1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI Bandgap temperature sensor driver
4 *
5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
6 * Author: J Keerthy <j-keerthy@ti.com>
7 * Author: Moiz Sonasath <m-sonasath@ti.com>
8 * Couple of fixes, DT and MFD adaptation:
9 * Eduardo Valentin <eduardo.valentin@ti.com>
10 */
11
12 #include <linux/module.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/clk.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/platform_device.h>
20 #include <linux/err.h>
21 #include <linux/types.h>
22 #include <linux/spinlock.h>
23 #include <linux/sys_soc.h>
24 #include <linux/reboot.h>
25 #include <linux/of_device.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_irq.h>
28 #include <linux/io.h>
29 #include <linux/cpu_pm.h>
30 #include <linux/device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/pm.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35
36 #include "ti-bandgap.h"
37
38 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
39 #ifdef CONFIG_PM_SLEEP
40 static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
41 unsigned long cmd, void *v);
42 #endif
43
44 /*** Helper functions to access registers and their bitfields ***/
45
46 /**
47 * ti_bandgap_readl() - simple read helper function
48 * @bgp: pointer to ti_bandgap structure
49 * @reg: desired register (offset) to be read
50 *
51 * Helper function to read bandgap registers. It uses the io remapped area.
52 * Return: the register value.
53 */
ti_bandgap_readl(struct ti_bandgap * bgp,u32 reg)54 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
55 {
56 return readl(bgp->base + reg);
57 }
58
59 /**
60 * ti_bandgap_writel() - simple write helper function
61 * @bgp: pointer to ti_bandgap structure
62 * @val: desired register value to be written
63 * @reg: desired register (offset) to be written
64 *
65 * Helper function to write bandgap registers. It uses the io remapped area.
66 */
ti_bandgap_writel(struct ti_bandgap * bgp,u32 val,u32 reg)67 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
68 {
69 writel(val, bgp->base + reg);
70 }
71
72 /**
73 * DOC: macro to update bits.
74 *
75 * RMW_BITS() - used to read, modify and update bandgap bitfields.
76 * The value passed will be shifted.
77 */
78 #define RMW_BITS(bgp, id, reg, mask, val) \
79 do { \
80 struct temp_sensor_registers *t; \
81 u32 r; \
82 \
83 t = bgp->conf->sensors[(id)].registers; \
84 r = ti_bandgap_readl(bgp, t->reg); \
85 r &= ~t->mask; \
86 r |= (val) << __ffs(t->mask); \
87 ti_bandgap_writel(bgp, r, t->reg); \
88 } while (0)
89
90 /*** Basic helper functions ***/
91
92 /**
93 * ti_bandgap_power() - controls the power state of a bandgap device
94 * @bgp: pointer to ti_bandgap structure
95 * @on: desired power state (1 - on, 0 - off)
96 *
97 * Used to power on/off a bandgap device instance. Only used on those
98 * that features tempsoff bit.
99 *
100 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
101 */
ti_bandgap_power(struct ti_bandgap * bgp,bool on)102 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
103 {
104 int i;
105
106 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
107 return -ENOTSUPP;
108
109 for (i = 0; i < bgp->conf->sensor_count; i++)
110 /* active on 0 */
111 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
112 return 0;
113 }
114
115 /**
116 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
117 * @bgp: pointer to ti_bandgap structure
118 * @reg: desired register (offset) to be read
119 *
120 * Function to read dra7 bandgap sensor temperature. This is done separately
121 * so as to workaround the errata "Bandgap Temperature read Dtemp can be
122 * corrupted" - Errata ID: i814".
123 * Read accesses to registers listed below can be corrupted due to incorrect
124 * resynchronization between clock domains.
125 * Read access to registers below can be corrupted :
126 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
127 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
128 *
129 * Return: the register value.
130 */
ti_errata814_bandgap_read_temp(struct ti_bandgap * bgp,u32 reg)131 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg)
132 {
133 u32 val1, val2;
134
135 val1 = ti_bandgap_readl(bgp, reg);
136 val2 = ti_bandgap_readl(bgp, reg);
137
138 /* If both times we read the same value then that is right */
139 if (val1 == val2)
140 return val1;
141
142 /* if val1 and val2 are different read it third time */
143 return ti_bandgap_readl(bgp, reg);
144 }
145
146 /**
147 * ti_bandgap_read_temp() - helper function to read sensor temperature
148 * @bgp: pointer to ti_bandgap structure
149 * @id: bandgap sensor id
150 *
151 * Function to concentrate the steps to read sensor temperature register.
152 * This function is desired because, depending on bandgap device version,
153 * it might be needed to freeze the bandgap state machine, before fetching
154 * the register value.
155 *
156 * Return: temperature in ADC values.
157 */
ti_bandgap_read_temp(struct ti_bandgap * bgp,int id)158 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
159 {
160 struct temp_sensor_registers *tsr;
161 u32 temp, reg;
162
163 tsr = bgp->conf->sensors[id].registers;
164 reg = tsr->temp_sensor_ctrl;
165
166 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
167 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
168 /*
169 * In case we cannot read from cur_dtemp / dtemp_0,
170 * then we read from the last valid temp read
171 */
172 reg = tsr->ctrl_dtemp_1;
173 }
174
175 /* read temperature */
176 if (TI_BANDGAP_HAS(bgp, ERRATA_814))
177 temp = ti_errata814_bandgap_read_temp(bgp, reg);
178 else
179 temp = ti_bandgap_readl(bgp, reg);
180
181 temp &= tsr->bgap_dtemp_mask;
182
183 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
184 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
185
186 return temp;
187 }
188
189 /*** IRQ handlers ***/
190
191 /**
192 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
193 * @irq: IRQ number
194 * @data: private data (struct ti_bandgap *)
195 *
196 * This is the Talert handler. Use it only if bandgap device features
197 * HAS(TALERT). This handler goes over all sensors and checks their
198 * conditions and acts accordingly. In case there are events pending,
199 * it will reset the event mask to wait for the opposite event (next event).
200 * Every time there is a new event, it will be reported to thermal layer.
201 *
202 * Return: IRQ_HANDLED
203 */
ti_bandgap_talert_irq_handler(int irq,void * data)204 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
205 {
206 struct ti_bandgap *bgp = data;
207 struct temp_sensor_registers *tsr;
208 u32 t_hot = 0, t_cold = 0, ctrl;
209 int i;
210
211 spin_lock(&bgp->lock);
212 for (i = 0; i < bgp->conf->sensor_count; i++) {
213 tsr = bgp->conf->sensors[i].registers;
214 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
215
216 /* Read the status of t_hot */
217 t_hot = ctrl & tsr->status_hot_mask;
218
219 /* Read the status of t_cold */
220 t_cold = ctrl & tsr->status_cold_mask;
221
222 if (!t_cold && !t_hot)
223 continue;
224
225 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
226 /*
227 * One TALERT interrupt: Two sources
228 * If the interrupt is due to t_hot then mask t_hot and
229 * and unmask t_cold else mask t_cold and unmask t_hot
230 */
231 if (t_hot) {
232 ctrl &= ~tsr->mask_hot_mask;
233 ctrl |= tsr->mask_cold_mask;
234 } else if (t_cold) {
235 ctrl &= ~tsr->mask_cold_mask;
236 ctrl |= tsr->mask_hot_mask;
237 }
238
239 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
240
241 dev_dbg(bgp->dev,
242 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
243 __func__, bgp->conf->sensors[i].domain,
244 t_hot, t_cold);
245
246 /* report temperature to whom may concern */
247 if (bgp->conf->report_temperature)
248 bgp->conf->report_temperature(bgp, i);
249 }
250 spin_unlock(&bgp->lock);
251
252 return IRQ_HANDLED;
253 }
254
255 /**
256 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
257 * @irq: IRQ number
258 * @data: private data (unused)
259 *
260 * This is the Tshut handler. Use it only if bandgap device features
261 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
262 * the system.
263 *
264 * Return: IRQ_HANDLED
265 */
ti_bandgap_tshut_irq_handler(int irq,void * data)266 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
267 {
268 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
269 __func__);
270
271 orderly_poweroff(true);
272
273 return IRQ_HANDLED;
274 }
275
276 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/
277
278 /**
279 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
280 * @bgp: struct ti_bandgap pointer
281 * @adc_val: value in ADC representation
282 * @t: address where to write the resulting temperature in mCelsius
283 *
284 * Simple conversion from ADC representation to mCelsius. In case the ADC value
285 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
286 * The conversion table is indexed by the ADC values.
287 *
288 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
289 * argument is out of the ADC conv table range.
290 */
291 static
ti_bandgap_adc_to_mcelsius(struct ti_bandgap * bgp,int adc_val,int * t)292 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
293 {
294 const struct ti_bandgap_data *conf = bgp->conf;
295
296 /* look up for temperature in the table and return the temperature */
297 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
298 return -ERANGE;
299
300 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
301 return 0;
302 }
303
304 /**
305 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
306 * @bgp: struct ti_bandgap pointer
307 * @id: bandgap sensor id
308 *
309 * Checks if the bandgap pointer is valid and if the sensor id is also
310 * applicable.
311 *
312 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
313 * @id cannot index @bgp sensors.
314 */
ti_bandgap_validate(struct ti_bandgap * bgp,int id)315 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
316 {
317 if (!bgp || IS_ERR(bgp)) {
318 pr_err("%s: invalid bandgap pointer\n", __func__);
319 return -EINVAL;
320 }
321
322 if ((id < 0) || (id >= bgp->conf->sensor_count)) {
323 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
324 __func__, id);
325 return -ERANGE;
326 }
327
328 return 0;
329 }
330
331 /**
332 * ti_bandgap_read_counter() - read the sensor counter
333 * @bgp: pointer to bandgap instance
334 * @id: sensor id
335 * @interval: resulting update interval in miliseconds
336 */
ti_bandgap_read_counter(struct ti_bandgap * bgp,int id,int * interval)337 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
338 int *interval)
339 {
340 struct temp_sensor_registers *tsr;
341 int time;
342
343 tsr = bgp->conf->sensors[id].registers;
344 time = ti_bandgap_readl(bgp, tsr->bgap_counter);
345 time = (time & tsr->counter_mask) >>
346 __ffs(tsr->counter_mask);
347 time = time * 1000 / bgp->clk_rate;
348 *interval = time;
349 }
350
351 /**
352 * ti_bandgap_read_counter_delay() - read the sensor counter delay
353 * @bgp: pointer to bandgap instance
354 * @id: sensor id
355 * @interval: resulting update interval in miliseconds
356 */
ti_bandgap_read_counter_delay(struct ti_bandgap * bgp,int id,int * interval)357 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
358 int *interval)
359 {
360 struct temp_sensor_registers *tsr;
361 int reg_val;
362
363 tsr = bgp->conf->sensors[id].registers;
364
365 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
366 reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
367 __ffs(tsr->mask_counter_delay_mask);
368 switch (reg_val) {
369 case 0:
370 *interval = 0;
371 break;
372 case 1:
373 *interval = 1;
374 break;
375 case 2:
376 *interval = 10;
377 break;
378 case 3:
379 *interval = 100;
380 break;
381 case 4:
382 *interval = 250;
383 break;
384 case 5:
385 *interval = 500;
386 break;
387 default:
388 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
389 reg_val);
390 }
391 }
392
393 /**
394 * ti_bandgap_read_update_interval() - read the sensor update interval
395 * @bgp: pointer to bandgap instance
396 * @id: sensor id
397 * @interval: resulting update interval in miliseconds
398 *
399 * Return: 0 on success or the proper error code
400 */
ti_bandgap_read_update_interval(struct ti_bandgap * bgp,int id,int * interval)401 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
402 int *interval)
403 {
404 int ret = 0;
405
406 ret = ti_bandgap_validate(bgp, id);
407 if (ret)
408 goto exit;
409
410 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
411 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
412 ret = -ENOTSUPP;
413 goto exit;
414 }
415
416 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
417 ti_bandgap_read_counter(bgp, id, interval);
418 goto exit;
419 }
420
421 ti_bandgap_read_counter_delay(bgp, id, interval);
422 exit:
423 return ret;
424 }
425
426 /**
427 * ti_bandgap_write_counter_delay() - set the counter_delay
428 * @bgp: pointer to bandgap instance
429 * @id: sensor id
430 * @interval: desired update interval in miliseconds
431 *
432 * Return: 0 on success or the proper error code
433 */
ti_bandgap_write_counter_delay(struct ti_bandgap * bgp,int id,u32 interval)434 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
435 u32 interval)
436 {
437 int rval;
438
439 switch (interval) {
440 case 0: /* Immediate conversion */
441 rval = 0x0;
442 break;
443 case 1: /* Conversion after ever 1ms */
444 rval = 0x1;
445 break;
446 case 10: /* Conversion after ever 10ms */
447 rval = 0x2;
448 break;
449 case 100: /* Conversion after ever 100ms */
450 rval = 0x3;
451 break;
452 case 250: /* Conversion after ever 250ms */
453 rval = 0x4;
454 break;
455 case 500: /* Conversion after ever 500ms */
456 rval = 0x5;
457 break;
458 default:
459 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
460 return -EINVAL;
461 }
462
463 spin_lock(&bgp->lock);
464 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
465 spin_unlock(&bgp->lock);
466
467 return 0;
468 }
469
470 /**
471 * ti_bandgap_write_counter() - set the bandgap sensor counter
472 * @bgp: pointer to bandgap instance
473 * @id: sensor id
474 * @interval: desired update interval in miliseconds
475 */
ti_bandgap_write_counter(struct ti_bandgap * bgp,int id,u32 interval)476 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
477 u32 interval)
478 {
479 interval = interval * bgp->clk_rate / 1000;
480 spin_lock(&bgp->lock);
481 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
482 spin_unlock(&bgp->lock);
483 }
484
485 /**
486 * ti_bandgap_write_update_interval() - set the update interval
487 * @bgp: pointer to bandgap instance
488 * @id: sensor id
489 * @interval: desired update interval in miliseconds
490 *
491 * Return: 0 on success or the proper error code
492 */
ti_bandgap_write_update_interval(struct ti_bandgap * bgp,int id,u32 interval)493 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
494 int id, u32 interval)
495 {
496 int ret = ti_bandgap_validate(bgp, id);
497 if (ret)
498 goto exit;
499
500 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
501 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
502 ret = -ENOTSUPP;
503 goto exit;
504 }
505
506 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
507 ti_bandgap_write_counter(bgp, id, interval);
508 goto exit;
509 }
510
511 ret = ti_bandgap_write_counter_delay(bgp, id, interval);
512 exit:
513 return ret;
514 }
515
516 /**
517 * ti_bandgap_read_temperature() - report current temperature
518 * @bgp: pointer to bandgap instance
519 * @id: sensor id
520 * @temperature: resulting temperature
521 *
522 * Return: 0 on success or the proper error code
523 */
ti_bandgap_read_temperature(struct ti_bandgap * bgp,int id,int * temperature)524 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
525 int *temperature)
526 {
527 u32 temp;
528 int ret;
529
530 ret = ti_bandgap_validate(bgp, id);
531 if (ret)
532 return ret;
533
534 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
535 ret = ti_bandgap_force_single_read(bgp, id);
536 if (ret)
537 return ret;
538 }
539
540 spin_lock(&bgp->lock);
541 temp = ti_bandgap_read_temp(bgp, id);
542 spin_unlock(&bgp->lock);
543
544 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
545 if (ret)
546 return -EIO;
547
548 *temperature = temp;
549
550 return 0;
551 }
552
553 /**
554 * ti_bandgap_set_sensor_data() - helper function to store thermal
555 * framework related data.
556 * @bgp: pointer to bandgap instance
557 * @id: sensor id
558 * @data: thermal framework related data to be stored
559 *
560 * Return: 0 on success or the proper error code
561 */
ti_bandgap_set_sensor_data(struct ti_bandgap * bgp,int id,void * data)562 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
563 {
564 int ret = ti_bandgap_validate(bgp, id);
565 if (ret)
566 return ret;
567
568 bgp->regval[id].data = data;
569
570 return 0;
571 }
572
573 /**
574 * ti_bandgap_get_sensor_data() - helper function to get thermal
575 * framework related data.
576 * @bgp: pointer to bandgap instance
577 * @id: sensor id
578 *
579 * Return: data stored by set function with sensor id on success or NULL
580 */
ti_bandgap_get_sensor_data(struct ti_bandgap * bgp,int id)581 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
582 {
583 int ret = ti_bandgap_validate(bgp, id);
584 if (ret)
585 return ERR_PTR(ret);
586
587 return bgp->regval[id].data;
588 }
589
590 /*** Helper functions used during device initialization ***/
591
592 /**
593 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
594 * @bgp: pointer to struct ti_bandgap
595 * @id: sensor id which it is desired to read 1 temperature
596 *
597 * Used to initialize the conversion state machine and set it to a valid
598 * state. Called during device initialization and context restore events.
599 *
600 * Return: 0
601 */
602 static int
ti_bandgap_force_single_read(struct ti_bandgap * bgp,int id)603 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
604 {
605 u32 counter = 1000;
606 struct temp_sensor_registers *tsr;
607
608 /* Select single conversion mode */
609 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
610 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
611
612 /* Start of Conversion = 1 */
613 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
614
615 /* Wait for EOCZ going up */
616 tsr = bgp->conf->sensors[id].registers;
617
618 while (--counter) {
619 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
620 tsr->bgap_eocz_mask)
621 break;
622 }
623
624 /* Start of Conversion = 0 */
625 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
626
627 /* Wait for EOCZ going down */
628 counter = 1000;
629 while (--counter) {
630 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
631 tsr->bgap_eocz_mask))
632 break;
633 }
634
635 return 0;
636 }
637
638 /**
639 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
640 * @bgp: pointer to struct ti_bandgap
641 *
642 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
643 * be used for junction temperature monitoring, it is desirable that the
644 * sensors are operational all the time, so that alerts are generated
645 * properly.
646 *
647 * Return: 0
648 */
ti_bandgap_set_continuous_mode(struct ti_bandgap * bgp)649 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
650 {
651 int i;
652
653 for (i = 0; i < bgp->conf->sensor_count; i++) {
654 /* Perform a single read just before enabling continuous */
655 ti_bandgap_force_single_read(bgp, i);
656 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
657 }
658
659 return 0;
660 }
661
662 /**
663 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
664 * @bgp: pointer to struct ti_bandgap
665 * @id: id of the individual sensor
666 * @trend: Pointer to trend.
667 *
668 * This function needs to be called to fetch the temperature trend of a
669 * Particular sensor. The function computes the difference in temperature
670 * w.r.t time. For the bandgaps with built in history buffer the temperatures
671 * are read from the buffer and for those without the Buffer -ENOTSUPP is
672 * returned.
673 *
674 * Return: 0 if no error, else return corresponding error. If no
675 * error then the trend value is passed on to trend parameter
676 */
ti_bandgap_get_trend(struct ti_bandgap * bgp,int id,int * trend)677 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
678 {
679 struct temp_sensor_registers *tsr;
680 u32 temp1, temp2, reg1, reg2;
681 int t1, t2, interval, ret = 0;
682
683 ret = ti_bandgap_validate(bgp, id);
684 if (ret)
685 goto exit;
686
687 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
688 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
689 ret = -ENOTSUPP;
690 goto exit;
691 }
692
693 spin_lock(&bgp->lock);
694
695 tsr = bgp->conf->sensors[id].registers;
696
697 /* Freeze and read the last 2 valid readings */
698 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
699 reg1 = tsr->ctrl_dtemp_1;
700 reg2 = tsr->ctrl_dtemp_2;
701
702 /* read temperature from history buffer */
703 temp1 = ti_bandgap_readl(bgp, reg1);
704 temp1 &= tsr->bgap_dtemp_mask;
705
706 temp2 = ti_bandgap_readl(bgp, reg2);
707 temp2 &= tsr->bgap_dtemp_mask;
708
709 /* Convert from adc values to mCelsius temperature */
710 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
711 if (ret)
712 goto unfreeze;
713
714 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
715 if (ret)
716 goto unfreeze;
717
718 /* Fetch the update interval */
719 ret = ti_bandgap_read_update_interval(bgp, id, &interval);
720 if (ret)
721 goto unfreeze;
722
723 /* Set the interval to 1 ms if bandgap counter delay is not set */
724 if (interval == 0)
725 interval = 1;
726
727 *trend = (t1 - t2) / interval;
728
729 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
730 t1, t2, *trend);
731
732 unfreeze:
733 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
734 spin_unlock(&bgp->lock);
735 exit:
736 return ret;
737 }
738
739 /**
740 * ti_bandgap_tshut_init() - setup and initialize tshut handling
741 * @bgp: pointer to struct ti_bandgap
742 * @pdev: pointer to device struct platform_device
743 *
744 * Call this function only in case the bandgap features HAS(TSHUT).
745 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
746 * The IRQ is wired as a GPIO, and for this purpose, it is required
747 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
748 * one of the bandgap sensors violates the TSHUT high/hot threshold.
749 * And in that case, the system must go off.
750 *
751 * Return: 0 if no error, else error status
752 */
ti_bandgap_tshut_init(struct ti_bandgap * bgp,struct platform_device * pdev)753 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
754 struct platform_device *pdev)
755 {
756 int status;
757
758 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod),
759 ti_bandgap_tshut_irq_handler,
760 IRQF_TRIGGER_RISING, "tshut", NULL);
761 if (status)
762 dev_err(bgp->dev, "request irq failed for TSHUT");
763
764 return 0;
765 }
766
767 /**
768 * ti_bandgap_alert_init() - setup and initialize talert handling
769 * @bgp: pointer to struct ti_bandgap
770 * @pdev: pointer to device struct platform_device
771 *
772 * Call this function only in case the bandgap features HAS(TALERT).
773 * In this case, the driver needs to handle the TALERT signals as an IRQs.
774 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
775 * are violated. In these situation, the driver must reprogram the thresholds,
776 * accordingly to specified policy.
777 *
778 * Return: 0 if no error, else return corresponding error.
779 */
ti_bandgap_talert_init(struct ti_bandgap * bgp,struct platform_device * pdev)780 static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
781 struct platform_device *pdev)
782 {
783 int ret;
784
785 bgp->irq = platform_get_irq(pdev, 0);
786 if (bgp->irq < 0)
787 return bgp->irq;
788
789 ret = request_threaded_irq(bgp->irq, NULL,
790 ti_bandgap_talert_irq_handler,
791 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
792 "talert", bgp);
793 if (ret) {
794 dev_err(&pdev->dev, "Request threaded irq failed.\n");
795 return ret;
796 }
797
798 return 0;
799 }
800
801 static const struct of_device_id of_ti_bandgap_match[];
802 /**
803 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
804 * @pdev: pointer to device struct platform_device
805 *
806 * Used to read the device tree properties accordingly to the bandgap
807 * matching version. Based on bandgap version and its capabilities it
808 * will build a struct ti_bandgap out of the required DT entries.
809 *
810 * Return: valid bandgap structure if successful, else returns ERR_PTR
811 * return value must be verified with IS_ERR.
812 */
ti_bandgap_build(struct platform_device * pdev)813 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
814 {
815 struct device_node *node = pdev->dev.of_node;
816 const struct of_device_id *of_id;
817 struct ti_bandgap *bgp;
818 struct resource *res;
819 int i;
820
821 /* just for the sake */
822 if (!node) {
823 dev_err(&pdev->dev, "no platform information available\n");
824 return ERR_PTR(-EINVAL);
825 }
826
827 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
828 if (!bgp)
829 return ERR_PTR(-ENOMEM);
830
831 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
832 if (of_id)
833 bgp->conf = of_id->data;
834
835 /* register shadow for context save and restore */
836 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
837 sizeof(*bgp->regval), GFP_KERNEL);
838 if (!bgp->regval)
839 return ERR_PTR(-ENOMEM);
840
841 i = 0;
842 do {
843 void __iomem *chunk;
844
845 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
846 if (!res)
847 break;
848 chunk = devm_ioremap_resource(&pdev->dev, res);
849 if (i == 0)
850 bgp->base = chunk;
851 if (IS_ERR(chunk))
852 return ERR_CAST(chunk);
853
854 i++;
855 } while (res);
856
857 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
858 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN);
859 if (IS_ERR(bgp->tshut_gpiod)) {
860 dev_err(&pdev->dev, "invalid gpio for tshut\n");
861 return ERR_CAST(bgp->tshut_gpiod);
862 }
863 }
864
865 return bgp;
866 }
867
868 /*
869 * List of SoCs on which the CPU PM notifier can cause erros on the DTEMP
870 * readout.
871 * Enabled notifier on these machines results in erroneous, random values which
872 * could trigger unexpected thermal shutdown.
873 */
874 static const struct soc_device_attribute soc_no_cpu_notifier[] = {
875 { .machine = "OMAP4430" },
876 { /* sentinel */ },
877 };
878
879 /*** Device driver call backs ***/
880
881 static
ti_bandgap_probe(struct platform_device * pdev)882 int ti_bandgap_probe(struct platform_device *pdev)
883 {
884 struct ti_bandgap *bgp;
885 int clk_rate, ret, i;
886
887 bgp = ti_bandgap_build(pdev);
888 if (IS_ERR(bgp)) {
889 dev_err(&pdev->dev, "failed to fetch platform data\n");
890 return PTR_ERR(bgp);
891 }
892 bgp->dev = &pdev->dev;
893
894 if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
895 dev_warn(&pdev->dev,
896 "This OMAP thermal sensor is unreliable. You've been warned\n");
897
898 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
899 ret = ti_bandgap_tshut_init(bgp, pdev);
900 if (ret) {
901 dev_err(&pdev->dev,
902 "failed to initialize system tshut IRQ\n");
903 return ret;
904 }
905 }
906
907 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
908 if (IS_ERR(bgp->fclock)) {
909 dev_err(&pdev->dev, "failed to request fclock reference\n");
910 ret = PTR_ERR(bgp->fclock);
911 goto free_irqs;
912 }
913
914 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
915 if (IS_ERR(bgp->div_clk)) {
916 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
917 ret = PTR_ERR(bgp->div_clk);
918 goto put_fclock;
919 }
920
921 for (i = 0; i < bgp->conf->sensor_count; i++) {
922 struct temp_sensor_registers *tsr;
923 u32 val;
924
925 tsr = bgp->conf->sensors[i].registers;
926 /*
927 * check if the efuse has a non-zero value if not
928 * it is an untrimmed sample and the temperatures
929 * may not be accurate
930 */
931 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
932 if (!val)
933 dev_info(&pdev->dev,
934 "Non-trimmed BGAP, Temp not accurate\n");
935 }
936
937 clk_rate = clk_round_rate(bgp->div_clk,
938 bgp->conf->sensors[0].ts_data->max_freq);
939 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
940 clk_rate <= 0) {
941 ret = -ENODEV;
942 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
943 goto put_clks;
944 }
945
946 ret = clk_set_rate(bgp->div_clk, clk_rate);
947 if (ret)
948 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
949
950 bgp->clk_rate = clk_rate;
951 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
952 clk_prepare_enable(bgp->fclock);
953
954
955 spin_lock_init(&bgp->lock);
956 bgp->dev = &pdev->dev;
957 platform_set_drvdata(pdev, bgp);
958
959 ti_bandgap_power(bgp, true);
960
961 /* Set default counter to 1 for now */
962 if (TI_BANDGAP_HAS(bgp, COUNTER))
963 for (i = 0; i < bgp->conf->sensor_count; i++)
964 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
965
966 /* Set default thresholds for alert and shutdown */
967 for (i = 0; i < bgp->conf->sensor_count; i++) {
968 struct temp_sensor_data *ts_data;
969
970 ts_data = bgp->conf->sensors[i].ts_data;
971
972 if (TI_BANDGAP_HAS(bgp, TALERT)) {
973 /* Set initial Talert thresholds */
974 RMW_BITS(bgp, i, bgap_threshold,
975 threshold_tcold_mask, ts_data->t_cold);
976 RMW_BITS(bgp, i, bgap_threshold,
977 threshold_thot_mask, ts_data->t_hot);
978 /* Enable the alert events */
979 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
980 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
981 }
982
983 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
984 /* Set initial Tshut thresholds */
985 RMW_BITS(bgp, i, tshut_threshold,
986 tshut_hot_mask, ts_data->tshut_hot);
987 RMW_BITS(bgp, i, tshut_threshold,
988 tshut_cold_mask, ts_data->tshut_cold);
989 }
990 }
991
992 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
993 ti_bandgap_set_continuous_mode(bgp);
994
995 /* Set .250 seconds time as default counter */
996 if (TI_BANDGAP_HAS(bgp, COUNTER))
997 for (i = 0; i < bgp->conf->sensor_count; i++)
998 RMW_BITS(bgp, i, bgap_counter, counter_mask,
999 bgp->clk_rate / 4);
1000
1001 /* Every thing is good? Then expose the sensors */
1002 for (i = 0; i < bgp->conf->sensor_count; i++) {
1003 char *domain;
1004
1005 if (bgp->conf->sensors[i].register_cooling) {
1006 ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1007 if (ret)
1008 goto remove_sensors;
1009 }
1010
1011 if (bgp->conf->expose_sensor) {
1012 domain = bgp->conf->sensors[i].domain;
1013 ret = bgp->conf->expose_sensor(bgp, i, domain);
1014 if (ret)
1015 goto remove_last_cooling;
1016 }
1017 }
1018
1019 /*
1020 * Enable the Interrupts once everything is set. Otherwise irq handler
1021 * might be called as soon as it is enabled where as rest of framework
1022 * is still getting initialised.
1023 */
1024 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1025 ret = ti_bandgap_talert_init(bgp, pdev);
1026 if (ret) {
1027 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1028 i = bgp->conf->sensor_count;
1029 goto disable_clk;
1030 }
1031 }
1032
1033 #ifdef CONFIG_PM_SLEEP
1034 bgp->nb.notifier_call = bandgap_omap_cpu_notifier;
1035 if (!soc_device_match(soc_no_cpu_notifier))
1036 cpu_pm_register_notifier(&bgp->nb);
1037 #endif
1038
1039 return 0;
1040
1041 remove_last_cooling:
1042 if (bgp->conf->sensors[i].unregister_cooling)
1043 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1044 remove_sensors:
1045 for (i--; i >= 0; i--) {
1046 if (bgp->conf->sensors[i].unregister_cooling)
1047 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1048 if (bgp->conf->remove_sensor)
1049 bgp->conf->remove_sensor(bgp, i);
1050 }
1051 ti_bandgap_power(bgp, false);
1052 disable_clk:
1053 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1054 clk_disable_unprepare(bgp->fclock);
1055 put_clks:
1056 clk_put(bgp->div_clk);
1057 put_fclock:
1058 clk_put(bgp->fclock);
1059 free_irqs:
1060 if (TI_BANDGAP_HAS(bgp, TSHUT))
1061 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1062
1063 return ret;
1064 }
1065
1066 static
ti_bandgap_remove(struct platform_device * pdev)1067 int ti_bandgap_remove(struct platform_device *pdev)
1068 {
1069 struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1070 int i;
1071
1072 if (!soc_device_match(soc_no_cpu_notifier))
1073 cpu_pm_unregister_notifier(&bgp->nb);
1074
1075 /* Remove sensor interfaces */
1076 for (i = 0; i < bgp->conf->sensor_count; i++) {
1077 if (bgp->conf->sensors[i].unregister_cooling)
1078 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1079
1080 if (bgp->conf->remove_sensor)
1081 bgp->conf->remove_sensor(bgp, i);
1082 }
1083
1084 ti_bandgap_power(bgp, false);
1085
1086 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1087 clk_disable_unprepare(bgp->fclock);
1088 clk_put(bgp->fclock);
1089 clk_put(bgp->div_clk);
1090
1091 if (TI_BANDGAP_HAS(bgp, TALERT))
1092 free_irq(bgp->irq, bgp);
1093
1094 if (TI_BANDGAP_HAS(bgp, TSHUT))
1095 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1096
1097 return 0;
1098 }
1099
1100 #ifdef CONFIG_PM_SLEEP
ti_bandgap_save_ctxt(struct ti_bandgap * bgp)1101 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1102 {
1103 int i;
1104
1105 for (i = 0; i < bgp->conf->sensor_count; i++) {
1106 struct temp_sensor_registers *tsr;
1107 struct temp_sensor_regval *rval;
1108
1109 rval = &bgp->regval[i];
1110 tsr = bgp->conf->sensors[i].registers;
1111
1112 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1113 rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1114 tsr->bgap_mode_ctrl);
1115 if (TI_BANDGAP_HAS(bgp, COUNTER))
1116 rval->bg_counter = ti_bandgap_readl(bgp,
1117 tsr->bgap_counter);
1118 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1119 rval->bg_threshold = ti_bandgap_readl(bgp,
1120 tsr->bgap_threshold);
1121 rval->bg_ctrl = ti_bandgap_readl(bgp,
1122 tsr->bgap_mask_ctrl);
1123 }
1124
1125 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1126 rval->tshut_threshold = ti_bandgap_readl(bgp,
1127 tsr->tshut_threshold);
1128 }
1129
1130 return 0;
1131 }
1132
ti_bandgap_restore_ctxt(struct ti_bandgap * bgp)1133 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1134 {
1135 int i;
1136
1137 for (i = 0; i < bgp->conf->sensor_count; i++) {
1138 struct temp_sensor_registers *tsr;
1139 struct temp_sensor_regval *rval;
1140 u32 val = 0;
1141
1142 rval = &bgp->regval[i];
1143 tsr = bgp->conf->sensors[i].registers;
1144
1145 if (TI_BANDGAP_HAS(bgp, COUNTER))
1146 val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1147
1148 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1149 ti_bandgap_writel(bgp, rval->tshut_threshold,
1150 tsr->tshut_threshold);
1151 /* Force immediate temperature measurement and update
1152 * of the DTEMP field
1153 */
1154 ti_bandgap_force_single_read(bgp, i);
1155
1156 if (TI_BANDGAP_HAS(bgp, COUNTER))
1157 ti_bandgap_writel(bgp, rval->bg_counter,
1158 tsr->bgap_counter);
1159 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1160 ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1161 tsr->bgap_mode_ctrl);
1162 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1163 ti_bandgap_writel(bgp, rval->bg_threshold,
1164 tsr->bgap_threshold);
1165 ti_bandgap_writel(bgp, rval->bg_ctrl,
1166 tsr->bgap_mask_ctrl);
1167 }
1168 }
1169
1170 return 0;
1171 }
1172
ti_bandgap_suspend(struct device * dev)1173 static int ti_bandgap_suspend(struct device *dev)
1174 {
1175 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1176 int err;
1177
1178 err = ti_bandgap_save_ctxt(bgp);
1179 ti_bandgap_power(bgp, false);
1180
1181 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1182 clk_disable_unprepare(bgp->fclock);
1183
1184 bgp->is_suspended = true;
1185
1186 return err;
1187 }
1188
bandgap_omap_cpu_notifier(struct notifier_block * nb,unsigned long cmd,void * v)1189 static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
1190 unsigned long cmd, void *v)
1191 {
1192 struct ti_bandgap *bgp;
1193
1194 bgp = container_of(nb, struct ti_bandgap, nb);
1195
1196 spin_lock(&bgp->lock);
1197 switch (cmd) {
1198 case CPU_CLUSTER_PM_ENTER:
1199 if (bgp->is_suspended)
1200 break;
1201 ti_bandgap_save_ctxt(bgp);
1202 ti_bandgap_power(bgp, false);
1203 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1204 clk_disable(bgp->fclock);
1205 break;
1206 case CPU_CLUSTER_PM_ENTER_FAILED:
1207 case CPU_CLUSTER_PM_EXIT:
1208 if (bgp->is_suspended)
1209 break;
1210 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1211 clk_enable(bgp->fclock);
1212 ti_bandgap_power(bgp, true);
1213 ti_bandgap_restore_ctxt(bgp);
1214 break;
1215 }
1216 spin_unlock(&bgp->lock);
1217
1218 return NOTIFY_OK;
1219 }
1220
ti_bandgap_resume(struct device * dev)1221 static int ti_bandgap_resume(struct device *dev)
1222 {
1223 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1224
1225 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1226 clk_prepare_enable(bgp->fclock);
1227
1228 ti_bandgap_power(bgp, true);
1229 bgp->is_suspended = false;
1230
1231 return ti_bandgap_restore_ctxt(bgp);
1232 }
1233 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1234 ti_bandgap_resume);
1235
1236 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops)
1237 #else
1238 #define DEV_PM_OPS NULL
1239 #endif
1240
1241 static const struct of_device_id of_ti_bandgap_match[] = {
1242 #ifdef CONFIG_OMAP3_THERMAL
1243 {
1244 .compatible = "ti,omap34xx-bandgap",
1245 .data = (void *)&omap34xx_data,
1246 },
1247 {
1248 .compatible = "ti,omap36xx-bandgap",
1249 .data = (void *)&omap36xx_data,
1250 },
1251 #endif
1252 #ifdef CONFIG_OMAP4_THERMAL
1253 {
1254 .compatible = "ti,omap4430-bandgap",
1255 .data = (void *)&omap4430_data,
1256 },
1257 {
1258 .compatible = "ti,omap4460-bandgap",
1259 .data = (void *)&omap4460_data,
1260 },
1261 {
1262 .compatible = "ti,omap4470-bandgap",
1263 .data = (void *)&omap4470_data,
1264 },
1265 #endif
1266 #ifdef CONFIG_OMAP5_THERMAL
1267 {
1268 .compatible = "ti,omap5430-bandgap",
1269 .data = (void *)&omap5430_data,
1270 },
1271 #endif
1272 #ifdef CONFIG_DRA752_THERMAL
1273 {
1274 .compatible = "ti,dra752-bandgap",
1275 .data = (void *)&dra752_data,
1276 },
1277 #endif
1278 /* Sentinel */
1279 { },
1280 };
1281 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1282
1283 static struct platform_driver ti_bandgap_sensor_driver = {
1284 .probe = ti_bandgap_probe,
1285 .remove = ti_bandgap_remove,
1286 .driver = {
1287 .name = "ti-soc-thermal",
1288 .pm = DEV_PM_OPS,
1289 .of_match_table = of_ti_bandgap_match,
1290 },
1291 };
1292
1293 module_platform_driver(ti_bandgap_sensor_driver);
1294
1295 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1296 MODULE_LICENSE("GPL v2");
1297 MODULE_ALIAS("platform:ti-soc-thermal");
1298 MODULE_AUTHOR("Texas Instrument Inc.");
1299