1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28
ubifs_default_version_set(const char * val,const struct kernel_param * kp)29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37 }
38
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42 };
43
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47 /*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51 #define UBIFS_KMALLOC_OK (128*1024)
52
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 .scan_objects = ubifs_shrink_scan,
59 .count_objects = ubifs_shrink_count,
60 .seeks = DEFAULT_SEEKS,
61 };
62
63 /**
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
67 *
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
72 */
validate_inode(struct ubifs_info * c,const struct inode * inode)73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 int err;
76 const struct ubifs_inode *ui = ubifs_inode(inode);
77
78 if (inode->i_size > c->max_inode_sz) {
79 ubifs_err(c, "inode is too large (%lld)",
80 (long long)inode->i_size);
81 return 1;
82 }
83
84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 return 2;
87 }
88
89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 return 3;
91
92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 return 4;
94
95 if (ui->xattr && !S_ISREG(inode->i_mode))
96 return 5;
97
98 if (!ubifs_compr_present(c, ui->compr_type)) {
99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 }
102
103 err = dbg_check_dir(c, inode);
104 return err;
105 }
106
ubifs_iget(struct super_block * sb,unsigned long inum)107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 int err;
110 union ubifs_key key;
111 struct ubifs_ino_node *ino;
112 struct ubifs_info *c = sb->s_fs_info;
113 struct inode *inode;
114 struct ubifs_inode *ui;
115
116 dbg_gen("inode %lu", inum);
117
118 inode = iget_locked(sb, inum);
119 if (!inode)
120 return ERR_PTR(-ENOMEM);
121 if (!(inode->i_state & I_NEW))
122 return inode;
123 ui = ubifs_inode(inode);
124
125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 if (!ino) {
127 err = -ENOMEM;
128 goto out;
129 }
130
131 ino_key_init(c, &key, inode->i_ino);
132
133 err = ubifs_tnc_lookup(c, &key, ino);
134 if (err)
135 goto out_ino;
136
137 inode->i_flags |= S_NOCMTIME;
138
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 inode->i_flags |= S_NOATIME;
141
142 set_nlink(inode, le32_to_cpu(ino->nlink));
143 i_uid_write(inode, le32_to_cpu(ino->uid));
144 i_gid_write(inode, le32_to_cpu(ino->gid));
145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 inode->i_mode = le32_to_cpu(ino->mode);
152 inode->i_size = le64_to_cpu(ino->size);
153
154 ui->data_len = le32_to_cpu(ino->data_len);
155 ui->flags = le32_to_cpu(ino->flags);
156 ui->compr_type = le16_to_cpu(ino->compr_type);
157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
159 ui->xattr_size = le32_to_cpu(ino->xattr_size);
160 ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 ui->synced_i_size = ui->ui_size = inode->i_size;
162
163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164
165 err = validate_inode(c, inode);
166 if (err)
167 goto out_invalid;
168
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFREG:
171 inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 inode->i_op = &ubifs_file_inode_operations;
173 inode->i_fop = &ubifs_file_operations;
174 if (ui->xattr) {
175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 if (!ui->data) {
177 err = -ENOMEM;
178 goto out_ino;
179 }
180 memcpy(ui->data, ino->data, ui->data_len);
181 ((char *)ui->data)[ui->data_len] = '\0';
182 } else if (ui->data_len != 0) {
183 err = 10;
184 goto out_invalid;
185 }
186 break;
187 case S_IFDIR:
188 inode->i_op = &ubifs_dir_inode_operations;
189 inode->i_fop = &ubifs_dir_operations;
190 if (ui->data_len != 0) {
191 err = 11;
192 goto out_invalid;
193 }
194 break;
195 case S_IFLNK:
196 inode->i_op = &ubifs_symlink_inode_operations;
197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 err = 12;
199 goto out_invalid;
200 }
201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206 memcpy(ui->data, ino->data, ui->data_len);
207 ((char *)ui->data)[ui->data_len] = '\0';
208 break;
209 case S_IFBLK:
210 case S_IFCHR:
211 {
212 dev_t rdev;
213 union ubifs_dev_desc *dev;
214
215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 if (!ui->data) {
217 err = -ENOMEM;
218 goto out_ino;
219 }
220
221 dev = (union ubifs_dev_desc *)ino->data;
222 if (ui->data_len == sizeof(dev->new))
223 rdev = new_decode_dev(le32_to_cpu(dev->new));
224 else if (ui->data_len == sizeof(dev->huge))
225 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 else {
227 err = 13;
228 goto out_invalid;
229 }
230 memcpy(ui->data, ino->data, ui->data_len);
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, rdev);
233 break;
234 }
235 case S_IFSOCK:
236 case S_IFIFO:
237 inode->i_op = &ubifs_file_inode_operations;
238 init_special_inode(inode, inode->i_mode, 0);
239 if (ui->data_len != 0) {
240 err = 14;
241 goto out_invalid;
242 }
243 break;
244 default:
245 err = 15;
246 goto out_invalid;
247 }
248
249 kfree(ino);
250 ubifs_set_inode_flags(inode);
251 unlock_new_inode(inode);
252 return inode;
253
254 out_invalid:
255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 ubifs_dump_node(c, ino);
257 ubifs_dump_inode(c, inode);
258 err = -EINVAL;
259 out_ino:
260 kfree(ino);
261 out:
262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 iget_failed(inode);
264 return ERR_PTR(err);
265 }
266
ubifs_alloc_inode(struct super_block * sb)267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 struct ubifs_inode *ui;
270
271 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
272 if (!ui)
273 return NULL;
274
275 memset((void *)ui + sizeof(struct inode), 0,
276 sizeof(struct ubifs_inode) - sizeof(struct inode));
277 mutex_init(&ui->ui_mutex);
278 init_rwsem(&ui->xattr_sem);
279 spin_lock_init(&ui->ui_lock);
280 return &ui->vfs_inode;
281 };
282
ubifs_free_inode(struct inode * inode)283 static void ubifs_free_inode(struct inode *inode)
284 {
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 kfree(ui->data);
288 fscrypt_free_inode(inode);
289
290 kmem_cache_free(ubifs_inode_slab, ui);
291 }
292
293 /*
294 * Note, Linux write-back code calls this without 'i_mutex'.
295 */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 int err = 0;
299 struct ubifs_info *c = inode->i_sb->s_fs_info;
300 struct ubifs_inode *ui = ubifs_inode(inode);
301
302 ubifs_assert(c, !ui->xattr);
303 if (is_bad_inode(inode))
304 return 0;
305
306 mutex_lock(&ui->ui_mutex);
307 /*
308 * Due to races between write-back forced by budgeting
309 * (see 'sync_some_inodes()') and background write-back, the inode may
310 * have already been synchronized, do not do this again. This might
311 * also happen if it was synchronized in an VFS operation, e.g.
312 * 'ubifs_link()'.
313 */
314 if (!ui->dirty) {
315 mutex_unlock(&ui->ui_mutex);
316 return 0;
317 }
318
319 /*
320 * As an optimization, do not write orphan inodes to the media just
321 * because this is not needed.
322 */
323 dbg_gen("inode %lu, mode %#x, nlink %u",
324 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 if (inode->i_nlink) {
326 err = ubifs_jnl_write_inode(c, inode);
327 if (err)
328 ubifs_err(c, "can't write inode %lu, error %d",
329 inode->i_ino, err);
330 else
331 err = dbg_check_inode_size(c, inode, ui->ui_size);
332 }
333
334 ui->dirty = 0;
335 mutex_unlock(&ui->ui_mutex);
336 ubifs_release_dirty_inode_budget(c, ui);
337 return err;
338 }
339
ubifs_drop_inode(struct inode * inode)340 static int ubifs_drop_inode(struct inode *inode)
341 {
342 int drop = generic_drop_inode(inode);
343
344 if (!drop)
345 drop = fscrypt_drop_inode(inode);
346
347 return drop;
348 }
349
ubifs_evict_inode(struct inode * inode)350 static void ubifs_evict_inode(struct inode *inode)
351 {
352 int err;
353 struct ubifs_info *c = inode->i_sb->s_fs_info;
354 struct ubifs_inode *ui = ubifs_inode(inode);
355
356 if (ui->xattr)
357 /*
358 * Extended attribute inode deletions are fully handled in
359 * 'ubifs_removexattr()'. These inodes are special and have
360 * limited usage, so there is nothing to do here.
361 */
362 goto out;
363
364 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 ubifs_assert(c, !atomic_read(&inode->i_count));
366
367 truncate_inode_pages_final(&inode->i_data);
368
369 if (inode->i_nlink)
370 goto done;
371
372 if (is_bad_inode(inode))
373 goto out;
374
375 ui->ui_size = inode->i_size = 0;
376 err = ubifs_jnl_delete_inode(c, inode);
377 if (err)
378 /*
379 * Worst case we have a lost orphan inode wasting space, so a
380 * simple error message is OK here.
381 */
382 ubifs_err(c, "can't delete inode %lu, error %d",
383 inode->i_ino, err);
384
385 out:
386 if (ui->dirty)
387 ubifs_release_dirty_inode_budget(c, ui);
388 else {
389 /* We've deleted something - clean the "no space" flags */
390 c->bi.nospace = c->bi.nospace_rp = 0;
391 smp_wmb();
392 }
393 done:
394 clear_inode(inode);
395 fscrypt_put_encryption_info(inode);
396 }
397
ubifs_dirty_inode(struct inode * inode,int flags)398 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 {
400 struct ubifs_info *c = inode->i_sb->s_fs_info;
401 struct ubifs_inode *ui = ubifs_inode(inode);
402
403 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 if (!ui->dirty) {
405 ui->dirty = 1;
406 dbg_gen("inode %lu", inode->i_ino);
407 }
408 }
409
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 {
412 struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 unsigned long long free;
414 __le32 *uuid = (__le32 *)c->uuid;
415
416 free = ubifs_get_free_space(c);
417 dbg_gen("free space %lld bytes (%lld blocks)",
418 free, free >> UBIFS_BLOCK_SHIFT);
419
420 buf->f_type = UBIFS_SUPER_MAGIC;
421 buf->f_bsize = UBIFS_BLOCK_SIZE;
422 buf->f_blocks = c->block_cnt;
423 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 if (free > c->report_rp_size)
425 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 else
427 buf->f_bavail = 0;
428 buf->f_files = 0;
429 buf->f_ffree = 0;
430 buf->f_namelen = UBIFS_MAX_NLEN;
431 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 return 0;
435 }
436
ubifs_show_options(struct seq_file * s,struct dentry * root)437 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 {
439 struct ubifs_info *c = root->d_sb->s_fs_info;
440
441 if (c->mount_opts.unmount_mode == 2)
442 seq_puts(s, ",fast_unmount");
443 else if (c->mount_opts.unmount_mode == 1)
444 seq_puts(s, ",norm_unmount");
445
446 if (c->mount_opts.bulk_read == 2)
447 seq_puts(s, ",bulk_read");
448 else if (c->mount_opts.bulk_read == 1)
449 seq_puts(s, ",no_bulk_read");
450
451 if (c->mount_opts.chk_data_crc == 2)
452 seq_puts(s, ",chk_data_crc");
453 else if (c->mount_opts.chk_data_crc == 1)
454 seq_puts(s, ",no_chk_data_crc");
455
456 if (c->mount_opts.override_compr) {
457 seq_printf(s, ",compr=%s",
458 ubifs_compr_name(c, c->mount_opts.compr_type));
459 }
460
461 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463
464 return 0;
465 }
466
ubifs_sync_fs(struct super_block * sb,int wait)467 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 {
469 int i, err;
470 struct ubifs_info *c = sb->s_fs_info;
471
472 /*
473 * Zero @wait is just an advisory thing to help the file system shove
474 * lots of data into the queues, and there will be the second
475 * '->sync_fs()' call, with non-zero @wait.
476 */
477 if (!wait)
478 return 0;
479
480 /*
481 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 * do this if it waits for an already running commit.
483 */
484 for (i = 0; i < c->jhead_cnt; i++) {
485 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 if (err)
487 return err;
488 }
489
490 /*
491 * Strictly speaking, it is not necessary to commit the journal here,
492 * synchronizing write-buffers would be enough. But committing makes
493 * UBIFS free space predictions much more accurate, so we want to let
494 * the user be able to get more accurate results of 'statfs()' after
495 * they synchronize the file system.
496 */
497 err = ubifs_run_commit(c);
498 if (err)
499 return err;
500
501 return ubi_sync(c->vi.ubi_num);
502 }
503
504 /**
505 * init_constants_early - initialize UBIFS constants.
506 * @c: UBIFS file-system description object
507 *
508 * This function initialize UBIFS constants which do not need the superblock to
509 * be read. It also checks that the UBI volume satisfies basic UBIFS
510 * requirements. Returns zero in case of success and a negative error code in
511 * case of failure.
512 */
init_constants_early(struct ubifs_info * c)513 static int init_constants_early(struct ubifs_info *c)
514 {
515 if (c->vi.corrupted) {
516 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 c->ro_media = 1;
518 }
519
520 if (c->di.ro_mode) {
521 ubifs_msg(c, "read-only UBI device");
522 c->ro_media = 1;
523 }
524
525 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 ubifs_msg(c, "static UBI volume - read-only mode");
527 c->ro_media = 1;
528 }
529
530 c->leb_cnt = c->vi.size;
531 c->leb_size = c->vi.usable_leb_size;
532 c->leb_start = c->di.leb_start;
533 c->half_leb_size = c->leb_size / 2;
534 c->min_io_size = c->di.min_io_size;
535 c->min_io_shift = fls(c->min_io_size) - 1;
536 c->max_write_size = c->di.max_write_size;
537 c->max_write_shift = fls(c->max_write_size) - 1;
538
539 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 c->leb_size, UBIFS_MIN_LEB_SZ);
542 return -EINVAL;
543 }
544
545 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 return -EINVAL;
549 }
550
551 if (!is_power_of_2(c->min_io_size)) {
552 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 return -EINVAL;
554 }
555
556 /*
557 * Maximum write size has to be greater or equivalent to min. I/O
558 * size, and be multiple of min. I/O size.
559 */
560 if (c->max_write_size < c->min_io_size ||
561 c->max_write_size % c->min_io_size ||
562 !is_power_of_2(c->max_write_size)) {
563 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 c->max_write_size, c->min_io_size);
565 return -EINVAL;
566 }
567
568 /*
569 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 * less than 8.
572 */
573 if (c->min_io_size < 8) {
574 c->min_io_size = 8;
575 c->min_io_shift = 3;
576 if (c->max_write_size < c->min_io_size) {
577 c->max_write_size = c->min_io_size;
578 c->max_write_shift = c->min_io_shift;
579 }
580 }
581
582 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584
585 /*
586 * Initialize node length ranges which are mostly needed for node
587 * length validation.
588 */
589 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
590 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
591 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
592 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
593 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
595 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 UBIFS_MAX_HMAC_LEN;
598 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600
601 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
602 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
603 c->ranges[UBIFS_ORPH_NODE].min_len =
604 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 /*
613 * Minimum indexing node size is amended later when superblock is
614 * read and the key length is known.
615 */
616 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 /*
618 * Maximum indexing node size is amended later when superblock is
619 * read and the fanout is known.
620 */
621 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622
623 /*
624 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 * about these values.
626 */
627 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629
630 /*
631 * Calculate how many bytes would be wasted at the end of LEB if it was
632 * fully filled with data nodes of maximum size. This is used in
633 * calculations when reporting free space.
634 */
635 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636
637 /* Buffer size for bulk-reads */
638 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 if (c->max_bu_buf_len > c->leb_size)
640 c->max_bu_buf_len = c->leb_size;
641
642 /* Log is ready, preserve one LEB for commits. */
643 c->min_log_bytes = c->leb_size;
644
645 return 0;
646 }
647
648 /**
649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650 * @c: UBIFS file-system description object
651 * @lnum: LEB the write-buffer was synchronized to
652 * @free: how many free bytes left in this LEB
653 * @pad: how many bytes were padded
654 *
655 * This is a callback function which is called by the I/O unit when the
656 * write-buffer is synchronized. We need this to correctly maintain space
657 * accounting in bud logical eraseblocks. This function returns zero in case of
658 * success and a negative error code in case of failure.
659 *
660 * This function actually belongs to the journal, but we keep it here because
661 * we want to keep it static.
662 */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 {
665 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666 }
667
668 /*
669 * init_constants_sb - initialize UBIFS constants.
670 * @c: UBIFS file-system description object
671 *
672 * This is a helper function which initializes various UBIFS constants after
673 * the superblock has been read. It also checks various UBIFS parameters and
674 * makes sure they are all right. Returns zero in case of success and a
675 * negative error code in case of failure.
676 */
init_constants_sb(struct ubifs_info * c)677 static int init_constants_sb(struct ubifs_info *c)
678 {
679 int tmp, err;
680 long long tmp64;
681
682 c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 c->max_znode_sz = sizeof(struct ubifs_znode) +
684 c->fanout * sizeof(struct ubifs_zbranch);
685
686 tmp = ubifs_idx_node_sz(c, 1);
687 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 c->min_idx_node_sz = ALIGN(tmp, 8);
689
690 tmp = ubifs_idx_node_sz(c, c->fanout);
691 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 c->max_idx_node_sz = ALIGN(tmp, 8);
693
694 /* Make sure LEB size is large enough to fit full commit */
695 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 tmp = ALIGN(tmp, c->min_io_size);
697 if (tmp > c->leb_size) {
698 ubifs_err(c, "too small LEB size %d, at least %d needed",
699 c->leb_size, tmp);
700 return -EINVAL;
701 }
702
703 /*
704 * Make sure that the log is large enough to fit reference nodes for
705 * all buds plus one reserved LEB.
706 */
707 tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 tmp /= c->leb_size;
711 tmp += 1;
712 if (c->log_lebs < tmp) {
713 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 c->log_lebs, tmp);
715 return -EINVAL;
716 }
717
718 /*
719 * When budgeting we assume worst-case scenarios when the pages are not
720 * be compressed and direntries are of the maximum size.
721 *
722 * Note, data, which may be stored in inodes is budgeted separately, so
723 * it is not included into 'c->bi.inode_budget'.
724 */
725 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728
729 /*
730 * When the amount of flash space used by buds becomes
731 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 * The writers are unblocked when the commit is finished. To avoid
733 * writers to be blocked UBIFS initiates background commit in advance,
734 * when number of bud bytes becomes above the limit defined below.
735 */
736 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737
738 /*
739 * Ensure minimum journal size. All the bytes in the journal heads are
740 * considered to be used, when calculating the current journal usage.
741 * Consequently, if the journal is too small, UBIFS will treat it as
742 * always full.
743 */
744 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 if (c->bg_bud_bytes < tmp64)
746 c->bg_bud_bytes = tmp64;
747 if (c->max_bud_bytes < tmp64 + c->leb_size)
748 c->max_bud_bytes = tmp64 + c->leb_size;
749
750 err = ubifs_calc_lpt_geom(c);
751 if (err)
752 return err;
753
754 /* Initialize effective LEB size used in budgeting calculations */
755 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 return 0;
757 }
758
759 /*
760 * init_constants_master - initialize UBIFS constants.
761 * @c: UBIFS file-system description object
762 *
763 * This is a helper function which initializes various UBIFS constants after
764 * the master node has been read. It also checks various UBIFS parameters and
765 * makes sure they are all right.
766 */
init_constants_master(struct ubifs_info * c)767 static void init_constants_master(struct ubifs_info *c)
768 {
769 long long tmp64;
770
771 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773
774 /*
775 * Calculate total amount of FS blocks. This number is not used
776 * internally because it does not make much sense for UBIFS, but it is
777 * necessary to report something for the 'statfs()' call.
778 *
779 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 * deletions, minimum LEBs for the index, and assume only one journal
781 * head is available.
782 */
783 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 tmp64 = ubifs_reported_space(c, tmp64);
786 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787 }
788
789 /**
790 * take_gc_lnum - reserve GC LEB.
791 * @c: UBIFS file-system description object
792 *
793 * This function ensures that the LEB reserved for garbage collection is marked
794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
795 * space to zero, because lprops may contain out-of-date information if the
796 * file-system was un-mounted before it has been committed. This function
797 * returns zero in case of success and a negative error code in case of
798 * failure.
799 */
take_gc_lnum(struct ubifs_info * c)800 static int take_gc_lnum(struct ubifs_info *c)
801 {
802 int err;
803
804 if (c->gc_lnum == -1) {
805 ubifs_err(c, "no LEB for GC");
806 return -EINVAL;
807 }
808
809 /* And we have to tell lprops that this LEB is taken */
810 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 LPROPS_TAKEN, 0, 0);
812 return err;
813 }
814
815 /**
816 * alloc_wbufs - allocate write-buffers.
817 * @c: UBIFS file-system description object
818 *
819 * This helper function allocates and initializes UBIFS write-buffers. Returns
820 * zero in case of success and %-ENOMEM in case of failure.
821 */
alloc_wbufs(struct ubifs_info * c)822 static int alloc_wbufs(struct ubifs_info *c)
823 {
824 int i, err;
825
826 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 GFP_KERNEL);
828 if (!c->jheads)
829 return -ENOMEM;
830
831 /* Initialize journal heads */
832 for (i = 0; i < c->jhead_cnt; i++) {
833 INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 if (err)
836 goto out_wbuf;
837
838 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 c->jheads[i].wbuf.jhead = i;
840 c->jheads[i].grouped = 1;
841 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 if (IS_ERR(c->jheads[i].log_hash)) {
843 err = PTR_ERR(c->jheads[i].log_hash);
844 goto out_log_hash;
845 }
846 }
847
848 /*
849 * Garbage Collector head does not need to be synchronized by timer.
850 * Also GC head nodes are not grouped.
851 */
852 c->jheads[GCHD].wbuf.no_timer = 1;
853 c->jheads[GCHD].grouped = 0;
854
855 return 0;
856
857 out_log_hash:
858 kfree(c->jheads[i].wbuf.buf);
859 kfree(c->jheads[i].wbuf.inodes);
860
861 out_wbuf:
862 while (i--) {
863 kfree(c->jheads[i].wbuf.buf);
864 kfree(c->jheads[i].wbuf.inodes);
865 kfree(c->jheads[i].log_hash);
866 }
867 kfree(c->jheads);
868 c->jheads = NULL;
869
870 return err;
871 }
872
873 /**
874 * free_wbufs - free write-buffers.
875 * @c: UBIFS file-system description object
876 */
free_wbufs(struct ubifs_info * c)877 static void free_wbufs(struct ubifs_info *c)
878 {
879 int i;
880
881 if (c->jheads) {
882 for (i = 0; i < c->jhead_cnt; i++) {
883 kfree(c->jheads[i].wbuf.buf);
884 kfree(c->jheads[i].wbuf.inodes);
885 kfree(c->jheads[i].log_hash);
886 }
887 kfree(c->jheads);
888 c->jheads = NULL;
889 }
890 }
891
892 /**
893 * free_orphans - free orphans.
894 * @c: UBIFS file-system description object
895 */
free_orphans(struct ubifs_info * c)896 static void free_orphans(struct ubifs_info *c)
897 {
898 struct ubifs_orphan *orph;
899
900 while (c->orph_dnext) {
901 orph = c->orph_dnext;
902 c->orph_dnext = orph->dnext;
903 list_del(&orph->list);
904 kfree(orph);
905 }
906
907 while (!list_empty(&c->orph_list)) {
908 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
909 list_del(&orph->list);
910 kfree(orph);
911 ubifs_err(c, "orphan list not empty at unmount");
912 }
913
914 vfree(c->orph_buf);
915 c->orph_buf = NULL;
916 }
917
918 /**
919 * free_buds - free per-bud objects.
920 * @c: UBIFS file-system description object
921 */
free_buds(struct ubifs_info * c)922 static void free_buds(struct ubifs_info *c)
923 {
924 struct ubifs_bud *bud, *n;
925
926 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
927 kfree(bud);
928 }
929
930 /**
931 * check_volume_empty - check if the UBI volume is empty.
932 * @c: UBIFS file-system description object
933 *
934 * This function checks if the UBIFS volume is empty by looking if its LEBs are
935 * mapped or not. The result of checking is stored in the @c->empty variable.
936 * Returns zero in case of success and a negative error code in case of
937 * failure.
938 */
check_volume_empty(struct ubifs_info * c)939 static int check_volume_empty(struct ubifs_info *c)
940 {
941 int lnum, err;
942
943 c->empty = 1;
944 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
945 err = ubifs_is_mapped(c, lnum);
946 if (unlikely(err < 0))
947 return err;
948 if (err == 1) {
949 c->empty = 0;
950 break;
951 }
952
953 cond_resched();
954 }
955
956 return 0;
957 }
958
959 /*
960 * UBIFS mount options.
961 *
962 * Opt_fast_unmount: do not run a journal commit before un-mounting
963 * Opt_norm_unmount: run a journal commit before un-mounting
964 * Opt_bulk_read: enable bulk-reads
965 * Opt_no_bulk_read: disable bulk-reads
966 * Opt_chk_data_crc: check CRCs when reading data nodes
967 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
968 * Opt_override_compr: override default compressor
969 * Opt_assert: set ubifs_assert() action
970 * Opt_auth_key: The key name used for authentication
971 * Opt_auth_hash_name: The hash type used for authentication
972 * Opt_err: just end of array marker
973 */
974 enum {
975 Opt_fast_unmount,
976 Opt_norm_unmount,
977 Opt_bulk_read,
978 Opt_no_bulk_read,
979 Opt_chk_data_crc,
980 Opt_no_chk_data_crc,
981 Opt_override_compr,
982 Opt_assert,
983 Opt_auth_key,
984 Opt_auth_hash_name,
985 Opt_ignore,
986 Opt_err,
987 };
988
989 static const match_table_t tokens = {
990 {Opt_fast_unmount, "fast_unmount"},
991 {Opt_norm_unmount, "norm_unmount"},
992 {Opt_bulk_read, "bulk_read"},
993 {Opt_no_bulk_read, "no_bulk_read"},
994 {Opt_chk_data_crc, "chk_data_crc"},
995 {Opt_no_chk_data_crc, "no_chk_data_crc"},
996 {Opt_override_compr, "compr=%s"},
997 {Opt_auth_key, "auth_key=%s"},
998 {Opt_auth_hash_name, "auth_hash_name=%s"},
999 {Opt_ignore, "ubi=%s"},
1000 {Opt_ignore, "vol=%s"},
1001 {Opt_assert, "assert=%s"},
1002 {Opt_err, NULL},
1003 };
1004
1005 /**
1006 * parse_standard_option - parse a standard mount option.
1007 * @option: the option to parse
1008 *
1009 * Normally, standard mount options like "sync" are passed to file-systems as
1010 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1011 * be present in the options string. This function tries to deal with this
1012 * situation and parse standard options. Returns 0 if the option was not
1013 * recognized, and the corresponding integer flag if it was.
1014 *
1015 * UBIFS is only interested in the "sync" option, so do not check for anything
1016 * else.
1017 */
parse_standard_option(const char * option)1018 static int parse_standard_option(const char *option)
1019 {
1020
1021 pr_notice("UBIFS: parse %s\n", option);
1022 if (!strcmp(option, "sync"))
1023 return SB_SYNCHRONOUS;
1024 return 0;
1025 }
1026
1027 /**
1028 * ubifs_parse_options - parse mount parameters.
1029 * @c: UBIFS file-system description object
1030 * @options: parameters to parse
1031 * @is_remount: non-zero if this is FS re-mount
1032 *
1033 * This function parses UBIFS mount options and returns zero in case success
1034 * and a negative error code in case of failure.
1035 */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1036 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1037 int is_remount)
1038 {
1039 char *p;
1040 substring_t args[MAX_OPT_ARGS];
1041
1042 if (!options)
1043 return 0;
1044
1045 while ((p = strsep(&options, ","))) {
1046 int token;
1047
1048 if (!*p)
1049 continue;
1050
1051 token = match_token(p, tokens, args);
1052 switch (token) {
1053 /*
1054 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1055 * We accept them in order to be backward-compatible. But this
1056 * should be removed at some point.
1057 */
1058 case Opt_fast_unmount:
1059 c->mount_opts.unmount_mode = 2;
1060 break;
1061 case Opt_norm_unmount:
1062 c->mount_opts.unmount_mode = 1;
1063 break;
1064 case Opt_bulk_read:
1065 c->mount_opts.bulk_read = 2;
1066 c->bulk_read = 1;
1067 break;
1068 case Opt_no_bulk_read:
1069 c->mount_opts.bulk_read = 1;
1070 c->bulk_read = 0;
1071 break;
1072 case Opt_chk_data_crc:
1073 c->mount_opts.chk_data_crc = 2;
1074 c->no_chk_data_crc = 0;
1075 break;
1076 case Opt_no_chk_data_crc:
1077 c->mount_opts.chk_data_crc = 1;
1078 c->no_chk_data_crc = 1;
1079 break;
1080 case Opt_override_compr:
1081 {
1082 char *name = match_strdup(&args[0]);
1083
1084 if (!name)
1085 return -ENOMEM;
1086 if (!strcmp(name, "none"))
1087 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1088 else if (!strcmp(name, "lzo"))
1089 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1090 else if (!strcmp(name, "zlib"))
1091 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1092 else if (!strcmp(name, "zstd"))
1093 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1094 else {
1095 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1096 kfree(name);
1097 return -EINVAL;
1098 }
1099 kfree(name);
1100 c->mount_opts.override_compr = 1;
1101 c->default_compr = c->mount_opts.compr_type;
1102 break;
1103 }
1104 case Opt_assert:
1105 {
1106 char *act = match_strdup(&args[0]);
1107
1108 if (!act)
1109 return -ENOMEM;
1110 if (!strcmp(act, "report"))
1111 c->assert_action = ASSACT_REPORT;
1112 else if (!strcmp(act, "read-only"))
1113 c->assert_action = ASSACT_RO;
1114 else if (!strcmp(act, "panic"))
1115 c->assert_action = ASSACT_PANIC;
1116 else {
1117 ubifs_err(c, "unknown assert action \"%s\"", act);
1118 kfree(act);
1119 return -EINVAL;
1120 }
1121 kfree(act);
1122 break;
1123 }
1124 case Opt_auth_key:
1125 if (!is_remount) {
1126 c->auth_key_name = kstrdup(args[0].from,
1127 GFP_KERNEL);
1128 if (!c->auth_key_name)
1129 return -ENOMEM;
1130 }
1131 break;
1132 case Opt_auth_hash_name:
1133 if (!is_remount) {
1134 c->auth_hash_name = kstrdup(args[0].from,
1135 GFP_KERNEL);
1136 if (!c->auth_hash_name)
1137 return -ENOMEM;
1138 }
1139 break;
1140 case Opt_ignore:
1141 break;
1142 default:
1143 {
1144 unsigned long flag;
1145 struct super_block *sb = c->vfs_sb;
1146
1147 flag = parse_standard_option(p);
1148 if (!flag) {
1149 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1150 p);
1151 return -EINVAL;
1152 }
1153 sb->s_flags |= flag;
1154 break;
1155 }
1156 }
1157 }
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * ubifs_release_options - release mount parameters which have been dumped.
1164 * @c: UBIFS file-system description object
1165 */
ubifs_release_options(struct ubifs_info * c)1166 static void ubifs_release_options(struct ubifs_info *c)
1167 {
1168 kfree(c->auth_key_name);
1169 c->auth_key_name = NULL;
1170 kfree(c->auth_hash_name);
1171 c->auth_hash_name = NULL;
1172 }
1173
1174 /**
1175 * destroy_journal - destroy journal data structures.
1176 * @c: UBIFS file-system description object
1177 *
1178 * This function destroys journal data structures including those that may have
1179 * been created by recovery functions.
1180 */
destroy_journal(struct ubifs_info * c)1181 static void destroy_journal(struct ubifs_info *c)
1182 {
1183 while (!list_empty(&c->unclean_leb_list)) {
1184 struct ubifs_unclean_leb *ucleb;
1185
1186 ucleb = list_entry(c->unclean_leb_list.next,
1187 struct ubifs_unclean_leb, list);
1188 list_del(&ucleb->list);
1189 kfree(ucleb);
1190 }
1191 while (!list_empty(&c->old_buds)) {
1192 struct ubifs_bud *bud;
1193
1194 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1195 list_del(&bud->list);
1196 kfree(bud);
1197 }
1198 ubifs_destroy_idx_gc(c);
1199 ubifs_destroy_size_tree(c);
1200 ubifs_tnc_close(c);
1201 free_buds(c);
1202 }
1203
1204 /**
1205 * bu_init - initialize bulk-read information.
1206 * @c: UBIFS file-system description object
1207 */
bu_init(struct ubifs_info * c)1208 static void bu_init(struct ubifs_info *c)
1209 {
1210 ubifs_assert(c, c->bulk_read == 1);
1211
1212 if (c->bu.buf)
1213 return; /* Already initialized */
1214
1215 again:
1216 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1217 if (!c->bu.buf) {
1218 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1219 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1220 goto again;
1221 }
1222
1223 /* Just disable bulk-read */
1224 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1225 c->max_bu_buf_len);
1226 c->mount_opts.bulk_read = 1;
1227 c->bulk_read = 0;
1228 return;
1229 }
1230 }
1231
1232 /**
1233 * check_free_space - check if there is enough free space to mount.
1234 * @c: UBIFS file-system description object
1235 *
1236 * This function makes sure UBIFS has enough free space to be mounted in
1237 * read/write mode. UBIFS must always have some free space to allow deletions.
1238 */
check_free_space(struct ubifs_info * c)1239 static int check_free_space(struct ubifs_info *c)
1240 {
1241 ubifs_assert(c, c->dark_wm > 0);
1242 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1243 ubifs_err(c, "insufficient free space to mount in R/W mode");
1244 ubifs_dump_budg(c, &c->bi);
1245 ubifs_dump_lprops(c);
1246 return -ENOSPC;
1247 }
1248 return 0;
1249 }
1250
1251 /**
1252 * mount_ubifs - mount UBIFS file-system.
1253 * @c: UBIFS file-system description object
1254 *
1255 * This function mounts UBIFS file system. Returns zero in case of success and
1256 * a negative error code in case of failure.
1257 */
mount_ubifs(struct ubifs_info * c)1258 static int mount_ubifs(struct ubifs_info *c)
1259 {
1260 int err;
1261 long long x, y;
1262 size_t sz;
1263
1264 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1265 /* Suppress error messages while probing if SB_SILENT is set */
1266 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1267
1268 err = init_constants_early(c);
1269 if (err)
1270 return err;
1271
1272 err = ubifs_debugging_init(c);
1273 if (err)
1274 return err;
1275
1276 err = check_volume_empty(c);
1277 if (err)
1278 goto out_free;
1279
1280 if (c->empty && (c->ro_mount || c->ro_media)) {
1281 /*
1282 * This UBI volume is empty, and read-only, or the file system
1283 * is mounted read-only - we cannot format it.
1284 */
1285 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1286 c->ro_media ? "UBI volume" : "mount");
1287 err = -EROFS;
1288 goto out_free;
1289 }
1290
1291 if (c->ro_media && !c->ro_mount) {
1292 ubifs_err(c, "cannot mount read-write - read-only media");
1293 err = -EROFS;
1294 goto out_free;
1295 }
1296
1297 /*
1298 * The requirement for the buffer is that it should fit indexing B-tree
1299 * height amount of integers. We assume the height if the TNC tree will
1300 * never exceed 64.
1301 */
1302 err = -ENOMEM;
1303 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1304 GFP_KERNEL);
1305 if (!c->bottom_up_buf)
1306 goto out_free;
1307
1308 c->sbuf = vmalloc(c->leb_size);
1309 if (!c->sbuf)
1310 goto out_free;
1311
1312 if (!c->ro_mount) {
1313 c->ileb_buf = vmalloc(c->leb_size);
1314 if (!c->ileb_buf)
1315 goto out_free;
1316 }
1317
1318 if (c->bulk_read == 1)
1319 bu_init(c);
1320
1321 if (!c->ro_mount) {
1322 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1323 UBIFS_CIPHER_BLOCK_SIZE,
1324 GFP_KERNEL);
1325 if (!c->write_reserve_buf)
1326 goto out_free;
1327 }
1328
1329 c->mounting = 1;
1330
1331 if (c->auth_key_name) {
1332 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1333 err = ubifs_init_authentication(c);
1334 if (err)
1335 goto out_free;
1336 } else {
1337 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1338 " authentication support");
1339 err = -EINVAL;
1340 goto out_free;
1341 }
1342 }
1343
1344 err = ubifs_read_superblock(c);
1345 if (err)
1346 goto out_auth;
1347
1348 c->probing = 0;
1349
1350 /*
1351 * Make sure the compressor which is set as default in the superblock
1352 * or overridden by mount options is actually compiled in.
1353 */
1354 if (!ubifs_compr_present(c, c->default_compr)) {
1355 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1356 ubifs_compr_name(c, c->default_compr));
1357 err = -ENOTSUPP;
1358 goto out_auth;
1359 }
1360
1361 err = init_constants_sb(c);
1362 if (err)
1363 goto out_auth;
1364
1365 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1366 c->cbuf = kmalloc(sz, GFP_NOFS);
1367 if (!c->cbuf) {
1368 err = -ENOMEM;
1369 goto out_auth;
1370 }
1371
1372 err = alloc_wbufs(c);
1373 if (err)
1374 goto out_cbuf;
1375
1376 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1377 if (!c->ro_mount) {
1378 /* Create background thread */
1379 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1380 if (IS_ERR(c->bgt)) {
1381 err = PTR_ERR(c->bgt);
1382 c->bgt = NULL;
1383 ubifs_err(c, "cannot spawn \"%s\", error %d",
1384 c->bgt_name, err);
1385 goto out_wbufs;
1386 }
1387 wake_up_process(c->bgt);
1388 }
1389
1390 err = ubifs_read_master(c);
1391 if (err)
1392 goto out_master;
1393
1394 init_constants_master(c);
1395
1396 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1397 ubifs_msg(c, "recovery needed");
1398 c->need_recovery = 1;
1399 }
1400
1401 if (c->need_recovery && !c->ro_mount) {
1402 err = ubifs_recover_inl_heads(c, c->sbuf);
1403 if (err)
1404 goto out_master;
1405 }
1406
1407 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1408 if (err)
1409 goto out_master;
1410
1411 if (!c->ro_mount && c->space_fixup) {
1412 err = ubifs_fixup_free_space(c);
1413 if (err)
1414 goto out_lpt;
1415 }
1416
1417 if (!c->ro_mount && !c->need_recovery) {
1418 /*
1419 * Set the "dirty" flag so that if we reboot uncleanly we
1420 * will notice this immediately on the next mount.
1421 */
1422 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1423 err = ubifs_write_master(c);
1424 if (err)
1425 goto out_lpt;
1426 }
1427
1428 /*
1429 * Handle offline signed images: Now that the master node is
1430 * written and its validation no longer depends on the hash
1431 * in the superblock, we can update the offline signed
1432 * superblock with a HMAC version,
1433 */
1434 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1435 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1436 if (err)
1437 goto out_lpt;
1438 c->superblock_need_write = 1;
1439 }
1440
1441 if (!c->ro_mount && c->superblock_need_write) {
1442 err = ubifs_write_sb_node(c, c->sup_node);
1443 if (err)
1444 goto out_lpt;
1445 c->superblock_need_write = 0;
1446 }
1447
1448 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1449 if (err)
1450 goto out_lpt;
1451
1452 err = ubifs_replay_journal(c);
1453 if (err)
1454 goto out_journal;
1455
1456 /* Calculate 'min_idx_lebs' after journal replay */
1457 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1458
1459 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1460 if (err)
1461 goto out_orphans;
1462
1463 if (!c->ro_mount) {
1464 int lnum;
1465
1466 err = check_free_space(c);
1467 if (err)
1468 goto out_orphans;
1469
1470 /* Check for enough log space */
1471 lnum = c->lhead_lnum + 1;
1472 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1473 lnum = UBIFS_LOG_LNUM;
1474 if (lnum == c->ltail_lnum) {
1475 err = ubifs_consolidate_log(c);
1476 if (err)
1477 goto out_orphans;
1478 }
1479
1480 if (c->need_recovery) {
1481 if (!ubifs_authenticated(c)) {
1482 err = ubifs_recover_size(c, true);
1483 if (err)
1484 goto out_orphans;
1485 }
1486
1487 err = ubifs_rcvry_gc_commit(c);
1488 if (err)
1489 goto out_orphans;
1490
1491 if (ubifs_authenticated(c)) {
1492 err = ubifs_recover_size(c, false);
1493 if (err)
1494 goto out_orphans;
1495 }
1496 } else {
1497 err = take_gc_lnum(c);
1498 if (err)
1499 goto out_orphans;
1500
1501 /*
1502 * GC LEB may contain garbage if there was an unclean
1503 * reboot, and it should be un-mapped.
1504 */
1505 err = ubifs_leb_unmap(c, c->gc_lnum);
1506 if (err)
1507 goto out_orphans;
1508 }
1509
1510 err = dbg_check_lprops(c);
1511 if (err)
1512 goto out_orphans;
1513 } else if (c->need_recovery) {
1514 err = ubifs_recover_size(c, false);
1515 if (err)
1516 goto out_orphans;
1517 } else {
1518 /*
1519 * Even if we mount read-only, we have to set space in GC LEB
1520 * to proper value because this affects UBIFS free space
1521 * reporting. We do not want to have a situation when
1522 * re-mounting from R/O to R/W changes amount of free space.
1523 */
1524 err = take_gc_lnum(c);
1525 if (err)
1526 goto out_orphans;
1527 }
1528
1529 spin_lock(&ubifs_infos_lock);
1530 list_add_tail(&c->infos_list, &ubifs_infos);
1531 spin_unlock(&ubifs_infos_lock);
1532
1533 if (c->need_recovery) {
1534 if (c->ro_mount)
1535 ubifs_msg(c, "recovery deferred");
1536 else {
1537 c->need_recovery = 0;
1538 ubifs_msg(c, "recovery completed");
1539 /*
1540 * GC LEB has to be empty and taken at this point. But
1541 * the journal head LEBs may also be accounted as
1542 * "empty taken" if they are empty.
1543 */
1544 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1545 }
1546 } else
1547 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1548
1549 err = dbg_check_filesystem(c);
1550 if (err)
1551 goto out_infos;
1552
1553 dbg_debugfs_init_fs(c);
1554
1555 c->mounting = 0;
1556
1557 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1558 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1559 c->ro_mount ? ", R/O mode" : "");
1560 x = (long long)c->main_lebs * c->leb_size;
1561 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1562 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1563 c->leb_size, c->leb_size >> 10, c->min_io_size,
1564 c->max_write_size);
1565 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1566 x, x >> 20, c->main_lebs,
1567 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1568 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1569 c->report_rp_size, c->report_rp_size >> 10);
1570 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1571 c->fmt_version, c->ro_compat_version,
1572 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1573 c->big_lpt ? ", big LPT model" : ", small LPT model");
1574
1575 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1576 dbg_gen("data journal heads: %d",
1577 c->jhead_cnt - NONDATA_JHEADS_CNT);
1578 dbg_gen("log LEBs: %d (%d - %d)",
1579 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1580 dbg_gen("LPT area LEBs: %d (%d - %d)",
1581 c->lpt_lebs, c->lpt_first, c->lpt_last);
1582 dbg_gen("orphan area LEBs: %d (%d - %d)",
1583 c->orph_lebs, c->orph_first, c->orph_last);
1584 dbg_gen("main area LEBs: %d (%d - %d)",
1585 c->main_lebs, c->main_first, c->leb_cnt - 1);
1586 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1587 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1588 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1589 c->bi.old_idx_sz >> 20);
1590 dbg_gen("key hash type: %d", c->key_hash_type);
1591 dbg_gen("tree fanout: %d", c->fanout);
1592 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1593 dbg_gen("max. znode size %d", c->max_znode_sz);
1594 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1595 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1596 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1597 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1598 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1599 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1600 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1601 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1602 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1603 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1604 dbg_gen("dead watermark: %d", c->dead_wm);
1605 dbg_gen("dark watermark: %d", c->dark_wm);
1606 dbg_gen("LEB overhead: %d", c->leb_overhead);
1607 x = (long long)c->main_lebs * c->dark_wm;
1608 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1609 x, x >> 10, x >> 20);
1610 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1611 c->max_bud_bytes, c->max_bud_bytes >> 10,
1612 c->max_bud_bytes >> 20);
1613 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1614 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1615 c->bg_bud_bytes >> 20);
1616 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1617 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1618 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1619 dbg_gen("commit number: %llu", c->cmt_no);
1620 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1621 dbg_gen("max orphans: %d", c->max_orphans);
1622
1623 return 0;
1624
1625 out_infos:
1626 spin_lock(&ubifs_infos_lock);
1627 list_del(&c->infos_list);
1628 spin_unlock(&ubifs_infos_lock);
1629 out_orphans:
1630 free_orphans(c);
1631 out_journal:
1632 destroy_journal(c);
1633 out_lpt:
1634 ubifs_lpt_free(c, 0);
1635 out_master:
1636 kfree(c->mst_node);
1637 kfree(c->rcvrd_mst_node);
1638 if (c->bgt)
1639 kthread_stop(c->bgt);
1640 out_wbufs:
1641 free_wbufs(c);
1642 out_cbuf:
1643 kfree(c->cbuf);
1644 out_auth:
1645 ubifs_exit_authentication(c);
1646 out_free:
1647 kfree(c->write_reserve_buf);
1648 kfree(c->bu.buf);
1649 vfree(c->ileb_buf);
1650 vfree(c->sbuf);
1651 kfree(c->bottom_up_buf);
1652 kfree(c->sup_node);
1653 ubifs_debugging_exit(c);
1654 return err;
1655 }
1656
1657 /**
1658 * ubifs_umount - un-mount UBIFS file-system.
1659 * @c: UBIFS file-system description object
1660 *
1661 * Note, this function is called to free allocated resourced when un-mounting,
1662 * as well as free resources when an error occurred while we were half way
1663 * through mounting (error path cleanup function). So it has to make sure the
1664 * resource was actually allocated before freeing it.
1665 */
ubifs_umount(struct ubifs_info * c)1666 static void ubifs_umount(struct ubifs_info *c)
1667 {
1668 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1669 c->vi.vol_id);
1670
1671 dbg_debugfs_exit_fs(c);
1672 spin_lock(&ubifs_infos_lock);
1673 list_del(&c->infos_list);
1674 spin_unlock(&ubifs_infos_lock);
1675
1676 if (c->bgt)
1677 kthread_stop(c->bgt);
1678
1679 destroy_journal(c);
1680 free_wbufs(c);
1681 free_orphans(c);
1682 ubifs_lpt_free(c, 0);
1683 ubifs_exit_authentication(c);
1684
1685 ubifs_release_options(c);
1686 kfree(c->cbuf);
1687 kfree(c->rcvrd_mst_node);
1688 kfree(c->mst_node);
1689 kfree(c->write_reserve_buf);
1690 kfree(c->bu.buf);
1691 vfree(c->ileb_buf);
1692 vfree(c->sbuf);
1693 kfree(c->bottom_up_buf);
1694 kfree(c->sup_node);
1695 ubifs_debugging_exit(c);
1696 }
1697
1698 /**
1699 * ubifs_remount_rw - re-mount in read-write mode.
1700 * @c: UBIFS file-system description object
1701 *
1702 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1703 * mode. This function allocates the needed resources and re-mounts UBIFS in
1704 * read-write mode.
1705 */
ubifs_remount_rw(struct ubifs_info * c)1706 static int ubifs_remount_rw(struct ubifs_info *c)
1707 {
1708 int err, lnum;
1709
1710 if (c->rw_incompat) {
1711 ubifs_err(c, "the file-system is not R/W-compatible");
1712 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1713 c->fmt_version, c->ro_compat_version,
1714 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1715 return -EROFS;
1716 }
1717
1718 mutex_lock(&c->umount_mutex);
1719 dbg_save_space_info(c);
1720 c->remounting_rw = 1;
1721 c->ro_mount = 0;
1722
1723 if (c->space_fixup) {
1724 err = ubifs_fixup_free_space(c);
1725 if (err)
1726 goto out;
1727 }
1728
1729 err = check_free_space(c);
1730 if (err)
1731 goto out;
1732
1733 if (c->need_recovery) {
1734 ubifs_msg(c, "completing deferred recovery");
1735 err = ubifs_write_rcvrd_mst_node(c);
1736 if (err)
1737 goto out;
1738 if (!ubifs_authenticated(c)) {
1739 err = ubifs_recover_size(c, true);
1740 if (err)
1741 goto out;
1742 }
1743 err = ubifs_clean_lebs(c, c->sbuf);
1744 if (err)
1745 goto out;
1746 err = ubifs_recover_inl_heads(c, c->sbuf);
1747 if (err)
1748 goto out;
1749 } else {
1750 /* A readonly mount is not allowed to have orphans */
1751 ubifs_assert(c, c->tot_orphans == 0);
1752 err = ubifs_clear_orphans(c);
1753 if (err)
1754 goto out;
1755 }
1756
1757 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1758 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1759 err = ubifs_write_master(c);
1760 if (err)
1761 goto out;
1762 }
1763
1764 if (c->superblock_need_write) {
1765 struct ubifs_sb_node *sup = c->sup_node;
1766
1767 err = ubifs_write_sb_node(c, sup);
1768 if (err)
1769 goto out;
1770
1771 c->superblock_need_write = 0;
1772 }
1773
1774 c->ileb_buf = vmalloc(c->leb_size);
1775 if (!c->ileb_buf) {
1776 err = -ENOMEM;
1777 goto out;
1778 }
1779
1780 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1781 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1782 if (!c->write_reserve_buf) {
1783 err = -ENOMEM;
1784 goto out;
1785 }
1786
1787 err = ubifs_lpt_init(c, 0, 1);
1788 if (err)
1789 goto out;
1790
1791 /* Create background thread */
1792 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1793 if (IS_ERR(c->bgt)) {
1794 err = PTR_ERR(c->bgt);
1795 c->bgt = NULL;
1796 ubifs_err(c, "cannot spawn \"%s\", error %d",
1797 c->bgt_name, err);
1798 goto out;
1799 }
1800 wake_up_process(c->bgt);
1801
1802 c->orph_buf = vmalloc(c->leb_size);
1803 if (!c->orph_buf) {
1804 err = -ENOMEM;
1805 goto out;
1806 }
1807
1808 /* Check for enough log space */
1809 lnum = c->lhead_lnum + 1;
1810 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1811 lnum = UBIFS_LOG_LNUM;
1812 if (lnum == c->ltail_lnum) {
1813 err = ubifs_consolidate_log(c);
1814 if (err)
1815 goto out;
1816 }
1817
1818 if (c->need_recovery) {
1819 err = ubifs_rcvry_gc_commit(c);
1820 if (err)
1821 goto out;
1822
1823 if (ubifs_authenticated(c)) {
1824 err = ubifs_recover_size(c, false);
1825 if (err)
1826 goto out;
1827 }
1828 } else {
1829 err = ubifs_leb_unmap(c, c->gc_lnum);
1830 }
1831 if (err)
1832 goto out;
1833
1834 dbg_gen("re-mounted read-write");
1835 c->remounting_rw = 0;
1836
1837 if (c->need_recovery) {
1838 c->need_recovery = 0;
1839 ubifs_msg(c, "deferred recovery completed");
1840 } else {
1841 /*
1842 * Do not run the debugging space check if the were doing
1843 * recovery, because when we saved the information we had the
1844 * file-system in a state where the TNC and lprops has been
1845 * modified in memory, but all the I/O operations (including a
1846 * commit) were deferred. So the file-system was in
1847 * "non-committed" state. Now the file-system is in committed
1848 * state, and of course the amount of free space will change
1849 * because, for example, the old index size was imprecise.
1850 */
1851 err = dbg_check_space_info(c);
1852 }
1853
1854 mutex_unlock(&c->umount_mutex);
1855 return err;
1856
1857 out:
1858 c->ro_mount = 1;
1859 vfree(c->orph_buf);
1860 c->orph_buf = NULL;
1861 if (c->bgt) {
1862 kthread_stop(c->bgt);
1863 c->bgt = NULL;
1864 }
1865 kfree(c->write_reserve_buf);
1866 c->write_reserve_buf = NULL;
1867 vfree(c->ileb_buf);
1868 c->ileb_buf = NULL;
1869 ubifs_lpt_free(c, 1);
1870 c->remounting_rw = 0;
1871 mutex_unlock(&c->umount_mutex);
1872 return err;
1873 }
1874
1875 /**
1876 * ubifs_remount_ro - re-mount in read-only mode.
1877 * @c: UBIFS file-system description object
1878 *
1879 * We assume VFS has stopped writing. Possibly the background thread could be
1880 * running a commit, however kthread_stop will wait in that case.
1881 */
ubifs_remount_ro(struct ubifs_info * c)1882 static void ubifs_remount_ro(struct ubifs_info *c)
1883 {
1884 int i, err;
1885
1886 ubifs_assert(c, !c->need_recovery);
1887 ubifs_assert(c, !c->ro_mount);
1888
1889 mutex_lock(&c->umount_mutex);
1890 if (c->bgt) {
1891 kthread_stop(c->bgt);
1892 c->bgt = NULL;
1893 }
1894
1895 dbg_save_space_info(c);
1896
1897 for (i = 0; i < c->jhead_cnt; i++) {
1898 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1899 if (err)
1900 ubifs_ro_mode(c, err);
1901 }
1902
1903 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1904 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1905 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1906 err = ubifs_write_master(c);
1907 if (err)
1908 ubifs_ro_mode(c, err);
1909
1910 vfree(c->orph_buf);
1911 c->orph_buf = NULL;
1912 kfree(c->write_reserve_buf);
1913 c->write_reserve_buf = NULL;
1914 vfree(c->ileb_buf);
1915 c->ileb_buf = NULL;
1916 ubifs_lpt_free(c, 1);
1917 c->ro_mount = 1;
1918 err = dbg_check_space_info(c);
1919 if (err)
1920 ubifs_ro_mode(c, err);
1921 mutex_unlock(&c->umount_mutex);
1922 }
1923
ubifs_put_super(struct super_block * sb)1924 static void ubifs_put_super(struct super_block *sb)
1925 {
1926 int i;
1927 struct ubifs_info *c = sb->s_fs_info;
1928
1929 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1930
1931 /*
1932 * The following asserts are only valid if there has not been a failure
1933 * of the media. For example, there will be dirty inodes if we failed
1934 * to write them back because of I/O errors.
1935 */
1936 if (!c->ro_error) {
1937 ubifs_assert(c, c->bi.idx_growth == 0);
1938 ubifs_assert(c, c->bi.dd_growth == 0);
1939 ubifs_assert(c, c->bi.data_growth == 0);
1940 }
1941
1942 /*
1943 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1944 * and file system un-mount. Namely, it prevents the shrinker from
1945 * picking this superblock for shrinking - it will be just skipped if
1946 * the mutex is locked.
1947 */
1948 mutex_lock(&c->umount_mutex);
1949 if (!c->ro_mount) {
1950 /*
1951 * First of all kill the background thread to make sure it does
1952 * not interfere with un-mounting and freeing resources.
1953 */
1954 if (c->bgt) {
1955 kthread_stop(c->bgt);
1956 c->bgt = NULL;
1957 }
1958
1959 /*
1960 * On fatal errors c->ro_error is set to 1, in which case we do
1961 * not write the master node.
1962 */
1963 if (!c->ro_error) {
1964 int err;
1965
1966 /* Synchronize write-buffers */
1967 for (i = 0; i < c->jhead_cnt; i++) {
1968 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1969 if (err)
1970 ubifs_ro_mode(c, err);
1971 }
1972
1973 /*
1974 * We are being cleanly unmounted which means the
1975 * orphans were killed - indicate this in the master
1976 * node. Also save the reserved GC LEB number.
1977 */
1978 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1979 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1980 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1981 err = ubifs_write_master(c);
1982 if (err)
1983 /*
1984 * Recovery will attempt to fix the master area
1985 * next mount, so we just print a message and
1986 * continue to unmount normally.
1987 */
1988 ubifs_err(c, "failed to write master node, error %d",
1989 err);
1990 } else {
1991 for (i = 0; i < c->jhead_cnt; i++)
1992 /* Make sure write-buffer timers are canceled */
1993 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1994 }
1995 }
1996
1997 ubifs_umount(c);
1998 ubi_close_volume(c->ubi);
1999 mutex_unlock(&c->umount_mutex);
2000 }
2001
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)2002 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2003 {
2004 int err;
2005 struct ubifs_info *c = sb->s_fs_info;
2006
2007 sync_filesystem(sb);
2008 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2009
2010 err = ubifs_parse_options(c, data, 1);
2011 if (err) {
2012 ubifs_err(c, "invalid or unknown remount parameter");
2013 return err;
2014 }
2015
2016 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2017 if (c->ro_error) {
2018 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2019 return -EROFS;
2020 }
2021 if (c->ro_media) {
2022 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2023 return -EROFS;
2024 }
2025 err = ubifs_remount_rw(c);
2026 if (err)
2027 return err;
2028 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2029 if (c->ro_error) {
2030 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2031 return -EROFS;
2032 }
2033 ubifs_remount_ro(c);
2034 }
2035
2036 if (c->bulk_read == 1)
2037 bu_init(c);
2038 else {
2039 dbg_gen("disable bulk-read");
2040 mutex_lock(&c->bu_mutex);
2041 kfree(c->bu.buf);
2042 c->bu.buf = NULL;
2043 mutex_unlock(&c->bu_mutex);
2044 }
2045
2046 if (!c->need_recovery)
2047 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2048
2049 return 0;
2050 }
2051
2052 const struct super_operations ubifs_super_operations = {
2053 .alloc_inode = ubifs_alloc_inode,
2054 .free_inode = ubifs_free_inode,
2055 .put_super = ubifs_put_super,
2056 .write_inode = ubifs_write_inode,
2057 .drop_inode = ubifs_drop_inode,
2058 .evict_inode = ubifs_evict_inode,
2059 .statfs = ubifs_statfs,
2060 .dirty_inode = ubifs_dirty_inode,
2061 .remount_fs = ubifs_remount_fs,
2062 .show_options = ubifs_show_options,
2063 .sync_fs = ubifs_sync_fs,
2064 };
2065
2066 /**
2067 * open_ubi - parse UBI device name string and open the UBI device.
2068 * @name: UBI volume name
2069 * @mode: UBI volume open mode
2070 *
2071 * The primary method of mounting UBIFS is by specifying the UBI volume
2072 * character device node path. However, UBIFS may also be mounted withoug any
2073 * character device node using one of the following methods:
2074 *
2075 * o ubiX_Y - mount UBI device number X, volume Y;
2076 * o ubiY - mount UBI device number 0, volume Y;
2077 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2078 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2079 *
2080 * Alternative '!' separator may be used instead of ':' (because some shells
2081 * like busybox may interpret ':' as an NFS host name separator). This function
2082 * returns UBI volume description object in case of success and a negative
2083 * error code in case of failure.
2084 */
open_ubi(const char * name,int mode)2085 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2086 {
2087 struct ubi_volume_desc *ubi;
2088 int dev, vol;
2089 char *endptr;
2090
2091 if (!name || !*name)
2092 return ERR_PTR(-EINVAL);
2093
2094 /* First, try to open using the device node path method */
2095 ubi = ubi_open_volume_path(name, mode);
2096 if (!IS_ERR(ubi))
2097 return ubi;
2098
2099 /* Try the "nodev" method */
2100 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2101 return ERR_PTR(-EINVAL);
2102
2103 /* ubi:NAME method */
2104 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2105 return ubi_open_volume_nm(0, name + 4, mode);
2106
2107 if (!isdigit(name[3]))
2108 return ERR_PTR(-EINVAL);
2109
2110 dev = simple_strtoul(name + 3, &endptr, 0);
2111
2112 /* ubiY method */
2113 if (*endptr == '\0')
2114 return ubi_open_volume(0, dev, mode);
2115
2116 /* ubiX_Y method */
2117 if (*endptr == '_' && isdigit(endptr[1])) {
2118 vol = simple_strtoul(endptr + 1, &endptr, 0);
2119 if (*endptr != '\0')
2120 return ERR_PTR(-EINVAL);
2121 return ubi_open_volume(dev, vol, mode);
2122 }
2123
2124 /* ubiX:NAME method */
2125 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2126 return ubi_open_volume_nm(dev, ++endptr, mode);
2127
2128 return ERR_PTR(-EINVAL);
2129 }
2130
alloc_ubifs_info(struct ubi_volume_desc * ubi)2131 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2132 {
2133 struct ubifs_info *c;
2134
2135 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2136 if (c) {
2137 spin_lock_init(&c->cnt_lock);
2138 spin_lock_init(&c->cs_lock);
2139 spin_lock_init(&c->buds_lock);
2140 spin_lock_init(&c->space_lock);
2141 spin_lock_init(&c->orphan_lock);
2142 init_rwsem(&c->commit_sem);
2143 mutex_init(&c->lp_mutex);
2144 mutex_init(&c->tnc_mutex);
2145 mutex_init(&c->log_mutex);
2146 mutex_init(&c->umount_mutex);
2147 mutex_init(&c->bu_mutex);
2148 mutex_init(&c->write_reserve_mutex);
2149 init_waitqueue_head(&c->cmt_wq);
2150 c->buds = RB_ROOT;
2151 c->old_idx = RB_ROOT;
2152 c->size_tree = RB_ROOT;
2153 c->orph_tree = RB_ROOT;
2154 INIT_LIST_HEAD(&c->infos_list);
2155 INIT_LIST_HEAD(&c->idx_gc);
2156 INIT_LIST_HEAD(&c->replay_list);
2157 INIT_LIST_HEAD(&c->replay_buds);
2158 INIT_LIST_HEAD(&c->uncat_list);
2159 INIT_LIST_HEAD(&c->empty_list);
2160 INIT_LIST_HEAD(&c->freeable_list);
2161 INIT_LIST_HEAD(&c->frdi_idx_list);
2162 INIT_LIST_HEAD(&c->unclean_leb_list);
2163 INIT_LIST_HEAD(&c->old_buds);
2164 INIT_LIST_HEAD(&c->orph_list);
2165 INIT_LIST_HEAD(&c->orph_new);
2166 c->no_chk_data_crc = 1;
2167 c->assert_action = ASSACT_RO;
2168
2169 c->highest_inum = UBIFS_FIRST_INO;
2170 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2171
2172 ubi_get_volume_info(ubi, &c->vi);
2173 ubi_get_device_info(c->vi.ubi_num, &c->di);
2174 }
2175 return c;
2176 }
2177
ubifs_fill_super(struct super_block * sb,void * data,int silent)2178 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2179 {
2180 struct ubifs_info *c = sb->s_fs_info;
2181 struct inode *root;
2182 int err;
2183
2184 c->vfs_sb = sb;
2185 /* Re-open the UBI device in read-write mode */
2186 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2187 if (IS_ERR(c->ubi)) {
2188 err = PTR_ERR(c->ubi);
2189 goto out;
2190 }
2191
2192 err = ubifs_parse_options(c, data, 0);
2193 if (err)
2194 goto out_close;
2195
2196 /*
2197 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2198 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2199 * which means the user would have to wait not just for their own I/O
2200 * but the read-ahead I/O as well i.e. completely pointless.
2201 *
2202 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2203 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2204 * writeback happening.
2205 */
2206 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2207 c->vi.vol_id);
2208 if (err)
2209 goto out_close;
2210 sb->s_bdi->ra_pages = 0;
2211 sb->s_bdi->io_pages = 0;
2212
2213 sb->s_fs_info = c;
2214 sb->s_magic = UBIFS_SUPER_MAGIC;
2215 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2216 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2217 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2218 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2219 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2220 sb->s_op = &ubifs_super_operations;
2221 #ifdef CONFIG_UBIFS_FS_XATTR
2222 sb->s_xattr = ubifs_xattr_handlers;
2223 #endif
2224 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2225
2226 mutex_lock(&c->umount_mutex);
2227 err = mount_ubifs(c);
2228 if (err) {
2229 ubifs_assert(c, err < 0);
2230 goto out_unlock;
2231 }
2232
2233 /* Read the root inode */
2234 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2235 if (IS_ERR(root)) {
2236 err = PTR_ERR(root);
2237 goto out_umount;
2238 }
2239
2240 sb->s_root = d_make_root(root);
2241 if (!sb->s_root) {
2242 err = -ENOMEM;
2243 goto out_umount;
2244 }
2245
2246 mutex_unlock(&c->umount_mutex);
2247 return 0;
2248
2249 out_umount:
2250 ubifs_umount(c);
2251 out_unlock:
2252 mutex_unlock(&c->umount_mutex);
2253 out_close:
2254 ubifs_release_options(c);
2255 ubi_close_volume(c->ubi);
2256 out:
2257 return err;
2258 }
2259
sb_test(struct super_block * sb,void * data)2260 static int sb_test(struct super_block *sb, void *data)
2261 {
2262 struct ubifs_info *c1 = data;
2263 struct ubifs_info *c = sb->s_fs_info;
2264
2265 return c->vi.cdev == c1->vi.cdev;
2266 }
2267
sb_set(struct super_block * sb,void * data)2268 static int sb_set(struct super_block *sb, void *data)
2269 {
2270 sb->s_fs_info = data;
2271 return set_anon_super(sb, NULL);
2272 }
2273
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2274 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2275 const char *name, void *data)
2276 {
2277 struct ubi_volume_desc *ubi;
2278 struct ubifs_info *c;
2279 struct super_block *sb;
2280 int err;
2281
2282 dbg_gen("name %s, flags %#x", name, flags);
2283
2284 /*
2285 * Get UBI device number and volume ID. Mount it read-only so far
2286 * because this might be a new mount point, and UBI allows only one
2287 * read-write user at a time.
2288 */
2289 ubi = open_ubi(name, UBI_READONLY);
2290 if (IS_ERR(ubi)) {
2291 if (!(flags & SB_SILENT))
2292 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2293 current->pid, name, (int)PTR_ERR(ubi));
2294 return ERR_CAST(ubi);
2295 }
2296
2297 c = alloc_ubifs_info(ubi);
2298 if (!c) {
2299 err = -ENOMEM;
2300 goto out_close;
2301 }
2302
2303 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2304
2305 sb = sget(fs_type, sb_test, sb_set, flags, c);
2306 if (IS_ERR(sb)) {
2307 err = PTR_ERR(sb);
2308 kfree(c);
2309 goto out_close;
2310 }
2311
2312 if (sb->s_root) {
2313 struct ubifs_info *c1 = sb->s_fs_info;
2314 kfree(c);
2315 /* A new mount point for already mounted UBIFS */
2316 dbg_gen("this ubi volume is already mounted");
2317 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2318 err = -EBUSY;
2319 goto out_deact;
2320 }
2321 } else {
2322 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2323 if (err)
2324 goto out_deact;
2325 /* We do not support atime */
2326 sb->s_flags |= SB_ACTIVE;
2327 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2328 ubifs_msg(c, "full atime support is enabled.");
2329 else
2330 sb->s_flags |= SB_NOATIME;
2331 }
2332
2333 /* 'fill_super()' opens ubi again so we must close it here */
2334 ubi_close_volume(ubi);
2335
2336 return dget(sb->s_root);
2337
2338 out_deact:
2339 deactivate_locked_super(sb);
2340 out_close:
2341 ubi_close_volume(ubi);
2342 return ERR_PTR(err);
2343 }
2344
kill_ubifs_super(struct super_block * s)2345 static void kill_ubifs_super(struct super_block *s)
2346 {
2347 struct ubifs_info *c = s->s_fs_info;
2348 kill_anon_super(s);
2349 kfree(c);
2350 }
2351
2352 static struct file_system_type ubifs_fs_type = {
2353 .name = "ubifs",
2354 .owner = THIS_MODULE,
2355 .mount = ubifs_mount,
2356 .kill_sb = kill_ubifs_super,
2357 };
2358 MODULE_ALIAS_FS("ubifs");
2359
2360 /*
2361 * Inode slab cache constructor.
2362 */
inode_slab_ctor(void * obj)2363 static void inode_slab_ctor(void *obj)
2364 {
2365 struct ubifs_inode *ui = obj;
2366 inode_init_once(&ui->vfs_inode);
2367 }
2368
ubifs_init(void)2369 static int __init ubifs_init(void)
2370 {
2371 int err;
2372
2373 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2374
2375 /* Make sure node sizes are 8-byte aligned */
2376 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2377 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2378 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2379 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2380 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2381 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2382 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2383 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2384 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2387
2388 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2389 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2390 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2391 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2392 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2393 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2394
2395 /* Check min. node size */
2396 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2397 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2398 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2399 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2400
2401 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2402 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2403 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2404 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2405
2406 /* Defined node sizes */
2407 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2408 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2409 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2410 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2411
2412 /*
2413 * We use 2 bit wide bit-fields to store compression type, which should
2414 * be amended if more compressors are added. The bit-fields are:
2415 * @compr_type in 'struct ubifs_inode', @default_compr in
2416 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2417 */
2418 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2419
2420 /*
2421 * We require that PAGE_SIZE is greater-than-or-equal-to
2422 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2423 */
2424 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2425 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2426 current->pid, (unsigned int)PAGE_SIZE);
2427 return -EINVAL;
2428 }
2429
2430 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2431 sizeof(struct ubifs_inode), 0,
2432 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2433 SLAB_ACCOUNT, &inode_slab_ctor);
2434 if (!ubifs_inode_slab)
2435 return -ENOMEM;
2436
2437 err = register_shrinker(&ubifs_shrinker_info);
2438 if (err)
2439 goto out_slab;
2440
2441 err = ubifs_compressors_init();
2442 if (err)
2443 goto out_shrinker;
2444
2445 dbg_debugfs_init();
2446
2447 err = register_filesystem(&ubifs_fs_type);
2448 if (err) {
2449 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2450 current->pid, err);
2451 goto out_dbg;
2452 }
2453 return 0;
2454
2455 out_dbg:
2456 dbg_debugfs_exit();
2457 ubifs_compressors_exit();
2458 out_shrinker:
2459 unregister_shrinker(&ubifs_shrinker_info);
2460 out_slab:
2461 kmem_cache_destroy(ubifs_inode_slab);
2462 return err;
2463 }
2464 /* late_initcall to let compressors initialize first */
2465 late_initcall(ubifs_init);
2466
ubifs_exit(void)2467 static void __exit ubifs_exit(void)
2468 {
2469 WARN_ON(!list_empty(&ubifs_infos));
2470 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2471
2472 dbg_debugfs_exit();
2473 ubifs_compressors_exit();
2474 unregister_shrinker(&ubifs_shrinker_info);
2475
2476 /*
2477 * Make sure all delayed rcu free inodes are flushed before we
2478 * destroy cache.
2479 */
2480 rcu_barrier();
2481 kmem_cache_destroy(ubifs_inode_slab);
2482 unregister_filesystem(&ubifs_fs_type);
2483 }
2484 module_exit(ubifs_exit);
2485
2486 MODULE_LICENSE("GPL");
2487 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
2488 MODULE_VERSION(__stringify(UBIFS_VERSION));
2489 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2490 MODULE_DESCRIPTION("UBIFS - UBI File System");
2491