1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/slab.h>
16 #include <linux/sort.h>
17
18 #include <soc/tegra/fuse.h>
19
20 #include "mc.h"
21
22 static const struct of_device_id tegra_mc_of_match[] = {
23 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
24 { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
25 #endif
26 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
27 { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
28 #endif
29 #ifdef CONFIG_ARCH_TEGRA_114_SOC
30 { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
31 #endif
32 #ifdef CONFIG_ARCH_TEGRA_124_SOC
33 { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
34 #endif
35 #ifdef CONFIG_ARCH_TEGRA_132_SOC
36 { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
37 #endif
38 #ifdef CONFIG_ARCH_TEGRA_210_SOC
39 { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
40 #endif
41 { }
42 };
43 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
44
tegra_mc_block_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)45 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
46 const struct tegra_mc_reset *rst)
47 {
48 unsigned long flags;
49 u32 value;
50
51 spin_lock_irqsave(&mc->lock, flags);
52
53 value = mc_readl(mc, rst->control) | BIT(rst->bit);
54 mc_writel(mc, value, rst->control);
55
56 spin_unlock_irqrestore(&mc->lock, flags);
57
58 return 0;
59 }
60
tegra_mc_dma_idling_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)61 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
62 const struct tegra_mc_reset *rst)
63 {
64 return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
65 }
66
tegra_mc_unblock_dma_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)67 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
68 const struct tegra_mc_reset *rst)
69 {
70 unsigned long flags;
71 u32 value;
72
73 spin_lock_irqsave(&mc->lock, flags);
74
75 value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
76 mc_writel(mc, value, rst->control);
77
78 spin_unlock_irqrestore(&mc->lock, flags);
79
80 return 0;
81 }
82
tegra_mc_reset_status_common(struct tegra_mc * mc,const struct tegra_mc_reset * rst)83 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
84 const struct tegra_mc_reset *rst)
85 {
86 return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
87 }
88
89 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
90 .block_dma = tegra_mc_block_dma_common,
91 .dma_idling = tegra_mc_dma_idling_common,
92 .unblock_dma = tegra_mc_unblock_dma_common,
93 .reset_status = tegra_mc_reset_status_common,
94 };
95
reset_to_mc(struct reset_controller_dev * rcdev)96 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
97 {
98 return container_of(rcdev, struct tegra_mc, reset);
99 }
100
tegra_mc_reset_find(struct tegra_mc * mc,unsigned long id)101 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
102 unsigned long id)
103 {
104 unsigned int i;
105
106 for (i = 0; i < mc->soc->num_resets; i++)
107 if (mc->soc->resets[i].id == id)
108 return &mc->soc->resets[i];
109
110 return NULL;
111 }
112
tegra_mc_hotreset_assert(struct reset_controller_dev * rcdev,unsigned long id)113 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
114 unsigned long id)
115 {
116 struct tegra_mc *mc = reset_to_mc(rcdev);
117 const struct tegra_mc_reset_ops *rst_ops;
118 const struct tegra_mc_reset *rst;
119 int retries = 500;
120 int err;
121
122 rst = tegra_mc_reset_find(mc, id);
123 if (!rst)
124 return -ENODEV;
125
126 rst_ops = mc->soc->reset_ops;
127 if (!rst_ops)
128 return -ENODEV;
129
130 if (rst_ops->block_dma) {
131 /* block clients DMA requests */
132 err = rst_ops->block_dma(mc, rst);
133 if (err) {
134 dev_err(mc->dev, "failed to block %s DMA: %d\n",
135 rst->name, err);
136 return err;
137 }
138 }
139
140 if (rst_ops->dma_idling) {
141 /* wait for completion of the outstanding DMA requests */
142 while (!rst_ops->dma_idling(mc, rst)) {
143 if (!retries--) {
144 dev_err(mc->dev, "failed to flush %s DMA\n",
145 rst->name);
146 return -EBUSY;
147 }
148
149 usleep_range(10, 100);
150 }
151 }
152
153 if (rst_ops->hotreset_assert) {
154 /* clear clients DMA requests sitting before arbitration */
155 err = rst_ops->hotreset_assert(mc, rst);
156 if (err) {
157 dev_err(mc->dev, "failed to hot reset %s: %d\n",
158 rst->name, err);
159 return err;
160 }
161 }
162
163 return 0;
164 }
165
tegra_mc_hotreset_deassert(struct reset_controller_dev * rcdev,unsigned long id)166 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
167 unsigned long id)
168 {
169 struct tegra_mc *mc = reset_to_mc(rcdev);
170 const struct tegra_mc_reset_ops *rst_ops;
171 const struct tegra_mc_reset *rst;
172 int err;
173
174 rst = tegra_mc_reset_find(mc, id);
175 if (!rst)
176 return -ENODEV;
177
178 rst_ops = mc->soc->reset_ops;
179 if (!rst_ops)
180 return -ENODEV;
181
182 if (rst_ops->hotreset_deassert) {
183 /* take out client from hot reset */
184 err = rst_ops->hotreset_deassert(mc, rst);
185 if (err) {
186 dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
187 rst->name, err);
188 return err;
189 }
190 }
191
192 if (rst_ops->unblock_dma) {
193 /* allow new DMA requests to proceed to arbitration */
194 err = rst_ops->unblock_dma(mc, rst);
195 if (err) {
196 dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
197 rst->name, err);
198 return err;
199 }
200 }
201
202 return 0;
203 }
204
tegra_mc_hotreset_status(struct reset_controller_dev * rcdev,unsigned long id)205 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
206 unsigned long id)
207 {
208 struct tegra_mc *mc = reset_to_mc(rcdev);
209 const struct tegra_mc_reset_ops *rst_ops;
210 const struct tegra_mc_reset *rst;
211
212 rst = tegra_mc_reset_find(mc, id);
213 if (!rst)
214 return -ENODEV;
215
216 rst_ops = mc->soc->reset_ops;
217 if (!rst_ops)
218 return -ENODEV;
219
220 return rst_ops->reset_status(mc, rst);
221 }
222
223 static const struct reset_control_ops tegra_mc_reset_ops = {
224 .assert = tegra_mc_hotreset_assert,
225 .deassert = tegra_mc_hotreset_deassert,
226 .status = tegra_mc_hotreset_status,
227 };
228
tegra_mc_reset_setup(struct tegra_mc * mc)229 static int tegra_mc_reset_setup(struct tegra_mc *mc)
230 {
231 int err;
232
233 mc->reset.ops = &tegra_mc_reset_ops;
234 mc->reset.owner = THIS_MODULE;
235 mc->reset.of_node = mc->dev->of_node;
236 mc->reset.of_reset_n_cells = 1;
237 mc->reset.nr_resets = mc->soc->num_resets;
238
239 err = reset_controller_register(&mc->reset);
240 if (err < 0)
241 return err;
242
243 return 0;
244 }
245
tegra_mc_setup_latency_allowance(struct tegra_mc * mc)246 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
247 {
248 unsigned long long tick;
249 unsigned int i;
250 u32 value;
251
252 /* compute the number of MC clock cycles per tick */
253 tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
254 do_div(tick, NSEC_PER_SEC);
255
256 value = mc_readl(mc, MC_EMEM_ARB_CFG);
257 value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
258 value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
259 mc_writel(mc, value, MC_EMEM_ARB_CFG);
260
261 /* write latency allowance defaults */
262 for (i = 0; i < mc->soc->num_clients; i++) {
263 const struct tegra_mc_la *la = &mc->soc->clients[i].la;
264 u32 value;
265
266 value = mc_readl(mc, la->reg);
267 value &= ~(la->mask << la->shift);
268 value |= (la->def & la->mask) << la->shift;
269 mc_writel(mc, value, la->reg);
270 }
271
272 /* latch new values */
273 mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
274
275 return 0;
276 }
277
tegra_mc_write_emem_configuration(struct tegra_mc * mc,unsigned long rate)278 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
279 {
280 unsigned int i;
281 struct tegra_mc_timing *timing = NULL;
282
283 for (i = 0; i < mc->num_timings; i++) {
284 if (mc->timings[i].rate == rate) {
285 timing = &mc->timings[i];
286 break;
287 }
288 }
289
290 if (!timing) {
291 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
292 rate);
293 return -EINVAL;
294 }
295
296 for (i = 0; i < mc->soc->num_emem_regs; ++i)
297 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
298
299 return 0;
300 }
301
tegra_mc_get_emem_device_count(struct tegra_mc * mc)302 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
303 {
304 u8 dram_count;
305
306 dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
307 dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
308 dram_count++;
309
310 return dram_count;
311 }
312
load_one_timing(struct tegra_mc * mc,struct tegra_mc_timing * timing,struct device_node * node)313 static int load_one_timing(struct tegra_mc *mc,
314 struct tegra_mc_timing *timing,
315 struct device_node *node)
316 {
317 int err;
318 u32 tmp;
319
320 err = of_property_read_u32(node, "clock-frequency", &tmp);
321 if (err) {
322 dev_err(mc->dev,
323 "timing %pOFn: failed to read rate\n", node);
324 return err;
325 }
326
327 timing->rate = tmp;
328 timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
329 sizeof(u32), GFP_KERNEL);
330 if (!timing->emem_data)
331 return -ENOMEM;
332
333 err = of_property_read_u32_array(node, "nvidia,emem-configuration",
334 timing->emem_data,
335 mc->soc->num_emem_regs);
336 if (err) {
337 dev_err(mc->dev,
338 "timing %pOFn: failed to read EMEM configuration\n",
339 node);
340 return err;
341 }
342
343 return 0;
344 }
345
load_timings(struct tegra_mc * mc,struct device_node * node)346 static int load_timings(struct tegra_mc *mc, struct device_node *node)
347 {
348 struct device_node *child;
349 struct tegra_mc_timing *timing;
350 int child_count = of_get_child_count(node);
351 int i = 0, err;
352
353 mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
354 GFP_KERNEL);
355 if (!mc->timings)
356 return -ENOMEM;
357
358 mc->num_timings = child_count;
359
360 for_each_child_of_node(node, child) {
361 timing = &mc->timings[i++];
362
363 err = load_one_timing(mc, timing, child);
364 if (err) {
365 of_node_put(child);
366 return err;
367 }
368 }
369
370 return 0;
371 }
372
tegra_mc_setup_timings(struct tegra_mc * mc)373 static int tegra_mc_setup_timings(struct tegra_mc *mc)
374 {
375 struct device_node *node;
376 u32 ram_code, node_ram_code;
377 int err;
378
379 ram_code = tegra_read_ram_code();
380
381 mc->num_timings = 0;
382
383 for_each_child_of_node(mc->dev->of_node, node) {
384 err = of_property_read_u32(node, "nvidia,ram-code",
385 &node_ram_code);
386 if (err || (node_ram_code != ram_code))
387 continue;
388
389 err = load_timings(mc, node);
390 of_node_put(node);
391 if (err)
392 return err;
393 break;
394 }
395
396 if (mc->num_timings == 0)
397 dev_warn(mc->dev,
398 "no memory timings for RAM code %u registered\n",
399 ram_code);
400
401 return 0;
402 }
403
404 static const char *const status_names[32] = {
405 [ 1] = "External interrupt",
406 [ 6] = "EMEM address decode error",
407 [ 7] = "GART page fault",
408 [ 8] = "Security violation",
409 [ 9] = "EMEM arbitration error",
410 [10] = "Page fault",
411 [11] = "Invalid APB ASID update",
412 [12] = "VPR violation",
413 [13] = "Secure carveout violation",
414 [16] = "MTS carveout violation",
415 };
416
417 static const char *const error_names[8] = {
418 [2] = "EMEM decode error",
419 [3] = "TrustZone violation",
420 [4] = "Carveout violation",
421 [6] = "SMMU translation error",
422 };
423
tegra_mc_irq(int irq,void * data)424 static irqreturn_t tegra_mc_irq(int irq, void *data)
425 {
426 struct tegra_mc *mc = data;
427 unsigned long status;
428 unsigned int bit;
429
430 /* mask all interrupts to avoid flooding */
431 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
432 if (!status)
433 return IRQ_NONE;
434
435 for_each_set_bit(bit, &status, 32) {
436 const char *error = status_names[bit] ?: "unknown";
437 const char *client = "unknown", *desc;
438 const char *direction, *secure;
439 phys_addr_t addr = 0;
440 unsigned int i;
441 char perm[7];
442 u8 id, type;
443 u32 value;
444
445 value = mc_readl(mc, MC_ERR_STATUS);
446
447 #ifdef CONFIG_PHYS_ADDR_T_64BIT
448 if (mc->soc->num_address_bits > 32) {
449 addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
450 MC_ERR_STATUS_ADR_HI_MASK);
451 addr <<= 32;
452 }
453 #endif
454
455 if (value & MC_ERR_STATUS_RW)
456 direction = "write";
457 else
458 direction = "read";
459
460 if (value & MC_ERR_STATUS_SECURITY)
461 secure = "secure ";
462 else
463 secure = "";
464
465 id = value & mc->soc->client_id_mask;
466
467 for (i = 0; i < mc->soc->num_clients; i++) {
468 if (mc->soc->clients[i].id == id) {
469 client = mc->soc->clients[i].name;
470 break;
471 }
472 }
473
474 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
475 MC_ERR_STATUS_TYPE_SHIFT;
476 desc = error_names[type];
477
478 switch (value & MC_ERR_STATUS_TYPE_MASK) {
479 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
480 perm[0] = ' ';
481 perm[1] = '[';
482
483 if (value & MC_ERR_STATUS_READABLE)
484 perm[2] = 'R';
485 else
486 perm[2] = '-';
487
488 if (value & MC_ERR_STATUS_WRITABLE)
489 perm[3] = 'W';
490 else
491 perm[3] = '-';
492
493 if (value & MC_ERR_STATUS_NONSECURE)
494 perm[4] = '-';
495 else
496 perm[4] = 'S';
497
498 perm[5] = ']';
499 perm[6] = '\0';
500 break;
501
502 default:
503 perm[0] = '\0';
504 break;
505 }
506
507 value = mc_readl(mc, MC_ERR_ADR);
508 addr |= value;
509
510 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
511 client, secure, direction, &addr, error,
512 desc, perm);
513 }
514
515 /* clear interrupts */
516 mc_writel(mc, status, MC_INTSTATUS);
517
518 return IRQ_HANDLED;
519 }
520
tegra20_mc_irq(int irq,void * data)521 static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data)
522 {
523 struct tegra_mc *mc = data;
524 unsigned long status;
525 unsigned int bit;
526
527 /* mask all interrupts to avoid flooding */
528 status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
529 if (!status)
530 return IRQ_NONE;
531
532 for_each_set_bit(bit, &status, 32) {
533 const char *direction = "read", *secure = "";
534 const char *error = status_names[bit];
535 const char *client, *desc;
536 phys_addr_t addr;
537 u32 value, reg;
538 u8 id, type;
539
540 switch (BIT(bit)) {
541 case MC_INT_DECERR_EMEM:
542 reg = MC_DECERR_EMEM_OTHERS_STATUS;
543 value = mc_readl(mc, reg);
544
545 id = value & mc->soc->client_id_mask;
546 desc = error_names[2];
547
548 if (value & BIT(31))
549 direction = "write";
550 break;
551
552 case MC_INT_INVALID_GART_PAGE:
553 reg = MC_GART_ERROR_REQ;
554 value = mc_readl(mc, reg);
555
556 id = (value >> 1) & mc->soc->client_id_mask;
557 desc = error_names[2];
558
559 if (value & BIT(0))
560 direction = "write";
561 break;
562
563 case MC_INT_SECURITY_VIOLATION:
564 reg = MC_SECURITY_VIOLATION_STATUS;
565 value = mc_readl(mc, reg);
566
567 id = value & mc->soc->client_id_mask;
568 type = (value & BIT(30)) ? 4 : 3;
569 desc = error_names[type];
570 secure = "secure ";
571
572 if (value & BIT(31))
573 direction = "write";
574 break;
575
576 default:
577 continue;
578 }
579
580 client = mc->soc->clients[id].name;
581 addr = mc_readl(mc, reg + sizeof(u32));
582
583 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n",
584 client, secure, direction, &addr, error,
585 desc);
586 }
587
588 /* clear interrupts */
589 mc_writel(mc, status, MC_INTSTATUS);
590
591 return IRQ_HANDLED;
592 }
593
tegra_mc_probe(struct platform_device * pdev)594 static int tegra_mc_probe(struct platform_device *pdev)
595 {
596 struct resource *res;
597 struct tegra_mc *mc;
598 void *isr;
599 u64 mask;
600 int err;
601
602 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
603 if (!mc)
604 return -ENOMEM;
605
606 platform_set_drvdata(pdev, mc);
607 spin_lock_init(&mc->lock);
608 mc->soc = of_device_get_match_data(&pdev->dev);
609 mc->dev = &pdev->dev;
610
611 mask = DMA_BIT_MASK(mc->soc->num_address_bits);
612
613 err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
614 if (err < 0) {
615 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
616 return err;
617 }
618
619 /* length of MC tick in nanoseconds */
620 mc->tick = 30;
621
622 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
623 mc->regs = devm_ioremap_resource(&pdev->dev, res);
624 if (IS_ERR(mc->regs))
625 return PTR_ERR(mc->regs);
626
627 mc->clk = devm_clk_get(&pdev->dev, "mc");
628 if (IS_ERR(mc->clk)) {
629 dev_err(&pdev->dev, "failed to get MC clock: %ld\n",
630 PTR_ERR(mc->clk));
631 return PTR_ERR(mc->clk);
632 }
633
634 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
635 if (mc->soc == &tegra20_mc_soc) {
636 isr = tegra20_mc_irq;
637 } else
638 #endif
639 {
640 /* ensure that debug features are disabled */
641 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
642
643 err = tegra_mc_setup_latency_allowance(mc);
644 if (err < 0) {
645 dev_err(&pdev->dev,
646 "failed to setup latency allowance: %d\n",
647 err);
648 return err;
649 }
650
651 isr = tegra_mc_irq;
652
653 err = tegra_mc_setup_timings(mc);
654 if (err < 0) {
655 dev_err(&pdev->dev, "failed to setup timings: %d\n",
656 err);
657 return err;
658 }
659 }
660
661 mc->irq = platform_get_irq(pdev, 0);
662 if (mc->irq < 0) {
663 dev_err(&pdev->dev, "interrupt not specified\n");
664 return mc->irq;
665 }
666
667 WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
668
669 mc_writel(mc, mc->soc->intmask, MC_INTMASK);
670
671 err = devm_request_irq(&pdev->dev, mc->irq, isr, 0,
672 dev_name(&pdev->dev), mc);
673 if (err < 0) {
674 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
675 err);
676 return err;
677 }
678
679 err = tegra_mc_reset_setup(mc);
680 if (err < 0)
681 dev_err(&pdev->dev, "failed to register reset controller: %d\n",
682 err);
683
684 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
685 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
686 if (IS_ERR(mc->smmu)) {
687 dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
688 PTR_ERR(mc->smmu));
689 mc->smmu = NULL;
690 }
691 }
692
693 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
694 mc->gart = tegra_gart_probe(&pdev->dev, mc);
695 if (IS_ERR(mc->gart)) {
696 dev_err(&pdev->dev, "failed to probe GART: %ld\n",
697 PTR_ERR(mc->gart));
698 mc->gart = NULL;
699 }
700 }
701
702 return 0;
703 }
704
tegra_mc_suspend(struct device * dev)705 static int tegra_mc_suspend(struct device *dev)
706 {
707 struct tegra_mc *mc = dev_get_drvdata(dev);
708 int err;
709
710 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
711 err = tegra_gart_suspend(mc->gart);
712 if (err)
713 return err;
714 }
715
716 return 0;
717 }
718
tegra_mc_resume(struct device * dev)719 static int tegra_mc_resume(struct device *dev)
720 {
721 struct tegra_mc *mc = dev_get_drvdata(dev);
722 int err;
723
724 if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
725 err = tegra_gart_resume(mc->gart);
726 if (err)
727 return err;
728 }
729
730 return 0;
731 }
732
733 static const struct dev_pm_ops tegra_mc_pm_ops = {
734 .suspend = tegra_mc_suspend,
735 .resume = tegra_mc_resume,
736 };
737
738 static struct platform_driver tegra_mc_driver = {
739 .driver = {
740 .name = "tegra-mc",
741 .of_match_table = tegra_mc_of_match,
742 .pm = &tegra_mc_pm_ops,
743 .suppress_bind_attrs = true,
744 },
745 .prevent_deferred_probe = true,
746 .probe = tegra_mc_probe,
747 };
748
tegra_mc_init(void)749 static int tegra_mc_init(void)
750 {
751 return platform_driver_register(&tegra_mc_driver);
752 }
753 arch_initcall(tegra_mc_init);
754
755 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
756 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
757 MODULE_LICENSE("GPL v2");
758