1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/cpu.h>
15 #include <linux/delay.h>
16 #include <linux/ioport.h>
17 #include <linux/export.h>
18 #include <linux/screen_info.h>
19 #include <linux/memblock.h>
20 #include <linux/initrd.h>
21 #include <linux/root_dev.h>
22 #include <linux/highmem.h>
23 #include <linux/console.h>
24 #include <linux/pfn.h>
25 #include <linux/debugfs.h>
26 #include <linux/kexec.h>
27 #include <linux/sizes.h>
28 #include <linux/device.h>
29 #include <linux/dma-map-ops.h>
30 #include <linux/decompress/generic.h>
31 #include <linux/of_fdt.h>
32 #include <linux/of_reserved_mem.h>
33 #include <linux/dmi.h>
34
35 #include <asm/addrspace.h>
36 #include <asm/bootinfo.h>
37 #include <asm/bugs.h>
38 #include <asm/cache.h>
39 #include <asm/cdmm.h>
40 #include <asm/cpu.h>
41 #include <asm/debug.h>
42 #include <asm/dma-coherence.h>
43 #include <asm/sections.h>
44 #include <asm/setup.h>
45 #include <asm/smp-ops.h>
46 #include <asm/prom.h>
47
48 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
49 const char __section(".appended_dtb") __appended_dtb[0x100000];
50 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
51
52 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
53
54 EXPORT_SYMBOL(cpu_data);
55
56 #ifdef CONFIG_VT
57 struct screen_info screen_info;
58 #endif
59
60 /*
61 * Setup information
62 *
63 * These are initialized so they are in the .data section
64 */
65 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
66
67 EXPORT_SYMBOL(mips_machtype);
68
69 static char __initdata command_line[COMMAND_LINE_SIZE];
70 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
71
72 #ifdef CONFIG_CMDLINE_BOOL
73 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
74 #else
75 static const char builtin_cmdline[] __initconst = "";
76 #endif
77
78 /*
79 * mips_io_port_base is the begin of the address space to which x86 style
80 * I/O ports are mapped.
81 */
82 unsigned long mips_io_port_base = -1;
83 EXPORT_SYMBOL(mips_io_port_base);
84
85 static struct resource code_resource = { .name = "Kernel code", };
86 static struct resource data_resource = { .name = "Kernel data", };
87 static struct resource bss_resource = { .name = "Kernel bss", };
88
89 static void *detect_magic __initdata = detect_memory_region;
90
91 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
92 unsigned long ARCH_PFN_OFFSET;
93 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
94 #endif
95
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)96 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
97 {
98 void *dm = &detect_magic;
99 phys_addr_t size;
100
101 for (size = sz_min; size < sz_max; size <<= 1) {
102 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
103 break;
104 }
105
106 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
107 ((unsigned long long) size) / SZ_1M,
108 (unsigned long long) start,
109 ((unsigned long long) sz_min) / SZ_1M,
110 ((unsigned long long) sz_max) / SZ_1M);
111
112 memblock_add(start, size);
113 }
114
115 /*
116 * Manage initrd
117 */
118 #ifdef CONFIG_BLK_DEV_INITRD
119
rd_start_early(char * p)120 static int __init rd_start_early(char *p)
121 {
122 unsigned long start = memparse(p, &p);
123
124 #ifdef CONFIG_64BIT
125 /* Guess if the sign extension was forgotten by bootloader */
126 if (start < XKPHYS)
127 start = (int)start;
128 #endif
129 initrd_start = start;
130 initrd_end += start;
131 return 0;
132 }
133 early_param("rd_start", rd_start_early);
134
rd_size_early(char * p)135 static int __init rd_size_early(char *p)
136 {
137 initrd_end += memparse(p, &p);
138 return 0;
139 }
140 early_param("rd_size", rd_size_early);
141
142 /* it returns the next free pfn after initrd */
init_initrd(void)143 static unsigned long __init init_initrd(void)
144 {
145 unsigned long end;
146
147 /*
148 * Board specific code or command line parser should have
149 * already set up initrd_start and initrd_end. In these cases
150 * perfom sanity checks and use them if all looks good.
151 */
152 if (!initrd_start || initrd_end <= initrd_start)
153 goto disable;
154
155 if (initrd_start & ~PAGE_MASK) {
156 pr_err("initrd start must be page aligned\n");
157 goto disable;
158 }
159
160 /*
161 * Sanitize initrd addresses. For example firmware
162 * can't guess if they need to pass them through
163 * 64-bits values if the kernel has been built in pure
164 * 32-bit. We need also to switch from KSEG0 to XKPHYS
165 * addresses now, so the code can now safely use __pa().
166 */
167 end = __pa(initrd_end);
168 initrd_end = (unsigned long)__va(end);
169 initrd_start = (unsigned long)__va(__pa(initrd_start));
170
171 if (initrd_start < PAGE_OFFSET) {
172 pr_err("initrd start < PAGE_OFFSET\n");
173 goto disable;
174 }
175
176 ROOT_DEV = Root_RAM0;
177 return PFN_UP(end);
178 disable:
179 initrd_start = 0;
180 initrd_end = 0;
181 return 0;
182 }
183
184 /* In some conditions (e.g. big endian bootloader with a little endian
185 kernel), the initrd might appear byte swapped. Try to detect this and
186 byte swap it if needed. */
maybe_bswap_initrd(void)187 static void __init maybe_bswap_initrd(void)
188 {
189 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
190 u64 buf;
191
192 /* Check for CPIO signature */
193 if (!memcmp((void *)initrd_start, "070701", 6))
194 return;
195
196 /* Check for compressed initrd */
197 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
198 return;
199
200 /* Try again with a byte swapped header */
201 buf = swab64p((u64 *)initrd_start);
202 if (!memcmp(&buf, "070701", 6) ||
203 decompress_method((unsigned char *)(&buf), 8, NULL)) {
204 unsigned long i;
205
206 pr_info("Byteswapped initrd detected\n");
207 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
208 swab64s((u64 *)i);
209 }
210 #endif
211 }
212
finalize_initrd(void)213 static void __init finalize_initrd(void)
214 {
215 unsigned long size = initrd_end - initrd_start;
216
217 if (size == 0) {
218 printk(KERN_INFO "Initrd not found or empty");
219 goto disable;
220 }
221 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
222 printk(KERN_ERR "Initrd extends beyond end of memory");
223 goto disable;
224 }
225
226 maybe_bswap_initrd();
227
228 memblock_reserve(__pa(initrd_start), size);
229 initrd_below_start_ok = 1;
230
231 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
232 initrd_start, size);
233 return;
234 disable:
235 printk(KERN_CONT " - disabling initrd\n");
236 initrd_start = 0;
237 initrd_end = 0;
238 }
239
240 #else /* !CONFIG_BLK_DEV_INITRD */
241
init_initrd(void)242 static unsigned long __init init_initrd(void)
243 {
244 return 0;
245 }
246
247 #define finalize_initrd() do {} while (0)
248
249 #endif
250
251 /*
252 * Initialize the bootmem allocator. It also setup initrd related data
253 * if needed.
254 */
255 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
256
bootmem_init(void)257 static void __init bootmem_init(void)
258 {
259 init_initrd();
260 finalize_initrd();
261 }
262
263 #else /* !CONFIG_SGI_IP27 */
264
bootmem_init(void)265 static void __init bootmem_init(void)
266 {
267 phys_addr_t ramstart, ramend;
268 unsigned long start, end;
269 int i;
270
271 ramstart = memblock_start_of_DRAM();
272 ramend = memblock_end_of_DRAM();
273
274 /*
275 * Sanity check any INITRD first. We don't take it into account
276 * for bootmem setup initially, rely on the end-of-kernel-code
277 * as our memory range starting point. Once bootmem is inited we
278 * will reserve the area used for the initrd.
279 */
280 init_initrd();
281
282 /* Reserve memory occupied by kernel. */
283 memblock_reserve(__pa_symbol(&_text),
284 __pa_symbol(&_end) - __pa_symbol(&_text));
285
286 /* max_low_pfn is not a number of pages but the end pfn of low mem */
287
288 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
289 ARCH_PFN_OFFSET = PFN_UP(ramstart);
290 #else
291 /*
292 * Reserve any memory between the start of RAM and PHYS_OFFSET
293 */
294 if (ramstart > PHYS_OFFSET)
295 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
296
297 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
298 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
299 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
300 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
301 }
302 #endif
303
304 min_low_pfn = ARCH_PFN_OFFSET;
305 max_pfn = PFN_DOWN(ramend);
306 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
307 /*
308 * Skip highmem here so we get an accurate max_low_pfn if low
309 * memory stops short of high memory.
310 * If the region overlaps HIGHMEM_START, end is clipped so
311 * max_pfn excludes the highmem portion.
312 */
313 if (start >= PFN_DOWN(HIGHMEM_START))
314 continue;
315 if (end > PFN_DOWN(HIGHMEM_START))
316 end = PFN_DOWN(HIGHMEM_START);
317 if (end > max_low_pfn)
318 max_low_pfn = end;
319 }
320
321 if (min_low_pfn >= max_low_pfn)
322 panic("Incorrect memory mapping !!!");
323
324 if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
325 max_low_pfn = PFN_DOWN(HIGHMEM_START);
326 #ifdef CONFIG_HIGHMEM
327 highstart_pfn = max_low_pfn;
328 highend_pfn = max_pfn;
329 #else
330 max_pfn = max_low_pfn;
331 #endif
332 }
333
334 /*
335 * Reserve initrd memory if needed.
336 */
337 finalize_initrd();
338 }
339
340 #endif /* CONFIG_SGI_IP27 */
341
342 static int usermem __initdata;
343
early_parse_mem(char * p)344 static int __init early_parse_mem(char *p)
345 {
346 phys_addr_t start, size;
347
348 /*
349 * If a user specifies memory size, we
350 * blow away any automatically generated
351 * size.
352 */
353 if (usermem == 0) {
354 usermem = 1;
355 memblock_remove(memblock_start_of_DRAM(),
356 memblock_end_of_DRAM() - memblock_start_of_DRAM());
357 }
358 start = 0;
359 size = memparse(p, &p);
360 if (*p == '@')
361 start = memparse(p + 1, &p);
362
363 memblock_add(start, size);
364
365 return 0;
366 }
367 early_param("mem", early_parse_mem);
368
early_parse_memmap(char * p)369 static int __init early_parse_memmap(char *p)
370 {
371 char *oldp;
372 u64 start_at, mem_size;
373
374 if (!p)
375 return -EINVAL;
376
377 if (!strncmp(p, "exactmap", 8)) {
378 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
379 return 0;
380 }
381
382 oldp = p;
383 mem_size = memparse(p, &p);
384 if (p == oldp)
385 return -EINVAL;
386
387 if (*p == '@') {
388 start_at = memparse(p+1, &p);
389 memblock_add(start_at, mem_size);
390 } else if (*p == '#') {
391 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
392 return -EINVAL;
393 } else if (*p == '$') {
394 start_at = memparse(p+1, &p);
395 memblock_add(start_at, mem_size);
396 memblock_reserve(start_at, mem_size);
397 } else {
398 pr_err("\"memmap\" invalid format!\n");
399 return -EINVAL;
400 }
401
402 if (*p == '\0') {
403 usermem = 1;
404 return 0;
405 } else
406 return -EINVAL;
407 }
408 early_param("memmap", early_parse_memmap);
409
410 #ifdef CONFIG_PROC_VMCORE
411 static unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)412 static int __init early_parse_elfcorehdr(char *p)
413 {
414 phys_addr_t start, end;
415 u64 i;
416
417 setup_elfcorehdr = memparse(p, &p);
418
419 for_each_mem_range(i, &start, &end) {
420 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
421 /*
422 * Reserve from the elf core header to the end of
423 * the memory segment, that should all be kdump
424 * reserved memory.
425 */
426 setup_elfcorehdr_size = end - setup_elfcorehdr;
427 break;
428 }
429 }
430 /*
431 * If we don't find it in the memory map, then we shouldn't
432 * have to worry about it, as the new kernel won't use it.
433 */
434 return 0;
435 }
436 early_param("elfcorehdr", early_parse_elfcorehdr);
437 #endif
438
439 #ifdef CONFIG_KEXEC
440
441 /* 64M alignment for crash kernel regions */
442 #define CRASH_ALIGN SZ_64M
443 #define CRASH_ADDR_MAX SZ_512M
444
mips_parse_crashkernel(void)445 static void __init mips_parse_crashkernel(void)
446 {
447 unsigned long long total_mem;
448 unsigned long long crash_size, crash_base;
449 int ret;
450
451 total_mem = memblock_phys_mem_size();
452 ret = parse_crashkernel(boot_command_line, total_mem,
453 &crash_size, &crash_base);
454 if (ret != 0 || crash_size <= 0)
455 return;
456
457 if (crash_base <= 0) {
458 crash_base = memblock_find_in_range(CRASH_ALIGN, CRASH_ADDR_MAX,
459 crash_size, CRASH_ALIGN);
460 if (!crash_base) {
461 pr_warn("crashkernel reservation failed - No suitable area found.\n");
462 return;
463 }
464 } else {
465 unsigned long long start;
466
467 start = memblock_find_in_range(crash_base, crash_base + crash_size,
468 crash_size, 1);
469 if (start != crash_base) {
470 pr_warn("Invalid memory region reserved for crash kernel\n");
471 return;
472 }
473 }
474
475 crashk_res.start = crash_base;
476 crashk_res.end = crash_base + crash_size - 1;
477 }
478
request_crashkernel(struct resource * res)479 static void __init request_crashkernel(struct resource *res)
480 {
481 int ret;
482
483 if (crashk_res.start == crashk_res.end)
484 return;
485
486 ret = request_resource(res, &crashk_res);
487 if (!ret)
488 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
489 (unsigned long)(resource_size(&crashk_res) >> 20),
490 (unsigned long)(crashk_res.start >> 20));
491 }
492 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)493 static void __init mips_parse_crashkernel(void)
494 {
495 }
496
request_crashkernel(struct resource * res)497 static void __init request_crashkernel(struct resource *res)
498 {
499 }
500 #endif /* !defined(CONFIG_KEXEC) */
501
check_kernel_sections_mem(void)502 static void __init check_kernel_sections_mem(void)
503 {
504 phys_addr_t start = __pa_symbol(&_text);
505 phys_addr_t size = __pa_symbol(&_end) - start;
506
507 if (!memblock_is_region_memory(start, size)) {
508 pr_info("Kernel sections are not in the memory maps\n");
509 memblock_add(start, size);
510 }
511 }
512
bootcmdline_append(const char * s,size_t max)513 static void __init bootcmdline_append(const char *s, size_t max)
514 {
515 if (!s[0] || !max)
516 return;
517
518 if (boot_command_line[0])
519 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
520
521 strlcat(boot_command_line, s, max);
522 }
523
524 #ifdef CONFIG_OF_EARLY_FLATTREE
525
bootcmdline_scan_chosen(unsigned long node,const char * uname,int depth,void * data)526 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
527 int depth, void *data)
528 {
529 bool *dt_bootargs = data;
530 const char *p;
531 int l;
532
533 if (depth != 1 || !data ||
534 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
535 return 0;
536
537 p = of_get_flat_dt_prop(node, "bootargs", &l);
538 if (p != NULL && l > 0) {
539 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
540 *dt_bootargs = true;
541 }
542
543 return 1;
544 }
545
546 #endif /* CONFIG_OF_EARLY_FLATTREE */
547
bootcmdline_init(void)548 static void __init bootcmdline_init(void)
549 {
550 bool dt_bootargs = false;
551
552 /*
553 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
554 * trivial - we simply use the built-in command line unconditionally &
555 * unmodified.
556 */
557 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
558 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
559 return;
560 }
561
562 /*
563 * If the user specified a built-in command line &
564 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
565 * prepended to arguments from the bootloader or DT so we'll copy them
566 * to the start of boot_command_line here. Otherwise, empty
567 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
568 */
569 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
570 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
571 else
572 boot_command_line[0] = 0;
573
574 #ifdef CONFIG_OF_EARLY_FLATTREE
575 /*
576 * If we're configured to take boot arguments from DT, look for those
577 * now.
578 */
579 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
580 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
581 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
582 #endif
583
584 /*
585 * If we didn't get any arguments from DT (regardless of whether that's
586 * because we weren't configured to look for them, or because we looked
587 * & found none) then we'll take arguments from the bootloader.
588 * plat_mem_setup() should have filled arcs_cmdline with arguments from
589 * the bootloader.
590 */
591 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
592 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
593
594 /*
595 * If the user specified a built-in command line & we didn't already
596 * prepend it, we append it to boot_command_line here.
597 */
598 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
599 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
600 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
601 }
602
603 /*
604 * arch_mem_init - initialize memory management subsystem
605 *
606 * o plat_mem_setup() detects the memory configuration and will record detected
607 * memory areas using memblock_add.
608 *
609 * At this stage the memory configuration of the system is known to the
610 * kernel but generic memory management system is still entirely uninitialized.
611 *
612 * o bootmem_init()
613 * o sparse_init()
614 * o paging_init()
615 * o dma_contiguous_reserve()
616 *
617 * At this stage the bootmem allocator is ready to use.
618 *
619 * NOTE: historically plat_mem_setup did the entire platform initialization.
620 * This was rather impractical because it meant plat_mem_setup had to
621 * get away without any kind of memory allocator. To keep old code from
622 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
623 * initialization hook for anything else was introduced.
624 */
arch_mem_init(char ** cmdline_p)625 static void __init arch_mem_init(char **cmdline_p)
626 {
627 /* call board setup routine */
628 plat_mem_setup();
629 memblock_set_bottom_up(true);
630
631 bootcmdline_init();
632 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
633 *cmdline_p = command_line;
634
635 parse_early_param();
636
637 if (usermem)
638 pr_info("User-defined physical RAM map overwrite\n");
639
640 check_kernel_sections_mem();
641
642 early_init_fdt_reserve_self();
643 early_init_fdt_scan_reserved_mem();
644
645 #ifndef CONFIG_NUMA
646 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
647 #endif
648 bootmem_init();
649
650 /*
651 * Prevent memblock from allocating high memory.
652 * This cannot be done before max_low_pfn is detected, so up
653 * to this point is possible to only reserve physical memory
654 * with memblock_reserve; memblock_alloc* can be used
655 * only after this point
656 */
657 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
658
659 #ifdef CONFIG_PROC_VMCORE
660 if (setup_elfcorehdr && setup_elfcorehdr_size) {
661 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
662 setup_elfcorehdr, setup_elfcorehdr_size);
663 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size);
664 }
665 #endif
666
667 mips_parse_crashkernel();
668 #ifdef CONFIG_KEXEC
669 if (crashk_res.start != crashk_res.end)
670 memblock_reserve(crashk_res.start, resource_size(&crashk_res));
671 #endif
672 device_tree_init();
673
674 /*
675 * In order to reduce the possibility of kernel panic when failed to
676 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
677 * low memory as small as possible before plat_swiotlb_setup(), so
678 * make sparse_init() using top-down allocation.
679 */
680 memblock_set_bottom_up(false);
681 sparse_init();
682 memblock_set_bottom_up(true);
683
684 plat_swiotlb_setup();
685
686 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
687
688 /* Reserve for hibernation. */
689 memblock_reserve(__pa_symbol(&__nosave_begin),
690 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
691
692 fdt_init_reserved_mem();
693
694 memblock_dump_all();
695
696 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
697 }
698
resource_init(void)699 static void __init resource_init(void)
700 {
701 phys_addr_t start, end;
702 u64 i;
703
704 if (UNCAC_BASE != IO_BASE)
705 return;
706
707 code_resource.start = __pa_symbol(&_text);
708 code_resource.end = __pa_symbol(&_etext) - 1;
709 data_resource.start = __pa_symbol(&_etext);
710 data_resource.end = __pa_symbol(&_edata) - 1;
711 bss_resource.start = __pa_symbol(&__bss_start);
712 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
713
714 for_each_mem_range(i, &start, &end) {
715 struct resource *res;
716
717 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
718 if (!res)
719 panic("%s: Failed to allocate %zu bytes\n", __func__,
720 sizeof(struct resource));
721
722 res->start = start;
723 /*
724 * In memblock, end points to the first byte after the
725 * range while in resourses, end points to the last byte in
726 * the range.
727 */
728 res->end = end - 1;
729 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
730 res->name = "System RAM";
731
732 request_resource(&iomem_resource, res);
733
734 /*
735 * We don't know which RAM region contains kernel data,
736 * so we try it repeatedly and let the resource manager
737 * test it.
738 */
739 request_resource(res, &code_resource);
740 request_resource(res, &data_resource);
741 request_resource(res, &bss_resource);
742 request_crashkernel(res);
743 }
744 }
745
746 #ifdef CONFIG_SMP
prefill_possible_map(void)747 static void __init prefill_possible_map(void)
748 {
749 int i, possible = num_possible_cpus();
750
751 if (possible > nr_cpu_ids)
752 possible = nr_cpu_ids;
753
754 for (i = 0; i < possible; i++)
755 set_cpu_possible(i, true);
756 for (; i < NR_CPUS; i++)
757 set_cpu_possible(i, false);
758
759 nr_cpu_ids = possible;
760 }
761 #else
prefill_possible_map(void)762 static inline void prefill_possible_map(void) {}
763 #endif
764
setup_arch(char ** cmdline_p)765 void __init setup_arch(char **cmdline_p)
766 {
767 cpu_probe();
768 mips_cm_probe();
769 prom_init();
770
771 setup_early_fdc_console();
772 #ifdef CONFIG_EARLY_PRINTK
773 setup_early_printk();
774 #endif
775 cpu_report();
776 check_bugs_early();
777
778 #if defined(CONFIG_VT)
779 #if defined(CONFIG_VGA_CONSOLE)
780 conswitchp = &vga_con;
781 #endif
782 #endif
783
784 arch_mem_init(cmdline_p);
785 dmi_setup();
786
787 resource_init();
788 plat_smp_setup();
789 prefill_possible_map();
790
791 cpu_cache_init();
792 paging_init();
793 }
794
795 unsigned long kernelsp[NR_CPUS];
796 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
797
798 #ifdef CONFIG_USE_OF
799 unsigned long fw_passed_dtb;
800 #endif
801
802 #ifdef CONFIG_DEBUG_FS
803 struct dentry *mips_debugfs_dir;
debugfs_mips(void)804 static int __init debugfs_mips(void)
805 {
806 mips_debugfs_dir = debugfs_create_dir("mips", NULL);
807 return 0;
808 }
809 arch_initcall(debugfs_mips);
810 #endif
811
812 #ifdef CONFIG_DMA_MAYBE_COHERENT
813 /* User defined DMA coherency from command line. */
814 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
815 EXPORT_SYMBOL_GPL(coherentio);
816 int hw_coherentio; /* Actual hardware supported DMA coherency setting. */
817
setcoherentio(char * str)818 static int __init setcoherentio(char *str)
819 {
820 coherentio = IO_COHERENCE_ENABLED;
821 pr_info("Hardware DMA cache coherency (command line)\n");
822 return 0;
823 }
824 early_param("coherentio", setcoherentio);
825
setnocoherentio(char * str)826 static int __init setnocoherentio(char *str)
827 {
828 coherentio = IO_COHERENCE_DISABLED;
829 pr_info("Software DMA cache coherency (command line)\n");
830 return 0;
831 }
832 early_param("nocoherentio", setnocoherentio);
833 #endif
834
arch_cpu_finalize_init(void)835 void __init arch_cpu_finalize_init(void)
836 {
837 unsigned int cpu = smp_processor_id();
838
839 cpu_data[cpu].udelay_val = loops_per_jiffy;
840 check_bugs32();
841
842 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
843 check_bugs64();
844 }
845