• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 enum nvm_write_ops {
30 	WRITE_AND_AUTHENTICATE = 1,
31 	WRITE_ONLY = 2,
32 };
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
__nvm_get_auth_status(const struct tb_switch * sw)42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
nvm_set_auth_status(const struct tb_switch * sw,u32 status)65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
nvm_clear_auth_status(const struct tb_switch * sw)90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
nvm_validate_and_write(struct tb_switch * sw)103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
nvm_authenticate_host_dma_port(struct tb_switch * sw)171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
nvm_authenticate_device_dma_port(struct tb_switch * sw)211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
nvm_authenticate_start_dma_port(struct tb_switch * sw)256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
nvm_authenticate_complete_dma_port(struct tb_switch * sw)271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
nvm_readable(struct tb_switch * sw)280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
nvm_upgradeable(struct tb_switch * sw)296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
nvm_authenticate(struct tb_switch * sw)311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_nvm *nvm = priv;
332 	struct tb_switch *sw = tb_to_switch(nvm->dev);
333 	int ret;
334 
335 	pm_runtime_get_sync(&sw->dev);
336 
337 	if (!mutex_trylock(&sw->tb->lock)) {
338 		ret = restart_syscall();
339 		goto out;
340 	}
341 
342 	ret = nvm_read(sw, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 out:
346 	pm_runtime_mark_last_busy(&sw->dev);
347 	pm_runtime_put_autosuspend(&sw->dev);
348 
349 	return ret;
350 }
351 
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 			       size_t bytes)
354 {
355 	struct tb_nvm *nvm = priv;
356 	struct tb_switch *sw = tb_to_switch(nvm->dev);
357 	int ret;
358 
359 	if (!mutex_trylock(&sw->tb->lock))
360 		return restart_syscall();
361 
362 	/*
363 	 * Since writing the NVM image might require some special steps,
364 	 * for example when CSS headers are written, we cache the image
365 	 * locally here and handle the special cases when the user asks
366 	 * us to authenticate the image.
367 	 */
368 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 	mutex_unlock(&sw->tb->lock);
370 
371 	return ret;
372 }
373 
tb_switch_nvm_add(struct tb_switch * sw)374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 	struct tb_nvm *nvm;
377 	u32 val;
378 	int ret;
379 
380 	if (!nvm_readable(sw))
381 		return 0;
382 
383 	/*
384 	 * The NVM format of non-Intel hardware is not known so
385 	 * currently restrict NVM upgrade for Intel hardware. We may
386 	 * relax this in the future when we learn other NVM formats.
387 	 */
388 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 	    sw->config.vendor_id != 0x8087) {
390 		dev_info(&sw->dev,
391 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 			 sw->config.vendor_id);
393 		return 0;
394 	}
395 
396 	nvm = tb_nvm_alloc(&sw->dev);
397 	if (IS_ERR(nvm))
398 		return PTR_ERR(nvm);
399 
400 	/*
401 	 * If the switch is in safe-mode the only accessible portion of
402 	 * the NVM is the non-active one where userspace is expected to
403 	 * write new functional NVM.
404 	 */
405 	if (!sw->safe_mode) {
406 		u32 nvm_size, hdr_size;
407 
408 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 		if (ret)
410 			goto err_nvm;
411 
412 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 		nvm_size = (SZ_1M << (val & 7)) / 8;
414 		nvm_size = (nvm_size - hdr_size) / 2;
415 
416 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 		if (ret)
418 			goto err_nvm;
419 
420 		nvm->major = val >> 16;
421 		nvm->minor = val >> 8;
422 
423 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 		if (ret)
425 			goto err_nvm;
426 	}
427 
428 	if (!sw->no_nvm_upgrade) {
429 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 					    tb_switch_nvm_write);
431 		if (ret)
432 			goto err_nvm;
433 	}
434 
435 	sw->nvm = nvm;
436 	return 0;
437 
438 err_nvm:
439 	tb_nvm_free(nvm);
440 	return ret;
441 }
442 
tb_switch_nvm_remove(struct tb_switch * sw)443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 	struct tb_nvm *nvm;
446 
447 	nvm = sw->nvm;
448 	sw->nvm = NULL;
449 
450 	if (!nvm)
451 		return;
452 
453 	/* Remove authentication status in case the switch is unplugged */
454 	if (!nvm->authenticating)
455 		nvm_clear_auth_status(sw);
456 
457 	tb_nvm_free(nvm);
458 }
459 
460 /* port utility functions */
461 
tb_port_type(struct tb_regs_port_header * port)462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 	switch (port->type >> 16) {
465 	case 0:
466 		switch ((u8) port->type) {
467 		case 0:
468 			return "Inactive";
469 		case 1:
470 			return "Port";
471 		case 2:
472 			return "NHI";
473 		default:
474 			return "unknown";
475 		}
476 	case 0x2:
477 		return "Ethernet";
478 	case 0x8:
479 		return "SATA";
480 	case 0xe:
481 		return "DP/HDMI";
482 	case 0x10:
483 		return "PCIe";
484 	case 0x20:
485 		return "USB";
486 	default:
487 		return "unknown";
488 	}
489 }
490 
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 	tb_dbg(tb,
494 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 	       port->port_number, port->vendor_id, port->device_id,
496 	       port->revision, port->thunderbolt_version, tb_port_type(port),
497 	       port->type);
498 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
499 	       port->max_in_hop_id, port->max_out_hop_id);
500 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
501 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
502 }
503 
504 /**
505  * tb_port_state() - get connectedness state of a port
506  *
507  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508  *
509  * Return: Returns an enum tb_port_state on success or an error code on failure.
510  */
tb_port_state(struct tb_port * port)511 static int tb_port_state(struct tb_port *port)
512 {
513 	struct tb_cap_phy phy;
514 	int res;
515 	if (port->cap_phy == 0) {
516 		tb_port_WARN(port, "does not have a PHY\n");
517 		return -EINVAL;
518 	}
519 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 	if (res)
521 		return res;
522 	return phy.state;
523 }
524 
525 /**
526  * tb_wait_for_port() - wait for a port to become ready
527  *
528  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529  * wait_if_unplugged is set then we also wait if the port is in state
530  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531  * switch resume). Otherwise we only wait if a device is registered but the link
532  * has not yet been established.
533  *
534  * Return: Returns an error code on failure. Returns 0 if the port is not
535  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536  * if the port is connected and in state TB_PORT_UP.
537  */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539 {
540 	int retries = 10;
541 	int state;
542 	if (!port->cap_phy) {
543 		tb_port_WARN(port, "does not have PHY\n");
544 		return -EINVAL;
545 	}
546 	if (tb_is_upstream_port(port)) {
547 		tb_port_WARN(port, "is the upstream port\n");
548 		return -EINVAL;
549 	}
550 
551 	while (retries--) {
552 		state = tb_port_state(port);
553 		if (state < 0)
554 			return state;
555 		if (state == TB_PORT_DISABLED) {
556 			tb_port_dbg(port, "is disabled (state: 0)\n");
557 			return 0;
558 		}
559 		if (state == TB_PORT_UNPLUGGED) {
560 			if (wait_if_unplugged) {
561 				/* used during resume */
562 				tb_port_dbg(port,
563 					    "is unplugged (state: 7), retrying...\n");
564 				msleep(100);
565 				continue;
566 			}
567 			tb_port_dbg(port, "is unplugged (state: 7)\n");
568 			return 0;
569 		}
570 		if (state == TB_PORT_UP) {
571 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 			return 1;
573 		}
574 
575 		/*
576 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 		 * time.
578 		 */
579 		tb_port_dbg(port,
580 			    "is connected, link is not up (state: %d), retrying...\n",
581 			    state);
582 		msleep(100);
583 	}
584 	tb_port_warn(port,
585 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 	return 0;
587 }
588 
589 /**
590  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591  *
592  * Change the number of NFC credits allocated to @port by @credits. To remove
593  * NFC credits pass a negative amount of credits.
594  *
595  * Return: Returns 0 on success or an error code on failure.
596  */
tb_port_add_nfc_credits(struct tb_port * port,int credits)597 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598 {
599 	u32 nfc_credits;
600 
601 	if (credits == 0 || port->sw->is_unplugged)
602 		return 0;
603 
604 	/*
605 	 * USB4 restricts programming NFC buffers to lane adapters only
606 	 * so skip other ports.
607 	 */
608 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
609 		return 0;
610 
611 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
612 	nfc_credits += credits;
613 
614 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
615 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
616 
617 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
618 	port->config.nfc_credits |= nfc_credits;
619 
620 	return tb_port_write(port, &port->config.nfc_credits,
621 			     TB_CFG_PORT, ADP_CS_4, 1);
622 }
623 
624 /**
625  * tb_port_set_initial_credits() - Set initial port link credits allocated
626  * @port: Port to set the initial credits
627  * @credits: Number of credits to to allocate
628  *
629  * Set initial credits value to be used for ingress shared buffering.
630  */
tb_port_set_initial_credits(struct tb_port * port,u32 credits)631 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
632 {
633 	u32 data;
634 	int ret;
635 
636 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637 	if (ret)
638 		return ret;
639 
640 	data &= ~ADP_CS_5_LCA_MASK;
641 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
642 
643 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
644 }
645 
646 /**
647  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648  *
649  * Return: Returns 0 on success or an error code on failure.
650  */
tb_port_clear_counter(struct tb_port * port,int counter)651 int tb_port_clear_counter(struct tb_port *port, int counter)
652 {
653 	u32 zero[3] = { 0, 0, 0 };
654 	tb_port_dbg(port, "clearing counter %d\n", counter);
655 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
656 }
657 
658 /**
659  * tb_port_unlock() - Unlock downstream port
660  * @port: Port to unlock
661  *
662  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
663  * downstream router accessible for CM.
664  */
tb_port_unlock(struct tb_port * port)665 int tb_port_unlock(struct tb_port *port)
666 {
667 	if (tb_switch_is_icm(port->sw))
668 		return 0;
669 	if (!tb_port_is_null(port))
670 		return -EINVAL;
671 	if (tb_switch_is_usb4(port->sw))
672 		return usb4_port_unlock(port);
673 	return 0;
674 }
675 
__tb_port_enable(struct tb_port * port,bool enable)676 static int __tb_port_enable(struct tb_port *port, bool enable)
677 {
678 	int ret;
679 	u32 phy;
680 
681 	if (!tb_port_is_null(port))
682 		return -EINVAL;
683 
684 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
685 			   port->cap_phy + LANE_ADP_CS_1, 1);
686 	if (ret)
687 		return ret;
688 
689 	if (enable)
690 		phy &= ~LANE_ADP_CS_1_LD;
691 	else
692 		phy |= LANE_ADP_CS_1_LD;
693 
694 	return tb_port_write(port, &phy, TB_CFG_PORT,
695 			     port->cap_phy + LANE_ADP_CS_1, 1);
696 }
697 
698 /**
699  * tb_port_enable() - Enable lane adapter
700  * @port: Port to enable (can be %NULL)
701  *
702  * This is used for lane 0 and 1 adapters to enable it.
703  */
tb_port_enable(struct tb_port * port)704 int tb_port_enable(struct tb_port *port)
705 {
706 	return __tb_port_enable(port, true);
707 }
708 
709 /**
710  * tb_port_disable() - Disable lane adapter
711  * @port: Port to disable (can be %NULL)
712  *
713  * This is used for lane 0 and 1 adapters to disable it.
714  */
tb_port_disable(struct tb_port * port)715 int tb_port_disable(struct tb_port *port)
716 {
717 	return __tb_port_enable(port, false);
718 }
719 
720 /**
721  * tb_init_port() - initialize a port
722  *
723  * This is a helper method for tb_switch_alloc. Does not check or initialize
724  * any downstream switches.
725  *
726  * Return: Returns 0 on success or an error code on failure.
727  */
tb_init_port(struct tb_port * port)728 static int tb_init_port(struct tb_port *port)
729 {
730 	int res;
731 	int cap;
732 
733 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
734 	if (res) {
735 		if (res == -ENODEV) {
736 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 			       port->port);
738 			port->disabled = true;
739 			return 0;
740 		}
741 		return res;
742 	}
743 
744 	/* Port 0 is the switch itself and has no PHY. */
745 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
746 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
747 
748 		if (cap > 0)
749 			port->cap_phy = cap;
750 		else
751 			tb_port_WARN(port, "non switch port without a PHY\n");
752 
753 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 		if (cap > 0)
755 			port->cap_usb4 = cap;
756 	} else if (port->port != 0) {
757 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
758 		if (cap > 0)
759 			port->cap_adap = cap;
760 	}
761 
762 	tb_dump_port(port->sw->tb, &port->config);
763 
764 	INIT_LIST_HEAD(&port->list);
765 	return 0;
766 
767 }
768 
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)769 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
770 			       int max_hopid)
771 {
772 	int port_max_hopid;
773 	struct ida *ida;
774 
775 	if (in) {
776 		port_max_hopid = port->config.max_in_hop_id;
777 		ida = &port->in_hopids;
778 	} else {
779 		port_max_hopid = port->config.max_out_hop_id;
780 		ida = &port->out_hopids;
781 	}
782 
783 	/*
784 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
785 	 * reserved.
786 	 */
787 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
788 		min_hopid = TB_PATH_MIN_HOPID;
789 
790 	if (max_hopid < 0 || max_hopid > port_max_hopid)
791 		max_hopid = port_max_hopid;
792 
793 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
794 }
795 
796 /**
797  * tb_port_alloc_in_hopid() - Allocate input HopID from port
798  * @port: Port to allocate HopID for
799  * @min_hopid: Minimum acceptable input HopID
800  * @max_hopid: Maximum acceptable input HopID
801  *
802  * Return: HopID between @min_hopid and @max_hopid or negative errno in
803  * case of error.
804  */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)805 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
806 {
807 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
808 }
809 
810 /**
811  * tb_port_alloc_out_hopid() - Allocate output HopID from port
812  * @port: Port to allocate HopID for
813  * @min_hopid: Minimum acceptable output HopID
814  * @max_hopid: Maximum acceptable output HopID
815  *
816  * Return: HopID between @min_hopid and @max_hopid or negative errno in
817  * case of error.
818  */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)819 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
820 {
821 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
822 }
823 
824 /**
825  * tb_port_release_in_hopid() - Release allocated input HopID from port
826  * @port: Port whose HopID to release
827  * @hopid: HopID to release
828  */
tb_port_release_in_hopid(struct tb_port * port,int hopid)829 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
830 {
831 	ida_simple_remove(&port->in_hopids, hopid);
832 }
833 
834 /**
835  * tb_port_release_out_hopid() - Release allocated output HopID from port
836  * @port: Port whose HopID to release
837  * @hopid: HopID to release
838  */
tb_port_release_out_hopid(struct tb_port * port,int hopid)839 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
840 {
841 	ida_simple_remove(&port->out_hopids, hopid);
842 }
843 
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)844 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
845 					  const struct tb_switch *sw)
846 {
847 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
848 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
849 }
850 
851 /**
852  * tb_next_port_on_path() - Return next port for given port on a path
853  * @start: Start port of the walk
854  * @end: End port of the walk
855  * @prev: Previous port (%NULL if this is the first)
856  *
857  * This function can be used to walk from one port to another if they
858  * are connected through zero or more switches. If the @prev is dual
859  * link port, the function follows that link and returns another end on
860  * that same link.
861  *
862  * If the @end port has been reached, return %NULL.
863  *
864  * Domain tb->lock must be held when this function is called.
865  */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)866 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
867 				     struct tb_port *prev)
868 {
869 	struct tb_port *next;
870 
871 	if (!prev)
872 		return start;
873 
874 	if (prev->sw == end->sw) {
875 		if (prev == end)
876 			return NULL;
877 		return end;
878 	}
879 
880 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
881 		next = tb_port_at(tb_route(end->sw), prev->sw);
882 		/* Walk down the topology if next == prev */
883 		if (prev->remote &&
884 		    (next == prev || next->dual_link_port == prev))
885 			next = prev->remote;
886 	} else {
887 		if (tb_is_upstream_port(prev)) {
888 			next = prev->remote;
889 		} else {
890 			next = tb_upstream_port(prev->sw);
891 			/*
892 			 * Keep the same link if prev and next are both
893 			 * dual link ports.
894 			 */
895 			if (next->dual_link_port &&
896 			    next->link_nr != prev->link_nr) {
897 				next = next->dual_link_port;
898 			}
899 		}
900 	}
901 
902 	return next != prev ? next : NULL;
903 }
904 
905 /**
906  * tb_port_get_link_speed() - Get current link speed
907  * @port: Port to check (USB4 or CIO)
908  *
909  * Returns link speed in Gb/s or negative errno in case of failure.
910  */
tb_port_get_link_speed(struct tb_port * port)911 int tb_port_get_link_speed(struct tb_port *port)
912 {
913 	u32 val, speed;
914 	int ret;
915 
916 	if (!port->cap_phy)
917 		return -EINVAL;
918 
919 	ret = tb_port_read(port, &val, TB_CFG_PORT,
920 			   port->cap_phy + LANE_ADP_CS_1, 1);
921 	if (ret)
922 		return ret;
923 
924 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
925 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
926 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
927 }
928 
tb_port_get_link_width(struct tb_port * port)929 static int tb_port_get_link_width(struct tb_port *port)
930 {
931 	u32 val;
932 	int ret;
933 
934 	if (!port->cap_phy)
935 		return -EINVAL;
936 
937 	ret = tb_port_read(port, &val, TB_CFG_PORT,
938 			   port->cap_phy + LANE_ADP_CS_1, 1);
939 	if (ret)
940 		return ret;
941 
942 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
943 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
944 }
945 
tb_port_is_width_supported(struct tb_port * port,int width)946 static bool tb_port_is_width_supported(struct tb_port *port, int width)
947 {
948 	u32 phy, widths;
949 	int ret;
950 
951 	if (!port->cap_phy)
952 		return false;
953 
954 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
955 			   port->cap_phy + LANE_ADP_CS_0, 1);
956 	if (ret)
957 		return false;
958 
959 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
960 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
961 
962 	return !!(widths & width);
963 }
964 
tb_port_set_link_width(struct tb_port * port,unsigned int width)965 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
966 {
967 	u32 val;
968 	int ret;
969 
970 	if (!port->cap_phy)
971 		return -EINVAL;
972 
973 	ret = tb_port_read(port, &val, TB_CFG_PORT,
974 			   port->cap_phy + LANE_ADP_CS_1, 1);
975 	if (ret)
976 		return ret;
977 
978 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
979 	switch (width) {
980 	case 1:
981 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
982 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
983 		break;
984 	case 2:
985 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
986 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
987 		break;
988 	default:
989 		return -EINVAL;
990 	}
991 
992 	val |= LANE_ADP_CS_1_LB;
993 
994 	return tb_port_write(port, &val, TB_CFG_PORT,
995 			     port->cap_phy + LANE_ADP_CS_1, 1);
996 }
997 
tb_port_lane_bonding_enable(struct tb_port * port)998 static int tb_port_lane_bonding_enable(struct tb_port *port)
999 {
1000 	int ret;
1001 
1002 	/*
1003 	 * Enable lane bonding for both links if not already enabled by
1004 	 * for example the boot firmware.
1005 	 */
1006 	ret = tb_port_get_link_width(port);
1007 	if (ret == 1) {
1008 		ret = tb_port_set_link_width(port, 2);
1009 		if (ret)
1010 			return ret;
1011 	}
1012 
1013 	ret = tb_port_get_link_width(port->dual_link_port);
1014 	if (ret == 1) {
1015 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1016 		if (ret) {
1017 			tb_port_set_link_width(port, 1);
1018 			return ret;
1019 		}
1020 	}
1021 
1022 	port->bonded = true;
1023 	port->dual_link_port->bonded = true;
1024 
1025 	return 0;
1026 }
1027 
tb_port_lane_bonding_disable(struct tb_port * port)1028 static void tb_port_lane_bonding_disable(struct tb_port *port)
1029 {
1030 	port->dual_link_port->bonded = false;
1031 	port->bonded = false;
1032 
1033 	tb_port_set_link_width(port->dual_link_port, 1);
1034 	tb_port_set_link_width(port, 1);
1035 }
1036 
1037 /**
1038  * tb_port_is_enabled() - Is the adapter port enabled
1039  * @port: Port to check
1040  */
tb_port_is_enabled(struct tb_port * port)1041 bool tb_port_is_enabled(struct tb_port *port)
1042 {
1043 	switch (port->config.type) {
1044 	case TB_TYPE_PCIE_UP:
1045 	case TB_TYPE_PCIE_DOWN:
1046 		return tb_pci_port_is_enabled(port);
1047 
1048 	case TB_TYPE_DP_HDMI_IN:
1049 	case TB_TYPE_DP_HDMI_OUT:
1050 		return tb_dp_port_is_enabled(port);
1051 
1052 	case TB_TYPE_USB3_UP:
1053 	case TB_TYPE_USB3_DOWN:
1054 		return tb_usb3_port_is_enabled(port);
1055 
1056 	default:
1057 		return false;
1058 	}
1059 }
1060 
1061 /**
1062  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1063  * @port: USB3 adapter port to check
1064  */
tb_usb3_port_is_enabled(struct tb_port * port)1065 bool tb_usb3_port_is_enabled(struct tb_port *port)
1066 {
1067 	u32 data;
1068 
1069 	if (tb_port_read(port, &data, TB_CFG_PORT,
1070 			 port->cap_adap + ADP_USB3_CS_0, 1))
1071 		return false;
1072 
1073 	return !!(data & ADP_USB3_CS_0_PE);
1074 }
1075 
1076 /**
1077  * tb_usb3_port_enable() - Enable USB3 adapter port
1078  * @port: USB3 adapter port to enable
1079  * @enable: Enable/disable the USB3 adapter
1080  */
tb_usb3_port_enable(struct tb_port * port,bool enable)1081 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1082 {
1083 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1084 			  : ADP_USB3_CS_0_V;
1085 
1086 	if (!port->cap_adap)
1087 		return -ENXIO;
1088 	return tb_port_write(port, &word, TB_CFG_PORT,
1089 			     port->cap_adap + ADP_USB3_CS_0, 1);
1090 }
1091 
1092 /**
1093  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1094  * @port: PCIe port to check
1095  */
tb_pci_port_is_enabled(struct tb_port * port)1096 bool tb_pci_port_is_enabled(struct tb_port *port)
1097 {
1098 	u32 data;
1099 
1100 	if (tb_port_read(port, &data, TB_CFG_PORT,
1101 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1102 		return false;
1103 
1104 	return !!(data & ADP_PCIE_CS_0_PE);
1105 }
1106 
1107 /**
1108  * tb_pci_port_enable() - Enable PCIe adapter port
1109  * @port: PCIe port to enable
1110  * @enable: Enable/disable the PCIe adapter
1111  */
tb_pci_port_enable(struct tb_port * port,bool enable)1112 int tb_pci_port_enable(struct tb_port *port, bool enable)
1113 {
1114 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1115 	if (!port->cap_adap)
1116 		return -ENXIO;
1117 	return tb_port_write(port, &word, TB_CFG_PORT,
1118 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1119 }
1120 
1121 /**
1122  * tb_dp_port_hpd_is_active() - Is HPD already active
1123  * @port: DP out port to check
1124  *
1125  * Checks if the DP OUT adapter port has HDP bit already set.
1126  */
tb_dp_port_hpd_is_active(struct tb_port * port)1127 int tb_dp_port_hpd_is_active(struct tb_port *port)
1128 {
1129 	u32 data;
1130 	int ret;
1131 
1132 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1133 			   port->cap_adap + ADP_DP_CS_2, 1);
1134 	if (ret)
1135 		return ret;
1136 
1137 	return !!(data & ADP_DP_CS_2_HDP);
1138 }
1139 
1140 /**
1141  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1142  * @port: Port to clear HPD
1143  *
1144  * If the DP IN port has HDP set, this function can be used to clear it.
1145  */
tb_dp_port_hpd_clear(struct tb_port * port)1146 int tb_dp_port_hpd_clear(struct tb_port *port)
1147 {
1148 	u32 data;
1149 	int ret;
1150 
1151 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1152 			   port->cap_adap + ADP_DP_CS_3, 1);
1153 	if (ret)
1154 		return ret;
1155 
1156 	data |= ADP_DP_CS_3_HDPC;
1157 	return tb_port_write(port, &data, TB_CFG_PORT,
1158 			     port->cap_adap + ADP_DP_CS_3, 1);
1159 }
1160 
1161 /**
1162  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1163  * @port: DP IN/OUT port to set hops
1164  * @video: Video Hop ID
1165  * @aux_tx: AUX TX Hop ID
1166  * @aux_rx: AUX RX Hop ID
1167  *
1168  * Programs specified Hop IDs for DP IN/OUT port.
1169  */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1170 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1171 			unsigned int aux_tx, unsigned int aux_rx)
1172 {
1173 	u32 data[2];
1174 	int ret;
1175 
1176 	ret = tb_port_read(port, data, TB_CFG_PORT,
1177 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1178 	if (ret)
1179 		return ret;
1180 
1181 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1182 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1183 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1184 
1185 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1186 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1187 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1188 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1189 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1190 
1191 	return tb_port_write(port, data, TB_CFG_PORT,
1192 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1193 }
1194 
1195 /**
1196  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1197  * @port: DP adapter port to check
1198  */
tb_dp_port_is_enabled(struct tb_port * port)1199 bool tb_dp_port_is_enabled(struct tb_port *port)
1200 {
1201 	u32 data[2];
1202 
1203 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1204 			 ARRAY_SIZE(data)))
1205 		return false;
1206 
1207 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1208 }
1209 
1210 /**
1211  * tb_dp_port_enable() - Enables/disables DP paths of a port
1212  * @port: DP IN/OUT port
1213  * @enable: Enable/disable DP path
1214  *
1215  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1216  * calling this function.
1217  */
tb_dp_port_enable(struct tb_port * port,bool enable)1218 int tb_dp_port_enable(struct tb_port *port, bool enable)
1219 {
1220 	u32 data[2];
1221 	int ret;
1222 
1223 	ret = tb_port_read(port, data, TB_CFG_PORT,
1224 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1225 	if (ret)
1226 		return ret;
1227 
1228 	if (enable)
1229 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1230 	else
1231 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1232 
1233 	return tb_port_write(port, data, TB_CFG_PORT,
1234 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1235 }
1236 
1237 /* switch utility functions */
1238 
tb_switch_generation_name(const struct tb_switch * sw)1239 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1240 {
1241 	switch (sw->generation) {
1242 	case 1:
1243 		return "Thunderbolt 1";
1244 	case 2:
1245 		return "Thunderbolt 2";
1246 	case 3:
1247 		return "Thunderbolt 3";
1248 	case 4:
1249 		return "USB4";
1250 	default:
1251 		return "Unknown";
1252 	}
1253 }
1254 
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1255 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1256 {
1257 	const struct tb_regs_switch_header *regs = &sw->config;
1258 
1259 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1260 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1261 	       regs->revision, regs->thunderbolt_version);
1262 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1263 	tb_dbg(tb, "  Config:\n");
1264 	tb_dbg(tb,
1265 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1266 	       regs->upstream_port_number, regs->depth,
1267 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1268 	       regs->enabled, regs->plug_events_delay);
1269 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1270 	       regs->__unknown1, regs->__unknown4);
1271 }
1272 
1273 /**
1274  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1275  * @sw: Switch to reset
1276  *
1277  * Return: Returns 0 on success or an error code on failure.
1278  */
tb_switch_reset(struct tb_switch * sw)1279 int tb_switch_reset(struct tb_switch *sw)
1280 {
1281 	struct tb_cfg_result res;
1282 
1283 	if (sw->generation > 1)
1284 		return 0;
1285 
1286 	tb_sw_dbg(sw, "resetting switch\n");
1287 
1288 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1289 			      TB_CFG_SWITCH, 2, 2);
1290 	if (res.err)
1291 		return res.err;
1292 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1293 	if (res.err > 0)
1294 		return -EIO;
1295 	return res.err;
1296 }
1297 
1298 /**
1299  * tb_plug_events_active() - enable/disable plug events on a switch
1300  *
1301  * Also configures a sane plug_events_delay of 255ms.
1302  *
1303  * Return: Returns 0 on success or an error code on failure.
1304  */
tb_plug_events_active(struct tb_switch * sw,bool active)1305 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1306 {
1307 	u32 data;
1308 	int res;
1309 
1310 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1311 		return 0;
1312 
1313 	sw->config.plug_events_delay = 0xff;
1314 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1315 	if (res)
1316 		return res;
1317 
1318 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1319 	if (res)
1320 		return res;
1321 
1322 	if (active) {
1323 		data = data & 0xFFFFFF83;
1324 		switch (sw->config.device_id) {
1325 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1326 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1327 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1328 			break;
1329 		default:
1330 			data |= 4;
1331 		}
1332 	} else {
1333 		data = data | 0x7c;
1334 	}
1335 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1336 			   sw->cap_plug_events + 1, 1);
1337 }
1338 
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1339 static ssize_t authorized_show(struct device *dev,
1340 			       struct device_attribute *attr,
1341 			       char *buf)
1342 {
1343 	struct tb_switch *sw = tb_to_switch(dev);
1344 
1345 	return sprintf(buf, "%u\n", sw->authorized);
1346 }
1347 
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1348 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1349 {
1350 	int ret = -EINVAL;
1351 
1352 	if (!mutex_trylock(&sw->tb->lock))
1353 		return restart_syscall();
1354 
1355 	if (sw->authorized)
1356 		goto unlock;
1357 
1358 	switch (val) {
1359 	/* Approve switch */
1360 	case 1:
1361 		if (sw->key)
1362 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1363 		else
1364 			ret = tb_domain_approve_switch(sw->tb, sw);
1365 		break;
1366 
1367 	/* Challenge switch */
1368 	case 2:
1369 		if (sw->key)
1370 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1371 		break;
1372 
1373 	default:
1374 		break;
1375 	}
1376 
1377 	if (!ret) {
1378 		sw->authorized = val;
1379 		/* Notify status change to the userspace */
1380 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1381 	}
1382 
1383 unlock:
1384 	mutex_unlock(&sw->tb->lock);
1385 	return ret;
1386 }
1387 
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1388 static ssize_t authorized_store(struct device *dev,
1389 				struct device_attribute *attr,
1390 				const char *buf, size_t count)
1391 {
1392 	struct tb_switch *sw = tb_to_switch(dev);
1393 	unsigned int val;
1394 	ssize_t ret;
1395 
1396 	ret = kstrtouint(buf, 0, &val);
1397 	if (ret)
1398 		return ret;
1399 	if (val > 2)
1400 		return -EINVAL;
1401 
1402 	pm_runtime_get_sync(&sw->dev);
1403 	ret = tb_switch_set_authorized(sw, val);
1404 	pm_runtime_mark_last_busy(&sw->dev);
1405 	pm_runtime_put_autosuspend(&sw->dev);
1406 
1407 	return ret ? ret : count;
1408 }
1409 static DEVICE_ATTR_RW(authorized);
1410 
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1411 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1412 			 char *buf)
1413 {
1414 	struct tb_switch *sw = tb_to_switch(dev);
1415 
1416 	return sprintf(buf, "%u\n", sw->boot);
1417 }
1418 static DEVICE_ATTR_RO(boot);
1419 
device_show(struct device * dev,struct device_attribute * attr,char * buf)1420 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1421 			   char *buf)
1422 {
1423 	struct tb_switch *sw = tb_to_switch(dev);
1424 
1425 	return sprintf(buf, "%#x\n", sw->device);
1426 }
1427 static DEVICE_ATTR_RO(device);
1428 
1429 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1430 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1431 {
1432 	struct tb_switch *sw = tb_to_switch(dev);
1433 
1434 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1435 }
1436 static DEVICE_ATTR_RO(device_name);
1437 
1438 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1439 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1440 {
1441 	struct tb_switch *sw = tb_to_switch(dev);
1442 
1443 	return sprintf(buf, "%u\n", sw->generation);
1444 }
1445 static DEVICE_ATTR_RO(generation);
1446 
key_show(struct device * dev,struct device_attribute * attr,char * buf)1447 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1448 			char *buf)
1449 {
1450 	struct tb_switch *sw = tb_to_switch(dev);
1451 	ssize_t ret;
1452 
1453 	if (!mutex_trylock(&sw->tb->lock))
1454 		return restart_syscall();
1455 
1456 	if (sw->key)
1457 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1458 	else
1459 		ret = sprintf(buf, "\n");
1460 
1461 	mutex_unlock(&sw->tb->lock);
1462 	return ret;
1463 }
1464 
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1465 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1466 			 const char *buf, size_t count)
1467 {
1468 	struct tb_switch *sw = tb_to_switch(dev);
1469 	u8 key[TB_SWITCH_KEY_SIZE];
1470 	ssize_t ret = count;
1471 	bool clear = false;
1472 
1473 	if (!strcmp(buf, "\n"))
1474 		clear = true;
1475 	else if (hex2bin(key, buf, sizeof(key)))
1476 		return -EINVAL;
1477 
1478 	if (!mutex_trylock(&sw->tb->lock))
1479 		return restart_syscall();
1480 
1481 	if (sw->authorized) {
1482 		ret = -EBUSY;
1483 	} else {
1484 		kfree(sw->key);
1485 		if (clear) {
1486 			sw->key = NULL;
1487 		} else {
1488 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1489 			if (!sw->key)
1490 				ret = -ENOMEM;
1491 		}
1492 	}
1493 
1494 	mutex_unlock(&sw->tb->lock);
1495 	return ret;
1496 }
1497 static DEVICE_ATTR(key, 0600, key_show, key_store);
1498 
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1499 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1500 			  char *buf)
1501 {
1502 	struct tb_switch *sw = tb_to_switch(dev);
1503 
1504 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1505 }
1506 
1507 /*
1508  * Currently all lanes must run at the same speed but we expose here
1509  * both directions to allow possible asymmetric links in the future.
1510  */
1511 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1512 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1513 
lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1514 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1515 			  char *buf)
1516 {
1517 	struct tb_switch *sw = tb_to_switch(dev);
1518 
1519 	return sprintf(buf, "%u\n", sw->link_width);
1520 }
1521 
1522 /*
1523  * Currently link has same amount of lanes both directions (1 or 2) but
1524  * expose them separately to allow possible asymmetric links in the future.
1525  */
1526 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1527 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1528 
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1529 static ssize_t nvm_authenticate_show(struct device *dev,
1530 	struct device_attribute *attr, char *buf)
1531 {
1532 	struct tb_switch *sw = tb_to_switch(dev);
1533 	u32 status;
1534 
1535 	nvm_get_auth_status(sw, &status);
1536 	return sprintf(buf, "%#x\n", status);
1537 }
1538 
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)1539 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1540 				      bool disconnect)
1541 {
1542 	struct tb_switch *sw = tb_to_switch(dev);
1543 	int val;
1544 	int ret;
1545 
1546 	pm_runtime_get_sync(&sw->dev);
1547 
1548 	if (!mutex_trylock(&sw->tb->lock)) {
1549 		ret = restart_syscall();
1550 		goto exit_rpm;
1551 	}
1552 
1553 	/* If NVMem devices are not yet added */
1554 	if (!sw->nvm) {
1555 		ret = -EAGAIN;
1556 		goto exit_unlock;
1557 	}
1558 
1559 	ret = kstrtoint(buf, 10, &val);
1560 	if (ret)
1561 		goto exit_unlock;
1562 
1563 	/* Always clear the authentication status */
1564 	nvm_clear_auth_status(sw);
1565 
1566 	if (val > 0) {
1567 		if (!sw->nvm->flushed) {
1568 			if (!sw->nvm->buf) {
1569 				ret = -EINVAL;
1570 				goto exit_unlock;
1571 			}
1572 
1573 			ret = nvm_validate_and_write(sw);
1574 			if (ret || val == WRITE_ONLY)
1575 				goto exit_unlock;
1576 		}
1577 		if (val == WRITE_AND_AUTHENTICATE) {
1578 			if (disconnect) {
1579 				ret = tb_lc_force_power(sw);
1580 			} else {
1581 				sw->nvm->authenticating = true;
1582 				ret = nvm_authenticate(sw);
1583 			}
1584 		}
1585 	}
1586 
1587 exit_unlock:
1588 	mutex_unlock(&sw->tb->lock);
1589 exit_rpm:
1590 	pm_runtime_mark_last_busy(&sw->dev);
1591 	pm_runtime_put_autosuspend(&sw->dev);
1592 
1593 	return ret;
1594 }
1595 
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1596 static ssize_t nvm_authenticate_store(struct device *dev,
1597 	struct device_attribute *attr, const char *buf, size_t count)
1598 {
1599 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1600 	if (ret)
1601 		return ret;
1602 	return count;
1603 }
1604 static DEVICE_ATTR_RW(nvm_authenticate);
1605 
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)1606 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1607 	struct device_attribute *attr, char *buf)
1608 {
1609 	return nvm_authenticate_show(dev, attr, buf);
1610 }
1611 
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1612 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1613 	struct device_attribute *attr, const char *buf, size_t count)
1614 {
1615 	int ret;
1616 
1617 	ret = nvm_authenticate_sysfs(dev, buf, true);
1618 	return ret ? ret : count;
1619 }
1620 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1621 
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1622 static ssize_t nvm_version_show(struct device *dev,
1623 				struct device_attribute *attr, char *buf)
1624 {
1625 	struct tb_switch *sw = tb_to_switch(dev);
1626 	int ret;
1627 
1628 	if (!mutex_trylock(&sw->tb->lock))
1629 		return restart_syscall();
1630 
1631 	if (sw->safe_mode)
1632 		ret = -ENODATA;
1633 	else if (!sw->nvm)
1634 		ret = -EAGAIN;
1635 	else
1636 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1637 
1638 	mutex_unlock(&sw->tb->lock);
1639 
1640 	return ret;
1641 }
1642 static DEVICE_ATTR_RO(nvm_version);
1643 
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1644 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1645 			   char *buf)
1646 {
1647 	struct tb_switch *sw = tb_to_switch(dev);
1648 
1649 	return sprintf(buf, "%#x\n", sw->vendor);
1650 }
1651 static DEVICE_ATTR_RO(vendor);
1652 
1653 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1654 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1655 {
1656 	struct tb_switch *sw = tb_to_switch(dev);
1657 
1658 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1659 }
1660 static DEVICE_ATTR_RO(vendor_name);
1661 
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1662 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1663 			      char *buf)
1664 {
1665 	struct tb_switch *sw = tb_to_switch(dev);
1666 
1667 	return sprintf(buf, "%pUb\n", sw->uuid);
1668 }
1669 static DEVICE_ATTR_RO(unique_id);
1670 
1671 static struct attribute *switch_attrs[] = {
1672 	&dev_attr_authorized.attr,
1673 	&dev_attr_boot.attr,
1674 	&dev_attr_device.attr,
1675 	&dev_attr_device_name.attr,
1676 	&dev_attr_generation.attr,
1677 	&dev_attr_key.attr,
1678 	&dev_attr_nvm_authenticate.attr,
1679 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1680 	&dev_attr_nvm_version.attr,
1681 	&dev_attr_rx_speed.attr,
1682 	&dev_attr_rx_lanes.attr,
1683 	&dev_attr_tx_speed.attr,
1684 	&dev_attr_tx_lanes.attr,
1685 	&dev_attr_vendor.attr,
1686 	&dev_attr_vendor_name.attr,
1687 	&dev_attr_unique_id.attr,
1688 	NULL,
1689 };
1690 
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1691 static umode_t switch_attr_is_visible(struct kobject *kobj,
1692 				      struct attribute *attr, int n)
1693 {
1694 	struct device *dev = kobj_to_dev(kobj);
1695 	struct tb_switch *sw = tb_to_switch(dev);
1696 
1697 	if (attr == &dev_attr_device.attr) {
1698 		if (!sw->device)
1699 			return 0;
1700 	} else if (attr == &dev_attr_device_name.attr) {
1701 		if (!sw->device_name)
1702 			return 0;
1703 	} else if (attr == &dev_attr_vendor.attr)  {
1704 		if (!sw->vendor)
1705 			return 0;
1706 	} else if (attr == &dev_attr_vendor_name.attr)  {
1707 		if (!sw->vendor_name)
1708 			return 0;
1709 	} else if (attr == &dev_attr_key.attr) {
1710 		if (tb_route(sw) &&
1711 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1712 		    sw->security_level == TB_SECURITY_SECURE)
1713 			return attr->mode;
1714 		return 0;
1715 	} else if (attr == &dev_attr_rx_speed.attr ||
1716 		   attr == &dev_attr_rx_lanes.attr ||
1717 		   attr == &dev_attr_tx_speed.attr ||
1718 		   attr == &dev_attr_tx_lanes.attr) {
1719 		if (tb_route(sw))
1720 			return attr->mode;
1721 		return 0;
1722 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1723 		if (nvm_upgradeable(sw))
1724 			return attr->mode;
1725 		return 0;
1726 	} else if (attr == &dev_attr_nvm_version.attr) {
1727 		if (nvm_readable(sw))
1728 			return attr->mode;
1729 		return 0;
1730 	} else if (attr == &dev_attr_boot.attr) {
1731 		if (tb_route(sw))
1732 			return attr->mode;
1733 		return 0;
1734 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1735 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1736 			return attr->mode;
1737 		return 0;
1738 	}
1739 
1740 	return sw->safe_mode ? 0 : attr->mode;
1741 }
1742 
1743 static struct attribute_group switch_group = {
1744 	.is_visible = switch_attr_is_visible,
1745 	.attrs = switch_attrs,
1746 };
1747 
1748 static const struct attribute_group *switch_groups[] = {
1749 	&switch_group,
1750 	NULL,
1751 };
1752 
tb_switch_release(struct device * dev)1753 static void tb_switch_release(struct device *dev)
1754 {
1755 	struct tb_switch *sw = tb_to_switch(dev);
1756 	struct tb_port *port;
1757 
1758 	dma_port_free(sw->dma_port);
1759 
1760 	tb_switch_for_each_port(sw, port) {
1761 		ida_destroy(&port->in_hopids);
1762 		ida_destroy(&port->out_hopids);
1763 	}
1764 
1765 	kfree(sw->uuid);
1766 	kfree(sw->device_name);
1767 	kfree(sw->vendor_name);
1768 	kfree(sw->ports);
1769 	kfree(sw->drom);
1770 	kfree(sw->key);
1771 	kfree(sw);
1772 }
1773 
1774 /*
1775  * Currently only need to provide the callbacks. Everything else is handled
1776  * in the connection manager.
1777  */
tb_switch_runtime_suspend(struct device * dev)1778 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1779 {
1780 	struct tb_switch *sw = tb_to_switch(dev);
1781 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1782 
1783 	if (cm_ops->runtime_suspend_switch)
1784 		return cm_ops->runtime_suspend_switch(sw);
1785 
1786 	return 0;
1787 }
1788 
tb_switch_runtime_resume(struct device * dev)1789 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1790 {
1791 	struct tb_switch *sw = tb_to_switch(dev);
1792 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1793 
1794 	if (cm_ops->runtime_resume_switch)
1795 		return cm_ops->runtime_resume_switch(sw);
1796 	return 0;
1797 }
1798 
1799 static const struct dev_pm_ops tb_switch_pm_ops = {
1800 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1801 			   NULL)
1802 };
1803 
1804 struct device_type tb_switch_type = {
1805 	.name = "thunderbolt_device",
1806 	.release = tb_switch_release,
1807 	.pm = &tb_switch_pm_ops,
1808 };
1809 
tb_switch_get_generation(struct tb_switch * sw)1810 static int tb_switch_get_generation(struct tb_switch *sw)
1811 {
1812 	switch (sw->config.device_id) {
1813 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1814 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1815 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1816 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1817 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1818 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1819 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1820 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1821 		return 1;
1822 
1823 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1824 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1825 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1826 		return 2;
1827 
1828 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1829 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1830 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1831 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1832 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1833 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1834 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1835 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1836 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1837 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1838 		return 3;
1839 
1840 	default:
1841 		if (tb_switch_is_usb4(sw))
1842 			return 4;
1843 
1844 		/*
1845 		 * For unknown switches assume generation to be 1 to be
1846 		 * on the safe side.
1847 		 */
1848 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1849 			   sw->config.device_id);
1850 		return 1;
1851 	}
1852 }
1853 
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)1854 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1855 {
1856 	int max_depth;
1857 
1858 	if (tb_switch_is_usb4(sw) ||
1859 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1860 		max_depth = USB4_SWITCH_MAX_DEPTH;
1861 	else
1862 		max_depth = TB_SWITCH_MAX_DEPTH;
1863 
1864 	return depth > max_depth;
1865 }
1866 
1867 /**
1868  * tb_switch_alloc() - allocate a switch
1869  * @tb: Pointer to the owning domain
1870  * @parent: Parent device for this switch
1871  * @route: Route string for this switch
1872  *
1873  * Allocates and initializes a switch. Will not upload configuration to
1874  * the switch. For that you need to call tb_switch_configure()
1875  * separately. The returned switch should be released by calling
1876  * tb_switch_put().
1877  *
1878  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1879  * failure.
1880  */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1881 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1882 				  u64 route)
1883 {
1884 	struct tb_switch *sw;
1885 	int upstream_port;
1886 	int i, ret, depth;
1887 
1888 	/* Unlock the downstream port so we can access the switch below */
1889 	if (route) {
1890 		struct tb_switch *parent_sw = tb_to_switch(parent);
1891 		struct tb_port *down;
1892 
1893 		down = tb_port_at(route, parent_sw);
1894 		tb_port_unlock(down);
1895 	}
1896 
1897 	depth = tb_route_length(route);
1898 
1899 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1900 	if (upstream_port < 0)
1901 		return ERR_PTR(upstream_port);
1902 
1903 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1904 	if (!sw)
1905 		return ERR_PTR(-ENOMEM);
1906 
1907 	sw->tb = tb;
1908 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1909 	if (ret)
1910 		goto err_free_sw_ports;
1911 
1912 	sw->generation = tb_switch_get_generation(sw);
1913 
1914 	tb_dbg(tb, "current switch config:\n");
1915 	tb_dump_switch(tb, sw);
1916 
1917 	/* configure switch */
1918 	sw->config.upstream_port_number = upstream_port;
1919 	sw->config.depth = depth;
1920 	sw->config.route_hi = upper_32_bits(route);
1921 	sw->config.route_lo = lower_32_bits(route);
1922 	sw->config.enabled = 0;
1923 
1924 	/* Make sure we do not exceed maximum topology limit */
1925 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1926 		ret = -EADDRNOTAVAIL;
1927 		goto err_free_sw_ports;
1928 	}
1929 
1930 	/* initialize ports */
1931 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1932 				GFP_KERNEL);
1933 	if (!sw->ports) {
1934 		ret = -ENOMEM;
1935 		goto err_free_sw_ports;
1936 	}
1937 
1938 	for (i = 0; i <= sw->config.max_port_number; i++) {
1939 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1940 		sw->ports[i].sw = sw;
1941 		sw->ports[i].port = i;
1942 
1943 		/* Control port does not need HopID allocation */
1944 		if (i) {
1945 			ida_init(&sw->ports[i].in_hopids);
1946 			ida_init(&sw->ports[i].out_hopids);
1947 		}
1948 	}
1949 
1950 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1951 	if (ret > 0)
1952 		sw->cap_plug_events = ret;
1953 
1954 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1955 	if (ret > 0)
1956 		sw->cap_lc = ret;
1957 
1958 	/* Root switch is always authorized */
1959 	if (!route)
1960 		sw->authorized = true;
1961 
1962 	device_initialize(&sw->dev);
1963 	sw->dev.parent = parent;
1964 	sw->dev.bus = &tb_bus_type;
1965 	sw->dev.type = &tb_switch_type;
1966 	sw->dev.groups = switch_groups;
1967 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1968 
1969 	return sw;
1970 
1971 err_free_sw_ports:
1972 	kfree(sw->ports);
1973 	kfree(sw);
1974 
1975 	return ERR_PTR(ret);
1976 }
1977 
1978 /**
1979  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1980  * @tb: Pointer to the owning domain
1981  * @parent: Parent device for this switch
1982  * @route: Route string for this switch
1983  *
1984  * This creates a switch in safe mode. This means the switch pretty much
1985  * lacks all capabilities except DMA configuration port before it is
1986  * flashed with a valid NVM firmware.
1987  *
1988  * The returned switch must be released by calling tb_switch_put().
1989  *
1990  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1991  */
1992 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1993 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1994 {
1995 	struct tb_switch *sw;
1996 
1997 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1998 	if (!sw)
1999 		return ERR_PTR(-ENOMEM);
2000 
2001 	sw->tb = tb;
2002 	sw->config.depth = tb_route_length(route);
2003 	sw->config.route_hi = upper_32_bits(route);
2004 	sw->config.route_lo = lower_32_bits(route);
2005 	sw->safe_mode = true;
2006 
2007 	device_initialize(&sw->dev);
2008 	sw->dev.parent = parent;
2009 	sw->dev.bus = &tb_bus_type;
2010 	sw->dev.type = &tb_switch_type;
2011 	sw->dev.groups = switch_groups;
2012 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2013 
2014 	return sw;
2015 }
2016 
2017 /**
2018  * tb_switch_configure() - Uploads configuration to the switch
2019  * @sw: Switch to configure
2020  *
2021  * Call this function before the switch is added to the system. It will
2022  * upload configuration to the switch and makes it available for the
2023  * connection manager to use. Can be called to the switch again after
2024  * resume from low power states to re-initialize it.
2025  *
2026  * Return: %0 in case of success and negative errno in case of failure
2027  */
tb_switch_configure(struct tb_switch * sw)2028 int tb_switch_configure(struct tb_switch *sw)
2029 {
2030 	struct tb *tb = sw->tb;
2031 	u64 route;
2032 	int ret;
2033 
2034 	route = tb_route(sw);
2035 
2036 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2037 	       sw->config.enabled ? "restoring" : "initializing", route,
2038 	       tb_route_length(route), sw->config.upstream_port_number);
2039 
2040 	sw->config.enabled = 1;
2041 
2042 	if (tb_switch_is_usb4(sw)) {
2043 		/*
2044 		 * For USB4 devices, we need to program the CM version
2045 		 * accordingly so that it knows to expose all the
2046 		 * additional capabilities.
2047 		 */
2048 		sw->config.cmuv = USB4_VERSION_1_0;
2049 		sw->config.plug_events_delay = 0xa;
2050 
2051 		/* Enumerate the switch */
2052 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2053 				  ROUTER_CS_1, 4);
2054 		if (ret)
2055 			return ret;
2056 
2057 		ret = usb4_switch_setup(sw);
2058 	} else {
2059 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2060 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2061 				   sw->config.vendor_id);
2062 
2063 		if (!sw->cap_plug_events) {
2064 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2065 			return -ENODEV;
2066 		}
2067 
2068 		/* Enumerate the switch */
2069 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2070 				  ROUTER_CS_1, 3);
2071 	}
2072 	if (ret)
2073 		return ret;
2074 
2075 	return tb_plug_events_active(sw, true);
2076 }
2077 
tb_switch_set_uuid(struct tb_switch * sw)2078 static int tb_switch_set_uuid(struct tb_switch *sw)
2079 {
2080 	bool uid = false;
2081 	u32 uuid[4];
2082 	int ret;
2083 
2084 	if (sw->uuid)
2085 		return 0;
2086 
2087 	if (tb_switch_is_usb4(sw)) {
2088 		ret = usb4_switch_read_uid(sw, &sw->uid);
2089 		if (ret)
2090 			return ret;
2091 		uid = true;
2092 	} else {
2093 		/*
2094 		 * The newer controllers include fused UUID as part of
2095 		 * link controller specific registers
2096 		 */
2097 		ret = tb_lc_read_uuid(sw, uuid);
2098 		if (ret) {
2099 			if (ret != -EINVAL)
2100 				return ret;
2101 			uid = true;
2102 		}
2103 	}
2104 
2105 	if (uid) {
2106 		/*
2107 		 * ICM generates UUID based on UID and fills the upper
2108 		 * two words with ones. This is not strictly following
2109 		 * UUID format but we want to be compatible with it so
2110 		 * we do the same here.
2111 		 */
2112 		uuid[0] = sw->uid & 0xffffffff;
2113 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2114 		uuid[2] = 0xffffffff;
2115 		uuid[3] = 0xffffffff;
2116 	}
2117 
2118 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2119 	if (!sw->uuid)
2120 		return -ENOMEM;
2121 	return 0;
2122 }
2123 
tb_switch_add_dma_port(struct tb_switch * sw)2124 static int tb_switch_add_dma_port(struct tb_switch *sw)
2125 {
2126 	u32 status;
2127 	int ret;
2128 
2129 	switch (sw->generation) {
2130 	case 2:
2131 		/* Only root switch can be upgraded */
2132 		if (tb_route(sw))
2133 			return 0;
2134 
2135 		fallthrough;
2136 	case 3:
2137 		ret = tb_switch_set_uuid(sw);
2138 		if (ret)
2139 			return ret;
2140 		break;
2141 
2142 	default:
2143 		/*
2144 		 * DMA port is the only thing available when the switch
2145 		 * is in safe mode.
2146 		 */
2147 		if (!sw->safe_mode)
2148 			return 0;
2149 		break;
2150 	}
2151 
2152 	/* Root switch DMA port requires running firmware */
2153 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2154 		return 0;
2155 
2156 	sw->dma_port = dma_port_alloc(sw);
2157 	if (!sw->dma_port)
2158 		return 0;
2159 
2160 	if (sw->no_nvm_upgrade)
2161 		return 0;
2162 
2163 	/*
2164 	 * If there is status already set then authentication failed
2165 	 * when the dma_port_flash_update_auth() returned. Power cycling
2166 	 * is not needed (it was done already) so only thing we do here
2167 	 * is to unblock runtime PM of the root port.
2168 	 */
2169 	nvm_get_auth_status(sw, &status);
2170 	if (status) {
2171 		if (!tb_route(sw))
2172 			nvm_authenticate_complete_dma_port(sw);
2173 		return 0;
2174 	}
2175 
2176 	/*
2177 	 * Check status of the previous flash authentication. If there
2178 	 * is one we need to power cycle the switch in any case to make
2179 	 * it functional again.
2180 	 */
2181 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2182 	if (ret <= 0)
2183 		return ret;
2184 
2185 	/* Now we can allow root port to suspend again */
2186 	if (!tb_route(sw))
2187 		nvm_authenticate_complete_dma_port(sw);
2188 
2189 	if (status) {
2190 		tb_sw_info(sw, "switch flash authentication failed\n");
2191 		nvm_set_auth_status(sw, status);
2192 	}
2193 
2194 	tb_sw_info(sw, "power cycling the switch now\n");
2195 	dma_port_power_cycle(sw->dma_port);
2196 
2197 	/*
2198 	 * We return error here which causes the switch adding failure.
2199 	 * It should appear back after power cycle is complete.
2200 	 */
2201 	return -ESHUTDOWN;
2202 }
2203 
tb_switch_default_link_ports(struct tb_switch * sw)2204 static void tb_switch_default_link_ports(struct tb_switch *sw)
2205 {
2206 	int i;
2207 
2208 	for (i = 1; i <= sw->config.max_port_number; i++) {
2209 		struct tb_port *port = &sw->ports[i];
2210 		struct tb_port *subordinate;
2211 
2212 		if (!tb_port_is_null(port))
2213 			continue;
2214 
2215 		/* Check for the subordinate port */
2216 		if (i == sw->config.max_port_number ||
2217 		    !tb_port_is_null(&sw->ports[i + 1]))
2218 			continue;
2219 
2220 		/* Link them if not already done so (by DROM) */
2221 		subordinate = &sw->ports[i + 1];
2222 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2223 			port->link_nr = 0;
2224 			port->dual_link_port = subordinate;
2225 			subordinate->link_nr = 1;
2226 			subordinate->dual_link_port = port;
2227 
2228 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2229 				  port->port, subordinate->port);
2230 		}
2231 	}
2232 }
2233 
tb_switch_lane_bonding_possible(struct tb_switch * sw)2234 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2235 {
2236 	const struct tb_port *up = tb_upstream_port(sw);
2237 
2238 	if (!up->dual_link_port || !up->dual_link_port->remote)
2239 		return false;
2240 
2241 	if (tb_switch_is_usb4(sw))
2242 		return usb4_switch_lane_bonding_possible(sw);
2243 	return tb_lc_lane_bonding_possible(sw);
2244 }
2245 
tb_switch_update_link_attributes(struct tb_switch * sw)2246 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2247 {
2248 	struct tb_port *up;
2249 	bool change = false;
2250 	int ret;
2251 
2252 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2253 		return 0;
2254 
2255 	up = tb_upstream_port(sw);
2256 
2257 	ret = tb_port_get_link_speed(up);
2258 	if (ret < 0)
2259 		return ret;
2260 	if (sw->link_speed != ret)
2261 		change = true;
2262 	sw->link_speed = ret;
2263 
2264 	ret = tb_port_get_link_width(up);
2265 	if (ret < 0)
2266 		return ret;
2267 	if (sw->link_width != ret)
2268 		change = true;
2269 	sw->link_width = ret;
2270 
2271 	/* Notify userspace that there is possible link attribute change */
2272 	if (device_is_registered(&sw->dev) && change)
2273 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2274 
2275 	return 0;
2276 }
2277 
2278 /**
2279  * tb_switch_lane_bonding_enable() - Enable lane bonding
2280  * @sw: Switch to enable lane bonding
2281  *
2282  * Connection manager can call this function to enable lane bonding of a
2283  * switch. If conditions are correct and both switches support the feature,
2284  * lanes are bonded. It is safe to call this to any switch.
2285  */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2286 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2287 {
2288 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2289 	struct tb_port *up, *down;
2290 	u64 route = tb_route(sw);
2291 	int ret;
2292 
2293 	if (!route)
2294 		return 0;
2295 
2296 	if (!tb_switch_lane_bonding_possible(sw))
2297 		return 0;
2298 
2299 	up = tb_upstream_port(sw);
2300 	down = tb_port_at(route, parent);
2301 
2302 	if (!tb_port_is_width_supported(up, 2) ||
2303 	    !tb_port_is_width_supported(down, 2))
2304 		return 0;
2305 
2306 	/*
2307 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2308 	 * CL0 and check just for lane 1.
2309 	 */
2310 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2311 		return -ENOTCONN;
2312 
2313 	ret = tb_port_lane_bonding_enable(up);
2314 	if (ret) {
2315 		tb_port_warn(up, "failed to enable lane bonding\n");
2316 		return ret;
2317 	}
2318 
2319 	ret = tb_port_lane_bonding_enable(down);
2320 	if (ret) {
2321 		tb_port_warn(down, "failed to enable lane bonding\n");
2322 		tb_port_lane_bonding_disable(up);
2323 		return ret;
2324 	}
2325 
2326 	tb_switch_update_link_attributes(sw);
2327 
2328 	tb_sw_dbg(sw, "lane bonding enabled\n");
2329 	return ret;
2330 }
2331 
2332 /**
2333  * tb_switch_lane_bonding_disable() - Disable lane bonding
2334  * @sw: Switch whose lane bonding to disable
2335  *
2336  * Disables lane bonding between @sw and parent. This can be called even
2337  * if lanes were not bonded originally.
2338  */
tb_switch_lane_bonding_disable(struct tb_switch * sw)2339 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2340 {
2341 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2342 	struct tb_port *up, *down;
2343 
2344 	if (!tb_route(sw))
2345 		return;
2346 
2347 	up = tb_upstream_port(sw);
2348 	if (!up->bonded)
2349 		return;
2350 
2351 	down = tb_port_at(tb_route(sw), parent);
2352 
2353 	tb_port_lane_bonding_disable(up);
2354 	tb_port_lane_bonding_disable(down);
2355 
2356 	tb_switch_update_link_attributes(sw);
2357 	tb_sw_dbg(sw, "lane bonding disabled\n");
2358 }
2359 
2360 /**
2361  * tb_switch_configure_link() - Set link configured
2362  * @sw: Switch whose link is configured
2363  *
2364  * Sets the link upstream from @sw configured (from both ends) so that
2365  * it will not be disconnected when the domain exits sleep. Can be
2366  * called for any switch.
2367  *
2368  * It is recommended that this is called after lane bonding is enabled.
2369  *
2370  * Returns %0 on success and negative errno in case of error.
2371  */
tb_switch_configure_link(struct tb_switch * sw)2372 int tb_switch_configure_link(struct tb_switch *sw)
2373 {
2374 	struct tb_port *up, *down;
2375 	int ret;
2376 
2377 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2378 		return 0;
2379 
2380 	up = tb_upstream_port(sw);
2381 	if (tb_switch_is_usb4(up->sw))
2382 		ret = usb4_port_configure(up);
2383 	else
2384 		ret = tb_lc_configure_port(up);
2385 	if (ret)
2386 		return ret;
2387 
2388 	down = up->remote;
2389 	if (tb_switch_is_usb4(down->sw))
2390 		return usb4_port_configure(down);
2391 	return tb_lc_configure_port(down);
2392 }
2393 
2394 /**
2395  * tb_switch_unconfigure_link() - Unconfigure link
2396  * @sw: Switch whose link is unconfigured
2397  *
2398  * Sets the link unconfigured so the @sw will be disconnected if the
2399  * domain exists sleep.
2400  */
tb_switch_unconfigure_link(struct tb_switch * sw)2401 void tb_switch_unconfigure_link(struct tb_switch *sw)
2402 {
2403 	struct tb_port *up, *down;
2404 
2405 	if (sw->is_unplugged)
2406 		return;
2407 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2408 		return;
2409 
2410 	up = tb_upstream_port(sw);
2411 	if (tb_switch_is_usb4(up->sw))
2412 		usb4_port_unconfigure(up);
2413 	else
2414 		tb_lc_unconfigure_port(up);
2415 
2416 	down = up->remote;
2417 	if (tb_switch_is_usb4(down->sw))
2418 		usb4_port_unconfigure(down);
2419 	else
2420 		tb_lc_unconfigure_port(down);
2421 }
2422 
tb_switch_port_hotplug_enable(struct tb_switch * sw)2423 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2424 {
2425 	struct tb_port *port;
2426 
2427 	if (tb_switch_is_icm(sw))
2428 		return 0;
2429 
2430 	tb_switch_for_each_port(sw, port) {
2431 		int res;
2432 
2433 		if (!port->cap_usb4)
2434 			continue;
2435 
2436 		res = usb4_port_hotplug_enable(port);
2437 		if (res)
2438 			return res;
2439 	}
2440 	return 0;
2441 }
2442 
2443 /**
2444  * tb_switch_add() - Add a switch to the domain
2445  * @sw: Switch to add
2446  *
2447  * This is the last step in adding switch to the domain. It will read
2448  * identification information from DROM and initializes ports so that
2449  * they can be used to connect other switches. The switch will be
2450  * exposed to the userspace when this function successfully returns. To
2451  * remove and release the switch, call tb_switch_remove().
2452  *
2453  * Return: %0 in case of success and negative errno in case of failure
2454  */
tb_switch_add(struct tb_switch * sw)2455 int tb_switch_add(struct tb_switch *sw)
2456 {
2457 	int i, ret;
2458 
2459 	/*
2460 	 * Initialize DMA control port now before we read DROM. Recent
2461 	 * host controllers have more complete DROM on NVM that includes
2462 	 * vendor and model identification strings which we then expose
2463 	 * to the userspace. NVM can be accessed through DMA
2464 	 * configuration based mailbox.
2465 	 */
2466 	ret = tb_switch_add_dma_port(sw);
2467 	if (ret) {
2468 		dev_err(&sw->dev, "failed to add DMA port\n");
2469 		return ret;
2470 	}
2471 
2472 	if (!sw->safe_mode) {
2473 		/* read drom */
2474 		ret = tb_drom_read(sw);
2475 		if (ret) {
2476 			dev_err(&sw->dev, "reading DROM failed\n");
2477 			return ret;
2478 		}
2479 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2480 
2481 		ret = tb_switch_set_uuid(sw);
2482 		if (ret) {
2483 			dev_err(&sw->dev, "failed to set UUID\n");
2484 			return ret;
2485 		}
2486 
2487 		for (i = 0; i <= sw->config.max_port_number; i++) {
2488 			if (sw->ports[i].disabled) {
2489 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2490 				continue;
2491 			}
2492 			ret = tb_init_port(&sw->ports[i]);
2493 			if (ret) {
2494 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2495 				return ret;
2496 			}
2497 		}
2498 
2499 		tb_switch_default_link_ports(sw);
2500 
2501 		ret = tb_switch_update_link_attributes(sw);
2502 		if (ret)
2503 			return ret;
2504 
2505 		ret = tb_switch_tmu_init(sw);
2506 		if (ret)
2507 			return ret;
2508 	}
2509 
2510 	ret = tb_switch_port_hotplug_enable(sw);
2511 	if (ret)
2512 		return ret;
2513 
2514 	ret = device_add(&sw->dev);
2515 	if (ret) {
2516 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2517 		return ret;
2518 	}
2519 
2520 	if (tb_route(sw)) {
2521 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2522 			 sw->vendor, sw->device);
2523 		if (sw->vendor_name && sw->device_name)
2524 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2525 				 sw->device_name);
2526 	}
2527 
2528 	ret = tb_switch_nvm_add(sw);
2529 	if (ret) {
2530 		dev_err(&sw->dev, "failed to add NVM devices\n");
2531 		device_del(&sw->dev);
2532 		return ret;
2533 	}
2534 
2535 	/*
2536 	 * Thunderbolt routers do not generate wakeups themselves but
2537 	 * they forward wakeups from tunneled protocols, so enable it
2538 	 * here.
2539 	 */
2540 	device_init_wakeup(&sw->dev, true);
2541 
2542 	pm_runtime_set_active(&sw->dev);
2543 	if (sw->rpm) {
2544 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2545 		pm_runtime_use_autosuspend(&sw->dev);
2546 		pm_runtime_mark_last_busy(&sw->dev);
2547 		pm_runtime_enable(&sw->dev);
2548 		pm_request_autosuspend(&sw->dev);
2549 	}
2550 
2551 	tb_switch_debugfs_init(sw);
2552 	return 0;
2553 }
2554 
2555 /**
2556  * tb_switch_remove() - Remove and release a switch
2557  * @sw: Switch to remove
2558  *
2559  * This will remove the switch from the domain and release it after last
2560  * reference count drops to zero. If there are switches connected below
2561  * this switch, they will be removed as well.
2562  */
tb_switch_remove(struct tb_switch * sw)2563 void tb_switch_remove(struct tb_switch *sw)
2564 {
2565 	struct tb_port *port;
2566 
2567 	tb_switch_debugfs_remove(sw);
2568 
2569 	if (sw->rpm) {
2570 		pm_runtime_get_sync(&sw->dev);
2571 		pm_runtime_disable(&sw->dev);
2572 	}
2573 
2574 	/* port 0 is the switch itself and never has a remote */
2575 	tb_switch_for_each_port(sw, port) {
2576 		if (tb_port_has_remote(port)) {
2577 			tb_switch_remove(port->remote->sw);
2578 			port->remote = NULL;
2579 		} else if (port->xdomain) {
2580 			tb_xdomain_remove(port->xdomain);
2581 			port->xdomain = NULL;
2582 		}
2583 
2584 		/* Remove any downstream retimers */
2585 		tb_retimer_remove_all(port);
2586 	}
2587 
2588 	if (!sw->is_unplugged)
2589 		tb_plug_events_active(sw, false);
2590 
2591 	tb_switch_nvm_remove(sw);
2592 
2593 	if (tb_route(sw))
2594 		dev_info(&sw->dev, "device disconnected\n");
2595 	device_unregister(&sw->dev);
2596 }
2597 
2598 /**
2599  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2600  */
tb_sw_set_unplugged(struct tb_switch * sw)2601 void tb_sw_set_unplugged(struct tb_switch *sw)
2602 {
2603 	struct tb_port *port;
2604 
2605 	if (sw == sw->tb->root_switch) {
2606 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2607 		return;
2608 	}
2609 	if (sw->is_unplugged) {
2610 		tb_sw_WARN(sw, "is_unplugged already set\n");
2611 		return;
2612 	}
2613 	sw->is_unplugged = true;
2614 	tb_switch_for_each_port(sw, port) {
2615 		if (tb_port_has_remote(port))
2616 			tb_sw_set_unplugged(port->remote->sw);
2617 		else if (port->xdomain)
2618 			port->xdomain->is_unplugged = true;
2619 	}
2620 }
2621 
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags)2622 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2623 {
2624 	if (flags)
2625 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2626 	else
2627 		tb_sw_dbg(sw, "disabling wakeup\n");
2628 
2629 	if (tb_switch_is_usb4(sw))
2630 		return usb4_switch_set_wake(sw, flags);
2631 	return tb_lc_set_wake(sw, flags);
2632 }
2633 
tb_switch_resume(struct tb_switch * sw)2634 int tb_switch_resume(struct tb_switch *sw)
2635 {
2636 	struct tb_port *port;
2637 	int err;
2638 
2639 	tb_sw_dbg(sw, "resuming switch\n");
2640 
2641 	/*
2642 	 * Check for UID of the connected switches except for root
2643 	 * switch which we assume cannot be removed.
2644 	 */
2645 	if (tb_route(sw)) {
2646 		u64 uid;
2647 
2648 		/*
2649 		 * Check first that we can still read the switch config
2650 		 * space. It may be that there is now another domain
2651 		 * connected.
2652 		 */
2653 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2654 		if (err < 0) {
2655 			tb_sw_info(sw, "switch not present anymore\n");
2656 			return err;
2657 		}
2658 
2659 		if (tb_switch_is_usb4(sw))
2660 			err = usb4_switch_read_uid(sw, &uid);
2661 		else
2662 			err = tb_drom_read_uid_only(sw, &uid);
2663 		if (err) {
2664 			tb_sw_warn(sw, "uid read failed\n");
2665 			return err;
2666 		}
2667 		if (sw->uid != uid) {
2668 			tb_sw_info(sw,
2669 				"changed while suspended (uid %#llx -> %#llx)\n",
2670 				sw->uid, uid);
2671 			return -ENODEV;
2672 		}
2673 	}
2674 
2675 	err = tb_switch_configure(sw);
2676 	if (err)
2677 		return err;
2678 
2679 	/* Disable wakes */
2680 	tb_switch_set_wake(sw, 0);
2681 
2682 	err = tb_switch_tmu_init(sw);
2683 	if (err)
2684 		return err;
2685 
2686 	/* check for surviving downstream switches */
2687 	tb_switch_for_each_port(sw, port) {
2688 		if (!tb_port_has_remote(port) && !port->xdomain)
2689 			continue;
2690 
2691 		if (tb_wait_for_port(port, true) <= 0) {
2692 			tb_port_warn(port,
2693 				     "lost during suspend, disconnecting\n");
2694 			if (tb_port_has_remote(port))
2695 				tb_sw_set_unplugged(port->remote->sw);
2696 			else if (port->xdomain)
2697 				port->xdomain->is_unplugged = true;
2698 		} else if (tb_port_has_remote(port) || port->xdomain) {
2699 			/*
2700 			 * Always unlock the port so the downstream
2701 			 * switch/domain is accessible.
2702 			 */
2703 			if (tb_port_unlock(port))
2704 				tb_port_warn(port, "failed to unlock port\n");
2705 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2706 				tb_port_warn(port,
2707 					     "lost during suspend, disconnecting\n");
2708 				tb_sw_set_unplugged(port->remote->sw);
2709 			}
2710 		}
2711 	}
2712 	return 0;
2713 }
2714 
2715 /**
2716  * tb_switch_suspend() - Put a switch to sleep
2717  * @sw: Switch to suspend
2718  * @runtime: Is this runtime suspend or system sleep
2719  *
2720  * Suspends router and all its children. Enables wakes according to
2721  * value of @runtime and then sets sleep bit for the router. If @sw is
2722  * host router the domain is ready to go to sleep once this function
2723  * returns.
2724  */
tb_switch_suspend(struct tb_switch * sw,bool runtime)2725 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2726 {
2727 	unsigned int flags = 0;
2728 	struct tb_port *port;
2729 	int err;
2730 
2731 	tb_sw_dbg(sw, "suspending switch\n");
2732 
2733 	err = tb_plug_events_active(sw, false);
2734 	if (err)
2735 		return;
2736 
2737 	tb_switch_for_each_port(sw, port) {
2738 		if (tb_port_has_remote(port))
2739 			tb_switch_suspend(port->remote->sw, runtime);
2740 	}
2741 
2742 	if (runtime) {
2743 		/* Trigger wake when something is plugged in/out */
2744 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2745 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2746 	} else if (device_may_wakeup(&sw->dev)) {
2747 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2748 	}
2749 
2750 	tb_switch_set_wake(sw, flags);
2751 
2752 	if (tb_switch_is_usb4(sw))
2753 		usb4_switch_set_sleep(sw);
2754 	else
2755 		tb_lc_set_sleep(sw);
2756 }
2757 
2758 /**
2759  * tb_switch_query_dp_resource() - Query availability of DP resource
2760  * @sw: Switch whose DP resource is queried
2761  * @in: DP IN port
2762  *
2763  * Queries availability of DP resource for DP tunneling using switch
2764  * specific means. Returns %true if resource is available.
2765  */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)2766 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2767 {
2768 	if (tb_switch_is_usb4(sw))
2769 		return usb4_switch_query_dp_resource(sw, in);
2770 	return tb_lc_dp_sink_query(sw, in);
2771 }
2772 
2773 /**
2774  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2775  * @sw: Switch whose DP resource is allocated
2776  * @in: DP IN port
2777  *
2778  * Allocates DP resource for DP tunneling. The resource must be
2779  * available for this to succeed (see tb_switch_query_dp_resource()).
2780  * Returns %0 in success and negative errno otherwise.
2781  */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)2782 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2783 {
2784 	if (tb_switch_is_usb4(sw))
2785 		return usb4_switch_alloc_dp_resource(sw, in);
2786 	return tb_lc_dp_sink_alloc(sw, in);
2787 }
2788 
2789 /**
2790  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2791  * @sw: Switch whose DP resource is de-allocated
2792  * @in: DP IN port
2793  *
2794  * De-allocates DP resource that was previously allocated for DP
2795  * tunneling.
2796  */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)2797 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2798 {
2799 	int ret;
2800 
2801 	if (tb_switch_is_usb4(sw))
2802 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2803 	else
2804 		ret = tb_lc_dp_sink_dealloc(sw, in);
2805 
2806 	if (ret)
2807 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2808 			   in->port);
2809 }
2810 
2811 struct tb_sw_lookup {
2812 	struct tb *tb;
2813 	u8 link;
2814 	u8 depth;
2815 	const uuid_t *uuid;
2816 	u64 route;
2817 };
2818 
tb_switch_match(struct device * dev,const void * data)2819 static int tb_switch_match(struct device *dev, const void *data)
2820 {
2821 	struct tb_switch *sw = tb_to_switch(dev);
2822 	const struct tb_sw_lookup *lookup = data;
2823 
2824 	if (!sw)
2825 		return 0;
2826 	if (sw->tb != lookup->tb)
2827 		return 0;
2828 
2829 	if (lookup->uuid)
2830 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2831 
2832 	if (lookup->route) {
2833 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2834 		       sw->config.route_hi == upper_32_bits(lookup->route);
2835 	}
2836 
2837 	/* Root switch is matched only by depth */
2838 	if (!lookup->depth)
2839 		return !sw->depth;
2840 
2841 	return sw->link == lookup->link && sw->depth == lookup->depth;
2842 }
2843 
2844 /**
2845  * tb_switch_find_by_link_depth() - Find switch by link and depth
2846  * @tb: Domain the switch belongs
2847  * @link: Link number the switch is connected
2848  * @depth: Depth of the switch in link
2849  *
2850  * Returned switch has reference count increased so the caller needs to
2851  * call tb_switch_put() when done with the switch.
2852  */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)2853 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2854 {
2855 	struct tb_sw_lookup lookup;
2856 	struct device *dev;
2857 
2858 	memset(&lookup, 0, sizeof(lookup));
2859 	lookup.tb = tb;
2860 	lookup.link = link;
2861 	lookup.depth = depth;
2862 
2863 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2864 	if (dev)
2865 		return tb_to_switch(dev);
2866 
2867 	return NULL;
2868 }
2869 
2870 /**
2871  * tb_switch_find_by_uuid() - Find switch by UUID
2872  * @tb: Domain the switch belongs
2873  * @uuid: UUID to look for
2874  *
2875  * Returned switch has reference count increased so the caller needs to
2876  * call tb_switch_put() when done with the switch.
2877  */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)2878 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2879 {
2880 	struct tb_sw_lookup lookup;
2881 	struct device *dev;
2882 
2883 	memset(&lookup, 0, sizeof(lookup));
2884 	lookup.tb = tb;
2885 	lookup.uuid = uuid;
2886 
2887 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2888 	if (dev)
2889 		return tb_to_switch(dev);
2890 
2891 	return NULL;
2892 }
2893 
2894 /**
2895  * tb_switch_find_by_route() - Find switch by route string
2896  * @tb: Domain the switch belongs
2897  * @route: Route string to look for
2898  *
2899  * Returned switch has reference count increased so the caller needs to
2900  * call tb_switch_put() when done with the switch.
2901  */
tb_switch_find_by_route(struct tb * tb,u64 route)2902 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2903 {
2904 	struct tb_sw_lookup lookup;
2905 	struct device *dev;
2906 
2907 	if (!route)
2908 		return tb_switch_get(tb->root_switch);
2909 
2910 	memset(&lookup, 0, sizeof(lookup));
2911 	lookup.tb = tb;
2912 	lookup.route = route;
2913 
2914 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2915 	if (dev)
2916 		return tb_to_switch(dev);
2917 
2918 	return NULL;
2919 }
2920 
2921 /**
2922  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2923  * @sw: Switch to find the port from
2924  * @type: Port type to look for
2925  */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)2926 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2927 				    enum tb_port_type type)
2928 {
2929 	struct tb_port *port;
2930 
2931 	tb_switch_for_each_port(sw, port) {
2932 		if (port->config.type == type)
2933 			return port;
2934 	}
2935 
2936 	return NULL;
2937 }
2938