1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 #include <trace/hooks/sched.h>
11
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
14 /* More than 4 hours if BW_SHIFT equals 20. */
15 static const u64 max_rt_runtime = MAX_BW;
16
17 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
18
19 struct rt_bandwidth def_rt_bandwidth;
20
sched_rt_period_timer(struct hrtimer * timer)21 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
22 {
23 struct rt_bandwidth *rt_b =
24 container_of(timer, struct rt_bandwidth, rt_period_timer);
25 int idle = 0;
26 int overrun;
27
28 raw_spin_lock(&rt_b->rt_runtime_lock);
29 for (;;) {
30 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
31 if (!overrun)
32 break;
33
34 raw_spin_unlock(&rt_b->rt_runtime_lock);
35 idle = do_sched_rt_period_timer(rt_b, overrun);
36 raw_spin_lock(&rt_b->rt_runtime_lock);
37 }
38 if (idle)
39 rt_b->rt_period_active = 0;
40 raw_spin_unlock(&rt_b->rt_runtime_lock);
41
42 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 }
44
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)45 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
46 {
47 rt_b->rt_period = ns_to_ktime(period);
48 rt_b->rt_runtime = runtime;
49
50 raw_spin_lock_init(&rt_b->rt_runtime_lock);
51
52 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
53 HRTIMER_MODE_REL_HARD);
54 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 }
56
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)57 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
58 {
59 raw_spin_lock(&rt_b->rt_runtime_lock);
60 if (!rt_b->rt_period_active) {
61 rt_b->rt_period_active = 1;
62 /*
63 * SCHED_DEADLINE updates the bandwidth, as a run away
64 * RT task with a DL task could hog a CPU. But DL does
65 * not reset the period. If a deadline task was running
66 * without an RT task running, it can cause RT tasks to
67 * throttle when they start up. Kick the timer right away
68 * to update the period.
69 */
70 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 hrtimer_start_expires(&rt_b->rt_period_timer,
72 HRTIMER_MODE_ABS_PINNED_HARD);
73 }
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
start_rt_bandwidth(struct rt_bandwidth * rt_b)77 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
78 {
79 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
80 return;
81
82 do_start_rt_bandwidth(rt_b);
83 }
84
init_rt_rq(struct rt_rq * rt_rq)85 void init_rt_rq(struct rt_rq *rt_rq)
86 {
87 struct rt_prio_array *array;
88 int i;
89
90 array = &rt_rq->active;
91 for (i = 0; i < MAX_RT_PRIO; i++) {
92 INIT_LIST_HEAD(array->queue + i);
93 __clear_bit(i, array->bitmap);
94 }
95 /* delimiter for bitsearch: */
96 __set_bit(MAX_RT_PRIO, array->bitmap);
97
98 #if defined CONFIG_SMP
99 rt_rq->highest_prio.curr = MAX_RT_PRIO;
100 rt_rq->highest_prio.next = MAX_RT_PRIO;
101 rt_rq->rt_nr_migratory = 0;
102 rt_rq->overloaded = 0;
103 plist_head_init(&rt_rq->pushable_tasks);
104 #endif /* CONFIG_SMP */
105 /* We start is dequeued state, because no RT tasks are queued */
106 rt_rq->rt_queued = 0;
107
108 rt_rq->rt_time = 0;
109 rt_rq->rt_throttled = 0;
110 rt_rq->rt_runtime = 0;
111 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
112 }
113
114 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)115 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
116 {
117 hrtimer_cancel(&rt_b->rt_period_timer);
118 }
119
120 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
121
rt_task_of(struct sched_rt_entity * rt_se)122 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
123 {
124 #ifdef CONFIG_SCHED_DEBUG
125 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
126 #endif
127 return container_of(rt_se, struct task_struct, rt);
128 }
129
rq_of_rt_rq(struct rt_rq * rt_rq)130 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
131 {
132 return rt_rq->rq;
133 }
134
rt_rq_of_se(struct sched_rt_entity * rt_se)135 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
136 {
137 return rt_se->rt_rq;
138 }
139
rq_of_rt_se(struct sched_rt_entity * rt_se)140 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
141 {
142 struct rt_rq *rt_rq = rt_se->rt_rq;
143
144 return rt_rq->rq;
145 }
146
free_rt_sched_group(struct task_group * tg)147 void free_rt_sched_group(struct task_group *tg)
148 {
149 int i;
150
151 if (tg->rt_se)
152 destroy_rt_bandwidth(&tg->rt_bandwidth);
153
154 for_each_possible_cpu(i) {
155 if (tg->rt_rq)
156 kfree(tg->rt_rq[i]);
157 if (tg->rt_se)
158 kfree(tg->rt_se[i]);
159 }
160
161 kfree(tg->rt_rq);
162 kfree(tg->rt_se);
163 }
164
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)165 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
166 struct sched_rt_entity *rt_se, int cpu,
167 struct sched_rt_entity *parent)
168 {
169 struct rq *rq = cpu_rq(cpu);
170
171 rt_rq->highest_prio.curr = MAX_RT_PRIO;
172 rt_rq->rt_nr_boosted = 0;
173 rt_rq->rq = rq;
174 rt_rq->tg = tg;
175
176 tg->rt_rq[cpu] = rt_rq;
177 tg->rt_se[cpu] = rt_se;
178
179 if (!rt_se)
180 return;
181
182 if (!parent)
183 rt_se->rt_rq = &rq->rt;
184 else
185 rt_se->rt_rq = parent->my_q;
186
187 rt_se->my_q = rt_rq;
188 rt_se->parent = parent;
189 INIT_LIST_HEAD(&rt_se->run_list);
190 }
191
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)192 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
193 {
194 struct rt_rq *rt_rq;
195 struct sched_rt_entity *rt_se;
196 int i;
197
198 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
199 if (!tg->rt_rq)
200 goto err;
201 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
202 if (!tg->rt_se)
203 goto err;
204
205 init_rt_bandwidth(&tg->rt_bandwidth,
206 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
207
208 for_each_possible_cpu(i) {
209 rt_rq = kzalloc_node(sizeof(struct rt_rq),
210 GFP_KERNEL, cpu_to_node(i));
211 if (!rt_rq)
212 goto err;
213
214 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
215 GFP_KERNEL, cpu_to_node(i));
216 if (!rt_se)
217 goto err_free_rq;
218
219 init_rt_rq(rt_rq);
220 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
221 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
222 }
223
224 return 1;
225
226 err_free_rq:
227 kfree(rt_rq);
228 err:
229 return 0;
230 }
231
232 #else /* CONFIG_RT_GROUP_SCHED */
233
234 #define rt_entity_is_task(rt_se) (1)
235
rt_task_of(struct sched_rt_entity * rt_se)236 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
237 {
238 return container_of(rt_se, struct task_struct, rt);
239 }
240
rq_of_rt_rq(struct rt_rq * rt_rq)241 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
242 {
243 return container_of(rt_rq, struct rq, rt);
244 }
245
rq_of_rt_se(struct sched_rt_entity * rt_se)246 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
247 {
248 struct task_struct *p = rt_task_of(rt_se);
249
250 return task_rq(p);
251 }
252
rt_rq_of_se(struct sched_rt_entity * rt_se)253 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
254 {
255 struct rq *rq = rq_of_rt_se(rt_se);
256
257 return &rq->rt;
258 }
259
free_rt_sched_group(struct task_group * tg)260 void free_rt_sched_group(struct task_group *tg) { }
261
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)262 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
263 {
264 return 1;
265 }
266 #endif /* CONFIG_RT_GROUP_SCHED */
267
268 #ifdef CONFIG_SMP
269
270 static void pull_rt_task(struct rq *this_rq);
271
need_pull_rt_task(struct rq * rq,struct task_struct * prev)272 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
273 {
274 /* Try to pull RT tasks here if we lower this rq's prio */
275 return rq->rt.highest_prio.curr > prev->prio;
276 }
277
rt_overloaded(struct rq * rq)278 static inline int rt_overloaded(struct rq *rq)
279 {
280 return atomic_read(&rq->rd->rto_count);
281 }
282
rt_set_overload(struct rq * rq)283 static inline void rt_set_overload(struct rq *rq)
284 {
285 if (!rq->online)
286 return;
287
288 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
289 /*
290 * Make sure the mask is visible before we set
291 * the overload count. That is checked to determine
292 * if we should look at the mask. It would be a shame
293 * if we looked at the mask, but the mask was not
294 * updated yet.
295 *
296 * Matched by the barrier in pull_rt_task().
297 */
298 smp_wmb();
299 atomic_inc(&rq->rd->rto_count);
300 }
301
rt_clear_overload(struct rq * rq)302 static inline void rt_clear_overload(struct rq *rq)
303 {
304 if (!rq->online)
305 return;
306
307 /* the order here really doesn't matter */
308 atomic_dec(&rq->rd->rto_count);
309 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
310 }
311
update_rt_migration(struct rt_rq * rt_rq)312 static void update_rt_migration(struct rt_rq *rt_rq)
313 {
314 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
315 if (!rt_rq->overloaded) {
316 rt_set_overload(rq_of_rt_rq(rt_rq));
317 rt_rq->overloaded = 1;
318 }
319 } else if (rt_rq->overloaded) {
320 rt_clear_overload(rq_of_rt_rq(rt_rq));
321 rt_rq->overloaded = 0;
322 }
323 }
324
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)325 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
326 {
327 struct task_struct *p;
328
329 if (!rt_entity_is_task(rt_se))
330 return;
331
332 p = rt_task_of(rt_se);
333 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
334
335 rt_rq->rt_nr_total++;
336 if (p->nr_cpus_allowed > 1)
337 rt_rq->rt_nr_migratory++;
338
339 update_rt_migration(rt_rq);
340 }
341
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)342 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
343 {
344 struct task_struct *p;
345
346 if (!rt_entity_is_task(rt_se))
347 return;
348
349 p = rt_task_of(rt_se);
350 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351
352 rt_rq->rt_nr_total--;
353 if (p->nr_cpus_allowed > 1)
354 rt_rq->rt_nr_migratory--;
355
356 update_rt_migration(rt_rq);
357 }
358
has_pushable_tasks(struct rq * rq)359 static inline int has_pushable_tasks(struct rq *rq)
360 {
361 return !plist_head_empty(&rq->rt.pushable_tasks);
362 }
363
364 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
365 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
366
367 static void push_rt_tasks(struct rq *);
368 static void pull_rt_task(struct rq *);
369
rt_queue_push_tasks(struct rq * rq)370 static inline void rt_queue_push_tasks(struct rq *rq)
371 {
372 if (!has_pushable_tasks(rq))
373 return;
374
375 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
376 }
377
rt_queue_pull_task(struct rq * rq)378 static inline void rt_queue_pull_task(struct rq *rq)
379 {
380 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
381 }
382
enqueue_pushable_task(struct rq * rq,struct task_struct * p)383 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
384 {
385 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
386 plist_node_init(&p->pushable_tasks, p->prio);
387 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389 /* Update the highest prio pushable task */
390 if (p->prio < rq->rt.highest_prio.next)
391 rq->rt.highest_prio.next = p->prio;
392 }
393
dequeue_pushable_task(struct rq * rq,struct task_struct * p)394 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
395 {
396 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
397
398 /* Update the new highest prio pushable task */
399 if (has_pushable_tasks(rq)) {
400 p = plist_first_entry(&rq->rt.pushable_tasks,
401 struct task_struct, pushable_tasks);
402 rq->rt.highest_prio.next = p->prio;
403 } else
404 rq->rt.highest_prio.next = MAX_RT_PRIO;
405 }
406
407 #else
408
enqueue_pushable_task(struct rq * rq,struct task_struct * p)409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412
dequeue_pushable_task(struct rq * rq,struct task_struct * p)413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416
417 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
need_pull_rt_task(struct rq * rq,struct task_struct * prev)427 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
428 {
429 return false;
430 }
431
pull_rt_task(struct rq * this_rq)432 static inline void pull_rt_task(struct rq *this_rq)
433 {
434 }
435
rt_queue_push_tasks(struct rq * rq)436 static inline void rt_queue_push_tasks(struct rq *rq)
437 {
438 }
439 #endif /* CONFIG_SMP */
440
441 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
442 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
443
on_rt_rq(struct sched_rt_entity * rt_se)444 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
445 {
446 return rt_se->on_rq;
447 }
448
449 #ifdef CONFIG_UCLAMP_TASK
450 /*
451 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
452 * settings.
453 *
454 * This check is only important for heterogeneous systems where uclamp_min value
455 * is higher than the capacity of a @cpu. For non-heterogeneous system this
456 * function will always return true.
457 *
458 * The function will return true if the capacity of the @cpu is >= the
459 * uclamp_min and false otherwise.
460 *
461 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
462 * > uclamp_max.
463 */
rt_task_fits_capacity(struct task_struct * p,int cpu)464 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
465 {
466 unsigned int min_cap;
467 unsigned int max_cap;
468 unsigned int cpu_cap;
469
470 /* Only heterogeneous systems can benefit from this check */
471 if (!static_branch_unlikely(&sched_asym_cpucapacity))
472 return true;
473
474 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
475 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
476
477 cpu_cap = capacity_orig_of(cpu);
478
479 return cpu_cap >= min(min_cap, max_cap);
480 }
481 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)482 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
483 {
484 return true;
485 }
486 #endif
487
488 #ifdef CONFIG_RT_GROUP_SCHED
489
sched_rt_runtime(struct rt_rq * rt_rq)490 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
491 {
492 if (!rt_rq->tg)
493 return RUNTIME_INF;
494
495 return rt_rq->rt_runtime;
496 }
497
sched_rt_period(struct rt_rq * rt_rq)498 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
499 {
500 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
501 }
502
503 typedef struct task_group *rt_rq_iter_t;
504
next_task_group(struct task_group * tg)505 static inline struct task_group *next_task_group(struct task_group *tg)
506 {
507 do {
508 tg = list_entry_rcu(tg->list.next,
509 typeof(struct task_group), list);
510 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
511
512 if (&tg->list == &task_groups)
513 tg = NULL;
514
515 return tg;
516 }
517
518 #define for_each_rt_rq(rt_rq, iter, rq) \
519 for (iter = container_of(&task_groups, typeof(*iter), list); \
520 (iter = next_task_group(iter)) && \
521 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
522
523 #define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = rt_se->parent)
525
group_rt_rq(struct sched_rt_entity * rt_se)526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 return rt_se->my_q;
529 }
530
531 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
532 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
533
sched_rt_rq_enqueue(struct rt_rq * rt_rq)534 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
535 {
536 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
537 struct rq *rq = rq_of_rt_rq(rt_rq);
538 struct sched_rt_entity *rt_se;
539
540 int cpu = cpu_of(rq);
541
542 rt_se = rt_rq->tg->rt_se[cpu];
543
544 if (rt_rq->rt_nr_running) {
545 if (!rt_se)
546 enqueue_top_rt_rq(rt_rq);
547 else if (!on_rt_rq(rt_se))
548 enqueue_rt_entity(rt_se, 0);
549
550 if (rt_rq->highest_prio.curr < curr->prio)
551 resched_curr(rq);
552 }
553 }
554
sched_rt_rq_dequeue(struct rt_rq * rt_rq)555 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
556 {
557 struct sched_rt_entity *rt_se;
558 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
559
560 rt_se = rt_rq->tg->rt_se[cpu];
561
562 if (!rt_se) {
563 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
564 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
565 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
566 }
567 else if (on_rt_rq(rt_se))
568 dequeue_rt_entity(rt_se, 0);
569 }
570
rt_rq_throttled(struct rt_rq * rt_rq)571 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
572 {
573 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
574 }
575
rt_se_boosted(struct sched_rt_entity * rt_se)576 static int rt_se_boosted(struct sched_rt_entity *rt_se)
577 {
578 struct rt_rq *rt_rq = group_rt_rq(rt_se);
579 struct task_struct *p;
580
581 if (rt_rq)
582 return !!rt_rq->rt_nr_boosted;
583
584 p = rt_task_of(rt_se);
585 return p->prio != p->normal_prio;
586 }
587
588 #ifdef CONFIG_SMP
sched_rt_period_mask(void)589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 return this_rq()->rd->span;
592 }
593 #else
sched_rt_period_mask(void)594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 return cpu_online_mask;
597 }
598 #endif
599
600 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
604 }
605
sched_rt_bandwidth(struct rt_rq * rt_rq)606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 return &rt_rq->tg->rt_bandwidth;
609 }
610
611 #else /* !CONFIG_RT_GROUP_SCHED */
612
sched_rt_runtime(struct rt_rq * rt_rq)613 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
614 {
615 return rt_rq->rt_runtime;
616 }
617
sched_rt_period(struct rt_rq * rt_rq)618 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
619 {
620 return ktime_to_ns(def_rt_bandwidth.rt_period);
621 }
622
623 typedef struct rt_rq *rt_rq_iter_t;
624
625 #define for_each_rt_rq(rt_rq, iter, rq) \
626 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
627
628 #define for_each_sched_rt_entity(rt_se) \
629 for (; rt_se; rt_se = NULL)
630
group_rt_rq(struct sched_rt_entity * rt_se)631 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
632 {
633 return NULL;
634 }
635
sched_rt_rq_enqueue(struct rt_rq * rt_rq)636 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
637 {
638 struct rq *rq = rq_of_rt_rq(rt_rq);
639
640 if (!rt_rq->rt_nr_running)
641 return;
642
643 enqueue_top_rt_rq(rt_rq);
644 resched_curr(rq);
645 }
646
sched_rt_rq_dequeue(struct rt_rq * rt_rq)647 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
648 {
649 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
650 }
651
rt_rq_throttled(struct rt_rq * rt_rq)652 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
653 {
654 return rt_rq->rt_throttled;
655 }
656
sched_rt_period_mask(void)657 static inline const struct cpumask *sched_rt_period_mask(void)
658 {
659 return cpu_online_mask;
660 }
661
662 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)663 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
664 {
665 return &cpu_rq(cpu)->rt;
666 }
667
sched_rt_bandwidth(struct rt_rq * rt_rq)668 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
669 {
670 return &def_rt_bandwidth;
671 }
672
673 #endif /* CONFIG_RT_GROUP_SCHED */
674
sched_rt_bandwidth_account(struct rt_rq * rt_rq)675 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
676 {
677 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678
679 return (hrtimer_active(&rt_b->rt_period_timer) ||
680 rt_rq->rt_time < rt_b->rt_runtime);
681 }
682
683 #ifdef CONFIG_SMP
684 /*
685 * We ran out of runtime, see if we can borrow some from our neighbours.
686 */
do_balance_runtime(struct rt_rq * rt_rq)687 static void do_balance_runtime(struct rt_rq *rt_rq)
688 {
689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
691 int i, weight;
692 u64 rt_period;
693
694 weight = cpumask_weight(rd->span);
695
696 raw_spin_lock(&rt_b->rt_runtime_lock);
697 rt_period = ktime_to_ns(rt_b->rt_period);
698 for_each_cpu(i, rd->span) {
699 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
700 s64 diff;
701
702 if (iter == rt_rq)
703 continue;
704
705 raw_spin_lock(&iter->rt_runtime_lock);
706 /*
707 * Either all rqs have inf runtime and there's nothing to steal
708 * or __disable_runtime() below sets a specific rq to inf to
709 * indicate its been disabled and disalow stealing.
710 */
711 if (iter->rt_runtime == RUNTIME_INF)
712 goto next;
713
714 /*
715 * From runqueues with spare time, take 1/n part of their
716 * spare time, but no more than our period.
717 */
718 diff = iter->rt_runtime - iter->rt_time;
719 if (diff > 0) {
720 diff = div_u64((u64)diff, weight);
721 if (rt_rq->rt_runtime + diff > rt_period)
722 diff = rt_period - rt_rq->rt_runtime;
723 iter->rt_runtime -= diff;
724 rt_rq->rt_runtime += diff;
725 if (rt_rq->rt_runtime == rt_period) {
726 raw_spin_unlock(&iter->rt_runtime_lock);
727 break;
728 }
729 }
730 next:
731 raw_spin_unlock(&iter->rt_runtime_lock);
732 }
733 raw_spin_unlock(&rt_b->rt_runtime_lock);
734 }
735
736 /*
737 * Ensure this RQ takes back all the runtime it lend to its neighbours.
738 */
__disable_runtime(struct rq * rq)739 static void __disable_runtime(struct rq *rq)
740 {
741 struct root_domain *rd = rq->rd;
742 rt_rq_iter_t iter;
743 struct rt_rq *rt_rq;
744
745 if (unlikely(!scheduler_running))
746 return;
747
748 for_each_rt_rq(rt_rq, iter, rq) {
749 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
750 s64 want;
751 int i;
752
753 raw_spin_lock(&rt_b->rt_runtime_lock);
754 raw_spin_lock(&rt_rq->rt_runtime_lock);
755 /*
756 * Either we're all inf and nobody needs to borrow, or we're
757 * already disabled and thus have nothing to do, or we have
758 * exactly the right amount of runtime to take out.
759 */
760 if (rt_rq->rt_runtime == RUNTIME_INF ||
761 rt_rq->rt_runtime == rt_b->rt_runtime)
762 goto balanced;
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764
765 /*
766 * Calculate the difference between what we started out with
767 * and what we current have, that's the amount of runtime
768 * we lend and now have to reclaim.
769 */
770 want = rt_b->rt_runtime - rt_rq->rt_runtime;
771
772 /*
773 * Greedy reclaim, take back as much as we can.
774 */
775 for_each_cpu(i, rd->span) {
776 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
777 s64 diff;
778
779 /*
780 * Can't reclaim from ourselves or disabled runqueues.
781 */
782 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
783 continue;
784
785 raw_spin_lock(&iter->rt_runtime_lock);
786 if (want > 0) {
787 diff = min_t(s64, iter->rt_runtime, want);
788 iter->rt_runtime -= diff;
789 want -= diff;
790 } else {
791 iter->rt_runtime -= want;
792 want -= want;
793 }
794 raw_spin_unlock(&iter->rt_runtime_lock);
795
796 if (!want)
797 break;
798 }
799
800 raw_spin_lock(&rt_rq->rt_runtime_lock);
801 /*
802 * We cannot be left wanting - that would mean some runtime
803 * leaked out of the system.
804 */
805 BUG_ON(want);
806 balanced:
807 /*
808 * Disable all the borrow logic by pretending we have inf
809 * runtime - in which case borrowing doesn't make sense.
810 */
811 rt_rq->rt_runtime = RUNTIME_INF;
812 rt_rq->rt_throttled = 0;
813 raw_spin_unlock(&rt_rq->rt_runtime_lock);
814 raw_spin_unlock(&rt_b->rt_runtime_lock);
815
816 /* Make rt_rq available for pick_next_task() */
817 sched_rt_rq_enqueue(rt_rq);
818 }
819 }
820
__enable_runtime(struct rq * rq)821 static void __enable_runtime(struct rq *rq)
822 {
823 rt_rq_iter_t iter;
824 struct rt_rq *rt_rq;
825
826 if (unlikely(!scheduler_running))
827 return;
828
829 /*
830 * Reset each runqueue's bandwidth settings
831 */
832 for_each_rt_rq(rt_rq, iter, rq) {
833 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
834
835 raw_spin_lock(&rt_b->rt_runtime_lock);
836 raw_spin_lock(&rt_rq->rt_runtime_lock);
837 rt_rq->rt_runtime = rt_b->rt_runtime;
838 rt_rq->rt_time = 0;
839 rt_rq->rt_throttled = 0;
840 raw_spin_unlock(&rt_rq->rt_runtime_lock);
841 raw_spin_unlock(&rt_b->rt_runtime_lock);
842 }
843 }
844
balance_runtime(struct rt_rq * rt_rq)845 static void balance_runtime(struct rt_rq *rt_rq)
846 {
847 if (!sched_feat(RT_RUNTIME_SHARE))
848 return;
849
850 if (rt_rq->rt_time > rt_rq->rt_runtime) {
851 raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 do_balance_runtime(rt_rq);
853 raw_spin_lock(&rt_rq->rt_runtime_lock);
854 }
855 }
856 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)857 static inline void balance_runtime(struct rt_rq *rt_rq) {}
858 #endif /* CONFIG_SMP */
859
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)860 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
861 {
862 int i, idle = 1, throttled = 0;
863 const struct cpumask *span;
864
865 span = sched_rt_period_mask();
866 #ifdef CONFIG_RT_GROUP_SCHED
867 /*
868 * FIXME: isolated CPUs should really leave the root task group,
869 * whether they are isolcpus or were isolated via cpusets, lest
870 * the timer run on a CPU which does not service all runqueues,
871 * potentially leaving other CPUs indefinitely throttled. If
872 * isolation is really required, the user will turn the throttle
873 * off to kill the perturbations it causes anyway. Meanwhile,
874 * this maintains functionality for boot and/or troubleshooting.
875 */
876 if (rt_b == &root_task_group.rt_bandwidth)
877 span = cpu_online_mask;
878 #endif
879 for_each_cpu(i, span) {
880 int enqueue = 0;
881 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
882 struct rq *rq = rq_of_rt_rq(rt_rq);
883 int skip;
884
885 /*
886 * When span == cpu_online_mask, taking each rq->lock
887 * can be time-consuming. Try to avoid it when possible.
888 */
889 raw_spin_lock(&rt_rq->rt_runtime_lock);
890 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
891 rt_rq->rt_runtime = rt_b->rt_runtime;
892 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
893 raw_spin_unlock(&rt_rq->rt_runtime_lock);
894 if (skip)
895 continue;
896
897 raw_spin_lock(&rq->lock);
898 update_rq_clock(rq);
899
900 if (rt_rq->rt_time) {
901 u64 runtime;
902
903 raw_spin_lock(&rt_rq->rt_runtime_lock);
904 if (rt_rq->rt_throttled)
905 balance_runtime(rt_rq);
906 runtime = rt_rq->rt_runtime;
907 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
908 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
909 rt_rq->rt_throttled = 0;
910 enqueue = 1;
911
912 /*
913 * When we're idle and a woken (rt) task is
914 * throttled check_preempt_curr() will set
915 * skip_update and the time between the wakeup
916 * and this unthrottle will get accounted as
917 * 'runtime'.
918 */
919 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
920 rq_clock_cancel_skipupdate(rq);
921 }
922 if (rt_rq->rt_time || rt_rq->rt_nr_running)
923 idle = 0;
924 raw_spin_unlock(&rt_rq->rt_runtime_lock);
925 } else if (rt_rq->rt_nr_running) {
926 idle = 0;
927 if (!rt_rq_throttled(rt_rq))
928 enqueue = 1;
929 }
930 if (rt_rq->rt_throttled)
931 throttled = 1;
932
933 if (enqueue)
934 sched_rt_rq_enqueue(rt_rq);
935 raw_spin_unlock(&rq->lock);
936 }
937
938 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
939 return 1;
940
941 return idle;
942 }
943
rt_se_prio(struct sched_rt_entity * rt_se)944 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
945 {
946 #ifdef CONFIG_RT_GROUP_SCHED
947 struct rt_rq *rt_rq = group_rt_rq(rt_se);
948
949 if (rt_rq)
950 return rt_rq->highest_prio.curr;
951 #endif
952
953 return rt_task_of(rt_se)->prio;
954 }
955
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)956 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
957 {
958 u64 runtime = sched_rt_runtime(rt_rq);
959
960 if (rt_rq->rt_throttled)
961 return rt_rq_throttled(rt_rq);
962
963 if (runtime >= sched_rt_period(rt_rq))
964 return 0;
965
966 balance_runtime(rt_rq);
967 runtime = sched_rt_runtime(rt_rq);
968 if (runtime == RUNTIME_INF)
969 return 0;
970
971 if (rt_rq->rt_time > runtime) {
972 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
973
974 /*
975 * Don't actually throttle groups that have no runtime assigned
976 * but accrue some time due to boosting.
977 */
978 if (likely(rt_b->rt_runtime)) {
979 rt_rq->rt_throttled = 1;
980 printk_deferred_once("sched: RT throttling activated\n");
981
982 trace_android_vh_dump_throttled_rt_tasks(
983 raw_smp_processor_id(),
984 rq_clock(rq_of_rt_rq(rt_rq)),
985 sched_rt_period(rt_rq),
986 runtime,
987 hrtimer_get_expires_ns(&rt_b->rt_period_timer));
988 } else {
989 /*
990 * In case we did anyway, make it go away,
991 * replenishment is a joke, since it will replenish us
992 * with exactly 0 ns.
993 */
994 rt_rq->rt_time = 0;
995 }
996
997 if (rt_rq_throttled(rt_rq)) {
998 sched_rt_rq_dequeue(rt_rq);
999 return 1;
1000 }
1001 }
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * Update the current task's runtime statistics. Skip current tasks that
1008 * are not in our scheduling class.
1009 */
update_curr_rt(struct rq * rq)1010 static void update_curr_rt(struct rq *rq)
1011 {
1012 struct task_struct *curr = rq->curr;
1013 struct sched_rt_entity *rt_se = &curr->rt;
1014 u64 delta_exec;
1015 u64 now;
1016
1017 if (curr->sched_class != &rt_sched_class)
1018 return;
1019
1020 now = rq_clock_task(rq);
1021 delta_exec = now - curr->se.exec_start;
1022 if (unlikely((s64)delta_exec <= 0))
1023 return;
1024
1025 schedstat_set(curr->se.statistics.exec_max,
1026 max(curr->se.statistics.exec_max, delta_exec));
1027
1028 curr->se.sum_exec_runtime += delta_exec;
1029 account_group_exec_runtime(curr, delta_exec);
1030
1031 curr->se.exec_start = now;
1032 cgroup_account_cputime(curr, delta_exec);
1033
1034 trace_android_vh_sched_stat_runtime_rt(curr, delta_exec);
1035
1036 if (!rt_bandwidth_enabled())
1037 return;
1038
1039 for_each_sched_rt_entity(rt_se) {
1040 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1041 int exceeded;
1042
1043 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1044 raw_spin_lock(&rt_rq->rt_runtime_lock);
1045 rt_rq->rt_time += delta_exec;
1046 exceeded = sched_rt_runtime_exceeded(rt_rq);
1047 if (exceeded)
1048 resched_curr(rq);
1049 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1050 if (exceeded)
1051 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1052 }
1053 }
1054 }
1055
1056 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1057 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1058 {
1059 struct rq *rq = rq_of_rt_rq(rt_rq);
1060
1061 BUG_ON(&rq->rt != rt_rq);
1062
1063 if (!rt_rq->rt_queued)
1064 return;
1065
1066 BUG_ON(!rq->nr_running);
1067
1068 sub_nr_running(rq, count);
1069 rt_rq->rt_queued = 0;
1070
1071 }
1072
1073 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1074 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1075 {
1076 struct rq *rq = rq_of_rt_rq(rt_rq);
1077
1078 BUG_ON(&rq->rt != rt_rq);
1079
1080 if (rt_rq->rt_queued)
1081 return;
1082
1083 if (rt_rq_throttled(rt_rq))
1084 return;
1085
1086 if (rt_rq->rt_nr_running) {
1087 add_nr_running(rq, rt_rq->rt_nr_running);
1088 rt_rq->rt_queued = 1;
1089 }
1090
1091 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1092 cpufreq_update_util(rq, 0);
1093 }
1094
1095 #if defined CONFIG_SMP
1096
1097 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1098 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1099 {
1100 struct rq *rq = rq_of_rt_rq(rt_rq);
1101
1102 #ifdef CONFIG_RT_GROUP_SCHED
1103 /*
1104 * Change rq's cpupri only if rt_rq is the top queue.
1105 */
1106 if (&rq->rt != rt_rq)
1107 return;
1108 #endif
1109 if (rq->online && prio < prev_prio)
1110 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1111 }
1112
1113 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1114 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1115 {
1116 struct rq *rq = rq_of_rt_rq(rt_rq);
1117
1118 #ifdef CONFIG_RT_GROUP_SCHED
1119 /*
1120 * Change rq's cpupri only if rt_rq is the top queue.
1121 */
1122 if (&rq->rt != rt_rq)
1123 return;
1124 #endif
1125 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1126 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1127 }
1128
1129 #else /* CONFIG_SMP */
1130
1131 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1132 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1133 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1134 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1135
1136 #endif /* CONFIG_SMP */
1137
1138 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1139 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1140 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1141 {
1142 int prev_prio = rt_rq->highest_prio.curr;
1143
1144 if (prio < prev_prio)
1145 rt_rq->highest_prio.curr = prio;
1146
1147 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1148 }
1149
1150 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1151 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1152 {
1153 int prev_prio = rt_rq->highest_prio.curr;
1154
1155 if (rt_rq->rt_nr_running) {
1156
1157 WARN_ON(prio < prev_prio);
1158
1159 /*
1160 * This may have been our highest task, and therefore
1161 * we may have some recomputation to do
1162 */
1163 if (prio == prev_prio) {
1164 struct rt_prio_array *array = &rt_rq->active;
1165
1166 rt_rq->highest_prio.curr =
1167 sched_find_first_bit(array->bitmap);
1168 }
1169
1170 } else
1171 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1172
1173 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1174 }
1175
1176 #else
1177
inc_rt_prio(struct rt_rq * rt_rq,int prio)1178 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1179 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1180
1181 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1182
1183 #ifdef CONFIG_RT_GROUP_SCHED
1184
1185 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1186 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 {
1188 if (rt_se_boosted(rt_se))
1189 rt_rq->rt_nr_boosted++;
1190
1191 if (rt_rq->tg)
1192 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1193 }
1194
1195 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1196 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1197 {
1198 if (rt_se_boosted(rt_se))
1199 rt_rq->rt_nr_boosted--;
1200
1201 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1202 }
1203
1204 #else /* CONFIG_RT_GROUP_SCHED */
1205
1206 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1207 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1208 {
1209 start_rt_bandwidth(&def_rt_bandwidth);
1210 }
1211
1212 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1213 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1214
1215 #endif /* CONFIG_RT_GROUP_SCHED */
1216
1217 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1218 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1219 {
1220 struct rt_rq *group_rq = group_rt_rq(rt_se);
1221
1222 if (group_rq)
1223 return group_rq->rt_nr_running;
1224 else
1225 return 1;
1226 }
1227
1228 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1229 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1230 {
1231 struct rt_rq *group_rq = group_rt_rq(rt_se);
1232 struct task_struct *tsk;
1233
1234 if (group_rq)
1235 return group_rq->rr_nr_running;
1236
1237 tsk = rt_task_of(rt_se);
1238
1239 return (tsk->policy == SCHED_RR) ? 1 : 0;
1240 }
1241
1242 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1243 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245 int prio = rt_se_prio(rt_se);
1246
1247 WARN_ON(!rt_prio(prio));
1248 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1249 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1250
1251 inc_rt_prio(rt_rq, prio);
1252 inc_rt_migration(rt_se, rt_rq);
1253 inc_rt_group(rt_se, rt_rq);
1254 }
1255
1256 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1257 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1258 {
1259 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1260 WARN_ON(!rt_rq->rt_nr_running);
1261 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1262 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1263
1264 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1265 dec_rt_migration(rt_se, rt_rq);
1266 dec_rt_group(rt_se, rt_rq);
1267 }
1268
1269 /*
1270 * Change rt_se->run_list location unless SAVE && !MOVE
1271 *
1272 * assumes ENQUEUE/DEQUEUE flags match
1273 */
move_entity(unsigned int flags)1274 static inline bool move_entity(unsigned int flags)
1275 {
1276 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1277 return false;
1278
1279 return true;
1280 }
1281
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1282 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1283 {
1284 list_del_init(&rt_se->run_list);
1285
1286 if (list_empty(array->queue + rt_se_prio(rt_se)))
1287 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1288
1289 rt_se->on_list = 0;
1290 }
1291
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1292 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1293 {
1294 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1295 struct rt_prio_array *array = &rt_rq->active;
1296 struct rt_rq *group_rq = group_rt_rq(rt_se);
1297 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1298
1299 /*
1300 * Don't enqueue the group if its throttled, or when empty.
1301 * The latter is a consequence of the former when a child group
1302 * get throttled and the current group doesn't have any other
1303 * active members.
1304 */
1305 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1306 if (rt_se->on_list)
1307 __delist_rt_entity(rt_se, array);
1308 return;
1309 }
1310
1311 if (move_entity(flags)) {
1312 WARN_ON_ONCE(rt_se->on_list);
1313 if (flags & ENQUEUE_HEAD)
1314 list_add(&rt_se->run_list, queue);
1315 else
1316 list_add_tail(&rt_se->run_list, queue);
1317
1318 __set_bit(rt_se_prio(rt_se), array->bitmap);
1319 rt_se->on_list = 1;
1320 }
1321 rt_se->on_rq = 1;
1322
1323 inc_rt_tasks(rt_se, rt_rq);
1324 }
1325
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1326 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1327 {
1328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1329 struct rt_prio_array *array = &rt_rq->active;
1330
1331 if (move_entity(flags)) {
1332 WARN_ON_ONCE(!rt_se->on_list);
1333 __delist_rt_entity(rt_se, array);
1334 }
1335 rt_se->on_rq = 0;
1336
1337 dec_rt_tasks(rt_se, rt_rq);
1338 }
1339
1340 /*
1341 * Because the prio of an upper entry depends on the lower
1342 * entries, we must remove entries top - down.
1343 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1344 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1345 {
1346 struct sched_rt_entity *back = NULL;
1347 unsigned int rt_nr_running;
1348
1349 for_each_sched_rt_entity(rt_se) {
1350 rt_se->back = back;
1351 back = rt_se;
1352 }
1353
1354 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1355
1356 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1357 if (on_rt_rq(rt_se))
1358 __dequeue_rt_entity(rt_se, flags);
1359 }
1360
1361 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1362 }
1363
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1364 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1365 {
1366 struct rq *rq = rq_of_rt_se(rt_se);
1367
1368 dequeue_rt_stack(rt_se, flags);
1369 for_each_sched_rt_entity(rt_se)
1370 __enqueue_rt_entity(rt_se, flags);
1371 enqueue_top_rt_rq(&rq->rt);
1372 }
1373
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1374 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1375 {
1376 struct rq *rq = rq_of_rt_se(rt_se);
1377
1378 dequeue_rt_stack(rt_se, flags);
1379
1380 for_each_sched_rt_entity(rt_se) {
1381 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1382
1383 if (rt_rq && rt_rq->rt_nr_running)
1384 __enqueue_rt_entity(rt_se, flags);
1385 }
1386 enqueue_top_rt_rq(&rq->rt);
1387 }
1388
1389 #ifdef CONFIG_SMP
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1390 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1391 bool sync)
1392 {
1393 /*
1394 * If the waker is CFS, then an RT sync wakeup would preempt the waker
1395 * and force it to run for a likely small time after the RT wakee is
1396 * done. So, only honor RT sync wakeups from RT wakers.
1397 */
1398 return sync && task_has_rt_policy(rq->curr) &&
1399 p->prio <= rq->rt.highest_prio.next &&
1400 rq->rt.rt_nr_running <= 2;
1401 }
1402 #else
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1403 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1404 bool sync)
1405 {
1406 return 0;
1407 }
1408 #endif
1409
1410 /*
1411 * Adding/removing a task to/from a priority array:
1412 */
1413 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1414 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1415 {
1416 struct sched_rt_entity *rt_se = &p->rt;
1417 bool sync = !!(flags & ENQUEUE_WAKEUP_SYNC);
1418
1419 if (flags & ENQUEUE_WAKEUP)
1420 rt_se->timeout = 0;
1421
1422 enqueue_rt_entity(rt_se, flags);
1423
1424 if (!task_current(rq, p) && p->nr_cpus_allowed > 1 &&
1425 !should_honor_rt_sync(rq, p, sync))
1426 enqueue_pushable_task(rq, p);
1427 }
1428
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1429 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1430 {
1431 struct sched_rt_entity *rt_se = &p->rt;
1432
1433 update_curr_rt(rq);
1434 dequeue_rt_entity(rt_se, flags);
1435
1436 dequeue_pushable_task(rq, p);
1437 }
1438
1439 /*
1440 * Put task to the head or the end of the run list without the overhead of
1441 * dequeue followed by enqueue.
1442 */
1443 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1444 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1445 {
1446 if (on_rt_rq(rt_se)) {
1447 struct rt_prio_array *array = &rt_rq->active;
1448 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1449
1450 if (head)
1451 list_move(&rt_se->run_list, queue);
1452 else
1453 list_move_tail(&rt_se->run_list, queue);
1454 }
1455 }
1456
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1457 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1458 {
1459 struct sched_rt_entity *rt_se = &p->rt;
1460 struct rt_rq *rt_rq;
1461
1462 for_each_sched_rt_entity(rt_se) {
1463 rt_rq = rt_rq_of_se(rt_se);
1464 requeue_rt_entity(rt_rq, rt_se, head);
1465 }
1466 }
1467
yield_task_rt(struct rq * rq)1468 static void yield_task_rt(struct rq *rq)
1469 {
1470 requeue_task_rt(rq, rq->curr, 0);
1471 }
1472
1473 #ifdef CONFIG_SMP
1474 static int find_lowest_rq(struct task_struct *task);
1475
1476 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
1477 /*
1478 * Return whether the task on the given cpu is currently non-preemptible
1479 * while handling a potentially long softint, or if the task is likely
1480 * to block preemptions soon because it is a ksoftirq thread that is
1481 * handling slow softints.
1482 */
1483 bool
task_may_not_preempt(struct task_struct * task,int cpu)1484 task_may_not_preempt(struct task_struct *task, int cpu)
1485 {
1486 __u32 softirqs = per_cpu(active_softirqs, cpu) |
1487 __IRQ_STAT(cpu, __softirq_pending);
1488
1489 struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu);
1490 return ((softirqs & LONG_SOFTIRQ_MASK) &&
1491 (task == cpu_ksoftirqd ||
1492 task_thread_info(task)->preempt_count & SOFTIRQ_MASK));
1493 }
1494 EXPORT_SYMBOL_GPL(task_may_not_preempt);
1495 #endif /* CONFIG_RT_SOFTINT_OPTIMIZATION */
1496
1497 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1498 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1499 {
1500 struct task_struct *curr;
1501 struct rq *rq;
1502 struct rq *this_cpu_rq;
1503 bool test;
1504 int target_cpu = -1;
1505 bool may_not_preempt;
1506 bool sync = !!(flags & WF_SYNC);
1507 int this_cpu;
1508
1509 trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag,
1510 flags, &target_cpu);
1511 if (target_cpu >= 0)
1512 return target_cpu;
1513
1514 /* For anything but wake ups, just return the task_cpu */
1515 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1516 goto out;
1517
1518 rq = cpu_rq(cpu);
1519
1520 rcu_read_lock();
1521 curr = READ_ONCE(rq->curr); /* unlocked access */
1522 this_cpu = smp_processor_id();
1523 this_cpu_rq = cpu_rq(this_cpu);
1524
1525 /*
1526 * If the current task on @p's runqueue is a softirq task,
1527 * it may run without preemption for a time that is
1528 * ill-suited for a waiting RT task. Therefore, try to
1529 * wake this RT task on another runqueue.
1530 *
1531 * Also, if the current task on @p's runqueue is an RT task, then
1532 * try to see if we can wake this RT task up on another
1533 * runqueue. Otherwise simply start this RT task
1534 * on its current runqueue.
1535 *
1536 * We want to avoid overloading runqueues. If the woken
1537 * task is a higher priority, then it will stay on this CPU
1538 * and the lower prio task should be moved to another CPU.
1539 * Even though this will probably make the lower prio task
1540 * lose its cache, we do not want to bounce a higher task
1541 * around just because it gave up its CPU, perhaps for a
1542 * lock?
1543 *
1544 * For equal prio tasks, we just let the scheduler sort it out.
1545 *
1546 * Otherwise, just let it ride on the affined RQ and the
1547 * post-schedule router will push the preempted task away
1548 *
1549 * This test is optimistic, if we get it wrong the load-balancer
1550 * will have to sort it out.
1551 *
1552 * We take into account the capacity of the CPU to ensure it fits the
1553 * requirement of the task - which is only important on heterogeneous
1554 * systems like big.LITTLE.
1555 */
1556 may_not_preempt = task_may_not_preempt(curr, cpu);
1557 test = (curr && (may_not_preempt ||
1558 (unlikely(rt_task(curr)) &&
1559 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio))));
1560
1561 /*
1562 * Respect the sync flag as long as the task can run on this CPU.
1563 */
1564 if (should_honor_rt_sync(this_cpu_rq, p, sync) &&
1565 cpumask_test_cpu(this_cpu, p->cpus_ptr)) {
1566 cpu = this_cpu;
1567 goto out_unlock;
1568 }
1569
1570 if (test || !rt_task_fits_capacity(p, cpu)) {
1571 int target = find_lowest_rq(p);
1572
1573 /*
1574 * Bail out if we were forcing a migration to find a better
1575 * fitting CPU but our search failed.
1576 */
1577 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1578 goto out_unlock;
1579
1580 /*
1581 * If cpu is non-preemptible, prefer remote cpu
1582 * even if it's running a higher-prio task.
1583 * Otherwise: Don't bother moving it if the destination CPU is
1584 * not running a lower priority task.
1585 */
1586 if (target != -1 &&
1587 (may_not_preempt ||
1588 p->prio < cpu_rq(target)->rt.highest_prio.curr))
1589 cpu = target;
1590 }
1591
1592 out_unlock:
1593 rcu_read_unlock();
1594
1595 out:
1596 return cpu;
1597 }
1598
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1599 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1600 {
1601 /*
1602 * Current can't be migrated, useless to reschedule,
1603 * let's hope p can move out.
1604 */
1605 if (rq->curr->nr_cpus_allowed == 1 ||
1606 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1607 return;
1608
1609 /*
1610 * p is migratable, so let's not schedule it and
1611 * see if it is pushed or pulled somewhere else.
1612 */
1613 if (p->nr_cpus_allowed != 1 &&
1614 cpupri_find(&rq->rd->cpupri, p, NULL))
1615 return;
1616
1617 /*
1618 * There appear to be other CPUs that can accept
1619 * the current task but none can run 'p', so lets reschedule
1620 * to try and push the current task away:
1621 */
1622 requeue_task_rt(rq, p, 1);
1623 resched_curr(rq);
1624 }
1625
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1626 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1627 {
1628 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1629 int done = 0;
1630
1631 /*
1632 * This is OK, because current is on_cpu, which avoids it being
1633 * picked for load-balance and preemption/IRQs are still
1634 * disabled avoiding further scheduler activity on it and we've
1635 * not yet started the picking loop.
1636 */
1637 rq_unpin_lock(rq, rf);
1638 trace_android_rvh_sched_balance_rt(rq, p, &done);
1639 if (!done)
1640 pull_rt_task(rq);
1641 rq_repin_lock(rq, rf);
1642 }
1643
1644 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1645 }
1646 #endif /* CONFIG_SMP */
1647
1648 /*
1649 * Preempt the current task with a newly woken task if needed:
1650 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1651 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1652 {
1653 if (p->prio < rq->curr->prio) {
1654 resched_curr(rq);
1655 return;
1656 }
1657
1658 #ifdef CONFIG_SMP
1659 /*
1660 * If:
1661 *
1662 * - the newly woken task is of equal priority to the current task
1663 * - the newly woken task is non-migratable while current is migratable
1664 * - current will be preempted on the next reschedule
1665 *
1666 * we should check to see if current can readily move to a different
1667 * cpu. If so, we will reschedule to allow the push logic to try
1668 * to move current somewhere else, making room for our non-migratable
1669 * task.
1670 */
1671 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1672 check_preempt_equal_prio(rq, p);
1673 #endif
1674 }
1675
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1676 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1677 {
1678 p->se.exec_start = rq_clock_task(rq);
1679
1680 /* The running task is never eligible for pushing */
1681 dequeue_pushable_task(rq, p);
1682
1683 if (!first)
1684 return;
1685
1686 /*
1687 * If prev task was rt, put_prev_task() has already updated the
1688 * utilization. We only care of the case where we start to schedule a
1689 * rt task
1690 */
1691 if (rq->curr->sched_class != &rt_sched_class)
1692 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1693
1694 rt_queue_push_tasks(rq);
1695 }
1696
pick_next_rt_entity(struct rt_rq * rt_rq)1697 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1698 {
1699 struct rt_prio_array *array = &rt_rq->active;
1700 struct sched_rt_entity *next = NULL;
1701 struct list_head *queue;
1702 int idx;
1703
1704 idx = sched_find_first_bit(array->bitmap);
1705 BUG_ON(idx >= MAX_RT_PRIO);
1706
1707 queue = array->queue + idx;
1708 if (SCHED_WARN_ON(list_empty(queue)))
1709 return NULL;
1710 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1711
1712 return next;
1713 }
1714
_pick_next_task_rt(struct rq * rq)1715 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1716 {
1717 struct sched_rt_entity *rt_se;
1718 struct rt_rq *rt_rq = &rq->rt;
1719
1720 do {
1721 rt_se = pick_next_rt_entity(rt_rq);
1722 if (unlikely(!rt_se))
1723 return NULL;
1724 rt_rq = group_rt_rq(rt_se);
1725 } while (rt_rq);
1726
1727 return rt_task_of(rt_se);
1728 }
1729
pick_next_task_rt(struct rq * rq)1730 static struct task_struct *pick_next_task_rt(struct rq *rq)
1731 {
1732 struct task_struct *p;
1733
1734 if (!sched_rt_runnable(rq))
1735 return NULL;
1736
1737 p = _pick_next_task_rt(rq);
1738 set_next_task_rt(rq, p, true);
1739 return p;
1740 }
1741
put_prev_task_rt(struct rq * rq,struct task_struct * p)1742 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1743 {
1744 update_curr_rt(rq);
1745
1746 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1747
1748 /*
1749 * The previous task needs to be made eligible for pushing
1750 * if it is still active
1751 */
1752 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1753 enqueue_pushable_task(rq, p);
1754 }
1755
1756 #ifdef CONFIG_SMP
1757
1758 /* Only try algorithms three times */
1759 #define RT_MAX_TRIES 3
1760
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1761 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1762 {
1763 if (!task_running(rq, p) &&
1764 cpumask_test_cpu(cpu, p->cpus_ptr))
1765 return 1;
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * Return the highest pushable rq's task, which is suitable to be executed
1772 * on the CPU, NULL otherwise
1773 */
pick_highest_pushable_task(struct rq * rq,int cpu)1774 struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1775 {
1776 struct plist_head *head = &rq->rt.pushable_tasks;
1777 struct task_struct *p;
1778
1779 if (!has_pushable_tasks(rq))
1780 return NULL;
1781
1782 plist_for_each_entry(p, head, pushable_tasks) {
1783 if (pick_rt_task(rq, p, cpu))
1784 return p;
1785 }
1786
1787 return NULL;
1788 }
1789 EXPORT_SYMBOL_GPL(pick_highest_pushable_task);
1790
1791 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1792
find_lowest_rq(struct task_struct * task)1793 static int find_lowest_rq(struct task_struct *task)
1794 {
1795 struct sched_domain *sd;
1796 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1797 int this_cpu = smp_processor_id();
1798 int cpu = -1;
1799 int ret;
1800
1801 /* Make sure the mask is initialized first */
1802 if (unlikely(!lowest_mask))
1803 return -1;
1804
1805 if (task->nr_cpus_allowed == 1)
1806 return -1; /* No other targets possible */
1807
1808 /*
1809 * If we're on asym system ensure we consider the different capacities
1810 * of the CPUs when searching for the lowest_mask.
1811 */
1812 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1813
1814 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1815 task, lowest_mask,
1816 rt_task_fits_capacity);
1817 } else {
1818
1819 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1820 task, lowest_mask);
1821 }
1822
1823 trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu);
1824 if (cpu >= 0)
1825 return cpu;
1826
1827 if (!ret)
1828 return -1; /* No targets found */
1829
1830 cpu = task_cpu(task);
1831
1832 /*
1833 * At this point we have built a mask of CPUs representing the
1834 * lowest priority tasks in the system. Now we want to elect
1835 * the best one based on our affinity and topology.
1836 *
1837 * We prioritize the last CPU that the task executed on since
1838 * it is most likely cache-hot in that location.
1839 */
1840 if (cpumask_test_cpu(cpu, lowest_mask))
1841 return cpu;
1842
1843 /*
1844 * Otherwise, we consult the sched_domains span maps to figure
1845 * out which CPU is logically closest to our hot cache data.
1846 */
1847 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1848 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1849
1850 rcu_read_lock();
1851 for_each_domain(cpu, sd) {
1852 if (sd->flags & SD_WAKE_AFFINE) {
1853 int best_cpu;
1854
1855 /*
1856 * "this_cpu" is cheaper to preempt than a
1857 * remote processor.
1858 */
1859 if (this_cpu != -1 &&
1860 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1861 rcu_read_unlock();
1862 return this_cpu;
1863 }
1864
1865 best_cpu = cpumask_first_and(lowest_mask,
1866 sched_domain_span(sd));
1867 if (best_cpu < nr_cpu_ids) {
1868 rcu_read_unlock();
1869 return best_cpu;
1870 }
1871 }
1872 }
1873 rcu_read_unlock();
1874
1875 /*
1876 * And finally, if there were no matches within the domains
1877 * just give the caller *something* to work with from the compatible
1878 * locations.
1879 */
1880 if (this_cpu != -1)
1881 return this_cpu;
1882
1883 cpu = cpumask_any(lowest_mask);
1884 if (cpu < nr_cpu_ids)
1885 return cpu;
1886
1887 return -1;
1888 }
1889
1890 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1891 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1892 {
1893 struct rq *lowest_rq = NULL;
1894 int tries;
1895 int cpu;
1896
1897 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1898 cpu = find_lowest_rq(task);
1899
1900 if ((cpu == -1) || (cpu == rq->cpu))
1901 break;
1902
1903 lowest_rq = cpu_rq(cpu);
1904
1905 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1906 /*
1907 * Target rq has tasks of equal or higher priority,
1908 * retrying does not release any lock and is unlikely
1909 * to yield a different result.
1910 */
1911 lowest_rq = NULL;
1912 break;
1913 }
1914
1915 /* if the prio of this runqueue changed, try again */
1916 if (double_lock_balance(rq, lowest_rq)) {
1917 /*
1918 * We had to unlock the run queue. In
1919 * the mean time, task could have
1920 * migrated already or had its affinity changed.
1921 * Also make sure that it wasn't scheduled on its rq.
1922 */
1923 if (unlikely(task_rq(task) != rq ||
1924 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1925 task_running(rq, task) ||
1926 !rt_task(task) ||
1927 !task_on_rq_queued(task))) {
1928
1929 double_unlock_balance(rq, lowest_rq);
1930 lowest_rq = NULL;
1931 break;
1932 }
1933 }
1934
1935 /* If this rq is still suitable use it. */
1936 if (lowest_rq->rt.highest_prio.curr > task->prio)
1937 break;
1938
1939 /* try again */
1940 double_unlock_balance(rq, lowest_rq);
1941 lowest_rq = NULL;
1942 }
1943
1944 return lowest_rq;
1945 }
1946
pick_next_pushable_task(struct rq * rq)1947 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1948 {
1949 struct task_struct *p;
1950
1951 if (!has_pushable_tasks(rq))
1952 return NULL;
1953
1954 p = plist_first_entry(&rq->rt.pushable_tasks,
1955 struct task_struct, pushable_tasks);
1956
1957 BUG_ON(rq->cpu != task_cpu(p));
1958 BUG_ON(task_current(rq, p));
1959 BUG_ON(p->nr_cpus_allowed <= 1);
1960
1961 BUG_ON(!task_on_rq_queued(p));
1962 BUG_ON(!rt_task(p));
1963
1964 return p;
1965 }
1966
1967 /*
1968 * If the current CPU has more than one RT task, see if the non
1969 * running task can migrate over to a CPU that is running a task
1970 * of lesser priority.
1971 */
push_rt_task(struct rq * rq)1972 static int push_rt_task(struct rq *rq)
1973 {
1974 struct task_struct *next_task;
1975 struct rq *lowest_rq;
1976 int ret = 0;
1977
1978 if (!rq->rt.overloaded)
1979 return 0;
1980
1981 next_task = pick_next_pushable_task(rq);
1982 if (!next_task)
1983 return 0;
1984
1985 retry:
1986 if (WARN_ON(next_task == rq->curr))
1987 return 0;
1988
1989 /*
1990 * It's possible that the next_task slipped in of
1991 * higher priority than current. If that's the case
1992 * just reschedule current.
1993 */
1994 if (unlikely(next_task->prio < rq->curr->prio)) {
1995 resched_curr(rq);
1996 return 0;
1997 }
1998
1999 /* We might release rq lock */
2000 get_task_struct(next_task);
2001
2002 /* find_lock_lowest_rq locks the rq if found */
2003 lowest_rq = find_lock_lowest_rq(next_task, rq);
2004 if (!lowest_rq) {
2005 struct task_struct *task;
2006 /*
2007 * find_lock_lowest_rq releases rq->lock
2008 * so it is possible that next_task has migrated.
2009 *
2010 * We need to make sure that the task is still on the same
2011 * run-queue and is also still the next task eligible for
2012 * pushing.
2013 */
2014 task = pick_next_pushable_task(rq);
2015 if (task == next_task) {
2016 /*
2017 * The task hasn't migrated, and is still the next
2018 * eligible task, but we failed to find a run-queue
2019 * to push it to. Do not retry in this case, since
2020 * other CPUs will pull from us when ready.
2021 */
2022 goto out;
2023 }
2024
2025 if (!task)
2026 /* No more tasks, just exit */
2027 goto out;
2028
2029 /*
2030 * Something has shifted, try again.
2031 */
2032 put_task_struct(next_task);
2033 next_task = task;
2034 goto retry;
2035 }
2036
2037 deactivate_task(rq, next_task, 0);
2038 set_task_cpu(next_task, lowest_rq->cpu);
2039 activate_task(lowest_rq, next_task, 0);
2040 ret = 1;
2041
2042 resched_curr(lowest_rq);
2043
2044 double_unlock_balance(rq, lowest_rq);
2045
2046 out:
2047 put_task_struct(next_task);
2048
2049 return ret;
2050 }
2051
push_rt_tasks(struct rq * rq)2052 static void push_rt_tasks(struct rq *rq)
2053 {
2054 /* push_rt_task will return true if it moved an RT */
2055 while (push_rt_task(rq))
2056 ;
2057 }
2058
2059 #ifdef HAVE_RT_PUSH_IPI
2060
2061 /*
2062 * When a high priority task schedules out from a CPU and a lower priority
2063 * task is scheduled in, a check is made to see if there's any RT tasks
2064 * on other CPUs that are waiting to run because a higher priority RT task
2065 * is currently running on its CPU. In this case, the CPU with multiple RT
2066 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2067 * up that may be able to run one of its non-running queued RT tasks.
2068 *
2069 * All CPUs with overloaded RT tasks need to be notified as there is currently
2070 * no way to know which of these CPUs have the highest priority task waiting
2071 * to run. Instead of trying to take a spinlock on each of these CPUs,
2072 * which has shown to cause large latency when done on machines with many
2073 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2074 * RT tasks waiting to run.
2075 *
2076 * Just sending an IPI to each of the CPUs is also an issue, as on large
2077 * count CPU machines, this can cause an IPI storm on a CPU, especially
2078 * if its the only CPU with multiple RT tasks queued, and a large number
2079 * of CPUs scheduling a lower priority task at the same time.
2080 *
2081 * Each root domain has its own irq work function that can iterate over
2082 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2083 * tassk must be checked if there's one or many CPUs that are lowering
2084 * their priority, there's a single irq work iterator that will try to
2085 * push off RT tasks that are waiting to run.
2086 *
2087 * When a CPU schedules a lower priority task, it will kick off the
2088 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2089 * As it only takes the first CPU that schedules a lower priority task
2090 * to start the process, the rto_start variable is incremented and if
2091 * the atomic result is one, then that CPU will try to take the rto_lock.
2092 * This prevents high contention on the lock as the process handles all
2093 * CPUs scheduling lower priority tasks.
2094 *
2095 * All CPUs that are scheduling a lower priority task will increment the
2096 * rt_loop_next variable. This will make sure that the irq work iterator
2097 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2098 * priority task, even if the iterator is in the middle of a scan. Incrementing
2099 * the rt_loop_next will cause the iterator to perform another scan.
2100 *
2101 */
rto_next_cpu(struct root_domain * rd)2102 static int rto_next_cpu(struct root_domain *rd)
2103 {
2104 int next;
2105 int cpu;
2106
2107 /*
2108 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2109 * rt_next_cpu() will simply return the first CPU found in
2110 * the rto_mask.
2111 *
2112 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2113 * will return the next CPU found in the rto_mask.
2114 *
2115 * If there are no more CPUs left in the rto_mask, then a check is made
2116 * against rto_loop and rto_loop_next. rto_loop is only updated with
2117 * the rto_lock held, but any CPU may increment the rto_loop_next
2118 * without any locking.
2119 */
2120 for (;;) {
2121
2122 /* When rto_cpu is -1 this acts like cpumask_first() */
2123 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2124
2125 rd->rto_cpu = cpu;
2126
2127 if (cpu < nr_cpu_ids)
2128 return cpu;
2129
2130 rd->rto_cpu = -1;
2131
2132 /*
2133 * ACQUIRE ensures we see the @rto_mask changes
2134 * made prior to the @next value observed.
2135 *
2136 * Matches WMB in rt_set_overload().
2137 */
2138 next = atomic_read_acquire(&rd->rto_loop_next);
2139
2140 if (rd->rto_loop == next)
2141 break;
2142
2143 rd->rto_loop = next;
2144 }
2145
2146 return -1;
2147 }
2148
rto_start_trylock(atomic_t * v)2149 static inline bool rto_start_trylock(atomic_t *v)
2150 {
2151 return !atomic_cmpxchg_acquire(v, 0, 1);
2152 }
2153
rto_start_unlock(atomic_t * v)2154 static inline void rto_start_unlock(atomic_t *v)
2155 {
2156 atomic_set_release(v, 0);
2157 }
2158
tell_cpu_to_push(struct rq * rq)2159 static void tell_cpu_to_push(struct rq *rq)
2160 {
2161 int cpu = -1;
2162
2163 /* Keep the loop going if the IPI is currently active */
2164 atomic_inc(&rq->rd->rto_loop_next);
2165
2166 /* Only one CPU can initiate a loop at a time */
2167 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2168 return;
2169
2170 raw_spin_lock(&rq->rd->rto_lock);
2171
2172 /*
2173 * The rto_cpu is updated under the lock, if it has a valid CPU
2174 * then the IPI is still running and will continue due to the
2175 * update to loop_next, and nothing needs to be done here.
2176 * Otherwise it is finishing up and an ipi needs to be sent.
2177 */
2178 if (rq->rd->rto_cpu < 0)
2179 cpu = rto_next_cpu(rq->rd);
2180
2181 raw_spin_unlock(&rq->rd->rto_lock);
2182
2183 rto_start_unlock(&rq->rd->rto_loop_start);
2184
2185 if (cpu >= 0) {
2186 /* Make sure the rd does not get freed while pushing */
2187 sched_get_rd(rq->rd);
2188 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2189 }
2190 }
2191
2192 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2193 void rto_push_irq_work_func(struct irq_work *work)
2194 {
2195 struct root_domain *rd =
2196 container_of(work, struct root_domain, rto_push_work);
2197 struct rq *rq;
2198 int cpu;
2199
2200 rq = this_rq();
2201
2202 /*
2203 * We do not need to grab the lock to check for has_pushable_tasks.
2204 * When it gets updated, a check is made if a push is possible.
2205 */
2206 if (has_pushable_tasks(rq)) {
2207 raw_spin_lock(&rq->lock);
2208 push_rt_tasks(rq);
2209 raw_spin_unlock(&rq->lock);
2210 }
2211
2212 raw_spin_lock(&rd->rto_lock);
2213
2214 /* Pass the IPI to the next rt overloaded queue */
2215 cpu = rto_next_cpu(rd);
2216
2217 raw_spin_unlock(&rd->rto_lock);
2218
2219 if (cpu < 0) {
2220 sched_put_rd(rd);
2221 return;
2222 }
2223
2224 /* Try the next RT overloaded CPU */
2225 irq_work_queue_on(&rd->rto_push_work, cpu);
2226 }
2227 #endif /* HAVE_RT_PUSH_IPI */
2228
pull_rt_task(struct rq * this_rq)2229 static void pull_rt_task(struct rq *this_rq)
2230 {
2231 int this_cpu = this_rq->cpu, cpu;
2232 bool resched = false;
2233 struct task_struct *p;
2234 struct rq *src_rq;
2235 int rt_overload_count = rt_overloaded(this_rq);
2236
2237 if (likely(!rt_overload_count))
2238 return;
2239
2240 /*
2241 * Match the barrier from rt_set_overloaded; this guarantees that if we
2242 * see overloaded we must also see the rto_mask bit.
2243 */
2244 smp_rmb();
2245
2246 /* If we are the only overloaded CPU do nothing */
2247 if (rt_overload_count == 1 &&
2248 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2249 return;
2250
2251 #ifdef HAVE_RT_PUSH_IPI
2252 if (sched_feat(RT_PUSH_IPI)) {
2253 tell_cpu_to_push(this_rq);
2254 return;
2255 }
2256 #endif
2257
2258 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2259 if (this_cpu == cpu)
2260 continue;
2261
2262 src_rq = cpu_rq(cpu);
2263
2264 /*
2265 * Don't bother taking the src_rq->lock if the next highest
2266 * task is known to be lower-priority than our current task.
2267 * This may look racy, but if this value is about to go
2268 * logically higher, the src_rq will push this task away.
2269 * And if its going logically lower, we do not care
2270 */
2271 if (src_rq->rt.highest_prio.next >=
2272 this_rq->rt.highest_prio.curr)
2273 continue;
2274
2275 /*
2276 * We can potentially drop this_rq's lock in
2277 * double_lock_balance, and another CPU could
2278 * alter this_rq
2279 */
2280 double_lock_balance(this_rq, src_rq);
2281
2282 /*
2283 * We can pull only a task, which is pushable
2284 * on its rq, and no others.
2285 */
2286 p = pick_highest_pushable_task(src_rq, this_cpu);
2287
2288 /*
2289 * Do we have an RT task that preempts
2290 * the to-be-scheduled task?
2291 */
2292 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2293 WARN_ON(p == src_rq->curr);
2294 WARN_ON(!task_on_rq_queued(p));
2295
2296 /*
2297 * There's a chance that p is higher in priority
2298 * than what's currently running on its CPU.
2299 * This is just that p is wakeing up and hasn't
2300 * had a chance to schedule. We only pull
2301 * p if it is lower in priority than the
2302 * current task on the run queue
2303 */
2304 if (p->prio < src_rq->curr->prio)
2305 goto skip;
2306
2307 resched = true;
2308
2309 deactivate_task(src_rq, p, 0);
2310 set_task_cpu(p, this_cpu);
2311 activate_task(this_rq, p, 0);
2312 /*
2313 * We continue with the search, just in
2314 * case there's an even higher prio task
2315 * in another runqueue. (low likelihood
2316 * but possible)
2317 */
2318 }
2319 skip:
2320 double_unlock_balance(this_rq, src_rq);
2321 }
2322
2323 if (resched)
2324 resched_curr(this_rq);
2325 }
2326
2327 /*
2328 * If we are not running and we are not going to reschedule soon, we should
2329 * try to push tasks away now
2330 */
task_woken_rt(struct rq * rq,struct task_struct * p)2331 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2332 {
2333 bool need_to_push = !task_running(rq, p) &&
2334 !test_tsk_need_resched(rq->curr) &&
2335 p->nr_cpus_allowed > 1 &&
2336 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2337 (rq->curr->nr_cpus_allowed < 2 ||
2338 rq->curr->prio <= p->prio);
2339
2340 if (need_to_push)
2341 push_rt_tasks(rq);
2342 }
2343
2344 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2345 static void rq_online_rt(struct rq *rq)
2346 {
2347 if (rq->rt.overloaded)
2348 rt_set_overload(rq);
2349
2350 __enable_runtime(rq);
2351
2352 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2353 }
2354
2355 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2356 static void rq_offline_rt(struct rq *rq)
2357 {
2358 if (rq->rt.overloaded)
2359 rt_clear_overload(rq);
2360
2361 __disable_runtime(rq);
2362
2363 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2364 }
2365
2366 /*
2367 * When switch from the rt queue, we bring ourselves to a position
2368 * that we might want to pull RT tasks from other runqueues.
2369 */
switched_from_rt(struct rq * rq,struct task_struct * p)2370 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2371 {
2372 /*
2373 * If there are other RT tasks then we will reschedule
2374 * and the scheduling of the other RT tasks will handle
2375 * the balancing. But if we are the last RT task
2376 * we may need to handle the pulling of RT tasks
2377 * now.
2378 */
2379 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2380 return;
2381
2382 rt_queue_pull_task(rq);
2383 }
2384
init_sched_rt_class(void)2385 void __init init_sched_rt_class(void)
2386 {
2387 unsigned int i;
2388
2389 for_each_possible_cpu(i) {
2390 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2391 GFP_KERNEL, cpu_to_node(i));
2392 }
2393 }
2394 #endif /* CONFIG_SMP */
2395
2396 /*
2397 * When switching a task to RT, we may overload the runqueue
2398 * with RT tasks. In this case we try to push them off to
2399 * other runqueues.
2400 */
switched_to_rt(struct rq * rq,struct task_struct * p)2401 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2402 {
2403 /*
2404 * If we are running, update the avg_rt tracking, as the running time
2405 * will now on be accounted into the latter.
2406 */
2407 if (task_current(rq, p)) {
2408 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2409 return;
2410 }
2411
2412 /*
2413 * If we are not running we may need to preempt the current
2414 * running task. If that current running task is also an RT task
2415 * then see if we can move to another run queue.
2416 */
2417 if (task_on_rq_queued(p)) {
2418 #ifdef CONFIG_SMP
2419 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2420 rt_queue_push_tasks(rq);
2421 #endif /* CONFIG_SMP */
2422 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2423 resched_curr(rq);
2424 }
2425 }
2426
2427 /*
2428 * Priority of the task has changed. This may cause
2429 * us to initiate a push or pull.
2430 */
2431 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2432 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2433 {
2434 if (!task_on_rq_queued(p))
2435 return;
2436
2437 if (rq->curr == p) {
2438 #ifdef CONFIG_SMP
2439 /*
2440 * If our priority decreases while running, we
2441 * may need to pull tasks to this runqueue.
2442 */
2443 if (oldprio < p->prio)
2444 rt_queue_pull_task(rq);
2445
2446 /*
2447 * If there's a higher priority task waiting to run
2448 * then reschedule.
2449 */
2450 if (p->prio > rq->rt.highest_prio.curr)
2451 resched_curr(rq);
2452 #else
2453 /* For UP simply resched on drop of prio */
2454 if (oldprio < p->prio)
2455 resched_curr(rq);
2456 #endif /* CONFIG_SMP */
2457 } else {
2458 /*
2459 * This task is not running, but if it is
2460 * greater than the current running task
2461 * then reschedule.
2462 */
2463 if (p->prio < rq->curr->prio)
2464 resched_curr(rq);
2465 }
2466 }
2467
2468 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2469 static void watchdog(struct rq *rq, struct task_struct *p)
2470 {
2471 unsigned long soft, hard;
2472
2473 /* max may change after cur was read, this will be fixed next tick */
2474 soft = task_rlimit(p, RLIMIT_RTTIME);
2475 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2476
2477 if (soft != RLIM_INFINITY) {
2478 unsigned long next;
2479
2480 if (p->rt.watchdog_stamp != jiffies) {
2481 p->rt.timeout++;
2482 p->rt.watchdog_stamp = jiffies;
2483 }
2484
2485 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2486 if (p->rt.timeout > next) {
2487 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2488 p->se.sum_exec_runtime);
2489 }
2490 }
2491 }
2492 #else
watchdog(struct rq * rq,struct task_struct * p)2493 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2494 #endif
2495
2496 /*
2497 * scheduler tick hitting a task of our scheduling class.
2498 *
2499 * NOTE: This function can be called remotely by the tick offload that
2500 * goes along full dynticks. Therefore no local assumption can be made
2501 * and everything must be accessed through the @rq and @curr passed in
2502 * parameters.
2503 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2504 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2505 {
2506 struct sched_rt_entity *rt_se = &p->rt;
2507
2508 update_curr_rt(rq);
2509 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2510
2511 watchdog(rq, p);
2512
2513 /*
2514 * RR tasks need a special form of timeslice management.
2515 * FIFO tasks have no timeslices.
2516 */
2517 if (p->policy != SCHED_RR)
2518 return;
2519
2520 if (--p->rt.time_slice)
2521 return;
2522
2523 p->rt.time_slice = sched_rr_timeslice;
2524
2525 /*
2526 * Requeue to the end of queue if we (and all of our ancestors) are not
2527 * the only element on the queue
2528 */
2529 for_each_sched_rt_entity(rt_se) {
2530 if (rt_se->run_list.prev != rt_se->run_list.next) {
2531 requeue_task_rt(rq, p, 0);
2532 resched_curr(rq);
2533 return;
2534 }
2535 }
2536 }
2537
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2538 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2539 {
2540 /*
2541 * Time slice is 0 for SCHED_FIFO tasks
2542 */
2543 if (task->policy == SCHED_RR)
2544 return sched_rr_timeslice;
2545 else
2546 return 0;
2547 }
2548
2549 const struct sched_class rt_sched_class
2550 __section("__rt_sched_class") = {
2551 .enqueue_task = enqueue_task_rt,
2552 .dequeue_task = dequeue_task_rt,
2553 .yield_task = yield_task_rt,
2554
2555 .check_preempt_curr = check_preempt_curr_rt,
2556
2557 .pick_next_task = pick_next_task_rt,
2558 .put_prev_task = put_prev_task_rt,
2559 .set_next_task = set_next_task_rt,
2560
2561 #ifdef CONFIG_SMP
2562 .balance = balance_rt,
2563 .select_task_rq = select_task_rq_rt,
2564 .set_cpus_allowed = set_cpus_allowed_common,
2565 .rq_online = rq_online_rt,
2566 .rq_offline = rq_offline_rt,
2567 .task_woken = task_woken_rt,
2568 .switched_from = switched_from_rt,
2569 #endif
2570
2571 .task_tick = task_tick_rt,
2572
2573 .get_rr_interval = get_rr_interval_rt,
2574
2575 .prio_changed = prio_changed_rt,
2576 .switched_to = switched_to_rt,
2577
2578 .update_curr = update_curr_rt,
2579
2580 #ifdef CONFIG_UCLAMP_TASK
2581 .uclamp_enabled = 1,
2582 #endif
2583 };
2584
2585 #ifdef CONFIG_RT_GROUP_SCHED
2586 /*
2587 * Ensure that the real time constraints are schedulable.
2588 */
2589 static DEFINE_MUTEX(rt_constraints_mutex);
2590
tg_has_rt_tasks(struct task_group * tg)2591 static inline int tg_has_rt_tasks(struct task_group *tg)
2592 {
2593 struct task_struct *task;
2594 struct css_task_iter it;
2595 int ret = 0;
2596
2597 /*
2598 * Autogroups do not have RT tasks; see autogroup_create().
2599 */
2600 if (task_group_is_autogroup(tg))
2601 return 0;
2602
2603 css_task_iter_start(&tg->css, 0, &it);
2604 while (!ret && (task = css_task_iter_next(&it)))
2605 ret |= rt_task(task);
2606 css_task_iter_end(&it);
2607
2608 return ret;
2609 }
2610
2611 struct rt_schedulable_data {
2612 struct task_group *tg;
2613 u64 rt_period;
2614 u64 rt_runtime;
2615 };
2616
tg_rt_schedulable(struct task_group * tg,void * data)2617 static int tg_rt_schedulable(struct task_group *tg, void *data)
2618 {
2619 struct rt_schedulable_data *d = data;
2620 struct task_group *child;
2621 unsigned long total, sum = 0;
2622 u64 period, runtime;
2623
2624 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2625 runtime = tg->rt_bandwidth.rt_runtime;
2626
2627 if (tg == d->tg) {
2628 period = d->rt_period;
2629 runtime = d->rt_runtime;
2630 }
2631
2632 /*
2633 * Cannot have more runtime than the period.
2634 */
2635 if (runtime > period && runtime != RUNTIME_INF)
2636 return -EINVAL;
2637
2638 /*
2639 * Ensure we don't starve existing RT tasks if runtime turns zero.
2640 */
2641 if (rt_bandwidth_enabled() && !runtime &&
2642 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2643 return -EBUSY;
2644
2645 total = to_ratio(period, runtime);
2646
2647 /*
2648 * Nobody can have more than the global setting allows.
2649 */
2650 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2651 return -EINVAL;
2652
2653 /*
2654 * The sum of our children's runtime should not exceed our own.
2655 */
2656 list_for_each_entry_rcu(child, &tg->children, siblings) {
2657 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2658 runtime = child->rt_bandwidth.rt_runtime;
2659
2660 if (child == d->tg) {
2661 period = d->rt_period;
2662 runtime = d->rt_runtime;
2663 }
2664
2665 sum += to_ratio(period, runtime);
2666 }
2667
2668 if (sum > total)
2669 return -EINVAL;
2670
2671 return 0;
2672 }
2673
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2674 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2675 {
2676 int ret;
2677
2678 struct rt_schedulable_data data = {
2679 .tg = tg,
2680 .rt_period = period,
2681 .rt_runtime = runtime,
2682 };
2683
2684 rcu_read_lock();
2685 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2686 rcu_read_unlock();
2687
2688 return ret;
2689 }
2690
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2691 static int tg_set_rt_bandwidth(struct task_group *tg,
2692 u64 rt_period, u64 rt_runtime)
2693 {
2694 int i, err = 0;
2695
2696 /*
2697 * Disallowing the root group RT runtime is BAD, it would disallow the
2698 * kernel creating (and or operating) RT threads.
2699 */
2700 if (tg == &root_task_group && rt_runtime == 0)
2701 return -EINVAL;
2702
2703 /* No period doesn't make any sense. */
2704 if (rt_period == 0)
2705 return -EINVAL;
2706
2707 /*
2708 * Bound quota to defend quota against overflow during bandwidth shift.
2709 */
2710 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2711 return -EINVAL;
2712
2713 mutex_lock(&rt_constraints_mutex);
2714 err = __rt_schedulable(tg, rt_period, rt_runtime);
2715 if (err)
2716 goto unlock;
2717
2718 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2719 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2720 tg->rt_bandwidth.rt_runtime = rt_runtime;
2721
2722 for_each_possible_cpu(i) {
2723 struct rt_rq *rt_rq = tg->rt_rq[i];
2724
2725 raw_spin_lock(&rt_rq->rt_runtime_lock);
2726 rt_rq->rt_runtime = rt_runtime;
2727 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2728 }
2729 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2730 unlock:
2731 mutex_unlock(&rt_constraints_mutex);
2732
2733 return err;
2734 }
2735
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2736 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2737 {
2738 u64 rt_runtime, rt_period;
2739
2740 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2741 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2742 if (rt_runtime_us < 0)
2743 rt_runtime = RUNTIME_INF;
2744 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2745 return -EINVAL;
2746
2747 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2748 }
2749
sched_group_rt_runtime(struct task_group * tg)2750 long sched_group_rt_runtime(struct task_group *tg)
2751 {
2752 u64 rt_runtime_us;
2753
2754 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2755 return -1;
2756
2757 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2758 do_div(rt_runtime_us, NSEC_PER_USEC);
2759 return rt_runtime_us;
2760 }
2761
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2762 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2763 {
2764 u64 rt_runtime, rt_period;
2765
2766 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2767 return -EINVAL;
2768
2769 rt_period = rt_period_us * NSEC_PER_USEC;
2770 rt_runtime = tg->rt_bandwidth.rt_runtime;
2771
2772 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2773 }
2774
sched_group_rt_period(struct task_group * tg)2775 long sched_group_rt_period(struct task_group *tg)
2776 {
2777 u64 rt_period_us;
2778
2779 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2780 do_div(rt_period_us, NSEC_PER_USEC);
2781 return rt_period_us;
2782 }
2783
sched_rt_global_constraints(void)2784 static int sched_rt_global_constraints(void)
2785 {
2786 int ret = 0;
2787
2788 mutex_lock(&rt_constraints_mutex);
2789 ret = __rt_schedulable(NULL, 0, 0);
2790 mutex_unlock(&rt_constraints_mutex);
2791
2792 return ret;
2793 }
2794
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2795 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2796 {
2797 /* Don't accept realtime tasks when there is no way for them to run */
2798 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2799 return 0;
2800
2801 return 1;
2802 }
2803
2804 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2805 static int sched_rt_global_constraints(void)
2806 {
2807 unsigned long flags;
2808 int i;
2809
2810 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2811 for_each_possible_cpu(i) {
2812 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2813
2814 raw_spin_lock(&rt_rq->rt_runtime_lock);
2815 rt_rq->rt_runtime = global_rt_runtime();
2816 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2817 }
2818 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2819
2820 return 0;
2821 }
2822 #endif /* CONFIG_RT_GROUP_SCHED */
2823
sched_rt_global_validate(void)2824 static int sched_rt_global_validate(void)
2825 {
2826 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2827 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2828 ((u64)sysctl_sched_rt_runtime *
2829 NSEC_PER_USEC > max_rt_runtime)))
2830 return -EINVAL;
2831
2832 return 0;
2833 }
2834
sched_rt_do_global(void)2835 static void sched_rt_do_global(void)
2836 {
2837 unsigned long flags;
2838
2839 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2840 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2841 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2842 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2843 }
2844
sched_rt_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2845 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2846 size_t *lenp, loff_t *ppos)
2847 {
2848 int old_period, old_runtime;
2849 static DEFINE_MUTEX(mutex);
2850 int ret;
2851
2852 mutex_lock(&mutex);
2853 old_period = sysctl_sched_rt_period;
2854 old_runtime = sysctl_sched_rt_runtime;
2855
2856 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2857
2858 if (!ret && write) {
2859 ret = sched_rt_global_validate();
2860 if (ret)
2861 goto undo;
2862
2863 ret = sched_dl_global_validate();
2864 if (ret)
2865 goto undo;
2866
2867 ret = sched_rt_global_constraints();
2868 if (ret)
2869 goto undo;
2870
2871 sched_rt_do_global();
2872 sched_dl_do_global();
2873 }
2874 if (0) {
2875 undo:
2876 sysctl_sched_rt_period = old_period;
2877 sysctl_sched_rt_runtime = old_runtime;
2878 }
2879 mutex_unlock(&mutex);
2880
2881 return ret;
2882 }
2883
sched_rr_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2884 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2885 size_t *lenp, loff_t *ppos)
2886 {
2887 int ret;
2888 static DEFINE_MUTEX(mutex);
2889
2890 mutex_lock(&mutex);
2891 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2892 /*
2893 * Make sure that internally we keep jiffies.
2894 * Also, writing zero resets the timeslice to default:
2895 */
2896 if (!ret && write) {
2897 sched_rr_timeslice =
2898 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2899 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2900
2901 if (sysctl_sched_rr_timeslice <= 0)
2902 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2903 }
2904 mutex_unlock(&mutex);
2905
2906 return ret;
2907 }
2908
2909 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2910 void print_rt_stats(struct seq_file *m, int cpu)
2911 {
2912 rt_rq_iter_t iter;
2913 struct rt_rq *rt_rq;
2914
2915 rcu_read_lock();
2916 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2917 print_rt_rq(m, cpu, rt_rq);
2918 rcu_read_unlock();
2919 }
2920 #endif /* CONFIG_SCHED_DEBUG */
2921