1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
t4vf_wait_dev_ready(struct adapter * adapter)50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66 }
67
68 /*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
get_mbox_rpl(struct adapter * adapter,__be64 * rpl,int size,u32 mbox_data)72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74 {
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
86 */
t4vf_record_mbox(struct adapter * adapter,const __be64 * cmd,int size,int access,int execute)87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 int size, int access, int execute)
89 {
90 struct mbox_cmd_log *log = adapter->mbox_log;
91 struct mbox_cmd *entry;
92 int i;
93
94 entry = mbox_cmd_log_entry(log, log->cursor++);
95 if (log->cursor == log->size)
96 log->cursor = 0;
97
98 for (i = 0; i < size / 8; i++)
99 entry->cmd[i] = be64_to_cpu(cmd[i]);
100 while (i < MBOX_LEN / 8)
101 entry->cmd[i++] = 0;
102 entry->timestamp = jiffies;
103 entry->seqno = log->seqno++;
104 entry->access = access;
105 entry->execute = execute;
106 }
107
108 /**
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
115 *
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
127 */
t4vf_wr_mbox_core(struct adapter * adapter,const void * cmd,int size,void * rpl,bool sleep_ok)128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 void *rpl, bool sleep_ok)
130 {
131 static const int delay[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
133 };
134
135 u16 access = 0, execute = 0;
136 u32 v, mbox_data;
137 int i, ms, delay_idx, ret;
138 const __be64 *p;
139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 __be64 cmd_rpl[MBOX_LEN / 8];
142 struct mbox_list entry;
143
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
146 */
147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 mbox_data = T4VF_MBDATA_BASE_ADDR;
149 else
150 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152 /*
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
155 */
156 if ((size % 16) != 0 ||
157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 return -EINVAL;
159
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
163 * EBUSY] ...
164 */
165 spin_lock(&adapter->mbox_lock);
166 list_add_tail(&entry.list, &adapter->mlist.list);
167 spin_unlock(&adapter->mbox_lock);
168
169 delay_idx = 0;
170 ms = delay[0];
171
172 for (i = 0; ; i += ms) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
177 */
178 if (i > FW_CMD_MAX_TIMEOUT) {
179 spin_lock(&adapter->mbox_lock);
180 list_del(&entry.list);
181 spin_unlock(&adapter->mbox_lock);
182 ret = -EBUSY;
183 t4vf_record_mbox(adapter, cmd, size, access, ret);
184 return ret;
185 }
186
187 /* If we're at the head, break out and start the mailbox
188 * protocol.
189 */
190 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 list) == &entry)
192 break;
193
194 /* Delay for a bit before checking again ... */
195 if (sleep_ok) {
196 ms = delay[delay_idx]; /* last element may repeat */
197 if (delay_idx < ARRAY_SIZE(delay) - 1)
198 delay_idx++;
199 msleep(ms);
200 } else {
201 mdelay(ms);
202 }
203 }
204
205 /*
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
208 */
209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 if (v != MBOX_OWNER_DRV) {
213 spin_lock(&adapter->mbox_lock);
214 list_del(&entry.list);
215 spin_unlock(&adapter->mbox_lock);
216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 t4vf_record_mbox(adapter, cmd, size, access, ret);
218 return ret;
219 }
220
221 /*
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
224 *
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
232 * register.
233 */
234 if (cmd_op != FW_VI_STATS_CMD)
235 t4vf_record_mbox(adapter, cmd, size, access, 0);
236 for (i = 0, p = cmd; i < size; i += 8)
237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 t4_read_reg(adapter, mbox_data); /* flush write */
239
240 t4_write_reg(adapter, mbox_ctl,
241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 t4_read_reg(adapter, mbox_ctl); /* flush write */
243
244 /*
245 * Spin waiting for firmware to acknowledge processing our command.
246 */
247 delay_idx = 0;
248 ms = delay[0];
249
250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 if (sleep_ok) {
252 ms = delay[delay_idx];
253 if (delay_idx < ARRAY_SIZE(delay) - 1)
254 delay_idx++;
255 msleep(ms);
256 } else
257 mdelay(ms);
258
259 /*
260 * If we're the owner, see if this is the reply we wanted.
261 */
262 v = t4_read_reg(adapter, mbox_ctl);
263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 /*
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
267 */
268 if ((v & MBMSGVALID_F) == 0) {
269 t4_write_reg(adapter, mbox_ctl,
270 MBOWNER_V(MBOX_OWNER_NONE));
271 continue;
272 }
273
274 /*
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
280 */
281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283 /* return value in low-order little-endian word */
284 v = be64_to_cpu(cmd_rpl[0]);
285
286 if (rpl) {
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 & FW_CMD_REQUEST_F) == 0);
290 memcpy(rpl, cmd_rpl, size);
291 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 & FW_CMD_REQUEST_F) != 0);
293 }
294 t4_write_reg(adapter, mbox_ctl,
295 MBOWNER_V(MBOX_OWNER_NONE));
296 execute = i + ms;
297 if (cmd_op != FW_VI_STATS_CMD)
298 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 execute);
300 spin_lock(&adapter->mbox_lock);
301 list_del(&entry.list);
302 spin_unlock(&adapter->mbox_lock);
303 return -FW_CMD_RETVAL_G(v);
304 }
305 }
306
307 /* We timed out. Return the error ... */
308 ret = -ETIMEDOUT;
309 t4vf_record_mbox(adapter, cmd, size, access, ret);
310 spin_lock(&adapter->mbox_lock);
311 list_del(&entry.list);
312 spin_unlock(&adapter->mbox_lock);
313 return ret;
314 }
315
316 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
317 * mask out bits in the Advertised Port Capabilities which are managed via
318 * separate controls, like Pause Frames and Forward Error Correction. In the
319 * Virtual Function Common Code, since we never perform L1 Configuration on
320 * the Link, the only things we really need to filter out are things which
321 * we decode and report separately like Speed.
322 */
323 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
324 FW_PORT_CAP32_802_3_PAUSE | \
325 FW_PORT_CAP32_802_3_ASM_DIR | \
326 FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
327 FW_PORT_CAP32_ANEG)
328
329 /**
330 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
331 * @caps16: a 16-bit Port Capabilities value
332 *
333 * Returns the equivalent 32-bit Port Capabilities value.
334 */
fwcaps16_to_caps32(fw_port_cap16_t caps16)335 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
336 {
337 fw_port_cap32_t caps32 = 0;
338
339 #define CAP16_TO_CAP32(__cap) \
340 do { \
341 if (caps16 & FW_PORT_CAP_##__cap) \
342 caps32 |= FW_PORT_CAP32_##__cap; \
343 } while (0)
344
345 CAP16_TO_CAP32(SPEED_100M);
346 CAP16_TO_CAP32(SPEED_1G);
347 CAP16_TO_CAP32(SPEED_25G);
348 CAP16_TO_CAP32(SPEED_10G);
349 CAP16_TO_CAP32(SPEED_40G);
350 CAP16_TO_CAP32(SPEED_100G);
351 CAP16_TO_CAP32(FC_RX);
352 CAP16_TO_CAP32(FC_TX);
353 CAP16_TO_CAP32(ANEG);
354 CAP16_TO_CAP32(MDIAUTO);
355 CAP16_TO_CAP32(MDISTRAIGHT);
356 CAP16_TO_CAP32(FEC_RS);
357 CAP16_TO_CAP32(FEC_BASER_RS);
358 CAP16_TO_CAP32(802_3_PAUSE);
359 CAP16_TO_CAP32(802_3_ASM_DIR);
360
361 #undef CAP16_TO_CAP32
362
363 return caps32;
364 }
365
366 /* Translate Firmware Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)367 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
368 {
369 enum cc_pause cc_pause = 0;
370
371 if (fw_pause & FW_PORT_CAP32_FC_RX)
372 cc_pause |= PAUSE_RX;
373 if (fw_pause & FW_PORT_CAP32_FC_TX)
374 cc_pause |= PAUSE_TX;
375
376 return cc_pause;
377 }
378
379 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)380 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
381 {
382 enum cc_fec cc_fec = 0;
383
384 if (fw_fec & FW_PORT_CAP32_FEC_RS)
385 cc_fec |= FEC_RS;
386 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
387 cc_fec |= FEC_BASER_RS;
388
389 return cc_fec;
390 }
391
392 /* Return the highest speed set in the port capabilities, in Mb/s. */
fwcap_to_speed(fw_port_cap32_t caps)393 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
394 {
395 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
396 do { \
397 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
398 return __speed; \
399 } while (0)
400
401 TEST_SPEED_RETURN(400G, 400000);
402 TEST_SPEED_RETURN(200G, 200000);
403 TEST_SPEED_RETURN(100G, 100000);
404 TEST_SPEED_RETURN(50G, 50000);
405 TEST_SPEED_RETURN(40G, 40000);
406 TEST_SPEED_RETURN(25G, 25000);
407 TEST_SPEED_RETURN(10G, 10000);
408 TEST_SPEED_RETURN(1G, 1000);
409 TEST_SPEED_RETURN(100M, 100);
410
411 #undef TEST_SPEED_RETURN
412
413 return 0;
414 }
415
416 /**
417 * fwcap_to_fwspeed - return highest speed in Port Capabilities
418 * @acaps: advertised Port Capabilities
419 *
420 * Get the highest speed for the port from the advertised Port
421 * Capabilities. It will be either the highest speed from the list of
422 * speeds or whatever user has set using ethtool.
423 */
fwcap_to_fwspeed(fw_port_cap32_t acaps)424 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
425 {
426 #define TEST_SPEED_RETURN(__caps_speed) \
427 do { \
428 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
429 return FW_PORT_CAP32_SPEED_##__caps_speed; \
430 } while (0)
431
432 TEST_SPEED_RETURN(400G);
433 TEST_SPEED_RETURN(200G);
434 TEST_SPEED_RETURN(100G);
435 TEST_SPEED_RETURN(50G);
436 TEST_SPEED_RETURN(40G);
437 TEST_SPEED_RETURN(25G);
438 TEST_SPEED_RETURN(10G);
439 TEST_SPEED_RETURN(1G);
440 TEST_SPEED_RETURN(100M);
441
442 #undef TEST_SPEED_RETURN
443 return 0;
444 }
445
446 /*
447 * init_link_config - initialize a link's SW state
448 * @lc: structure holding the link state
449 * @pcaps: link Port Capabilities
450 * @acaps: link current Advertised Port Capabilities
451 *
452 * Initializes the SW state maintained for each link, including the link's
453 * capabilities and default speed/flow-control/autonegotiation settings.
454 */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)455 static void init_link_config(struct link_config *lc,
456 fw_port_cap32_t pcaps,
457 fw_port_cap32_t acaps)
458 {
459 lc->pcaps = pcaps;
460 lc->lpacaps = 0;
461 lc->speed_caps = 0;
462 lc->speed = 0;
463 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
464
465 /* For Forward Error Control, we default to whatever the Firmware
466 * tells us the Link is currently advertising.
467 */
468 lc->auto_fec = fwcap_to_cc_fec(acaps);
469 lc->requested_fec = FEC_AUTO;
470 lc->fec = lc->auto_fec;
471
472 /* If the Port is capable of Auto-Negtotiation, initialize it as
473 * "enabled" and copy over all of the Physical Port Capabilities
474 * to the Advertised Port Capabilities. Otherwise mark it as
475 * Auto-Negotiate disabled and select the highest supported speed
476 * for the link. Note parallel structure in t4_link_l1cfg_core()
477 * and t4_handle_get_port_info().
478 */
479 if (lc->pcaps & FW_PORT_CAP32_ANEG) {
480 lc->acaps = acaps & ADVERT_MASK;
481 lc->autoneg = AUTONEG_ENABLE;
482 lc->requested_fc |= PAUSE_AUTONEG;
483 } else {
484 lc->acaps = 0;
485 lc->autoneg = AUTONEG_DISABLE;
486 lc->speed_caps = fwcap_to_fwspeed(acaps);
487 }
488 }
489
490 /**
491 * t4vf_port_init - initialize port hardware/software state
492 * @adapter: the adapter
493 * @pidx: the adapter port index
494 */
t4vf_port_init(struct adapter * adapter,int pidx)495 int t4vf_port_init(struct adapter *adapter, int pidx)
496 {
497 struct port_info *pi = adap2pinfo(adapter, pidx);
498 unsigned int fw_caps = adapter->params.fw_caps_support;
499 struct fw_vi_cmd vi_cmd, vi_rpl;
500 struct fw_port_cmd port_cmd, port_rpl;
501 enum fw_port_type port_type;
502 int mdio_addr;
503 fw_port_cap32_t pcaps, acaps;
504 int ret;
505
506 /* If we haven't yet determined whether we're talking to Firmware
507 * which knows the new 32-bit Port Capabilities, it's time to find
508 * out now. This will also tell new Firmware to send us Port Status
509 * Updates using the new 32-bit Port Capabilities version of the
510 * Port Information message.
511 */
512 if (fw_caps == FW_CAPS_UNKNOWN) {
513 u32 param, val;
514
515 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
516 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
517 val = 1;
518 ret = t4vf_set_params(adapter, 1, ¶m, &val);
519 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
520 adapter->params.fw_caps_support = fw_caps;
521 }
522
523 /*
524 * Execute a VI Read command to get our Virtual Interface information
525 * like MAC address, etc.
526 */
527 memset(&vi_cmd, 0, sizeof(vi_cmd));
528 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
529 FW_CMD_REQUEST_F |
530 FW_CMD_READ_F);
531 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
532 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
533 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
534 if (ret != FW_SUCCESS)
535 return ret;
536
537 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
538 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
539 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
540
541 /*
542 * If we don't have read access to our port information, we're done
543 * now. Otherwise, execute a PORT Read command to get it ...
544 */
545 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
546 return 0;
547
548 memset(&port_cmd, 0, sizeof(port_cmd));
549 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
550 FW_CMD_REQUEST_F |
551 FW_CMD_READ_F |
552 FW_PORT_CMD_PORTID_V(pi->port_id));
553 port_cmd.action_to_len16 = cpu_to_be32(
554 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
555 ? FW_PORT_ACTION_GET_PORT_INFO
556 : FW_PORT_ACTION_GET_PORT_INFO32) |
557 FW_LEN16(port_cmd));
558 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
559 if (ret != FW_SUCCESS)
560 return ret;
561
562 /* Extract the various fields from the Port Information message. */
563 if (fw_caps == FW_CAPS16) {
564 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
565
566 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
567 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
568 ? FW_PORT_CMD_MDIOADDR_G(lstatus)
569 : -1);
570 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
571 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
572 } else {
573 u32 lstatus32 =
574 be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
575
576 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
577 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
578 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
579 : -1);
580 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
581 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
582 }
583
584 pi->port_type = port_type;
585 pi->mdio_addr = mdio_addr;
586 pi->mod_type = FW_PORT_MOD_TYPE_NA;
587
588 init_link_config(&pi->link_cfg, pcaps, acaps);
589 return 0;
590 }
591
592 /**
593 * t4vf_fw_reset - issue a reset to FW
594 * @adapter: the adapter
595 *
596 * Issues a reset command to FW. For a Physical Function this would
597 * result in the Firmware resetting all of its state. For a Virtual
598 * Function this just resets the state associated with the VF.
599 */
t4vf_fw_reset(struct adapter * adapter)600 int t4vf_fw_reset(struct adapter *adapter)
601 {
602 struct fw_reset_cmd cmd;
603
604 memset(&cmd, 0, sizeof(cmd));
605 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
606 FW_CMD_WRITE_F);
607 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
608 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
609 }
610
611 /**
612 * t4vf_query_params - query FW or device parameters
613 * @adapter: the adapter
614 * @nparams: the number of parameters
615 * @params: the parameter names
616 * @vals: the parameter values
617 *
618 * Reads the values of firmware or device parameters. Up to 7 parameters
619 * can be queried at once.
620 */
t4vf_query_params(struct adapter * adapter,unsigned int nparams,const u32 * params,u32 * vals)621 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
622 const u32 *params, u32 *vals)
623 {
624 int i, ret;
625 struct fw_params_cmd cmd, rpl;
626 struct fw_params_param *p;
627 size_t len16;
628
629 if (nparams > 7)
630 return -EINVAL;
631
632 memset(&cmd, 0, sizeof(cmd));
633 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
634 FW_CMD_REQUEST_F |
635 FW_CMD_READ_F);
636 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
637 param[nparams].mnem), 16);
638 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
639 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
640 p->mnem = htonl(*params++);
641
642 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
643 if (ret == 0)
644 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
645 *vals++ = be32_to_cpu(p->val);
646 return ret;
647 }
648
649 /**
650 * t4vf_set_params - sets FW or device parameters
651 * @adapter: the adapter
652 * @nparams: the number of parameters
653 * @params: the parameter names
654 * @vals: the parameter values
655 *
656 * Sets the values of firmware or device parameters. Up to 7 parameters
657 * can be specified at once.
658 */
t4vf_set_params(struct adapter * adapter,unsigned int nparams,const u32 * params,const u32 * vals)659 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
660 const u32 *params, const u32 *vals)
661 {
662 int i;
663 struct fw_params_cmd cmd;
664 struct fw_params_param *p;
665 size_t len16;
666
667 if (nparams > 7)
668 return -EINVAL;
669
670 memset(&cmd, 0, sizeof(cmd));
671 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
672 FW_CMD_REQUEST_F |
673 FW_CMD_WRITE_F);
674 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
675 param[nparams]), 16);
676 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
677 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
678 p->mnem = cpu_to_be32(*params++);
679 p->val = cpu_to_be32(*vals++);
680 }
681
682 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
683 }
684
685 /**
686 * t4vf_fl_pkt_align - return the fl packet alignment
687 * @adapter: the adapter
688 *
689 * T4 has a single field to specify the packing and padding boundary.
690 * T5 onwards has separate fields for this and hence the alignment for
691 * next packet offset is maximum of these two. And T6 changes the
692 * Ingress Padding Boundary Shift, so it's all a mess and it's best
693 * if we put this in low-level Common Code ...
694 *
695 */
t4vf_fl_pkt_align(struct adapter * adapter)696 int t4vf_fl_pkt_align(struct adapter *adapter)
697 {
698 u32 sge_control, sge_control2;
699 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
700
701 sge_control = adapter->params.sge.sge_control;
702
703 /* T4 uses a single control field to specify both the PCIe Padding and
704 * Packing Boundary. T5 introduced the ability to specify these
705 * separately. The actual Ingress Packet Data alignment boundary
706 * within Packed Buffer Mode is the maximum of these two
707 * specifications. (Note that it makes no real practical sense to
708 * have the Pading Boudary be larger than the Packing Boundary but you
709 * could set the chip up that way and, in fact, legacy T4 code would
710 * end doing this because it would initialize the Padding Boundary and
711 * leave the Packing Boundary initialized to 0 (16 bytes).)
712 * Padding Boundary values in T6 starts from 8B,
713 * where as it is 32B for T4 and T5.
714 */
715 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
716 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
717 else
718 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
719
720 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
721
722 fl_align = ingpadboundary;
723 if (!is_t4(adapter->params.chip)) {
724 /* T5 has a different interpretation of one of the PCIe Packing
725 * Boundary values.
726 */
727 sge_control2 = adapter->params.sge.sge_control2;
728 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
729 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
730 ingpackboundary = 16;
731 else
732 ingpackboundary = 1 << (ingpackboundary +
733 INGPACKBOUNDARY_SHIFT_X);
734
735 fl_align = max(ingpadboundary, ingpackboundary);
736 }
737 return fl_align;
738 }
739
740 /**
741 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
742 * @adapter: the adapter
743 * @qid: the Queue ID
744 * @qtype: the Ingress or Egress type for @qid
745 * @pbar2_qoffset: BAR2 Queue Offset
746 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
747 *
748 * Returns the BAR2 SGE Queue Registers information associated with the
749 * indicated Absolute Queue ID. These are passed back in return value
750 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
751 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
752 *
753 * This may return an error which indicates that BAR2 SGE Queue
754 * registers aren't available. If an error is not returned, then the
755 * following values are returned:
756 *
757 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
758 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
759 *
760 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
761 * require the "Inferred Queue ID" ability may be used. E.g. the
762 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
763 * then these "Inferred Queue ID" register may not be used.
764 */
t4vf_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,u64 * pbar2_qoffset,unsigned int * pbar2_qid)765 int t4vf_bar2_sge_qregs(struct adapter *adapter,
766 unsigned int qid,
767 enum t4_bar2_qtype qtype,
768 u64 *pbar2_qoffset,
769 unsigned int *pbar2_qid)
770 {
771 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
772 u64 bar2_page_offset, bar2_qoffset;
773 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
774
775 /* T4 doesn't support BAR2 SGE Queue registers.
776 */
777 if (is_t4(adapter->params.chip))
778 return -EINVAL;
779
780 /* Get our SGE Page Size parameters.
781 */
782 page_shift = adapter->params.sge.sge_vf_hps + 10;
783 page_size = 1 << page_shift;
784
785 /* Get the right Queues per Page parameters for our Queue.
786 */
787 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
788 ? adapter->params.sge.sge_vf_eq_qpp
789 : adapter->params.sge.sge_vf_iq_qpp);
790 qpp_mask = (1 << qpp_shift) - 1;
791
792 /* Calculate the basics of the BAR2 SGE Queue register area:
793 * o The BAR2 page the Queue registers will be in.
794 * o The BAR2 Queue ID.
795 * o The BAR2 Queue ID Offset into the BAR2 page.
796 */
797 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
798 bar2_qid = qid & qpp_mask;
799 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
800
801 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
802 * hardware will infer the Absolute Queue ID simply from the writes to
803 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
804 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
805 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
806 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
807 * from the BAR2 Page and BAR2 Queue ID.
808 *
809 * One important censequence of this is that some BAR2 SGE registers
810 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
811 * there. But other registers synthesize the SGE Queue ID purely
812 * from the writes to the registers -- the Write Combined Doorbell
813 * Buffer is a good example. These BAR2 SGE Registers are only
814 * available for those BAR2 SGE Register areas where the SGE Absolute
815 * Queue ID can be inferred from simple writes.
816 */
817 bar2_qoffset = bar2_page_offset;
818 bar2_qinferred = (bar2_qid_offset < page_size);
819 if (bar2_qinferred) {
820 bar2_qoffset += bar2_qid_offset;
821 bar2_qid = 0;
822 }
823
824 *pbar2_qoffset = bar2_qoffset;
825 *pbar2_qid = bar2_qid;
826 return 0;
827 }
828
t4vf_get_pf_from_vf(struct adapter * adapter)829 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
830 {
831 u32 whoami;
832
833 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
834 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
835 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
836 }
837
838 /**
839 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
840 * @adapter: the adapter
841 *
842 * Retrieves various core SGE parameters in the form of hardware SGE
843 * register values. The caller is responsible for decoding these as
844 * needed. The SGE parameters are stored in @adapter->params.sge.
845 */
t4vf_get_sge_params(struct adapter * adapter)846 int t4vf_get_sge_params(struct adapter *adapter)
847 {
848 struct sge_params *sge_params = &adapter->params.sge;
849 u32 params[7], vals[7];
850 int v;
851
852 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
854 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
856 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
858 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
859 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
860 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
861 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
862 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
863 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
864 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
865 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
866 v = t4vf_query_params(adapter, 7, params, vals);
867 if (v)
868 return v;
869 sge_params->sge_control = vals[0];
870 sge_params->sge_host_page_size = vals[1];
871 sge_params->sge_fl_buffer_size[0] = vals[2];
872 sge_params->sge_fl_buffer_size[1] = vals[3];
873 sge_params->sge_timer_value_0_and_1 = vals[4];
874 sge_params->sge_timer_value_2_and_3 = vals[5];
875 sge_params->sge_timer_value_4_and_5 = vals[6];
876
877 /* T4 uses a single control field to specify both the PCIe Padding and
878 * Packing Boundary. T5 introduced the ability to specify these
879 * separately with the Padding Boundary in SGE_CONTROL and and Packing
880 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
881 * SGE_CONTROL in order to determine how ingress packet data will be
882 * laid out in Packed Buffer Mode. Unfortunately, older versions of
883 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
884 * failure grabbing it we throw an error since we can't figure out the
885 * right value.
886 */
887 if (!is_t4(adapter->params.chip)) {
888 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
889 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
890 v = t4vf_query_params(adapter, 1, params, vals);
891 if (v != FW_SUCCESS) {
892 dev_err(adapter->pdev_dev,
893 "Unable to get SGE Control2; "
894 "probably old firmware.\n");
895 return v;
896 }
897 sge_params->sge_control2 = vals[0];
898 }
899
900 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
901 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
902 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
903 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
904 v = t4vf_query_params(adapter, 2, params, vals);
905 if (v)
906 return v;
907 sge_params->sge_ingress_rx_threshold = vals[0];
908 sge_params->sge_congestion_control = vals[1];
909
910 /* For T5 and later we want to use the new BAR2 Doorbells.
911 * Unfortunately, older firmware didn't allow the this register to be
912 * read.
913 */
914 if (!is_t4(adapter->params.chip)) {
915 unsigned int pf, s_hps, s_qpp;
916
917 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
918 FW_PARAMS_PARAM_XYZ_V(
919 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
920 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
921 FW_PARAMS_PARAM_XYZ_V(
922 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
923 v = t4vf_query_params(adapter, 2, params, vals);
924 if (v != FW_SUCCESS) {
925 dev_warn(adapter->pdev_dev,
926 "Unable to get VF SGE Queues/Page; "
927 "probably old firmware.\n");
928 return v;
929 }
930 sge_params->sge_egress_queues_per_page = vals[0];
931 sge_params->sge_ingress_queues_per_page = vals[1];
932
933 /* We need the Queues/Page for our VF. This is based on the
934 * PF from which we're instantiated and is indexed in the
935 * register we just read. Do it once here so other code in
936 * the driver can just use it.
937 */
938 pf = t4vf_get_pf_from_vf(adapter);
939 s_hps = (HOSTPAGESIZEPF0_S +
940 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
941 sge_params->sge_vf_hps =
942 ((sge_params->sge_host_page_size >> s_hps)
943 & HOSTPAGESIZEPF0_M);
944
945 s_qpp = (QUEUESPERPAGEPF0_S +
946 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
947 sge_params->sge_vf_eq_qpp =
948 ((sge_params->sge_egress_queues_per_page >> s_qpp)
949 & QUEUESPERPAGEPF0_M);
950 sge_params->sge_vf_iq_qpp =
951 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
952 & QUEUESPERPAGEPF0_M);
953 }
954
955 return 0;
956 }
957
958 /**
959 * t4vf_get_vpd_params - retrieve device VPD paremeters
960 * @adapter: the adapter
961 *
962 * Retrives various device Vital Product Data parameters. The parameters
963 * are stored in @adapter->params.vpd.
964 */
t4vf_get_vpd_params(struct adapter * adapter)965 int t4vf_get_vpd_params(struct adapter *adapter)
966 {
967 struct vpd_params *vpd_params = &adapter->params.vpd;
968 u32 params[7], vals[7];
969 int v;
970
971 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
972 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
973 v = t4vf_query_params(adapter, 1, params, vals);
974 if (v)
975 return v;
976 vpd_params->cclk = vals[0];
977
978 return 0;
979 }
980
981 /**
982 * t4vf_get_dev_params - retrieve device paremeters
983 * @adapter: the adapter
984 *
985 * Retrives various device parameters. The parameters are stored in
986 * @adapter->params.dev.
987 */
t4vf_get_dev_params(struct adapter * adapter)988 int t4vf_get_dev_params(struct adapter *adapter)
989 {
990 struct dev_params *dev_params = &adapter->params.dev;
991 u32 params[7], vals[7];
992 int v;
993
994 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
995 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
996 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
997 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
998 v = t4vf_query_params(adapter, 2, params, vals);
999 if (v)
1000 return v;
1001 dev_params->fwrev = vals[0];
1002 dev_params->tprev = vals[1];
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1009 * @adapter: the adapter
1010 *
1011 * Retrieves global RSS mode and parameters with which we have to live
1012 * and stores them in the @adapter's RSS parameters.
1013 */
t4vf_get_rss_glb_config(struct adapter * adapter)1014 int t4vf_get_rss_glb_config(struct adapter *adapter)
1015 {
1016 struct rss_params *rss = &adapter->params.rss;
1017 struct fw_rss_glb_config_cmd cmd, rpl;
1018 int v;
1019
1020 /*
1021 * Execute an RSS Global Configuration read command to retrieve
1022 * our RSS configuration.
1023 */
1024 memset(&cmd, 0, sizeof(cmd));
1025 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1026 FW_CMD_REQUEST_F |
1027 FW_CMD_READ_F);
1028 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1029 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1030 if (v)
1031 return v;
1032
1033 /*
1034 * Transate the big-endian RSS Global Configuration into our
1035 * cpu-endian format based on the RSS mode. We also do first level
1036 * filtering at this point to weed out modes which don't support
1037 * VF Drivers ...
1038 */
1039 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1040 be32_to_cpu(rpl.u.manual.mode_pkd));
1041 switch (rss->mode) {
1042 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1043 u32 word = be32_to_cpu(
1044 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1045
1046 rss->u.basicvirtual.synmapen =
1047 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1048 rss->u.basicvirtual.syn4tupenipv6 =
1049 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1050 rss->u.basicvirtual.syn2tupenipv6 =
1051 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1052 rss->u.basicvirtual.syn4tupenipv4 =
1053 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1054 rss->u.basicvirtual.syn2tupenipv4 =
1055 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1056
1057 rss->u.basicvirtual.ofdmapen =
1058 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1059
1060 rss->u.basicvirtual.tnlmapen =
1061 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1062 rss->u.basicvirtual.tnlalllookup =
1063 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1064
1065 rss->u.basicvirtual.hashtoeplitz =
1066 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1067
1068 /* we need at least Tunnel Map Enable to be set */
1069 if (!rss->u.basicvirtual.tnlmapen)
1070 return -EINVAL;
1071 break;
1072 }
1073
1074 default:
1075 /* all unknown/unsupported RSS modes result in an error */
1076 return -EINVAL;
1077 }
1078
1079 return 0;
1080 }
1081
1082 /**
1083 * t4vf_get_vfres - retrieve VF resource limits
1084 * @adapter: the adapter
1085 *
1086 * Retrieves configured resource limits and capabilities for a virtual
1087 * function. The results are stored in @adapter->vfres.
1088 */
t4vf_get_vfres(struct adapter * adapter)1089 int t4vf_get_vfres(struct adapter *adapter)
1090 {
1091 struct vf_resources *vfres = &adapter->params.vfres;
1092 struct fw_pfvf_cmd cmd, rpl;
1093 int v;
1094 u32 word;
1095
1096 /*
1097 * Execute PFVF Read command to get VF resource limits; bail out early
1098 * with error on command failure.
1099 */
1100 memset(&cmd, 0, sizeof(cmd));
1101 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1102 FW_CMD_REQUEST_F |
1103 FW_CMD_READ_F);
1104 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1105 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1106 if (v)
1107 return v;
1108
1109 /*
1110 * Extract VF resource limits and return success.
1111 */
1112 word = be32_to_cpu(rpl.niqflint_niq);
1113 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1114 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1115
1116 word = be32_to_cpu(rpl.type_to_neq);
1117 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1118 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1119
1120 word = be32_to_cpu(rpl.tc_to_nexactf);
1121 vfres->tc = FW_PFVF_CMD_TC_G(word);
1122 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1123 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1124
1125 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1126 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1127 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1128 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * t4vf_read_rss_vi_config - read a VI's RSS configuration
1135 * @adapter: the adapter
1136 * @viid: Virtual Interface ID
1137 * @config: pointer to host-native VI RSS Configuration buffer
1138 *
1139 * Reads the Virtual Interface's RSS configuration information and
1140 * translates it into CPU-native format.
1141 */
t4vf_read_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1142 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1143 union rss_vi_config *config)
1144 {
1145 struct fw_rss_vi_config_cmd cmd, rpl;
1146 int v;
1147
1148 memset(&cmd, 0, sizeof(cmd));
1149 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1150 FW_CMD_REQUEST_F |
1151 FW_CMD_READ_F |
1152 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1153 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1154 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1155 if (v)
1156 return v;
1157
1158 switch (adapter->params.rss.mode) {
1159 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1161
1162 config->basicvirtual.ip6fourtupen =
1163 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1164 config->basicvirtual.ip6twotupen =
1165 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1166 config->basicvirtual.ip4fourtupen =
1167 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1168 config->basicvirtual.ip4twotupen =
1169 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1170 config->basicvirtual.udpen =
1171 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1172 config->basicvirtual.defaultq =
1173 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1174 break;
1175 }
1176
1177 default:
1178 return -EINVAL;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /**
1185 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1186 * @adapter: the adapter
1187 * @viid: Virtual Interface ID
1188 * @config: pointer to host-native VI RSS Configuration buffer
1189 *
1190 * Write the Virtual Interface's RSS configuration information
1191 * (translating it into firmware-native format before writing).
1192 */
t4vf_write_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1193 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1194 union rss_vi_config *config)
1195 {
1196 struct fw_rss_vi_config_cmd cmd, rpl;
1197
1198 memset(&cmd, 0, sizeof(cmd));
1199 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1200 FW_CMD_REQUEST_F |
1201 FW_CMD_WRITE_F |
1202 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1203 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1204 switch (adapter->params.rss.mode) {
1205 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1206 u32 word = 0;
1207
1208 if (config->basicvirtual.ip6fourtupen)
1209 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1210 if (config->basicvirtual.ip6twotupen)
1211 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1212 if (config->basicvirtual.ip4fourtupen)
1213 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1214 if (config->basicvirtual.ip4twotupen)
1215 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1216 if (config->basicvirtual.udpen)
1217 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1218 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1219 config->basicvirtual.defaultq);
1220 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1221 break;
1222 }
1223
1224 default:
1225 return -EINVAL;
1226 }
1227
1228 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1229 }
1230
1231 /**
1232 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1233 * @adapter: the adapter
1234 * @viid: Virtual Interface of RSS Table Slice
1235 * @start: starting entry in the table to write
1236 * @n: how many table entries to write
1237 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1238 * @nrspq: number of values in @rspq
1239 *
1240 * Programs the selected part of the VI's RSS mapping table with the
1241 * provided values. If @nrspq < @n the supplied values are used repeatedly
1242 * until the full table range is populated.
1243 *
1244 * The caller must ensure the values in @rspq are in the range 0..1023.
1245 */
t4vf_config_rss_range(struct adapter * adapter,unsigned int viid,int start,int n,const u16 * rspq,int nrspq)1246 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1247 int start, int n, const u16 *rspq, int nrspq)
1248 {
1249 const u16 *rsp = rspq;
1250 const u16 *rsp_end = rspq+nrspq;
1251 struct fw_rss_ind_tbl_cmd cmd;
1252
1253 /*
1254 * Initialize firmware command template to write the RSS table.
1255 */
1256 memset(&cmd, 0, sizeof(cmd));
1257 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1258 FW_CMD_REQUEST_F |
1259 FW_CMD_WRITE_F |
1260 FW_RSS_IND_TBL_CMD_VIID_V(viid));
1261 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1262
1263 /*
1264 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1265 * Queue Identifiers. These Ingress Queue IDs are packed three to
1266 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1267 * reserved.
1268 */
1269 while (n > 0) {
1270 __be32 *qp = &cmd.iq0_to_iq2;
1271 int nq = min(n, 32);
1272 int ret;
1273
1274 /*
1275 * Set up the firmware RSS command header to send the next
1276 * "nq" Ingress Queue IDs to the firmware.
1277 */
1278 cmd.niqid = cpu_to_be16(nq);
1279 cmd.startidx = cpu_to_be16(start);
1280
1281 /*
1282 * "nq" more done for the start of the next loop.
1283 */
1284 start += nq;
1285 n -= nq;
1286
1287 /*
1288 * While there are still Ingress Queue IDs to stuff into the
1289 * current firmware RSS command, retrieve them from the
1290 * Ingress Queue ID array and insert them into the command.
1291 */
1292 while (nq > 0) {
1293 /*
1294 * Grab up to the next 3 Ingress Queue IDs (wrapping
1295 * around the Ingress Queue ID array if necessary) and
1296 * insert them into the firmware RSS command at the
1297 * current 3-tuple position within the commad.
1298 */
1299 u16 qbuf[3];
1300 u16 *qbp = qbuf;
1301 int nqbuf = min(3, nq);
1302
1303 nq -= nqbuf;
1304 qbuf[0] = qbuf[1] = qbuf[2] = 0;
1305 while (nqbuf) {
1306 nqbuf--;
1307 *qbp++ = *rsp++;
1308 if (rsp >= rsp_end)
1309 rsp = rspq;
1310 }
1311 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1312 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1313 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1314 }
1315
1316 /*
1317 * Send this portion of the RRS table update to the firmware;
1318 * bail out on any errors.
1319 */
1320 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1321 if (ret)
1322 return ret;
1323 }
1324 return 0;
1325 }
1326
1327 /**
1328 * t4vf_alloc_vi - allocate a virtual interface on a port
1329 * @adapter: the adapter
1330 * @port_id: physical port associated with the VI
1331 *
1332 * Allocate a new Virtual Interface and bind it to the indicated
1333 * physical port. Return the new Virtual Interface Identifier on
1334 * success, or a [negative] error number on failure.
1335 */
t4vf_alloc_vi(struct adapter * adapter,int port_id)1336 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1337 {
1338 struct fw_vi_cmd cmd, rpl;
1339 int v;
1340
1341 /*
1342 * Execute a VI command to allocate Virtual Interface and return its
1343 * VIID.
1344 */
1345 memset(&cmd, 0, sizeof(cmd));
1346 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1347 FW_CMD_REQUEST_F |
1348 FW_CMD_WRITE_F |
1349 FW_CMD_EXEC_F);
1350 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1351 FW_VI_CMD_ALLOC_F);
1352 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1353 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1354 if (v)
1355 return v;
1356
1357 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1358 }
1359
1360 /**
1361 * t4vf_free_vi -- free a virtual interface
1362 * @adapter: the adapter
1363 * @viid: the virtual interface identifier
1364 *
1365 * Free a previously allocated Virtual Interface. Return an error on
1366 * failure.
1367 */
t4vf_free_vi(struct adapter * adapter,int viid)1368 int t4vf_free_vi(struct adapter *adapter, int viid)
1369 {
1370 struct fw_vi_cmd cmd;
1371
1372 /*
1373 * Execute a VI command to free the Virtual Interface.
1374 */
1375 memset(&cmd, 0, sizeof(cmd));
1376 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1377 FW_CMD_REQUEST_F |
1378 FW_CMD_EXEC_F);
1379 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1380 FW_VI_CMD_FREE_F);
1381 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1382 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1383 }
1384
1385 /**
1386 * t4vf_enable_vi - enable/disable a virtual interface
1387 * @adapter: the adapter
1388 * @viid: the Virtual Interface ID
1389 * @rx_en: 1=enable Rx, 0=disable Rx
1390 * @tx_en: 1=enable Tx, 0=disable Tx
1391 *
1392 * Enables/disables a virtual interface.
1393 */
t4vf_enable_vi(struct adapter * adapter,unsigned int viid,bool rx_en,bool tx_en)1394 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1395 bool rx_en, bool tx_en)
1396 {
1397 struct fw_vi_enable_cmd cmd;
1398
1399 memset(&cmd, 0, sizeof(cmd));
1400 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1401 FW_CMD_REQUEST_F |
1402 FW_CMD_EXEC_F |
1403 FW_VI_ENABLE_CMD_VIID_V(viid));
1404 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1405 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1406 FW_LEN16(cmd));
1407 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1408 }
1409
1410 /**
1411 * t4vf_enable_pi - enable/disable a Port's virtual interface
1412 * @adapter: the adapter
1413 * @pi: the Port Information structure
1414 * @rx_en: 1=enable Rx, 0=disable Rx
1415 * @tx_en: 1=enable Tx, 0=disable Tx
1416 *
1417 * Enables/disables a Port's virtual interface. If the Virtual
1418 * Interface enable/disable operation is successful, we notify the
1419 * OS-specific code of a potential Link Status change via the OS Contract
1420 * API t4vf_os_link_changed().
1421 */
t4vf_enable_pi(struct adapter * adapter,struct port_info * pi,bool rx_en,bool tx_en)1422 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1423 bool rx_en, bool tx_en)
1424 {
1425 int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1426
1427 if (ret)
1428 return ret;
1429 t4vf_os_link_changed(adapter, pi->pidx,
1430 rx_en && tx_en && pi->link_cfg.link_ok);
1431 return 0;
1432 }
1433
1434 /**
1435 * t4vf_identify_port - identify a VI's port by blinking its LED
1436 * @adapter: the adapter
1437 * @viid: the Virtual Interface ID
1438 * @nblinks: how many times to blink LED at 2.5 Hz
1439 *
1440 * Identifies a VI's port by blinking its LED.
1441 */
t4vf_identify_port(struct adapter * adapter,unsigned int viid,unsigned int nblinks)1442 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1443 unsigned int nblinks)
1444 {
1445 struct fw_vi_enable_cmd cmd;
1446
1447 memset(&cmd, 0, sizeof(cmd));
1448 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1449 FW_CMD_REQUEST_F |
1450 FW_CMD_EXEC_F |
1451 FW_VI_ENABLE_CMD_VIID_V(viid));
1452 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1453 FW_LEN16(cmd));
1454 cmd.blinkdur = cpu_to_be16(nblinks);
1455 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1456 }
1457
1458 /**
1459 * t4vf_set_rxmode - set Rx properties of a virtual interface
1460 * @adapter: the adapter
1461 * @viid: the VI id
1462 * @mtu: the new MTU or -1 for no change
1463 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1464 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1465 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1466 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1467 * -1 no change
1468 * @sleep_ok: call is allowed to sleep
1469 *
1470 * Sets Rx properties of a virtual interface.
1471 */
t4vf_set_rxmode(struct adapter * adapter,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)1472 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1473 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1474 bool sleep_ok)
1475 {
1476 struct fw_vi_rxmode_cmd cmd;
1477
1478 /* convert to FW values */
1479 if (mtu < 0)
1480 mtu = FW_VI_RXMODE_CMD_MTU_M;
1481 if (promisc < 0)
1482 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1483 if (all_multi < 0)
1484 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1485 if (bcast < 0)
1486 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1487 if (vlanex < 0)
1488 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1489
1490 memset(&cmd, 0, sizeof(cmd));
1491 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1492 FW_CMD_REQUEST_F |
1493 FW_CMD_WRITE_F |
1494 FW_VI_RXMODE_CMD_VIID_V(viid));
1495 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1496 cmd.mtu_to_vlanexen =
1497 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1498 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1499 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1500 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1501 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1502 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1503 }
1504
1505 /**
1506 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1507 * @adapter: the adapter
1508 * @viid: the Virtual Interface Identifier
1509 * @free: if true any existing filters for this VI id are first removed
1510 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1511 * @addr: the MAC address(es)
1512 * @idx: where to store the index of each allocated filter
1513 * @hash: pointer to hash address filter bitmap
1514 * @sleep_ok: call is allowed to sleep
1515 *
1516 * Allocates an exact-match filter for each of the supplied addresses and
1517 * sets it to the corresponding address. If @idx is not %NULL it should
1518 * have at least @naddr entries, each of which will be set to the index of
1519 * the filter allocated for the corresponding MAC address. If a filter
1520 * could not be allocated for an address its index is set to 0xffff.
1521 * If @hash is not %NULL addresses that fail to allocate an exact filter
1522 * are hashed and update the hash filter bitmap pointed at by @hash.
1523 *
1524 * Returns a negative error number or the number of filters allocated.
1525 */
t4vf_alloc_mac_filt(struct adapter * adapter,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)1526 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1527 unsigned int naddr, const u8 **addr, u16 *idx,
1528 u64 *hash, bool sleep_ok)
1529 {
1530 int offset, ret = 0;
1531 unsigned nfilters = 0;
1532 unsigned int rem = naddr;
1533 struct fw_vi_mac_cmd cmd, rpl;
1534 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1535
1536 if (naddr > max_naddr)
1537 return -EINVAL;
1538
1539 for (offset = 0; offset < naddr; /**/) {
1540 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1541 ? rem
1542 : ARRAY_SIZE(cmd.u.exact));
1543 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1544 u.exact[fw_naddr]), 16);
1545 struct fw_vi_mac_exact *p;
1546 int i;
1547
1548 memset(&cmd, 0, sizeof(cmd));
1549 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1550 FW_CMD_REQUEST_F |
1551 FW_CMD_WRITE_F |
1552 (free ? FW_CMD_EXEC_F : 0) |
1553 FW_VI_MAC_CMD_VIID_V(viid));
1554 cmd.freemacs_to_len16 =
1555 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1556 FW_CMD_LEN16_V(len16));
1557
1558 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1559 p->valid_to_idx = cpu_to_be16(
1560 FW_VI_MAC_CMD_VALID_F |
1561 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1562 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1563 }
1564
1565
1566 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1567 sleep_ok);
1568 if (ret && ret != -ENOMEM)
1569 break;
1570
1571 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1572 u16 index = FW_VI_MAC_CMD_IDX_G(
1573 be16_to_cpu(p->valid_to_idx));
1574
1575 if (idx)
1576 idx[offset+i] =
1577 (index >= max_naddr
1578 ? 0xffff
1579 : index);
1580 if (index < max_naddr)
1581 nfilters++;
1582 else if (hash)
1583 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1584 }
1585
1586 free = false;
1587 offset += fw_naddr;
1588 rem -= fw_naddr;
1589 }
1590
1591 /*
1592 * If there were no errors or we merely ran out of room in our MAC
1593 * address arena, return the number of filters actually written.
1594 */
1595 if (ret == 0 || ret == -ENOMEM)
1596 ret = nfilters;
1597 return ret;
1598 }
1599
1600 /**
1601 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1602 * @adapter: the adapter
1603 * @viid: the VI id
1604 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1605 * @addr: the MAC address(es)
1606 * @sleep_ok: call is allowed to sleep
1607 *
1608 * Frees the exact-match filter for each of the supplied addresses
1609 *
1610 * Returns a negative error number or the number of filters freed.
1611 */
t4vf_free_mac_filt(struct adapter * adapter,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)1612 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1613 unsigned int naddr, const u8 **addr, bool sleep_ok)
1614 {
1615 int offset, ret = 0;
1616 struct fw_vi_mac_cmd cmd;
1617 unsigned int nfilters = 0;
1618 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1619 unsigned int rem = naddr;
1620
1621 if (naddr > max_naddr)
1622 return -EINVAL;
1623
1624 for (offset = 0; offset < (int)naddr ; /**/) {
1625 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1626 rem : ARRAY_SIZE(cmd.u.exact));
1627 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1628 u.exact[fw_naddr]), 16);
1629 struct fw_vi_mac_exact *p;
1630 int i;
1631
1632 memset(&cmd, 0, sizeof(cmd));
1633 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1634 FW_CMD_REQUEST_F |
1635 FW_CMD_WRITE_F |
1636 FW_CMD_EXEC_V(0) |
1637 FW_VI_MAC_CMD_VIID_V(viid));
1638 cmd.freemacs_to_len16 =
1639 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1640 FW_CMD_LEN16_V(len16));
1641
1642 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1643 p->valid_to_idx = cpu_to_be16(
1644 FW_VI_MAC_CMD_VALID_F |
1645 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1646 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1647 }
1648
1649 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1650 sleep_ok);
1651 if (ret)
1652 break;
1653
1654 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1655 u16 index = FW_VI_MAC_CMD_IDX_G(
1656 be16_to_cpu(p->valid_to_idx));
1657
1658 if (index < max_naddr)
1659 nfilters++;
1660 }
1661
1662 offset += fw_naddr;
1663 rem -= fw_naddr;
1664 }
1665
1666 if (ret == 0)
1667 ret = nfilters;
1668 return ret;
1669 }
1670
1671 /**
1672 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1673 * @adapter: the adapter
1674 * @viid: the Virtual Interface ID
1675 * @idx: index of existing filter for old value of MAC address, or -1
1676 * @addr: the new MAC address value
1677 * @persist: if idx < 0, the new MAC allocation should be persistent
1678 *
1679 * Modifies an exact-match filter and sets it to the new MAC address.
1680 * Note that in general it is not possible to modify the value of a given
1681 * filter so the generic way to modify an address filter is to free the
1682 * one being used by the old address value and allocate a new filter for
1683 * the new address value. @idx can be -1 if the address is a new
1684 * addition.
1685 *
1686 * Returns a negative error number or the index of the filter with the new
1687 * MAC value.
1688 */
t4vf_change_mac(struct adapter * adapter,unsigned int viid,int idx,const u8 * addr,bool persist)1689 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1690 int idx, const u8 *addr, bool persist)
1691 {
1692 int ret;
1693 struct fw_vi_mac_cmd cmd, rpl;
1694 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1695 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1696 u.exact[1]), 16);
1697 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1698
1699 /*
1700 * If this is a new allocation, determine whether it should be
1701 * persistent (across a "freemacs" operation) or not.
1702 */
1703 if (idx < 0)
1704 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1705
1706 memset(&cmd, 0, sizeof(cmd));
1707 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1708 FW_CMD_REQUEST_F |
1709 FW_CMD_WRITE_F |
1710 FW_VI_MAC_CMD_VIID_V(viid));
1711 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1712 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1713 FW_VI_MAC_CMD_IDX_V(idx));
1714 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1715
1716 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1717 if (ret == 0) {
1718 p = &rpl.u.exact[0];
1719 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1720 if (ret >= max_mac_addr)
1721 ret = -ENOMEM;
1722 }
1723 return ret;
1724 }
1725
1726 /**
1727 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1728 * @adapter: the adapter
1729 * @viid: the Virtual Interface Identifier
1730 * @ucast: whether the hash filter should also match unicast addresses
1731 * @vec: the value to be written to the hash filter
1732 * @sleep_ok: call is allowed to sleep
1733 *
1734 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1735 */
t4vf_set_addr_hash(struct adapter * adapter,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)1736 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1737 bool ucast, u64 vec, bool sleep_ok)
1738 {
1739 struct fw_vi_mac_cmd cmd;
1740 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1741 u.exact[0]), 16);
1742
1743 memset(&cmd, 0, sizeof(cmd));
1744 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1745 FW_CMD_REQUEST_F |
1746 FW_CMD_WRITE_F |
1747 FW_VI_ENABLE_CMD_VIID_V(viid));
1748 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1749 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1750 FW_CMD_LEN16_V(len16));
1751 cmd.u.hash.hashvec = cpu_to_be64(vec);
1752 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1753 }
1754
1755 /**
1756 * t4vf_get_port_stats - collect "port" statistics
1757 * @adapter: the adapter
1758 * @pidx: the port index
1759 * @s: the stats structure to fill
1760 *
1761 * Collect statistics for the "port"'s Virtual Interface.
1762 */
t4vf_get_port_stats(struct adapter * adapter,int pidx,struct t4vf_port_stats * s)1763 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1764 struct t4vf_port_stats *s)
1765 {
1766 struct port_info *pi = adap2pinfo(adapter, pidx);
1767 struct fw_vi_stats_vf fwstats;
1768 unsigned int rem = VI_VF_NUM_STATS;
1769 __be64 *fwsp = (__be64 *)&fwstats;
1770
1771 /*
1772 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1773 * commands. We could use a Work Request and get all of them at once
1774 * but that's an asynchronous interface which is awkward to use.
1775 */
1776 while (rem) {
1777 unsigned int ix = VI_VF_NUM_STATS - rem;
1778 unsigned int nstats = min(6U, rem);
1779 struct fw_vi_stats_cmd cmd, rpl;
1780 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1781 sizeof(struct fw_vi_stats_ctl));
1782 size_t len16 = DIV_ROUND_UP(len, 16);
1783 int ret;
1784
1785 memset(&cmd, 0, sizeof(cmd));
1786 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1787 FW_VI_STATS_CMD_VIID_V(pi->viid) |
1788 FW_CMD_REQUEST_F |
1789 FW_CMD_READ_F);
1790 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1791 cmd.u.ctl.nstats_ix =
1792 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1793 FW_VI_STATS_CMD_NSTATS_V(nstats));
1794 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1795 if (ret)
1796 return ret;
1797
1798 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1799
1800 rem -= nstats;
1801 fwsp += nstats;
1802 }
1803
1804 /*
1805 * Translate firmware statistics into host native statistics.
1806 */
1807 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1808 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1809 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1810 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1811 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1812 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1813 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1814 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1815 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1816
1817 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1818 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1819 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1820 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1821 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1822 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1823
1824 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * t4vf_iq_free - free an ingress queue and its free lists
1831 * @adapter: the adapter
1832 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1833 * @iqid: ingress queue ID
1834 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1835 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1836 *
1837 * Frees an ingress queue and its associated free lists, if any.
1838 */
t4vf_iq_free(struct adapter * adapter,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)1839 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1840 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1841 {
1842 struct fw_iq_cmd cmd;
1843
1844 memset(&cmd, 0, sizeof(cmd));
1845 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1846 FW_CMD_REQUEST_F |
1847 FW_CMD_EXEC_F);
1848 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1849 FW_LEN16(cmd));
1850 cmd.type_to_iqandstindex =
1851 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1852
1853 cmd.iqid = cpu_to_be16(iqid);
1854 cmd.fl0id = cpu_to_be16(fl0id);
1855 cmd.fl1id = cpu_to_be16(fl1id);
1856 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1857 }
1858
1859 /**
1860 * t4vf_eth_eq_free - free an Ethernet egress queue
1861 * @adapter: the adapter
1862 * @eqid: egress queue ID
1863 *
1864 * Frees an Ethernet egress queue.
1865 */
t4vf_eth_eq_free(struct adapter * adapter,unsigned int eqid)1866 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1867 {
1868 struct fw_eq_eth_cmd cmd;
1869
1870 memset(&cmd, 0, sizeof(cmd));
1871 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1872 FW_CMD_REQUEST_F |
1873 FW_CMD_EXEC_F);
1874 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1875 FW_LEN16(cmd));
1876 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1877 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1878 }
1879
1880 /**
1881 * t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1882 * @link_down_rc: Link Down Reason Code
1883 *
1884 * Returns a string representation of the Link Down Reason Code.
1885 */
t4vf_link_down_rc_str(unsigned char link_down_rc)1886 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1887 {
1888 static const char * const reason[] = {
1889 "Link Down",
1890 "Remote Fault",
1891 "Auto-negotiation Failure",
1892 "Reserved",
1893 "Insufficient Airflow",
1894 "Unable To Determine Reason",
1895 "No RX Signal Detected",
1896 "Reserved",
1897 };
1898
1899 if (link_down_rc >= ARRAY_SIZE(reason))
1900 return "Bad Reason Code";
1901
1902 return reason[link_down_rc];
1903 }
1904
1905 /**
1906 * t4vf_handle_get_port_info - process a FW reply message
1907 * @pi: the port info
1908 * @cmd: start of the FW message
1909 *
1910 * Processes a GET_PORT_INFO FW reply message.
1911 */
t4vf_handle_get_port_info(struct port_info * pi,const struct fw_port_cmd * cmd)1912 static void t4vf_handle_get_port_info(struct port_info *pi,
1913 const struct fw_port_cmd *cmd)
1914 {
1915 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1916 struct link_config *lc = &pi->link_cfg;
1917 struct adapter *adapter = pi->adapter;
1918 unsigned int speed, fc, fec, adv_fc;
1919 enum fw_port_module_type mod_type;
1920 int action, link_ok, linkdnrc;
1921 enum fw_port_type port_type;
1922
1923 /* Extract the various fields from the Port Information message. */
1924 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1925 switch (action) {
1926 case FW_PORT_ACTION_GET_PORT_INFO: {
1927 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1928
1929 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1930 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1931 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1932 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1933 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1934 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1935 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1936
1937 /* Unfortunately the format of the Link Status in the old
1938 * 16-bit Port Information message isn't the same as the
1939 * 16-bit Port Capabilities bitfield used everywhere else ...
1940 */
1941 linkattr = 0;
1942 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1943 linkattr |= FW_PORT_CAP32_FC_RX;
1944 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1945 linkattr |= FW_PORT_CAP32_FC_TX;
1946 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1947 linkattr |= FW_PORT_CAP32_SPEED_100M;
1948 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1949 linkattr |= FW_PORT_CAP32_SPEED_1G;
1950 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1951 linkattr |= FW_PORT_CAP32_SPEED_10G;
1952 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1953 linkattr |= FW_PORT_CAP32_SPEED_25G;
1954 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1955 linkattr |= FW_PORT_CAP32_SPEED_40G;
1956 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1957 linkattr |= FW_PORT_CAP32_SPEED_100G;
1958
1959 break;
1960 }
1961
1962 case FW_PORT_ACTION_GET_PORT_INFO32: {
1963 u32 lstatus32;
1964
1965 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1966 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1967 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1968 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1969 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1970 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1971 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1972 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1973 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1974 break;
1975 }
1976
1977 default:
1978 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1979 be32_to_cpu(cmd->action_to_len16));
1980 return;
1981 }
1982
1983 fec = fwcap_to_cc_fec(acaps);
1984 adv_fc = fwcap_to_cc_pause(acaps);
1985 fc = fwcap_to_cc_pause(linkattr);
1986 speed = fwcap_to_speed(linkattr);
1987
1988 if (mod_type != pi->mod_type) {
1989 /* When a new Transceiver Module is inserted, the Firmware
1990 * will examine any Forward Error Correction parameters
1991 * present in the Transceiver Module i2c EPROM and determine
1992 * the supported and recommended FEC settings from those
1993 * based on IEEE 802.3 standards. We always record the
1994 * IEEE 802.3 recommended "automatic" settings.
1995 */
1996 lc->auto_fec = fec;
1997
1998 /* Some versions of the early T6 Firmware "cheated" when
1999 * handling different Transceiver Modules by changing the
2000 * underlaying Port Type reported to the Host Drivers. As
2001 * such we need to capture whatever Port Type the Firmware
2002 * sends us and record it in case it's different from what we
2003 * were told earlier. Unfortunately, since Firmware is
2004 * forever, we'll need to keep this code here forever, but in
2005 * later T6 Firmware it should just be an assignment of the
2006 * same value already recorded.
2007 */
2008 pi->port_type = port_type;
2009
2010 pi->mod_type = mod_type;
2011 t4vf_os_portmod_changed(adapter, pi->pidx);
2012 }
2013
2014 if (link_ok != lc->link_ok || speed != lc->speed ||
2015 fc != lc->fc || adv_fc != lc->advertised_fc ||
2016 fec != lc->fec) {
2017 /* something changed */
2018 if (!link_ok && lc->link_ok) {
2019 lc->link_down_rc = linkdnrc;
2020 dev_warn_ratelimited(adapter->pdev_dev,
2021 "Port %d link down, reason: %s\n",
2022 pi->port_id,
2023 t4vf_link_down_rc_str(linkdnrc));
2024 }
2025 lc->link_ok = link_ok;
2026 lc->speed = speed;
2027 lc->advertised_fc = adv_fc;
2028 lc->fc = fc;
2029 lc->fec = fec;
2030
2031 lc->pcaps = pcaps;
2032 lc->lpacaps = lpacaps;
2033 lc->acaps = acaps & ADVERT_MASK;
2034
2035 /* If we're not physically capable of Auto-Negotiation, note
2036 * this as Auto-Negotiation disabled. Otherwise, we track
2037 * what Auto-Negotiation settings we have. Note parallel
2038 * structure in init_link_config().
2039 */
2040 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2041 lc->autoneg = AUTONEG_DISABLE;
2042 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2043 lc->autoneg = AUTONEG_ENABLE;
2044 } else {
2045 /* When Autoneg is disabled, user needs to set
2046 * single speed.
2047 * Similar to cxgb4_ethtool.c: set_link_ksettings
2048 */
2049 lc->acaps = 0;
2050 lc->speed_caps = fwcap_to_speed(acaps);
2051 lc->autoneg = AUTONEG_DISABLE;
2052 }
2053
2054 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2055 }
2056 }
2057
2058 /**
2059 * t4vf_update_port_info - retrieve and update port information if changed
2060 * @pi: the port_info
2061 *
2062 * We issue a Get Port Information Command to the Firmware and, if
2063 * successful, we check to see if anything is different from what we
2064 * last recorded and update things accordingly.
2065 */
t4vf_update_port_info(struct port_info * pi)2066 int t4vf_update_port_info(struct port_info *pi)
2067 {
2068 unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2069 struct fw_port_cmd port_cmd;
2070 int ret;
2071
2072 memset(&port_cmd, 0, sizeof(port_cmd));
2073 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2074 FW_CMD_REQUEST_F | FW_CMD_READ_F |
2075 FW_PORT_CMD_PORTID_V(pi->port_id));
2076 port_cmd.action_to_len16 = cpu_to_be32(
2077 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2078 ? FW_PORT_ACTION_GET_PORT_INFO
2079 : FW_PORT_ACTION_GET_PORT_INFO32) |
2080 FW_LEN16(port_cmd));
2081 ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2082 &port_cmd);
2083 if (ret)
2084 return ret;
2085 t4vf_handle_get_port_info(pi, &port_cmd);
2086 return 0;
2087 }
2088
2089 /**
2090 * t4vf_handle_fw_rpl - process a firmware reply message
2091 * @adapter: the adapter
2092 * @rpl: start of the firmware message
2093 *
2094 * Processes a firmware message, such as link state change messages.
2095 */
t4vf_handle_fw_rpl(struct adapter * adapter,const __be64 * rpl)2096 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2097 {
2098 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2099 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2100
2101 switch (opcode) {
2102 case FW_PORT_CMD: {
2103 /*
2104 * Link/module state change message.
2105 */
2106 const struct fw_port_cmd *port_cmd =
2107 (const struct fw_port_cmd *)rpl;
2108 int action = FW_PORT_CMD_ACTION_G(
2109 be32_to_cpu(port_cmd->action_to_len16));
2110 int port_id, pidx;
2111
2112 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2113 action != FW_PORT_ACTION_GET_PORT_INFO32) {
2114 dev_err(adapter->pdev_dev,
2115 "Unknown firmware PORT reply action %x\n",
2116 action);
2117 break;
2118 }
2119
2120 port_id = FW_PORT_CMD_PORTID_G(
2121 be32_to_cpu(port_cmd->op_to_portid));
2122 for_each_port(adapter, pidx) {
2123 struct port_info *pi = adap2pinfo(adapter, pidx);
2124
2125 if (pi->port_id != port_id)
2126 continue;
2127 t4vf_handle_get_port_info(pi, port_cmd);
2128 }
2129 break;
2130 }
2131
2132 default:
2133 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2134 opcode);
2135 }
2136 return 0;
2137 }
2138
t4vf_prep_adapter(struct adapter * adapter)2139 int t4vf_prep_adapter(struct adapter *adapter)
2140 {
2141 int err;
2142 unsigned int chipid;
2143
2144 /* Wait for the device to become ready before proceeding ...
2145 */
2146 err = t4vf_wait_dev_ready(adapter);
2147 if (err)
2148 return err;
2149
2150 /* Default port and clock for debugging in case we can't reach
2151 * firmware.
2152 */
2153 adapter->params.nports = 1;
2154 adapter->params.vfres.pmask = 1;
2155 adapter->params.vpd.cclk = 50000;
2156
2157 adapter->params.chip = 0;
2158 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2159 case CHELSIO_T4:
2160 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2161 adapter->params.arch.sge_fl_db = DBPRIO_F;
2162 adapter->params.arch.mps_tcam_size =
2163 NUM_MPS_CLS_SRAM_L_INSTANCES;
2164 break;
2165
2166 case CHELSIO_T5:
2167 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2168 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2169 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2170 adapter->params.arch.mps_tcam_size =
2171 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2172 break;
2173
2174 case CHELSIO_T6:
2175 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2176 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2177 adapter->params.arch.sge_fl_db = 0;
2178 adapter->params.arch.mps_tcam_size =
2179 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2180 break;
2181 }
2182
2183 return 0;
2184 }
2185
2186 /**
2187 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
2188 * the VI of this VF.
2189 * @adapter: The adapter
2190 * @port: The port associated with vf
2191 * @naddr: the number of ACL MAC addresses returned in addr
2192 * @addr: Placeholder for MAC addresses
2193 *
2194 * Find the MAC address to be set to the VF's VI. The requested MAC address
2195 * is from the host OS via callback in the PF driver.
2196 */
t4vf_get_vf_mac_acl(struct adapter * adapter,unsigned int port,unsigned int * naddr,u8 * addr)2197 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
2198 unsigned int *naddr, u8 *addr)
2199 {
2200 struct fw_acl_mac_cmd cmd;
2201 int ret;
2202
2203 memset(&cmd, 0, sizeof(cmd));
2204 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2205 FW_CMD_REQUEST_F |
2206 FW_CMD_READ_F);
2207 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2208 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2209 if (ret)
2210 return ret;
2211
2212 if (cmd.nmac < *naddr)
2213 *naddr = cmd.nmac;
2214
2215 switch (port) {
2216 case 3:
2217 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2218 break;
2219 case 2:
2220 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2221 break;
2222 case 1:
2223 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2224 break;
2225 case 0:
2226 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2227 break;
2228 }
2229
2230 return ret;
2231 }
2232
2233 /**
2234 * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2235 * the VI of this VF.
2236 * @adapter: The adapter
2237 *
2238 * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2239 * is from the host OS via callback in the PF driver.
2240 */
t4vf_get_vf_vlan_acl(struct adapter * adapter)2241 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2242 {
2243 struct fw_acl_vlan_cmd cmd;
2244 int vlan = 0;
2245 int ret = 0;
2246
2247 cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2248 FW_CMD_REQUEST_F | FW_CMD_READ_F);
2249
2250 /* Note: Do not enable the ACL */
2251 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2252
2253 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2254
2255 if (!ret)
2256 vlan = be16_to_cpu(cmd.vlanid[0]);
2257
2258 return vlan;
2259 }
2260