1 /*****************************************************************************
2 * *
3 * File: subr.c *
4 * $Revision: 1.27 $ *
5 * $Date: 2005/06/22 01:08:36 $ *
6 * Description: *
7 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40 #include "elmer0.h"
41 #include "regs.h"
42 #include "gmac.h"
43 #include "cphy.h"
44 #include "sge.h"
45 #include "tp.h"
46 #include "espi.h"
47
48 /**
49 * t1_wait_op_done - wait until an operation is completed
50 * @adapter: the adapter performing the operation
51 * @reg: the register to check for completion
52 * @mask: a single-bit field within @reg that indicates completion
53 * @polarity: the value of the field when the operation is completed
54 * @attempts: number of check iterations
55 * @delay: delay in usecs between iterations
56 *
57 * Wait until an operation is completed by checking a bit in a register
58 * up to @attempts times. Returns %0 if the operation completes and %1
59 * otherwise.
60 */
t1_wait_op_done(adapter_t * adapter,int reg,u32 mask,int polarity,int attempts,int delay)61 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
62 int attempts, int delay)
63 {
64 while (1) {
65 u32 val = readl(adapter->regs + reg) & mask;
66
67 if (!!val == polarity)
68 return 0;
69 if (--attempts == 0)
70 return 1;
71 if (delay)
72 udelay(delay);
73 }
74 }
75
76 #define TPI_ATTEMPTS 50
77
78 /*
79 * Write a register over the TPI interface (unlocked and locked versions).
80 */
__t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)81 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
82 {
83 int tpi_busy;
84
85 writel(addr, adapter->regs + A_TPI_ADDR);
86 writel(value, adapter->regs + A_TPI_WR_DATA);
87 writel(F_TPIWR, adapter->regs + A_TPI_CSR);
88
89 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
90 TPI_ATTEMPTS, 3);
91 if (tpi_busy)
92 pr_alert("%s: TPI write to 0x%x failed\n",
93 adapter->name, addr);
94 return tpi_busy;
95 }
96
t1_tpi_write(adapter_t * adapter,u32 addr,u32 value)97 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
98 {
99 int ret;
100
101 spin_lock(&adapter->tpi_lock);
102 ret = __t1_tpi_write(adapter, addr, value);
103 spin_unlock(&adapter->tpi_lock);
104 return ret;
105 }
106
107 /*
108 * Read a register over the TPI interface (unlocked and locked versions).
109 */
__t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)110 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
111 {
112 int tpi_busy;
113
114 writel(addr, adapter->regs + A_TPI_ADDR);
115 writel(0, adapter->regs + A_TPI_CSR);
116
117 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
118 TPI_ATTEMPTS, 3);
119 if (tpi_busy)
120 pr_alert("%s: TPI read from 0x%x failed\n",
121 adapter->name, addr);
122 else
123 *valp = readl(adapter->regs + A_TPI_RD_DATA);
124 return tpi_busy;
125 }
126
t1_tpi_read(adapter_t * adapter,u32 addr,u32 * valp)127 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
128 {
129 int ret;
130
131 spin_lock(&adapter->tpi_lock);
132 ret = __t1_tpi_read(adapter, addr, valp);
133 spin_unlock(&adapter->tpi_lock);
134 return ret;
135 }
136
137 /*
138 * Set a TPI parameter.
139 */
t1_tpi_par(adapter_t * adapter,u32 value)140 static void t1_tpi_par(adapter_t *adapter, u32 value)
141 {
142 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
143 }
144
145 /*
146 * Called when a port's link settings change to propagate the new values to the
147 * associated PHY and MAC. After performing the common tasks it invokes an
148 * OS-specific handler.
149 */
t1_link_changed(adapter_t * adapter,int port_id)150 void t1_link_changed(adapter_t *adapter, int port_id)
151 {
152 int link_ok, speed, duplex, fc;
153 struct cphy *phy = adapter->port[port_id].phy;
154 struct link_config *lc = &adapter->port[port_id].link_config;
155
156 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
157
158 lc->speed = speed < 0 ? SPEED_INVALID : speed;
159 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
160 if (!(lc->requested_fc & PAUSE_AUTONEG))
161 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
162
163 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
164 /* Set MAC speed, duplex, and flow control to match PHY. */
165 struct cmac *mac = adapter->port[port_id].mac;
166
167 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
168 lc->fc = (unsigned char)fc;
169 }
170 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
171 }
172
t1_pci_intr_handler(adapter_t * adapter)173 static int t1_pci_intr_handler(adapter_t *adapter)
174 {
175 u32 pcix_cause;
176
177 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
178
179 if (pcix_cause) {
180 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
181 pcix_cause);
182 t1_fatal_err(adapter); /* PCI errors are fatal */
183 }
184 return 0;
185 }
186
187 #ifdef CONFIG_CHELSIO_T1_1G
188 #include "fpga_defs.h"
189
190 /*
191 * PHY interrupt handler for FPGA boards.
192 */
fpga_phy_intr_handler(adapter_t * adapter)193 static int fpga_phy_intr_handler(adapter_t *adapter)
194 {
195 int p;
196 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
197
198 for_each_port(adapter, p)
199 if (cause & (1 << p)) {
200 struct cphy *phy = adapter->port[p].phy;
201 int phy_cause = phy->ops->interrupt_handler(phy);
202
203 if (phy_cause & cphy_cause_link_change)
204 t1_link_changed(adapter, p);
205 }
206 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
207 return 0;
208 }
209
210 /*
211 * Slow path interrupt handler for FPGAs.
212 */
fpga_slow_intr(adapter_t * adapter)213 static int fpga_slow_intr(adapter_t *adapter)
214 {
215 u32 cause = readl(adapter->regs + A_PL_CAUSE);
216
217 cause &= ~F_PL_INTR_SGE_DATA;
218 if (cause & F_PL_INTR_SGE_ERR)
219 t1_sge_intr_error_handler(adapter->sge);
220
221 if (cause & FPGA_PCIX_INTERRUPT_GMAC)
222 fpga_phy_intr_handler(adapter);
223
224 if (cause & FPGA_PCIX_INTERRUPT_TP) {
225 /*
226 * FPGA doesn't support MC4 interrupts and it requires
227 * this odd layer of indirection for MC5.
228 */
229 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
230
231 /* Clear TP interrupt */
232 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
233 }
234 if (cause & FPGA_PCIX_INTERRUPT_PCIX)
235 t1_pci_intr_handler(adapter);
236
237 /* Clear the interrupts just processed. */
238 if (cause)
239 writel(cause, adapter->regs + A_PL_CAUSE);
240
241 return cause != 0;
242 }
243 #endif
244
245 /*
246 * Wait until Elmer's MI1 interface is ready for new operations.
247 */
mi1_wait_until_ready(adapter_t * adapter,int mi1_reg)248 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
249 {
250 int attempts = 100, busy;
251
252 do {
253 u32 val;
254
255 __t1_tpi_read(adapter, mi1_reg, &val);
256 busy = val & F_MI1_OP_BUSY;
257 if (busy)
258 udelay(10);
259 } while (busy && --attempts);
260 if (busy)
261 pr_alert("%s: MDIO operation timed out\n", adapter->name);
262 return busy;
263 }
264
265 /*
266 * MI1 MDIO initialization.
267 */
mi1_mdio_init(adapter_t * adapter,const struct board_info * bi)268 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
269 {
270 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
271 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
272 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
273
274 if (!(bi->caps & SUPPORTED_10000baseT_Full))
275 val |= V_MI1_SOF(1);
276 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
277 }
278
279 #if defined(CONFIG_CHELSIO_T1_1G)
280 /*
281 * Elmer MI1 MDIO read/write operations.
282 */
mi1_mdio_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)283 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
284 u16 reg_addr)
285 {
286 struct adapter *adapter = dev->ml_priv;
287 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
288 unsigned int val;
289
290 spin_lock(&adapter->tpi_lock);
291 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
292 __t1_tpi_write(adapter,
293 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
294 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
295 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
296 spin_unlock(&adapter->tpi_lock);
297 return val;
298 }
299
mi1_mdio_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)300 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
301 u16 reg_addr, u16 val)
302 {
303 struct adapter *adapter = dev->ml_priv;
304 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
305
306 spin_lock(&adapter->tpi_lock);
307 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
308 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
309 __t1_tpi_write(adapter,
310 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
311 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
312 spin_unlock(&adapter->tpi_lock);
313 return 0;
314 }
315
316 static const struct mdio_ops mi1_mdio_ops = {
317 .init = mi1_mdio_init,
318 .read = mi1_mdio_read,
319 .write = mi1_mdio_write,
320 .mode_support = MDIO_SUPPORTS_C22
321 };
322
323 #endif
324
mi1_mdio_ext_read(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr)325 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
326 u16 reg_addr)
327 {
328 struct adapter *adapter = dev->ml_priv;
329 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
330 unsigned int val;
331
332 spin_lock(&adapter->tpi_lock);
333
334 /* Write the address we want. */
335 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
336 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
337 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
338 MI1_OP_INDIRECT_ADDRESS);
339 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
340
341 /* Write the operation we want. */
342 __t1_tpi_write(adapter,
343 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
344 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
345
346 /* Read the data. */
347 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
348 spin_unlock(&adapter->tpi_lock);
349 return val;
350 }
351
mi1_mdio_ext_write(struct net_device * dev,int phy_addr,int mmd_addr,u16 reg_addr,u16 val)352 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
353 int mmd_addr, u16 reg_addr, u16 val)
354 {
355 struct adapter *adapter = dev->ml_priv;
356 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
357
358 spin_lock(&adapter->tpi_lock);
359
360 /* Write the address we want. */
361 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
362 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
363 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
364 MI1_OP_INDIRECT_ADDRESS);
365 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
366
367 /* Write the data. */
368 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
369 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
370 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
371 spin_unlock(&adapter->tpi_lock);
372 return 0;
373 }
374
375 static const struct mdio_ops mi1_mdio_ext_ops = {
376 .init = mi1_mdio_init,
377 .read = mi1_mdio_ext_read,
378 .write = mi1_mdio_ext_write,
379 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
380 };
381
382 enum {
383 CH_BRD_T110_1CU,
384 CH_BRD_N110_1F,
385 CH_BRD_N210_1F,
386 CH_BRD_T210_1F,
387 CH_BRD_T210_1CU,
388 CH_BRD_N204_4CU,
389 };
390
391 static const struct board_info t1_board[] = {
392 {
393 .board = CHBT_BOARD_CHT110,
394 .port_number = 1,
395 .caps = SUPPORTED_10000baseT_Full,
396 .chip_term = CHBT_TERM_T1,
397 .chip_mac = CHBT_MAC_PM3393,
398 .chip_phy = CHBT_PHY_MY3126,
399 .clock_core = 125000000,
400 .clock_mc3 = 150000000,
401 .clock_mc4 = 125000000,
402 .espi_nports = 1,
403 .clock_elmer0 = 44,
404 .mdio_mdien = 1,
405 .mdio_mdiinv = 1,
406 .mdio_mdc = 1,
407 .mdio_phybaseaddr = 1,
408 .gmac = &t1_pm3393_ops,
409 .gphy = &t1_my3126_ops,
410 .mdio_ops = &mi1_mdio_ext_ops,
411 .desc = "Chelsio T110 1x10GBase-CX4 TOE",
412 },
413
414 {
415 .board = CHBT_BOARD_N110,
416 .port_number = 1,
417 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
418 .chip_term = CHBT_TERM_T1,
419 .chip_mac = CHBT_MAC_PM3393,
420 .chip_phy = CHBT_PHY_88X2010,
421 .clock_core = 125000000,
422 .espi_nports = 1,
423 .clock_elmer0 = 44,
424 .mdio_mdien = 0,
425 .mdio_mdiinv = 0,
426 .mdio_mdc = 1,
427 .mdio_phybaseaddr = 0,
428 .gmac = &t1_pm3393_ops,
429 .gphy = &t1_mv88x201x_ops,
430 .mdio_ops = &mi1_mdio_ext_ops,
431 .desc = "Chelsio N110 1x10GBaseX NIC",
432 },
433
434 {
435 .board = CHBT_BOARD_N210,
436 .port_number = 1,
437 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
438 .chip_term = CHBT_TERM_T2,
439 .chip_mac = CHBT_MAC_PM3393,
440 .chip_phy = CHBT_PHY_88X2010,
441 .clock_core = 125000000,
442 .espi_nports = 1,
443 .clock_elmer0 = 44,
444 .mdio_mdien = 0,
445 .mdio_mdiinv = 0,
446 .mdio_mdc = 1,
447 .mdio_phybaseaddr = 0,
448 .gmac = &t1_pm3393_ops,
449 .gphy = &t1_mv88x201x_ops,
450 .mdio_ops = &mi1_mdio_ext_ops,
451 .desc = "Chelsio N210 1x10GBaseX NIC",
452 },
453
454 {
455 .board = CHBT_BOARD_CHT210,
456 .port_number = 1,
457 .caps = SUPPORTED_10000baseT_Full,
458 .chip_term = CHBT_TERM_T2,
459 .chip_mac = CHBT_MAC_PM3393,
460 .chip_phy = CHBT_PHY_88X2010,
461 .clock_core = 125000000,
462 .clock_mc3 = 133000000,
463 .clock_mc4 = 125000000,
464 .espi_nports = 1,
465 .clock_elmer0 = 44,
466 .mdio_mdien = 0,
467 .mdio_mdiinv = 0,
468 .mdio_mdc = 1,
469 .mdio_phybaseaddr = 0,
470 .gmac = &t1_pm3393_ops,
471 .gphy = &t1_mv88x201x_ops,
472 .mdio_ops = &mi1_mdio_ext_ops,
473 .desc = "Chelsio T210 1x10GBaseX TOE",
474 },
475
476 {
477 .board = CHBT_BOARD_CHT210,
478 .port_number = 1,
479 .caps = SUPPORTED_10000baseT_Full,
480 .chip_term = CHBT_TERM_T2,
481 .chip_mac = CHBT_MAC_PM3393,
482 .chip_phy = CHBT_PHY_MY3126,
483 .clock_core = 125000000,
484 .clock_mc3 = 133000000,
485 .clock_mc4 = 125000000,
486 .espi_nports = 1,
487 .clock_elmer0 = 44,
488 .mdio_mdien = 1,
489 .mdio_mdiinv = 1,
490 .mdio_mdc = 1,
491 .mdio_phybaseaddr = 1,
492 .gmac = &t1_pm3393_ops,
493 .gphy = &t1_my3126_ops,
494 .mdio_ops = &mi1_mdio_ext_ops,
495 .desc = "Chelsio T210 1x10GBase-CX4 TOE",
496 },
497
498 #ifdef CONFIG_CHELSIO_T1_1G
499 {
500 .board = CHBT_BOARD_CHN204,
501 .port_number = 4,
502 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
503 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
504 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
505 SUPPORTED_PAUSE | SUPPORTED_TP,
506 .chip_term = CHBT_TERM_T2,
507 .chip_mac = CHBT_MAC_VSC7321,
508 .chip_phy = CHBT_PHY_88E1111,
509 .clock_core = 100000000,
510 .espi_nports = 4,
511 .clock_elmer0 = 44,
512 .mdio_mdien = 0,
513 .mdio_mdiinv = 0,
514 .mdio_mdc = 0,
515 .mdio_phybaseaddr = 4,
516 .gmac = &t1_vsc7326_ops,
517 .gphy = &t1_mv88e1xxx_ops,
518 .mdio_ops = &mi1_mdio_ops,
519 .desc = "Chelsio N204 4x100/1000BaseT NIC",
520 },
521 #endif
522
523 };
524
525 const struct pci_device_id t1_pci_tbl[] = {
526 CH_DEVICE(8, 0, CH_BRD_T110_1CU),
527 CH_DEVICE(8, 1, CH_BRD_T110_1CU),
528 CH_DEVICE(7, 0, CH_BRD_N110_1F),
529 CH_DEVICE(10, 1, CH_BRD_N210_1F),
530 CH_DEVICE(11, 1, CH_BRD_T210_1F),
531 CH_DEVICE(14, 1, CH_BRD_T210_1CU),
532 CH_DEVICE(16, 1, CH_BRD_N204_4CU),
533 { 0 }
534 };
535
536 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
537
538 /*
539 * Return the board_info structure with a given index. Out-of-range indices
540 * return NULL.
541 */
t1_get_board_info(unsigned int board_id)542 const struct board_info *t1_get_board_info(unsigned int board_id)
543 {
544 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
545 }
546
547 struct chelsio_vpd_t {
548 u32 format_version;
549 u8 serial_number[16];
550 u8 mac_base_address[6];
551 u8 pad[2]; /* make multiple-of-4 size requirement explicit */
552 };
553
554 #define EEPROMSIZE (8 * 1024)
555 #define EEPROM_MAX_POLL 4
556
557 /*
558 * Read SEEPROM. A zero is written to the flag register when the address is
559 * written to the Control register. The hardware device will set the flag to a
560 * one when 4B have been transferred to the Data register.
561 */
t1_seeprom_read(adapter_t * adapter,u32 addr,__le32 * data)562 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
563 {
564 int i = EEPROM_MAX_POLL;
565 u16 val;
566 u32 v;
567
568 if (addr >= EEPROMSIZE || (addr & 3))
569 return -EINVAL;
570
571 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
572 do {
573 udelay(50);
574 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
575 } while (!(val & F_VPD_OP_FLAG) && --i);
576
577 if (!(val & F_VPD_OP_FLAG)) {
578 pr_err("%s: reading EEPROM address 0x%x failed\n",
579 adapter->name, addr);
580 return -EIO;
581 }
582 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
583 *data = cpu_to_le32(v);
584 return 0;
585 }
586
t1_eeprom_vpd_get(adapter_t * adapter,struct chelsio_vpd_t * vpd)587 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
588 {
589 int addr, ret = 0;
590
591 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
592 ret = t1_seeprom_read(adapter, addr,
593 (__le32 *)((u8 *)vpd + addr));
594
595 return ret;
596 }
597
598 /*
599 * Read a port's MAC address from the VPD ROM.
600 */
vpd_macaddress_get(adapter_t * adapter,int index,u8 mac_addr[])601 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
602 {
603 struct chelsio_vpd_t vpd;
604
605 if (t1_eeprom_vpd_get(adapter, &vpd))
606 return 1;
607 memcpy(mac_addr, vpd.mac_base_address, 5);
608 mac_addr[5] = vpd.mac_base_address[5] + index;
609 return 0;
610 }
611
612 /*
613 * Set up the MAC/PHY according to the requested link settings.
614 *
615 * If the PHY can auto-negotiate first decide what to advertise, then
616 * enable/disable auto-negotiation as desired and reset.
617 *
618 * If the PHY does not auto-negotiate we just reset it.
619 *
620 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
621 * otherwise do it later based on the outcome of auto-negotiation.
622 */
t1_link_start(struct cphy * phy,struct cmac * mac,struct link_config * lc)623 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
624 {
625 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
626
627 if (lc->supported & SUPPORTED_Autoneg) {
628 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
629 if (fc) {
630 if (fc == ((PAUSE_RX | PAUSE_TX) &
631 (mac->adapter->params.nports < 2)))
632 lc->advertising |= ADVERTISED_PAUSE;
633 else {
634 lc->advertising |= ADVERTISED_ASYM_PAUSE;
635 if (fc == PAUSE_RX)
636 lc->advertising |= ADVERTISED_PAUSE;
637 }
638 }
639 phy->ops->advertise(phy, lc->advertising);
640
641 if (lc->autoneg == AUTONEG_DISABLE) {
642 lc->speed = lc->requested_speed;
643 lc->duplex = lc->requested_duplex;
644 lc->fc = (unsigned char)fc;
645 mac->ops->set_speed_duplex_fc(mac, lc->speed,
646 lc->duplex, fc);
647 /* Also disables autoneg */
648 phy->state = PHY_AUTONEG_RDY;
649 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
650 phy->ops->reset(phy, 0);
651 } else {
652 phy->state = PHY_AUTONEG_EN;
653 phy->ops->autoneg_enable(phy); /* also resets PHY */
654 }
655 } else {
656 phy->state = PHY_AUTONEG_RDY;
657 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
658 lc->fc = (unsigned char)fc;
659 phy->ops->reset(phy, 0);
660 }
661 return 0;
662 }
663
664 /*
665 * External interrupt handler for boards using elmer0.
666 */
t1_elmer0_ext_intr_handler(adapter_t * adapter)667 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
668 {
669 struct cphy *phy;
670 int phy_cause;
671 u32 cause;
672
673 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
674
675 switch (board_info(adapter)->board) {
676 #ifdef CONFIG_CHELSIO_T1_1G
677 case CHBT_BOARD_CHT204:
678 case CHBT_BOARD_CHT204E:
679 case CHBT_BOARD_CHN204:
680 case CHBT_BOARD_CHT204V: {
681 int i, port_bit;
682 for_each_port(adapter, i) {
683 port_bit = i + 1;
684 if (!(cause & (1 << port_bit)))
685 continue;
686
687 phy = adapter->port[i].phy;
688 phy_cause = phy->ops->interrupt_handler(phy);
689 if (phy_cause & cphy_cause_link_change)
690 t1_link_changed(adapter, i);
691 }
692 break;
693 }
694 case CHBT_BOARD_CHT101:
695 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
696 phy = adapter->port[0].phy;
697 phy_cause = phy->ops->interrupt_handler(phy);
698 if (phy_cause & cphy_cause_link_change)
699 t1_link_changed(adapter, 0);
700 }
701 break;
702 case CHBT_BOARD_7500: {
703 int p;
704 /*
705 * Elmer0's interrupt cause isn't useful here because there is
706 * only one bit that can be set for all 4 ports. This means
707 * we are forced to check every PHY's interrupt status
708 * register to see who initiated the interrupt.
709 */
710 for_each_port(adapter, p) {
711 phy = adapter->port[p].phy;
712 phy_cause = phy->ops->interrupt_handler(phy);
713 if (phy_cause & cphy_cause_link_change)
714 t1_link_changed(adapter, p);
715 }
716 break;
717 }
718 #endif
719 case CHBT_BOARD_CHT210:
720 case CHBT_BOARD_N210:
721 case CHBT_BOARD_N110:
722 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
723 phy = adapter->port[0].phy;
724 phy_cause = phy->ops->interrupt_handler(phy);
725 if (phy_cause & cphy_cause_link_change)
726 t1_link_changed(adapter, 0);
727 }
728 break;
729 case CHBT_BOARD_8000:
730 case CHBT_BOARD_CHT110:
731 if (netif_msg_intr(adapter))
732 dev_dbg(&adapter->pdev->dev,
733 "External interrupt cause 0x%x\n", cause);
734 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */
735 struct cmac *mac = adapter->port[0].mac;
736
737 mac->ops->interrupt_handler(mac);
738 }
739 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
740 u32 mod_detect;
741
742 t1_tpi_read(adapter,
743 A_ELMER0_GPI_STAT, &mod_detect);
744 if (netif_msg_link(adapter))
745 dev_info(&adapter->pdev->dev, "XPAK %s\n",
746 mod_detect ? "removed" : "inserted");
747 }
748 break;
749 }
750 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
751 return 0;
752 }
753
754 /* Enables all interrupts. */
t1_interrupts_enable(adapter_t * adapter)755 void t1_interrupts_enable(adapter_t *adapter)
756 {
757 unsigned int i;
758
759 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
760
761 t1_sge_intr_enable(adapter->sge);
762 t1_tp_intr_enable(adapter->tp);
763 if (adapter->espi) {
764 adapter->slow_intr_mask |= F_PL_INTR_ESPI;
765 t1_espi_intr_enable(adapter->espi);
766 }
767
768 /* Enable MAC/PHY interrupts for each port. */
769 for_each_port(adapter, i) {
770 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
771 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
772 }
773
774 /* Enable PCIX & external chip interrupts on ASIC boards. */
775 if (t1_is_asic(adapter)) {
776 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
777
778 /* PCI-X interrupts */
779 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
780 0xffffffff);
781
782 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
783 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
784 writel(pl_intr, adapter->regs + A_PL_ENABLE);
785 }
786 }
787
788 /* Disables all interrupts. */
t1_interrupts_disable(adapter_t * adapter)789 void t1_interrupts_disable(adapter_t* adapter)
790 {
791 unsigned int i;
792
793 t1_sge_intr_disable(adapter->sge);
794 t1_tp_intr_disable(adapter->tp);
795 if (adapter->espi)
796 t1_espi_intr_disable(adapter->espi);
797
798 /* Disable MAC/PHY interrupts for each port. */
799 for_each_port(adapter, i) {
800 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
801 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
802 }
803
804 /* Disable PCIX & external chip interrupts. */
805 if (t1_is_asic(adapter))
806 writel(0, adapter->regs + A_PL_ENABLE);
807
808 /* PCI-X interrupts */
809 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
810
811 adapter->slow_intr_mask = 0;
812 }
813
814 /* Clears all interrupts */
t1_interrupts_clear(adapter_t * adapter)815 void t1_interrupts_clear(adapter_t* adapter)
816 {
817 unsigned int i;
818
819 t1_sge_intr_clear(adapter->sge);
820 t1_tp_intr_clear(adapter->tp);
821 if (adapter->espi)
822 t1_espi_intr_clear(adapter->espi);
823
824 /* Clear MAC/PHY interrupts for each port. */
825 for_each_port(adapter, i) {
826 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
827 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
828 }
829
830 /* Enable interrupts for external devices. */
831 if (t1_is_asic(adapter)) {
832 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
833
834 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
835 adapter->regs + A_PL_CAUSE);
836 }
837
838 /* PCI-X interrupts */
839 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
840 }
841
842 /*
843 * Slow path interrupt handler for ASICs.
844 */
asic_slow_intr(adapter_t * adapter)845 static int asic_slow_intr(adapter_t *adapter)
846 {
847 u32 cause = readl(adapter->regs + A_PL_CAUSE);
848
849 cause &= adapter->slow_intr_mask;
850 if (!cause)
851 return 0;
852 if (cause & F_PL_INTR_SGE_ERR)
853 t1_sge_intr_error_handler(adapter->sge);
854 if (cause & F_PL_INTR_TP)
855 t1_tp_intr_handler(adapter->tp);
856 if (cause & F_PL_INTR_ESPI)
857 t1_espi_intr_handler(adapter->espi);
858 if (cause & F_PL_INTR_PCIX)
859 t1_pci_intr_handler(adapter);
860 if (cause & F_PL_INTR_EXT)
861 t1_elmer0_ext_intr(adapter);
862
863 /* Clear the interrupts just processed. */
864 writel(cause, adapter->regs + A_PL_CAUSE);
865 readl(adapter->regs + A_PL_CAUSE); /* flush writes */
866 return 1;
867 }
868
t1_slow_intr_handler(adapter_t * adapter)869 int t1_slow_intr_handler(adapter_t *adapter)
870 {
871 #ifdef CONFIG_CHELSIO_T1_1G
872 if (!t1_is_asic(adapter))
873 return fpga_slow_intr(adapter);
874 #endif
875 return asic_slow_intr(adapter);
876 }
877
878 /* Power sequencing is a work-around for Intel's XPAKs. */
power_sequence_xpak(adapter_t * adapter)879 static void power_sequence_xpak(adapter_t* adapter)
880 {
881 u32 mod_detect;
882 u32 gpo;
883
884 /* Check for XPAK */
885 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
886 if (!(ELMER0_GP_BIT5 & mod_detect)) {
887 /* XPAK is present */
888 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
889 gpo |= ELMER0_GP_BIT18;
890 t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
891 }
892 }
893
t1_get_board_rev(adapter_t * adapter,const struct board_info * bi,struct adapter_params * p)894 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
895 struct adapter_params *p)
896 {
897 p->chip_version = bi->chip_term;
898 p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
899 if (p->chip_version == CHBT_TERM_T1 ||
900 p->chip_version == CHBT_TERM_T2 ||
901 p->chip_version == CHBT_TERM_FPGA) {
902 u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
903
904 val = G_TP_PC_REV(val);
905 if (val == 2)
906 p->chip_revision = TERM_T1B;
907 else if (val == 3)
908 p->chip_revision = TERM_T2;
909 else
910 return -1;
911 } else
912 return -1;
913 return 0;
914 }
915
916 /*
917 * Enable board components other than the Chelsio chip, such as external MAC
918 * and PHY.
919 */
board_init(adapter_t * adapter,const struct board_info * bi)920 static int board_init(adapter_t *adapter, const struct board_info *bi)
921 {
922 switch (bi->board) {
923 case CHBT_BOARD_8000:
924 case CHBT_BOARD_N110:
925 case CHBT_BOARD_N210:
926 case CHBT_BOARD_CHT210:
927 t1_tpi_par(adapter, 0xf);
928 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
929 break;
930 case CHBT_BOARD_CHT110:
931 t1_tpi_par(adapter, 0xf);
932 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
933
934 /* TBD XXX Might not need. This fixes a problem
935 * described in the Intel SR XPAK errata.
936 */
937 power_sequence_xpak(adapter);
938 break;
939 #ifdef CONFIG_CHELSIO_T1_1G
940 case CHBT_BOARD_CHT204E:
941 /* add config space write here */
942 case CHBT_BOARD_CHT204:
943 case CHBT_BOARD_CHT204V:
944 case CHBT_BOARD_CHN204:
945 t1_tpi_par(adapter, 0xf);
946 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
947 break;
948 case CHBT_BOARD_CHT101:
949 case CHBT_BOARD_7500:
950 t1_tpi_par(adapter, 0xf);
951 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
952 break;
953 #endif
954 }
955 return 0;
956 }
957
958 /*
959 * Initialize and configure the Terminator HW modules. Note that external
960 * MAC and PHYs are initialized separately.
961 */
t1_init_hw_modules(adapter_t * adapter)962 int t1_init_hw_modules(adapter_t *adapter)
963 {
964 int err = -EIO;
965 const struct board_info *bi = board_info(adapter);
966
967 if (!bi->clock_mc4) {
968 u32 val = readl(adapter->regs + A_MC4_CFG);
969
970 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
971 writel(F_M_BUS_ENABLE | F_TCAM_RESET,
972 adapter->regs + A_MC5_CONFIG);
973 }
974
975 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
976 bi->espi_nports))
977 goto out_err;
978
979 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
980 goto out_err;
981
982 err = t1_sge_configure(adapter->sge, &adapter->params.sge);
983 if (err)
984 goto out_err;
985
986 err = 0;
987 out_err:
988 return err;
989 }
990
991 /*
992 * Determine a card's PCI mode.
993 */
get_pci_mode(adapter_t * adapter,struct chelsio_pci_params * p)994 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
995 {
996 static const unsigned short speed_map[] = { 33, 66, 100, 133 };
997 u32 pci_mode;
998
999 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1000 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1001 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1002 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1003 }
1004
1005 /*
1006 * Release the structures holding the SW per-Terminator-HW-module state.
1007 */
t1_free_sw_modules(adapter_t * adapter)1008 void t1_free_sw_modules(adapter_t *adapter)
1009 {
1010 unsigned int i;
1011
1012 for_each_port(adapter, i) {
1013 struct cmac *mac = adapter->port[i].mac;
1014 struct cphy *phy = adapter->port[i].phy;
1015
1016 if (mac)
1017 mac->ops->destroy(mac);
1018 if (phy)
1019 phy->ops->destroy(phy);
1020 }
1021
1022 if (adapter->sge)
1023 t1_sge_destroy(adapter->sge);
1024 if (adapter->tp)
1025 t1_tp_destroy(adapter->tp);
1026 if (adapter->espi)
1027 t1_espi_destroy(adapter->espi);
1028 }
1029
init_link_config(struct link_config * lc,const struct board_info * bi)1030 static void init_link_config(struct link_config *lc,
1031 const struct board_info *bi)
1032 {
1033 lc->supported = bi->caps;
1034 lc->requested_speed = lc->speed = SPEED_INVALID;
1035 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1036 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1037 if (lc->supported & SUPPORTED_Autoneg) {
1038 lc->advertising = lc->supported;
1039 lc->autoneg = AUTONEG_ENABLE;
1040 lc->requested_fc |= PAUSE_AUTONEG;
1041 } else {
1042 lc->advertising = 0;
1043 lc->autoneg = AUTONEG_DISABLE;
1044 }
1045 }
1046
1047 /*
1048 * Allocate and initialize the data structures that hold the SW state of
1049 * the Terminator HW modules.
1050 */
t1_init_sw_modules(adapter_t * adapter,const struct board_info * bi)1051 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
1052 {
1053 unsigned int i;
1054
1055 adapter->params.brd_info = bi;
1056 adapter->params.nports = bi->port_number;
1057 adapter->params.stats_update_period = bi->gmac->stats_update_period;
1058
1059 adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1060 if (!adapter->sge) {
1061 pr_err("%s: SGE initialization failed\n",
1062 adapter->name);
1063 goto error;
1064 }
1065
1066 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1067 pr_err("%s: ESPI initialization failed\n",
1068 adapter->name);
1069 goto error;
1070 }
1071
1072 adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1073 if (!adapter->tp) {
1074 pr_err("%s: TP initialization failed\n",
1075 adapter->name);
1076 goto error;
1077 }
1078
1079 board_init(adapter, bi);
1080 bi->mdio_ops->init(adapter, bi);
1081 if (bi->gphy->reset)
1082 bi->gphy->reset(adapter);
1083 if (bi->gmac->reset)
1084 bi->gmac->reset(adapter);
1085
1086 for_each_port(adapter, i) {
1087 u8 hw_addr[6];
1088 struct cmac *mac;
1089 int phy_addr = bi->mdio_phybaseaddr + i;
1090
1091 adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1092 phy_addr, bi->mdio_ops);
1093 if (!adapter->port[i].phy) {
1094 pr_err("%s: PHY %d initialization failed\n",
1095 adapter->name, i);
1096 goto error;
1097 }
1098
1099 adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1100 if (!mac) {
1101 pr_err("%s: MAC %d initialization failed\n",
1102 adapter->name, i);
1103 goto error;
1104 }
1105
1106 /*
1107 * Get the port's MAC addresses either from the EEPROM if one
1108 * exists or the one hardcoded in the MAC.
1109 */
1110 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1111 mac->ops->macaddress_get(mac, hw_addr);
1112 else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1113 pr_err("%s: could not read MAC address from VPD ROM\n",
1114 adapter->port[i].dev->name);
1115 goto error;
1116 }
1117 memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
1118 init_link_config(&adapter->port[i].link_config, bi);
1119 }
1120
1121 get_pci_mode(adapter, &adapter->params.pci);
1122 t1_interrupts_clear(adapter);
1123 return 0;
1124
1125 error:
1126 t1_free_sw_modules(adapter);
1127 return -1;
1128 }
1129