}
1957 	if (nr_pages > alloc_normal) {
1958 		nr_pages -= alloc_normal;
1959 		while (nr_pages-- > 0) {
1960 			struct page *page;
1961 
1962 			page = alloc_image_page(GFP_ATOMIC);
1963 			if (!page)
1964 				goto err_out;
1965 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1966 		}
1967 	}
1968 
1969 	return 0;
1970 
1971  err_out:
1972 	swsusp_free();
1973 	return -ENOMEM;
1974 }
1975 
swsusp_save(void)1976 asmlinkage __visible int swsusp_save(void)
1977 {
1978 	unsigned int nr_pages, nr_highmem;
1979 
1980 	pr_info("Creating image:\n");
1981 
1982 	drain_local_pages(NULL);
1983 	nr_pages = count_data_pages();
1984 	nr_highmem = count_highmem_pages();
1985 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1986 
1987 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1988 		pr_err("Not enough free memory\n");
1989 		return -ENOMEM;
1990 	}
1991 
1992 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1993 		pr_err("Memory allocation failed\n");
1994 		return -ENOMEM;
1995 	}
1996 
1997 	/*
1998 	 * During allocating of suspend pagedir, new cold pages may appear.
1999 	 * Kill them.
2000 	 */
2001 	drain_local_pages(NULL);
2002 	copy_data_pages(&copy_bm, &orig_bm);
2003 
2004 	/*
2005 	 * End of critical section. From now on, we can write to memory,
2006 	 * but we should not touch disk. This specially means we must _not_
2007 	 * touch swap space! Except we must write out our image of course.
2008 	 */
2009 
2010 	nr_pages += nr_highmem;
2011 	nr_copy_pages = nr_pages;
2012 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2013 
2014 	pr_info("Image created (%d pages copied)\n", nr_pages);
2015 
2016 	return 0;
2017 }
2018 
2019 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)2020 static int init_header_complete(struct swsusp_info *info)
2021 {
2022 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2023 	info->version_code = LINUX_VERSION_CODE;
2024 	return 0;
2025 }
2026 
check_image_kernel(struct swsusp_info * info)2027 static const char *check_image_kernel(struct swsusp_info *info)
2028 {
2029 	if (info->version_code != LINUX_VERSION_CODE)
2030 		return "kernel version";
2031 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2032 		return "system type";
2033 	if (strcmp(info->uts.release,init_utsname()->release))
2034 		return "kernel release";
2035 	if (strcmp(info->uts.version,init_utsname()->version))
2036 		return "version";
2037 	if (strcmp(info->uts.machine,init_utsname()->machine))
2038 		return "machine";
2039 	return NULL;
2040 }
2041 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2042 
snapshot_get_image_size(void)2043 unsigned long snapshot_get_image_size(void)
2044 {
2045 	return nr_copy_pages + nr_meta_pages + 1;
2046 }
2047 
init_header(struct swsusp_info * info)2048 static int init_header(struct swsusp_info *info)
2049 {
2050 	memset(info, 0, sizeof(struct swsusp_info));
2051 	info->num_physpages = get_num_physpages();
2052 	info->image_pages = nr_copy_pages;
2053 	info->pages = snapshot_get_image_size();
2054 	info->size = info->pages;
2055 	info->size <<= PAGE_SHIFT;
2056 	return init_header_complete(info);
2057 }
2058 
2059 /**
2060  * pack_pfns - Prepare PFNs for saving.
2061  * @bm: Memory bitmap.
2062  * @buf: Memory buffer to store the PFNs in.
2063  *
2064  * PFNs corresponding to set bits in @bm are stored in the area of memory
2065  * pointed to by @buf (1 page at a time).
2066  */
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)2067 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2068 {
2069 	int j;
2070 
2071 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2072 		buf[j] = memory_bm_next_pfn(bm);
2073 		if (unlikely(buf[j] == BM_END_OF_MAP))
2074 			break;
2075 	}
2076 }
2077 
2078 /**
2079  * snapshot_read_next - Get the address to read the next image page from.
2080  * @handle: Snapshot handle to be used for the reading.
2081  *
2082  * On the first call, @handle should point to a zeroed snapshot_handle
2083  * structure.  The structure gets populated then and a pointer to it should be
2084  * passed to this function every next time.
2085  *
2086  * On success, the function returns a positive number.  Then, the caller
2087  * is allowed to read up to the returned number of bytes from the memory
2088  * location computed by the data_of() macro.
2089  *
2090  * The function returns 0 to indicate the end of the data stream condition,
2091  * and negative numbers are returned on errors.  If that happens, the structure
2092  * pointed to by @handle is not updated and should not be used any more.
2093  */
snapshot_read_next(struct snapshot_handle * handle)2094 int snapshot_read_next(struct snapshot_handle *handle)
2095 {
2096 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2097 		return 0;
2098 
2099 	if (!buffer) {
2100 		/* This makes the buffer be freed by swsusp_free() */
2101 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2102 		if (!buffer)
2103 			return -ENOMEM;
2104 	}
2105 	if (!handle->cur) {
2106 		int error;
2107 
2108 		error = init_header((struct swsusp_info *)buffer);
2109 		if (error)
2110 			return error;
2111 		handle->buffer = buffer;
2112 		memory_bm_position_reset(&orig_bm);
2113 		memory_bm_position_reset(&copy_bm);
2114 	} else if (handle->cur <= nr_meta_pages) {
2115 		clear_page(buffer);
2116 		pack_pfns(buffer, &orig_bm);
2117 	} else {
2118 		struct page *page;
2119 
2120 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2121 		if (PageHighMem(page)) {
2122 			/*
2123 			 * Highmem pages are copied to the buffer,
2124 			 * because we can't return with a kmapped
2125 			 * highmem page (we may not be called again).
2126 			 */
2127 			void *kaddr;
2128 
2129 			kaddr = kmap_atomic(page);
2130 			copy_page(buffer, kaddr);
2131 			kunmap_atomic(kaddr);
2132 			handle->buffer = buffer;
2133 		} else {
2134 			handle->buffer = page_address(page);
2135 		}
2136 	}
2137 	handle->cur++;
2138 	return PAGE_SIZE;
2139 }
2140 
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2141 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2142 				    struct memory_bitmap *src)
2143 {
2144 	unsigned long pfn;
2145 
2146 	memory_bm_position_reset(src);
2147 	pfn = memory_bm_next_pfn(src);
2148 	while (pfn != BM_END_OF_MAP) {
2149 		memory_bm_set_bit(dst, pfn);
2150 		pfn = memory_bm_next_pfn(src);
2151 	}
2152 }
2153 
2154 /**
2155  * mark_unsafe_pages - Mark pages that were used before hibernation.
2156  *
2157  * Mark the pages that cannot be used for storing the image during restoration,
2158  * because they conflict with the pages that had been used before hibernation.
2159  */
mark_unsafe_pages(struct memory_bitmap * bm)2160 static void mark_unsafe_pages(struct memory_bitmap *bm)
2161 {
2162 	unsigned long pfn;
2163 
2164 	/* Clear the "free"/"unsafe" bit for all PFNs */
2165 	memory_bm_position_reset(free_pages_map);
2166 	pfn = memory_bm_next_pfn(free_pages_map);
2167 	while (pfn != BM_END_OF_MAP) {
2168 		memory_bm_clear_current(free_pages_map);
2169 		pfn = memory_bm_next_pfn(free_pages_map);
2170 	}
2171 
2172 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2173 	duplicate_memory_bitmap(free_pages_map, bm);
2174 
2175 	allocated_unsafe_pages = 0;
2176 }
2177 
check_header(struct swsusp_info * info)2178 static int check_header(struct swsusp_info *info)
2179 {
2180 	const char *reason;
2181 
2182 	reason = check_image_kernel(info);
2183 	if (!reason && info->num_physpages != get_num_physpages())
2184 		reason = "memory size";
2185 	if (reason) {
2186 		pr_err("Image mismatch: %s\n", reason);
2187 		return -EPERM;
2188 	}
2189 	return 0;
2190 }
2191 
2192 /**
2193  * load header - Check the image header and copy the data from it.
2194  */
load_header(struct swsusp_info * info)2195 static int load_header(struct swsusp_info *info)
2196 {
2197 	int error;
2198 
2199 	restore_pblist = NULL;
2200 	error = check_header(info);
2201 	if (!error) {
2202 		nr_copy_pages = info->image_pages;
2203 		nr_meta_pages = info->pages - info->image_pages - 1;
2204 	}
2205 	return error;
2206 }
2207 
2208 /**
2209  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2210  * @bm: Memory bitmap.
2211  * @buf: Area of memory containing the PFNs.
2212  *
2213  * For each element of the array pointed to by @buf (1 page at a time), set the
2214  * corresponding bit in @bm.
2215  */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)2216 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2217 {
2218 	int j;
2219 
2220 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2221 		if (unlikely(buf[j] == BM_END_OF_MAP))
2222 			break;
2223 
2224 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2225 			memory_bm_set_bit(bm, buf[j]);
2226 		else
2227 			return -EFAULT;
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 #ifdef CONFIG_HIGHMEM
2234 /*
2235  * struct highmem_pbe is used for creating the list of highmem pages that
2236  * should be restored atomically during the resume from disk, because the page
2237  * frames they have occupied before the suspend are in use.
2238  */
2239 struct highmem_pbe {
2240 	struct page *copy_page;	/* data is here now */
2241 	struct page *orig_page;	/* data was here before the suspend */
2242 	struct highmem_pbe *next;
2243 };
2244 
2245 /*
2246  * List of highmem PBEs needed for restoring the highmem pages that were
2247  * allocated before the suspend and included in the suspend image, but have
2248  * also been allocated by the "resume" kernel, so their contents cannot be
2249  * written directly to their "original" page frames.
2250  */
2251 static struct highmem_pbe *highmem_pblist;
2252 
2253 /**
2254  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2255  * @bm: Memory bitmap.
2256  *
2257  * The bits in @bm that correspond to image pages are assumed to be set.
2258  */
count_highmem_image_pages(struct memory_bitmap * bm)2259 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2260 {
2261 	unsigned long pfn;
2262 	unsigned int cnt = 0;
2263 
2264 	memory_bm_position_reset(bm);
2265 	pfn = memory_bm_next_pfn(bm);
2266 	while (pfn != BM_END_OF_MAP) {
2267 		if (PageHighMem(pfn_to_page(pfn)))
2268 			cnt++;
2269 
2270 		pfn = memory_bm_next_pfn(bm);
2271 	}
2272 	return cnt;
2273 }
2274 
2275 static unsigned int safe_highmem_pages;
2276 
2277 static struct memory_bitmap *safe_highmem_bm;
2278 
2279 /**
2280  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2281  * @bm: Pointer to an uninitialized memory bitmap structure.
2282  * @nr_highmem_p: Pointer to the number of highmem image pages.
2283  *
2284  * Try to allocate as many highmem pages as there are highmem image pages
2285  * (@nr_highmem_p points to the variable containing the number of highmem image
2286  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2287  * hibernation image is restored entirely) have the corresponding bits set in
2288  * @bm (it must be unitialized).
2289  *
2290  * NOTE: This function should not be called if there are no highmem image pages.
2291  */
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2292 static int prepare_highmem_image(struct memory_bitmap *bm,
2293 				 unsigned int *nr_highmem_p)
2294 {
2295 	unsigned int to_alloc;
2296 
2297 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2298 		return -ENOMEM;
2299 
2300 	if (get_highmem_buffer(PG_SAFE))
2301 		return -ENOMEM;
2302 
2303 	to_alloc = count_free_highmem_pages();
2304 	if (to_alloc > *nr_highmem_p)
2305 		to_alloc = *nr_highmem_p;
2306 	else
2307 		*nr_highmem_p = to_alloc;
2308 
2309 	safe_highmem_pages = 0;
2310 	while (to_alloc-- > 0) {
2311 		struct page *page;
2312 
2313 		page = alloc_page(__GFP_HIGHMEM);
2314 		if (!swsusp_page_is_free(page)) {
2315 			/* The page is "safe", set its bit the bitmap */
2316 			memory_bm_set_bit(bm, page_to_pfn(page));
2317 			safe_highmem_pages++;
2318 		}
2319 		/* Mark the page as allocated */
2320 		swsusp_set_page_forbidden(page);
2321 		swsusp_set_page_free(page);
2322 	}
2323 	memory_bm_position_reset(bm);
2324 	safe_highmem_bm = bm;
2325 	return 0;
2326 }
2327 
2328 static struct page *last_highmem_page;
2329 
2330 /**
2331  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2332  *
2333  * For a given highmem image page get a buffer that suspend_write_next() should
2334  * return to its caller to write to.
2335  *
2336  * If the page is to be saved to its "original" page frame or a copy of
2337  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2338  * the copy of the page is to be made in normal memory, so the address of
2339  * the copy is returned.
2340  *
2341  * If @buffer is returned, the caller of suspend_write_next() will write
2342  * the page's contents to @buffer, so they will have to be copied to the
2343  * right location on the next call to suspend_write_next() and it is done
2344  * with the help of copy_last_highmem_page().  For this purpose, if
2345  * @buffer is returned, @last_highmem_page is set to the page to which
2346  * the data will have to be copied from @buffer.
2347  */
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2348 static void *get_highmem_page_buffer(struct page *page,
2349 				     struct chain_allocator *ca)
2350 {
2351 	struct highmem_pbe *pbe;
2352 	void *kaddr;
2353 
2354 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2355 		/*
2356 		 * We have allocated the "original" page frame and we can
2357 		 * use it directly to store the loaded page.
2358 		 */
2359 		last_highmem_page = page;
2360 		return buffer;
2361 	}
2362 	/*
2363 	 * The "original" page frame has not been allocated and we have to
2364 	 * use a "safe" page frame to store the loaded page.
2365 	 */
2366 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2367 	if (!pbe) {
2368 		swsusp_free();
2369 		return ERR_PTR(-ENOMEM);
2370 	}
2371 	pbe->orig_page = page;
2372 	if (safe_highmem_pages > 0) {
2373 		struct page *tmp;
2374 
2375 		/* Copy of the page will be stored in high memory */
2376 		kaddr = buffer;
2377 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2378 		safe_highmem_pages--;
2379 		last_highmem_page = tmp;
2380 		pbe->copy_page = tmp;
2381 	} else {
2382 		/* Copy of the page will be stored in normal memory */
2383 		kaddr = __get_safe_page(ca->gfp_mask);
2384 		if (!kaddr)
2385 			return ERR_PTR(-ENOMEM);
2386 		pbe->copy_page = virt_to_page(kaddr);
2387 	}
2388 	pbe->next = highmem_pblist;
2389 	highmem_pblist = pbe;
2390 	return kaddr;
2391 }
2392 
2393 /**
2394  * copy_last_highmem_page - Copy most the most recent highmem image page.
2395  *
2396  * Copy the contents of a highmem image from @buffer, where the caller of
2397  * snapshot_write_next() has stored them, to the right location represented by
2398  * @last_highmem_page .
2399  */
copy_last_highmem_page(void)2400 static void copy_last_highmem_page(void)
2401 {
2402 	if (last_highmem_page) {
2403 		void *dst;
2404 
2405 		dst = kmap_atomic(last_highmem_page);
2406 		copy_page(dst, buffer);
2407 		kunmap_atomic(dst);
2408 		last_highmem_page = NULL;
2409 	}
2410 }
2411 
last_highmem_page_copied(void)2412 static inline int last_highmem_page_copied(void)
2413 {
2414 	return !last_highmem_page;
2415 }
2416 
free_highmem_data(void)2417 static inline void free_highmem_data(void)
2418 {
2419 	if (safe_highmem_bm)
2420 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2421 
2422 	if (buffer)
2423 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2424 }
2425 #else
count_highmem_image_pages(struct memory_bitmap * bm)2426 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2427 
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2428 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2429 					unsigned int *nr_highmem_p) { return 0; }
2430 
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2431 static inline void *get_highmem_page_buffer(struct page *page,
2432 					    struct chain_allocator *ca)
2433 {
2434 	return ERR_PTR(-EINVAL);
2435 }
2436 
copy_last_highmem_page(void)2437 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2438 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2439 static inline void free_highmem_data(void) {}
2440 #endif /* CONFIG_HIGHMEM */
2441 
2442 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2443 
2444 /**
2445  * prepare_image - Make room for loading hibernation image.
2446  * @new_bm: Unitialized memory bitmap structure.
2447  * @bm: Memory bitmap with unsafe pages marked.
2448  *
2449  * Use @bm to mark the pages that will be overwritten in the process of
2450  * restoring the system memory state from the suspend image ("unsafe" pages)
2451  * and allocate memory for the image.
2452  *
2453  * The idea is to allocate a new memory bitmap first and then allocate
2454  * as many pages as needed for image data, but without specifying what those
2455  * pages will be used for just yet.  Instead, we mark them all as allocated and
2456  * create a lists of "safe" pages to be used later.  On systems with high
2457  * memory a list of "safe" highmem pages is created too.
2458  */
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2459 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2460 {
2461 	unsigned int nr_pages, nr_highmem;
2462 	struct linked_page *lp;
2463 	int error;
2464 
2465 	/* If there is no highmem, the buffer will not be necessary */
2466 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2467 	buffer = NULL;
2468 
2469 	nr_highmem = count_highmem_image_pages(bm);
2470 	mark_unsafe_pages(bm);
2471 
2472 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2473 	if (error)
2474 		goto Free;
2475 
2476 	duplicate_memory_bitmap(new_bm, bm);
2477 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2478 	if (nr_highmem > 0) {
2479 		error = prepare_highmem_image(bm, &nr_highmem);
2480 		if (error)
2481 			goto Free;
2482 	}
2483 	/*
2484 	 * Reserve some safe pages for potential later use.
2485 	 *
2486 	 * NOTE: This way we make sure there will be enough safe pages for the
2487 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2488 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2489 	 *
2490 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2491 	 */
2492 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2493 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2494 	while (nr_pages > 0) {
2495 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2496 		if (!lp) {
2497 			error = -ENOMEM;
2498 			goto Free;
2499 		}
2500 		lp->next = safe_pages_list;
2501 		safe_pages_list = lp;
2502 		nr_pages--;
2503 	}
2504 	/* Preallocate memory for the image */
2505 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2506 	while (nr_pages > 0) {
2507 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2508 		if (!lp) {
2509 			error = -ENOMEM;
2510 			goto Free;
2511 		}
2512 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2513 			/* The page is "safe", add it to the list */
2514 			lp->next = safe_pages_list;
2515 			safe_pages_list = lp;
2516 		}
2517 		/* Mark the page as allocated */
2518 		swsusp_set_page_forbidden(virt_to_page(lp));
2519 		swsusp_set_page_free(virt_to_page(lp));
2520 		nr_pages--;
2521 	}
2522 	return 0;
2523 
2524  Free:
2525 	swsusp_free();
2526 	return error;
2527 }
2528 
2529 /**
2530  * get_buffer - Get the address to store the next image data page.
2531  *
2532  * Get the address that snapshot_write_next() should return to its caller to
2533  * write to.
2534  */
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2535 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2536 {
2537 	struct pbe *pbe;
2538 	struct page *page;
2539 	unsigned long pfn = memory_bm_next_pfn(bm);
2540 
2541 	if (pfn == BM_END_OF_MAP)
2542 		return ERR_PTR(-EFAULT);
2543 
2544 	page = pfn_to_page(pfn);
2545 	if (PageHighMem(page))
2546 		return get_highmem_page_buffer(page, ca);
2547 
2548 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2549 		/*
2550 		 * We have allocated the "original" page frame and we can
2551 		 * use it directly to store the loaded page.
2552 		 */
2553 		return page_address(page);
2554 
2555 	/*
2556 	 * The "original" page frame has not been allocated and we have to
2557 	 * use a "safe" page frame to store the loaded page.
2558 	 */
2559 	pbe = chain_alloc(ca, sizeof(struct pbe));
2560 	if (!pbe) {
2561 		swsusp_free();
2562 		return ERR_PTR(-ENOMEM);
2563 	}
2564 	pbe->orig_address = page_address(page);
2565 	pbe->address = __get_safe_page(ca->gfp_mask);
2566 	if (!pbe->address)
2567 		return ERR_PTR(-ENOMEM);
2568 	pbe->next = restore_pblist;
2569 	restore_pblist = pbe;
2570 	return pbe->address;
2571 }
2572 
2573 /**
2574  * snapshot_write_next - Get the address to store the next image page.
2575  * @handle: Snapshot handle structure to guide the writing.
2576  *
2577  * On the first call, @handle should point to a zeroed snapshot_handle
2578  * structure.  The structure gets populated then and a pointer to it should be
2579  * passed to this function every next time.
2580  *
2581  * On success, the function returns a positive number.  Then, the caller
2582  * is allowed to write up to the returned number of bytes to the memory
2583  * location computed by the data_of() macro.
2584  *
2585  * The function returns 0 to indicate the "end of file" condition.  Negative
2586  * numbers are returned on errors, in which cases the structure pointed to by
2587  * @handle is not updated and should not be used any more.
2588  */
snapshot_write_next(struct snapshot_handle * handle)2589 int snapshot_write_next(struct snapshot_handle *handle)
2590 {
2591 	static struct chain_allocator ca;
2592 	int error = 0;
2593 
2594 	/* Check if we have already loaded the entire image */
2595 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2596 		return 0;
2597 
2598 	if (!handle->cur) {
2599 		if (!buffer)
2600 			/* This makes the buffer be freed by swsusp_free() */
2601 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2602 
2603 		if (!buffer)
2604 			return -ENOMEM;
2605 
2606 		handle->buffer = buffer;
2607 	} else if (handle->cur == 1) {
2608 		error = load_header(buffer);
2609 		if (error)
2610 			return error;
2611 
2612 		safe_pages_list = NULL;
2613 
2614 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2615 		if (error)
2616 			return error;
2617 
2618 		hibernate_restore_protection_begin();
2619 	} else if (handle->cur <= nr_meta_pages + 1) {
2620 		error = unpack_orig_pfns(buffer, &copy_bm);
2621 		if (error)
2622 			return error;
2623 
2624 		if (handle->cur == nr_meta_pages + 1) {
2625 			error = prepare_image(&orig_bm, &copy_bm);
2626 			if (error)
2627 				return error;
2628 
2629 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2630 			memory_bm_position_reset(&orig_bm);
2631 			restore_pblist = NULL;
2632 			handle->buffer = get_buffer(&orig_bm, &ca);
2633 			if (IS_ERR(handle->buffer))
2634 				return PTR_ERR(handle->buffer);
2635 		}
2636 	} else {
2637 		copy_last_highmem_page();
2638 		hibernate_restore_protect_page(handle->buffer);
2639 		handle->buffer = get_buffer(&orig_bm, &ca);
2640 		if (IS_ERR(handle->buffer))
2641 			return PTR_ERR(handle->buffer);
2642 	}
2643 	handle->sync_read = (handle->buffer == buffer);
2644 	handle->cur++;
2645 	return PAGE_SIZE;
2646 }
2647 
2648 /**
2649  * snapshot_write_finalize - Complete the loading of a hibernation image.
2650  *
2651  * Must be called after the last call to snapshot_write_next() in case the last
2652  * page in the image happens to be a highmem page and its contents should be
2653  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2654  * necessary any more.
2655  */
snapshot_write_finalize(struct snapshot_handle * handle)2656 void snapshot_write_finalize(struct snapshot_handle *handle)
2657 {
2658 	copy_last_highmem_page();
2659 	hibernate_restore_protect_page(handle->buffer);
2660 	/* Do that only if we have loaded the image entirely */
2661 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2662 		memory_bm_recycle(&orig_bm);
2663 		free_highmem_data();
2664 	}
2665 }
2666 
snapshot_image_loaded(struct snapshot_handle * handle)2667 int snapshot_image_loaded(struct snapshot_handle *handle)
2668 {
2669 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2670 			handle->cur <= nr_meta_pages + nr_copy_pages);
2671 }
2672 
2673 #ifdef CONFIG_HIGHMEM
2674 /* Assumes that @buf is ready and points to a "safe" page */
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2675 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2676 				       void *buf)
2677 {
2678 	void *kaddr1, *kaddr2;
2679 
2680 	kaddr1 = kmap_atomic(p1);
2681 	kaddr2 = kmap_atomic(p2);
2682 	copy_page(buf, kaddr1);
2683 	copy_page(kaddr1, kaddr2);
2684 	copy_page(kaddr2, buf);
2685 	kunmap_atomic(kaddr2);
2686 	kunmap_atomic(kaddr1);
2687 }
2688 
2689 /**
2690  * restore_highmem - Put highmem image pages into their original locations.
2691  *
2692  * For each highmem page that was in use before hibernation and is included in
2693  * the image, and also has been allocated by the "restore" kernel, swap its
2694  * current contents with the previous (ie. "before hibernation") ones.
2695  *
2696  * If the restore eventually fails, we can call this function once again and
2697  * restore the highmem state as seen by the restore kernel.
2698  */
restore_highmem(void)2699 int restore_highmem(void)
2700 {
2701 	struct highmem_pbe *pbe = highmem_pblist;
2702 	void *buf;
2703 
2704 	if (!pbe)
2705 		return 0;
2706 
2707 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2708 	if (!buf)
2709 		return -ENOMEM;
2710 
2711 	while (pbe) {
2712 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2713 		pbe = pbe->next;
2714 	}
2715 	free_image_page(buf, PG_UNSAFE_CLEAR);
2716 	return 0;
2717 }
2718 #endif /* CONFIG_HIGHMEM */
2719