1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16
17 #include "tb.h"
18
19 /* Switch NVM support */
20
21 #define NVM_CSS 0x10
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
32 };
33
34 /*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41
__nvm_get_auth_status(const struct tb_switch * sw)42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 if (uuid_equal(&st->uuid, sw->uuid))
48 return st;
49 }
50
51 return NULL;
52 }
53
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63 }
64
nvm_set_auth_status(const struct tb_switch * sw,u32 status)65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86 unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88 }
89
nvm_clear_auth_status(const struct tb_switch * sw)90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101 }
102
nvm_validate_and_write(struct tb_switch * sw)103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
162 if (tb_switch_is_usb4(sw))
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
169 }
170
nvm_authenticate_host_dma_port(struct tb_switch * sw)171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 int ret = 0;
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
179 */
180 if (!sw->safe_mode) {
181 u32 status;
182
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
209 }
210
nvm_authenticate_device_dma_port(struct tb_switch * sw)211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
225 }
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254 }
255
nvm_authenticate_start_dma_port(struct tb_switch * sw)256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269 }
270
nvm_authenticate_complete_dma_port(struct tb_switch * sw)271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 struct pci_dev *root_port;
274
275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278 }
279
nvm_readable(struct tb_switch * sw)280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294 }
295
nvm_upgradeable(struct tb_switch * sw)296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301 }
302
nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305 {
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310
nvm_authenticate(struct tb_switch * sw)311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326 }
327
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330 {
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 int ret;
334
335 pm_runtime_get_sync(&sw->dev);
336
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
340 }
341
342 ret = nvm_read(sw, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 out:
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
348
349 return ret;
350 }
351
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
354 {
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
358
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
361
362 /*
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
367 */
368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 mutex_unlock(&sw->tb->lock);
370
371 return ret;
372 }
373
tb_switch_nvm_add(struct tb_switch * sw)374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 struct tb_nvm *nvm;
377 u32 val;
378 int ret;
379
380 if (!nvm_readable(sw))
381 return 0;
382
383 /*
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
387 */
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
394 }
395
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
399
400 /*
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
404 */
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
407
408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 if (ret)
410 goto err_nvm;
411
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
415
416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 if (ret)
418 goto err_nvm;
419
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
422
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
426 }
427
428 if (!sw->no_nvm_upgrade) {
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
433 }
434
435 sw->nvm = nvm;
436 return 0;
437
438 err_nvm:
439 tb_nvm_free(nvm);
440 return ret;
441 }
442
tb_switch_nvm_remove(struct tb_switch * sw)443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 struct tb_nvm *nvm;
446
447 nvm = sw->nvm;
448 sw->nvm = NULL;
449
450 if (!nvm)
451 return;
452
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
456
457 tb_nvm_free(nvm);
458 }
459
460 /* port utility functions */
461
tb_port_type(struct tb_regs_port_header * port)462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
475 }
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
488 }
489 }
490
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
502 }
503
504 /**
505 * tb_port_state() - get connectedness state of a port
506 *
507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508 *
509 * Return: Returns an enum tb_port_state on success or an error code on failure.
510 */
tb_port_state(struct tb_port * port)511 static int tb_port_state(struct tb_port *port)
512 {
513 struct tb_cap_phy phy;
514 int res;
515 if (port->cap_phy == 0) {
516 tb_port_WARN(port, "does not have a PHY\n");
517 return -EINVAL;
518 }
519 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 if (res)
521 return res;
522 return phy.state;
523 }
524
525 /**
526 * tb_wait_for_port() - wait for a port to become ready
527 *
528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529 * wait_if_unplugged is set then we also wait if the port is in state
530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531 * switch resume). Otherwise we only wait if a device is registered but the link
532 * has not yet been established.
533 *
534 * Return: Returns an error code on failure. Returns 0 if the port is not
535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536 * if the port is connected and in state TB_PORT_UP.
537 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539 {
540 int retries = 10;
541 int state;
542 if (!port->cap_phy) {
543 tb_port_WARN(port, "does not have PHY\n");
544 return -EINVAL;
545 }
546 if (tb_is_upstream_port(port)) {
547 tb_port_WARN(port, "is the upstream port\n");
548 return -EINVAL;
549 }
550
551 while (retries--) {
552 state = tb_port_state(port);
553 if (state < 0)
554 return state;
555 if (state == TB_PORT_DISABLED) {
556 tb_port_dbg(port, "is disabled (state: 0)\n");
557 return 0;
558 }
559 if (state == TB_PORT_UNPLUGGED) {
560 if (wait_if_unplugged) {
561 /* used during resume */
562 tb_port_dbg(port,
563 "is unplugged (state: 7), retrying...\n");
564 msleep(100);
565 continue;
566 }
567 tb_port_dbg(port, "is unplugged (state: 7)\n");
568 return 0;
569 }
570 if (state == TB_PORT_UP) {
571 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 return 1;
573 }
574
575 /*
576 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 * time.
578 */
579 tb_port_dbg(port,
580 "is connected, link is not up (state: %d), retrying...\n",
581 state);
582 msleep(100);
583 }
584 tb_port_warn(port,
585 "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 return 0;
587 }
588
589 /**
590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591 *
592 * Change the number of NFC credits allocated to @port by @credits. To remove
593 * NFC credits pass a negative amount of credits.
594 *
595 * Return: Returns 0 on success or an error code on failure.
596 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)597 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598 {
599 u32 nfc_credits;
600
601 if (credits == 0 || port->sw->is_unplugged)
602 return 0;
603
604 /*
605 * USB4 restricts programming NFC buffers to lane adapters only
606 * so skip other ports.
607 */
608 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
609 return 0;
610
611 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
612 nfc_credits += credits;
613
614 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
615 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
616
617 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
618 port->config.nfc_credits |= nfc_credits;
619
620 return tb_port_write(port, &port->config.nfc_credits,
621 TB_CFG_PORT, ADP_CS_4, 1);
622 }
623
624 /**
625 * tb_port_set_initial_credits() - Set initial port link credits allocated
626 * @port: Port to set the initial credits
627 * @credits: Number of credits to to allocate
628 *
629 * Set initial credits value to be used for ingress shared buffering.
630 */
tb_port_set_initial_credits(struct tb_port * port,u32 credits)631 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
632 {
633 u32 data;
634 int ret;
635
636 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637 if (ret)
638 return ret;
639
640 data &= ~ADP_CS_5_LCA_MASK;
641 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
642
643 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
644 }
645
646 /**
647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648 *
649 * Return: Returns 0 on success or an error code on failure.
650 */
tb_port_clear_counter(struct tb_port * port,int counter)651 int tb_port_clear_counter(struct tb_port *port, int counter)
652 {
653 u32 zero[3] = { 0, 0, 0 };
654 tb_port_dbg(port, "clearing counter %d\n", counter);
655 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
656 }
657
658 /**
659 * tb_port_unlock() - Unlock downstream port
660 * @port: Port to unlock
661 *
662 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
663 * downstream router accessible for CM.
664 */
tb_port_unlock(struct tb_port * port)665 int tb_port_unlock(struct tb_port *port)
666 {
667 if (tb_switch_is_icm(port->sw))
668 return 0;
669 if (!tb_port_is_null(port))
670 return -EINVAL;
671 if (tb_switch_is_usb4(port->sw))
672 return usb4_port_unlock(port);
673 return 0;
674 }
675
__tb_port_enable(struct tb_port * port,bool enable)676 static int __tb_port_enable(struct tb_port *port, bool enable)
677 {
678 int ret;
679 u32 phy;
680
681 if (!tb_port_is_null(port))
682 return -EINVAL;
683
684 ret = tb_port_read(port, &phy, TB_CFG_PORT,
685 port->cap_phy + LANE_ADP_CS_1, 1);
686 if (ret)
687 return ret;
688
689 if (enable)
690 phy &= ~LANE_ADP_CS_1_LD;
691 else
692 phy |= LANE_ADP_CS_1_LD;
693
694 return tb_port_write(port, &phy, TB_CFG_PORT,
695 port->cap_phy + LANE_ADP_CS_1, 1);
696 }
697
698 /**
699 * tb_port_enable() - Enable lane adapter
700 * @port: Port to enable (can be %NULL)
701 *
702 * This is used for lane 0 and 1 adapters to enable it.
703 */
tb_port_enable(struct tb_port * port)704 int tb_port_enable(struct tb_port *port)
705 {
706 return __tb_port_enable(port, true);
707 }
708
709 /**
710 * tb_port_disable() - Disable lane adapter
711 * @port: Port to disable (can be %NULL)
712 *
713 * This is used for lane 0 and 1 adapters to disable it.
714 */
tb_port_disable(struct tb_port * port)715 int tb_port_disable(struct tb_port *port)
716 {
717 return __tb_port_enable(port, false);
718 }
719
720 /**
721 * tb_init_port() - initialize a port
722 *
723 * This is a helper method for tb_switch_alloc. Does not check or initialize
724 * any downstream switches.
725 *
726 * Return: Returns 0 on success or an error code on failure.
727 */
tb_init_port(struct tb_port * port)728 static int tb_init_port(struct tb_port *port)
729 {
730 int res;
731 int cap;
732
733 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
734 if (res) {
735 if (res == -ENODEV) {
736 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 port->port);
738 port->disabled = true;
739 return 0;
740 }
741 return res;
742 }
743
744 /* Port 0 is the switch itself and has no PHY. */
745 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
746 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
747
748 if (cap > 0)
749 port->cap_phy = cap;
750 else
751 tb_port_WARN(port, "non switch port without a PHY\n");
752
753 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 if (cap > 0)
755 port->cap_usb4 = cap;
756 } else if (port->port != 0) {
757 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
758 if (cap > 0)
759 port->cap_adap = cap;
760 }
761
762 tb_dump_port(port->sw->tb, &port->config);
763
764 INIT_LIST_HEAD(&port->list);
765 return 0;
766
767 }
768
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)769 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
770 int max_hopid)
771 {
772 int port_max_hopid;
773 struct ida *ida;
774
775 if (in) {
776 port_max_hopid = port->config.max_in_hop_id;
777 ida = &port->in_hopids;
778 } else {
779 port_max_hopid = port->config.max_out_hop_id;
780 ida = &port->out_hopids;
781 }
782
783 /*
784 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
785 * reserved.
786 */
787 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
788 min_hopid = TB_PATH_MIN_HOPID;
789
790 if (max_hopid < 0 || max_hopid > port_max_hopid)
791 max_hopid = port_max_hopid;
792
793 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
794 }
795
796 /**
797 * tb_port_alloc_in_hopid() - Allocate input HopID from port
798 * @port: Port to allocate HopID for
799 * @min_hopid: Minimum acceptable input HopID
800 * @max_hopid: Maximum acceptable input HopID
801 *
802 * Return: HopID between @min_hopid and @max_hopid or negative errno in
803 * case of error.
804 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)805 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
806 {
807 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
808 }
809
810 /**
811 * tb_port_alloc_out_hopid() - Allocate output HopID from port
812 * @port: Port to allocate HopID for
813 * @min_hopid: Minimum acceptable output HopID
814 * @max_hopid: Maximum acceptable output HopID
815 *
816 * Return: HopID between @min_hopid and @max_hopid or negative errno in
817 * case of error.
818 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)819 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
820 {
821 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
822 }
823
824 /**
825 * tb_port_release_in_hopid() - Release allocated input HopID from port
826 * @port: Port whose HopID to release
827 * @hopid: HopID to release
828 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)829 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
830 {
831 ida_simple_remove(&port->in_hopids, hopid);
832 }
833
834 /**
835 * tb_port_release_out_hopid() - Release allocated output HopID from port
836 * @port: Port whose HopID to release
837 * @hopid: HopID to release
838 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)839 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
840 {
841 ida_simple_remove(&port->out_hopids, hopid);
842 }
843
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)844 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
845 const struct tb_switch *sw)
846 {
847 u64 mask = (1ULL << parent->config.depth * 8) - 1;
848 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
849 }
850
851 /**
852 * tb_next_port_on_path() - Return next port for given port on a path
853 * @start: Start port of the walk
854 * @end: End port of the walk
855 * @prev: Previous port (%NULL if this is the first)
856 *
857 * This function can be used to walk from one port to another if they
858 * are connected through zero or more switches. If the @prev is dual
859 * link port, the function follows that link and returns another end on
860 * that same link.
861 *
862 * If the @end port has been reached, return %NULL.
863 *
864 * Domain tb->lock must be held when this function is called.
865 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)866 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
867 struct tb_port *prev)
868 {
869 struct tb_port *next;
870
871 if (!prev)
872 return start;
873
874 if (prev->sw == end->sw) {
875 if (prev == end)
876 return NULL;
877 return end;
878 }
879
880 if (tb_switch_is_reachable(prev->sw, end->sw)) {
881 next = tb_port_at(tb_route(end->sw), prev->sw);
882 /* Walk down the topology if next == prev */
883 if (prev->remote &&
884 (next == prev || next->dual_link_port == prev))
885 next = prev->remote;
886 } else {
887 if (tb_is_upstream_port(prev)) {
888 next = prev->remote;
889 } else {
890 next = tb_upstream_port(prev->sw);
891 /*
892 * Keep the same link if prev and next are both
893 * dual link ports.
894 */
895 if (next->dual_link_port &&
896 next->link_nr != prev->link_nr) {
897 next = next->dual_link_port;
898 }
899 }
900 }
901
902 return next != prev ? next : NULL;
903 }
904
905 /**
906 * tb_port_get_link_speed() - Get current link speed
907 * @port: Port to check (USB4 or CIO)
908 *
909 * Returns link speed in Gb/s or negative errno in case of failure.
910 */
tb_port_get_link_speed(struct tb_port * port)911 int tb_port_get_link_speed(struct tb_port *port)
912 {
913 u32 val, speed;
914 int ret;
915
916 if (!port->cap_phy)
917 return -EINVAL;
918
919 ret = tb_port_read(port, &val, TB_CFG_PORT,
920 port->cap_phy + LANE_ADP_CS_1, 1);
921 if (ret)
922 return ret;
923
924 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
925 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
926 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
927 }
928
tb_port_get_link_width(struct tb_port * port)929 static int tb_port_get_link_width(struct tb_port *port)
930 {
931 u32 val;
932 int ret;
933
934 if (!port->cap_phy)
935 return -EINVAL;
936
937 ret = tb_port_read(port, &val, TB_CFG_PORT,
938 port->cap_phy + LANE_ADP_CS_1, 1);
939 if (ret)
940 return ret;
941
942 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
943 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
944 }
945
tb_port_is_width_supported(struct tb_port * port,int width)946 static bool tb_port_is_width_supported(struct tb_port *port, int width)
947 {
948 u32 phy, widths;
949 int ret;
950
951 if (!port->cap_phy)
952 return false;
953
954 ret = tb_port_read(port, &phy, TB_CFG_PORT,
955 port->cap_phy + LANE_ADP_CS_0, 1);
956 if (ret)
957 return false;
958
959 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
960 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
961
962 return !!(widths & width);
963 }
964
tb_port_set_link_width(struct tb_port * port,unsigned int width)965 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
966 {
967 u32 val;
968 int ret;
969
970 if (!port->cap_phy)
971 return -EINVAL;
972
973 ret = tb_port_read(port, &val, TB_CFG_PORT,
974 port->cap_phy + LANE_ADP_CS_1, 1);
975 if (ret)
976 return ret;
977
978 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
979 switch (width) {
980 case 1:
981 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
982 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
983 break;
984 case 2:
985 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
986 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
987 break;
988 default:
989 return -EINVAL;
990 }
991
992 val |= LANE_ADP_CS_1_LB;
993
994 return tb_port_write(port, &val, TB_CFG_PORT,
995 port->cap_phy + LANE_ADP_CS_1, 1);
996 }
997
tb_port_lane_bonding_enable(struct tb_port * port)998 static int tb_port_lane_bonding_enable(struct tb_port *port)
999 {
1000 int ret;
1001
1002 /*
1003 * Enable lane bonding for both links if not already enabled by
1004 * for example the boot firmware.
1005 */
1006 ret = tb_port_get_link_width(port);
1007 if (ret == 1) {
1008 ret = tb_port_set_link_width(port, 2);
1009 if (ret)
1010 return ret;
1011 }
1012
1013 ret = tb_port_get_link_width(port->dual_link_port);
1014 if (ret == 1) {
1015 ret = tb_port_set_link_width(port->dual_link_port, 2);
1016 if (ret) {
1017 tb_port_set_link_width(port, 1);
1018 return ret;
1019 }
1020 }
1021
1022 port->bonded = true;
1023 port->dual_link_port->bonded = true;
1024
1025 return 0;
1026 }
1027
tb_port_lane_bonding_disable(struct tb_port * port)1028 static void tb_port_lane_bonding_disable(struct tb_port *port)
1029 {
1030 port->dual_link_port->bonded = false;
1031 port->bonded = false;
1032
1033 tb_port_set_link_width(port->dual_link_port, 1);
1034 tb_port_set_link_width(port, 1);
1035 }
1036
1037 /**
1038 * tb_port_is_enabled() - Is the adapter port enabled
1039 * @port: Port to check
1040 */
tb_port_is_enabled(struct tb_port * port)1041 bool tb_port_is_enabled(struct tb_port *port)
1042 {
1043 switch (port->config.type) {
1044 case TB_TYPE_PCIE_UP:
1045 case TB_TYPE_PCIE_DOWN:
1046 return tb_pci_port_is_enabled(port);
1047
1048 case TB_TYPE_DP_HDMI_IN:
1049 case TB_TYPE_DP_HDMI_OUT:
1050 return tb_dp_port_is_enabled(port);
1051
1052 case TB_TYPE_USB3_UP:
1053 case TB_TYPE_USB3_DOWN:
1054 return tb_usb3_port_is_enabled(port);
1055
1056 default:
1057 return false;
1058 }
1059 }
1060
1061 /**
1062 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1063 * @port: USB3 adapter port to check
1064 */
tb_usb3_port_is_enabled(struct tb_port * port)1065 bool tb_usb3_port_is_enabled(struct tb_port *port)
1066 {
1067 u32 data;
1068
1069 if (tb_port_read(port, &data, TB_CFG_PORT,
1070 port->cap_adap + ADP_USB3_CS_0, 1))
1071 return false;
1072
1073 return !!(data & ADP_USB3_CS_0_PE);
1074 }
1075
1076 /**
1077 * tb_usb3_port_enable() - Enable USB3 adapter port
1078 * @port: USB3 adapter port to enable
1079 * @enable: Enable/disable the USB3 adapter
1080 */
tb_usb3_port_enable(struct tb_port * port,bool enable)1081 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1082 {
1083 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1084 : ADP_USB3_CS_0_V;
1085
1086 if (!port->cap_adap)
1087 return -ENXIO;
1088 return tb_port_write(port, &word, TB_CFG_PORT,
1089 port->cap_adap + ADP_USB3_CS_0, 1);
1090 }
1091
1092 /**
1093 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1094 * @port: PCIe port to check
1095 */
tb_pci_port_is_enabled(struct tb_port * port)1096 bool tb_pci_port_is_enabled(struct tb_port *port)
1097 {
1098 u32 data;
1099
1100 if (tb_port_read(port, &data, TB_CFG_PORT,
1101 port->cap_adap + ADP_PCIE_CS_0, 1))
1102 return false;
1103
1104 return !!(data & ADP_PCIE_CS_0_PE);
1105 }
1106
1107 /**
1108 * tb_pci_port_enable() - Enable PCIe adapter port
1109 * @port: PCIe port to enable
1110 * @enable: Enable/disable the PCIe adapter
1111 */
tb_pci_port_enable(struct tb_port * port,bool enable)1112 int tb_pci_port_enable(struct tb_port *port, bool enable)
1113 {
1114 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1115 if (!port->cap_adap)
1116 return -ENXIO;
1117 return tb_port_write(port, &word, TB_CFG_PORT,
1118 port->cap_adap + ADP_PCIE_CS_0, 1);
1119 }
1120
1121 /**
1122 * tb_dp_port_hpd_is_active() - Is HPD already active
1123 * @port: DP out port to check
1124 *
1125 * Checks if the DP OUT adapter port has HDP bit already set.
1126 */
tb_dp_port_hpd_is_active(struct tb_port * port)1127 int tb_dp_port_hpd_is_active(struct tb_port *port)
1128 {
1129 u32 data;
1130 int ret;
1131
1132 ret = tb_port_read(port, &data, TB_CFG_PORT,
1133 port->cap_adap + ADP_DP_CS_2, 1);
1134 if (ret)
1135 return ret;
1136
1137 return !!(data & ADP_DP_CS_2_HDP);
1138 }
1139
1140 /**
1141 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1142 * @port: Port to clear HPD
1143 *
1144 * If the DP IN port has HDP set, this function can be used to clear it.
1145 */
tb_dp_port_hpd_clear(struct tb_port * port)1146 int tb_dp_port_hpd_clear(struct tb_port *port)
1147 {
1148 u32 data;
1149 int ret;
1150
1151 ret = tb_port_read(port, &data, TB_CFG_PORT,
1152 port->cap_adap + ADP_DP_CS_3, 1);
1153 if (ret)
1154 return ret;
1155
1156 data |= ADP_DP_CS_3_HDPC;
1157 return tb_port_write(port, &data, TB_CFG_PORT,
1158 port->cap_adap + ADP_DP_CS_3, 1);
1159 }
1160
1161 /**
1162 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1163 * @port: DP IN/OUT port to set hops
1164 * @video: Video Hop ID
1165 * @aux_tx: AUX TX Hop ID
1166 * @aux_rx: AUX RX Hop ID
1167 *
1168 * Programs specified Hop IDs for DP IN/OUT port.
1169 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1170 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1171 unsigned int aux_tx, unsigned int aux_rx)
1172 {
1173 u32 data[2];
1174 int ret;
1175
1176 ret = tb_port_read(port, data, TB_CFG_PORT,
1177 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1178 if (ret)
1179 return ret;
1180
1181 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1182 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1183 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1184
1185 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1186 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1187 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1188 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1189 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190
1191 return tb_port_write(port, data, TB_CFG_PORT,
1192 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1193 }
1194
1195 /**
1196 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1197 * @port: DP adapter port to check
1198 */
tb_dp_port_is_enabled(struct tb_port * port)1199 bool tb_dp_port_is_enabled(struct tb_port *port)
1200 {
1201 u32 data[2];
1202
1203 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1204 ARRAY_SIZE(data)))
1205 return false;
1206
1207 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1208 }
1209
1210 /**
1211 * tb_dp_port_enable() - Enables/disables DP paths of a port
1212 * @port: DP IN/OUT port
1213 * @enable: Enable/disable DP path
1214 *
1215 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1216 * calling this function.
1217 */
tb_dp_port_enable(struct tb_port * port,bool enable)1218 int tb_dp_port_enable(struct tb_port *port, bool enable)
1219 {
1220 u32 data[2];
1221 int ret;
1222
1223 ret = tb_port_read(port, data, TB_CFG_PORT,
1224 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1225 if (ret)
1226 return ret;
1227
1228 if (enable)
1229 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1230 else
1231 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1232
1233 return tb_port_write(port, data, TB_CFG_PORT,
1234 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1235 }
1236
1237 /* switch utility functions */
1238
tb_switch_generation_name(const struct tb_switch * sw)1239 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1240 {
1241 switch (sw->generation) {
1242 case 1:
1243 return "Thunderbolt 1";
1244 case 2:
1245 return "Thunderbolt 2";
1246 case 3:
1247 return "Thunderbolt 3";
1248 case 4:
1249 return "USB4";
1250 default:
1251 return "Unknown";
1252 }
1253 }
1254
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1255 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1256 {
1257 const struct tb_regs_switch_header *regs = &sw->config;
1258
1259 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1260 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1261 regs->revision, regs->thunderbolt_version);
1262 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1263 tb_dbg(tb, " Config:\n");
1264 tb_dbg(tb,
1265 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1266 regs->upstream_port_number, regs->depth,
1267 (((u64) regs->route_hi) << 32) | regs->route_lo,
1268 regs->enabled, regs->plug_events_delay);
1269 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1270 regs->__unknown1, regs->__unknown4);
1271 }
1272
1273 /**
1274 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1275 * @sw: Switch to reset
1276 *
1277 * Return: Returns 0 on success or an error code on failure.
1278 */
tb_switch_reset(struct tb_switch * sw)1279 int tb_switch_reset(struct tb_switch *sw)
1280 {
1281 struct tb_cfg_result res;
1282
1283 if (sw->generation > 1)
1284 return 0;
1285
1286 tb_sw_dbg(sw, "resetting switch\n");
1287
1288 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1289 TB_CFG_SWITCH, 2, 2);
1290 if (res.err)
1291 return res.err;
1292 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1293 if (res.err > 0)
1294 return -EIO;
1295 return res.err;
1296 }
1297
1298 /**
1299 * tb_plug_events_active() - enable/disable plug events on a switch
1300 *
1301 * Also configures a sane plug_events_delay of 255ms.
1302 *
1303 * Return: Returns 0 on success or an error code on failure.
1304 */
tb_plug_events_active(struct tb_switch * sw,bool active)1305 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1306 {
1307 u32 data;
1308 int res;
1309
1310 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1311 return 0;
1312
1313 sw->config.plug_events_delay = 0xff;
1314 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1315 if (res)
1316 return res;
1317
1318 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1319 if (res)
1320 return res;
1321
1322 if (active) {
1323 data = data & 0xFFFFFF83;
1324 switch (sw->config.device_id) {
1325 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1326 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1327 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1328 break;
1329 default:
1330 data |= 4;
1331 }
1332 } else {
1333 data = data | 0x7c;
1334 }
1335 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1336 sw->cap_plug_events + 1, 1);
1337 }
1338
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1339 static ssize_t authorized_show(struct device *dev,
1340 struct device_attribute *attr,
1341 char *buf)
1342 {
1343 struct tb_switch *sw = tb_to_switch(dev);
1344
1345 return sprintf(buf, "%u\n", sw->authorized);
1346 }
1347
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1348 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1349 {
1350 int ret = -EINVAL;
1351
1352 if (!mutex_trylock(&sw->tb->lock))
1353 return restart_syscall();
1354
1355 if (sw->authorized)
1356 goto unlock;
1357
1358 switch (val) {
1359 /* Approve switch */
1360 case 1:
1361 if (sw->key)
1362 ret = tb_domain_approve_switch_key(sw->tb, sw);
1363 else
1364 ret = tb_domain_approve_switch(sw->tb, sw);
1365 break;
1366
1367 /* Challenge switch */
1368 case 2:
1369 if (sw->key)
1370 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1371 break;
1372
1373 default:
1374 break;
1375 }
1376
1377 if (!ret) {
1378 sw->authorized = val;
1379 /* Notify status change to the userspace */
1380 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1381 }
1382
1383 unlock:
1384 mutex_unlock(&sw->tb->lock);
1385 return ret;
1386 }
1387
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1388 static ssize_t authorized_store(struct device *dev,
1389 struct device_attribute *attr,
1390 const char *buf, size_t count)
1391 {
1392 struct tb_switch *sw = tb_to_switch(dev);
1393 unsigned int val;
1394 ssize_t ret;
1395
1396 ret = kstrtouint(buf, 0, &val);
1397 if (ret)
1398 return ret;
1399 if (val > 2)
1400 return -EINVAL;
1401
1402 pm_runtime_get_sync(&sw->dev);
1403 ret = tb_switch_set_authorized(sw, val);
1404 pm_runtime_mark_last_busy(&sw->dev);
1405 pm_runtime_put_autosuspend(&sw->dev);
1406
1407 return ret ? ret : count;
1408 }
1409 static DEVICE_ATTR_RW(authorized);
1410
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1411 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1412 char *buf)
1413 {
1414 struct tb_switch *sw = tb_to_switch(dev);
1415
1416 return sprintf(buf, "%u\n", sw->boot);
1417 }
1418 static DEVICE_ATTR_RO(boot);
1419
device_show(struct device * dev,struct device_attribute * attr,char * buf)1420 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1421 char *buf)
1422 {
1423 struct tb_switch *sw = tb_to_switch(dev);
1424
1425 return sprintf(buf, "%#x\n", sw->device);
1426 }
1427 static DEVICE_ATTR_RO(device);
1428
1429 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1430 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1431 {
1432 struct tb_switch *sw = tb_to_switch(dev);
1433
1434 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1435 }
1436 static DEVICE_ATTR_RO(device_name);
1437
1438 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1439 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1440 {
1441 struct tb_switch *sw = tb_to_switch(dev);
1442
1443 return sprintf(buf, "%u\n", sw->generation);
1444 }
1445 static DEVICE_ATTR_RO(generation);
1446
key_show(struct device * dev,struct device_attribute * attr,char * buf)1447 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1448 char *buf)
1449 {
1450 struct tb_switch *sw = tb_to_switch(dev);
1451 ssize_t ret;
1452
1453 if (!mutex_trylock(&sw->tb->lock))
1454 return restart_syscall();
1455
1456 if (sw->key)
1457 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1458 else
1459 ret = sprintf(buf, "\n");
1460
1461 mutex_unlock(&sw->tb->lock);
1462 return ret;
1463 }
1464
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1465 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1466 const char *buf, size_t count)
1467 {
1468 struct tb_switch *sw = tb_to_switch(dev);
1469 u8 key[TB_SWITCH_KEY_SIZE];
1470 ssize_t ret = count;
1471 bool clear = false;
1472
1473 if (!strcmp(buf, "\n"))
1474 clear = true;
1475 else if (hex2bin(key, buf, sizeof(key)))
1476 return -EINVAL;
1477
1478 if (!mutex_trylock(&sw->tb->lock))
1479 return restart_syscall();
1480
1481 if (sw->authorized) {
1482 ret = -EBUSY;
1483 } else {
1484 kfree(sw->key);
1485 if (clear) {
1486 sw->key = NULL;
1487 } else {
1488 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1489 if (!sw->key)
1490 ret = -ENOMEM;
1491 }
1492 }
1493
1494 mutex_unlock(&sw->tb->lock);
1495 return ret;
1496 }
1497 static DEVICE_ATTR(key, 0600, key_show, key_store);
1498
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1499 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1500 char *buf)
1501 {
1502 struct tb_switch *sw = tb_to_switch(dev);
1503
1504 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1505 }
1506
1507 /*
1508 * Currently all lanes must run at the same speed but we expose here
1509 * both directions to allow possible asymmetric links in the future.
1510 */
1511 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1512 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1513
lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1514 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1515 char *buf)
1516 {
1517 struct tb_switch *sw = tb_to_switch(dev);
1518
1519 return sprintf(buf, "%u\n", sw->link_width);
1520 }
1521
1522 /*
1523 * Currently link has same amount of lanes both directions (1 or 2) but
1524 * expose them separately to allow possible asymmetric links in the future.
1525 */
1526 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1527 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1528
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1529 static ssize_t nvm_authenticate_show(struct device *dev,
1530 struct device_attribute *attr, char *buf)
1531 {
1532 struct tb_switch *sw = tb_to_switch(dev);
1533 u32 status;
1534
1535 nvm_get_auth_status(sw, &status);
1536 return sprintf(buf, "%#x\n", status);
1537 }
1538
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)1539 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1540 bool disconnect)
1541 {
1542 struct tb_switch *sw = tb_to_switch(dev);
1543 int val;
1544 int ret;
1545
1546 pm_runtime_get_sync(&sw->dev);
1547
1548 if (!mutex_trylock(&sw->tb->lock)) {
1549 ret = restart_syscall();
1550 goto exit_rpm;
1551 }
1552
1553 /* If NVMem devices are not yet added */
1554 if (!sw->nvm) {
1555 ret = -EAGAIN;
1556 goto exit_unlock;
1557 }
1558
1559 ret = kstrtoint(buf, 10, &val);
1560 if (ret)
1561 goto exit_unlock;
1562
1563 /* Always clear the authentication status */
1564 nvm_clear_auth_status(sw);
1565
1566 if (val > 0) {
1567 if (!sw->nvm->flushed) {
1568 if (!sw->nvm->buf) {
1569 ret = -EINVAL;
1570 goto exit_unlock;
1571 }
1572
1573 ret = nvm_validate_and_write(sw);
1574 if (ret || val == WRITE_ONLY)
1575 goto exit_unlock;
1576 }
1577 if (val == WRITE_AND_AUTHENTICATE) {
1578 if (disconnect) {
1579 ret = tb_lc_force_power(sw);
1580 } else {
1581 sw->nvm->authenticating = true;
1582 ret = nvm_authenticate(sw);
1583 }
1584 }
1585 }
1586
1587 exit_unlock:
1588 mutex_unlock(&sw->tb->lock);
1589 exit_rpm:
1590 pm_runtime_mark_last_busy(&sw->dev);
1591 pm_runtime_put_autosuspend(&sw->dev);
1592
1593 return ret;
1594 }
1595
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1596 static ssize_t nvm_authenticate_store(struct device *dev,
1597 struct device_attribute *attr, const char *buf, size_t count)
1598 {
1599 int ret = nvm_authenticate_sysfs(dev, buf, false);
1600 if (ret)
1601 return ret;
1602 return count;
1603 }
1604 static DEVICE_ATTR_RW(nvm_authenticate);
1605
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)1606 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1607 struct device_attribute *attr, char *buf)
1608 {
1609 return nvm_authenticate_show(dev, attr, buf);
1610 }
1611
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1612 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1613 struct device_attribute *attr, const char *buf, size_t count)
1614 {
1615 int ret;
1616
1617 ret = nvm_authenticate_sysfs(dev, buf, true);
1618 return ret ? ret : count;
1619 }
1620 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1621
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1622 static ssize_t nvm_version_show(struct device *dev,
1623 struct device_attribute *attr, char *buf)
1624 {
1625 struct tb_switch *sw = tb_to_switch(dev);
1626 int ret;
1627
1628 if (!mutex_trylock(&sw->tb->lock))
1629 return restart_syscall();
1630
1631 if (sw->safe_mode)
1632 ret = -ENODATA;
1633 else if (!sw->nvm)
1634 ret = -EAGAIN;
1635 else
1636 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1637
1638 mutex_unlock(&sw->tb->lock);
1639
1640 return ret;
1641 }
1642 static DEVICE_ATTR_RO(nvm_version);
1643
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1644 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1645 char *buf)
1646 {
1647 struct tb_switch *sw = tb_to_switch(dev);
1648
1649 return sprintf(buf, "%#x\n", sw->vendor);
1650 }
1651 static DEVICE_ATTR_RO(vendor);
1652
1653 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1654 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1655 {
1656 struct tb_switch *sw = tb_to_switch(dev);
1657
1658 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1659 }
1660 static DEVICE_ATTR_RO(vendor_name);
1661
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1662 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1663 char *buf)
1664 {
1665 struct tb_switch *sw = tb_to_switch(dev);
1666
1667 return sprintf(buf, "%pUb\n", sw->uuid);
1668 }
1669 static DEVICE_ATTR_RO(unique_id);
1670
1671 static struct attribute *switch_attrs[] = {
1672 &dev_attr_authorized.attr,
1673 &dev_attr_boot.attr,
1674 &dev_attr_device.attr,
1675 &dev_attr_device_name.attr,
1676 &dev_attr_generation.attr,
1677 &dev_attr_key.attr,
1678 &dev_attr_nvm_authenticate.attr,
1679 &dev_attr_nvm_authenticate_on_disconnect.attr,
1680 &dev_attr_nvm_version.attr,
1681 &dev_attr_rx_speed.attr,
1682 &dev_attr_rx_lanes.attr,
1683 &dev_attr_tx_speed.attr,
1684 &dev_attr_tx_lanes.attr,
1685 &dev_attr_vendor.attr,
1686 &dev_attr_vendor_name.attr,
1687 &dev_attr_unique_id.attr,
1688 NULL,
1689 };
1690
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1691 static umode_t switch_attr_is_visible(struct kobject *kobj,
1692 struct attribute *attr, int n)
1693 {
1694 struct device *dev = kobj_to_dev(kobj);
1695 struct tb_switch *sw = tb_to_switch(dev);
1696
1697 if (attr == &dev_attr_device.attr) {
1698 if (!sw->device)
1699 return 0;
1700 } else if (attr == &dev_attr_device_name.attr) {
1701 if (!sw->device_name)
1702 return 0;
1703 } else if (attr == &dev_attr_vendor.attr) {
1704 if (!sw->vendor)
1705 return 0;
1706 } else if (attr == &dev_attr_vendor_name.attr) {
1707 if (!sw->vendor_name)
1708 return 0;
1709 } else if (attr == &dev_attr_key.attr) {
1710 if (tb_route(sw) &&
1711 sw->tb->security_level == TB_SECURITY_SECURE &&
1712 sw->security_level == TB_SECURITY_SECURE)
1713 return attr->mode;
1714 return 0;
1715 } else if (attr == &dev_attr_rx_speed.attr ||
1716 attr == &dev_attr_rx_lanes.attr ||
1717 attr == &dev_attr_tx_speed.attr ||
1718 attr == &dev_attr_tx_lanes.attr) {
1719 if (tb_route(sw))
1720 return attr->mode;
1721 return 0;
1722 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1723 if (nvm_upgradeable(sw))
1724 return attr->mode;
1725 return 0;
1726 } else if (attr == &dev_attr_nvm_version.attr) {
1727 if (nvm_readable(sw))
1728 return attr->mode;
1729 return 0;
1730 } else if (attr == &dev_attr_boot.attr) {
1731 if (tb_route(sw))
1732 return attr->mode;
1733 return 0;
1734 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1735 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1736 return attr->mode;
1737 return 0;
1738 }
1739
1740 return sw->safe_mode ? 0 : attr->mode;
1741 }
1742
1743 static struct attribute_group switch_group = {
1744 .is_visible = switch_attr_is_visible,
1745 .attrs = switch_attrs,
1746 };
1747
1748 static const struct attribute_group *switch_groups[] = {
1749 &switch_group,
1750 NULL,
1751 };
1752
tb_switch_release(struct device * dev)1753 static void tb_switch_release(struct device *dev)
1754 {
1755 struct tb_switch *sw = tb_to_switch(dev);
1756 struct tb_port *port;
1757
1758 dma_port_free(sw->dma_port);
1759
1760 tb_switch_for_each_port(sw, port) {
1761 ida_destroy(&port->in_hopids);
1762 ida_destroy(&port->out_hopids);
1763 }
1764
1765 kfree(sw->uuid);
1766 kfree(sw->device_name);
1767 kfree(sw->vendor_name);
1768 kfree(sw->ports);
1769 kfree(sw->drom);
1770 kfree(sw->key);
1771 kfree(sw);
1772 }
1773
1774 /*
1775 * Currently only need to provide the callbacks. Everything else is handled
1776 * in the connection manager.
1777 */
tb_switch_runtime_suspend(struct device * dev)1778 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1779 {
1780 struct tb_switch *sw = tb_to_switch(dev);
1781 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1782
1783 if (cm_ops->runtime_suspend_switch)
1784 return cm_ops->runtime_suspend_switch(sw);
1785
1786 return 0;
1787 }
1788
tb_switch_runtime_resume(struct device * dev)1789 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1790 {
1791 struct tb_switch *sw = tb_to_switch(dev);
1792 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1793
1794 if (cm_ops->runtime_resume_switch)
1795 return cm_ops->runtime_resume_switch(sw);
1796 return 0;
1797 }
1798
1799 static const struct dev_pm_ops tb_switch_pm_ops = {
1800 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1801 NULL)
1802 };
1803
1804 struct device_type tb_switch_type = {
1805 .name = "thunderbolt_device",
1806 .release = tb_switch_release,
1807 .pm = &tb_switch_pm_ops,
1808 };
1809
tb_switch_get_generation(struct tb_switch * sw)1810 static int tb_switch_get_generation(struct tb_switch *sw)
1811 {
1812 switch (sw->config.device_id) {
1813 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1814 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1815 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1816 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1817 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1818 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1819 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1820 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1821 return 1;
1822
1823 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1824 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1825 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1826 return 2;
1827
1828 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1829 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1830 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1831 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1832 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1833 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1834 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1835 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1836 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1837 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1838 return 3;
1839
1840 default:
1841 if (tb_switch_is_usb4(sw))
1842 return 4;
1843
1844 /*
1845 * For unknown switches assume generation to be 1 to be
1846 * on the safe side.
1847 */
1848 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1849 sw->config.device_id);
1850 return 1;
1851 }
1852 }
1853
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)1854 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1855 {
1856 int max_depth;
1857
1858 if (tb_switch_is_usb4(sw) ||
1859 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1860 max_depth = USB4_SWITCH_MAX_DEPTH;
1861 else
1862 max_depth = TB_SWITCH_MAX_DEPTH;
1863
1864 return depth > max_depth;
1865 }
1866
1867 /**
1868 * tb_switch_alloc() - allocate a switch
1869 * @tb: Pointer to the owning domain
1870 * @parent: Parent device for this switch
1871 * @route: Route string for this switch
1872 *
1873 * Allocates and initializes a switch. Will not upload configuration to
1874 * the switch. For that you need to call tb_switch_configure()
1875 * separately. The returned switch should be released by calling
1876 * tb_switch_put().
1877 *
1878 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1879 * failure.
1880 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1881 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1882 u64 route)
1883 {
1884 struct tb_switch *sw;
1885 int upstream_port;
1886 int i, ret, depth;
1887
1888 /* Unlock the downstream port so we can access the switch below */
1889 if (route) {
1890 struct tb_switch *parent_sw = tb_to_switch(parent);
1891 struct tb_port *down;
1892
1893 down = tb_port_at(route, parent_sw);
1894 tb_port_unlock(down);
1895 }
1896
1897 depth = tb_route_length(route);
1898
1899 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1900 if (upstream_port < 0)
1901 return ERR_PTR(upstream_port);
1902
1903 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1904 if (!sw)
1905 return ERR_PTR(-ENOMEM);
1906
1907 sw->tb = tb;
1908 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1909 if (ret)
1910 goto err_free_sw_ports;
1911
1912 sw->generation = tb_switch_get_generation(sw);
1913
1914 tb_dbg(tb, "current switch config:\n");
1915 tb_dump_switch(tb, sw);
1916
1917 /* configure switch */
1918 sw->config.upstream_port_number = upstream_port;
1919 sw->config.depth = depth;
1920 sw->config.route_hi = upper_32_bits(route);
1921 sw->config.route_lo = lower_32_bits(route);
1922 sw->config.enabled = 0;
1923
1924 /* Make sure we do not exceed maximum topology limit */
1925 if (tb_switch_exceeds_max_depth(sw, depth)) {
1926 ret = -EADDRNOTAVAIL;
1927 goto err_free_sw_ports;
1928 }
1929
1930 /* initialize ports */
1931 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1932 GFP_KERNEL);
1933 if (!sw->ports) {
1934 ret = -ENOMEM;
1935 goto err_free_sw_ports;
1936 }
1937
1938 for (i = 0; i <= sw->config.max_port_number; i++) {
1939 /* minimum setup for tb_find_cap and tb_drom_read to work */
1940 sw->ports[i].sw = sw;
1941 sw->ports[i].port = i;
1942
1943 /* Control port does not need HopID allocation */
1944 if (i) {
1945 ida_init(&sw->ports[i].in_hopids);
1946 ida_init(&sw->ports[i].out_hopids);
1947 }
1948 }
1949
1950 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1951 if (ret > 0)
1952 sw->cap_plug_events = ret;
1953
1954 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1955 if (ret > 0)
1956 sw->cap_lc = ret;
1957
1958 /* Root switch is always authorized */
1959 if (!route)
1960 sw->authorized = true;
1961
1962 device_initialize(&sw->dev);
1963 sw->dev.parent = parent;
1964 sw->dev.bus = &tb_bus_type;
1965 sw->dev.type = &tb_switch_type;
1966 sw->dev.groups = switch_groups;
1967 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1968
1969 return sw;
1970
1971 err_free_sw_ports:
1972 kfree(sw->ports);
1973 kfree(sw);
1974
1975 return ERR_PTR(ret);
1976 }
1977
1978 /**
1979 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1980 * @tb: Pointer to the owning domain
1981 * @parent: Parent device for this switch
1982 * @route: Route string for this switch
1983 *
1984 * This creates a switch in safe mode. This means the switch pretty much
1985 * lacks all capabilities except DMA configuration port before it is
1986 * flashed with a valid NVM firmware.
1987 *
1988 * The returned switch must be released by calling tb_switch_put().
1989 *
1990 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1991 */
1992 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1993 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1994 {
1995 struct tb_switch *sw;
1996
1997 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1998 if (!sw)
1999 return ERR_PTR(-ENOMEM);
2000
2001 sw->tb = tb;
2002 sw->config.depth = tb_route_length(route);
2003 sw->config.route_hi = upper_32_bits(route);
2004 sw->config.route_lo = lower_32_bits(route);
2005 sw->safe_mode = true;
2006
2007 device_initialize(&sw->dev);
2008 sw->dev.parent = parent;
2009 sw->dev.bus = &tb_bus_type;
2010 sw->dev.type = &tb_switch_type;
2011 sw->dev.groups = switch_groups;
2012 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2013
2014 return sw;
2015 }
2016
2017 /**
2018 * tb_switch_configure() - Uploads configuration to the switch
2019 * @sw: Switch to configure
2020 *
2021 * Call this function before the switch is added to the system. It will
2022 * upload configuration to the switch and makes it available for the
2023 * connection manager to use. Can be called to the switch again after
2024 * resume from low power states to re-initialize it.
2025 *
2026 * Return: %0 in case of success and negative errno in case of failure
2027 */
tb_switch_configure(struct tb_switch * sw)2028 int tb_switch_configure(struct tb_switch *sw)
2029 {
2030 struct tb *tb = sw->tb;
2031 u64 route;
2032 int ret;
2033
2034 route = tb_route(sw);
2035
2036 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2037 sw->config.enabled ? "restoring" : "initializing", route,
2038 tb_route_length(route), sw->config.upstream_port_number);
2039
2040 sw->config.enabled = 1;
2041
2042 if (tb_switch_is_usb4(sw)) {
2043 /*
2044 * For USB4 devices, we need to program the CM version
2045 * accordingly so that it knows to expose all the
2046 * additional capabilities.
2047 */
2048 sw->config.cmuv = USB4_VERSION_1_0;
2049 sw->config.plug_events_delay = 0xa;
2050
2051 /* Enumerate the switch */
2052 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2053 ROUTER_CS_1, 4);
2054 if (ret)
2055 return ret;
2056
2057 ret = usb4_switch_setup(sw);
2058 } else {
2059 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2060 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2061 sw->config.vendor_id);
2062
2063 if (!sw->cap_plug_events) {
2064 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2065 return -ENODEV;
2066 }
2067
2068 /* Enumerate the switch */
2069 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2070 ROUTER_CS_1, 3);
2071 }
2072 if (ret)
2073 return ret;
2074
2075 return tb_plug_events_active(sw, true);
2076 }
2077
tb_switch_set_uuid(struct tb_switch * sw)2078 static int tb_switch_set_uuid(struct tb_switch *sw)
2079 {
2080 bool uid = false;
2081 u32 uuid[4];
2082 int ret;
2083
2084 if (sw->uuid)
2085 return 0;
2086
2087 if (tb_switch_is_usb4(sw)) {
2088 ret = usb4_switch_read_uid(sw, &sw->uid);
2089 if (ret)
2090 return ret;
2091 uid = true;
2092 } else {
2093 /*
2094 * The newer controllers include fused UUID as part of
2095 * link controller specific registers
2096 */
2097 ret = tb_lc_read_uuid(sw, uuid);
2098 if (ret) {
2099 if (ret != -EINVAL)
2100 return ret;
2101 uid = true;
2102 }
2103 }
2104
2105 if (uid) {
2106 /*
2107 * ICM generates UUID based on UID and fills the upper
2108 * two words with ones. This is not strictly following
2109 * UUID format but we want to be compatible with it so
2110 * we do the same here.
2111 */
2112 uuid[0] = sw->uid & 0xffffffff;
2113 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2114 uuid[2] = 0xffffffff;
2115 uuid[3] = 0xffffffff;
2116 }
2117
2118 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2119 if (!sw->uuid)
2120 return -ENOMEM;
2121 return 0;
2122 }
2123
tb_switch_add_dma_port(struct tb_switch * sw)2124 static int tb_switch_add_dma_port(struct tb_switch *sw)
2125 {
2126 u32 status;
2127 int ret;
2128
2129 switch (sw->generation) {
2130 case 2:
2131 /* Only root switch can be upgraded */
2132 if (tb_route(sw))
2133 return 0;
2134
2135 fallthrough;
2136 case 3:
2137 ret = tb_switch_set_uuid(sw);
2138 if (ret)
2139 return ret;
2140 break;
2141
2142 default:
2143 /*
2144 * DMA port is the only thing available when the switch
2145 * is in safe mode.
2146 */
2147 if (!sw->safe_mode)
2148 return 0;
2149 break;
2150 }
2151
2152 /* Root switch DMA port requires running firmware */
2153 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2154 return 0;
2155
2156 sw->dma_port = dma_port_alloc(sw);
2157 if (!sw->dma_port)
2158 return 0;
2159
2160 if (sw->no_nvm_upgrade)
2161 return 0;
2162
2163 /*
2164 * If there is status already set then authentication failed
2165 * when the dma_port_flash_update_auth() returned. Power cycling
2166 * is not needed (it was done already) so only thing we do here
2167 * is to unblock runtime PM of the root port.
2168 */
2169 nvm_get_auth_status(sw, &status);
2170 if (status) {
2171 if (!tb_route(sw))
2172 nvm_authenticate_complete_dma_port(sw);
2173 return 0;
2174 }
2175
2176 /*
2177 * Check status of the previous flash authentication. If there
2178 * is one we need to power cycle the switch in any case to make
2179 * it functional again.
2180 */
2181 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2182 if (ret <= 0)
2183 return ret;
2184
2185 /* Now we can allow root port to suspend again */
2186 if (!tb_route(sw))
2187 nvm_authenticate_complete_dma_port(sw);
2188
2189 if (status) {
2190 tb_sw_info(sw, "switch flash authentication failed\n");
2191 nvm_set_auth_status(sw, status);
2192 }
2193
2194 tb_sw_info(sw, "power cycling the switch now\n");
2195 dma_port_power_cycle(sw->dma_port);
2196
2197 /*
2198 * We return error here which causes the switch adding failure.
2199 * It should appear back after power cycle is complete.
2200 */
2201 return -ESHUTDOWN;
2202 }
2203
tb_switch_default_link_ports(struct tb_switch * sw)2204 static void tb_switch_default_link_ports(struct tb_switch *sw)
2205 {
2206 int i;
2207
2208 for (i = 1; i <= sw->config.max_port_number; i++) {
2209 struct tb_port *port = &sw->ports[i];
2210 struct tb_port *subordinate;
2211
2212 if (!tb_port_is_null(port))
2213 continue;
2214
2215 /* Check for the subordinate port */
2216 if (i == sw->config.max_port_number ||
2217 !tb_port_is_null(&sw->ports[i + 1]))
2218 continue;
2219
2220 /* Link them if not already done so (by DROM) */
2221 subordinate = &sw->ports[i + 1];
2222 if (!port->dual_link_port && !subordinate->dual_link_port) {
2223 port->link_nr = 0;
2224 port->dual_link_port = subordinate;
2225 subordinate->link_nr = 1;
2226 subordinate->dual_link_port = port;
2227
2228 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2229 port->port, subordinate->port);
2230 }
2231 }
2232 }
2233
tb_switch_lane_bonding_possible(struct tb_switch * sw)2234 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2235 {
2236 const struct tb_port *up = tb_upstream_port(sw);
2237
2238 if (!up->dual_link_port || !up->dual_link_port->remote)
2239 return false;
2240
2241 if (tb_switch_is_usb4(sw))
2242 return usb4_switch_lane_bonding_possible(sw);
2243 return tb_lc_lane_bonding_possible(sw);
2244 }
2245
tb_switch_update_link_attributes(struct tb_switch * sw)2246 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2247 {
2248 struct tb_port *up;
2249 bool change = false;
2250 int ret;
2251
2252 if (!tb_route(sw) || tb_switch_is_icm(sw))
2253 return 0;
2254
2255 up = tb_upstream_port(sw);
2256
2257 ret = tb_port_get_link_speed(up);
2258 if (ret < 0)
2259 return ret;
2260 if (sw->link_speed != ret)
2261 change = true;
2262 sw->link_speed = ret;
2263
2264 ret = tb_port_get_link_width(up);
2265 if (ret < 0)
2266 return ret;
2267 if (sw->link_width != ret)
2268 change = true;
2269 sw->link_width = ret;
2270
2271 /* Notify userspace that there is possible link attribute change */
2272 if (device_is_registered(&sw->dev) && change)
2273 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2274
2275 return 0;
2276 }
2277
2278 /**
2279 * tb_switch_lane_bonding_enable() - Enable lane bonding
2280 * @sw: Switch to enable lane bonding
2281 *
2282 * Connection manager can call this function to enable lane bonding of a
2283 * switch. If conditions are correct and both switches support the feature,
2284 * lanes are bonded. It is safe to call this to any switch.
2285 */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2286 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2287 {
2288 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2289 struct tb_port *up, *down;
2290 u64 route = tb_route(sw);
2291 int ret;
2292
2293 if (!route)
2294 return 0;
2295
2296 if (!tb_switch_lane_bonding_possible(sw))
2297 return 0;
2298
2299 up = tb_upstream_port(sw);
2300 down = tb_port_at(route, parent);
2301
2302 if (!tb_port_is_width_supported(up, 2) ||
2303 !tb_port_is_width_supported(down, 2))
2304 return 0;
2305
2306 /*
2307 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2308 * CL0 and check just for lane 1.
2309 */
2310 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2311 return -ENOTCONN;
2312
2313 ret = tb_port_lane_bonding_enable(up);
2314 if (ret) {
2315 tb_port_warn(up, "failed to enable lane bonding\n");
2316 return ret;
2317 }
2318
2319 ret = tb_port_lane_bonding_enable(down);
2320 if (ret) {
2321 tb_port_warn(down, "failed to enable lane bonding\n");
2322 tb_port_lane_bonding_disable(up);
2323 return ret;
2324 }
2325
2326 tb_switch_update_link_attributes(sw);
2327
2328 tb_sw_dbg(sw, "lane bonding enabled\n");
2329 return ret;
2330 }
2331
2332 /**
2333 * tb_switch_lane_bonding_disable() - Disable lane bonding
2334 * @sw: Switch whose lane bonding to disable
2335 *
2336 * Disables lane bonding between @sw and parent. This can be called even
2337 * if lanes were not bonded originally.
2338 */
tb_switch_lane_bonding_disable(struct tb_switch * sw)2339 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2340 {
2341 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2342 struct tb_port *up, *down;
2343
2344 if (!tb_route(sw))
2345 return;
2346
2347 up = tb_upstream_port(sw);
2348 if (!up->bonded)
2349 return;
2350
2351 down = tb_port_at(tb_route(sw), parent);
2352
2353 tb_port_lane_bonding_disable(up);
2354 tb_port_lane_bonding_disable(down);
2355
2356 tb_switch_update_link_attributes(sw);
2357 tb_sw_dbg(sw, "lane bonding disabled\n");
2358 }
2359
2360 /**
2361 * tb_switch_configure_link() - Set link configured
2362 * @sw: Switch whose link is configured
2363 *
2364 * Sets the link upstream from @sw configured (from both ends) so that
2365 * it will not be disconnected when the domain exits sleep. Can be
2366 * called for any switch.
2367 *
2368 * It is recommended that this is called after lane bonding is enabled.
2369 *
2370 * Returns %0 on success and negative errno in case of error.
2371 */
tb_switch_configure_link(struct tb_switch * sw)2372 int tb_switch_configure_link(struct tb_switch *sw)
2373 {
2374 struct tb_port *up, *down;
2375 int ret;
2376
2377 if (!tb_route(sw) || tb_switch_is_icm(sw))
2378 return 0;
2379
2380 up = tb_upstream_port(sw);
2381 if (tb_switch_is_usb4(up->sw))
2382 ret = usb4_port_configure(up);
2383 else
2384 ret = tb_lc_configure_port(up);
2385 if (ret)
2386 return ret;
2387
2388 down = up->remote;
2389 if (tb_switch_is_usb4(down->sw))
2390 return usb4_port_configure(down);
2391 return tb_lc_configure_port(down);
2392 }
2393
2394 /**
2395 * tb_switch_unconfigure_link() - Unconfigure link
2396 * @sw: Switch whose link is unconfigured
2397 *
2398 * Sets the link unconfigured so the @sw will be disconnected if the
2399 * domain exists sleep.
2400 */
tb_switch_unconfigure_link(struct tb_switch * sw)2401 void tb_switch_unconfigure_link(struct tb_switch *sw)
2402 {
2403 struct tb_port *up, *down;
2404
2405 if (sw->is_unplugged)
2406 return;
2407 if (!tb_route(sw) || tb_switch_is_icm(sw))
2408 return;
2409
2410 up = tb_upstream_port(sw);
2411 if (tb_switch_is_usb4(up->sw))
2412 usb4_port_unconfigure(up);
2413 else
2414 tb_lc_unconfigure_port(up);
2415
2416 down = up->remote;
2417 if (tb_switch_is_usb4(down->sw))
2418 usb4_port_unconfigure(down);
2419 else
2420 tb_lc_unconfigure_port(down);
2421 }
2422
tb_switch_port_hotplug_enable(struct tb_switch * sw)2423 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2424 {
2425 struct tb_port *port;
2426
2427 if (tb_switch_is_icm(sw))
2428 return 0;
2429
2430 tb_switch_for_each_port(sw, port) {
2431 int res;
2432
2433 if (!port->cap_usb4)
2434 continue;
2435
2436 res = usb4_port_hotplug_enable(port);
2437 if (res)
2438 return res;
2439 }
2440 return 0;
2441 }
2442
2443 /**
2444 * tb_switch_add() - Add a switch to the domain
2445 * @sw: Switch to add
2446 *
2447 * This is the last step in adding switch to the domain. It will read
2448 * identification information from DROM and initializes ports so that
2449 * they can be used to connect other switches. The switch will be
2450 * exposed to the userspace when this function successfully returns. To
2451 * remove and release the switch, call tb_switch_remove().
2452 *
2453 * Return: %0 in case of success and negative errno in case of failure
2454 */
tb_switch_add(struct tb_switch * sw)2455 int tb_switch_add(struct tb_switch *sw)
2456 {
2457 int i, ret;
2458
2459 /*
2460 * Initialize DMA control port now before we read DROM. Recent
2461 * host controllers have more complete DROM on NVM that includes
2462 * vendor and model identification strings which we then expose
2463 * to the userspace. NVM can be accessed through DMA
2464 * configuration based mailbox.
2465 */
2466 ret = tb_switch_add_dma_port(sw);
2467 if (ret) {
2468 dev_err(&sw->dev, "failed to add DMA port\n");
2469 return ret;
2470 }
2471
2472 if (!sw->safe_mode) {
2473 /* read drom */
2474 ret = tb_drom_read(sw);
2475 if (ret) {
2476 dev_err(&sw->dev, "reading DROM failed\n");
2477 return ret;
2478 }
2479 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2480
2481 ret = tb_switch_set_uuid(sw);
2482 if (ret) {
2483 dev_err(&sw->dev, "failed to set UUID\n");
2484 return ret;
2485 }
2486
2487 for (i = 0; i <= sw->config.max_port_number; i++) {
2488 if (sw->ports[i].disabled) {
2489 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2490 continue;
2491 }
2492 ret = tb_init_port(&sw->ports[i]);
2493 if (ret) {
2494 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2495 return ret;
2496 }
2497 }
2498
2499 tb_switch_default_link_ports(sw);
2500
2501 ret = tb_switch_update_link_attributes(sw);
2502 if (ret)
2503 return ret;
2504
2505 ret = tb_switch_tmu_init(sw);
2506 if (ret)
2507 return ret;
2508 }
2509
2510 ret = tb_switch_port_hotplug_enable(sw);
2511 if (ret)
2512 return ret;
2513
2514 ret = device_add(&sw->dev);
2515 if (ret) {
2516 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2517 return ret;
2518 }
2519
2520 if (tb_route(sw)) {
2521 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2522 sw->vendor, sw->device);
2523 if (sw->vendor_name && sw->device_name)
2524 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2525 sw->device_name);
2526 }
2527
2528 ret = tb_switch_nvm_add(sw);
2529 if (ret) {
2530 dev_err(&sw->dev, "failed to add NVM devices\n");
2531 device_del(&sw->dev);
2532 return ret;
2533 }
2534
2535 /*
2536 * Thunderbolt routers do not generate wakeups themselves but
2537 * they forward wakeups from tunneled protocols, so enable it
2538 * here.
2539 */
2540 device_init_wakeup(&sw->dev, true);
2541
2542 pm_runtime_set_active(&sw->dev);
2543 if (sw->rpm) {
2544 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2545 pm_runtime_use_autosuspend(&sw->dev);
2546 pm_runtime_mark_last_busy(&sw->dev);
2547 pm_runtime_enable(&sw->dev);
2548 pm_request_autosuspend(&sw->dev);
2549 }
2550
2551 tb_switch_debugfs_init(sw);
2552 return 0;
2553 }
2554
2555 /**
2556 * tb_switch_remove() - Remove and release a switch
2557 * @sw: Switch to remove
2558 *
2559 * This will remove the switch from the domain and release it after last
2560 * reference count drops to zero. If there are switches connected below
2561 * this switch, they will be removed as well.
2562 */
tb_switch_remove(struct tb_switch * sw)2563 void tb_switch_remove(struct tb_switch *sw)
2564 {
2565 struct tb_port *port;
2566
2567 tb_switch_debugfs_remove(sw);
2568
2569 if (sw->rpm) {
2570 pm_runtime_get_sync(&sw->dev);
2571 pm_runtime_disable(&sw->dev);
2572 }
2573
2574 /* port 0 is the switch itself and never has a remote */
2575 tb_switch_for_each_port(sw, port) {
2576 if (tb_port_has_remote(port)) {
2577 tb_switch_remove(port->remote->sw);
2578 port->remote = NULL;
2579 } else if (port->xdomain) {
2580 tb_xdomain_remove(port->xdomain);
2581 port->xdomain = NULL;
2582 }
2583
2584 /* Remove any downstream retimers */
2585 tb_retimer_remove_all(port);
2586 }
2587
2588 if (!sw->is_unplugged)
2589 tb_plug_events_active(sw, false);
2590
2591 tb_switch_nvm_remove(sw);
2592
2593 if (tb_route(sw))
2594 dev_info(&sw->dev, "device disconnected\n");
2595 device_unregister(&sw->dev);
2596 }
2597
2598 /**
2599 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2600 */
tb_sw_set_unplugged(struct tb_switch * sw)2601 void tb_sw_set_unplugged(struct tb_switch *sw)
2602 {
2603 struct tb_port *port;
2604
2605 if (sw == sw->tb->root_switch) {
2606 tb_sw_WARN(sw, "cannot unplug root switch\n");
2607 return;
2608 }
2609 if (sw->is_unplugged) {
2610 tb_sw_WARN(sw, "is_unplugged already set\n");
2611 return;
2612 }
2613 sw->is_unplugged = true;
2614 tb_switch_for_each_port(sw, port) {
2615 if (tb_port_has_remote(port))
2616 tb_sw_set_unplugged(port->remote->sw);
2617 else if (port->xdomain)
2618 port->xdomain->is_unplugged = true;
2619 }
2620 }
2621
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags)2622 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2623 {
2624 if (flags)
2625 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2626 else
2627 tb_sw_dbg(sw, "disabling wakeup\n");
2628
2629 if (tb_switch_is_usb4(sw))
2630 return usb4_switch_set_wake(sw, flags);
2631 return tb_lc_set_wake(sw, flags);
2632 }
2633
tb_switch_resume(struct tb_switch * sw)2634 int tb_switch_resume(struct tb_switch *sw)
2635 {
2636 struct tb_port *port;
2637 int err;
2638
2639 tb_sw_dbg(sw, "resuming switch\n");
2640
2641 /*
2642 * Check for UID of the connected switches except for root
2643 * switch which we assume cannot be removed.
2644 */
2645 if (tb_route(sw)) {
2646 u64 uid;
2647
2648 /*
2649 * Check first that we can still read the switch config
2650 * space. It may be that there is now another domain
2651 * connected.
2652 */
2653 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2654 if (err < 0) {
2655 tb_sw_info(sw, "switch not present anymore\n");
2656 return err;
2657 }
2658
2659 if (tb_switch_is_usb4(sw))
2660 err = usb4_switch_read_uid(sw, &uid);
2661 else
2662 err = tb_drom_read_uid_only(sw, &uid);
2663 if (err) {
2664 tb_sw_warn(sw, "uid read failed\n");
2665 return err;
2666 }
2667 if (sw->uid != uid) {
2668 tb_sw_info(sw,
2669 "changed while suspended (uid %#llx -> %#llx)\n",
2670 sw->uid, uid);
2671 return -ENODEV;
2672 }
2673 }
2674
2675 err = tb_switch_configure(sw);
2676 if (err)
2677 return err;
2678
2679 /* Disable wakes */
2680 tb_switch_set_wake(sw, 0);
2681
2682 err = tb_switch_tmu_init(sw);
2683 if (err)
2684 return err;
2685
2686 /* check for surviving downstream switches */
2687 tb_switch_for_each_port(sw, port) {
2688 if (!tb_port_has_remote(port) && !port->xdomain)
2689 continue;
2690
2691 if (tb_wait_for_port(port, true) <= 0) {
2692 tb_port_warn(port,
2693 "lost during suspend, disconnecting\n");
2694 if (tb_port_has_remote(port))
2695 tb_sw_set_unplugged(port->remote->sw);
2696 else if (port->xdomain)
2697 port->xdomain->is_unplugged = true;
2698 } else if (tb_port_has_remote(port) || port->xdomain) {
2699 /*
2700 * Always unlock the port so the downstream
2701 * switch/domain is accessible.
2702 */
2703 if (tb_port_unlock(port))
2704 tb_port_warn(port, "failed to unlock port\n");
2705 if (port->remote && tb_switch_resume(port->remote->sw)) {
2706 tb_port_warn(port,
2707 "lost during suspend, disconnecting\n");
2708 tb_sw_set_unplugged(port->remote->sw);
2709 }
2710 }
2711 }
2712 return 0;
2713 }
2714
2715 /**
2716 * tb_switch_suspend() - Put a switch to sleep
2717 * @sw: Switch to suspend
2718 * @runtime: Is this runtime suspend or system sleep
2719 *
2720 * Suspends router and all its children. Enables wakes according to
2721 * value of @runtime and then sets sleep bit for the router. If @sw is
2722 * host router the domain is ready to go to sleep once this function
2723 * returns.
2724 */
tb_switch_suspend(struct tb_switch * sw,bool runtime)2725 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2726 {
2727 unsigned int flags = 0;
2728 struct tb_port *port;
2729 int err;
2730
2731 tb_sw_dbg(sw, "suspending switch\n");
2732
2733 err = tb_plug_events_active(sw, false);
2734 if (err)
2735 return;
2736
2737 tb_switch_for_each_port(sw, port) {
2738 if (tb_port_has_remote(port))
2739 tb_switch_suspend(port->remote->sw, runtime);
2740 }
2741
2742 if (runtime) {
2743 /* Trigger wake when something is plugged in/out */
2744 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2745 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2746 } else if (device_may_wakeup(&sw->dev)) {
2747 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2748 }
2749
2750 tb_switch_set_wake(sw, flags);
2751
2752 if (tb_switch_is_usb4(sw))
2753 usb4_switch_set_sleep(sw);
2754 else
2755 tb_lc_set_sleep(sw);
2756 }
2757
2758 /**
2759 * tb_switch_query_dp_resource() - Query availability of DP resource
2760 * @sw: Switch whose DP resource is queried
2761 * @in: DP IN port
2762 *
2763 * Queries availability of DP resource for DP tunneling using switch
2764 * specific means. Returns %true if resource is available.
2765 */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)2766 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2767 {
2768 if (tb_switch_is_usb4(sw))
2769 return usb4_switch_query_dp_resource(sw, in);
2770 return tb_lc_dp_sink_query(sw, in);
2771 }
2772
2773 /**
2774 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2775 * @sw: Switch whose DP resource is allocated
2776 * @in: DP IN port
2777 *
2778 * Allocates DP resource for DP tunneling. The resource must be
2779 * available for this to succeed (see tb_switch_query_dp_resource()).
2780 * Returns %0 in success and negative errno otherwise.
2781 */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)2782 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2783 {
2784 if (tb_switch_is_usb4(sw))
2785 return usb4_switch_alloc_dp_resource(sw, in);
2786 return tb_lc_dp_sink_alloc(sw, in);
2787 }
2788
2789 /**
2790 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2791 * @sw: Switch whose DP resource is de-allocated
2792 * @in: DP IN port
2793 *
2794 * De-allocates DP resource that was previously allocated for DP
2795 * tunneling.
2796 */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)2797 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2798 {
2799 int ret;
2800
2801 if (tb_switch_is_usb4(sw))
2802 ret = usb4_switch_dealloc_dp_resource(sw, in);
2803 else
2804 ret = tb_lc_dp_sink_dealloc(sw, in);
2805
2806 if (ret)
2807 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2808 in->port);
2809 }
2810
2811 struct tb_sw_lookup {
2812 struct tb *tb;
2813 u8 link;
2814 u8 depth;
2815 const uuid_t *uuid;
2816 u64 route;
2817 };
2818
tb_switch_match(struct device * dev,const void * data)2819 static int tb_switch_match(struct device *dev, const void *data)
2820 {
2821 struct tb_switch *sw = tb_to_switch(dev);
2822 const struct tb_sw_lookup *lookup = data;
2823
2824 if (!sw)
2825 return 0;
2826 if (sw->tb != lookup->tb)
2827 return 0;
2828
2829 if (lookup->uuid)
2830 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2831
2832 if (lookup->route) {
2833 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2834 sw->config.route_hi == upper_32_bits(lookup->route);
2835 }
2836
2837 /* Root switch is matched only by depth */
2838 if (!lookup->depth)
2839 return !sw->depth;
2840
2841 return sw->link == lookup->link && sw->depth == lookup->depth;
2842 }
2843
2844 /**
2845 * tb_switch_find_by_link_depth() - Find switch by link and depth
2846 * @tb: Domain the switch belongs
2847 * @link: Link number the switch is connected
2848 * @depth: Depth of the switch in link
2849 *
2850 * Returned switch has reference count increased so the caller needs to
2851 * call tb_switch_put() when done with the switch.
2852 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)2853 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2854 {
2855 struct tb_sw_lookup lookup;
2856 struct device *dev;
2857
2858 memset(&lookup, 0, sizeof(lookup));
2859 lookup.tb = tb;
2860 lookup.link = link;
2861 lookup.depth = depth;
2862
2863 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2864 if (dev)
2865 return tb_to_switch(dev);
2866
2867 return NULL;
2868 }
2869
2870 /**
2871 * tb_switch_find_by_uuid() - Find switch by UUID
2872 * @tb: Domain the switch belongs
2873 * @uuid: UUID to look for
2874 *
2875 * Returned switch has reference count increased so the caller needs to
2876 * call tb_switch_put() when done with the switch.
2877 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)2878 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2879 {
2880 struct tb_sw_lookup lookup;
2881 struct device *dev;
2882
2883 memset(&lookup, 0, sizeof(lookup));
2884 lookup.tb = tb;
2885 lookup.uuid = uuid;
2886
2887 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2888 if (dev)
2889 return tb_to_switch(dev);
2890
2891 return NULL;
2892 }
2893
2894 /**
2895 * tb_switch_find_by_route() - Find switch by route string
2896 * @tb: Domain the switch belongs
2897 * @route: Route string to look for
2898 *
2899 * Returned switch has reference count increased so the caller needs to
2900 * call tb_switch_put() when done with the switch.
2901 */
tb_switch_find_by_route(struct tb * tb,u64 route)2902 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2903 {
2904 struct tb_sw_lookup lookup;
2905 struct device *dev;
2906
2907 if (!route)
2908 return tb_switch_get(tb->root_switch);
2909
2910 memset(&lookup, 0, sizeof(lookup));
2911 lookup.tb = tb;
2912 lookup.route = route;
2913
2914 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2915 if (dev)
2916 return tb_to_switch(dev);
2917
2918 return NULL;
2919 }
2920
2921 /**
2922 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2923 * @sw: Switch to find the port from
2924 * @type: Port type to look for
2925 */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)2926 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2927 enum tb_port_type type)
2928 {
2929 struct tb_port *port;
2930
2931 tb_switch_for_each_port(sw, port) {
2932 if (port->config.type == type)
2933 return port;
2934 }
2935
2936 return NULL;
2937 }
2938