• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61 			   struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			      int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
udf_readpage(struct file * file,struct page * page)196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 	return mpage_readpage(page, udf_get_block);
199 }
200 
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len, unsigned flags,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.readpage	= udf_readpage,
239 	.readahead	= udf_readahead,
240 	.writepage	= udf_writepage,
241 	.writepages	= udf_writepages,
242 	.write_begin	= udf_write_begin,
243 	.write_end	= generic_write_end,
244 	.direct_IO	= udf_direct_IO,
245 	.bmap		= udf_bmap,
246 };
247 
248 /*
249  * Expand file stored in ICB to a normal one-block-file
250  *
251  * This function requires i_data_sem for writing and releases it.
252  * This function requires i_mutex held
253  */
udf_expand_file_adinicb(struct inode * inode)254 int udf_expand_file_adinicb(struct inode *inode)
255 {
256 	struct page *page;
257 	char *kaddr;
258 	struct udf_inode_info *iinfo = UDF_I(inode);
259 	int err;
260 
261 	WARN_ON_ONCE(!inode_is_locked(inode));
262 	if (!iinfo->i_lenAlloc) {
263 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
264 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
265 		else
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
267 		/* from now on we have normal address_space methods */
268 		inode->i_data.a_ops = &udf_aops;
269 		up_write(&iinfo->i_data_sem);
270 		mark_inode_dirty(inode);
271 		return 0;
272 	}
273 	/*
274 	 * Release i_data_sem so that we can lock a page - page lock ranks
275 	 * above i_data_sem. i_mutex still protects us against file changes.
276 	 */
277 	up_write(&iinfo->i_data_sem);
278 
279 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
280 	if (!page)
281 		return -ENOMEM;
282 
283 	if (!PageUptodate(page)) {
284 		kaddr = kmap_atomic(page);
285 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
286 		       PAGE_SIZE - iinfo->i_lenAlloc);
287 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
288 			iinfo->i_lenAlloc);
289 		flush_dcache_page(page);
290 		SetPageUptodate(page);
291 		kunmap_atomic(kaddr);
292 	}
293 	down_write(&iinfo->i_data_sem);
294 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
295 	       iinfo->i_lenAlloc);
296 	iinfo->i_lenAlloc = 0;
297 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
298 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
299 	else
300 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
301 	/* from now on we have normal address_space methods */
302 	inode->i_data.a_ops = &udf_aops;
303 	set_page_dirty(page);
304 	unlock_page(page);
305 	up_write(&iinfo->i_data_sem);
306 	err = filemap_fdatawrite(inode->i_mapping);
307 	if (err) {
308 		/* Restore everything back so that we don't lose data... */
309 		lock_page(page);
310 		down_write(&iinfo->i_data_sem);
311 		kaddr = kmap_atomic(page);
312 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
313 		kunmap_atomic(kaddr);
314 		unlock_page(page);
315 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 		inode->i_data.a_ops = &udf_adinicb_aops;
317 		iinfo->i_lenAlloc = inode->i_size;
318 		up_write(&iinfo->i_data_sem);
319 	}
320 	put_page(page);
321 	mark_inode_dirty(inode);
322 
323 	return err;
324 }
325 
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)326 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 					    udf_pblk_t *block, int *err)
328 {
329 	udf_pblk_t newblock;
330 	struct buffer_head *dbh = NULL;
331 	struct kernel_lb_addr eloc;
332 	uint8_t alloctype;
333 	struct extent_position epos;
334 
335 	struct udf_fileident_bh sfibh, dfibh;
336 	loff_t f_pos = udf_ext0_offset(inode);
337 	int size = udf_ext0_offset(inode) + inode->i_size;
338 	struct fileIdentDesc cfi, *sfi, *dfi;
339 	struct udf_inode_info *iinfo = UDF_I(inode);
340 
341 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 		alloctype = ICBTAG_FLAG_AD_SHORT;
343 	else
344 		alloctype = ICBTAG_FLAG_AD_LONG;
345 
346 	if (!inode->i_size) {
347 		iinfo->i_alloc_type = alloctype;
348 		mark_inode_dirty(inode);
349 		return NULL;
350 	}
351 
352 	/* alloc block, and copy data to it */
353 	*block = udf_new_block(inode->i_sb, inode,
354 			       iinfo->i_location.partitionReferenceNum,
355 			       iinfo->i_location.logicalBlockNum, err);
356 	if (!(*block))
357 		return NULL;
358 	newblock = udf_get_pblock(inode->i_sb, *block,
359 				  iinfo->i_location.partitionReferenceNum,
360 				0);
361 	if (!newblock)
362 		return NULL;
363 	dbh = udf_tgetblk(inode->i_sb, newblock);
364 	if (!dbh)
365 		return NULL;
366 	lock_buffer(dbh);
367 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 	set_buffer_uptodate(dbh);
369 	unlock_buffer(dbh);
370 	mark_buffer_dirty_inode(dbh, inode);
371 
372 	sfibh.soffset = sfibh.eoffset =
373 			f_pos & (inode->i_sb->s_blocksize - 1);
374 	sfibh.sbh = sfibh.ebh = NULL;
375 	dfibh.soffset = dfibh.eoffset = 0;
376 	dfibh.sbh = dfibh.ebh = dbh;
377 	while (f_pos < size) {
378 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 					 NULL, NULL, NULL);
381 		if (!sfi) {
382 			brelse(dbh);
383 			return NULL;
384 		}
385 		iinfo->i_alloc_type = alloctype;
386 		sfi->descTag.tagLocation = cpu_to_le32(*block);
387 		dfibh.soffset = dfibh.eoffset;
388 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 				 sfi->fileIdent +
392 					le16_to_cpu(sfi->lengthOfImpUse))) {
393 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 			brelse(dbh);
395 			return NULL;
396 		}
397 	}
398 	mark_buffer_dirty_inode(dbh, inode);
399 
400 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401 	iinfo->i_lenAlloc = 0;
402 	eloc.logicalBlockNum = *block;
403 	eloc.partitionReferenceNum =
404 				iinfo->i_location.partitionReferenceNum;
405 	iinfo->i_lenExtents = inode->i_size;
406 	epos.bh = NULL;
407 	epos.block = iinfo->i_location;
408 	epos.offset = udf_file_entry_alloc_offset(inode);
409 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 	/* UniqueID stuff */
411 
412 	brelse(epos.bh);
413 	mark_inode_dirty(inode);
414 	return dbh;
415 }
416 
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)417 static int udf_get_block(struct inode *inode, sector_t block,
418 			 struct buffer_head *bh_result, int create)
419 {
420 	int err, new;
421 	sector_t phys = 0;
422 	struct udf_inode_info *iinfo;
423 
424 	if (!create) {
425 		phys = udf_block_map(inode, block);
426 		if (phys)
427 			map_bh(bh_result, inode->i_sb, phys);
428 		return 0;
429 	}
430 
431 	err = -EIO;
432 	new = 0;
433 	iinfo = UDF_I(inode);
434 
435 	down_write(&iinfo->i_data_sem);
436 	if (block == iinfo->i_next_alloc_block + 1) {
437 		iinfo->i_next_alloc_block++;
438 		iinfo->i_next_alloc_goal++;
439 	}
440 
441 	/*
442 	 * Block beyond EOF and prealloc extents? Just discard preallocation
443 	 * as it is not useful and complicates things.
444 	 */
445 	if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
446 		udf_discard_prealloc(inode);
447 	udf_clear_extent_cache(inode);
448 	phys = inode_getblk(inode, block, &err, &new);
449 	if (!phys)
450 		goto abort;
451 
452 	if (new)
453 		set_buffer_new(bh_result);
454 	map_bh(bh_result, inode->i_sb, phys);
455 
456 abort:
457 	up_write(&iinfo->i_data_sem);
458 	return err;
459 }
460 
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)461 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
462 				      int create, int *err)
463 {
464 	struct buffer_head *bh;
465 	struct buffer_head dummy;
466 
467 	dummy.b_state = 0;
468 	dummy.b_blocknr = -1000;
469 	*err = udf_get_block(inode, block, &dummy, create);
470 	if (!*err && buffer_mapped(&dummy)) {
471 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472 		if (buffer_new(&dummy)) {
473 			lock_buffer(bh);
474 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475 			set_buffer_uptodate(bh);
476 			unlock_buffer(bh);
477 			mark_buffer_dirty_inode(bh, inode);
478 		}
479 		return bh;
480 	}
481 
482 	return NULL;
483 }
484 
485 /* Extend the file with new blocks totaling 'new_block_bytes',
486  * return the number of extents added
487  */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)488 static int udf_do_extend_file(struct inode *inode,
489 			      struct extent_position *last_pos,
490 			      struct kernel_long_ad *last_ext,
491 			      loff_t new_block_bytes)
492 {
493 	uint32_t add;
494 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
495 	struct super_block *sb = inode->i_sb;
496 	struct udf_inode_info *iinfo;
497 	int err;
498 
499 	/* The previous extent is fake and we should not extend by anything
500 	 * - there's nothing to do... */
501 	if (!new_block_bytes && fake)
502 		return 0;
503 
504 	iinfo = UDF_I(inode);
505 	/* Round the last extent up to a multiple of block size */
506 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
507 		last_ext->extLength =
508 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511 		iinfo->i_lenExtents =
512 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
513 			~(sb->s_blocksize - 1);
514 	}
515 
516 	/* Can we merge with the previous extent? */
517 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
519 		add = (1 << 30) - sb->s_blocksize -
520 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 		if (add > new_block_bytes)
522 			add = new_block_bytes;
523 		new_block_bytes -= add;
524 		last_ext->extLength += add;
525 	}
526 
527 	if (fake) {
528 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
529 				   last_ext->extLength, 1);
530 		if (err < 0)
531 			goto out_err;
532 		count++;
533 	} else {
534 		struct kernel_lb_addr tmploc;
535 		uint32_t tmplen;
536 
537 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 				last_ext->extLength, 1);
539 
540 		/*
541 		 * We've rewritten the last extent. If we are going to add
542 		 * more extents, we may need to enter possible following
543 		 * empty indirect extent.
544 		 */
545 		if (new_block_bytes)
546 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
547 	}
548 
549 	/* Managed to do everything necessary? */
550 	if (!new_block_bytes)
551 		goto out;
552 
553 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
554 	last_ext->extLocation.logicalBlockNum = 0;
555 	last_ext->extLocation.partitionReferenceNum = 0;
556 	add = (1 << 30) - sb->s_blocksize;
557 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
558 
559 	/* Create enough extents to cover the whole hole */
560 	while (new_block_bytes > add) {
561 		new_block_bytes -= add;
562 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563 				   last_ext->extLength, 1);
564 		if (err)
565 			goto out_err;
566 		count++;
567 	}
568 	if (new_block_bytes) {
569 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570 			new_block_bytes;
571 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 				   last_ext->extLength, 1);
573 		if (err)
574 			goto out_err;
575 		count++;
576 	}
577 
578 out:
579 	/* last_pos should point to the last written extent... */
580 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
581 		last_pos->offset -= sizeof(struct short_ad);
582 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
583 		last_pos->offset -= sizeof(struct long_ad);
584 	else
585 		return -EIO;
586 
587 	return count;
588 out_err:
589 	/* Remove extents we've created so far */
590 	udf_clear_extent_cache(inode);
591 	udf_truncate_extents(inode);
592 	return err;
593 }
594 
595 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)596 static void udf_do_extend_final_block(struct inode *inode,
597 				      struct extent_position *last_pos,
598 				      struct kernel_long_ad *last_ext,
599 				      uint32_t new_elen)
600 {
601 	uint32_t added_bytes;
602 
603 	/*
604 	 * Extent already large enough? It may be already rounded up to block
605 	 * size...
606 	 */
607 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
608 		return;
609 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
610 	last_ext->extLength += added_bytes;
611 	UDF_I(inode)->i_lenExtents += added_bytes;
612 
613 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
614 			last_ext->extLength, 1);
615 }
616 
udf_extend_file(struct inode * inode,loff_t newsize)617 static int udf_extend_file(struct inode *inode, loff_t newsize)
618 {
619 
620 	struct extent_position epos;
621 	struct kernel_lb_addr eloc;
622 	uint32_t elen;
623 	int8_t etype;
624 	struct super_block *sb = inode->i_sb;
625 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626 	loff_t new_elen;
627 	int adsize;
628 	struct udf_inode_info *iinfo = UDF_I(inode);
629 	struct kernel_long_ad extent;
630 	int err = 0;
631 	bool within_last_ext;
632 
633 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634 		adsize = sizeof(struct short_ad);
635 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636 		adsize = sizeof(struct long_ad);
637 	else
638 		BUG();
639 
640 	/*
641 	 * When creating hole in file, just don't bother with preserving
642 	 * preallocation. It likely won't be very useful anyway.
643 	 */
644 	udf_discard_prealloc(inode);
645 
646 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 	within_last_ext = (etype != -1);
648 	/* We don't expect extents past EOF... */
649 	WARN_ON_ONCE(within_last_ext &&
650 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
651 
652 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
653 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
654 		/* File has no extents at all or has empty last
655 		 * indirect extent! Create a fake extent... */
656 		extent.extLocation.logicalBlockNum = 0;
657 		extent.extLocation.partitionReferenceNum = 0;
658 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
659 	} else {
660 		epos.offset -= adsize;
661 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
662 				      &extent.extLength, 0);
663 		extent.extLength |= etype << 30;
664 	}
665 
666 	new_elen = ((loff_t)offset << inode->i_blkbits) |
667 					(newsize & (sb->s_blocksize - 1));
668 
669 	/* File has extent covering the new size (could happen when extending
670 	 * inside a block)?
671 	 */
672 	if (within_last_ext) {
673 		/* Extending file within the last file block */
674 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
675 	} else {
676 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
677 	}
678 
679 	if (err < 0)
680 		goto out;
681 	err = 0;
682 	iinfo->i_lenExtents = newsize;
683 out:
684 	brelse(epos.bh);
685 	return err;
686 }
687 
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)688 static sector_t inode_getblk(struct inode *inode, sector_t block,
689 			     int *err, int *new)
690 {
691 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 	struct extent_position prev_epos, cur_epos, next_epos;
693 	int count = 0, startnum = 0, endnum = 0;
694 	uint32_t elen = 0, tmpelen;
695 	struct kernel_lb_addr eloc, tmpeloc;
696 	int c = 1;
697 	loff_t lbcount = 0, b_off = 0;
698 	udf_pblk_t newblocknum, newblock = 0;
699 	sector_t offset = 0;
700 	int8_t etype;
701 	struct udf_inode_info *iinfo = UDF_I(inode);
702 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 	int lastblock = 0;
704 	bool isBeyondEOF;
705 
706 	*err = 0;
707 	*new = 0;
708 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 	prev_epos.block = iinfo->i_location;
710 	prev_epos.bh = NULL;
711 	cur_epos = next_epos = prev_epos;
712 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713 
714 	/* find the extent which contains the block we are looking for.
715 	   alternate between laarr[0] and laarr[1] for locations of the
716 	   current extent, and the previous extent */
717 	do {
718 		if (prev_epos.bh != cur_epos.bh) {
719 			brelse(prev_epos.bh);
720 			get_bh(cur_epos.bh);
721 			prev_epos.bh = cur_epos.bh;
722 		}
723 		if (cur_epos.bh != next_epos.bh) {
724 			brelse(cur_epos.bh);
725 			get_bh(next_epos.bh);
726 			cur_epos.bh = next_epos.bh;
727 		}
728 
729 		lbcount += elen;
730 
731 		prev_epos.block = cur_epos.block;
732 		cur_epos.block = next_epos.block;
733 
734 		prev_epos.offset = cur_epos.offset;
735 		cur_epos.offset = next_epos.offset;
736 
737 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 		if (etype == -1)
739 			break;
740 
741 		c = !c;
742 
743 		laarr[c].extLength = (etype << 30) | elen;
744 		laarr[c].extLocation = eloc;
745 
746 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 			pgoal = eloc.logicalBlockNum +
748 				((elen + inode->i_sb->s_blocksize - 1) >>
749 				 inode->i_sb->s_blocksize_bits);
750 
751 		count++;
752 	} while (lbcount + elen <= b_off);
753 
754 	b_off -= lbcount;
755 	offset = b_off >> inode->i_sb->s_blocksize_bits;
756 	/*
757 	 * Move prev_epos and cur_epos into indirect extent if we are at
758 	 * the pointer to it
759 	 */
760 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762 
763 	/* if the extent is allocated and recorded, return the block
764 	   if the extent is not a multiple of the blocksize, round up */
765 
766 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 		if (elen & (inode->i_sb->s_blocksize - 1)) {
768 			elen = EXT_RECORDED_ALLOCATED |
769 				((elen + inode->i_sb->s_blocksize - 1) &
770 				 ~(inode->i_sb->s_blocksize - 1));
771 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 		}
773 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 		goto out_free;
775 	}
776 
777 	/* Are we beyond EOF and preallocated extent? */
778 	if (etype == -1) {
779 		int ret;
780 		loff_t hole_len;
781 
782 		isBeyondEOF = true;
783 		if (count) {
784 			if (c)
785 				laarr[0] = laarr[1];
786 			startnum = 1;
787 		} else {
788 			/* Create a fake extent when there's not one */
789 			memset(&laarr[0].extLocation, 0x00,
790 				sizeof(struct kernel_lb_addr));
791 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
792 			/* Will udf_do_extend_file() create real extent from
793 			   a fake one? */
794 			startnum = (offset > 0);
795 		}
796 		/* Create extents for the hole between EOF and offset */
797 		hole_len = (loff_t)offset << inode->i_blkbits;
798 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
799 		if (ret < 0) {
800 			*err = ret;
801 			goto out_free;
802 		}
803 		c = 0;
804 		offset = 0;
805 		count += ret;
806 		/*
807 		 * Is there any real extent? - otherwise we overwrite the fake
808 		 * one...
809 		 */
810 		if (count)
811 			c = !c;
812 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813 			inode->i_sb->s_blocksize;
814 		memset(&laarr[c].extLocation, 0x00,
815 			sizeof(struct kernel_lb_addr));
816 		count++;
817 		endnum = c + 1;
818 		lastblock = 1;
819 	} else {
820 		isBeyondEOF = false;
821 		endnum = startnum = ((count > 2) ? 2 : count);
822 
823 		/* if the current extent is in position 0,
824 		   swap it with the previous */
825 		if (!c && count != 1) {
826 			laarr[2] = laarr[0];
827 			laarr[0] = laarr[1];
828 			laarr[1] = laarr[2];
829 			c = 1;
830 		}
831 
832 		/* if the current block is located in an extent,
833 		   read the next extent */
834 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
835 		if (etype != -1) {
836 			laarr[c + 1].extLength = (etype << 30) | elen;
837 			laarr[c + 1].extLocation = eloc;
838 			count++;
839 			startnum++;
840 			endnum++;
841 		} else
842 			lastblock = 1;
843 	}
844 
845 	/* if the current extent is not recorded but allocated, get the
846 	 * block in the extent corresponding to the requested block */
847 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
848 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
849 	else { /* otherwise, allocate a new block */
850 		if (iinfo->i_next_alloc_block == block)
851 			goal = iinfo->i_next_alloc_goal;
852 
853 		if (!goal) {
854 			if (!(goal = pgoal)) /* XXX: what was intended here? */
855 				goal = iinfo->i_location.logicalBlockNum + 1;
856 		}
857 
858 		newblocknum = udf_new_block(inode->i_sb, inode,
859 				iinfo->i_location.partitionReferenceNum,
860 				goal, err);
861 		if (!newblocknum) {
862 			*err = -ENOSPC;
863 			goto out_free;
864 		}
865 		if (isBeyondEOF)
866 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
867 	}
868 
869 	/* if the extent the requsted block is located in contains multiple
870 	 * blocks, split the extent into at most three extents. blocks prior
871 	 * to requested block, requested block, and blocks after requested
872 	 * block */
873 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
874 
875 	/* We preallocate blocks only for regular files. It also makes sense
876 	 * for directories but there's a problem when to drop the
877 	 * preallocation. We might use some delayed work for that but I feel
878 	 * it's overengineering for a filesystem like UDF. */
879 	if (S_ISREG(inode->i_mode))
880 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
881 
882 	/* merge any continuous blocks in laarr */
883 	udf_merge_extents(inode, laarr, &endnum);
884 
885 	/* write back the new extents, inserting new extents if the new number
886 	 * of extents is greater than the old number, and deleting extents if
887 	 * the new number of extents is less than the old number */
888 	*err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
889 	if (*err < 0)
890 		goto out_free;
891 
892 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
893 				iinfo->i_location.partitionReferenceNum, 0);
894 	if (!newblock) {
895 		*err = -EIO;
896 		goto out_free;
897 	}
898 	*new = 1;
899 	iinfo->i_next_alloc_block = block;
900 	iinfo->i_next_alloc_goal = newblocknum;
901 	inode->i_ctime = current_time(inode);
902 
903 	if (IS_SYNC(inode))
904 		udf_sync_inode(inode);
905 	else
906 		mark_inode_dirty(inode);
907 out_free:
908 	brelse(prev_epos.bh);
909 	brelse(cur_epos.bh);
910 	brelse(next_epos.bh);
911 	return newblock;
912 }
913 
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)914 static void udf_split_extents(struct inode *inode, int *c, int offset,
915 			       udf_pblk_t newblocknum,
916 			       struct kernel_long_ad *laarr, int *endnum)
917 {
918 	unsigned long blocksize = inode->i_sb->s_blocksize;
919 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920 
921 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922 	    (laarr[*c].extLength >> 30) ==
923 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924 		int curr = *c;
925 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926 			    blocksize - 1) >> blocksize_bits;
927 		int8_t etype = (laarr[curr].extLength >> 30);
928 
929 		if (blen == 1)
930 			;
931 		else if (!offset || blen == offset + 1) {
932 			laarr[curr + 2] = laarr[curr + 1];
933 			laarr[curr + 1] = laarr[curr];
934 		} else {
935 			laarr[curr + 3] = laarr[curr + 1];
936 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937 		}
938 
939 		if (offset) {
940 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 				udf_free_blocks(inode->i_sb, inode,
942 						&laarr[curr].extLocation,
943 						0, offset);
944 				laarr[curr].extLength =
945 					EXT_NOT_RECORDED_NOT_ALLOCATED |
946 					(offset << blocksize_bits);
947 				laarr[curr].extLocation.logicalBlockNum = 0;
948 				laarr[curr].extLocation.
949 						partitionReferenceNum = 0;
950 			} else
951 				laarr[curr].extLength = (etype << 30) |
952 					(offset << blocksize_bits);
953 			curr++;
954 			(*c)++;
955 			(*endnum)++;
956 		}
957 
958 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
959 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960 			laarr[curr].extLocation.partitionReferenceNum =
961 				UDF_I(inode)->i_location.partitionReferenceNum;
962 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963 			blocksize;
964 		curr++;
965 
966 		if (blen != offset + 1) {
967 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968 				laarr[curr].extLocation.logicalBlockNum +=
969 								offset + 1;
970 			laarr[curr].extLength = (etype << 30) |
971 				((blen - (offset + 1)) << blocksize_bits);
972 			curr++;
973 			(*endnum)++;
974 		}
975 	}
976 }
977 
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)978 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979 				 struct kernel_long_ad *laarr,
980 				 int *endnum)
981 {
982 	int start, length = 0, currlength = 0, i;
983 
984 	if (*endnum >= (c + 1)) {
985 		if (!lastblock)
986 			return;
987 		else
988 			start = c;
989 	} else {
990 		if ((laarr[c + 1].extLength >> 30) ==
991 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992 			start = c + 1;
993 			length = currlength =
994 				(((laarr[c + 1].extLength &
995 					UDF_EXTENT_LENGTH_MASK) +
996 				inode->i_sb->s_blocksize - 1) >>
997 				inode->i_sb->s_blocksize_bits);
998 		} else
999 			start = c;
1000 	}
1001 
1002 	for (i = start + 1; i <= *endnum; i++) {
1003 		if (i == *endnum) {
1004 			if (lastblock)
1005 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006 		} else if ((laarr[i].extLength >> 30) ==
1007 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008 			length += (((laarr[i].extLength &
1009 						UDF_EXTENT_LENGTH_MASK) +
1010 				    inode->i_sb->s_blocksize - 1) >>
1011 				    inode->i_sb->s_blocksize_bits);
1012 		} else
1013 			break;
1014 	}
1015 
1016 	if (length) {
1017 		int next = laarr[start].extLocation.logicalBlockNum +
1018 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019 			  inode->i_sb->s_blocksize - 1) >>
1020 			  inode->i_sb->s_blocksize_bits);
1021 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022 				laarr[start].extLocation.partitionReferenceNum,
1023 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025 				currlength);
1026 		if (numalloc) 	{
1027 			if (start == (c + 1))
1028 				laarr[start].extLength +=
1029 					(numalloc <<
1030 					 inode->i_sb->s_blocksize_bits);
1031 			else {
1032 				memmove(&laarr[c + 2], &laarr[c + 1],
1033 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034 				(*endnum)++;
1035 				laarr[c + 1].extLocation.logicalBlockNum = next;
1036 				laarr[c + 1].extLocation.partitionReferenceNum =
1037 					laarr[c].extLocation.
1038 							partitionReferenceNum;
1039 				laarr[c + 1].extLength =
1040 					EXT_NOT_RECORDED_ALLOCATED |
1041 					(numalloc <<
1042 					 inode->i_sb->s_blocksize_bits);
1043 				start = c + 1;
1044 			}
1045 
1046 			for (i = start + 1; numalloc && i < *endnum; i++) {
1047 				int elen = ((laarr[i].extLength &
1048 						UDF_EXTENT_LENGTH_MASK) +
1049 					    inode->i_sb->s_blocksize - 1) >>
1050 					    inode->i_sb->s_blocksize_bits;
1051 
1052 				if (elen > numalloc) {
1053 					laarr[i].extLength -=
1054 						(numalloc <<
1055 						 inode->i_sb->s_blocksize_bits);
1056 					numalloc = 0;
1057 				} else {
1058 					numalloc -= elen;
1059 					if (*endnum > (i + 1))
1060 						memmove(&laarr[i],
1061 							&laarr[i + 1],
1062 							sizeof(struct long_ad) *
1063 							(*endnum - (i + 1)));
1064 					i--;
1065 					(*endnum)--;
1066 				}
1067 			}
1068 			UDF_I(inode)->i_lenExtents +=
1069 				numalloc << inode->i_sb->s_blocksize_bits;
1070 		}
1071 	}
1072 }
1073 
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1074 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075 			      int *endnum)
1076 {
1077 	int i;
1078 	unsigned long blocksize = inode->i_sb->s_blocksize;
1079 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080 
1081 	for (i = 0; i < (*endnum - 1); i++) {
1082 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084 
1085 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086 			(((li->extLength >> 30) ==
1087 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088 			((lip1->extLocation.logicalBlockNum -
1089 			  li->extLocation.logicalBlockNum) ==
1090 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 			blocksize - 1) >> blocksize_bits)))) {
1092 
1093 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1096 				li->extLength = lip1->extLength +
1097 					(((li->extLength &
1098 						UDF_EXTENT_LENGTH_MASK) +
1099 					 blocksize - 1) & ~(blocksize - 1));
1100 				if (*endnum > (i + 2))
1101 					memmove(&laarr[i + 1], &laarr[i + 2],
1102 						sizeof(struct long_ad) *
1103 						(*endnum - (i + 2)));
1104 				i--;
1105 				(*endnum)--;
1106 			}
1107 		} else if (((li->extLength >> 30) ==
1108 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1109 			   ((lip1->extLength >> 30) ==
1110 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1111 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1112 					((li->extLength &
1113 					  UDF_EXTENT_LENGTH_MASK) +
1114 					 blocksize - 1) >> blocksize_bits);
1115 			li->extLocation.logicalBlockNum = 0;
1116 			li->extLocation.partitionReferenceNum = 0;
1117 
1118 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1119 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1120 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1121 				lip1->extLength = (lip1->extLength -
1122 						   (li->extLength &
1123 						   UDF_EXTENT_LENGTH_MASK) +
1124 						   UDF_EXTENT_LENGTH_MASK) &
1125 						   ~(blocksize - 1);
1126 				li->extLength = (li->extLength &
1127 						 UDF_EXTENT_FLAG_MASK) +
1128 						(UDF_EXTENT_LENGTH_MASK + 1) -
1129 						blocksize;
1130 			} else {
1131 				li->extLength = lip1->extLength +
1132 					(((li->extLength &
1133 						UDF_EXTENT_LENGTH_MASK) +
1134 					  blocksize - 1) & ~(blocksize - 1));
1135 				if (*endnum > (i + 2))
1136 					memmove(&laarr[i + 1], &laarr[i + 2],
1137 						sizeof(struct long_ad) *
1138 						(*endnum - (i + 2)));
1139 				i--;
1140 				(*endnum)--;
1141 			}
1142 		} else if ((li->extLength >> 30) ==
1143 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1144 			udf_free_blocks(inode->i_sb, inode,
1145 					&li->extLocation, 0,
1146 					((li->extLength &
1147 						UDF_EXTENT_LENGTH_MASK) +
1148 					 blocksize - 1) >> blocksize_bits);
1149 			li->extLocation.logicalBlockNum = 0;
1150 			li->extLocation.partitionReferenceNum = 0;
1151 			li->extLength = (li->extLength &
1152 						UDF_EXTENT_LENGTH_MASK) |
1153 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1154 		}
1155 	}
1156 }
1157 
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1158 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1159 			      int startnum, int endnum,
1160 			      struct extent_position *epos)
1161 {
1162 	int start = 0, i;
1163 	struct kernel_lb_addr tmploc;
1164 	uint32_t tmplen;
1165 	int err;
1166 
1167 	if (startnum > endnum) {
1168 		for (i = 0; i < (startnum - endnum); i++)
1169 			udf_delete_aext(inode, *epos);
1170 	} else if (startnum < endnum) {
1171 		for (i = 0; i < (endnum - startnum); i++) {
1172 			err = udf_insert_aext(inode, *epos,
1173 					      laarr[i].extLocation,
1174 					      laarr[i].extLength);
1175 			/*
1176 			 * If we fail here, we are likely corrupting the extent
1177 			 * list and leaking blocks. At least stop early to
1178 			 * limit the damage.
1179 			 */
1180 			if (err < 0)
1181 				return err;
1182 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1183 				      &laarr[i].extLength, 1);
1184 			start++;
1185 		}
1186 	}
1187 
1188 	for (i = start; i < endnum; i++) {
1189 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1190 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1191 			       laarr[i].extLength, 1);
1192 	}
1193 	return 0;
1194 }
1195 
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1196 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1197 			      int create, int *err)
1198 {
1199 	struct buffer_head *bh = NULL;
1200 
1201 	bh = udf_getblk(inode, block, create, err);
1202 	if (!bh)
1203 		return NULL;
1204 
1205 	if (buffer_uptodate(bh))
1206 		return bh;
1207 
1208 	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 
1210 	wait_on_buffer(bh);
1211 	if (buffer_uptodate(bh))
1212 		return bh;
1213 
1214 	brelse(bh);
1215 	*err = -EIO;
1216 	return NULL;
1217 }
1218 
udf_setsize(struct inode * inode,loff_t newsize)1219 int udf_setsize(struct inode *inode, loff_t newsize)
1220 {
1221 	int err;
1222 	struct udf_inode_info *iinfo;
1223 	unsigned int bsize = i_blocksize(inode);
1224 
1225 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1226 	      S_ISLNK(inode->i_mode)))
1227 		return -EINVAL;
1228 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1229 		return -EPERM;
1230 
1231 	iinfo = UDF_I(inode);
1232 	if (newsize > inode->i_size) {
1233 		down_write(&iinfo->i_data_sem);
1234 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1235 			if (bsize <
1236 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1237 				err = udf_expand_file_adinicb(inode);
1238 				if (err)
1239 					return err;
1240 				down_write(&iinfo->i_data_sem);
1241 			} else {
1242 				iinfo->i_lenAlloc = newsize;
1243 				goto set_size;
1244 			}
1245 		}
1246 		err = udf_extend_file(inode, newsize);
1247 		if (err) {
1248 			up_write(&iinfo->i_data_sem);
1249 			return err;
1250 		}
1251 set_size:
1252 		up_write(&iinfo->i_data_sem);
1253 		truncate_setsize(inode, newsize);
1254 	} else {
1255 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1256 			down_write(&iinfo->i_data_sem);
1257 			udf_clear_extent_cache(inode);
1258 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1259 			       0x00, bsize - newsize -
1260 			       udf_file_entry_alloc_offset(inode));
1261 			iinfo->i_lenAlloc = newsize;
1262 			truncate_setsize(inode, newsize);
1263 			up_write(&iinfo->i_data_sem);
1264 			goto update_time;
1265 		}
1266 		err = block_truncate_page(inode->i_mapping, newsize,
1267 					  udf_get_block);
1268 		if (err)
1269 			return err;
1270 		truncate_setsize(inode, newsize);
1271 		down_write(&iinfo->i_data_sem);
1272 		udf_clear_extent_cache(inode);
1273 		err = udf_truncate_extents(inode);
1274 		up_write(&iinfo->i_data_sem);
1275 		if (err)
1276 			return err;
1277 	}
1278 update_time:
1279 	inode->i_mtime = inode->i_ctime = current_time(inode);
1280 	if (IS_SYNC(inode))
1281 		udf_sync_inode(inode);
1282 	else
1283 		mark_inode_dirty(inode);
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1289  * arbitrary - just that we hopefully don't limit any real use of rewritten
1290  * inode on write-once media but avoid looping for too long on corrupted media.
1291  */
1292 #define UDF_MAX_ICB_NESTING 1024
1293 
udf_read_inode(struct inode * inode,bool hidden_inode)1294 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1295 {
1296 	struct buffer_head *bh = NULL;
1297 	struct fileEntry *fe;
1298 	struct extendedFileEntry *efe;
1299 	uint16_t ident;
1300 	struct udf_inode_info *iinfo = UDF_I(inode);
1301 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1302 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1303 	unsigned int link_count;
1304 	unsigned int indirections = 0;
1305 	int bs = inode->i_sb->s_blocksize;
1306 	int ret = -EIO;
1307 	uint32_t uid, gid;
1308 
1309 reread:
1310 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1311 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1312 			  iloc->partitionReferenceNum, sbi->s_partitions);
1313 		return -EIO;
1314 	}
1315 
1316 	if (iloc->logicalBlockNum >=
1317 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1318 		udf_debug("block=%u, partition=%u out of range\n",
1319 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1320 		return -EIO;
1321 	}
1322 
1323 	/*
1324 	 * Set defaults, but the inode is still incomplete!
1325 	 * Note: get_new_inode() sets the following on a new inode:
1326 	 *      i_sb = sb
1327 	 *      i_no = ino
1328 	 *      i_flags = sb->s_flags
1329 	 *      i_state = 0
1330 	 * clean_inode(): zero fills and sets
1331 	 *      i_count = 1
1332 	 *      i_nlink = 1
1333 	 *      i_op = NULL;
1334 	 */
1335 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1336 	if (!bh) {
1337 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1338 		return -EIO;
1339 	}
1340 
1341 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1342 	    ident != TAG_IDENT_USE) {
1343 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1344 			inode->i_ino, ident);
1345 		goto out;
1346 	}
1347 
1348 	fe = (struct fileEntry *)bh->b_data;
1349 	efe = (struct extendedFileEntry *)bh->b_data;
1350 
1351 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1352 		struct buffer_head *ibh;
1353 
1354 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1355 		if (ident == TAG_IDENT_IE && ibh) {
1356 			struct kernel_lb_addr loc;
1357 			struct indirectEntry *ie;
1358 
1359 			ie = (struct indirectEntry *)ibh->b_data;
1360 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1361 
1362 			if (ie->indirectICB.extLength) {
1363 				brelse(ibh);
1364 				memcpy(&iinfo->i_location, &loc,
1365 				       sizeof(struct kernel_lb_addr));
1366 				if (++indirections > UDF_MAX_ICB_NESTING) {
1367 					udf_err(inode->i_sb,
1368 						"too many ICBs in ICB hierarchy"
1369 						" (max %d supported)\n",
1370 						UDF_MAX_ICB_NESTING);
1371 					goto out;
1372 				}
1373 				brelse(bh);
1374 				goto reread;
1375 			}
1376 		}
1377 		brelse(ibh);
1378 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1379 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1380 			le16_to_cpu(fe->icbTag.strategyType));
1381 		goto out;
1382 	}
1383 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1384 		iinfo->i_strat4096 = 0;
1385 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1386 		iinfo->i_strat4096 = 1;
1387 
1388 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1389 							ICBTAG_FLAG_AD_MASK;
1390 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1391 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1392 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1393 		ret = -EIO;
1394 		goto out;
1395 	}
1396 	iinfo->i_hidden = hidden_inode;
1397 	iinfo->i_unique = 0;
1398 	iinfo->i_lenEAttr = 0;
1399 	iinfo->i_lenExtents = 0;
1400 	iinfo->i_lenAlloc = 0;
1401 	iinfo->i_next_alloc_block = 0;
1402 	iinfo->i_next_alloc_goal = 0;
1403 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1404 		iinfo->i_efe = 1;
1405 		iinfo->i_use = 0;
1406 		ret = udf_alloc_i_data(inode, bs -
1407 					sizeof(struct extendedFileEntry));
1408 		if (ret)
1409 			goto out;
1410 		memcpy(iinfo->i_data,
1411 		       bh->b_data + sizeof(struct extendedFileEntry),
1412 		       bs - sizeof(struct extendedFileEntry));
1413 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1414 		iinfo->i_efe = 0;
1415 		iinfo->i_use = 0;
1416 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1417 		if (ret)
1418 			goto out;
1419 		memcpy(iinfo->i_data,
1420 		       bh->b_data + sizeof(struct fileEntry),
1421 		       bs - sizeof(struct fileEntry));
1422 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1423 		iinfo->i_efe = 0;
1424 		iinfo->i_use = 1;
1425 		iinfo->i_lenAlloc = le32_to_cpu(
1426 				((struct unallocSpaceEntry *)bh->b_data)->
1427 				 lengthAllocDescs);
1428 		ret = udf_alloc_i_data(inode, bs -
1429 					sizeof(struct unallocSpaceEntry));
1430 		if (ret)
1431 			goto out;
1432 		memcpy(iinfo->i_data,
1433 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1434 		       bs - sizeof(struct unallocSpaceEntry));
1435 		return 0;
1436 	}
1437 
1438 	ret = -EIO;
1439 	read_lock(&sbi->s_cred_lock);
1440 	uid = le32_to_cpu(fe->uid);
1441 	if (uid == UDF_INVALID_ID ||
1442 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1443 		inode->i_uid = sbi->s_uid;
1444 	else
1445 		i_uid_write(inode, uid);
1446 
1447 	gid = le32_to_cpu(fe->gid);
1448 	if (gid == UDF_INVALID_ID ||
1449 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1450 		inode->i_gid = sbi->s_gid;
1451 	else
1452 		i_gid_write(inode, gid);
1453 
1454 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1455 			sbi->s_fmode != UDF_INVALID_MODE)
1456 		inode->i_mode = sbi->s_fmode;
1457 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1458 			sbi->s_dmode != UDF_INVALID_MODE)
1459 		inode->i_mode = sbi->s_dmode;
1460 	else
1461 		inode->i_mode = udf_convert_permissions(fe);
1462 	inode->i_mode &= ~sbi->s_umask;
1463 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1464 
1465 	read_unlock(&sbi->s_cred_lock);
1466 
1467 	link_count = le16_to_cpu(fe->fileLinkCount);
1468 	if (!link_count) {
1469 		if (!hidden_inode) {
1470 			ret = -ESTALE;
1471 			goto out;
1472 		}
1473 		link_count = 1;
1474 	}
1475 	set_nlink(inode, link_count);
1476 
1477 	inode->i_size = le64_to_cpu(fe->informationLength);
1478 	iinfo->i_lenExtents = inode->i_size;
1479 
1480 	if (iinfo->i_efe == 0) {
1481 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1482 			(inode->i_sb->s_blocksize_bits - 9);
1483 
1484 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1485 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1486 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1487 
1488 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1489 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1490 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1491 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1492 		iinfo->i_streamdir = 0;
1493 		iinfo->i_lenStreams = 0;
1494 	} else {
1495 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1496 		    (inode->i_sb->s_blocksize_bits - 9);
1497 
1498 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1499 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1500 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1501 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1502 
1503 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1504 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1505 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1506 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1507 
1508 		/* Named streams */
1509 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1510 		iinfo->i_locStreamdir =
1511 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1512 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1513 		if (iinfo->i_lenStreams >= inode->i_size)
1514 			iinfo->i_lenStreams -= inode->i_size;
1515 		else
1516 			iinfo->i_lenStreams = 0;
1517 	}
1518 	inode->i_generation = iinfo->i_unique;
1519 
1520 	/*
1521 	 * Sanity check length of allocation descriptors and extended attrs to
1522 	 * avoid integer overflows
1523 	 */
1524 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1525 		goto out;
1526 	/* Now do exact checks */
1527 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1528 		goto out;
1529 	/* Sanity checks for files in ICB so that we don't get confused later */
1530 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1531 		/*
1532 		 * For file in ICB data is stored in allocation descriptor
1533 		 * so sizes should match
1534 		 */
1535 		if (iinfo->i_lenAlloc != inode->i_size)
1536 			goto out;
1537 		/* File in ICB has to fit in there... */
1538 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1539 			goto out;
1540 	}
1541 
1542 	switch (fe->icbTag.fileType) {
1543 	case ICBTAG_FILE_TYPE_DIRECTORY:
1544 		inode->i_op = &udf_dir_inode_operations;
1545 		inode->i_fop = &udf_dir_operations;
1546 		inode->i_mode |= S_IFDIR;
1547 		inc_nlink(inode);
1548 		break;
1549 	case ICBTAG_FILE_TYPE_REALTIME:
1550 	case ICBTAG_FILE_TYPE_REGULAR:
1551 	case ICBTAG_FILE_TYPE_UNDEF:
1552 	case ICBTAG_FILE_TYPE_VAT20:
1553 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1554 			inode->i_data.a_ops = &udf_adinicb_aops;
1555 		else
1556 			inode->i_data.a_ops = &udf_aops;
1557 		inode->i_op = &udf_file_inode_operations;
1558 		inode->i_fop = &udf_file_operations;
1559 		inode->i_mode |= S_IFREG;
1560 		break;
1561 	case ICBTAG_FILE_TYPE_BLOCK:
1562 		inode->i_mode |= S_IFBLK;
1563 		break;
1564 	case ICBTAG_FILE_TYPE_CHAR:
1565 		inode->i_mode |= S_IFCHR;
1566 		break;
1567 	case ICBTAG_FILE_TYPE_FIFO:
1568 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1569 		break;
1570 	case ICBTAG_FILE_TYPE_SOCKET:
1571 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1572 		break;
1573 	case ICBTAG_FILE_TYPE_SYMLINK:
1574 		inode->i_data.a_ops = &udf_symlink_aops;
1575 		inode->i_op = &udf_symlink_inode_operations;
1576 		inode_nohighmem(inode);
1577 		inode->i_mode = S_IFLNK | 0777;
1578 		break;
1579 	case ICBTAG_FILE_TYPE_MAIN:
1580 		udf_debug("METADATA FILE-----\n");
1581 		break;
1582 	case ICBTAG_FILE_TYPE_MIRROR:
1583 		udf_debug("METADATA MIRROR FILE-----\n");
1584 		break;
1585 	case ICBTAG_FILE_TYPE_BITMAP:
1586 		udf_debug("METADATA BITMAP FILE-----\n");
1587 		break;
1588 	default:
1589 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1590 			inode->i_ino, fe->icbTag.fileType);
1591 		goto out;
1592 	}
1593 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1594 		struct deviceSpec *dsea =
1595 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1596 		if (dsea) {
1597 			init_special_inode(inode, inode->i_mode,
1598 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1599 				      le32_to_cpu(dsea->minorDeviceIdent)));
1600 			/* Developer ID ??? */
1601 		} else
1602 			goto out;
1603 	}
1604 	ret = 0;
1605 out:
1606 	brelse(bh);
1607 	return ret;
1608 }
1609 
udf_alloc_i_data(struct inode * inode,size_t size)1610 static int udf_alloc_i_data(struct inode *inode, size_t size)
1611 {
1612 	struct udf_inode_info *iinfo = UDF_I(inode);
1613 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1614 	if (!iinfo->i_data)
1615 		return -ENOMEM;
1616 	return 0;
1617 }
1618 
udf_convert_permissions(struct fileEntry * fe)1619 static umode_t udf_convert_permissions(struct fileEntry *fe)
1620 {
1621 	umode_t mode;
1622 	uint32_t permissions;
1623 	uint32_t flags;
1624 
1625 	permissions = le32_to_cpu(fe->permissions);
1626 	flags = le16_to_cpu(fe->icbTag.flags);
1627 
1628 	mode =	((permissions) & 0007) |
1629 		((permissions >> 2) & 0070) |
1630 		((permissions >> 4) & 0700) |
1631 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1632 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1633 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1634 
1635 	return mode;
1636 }
1637 
udf_update_extra_perms(struct inode * inode,umode_t mode)1638 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1639 {
1640 	struct udf_inode_info *iinfo = UDF_I(inode);
1641 
1642 	/*
1643 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1644 	 * In Unix, delete permission tracks write
1645 	 */
1646 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1647 	if (mode & 0200)
1648 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1649 	if (mode & 0020)
1650 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1651 	if (mode & 0002)
1652 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1653 }
1654 
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1655 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1656 {
1657 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1658 }
1659 
udf_sync_inode(struct inode * inode)1660 static int udf_sync_inode(struct inode *inode)
1661 {
1662 	return udf_update_inode(inode, 1);
1663 }
1664 
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1665 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1666 {
1667 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1668 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1669 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1670 		iinfo->i_crtime = time;
1671 }
1672 
udf_update_inode(struct inode * inode,int do_sync)1673 static int udf_update_inode(struct inode *inode, int do_sync)
1674 {
1675 	struct buffer_head *bh = NULL;
1676 	struct fileEntry *fe;
1677 	struct extendedFileEntry *efe;
1678 	uint64_t lb_recorded;
1679 	uint32_t udfperms;
1680 	uint16_t icbflags;
1681 	uint16_t crclen;
1682 	int err = 0;
1683 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1684 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1685 	struct udf_inode_info *iinfo = UDF_I(inode);
1686 
1687 	bh = udf_tgetblk(inode->i_sb,
1688 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1689 	if (!bh) {
1690 		udf_debug("getblk failure\n");
1691 		return -EIO;
1692 	}
1693 
1694 	lock_buffer(bh);
1695 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1696 	fe = (struct fileEntry *)bh->b_data;
1697 	efe = (struct extendedFileEntry *)bh->b_data;
1698 
1699 	if (iinfo->i_use) {
1700 		struct unallocSpaceEntry *use =
1701 			(struct unallocSpaceEntry *)bh->b_data;
1702 
1703 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1704 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1705 		       iinfo->i_data, inode->i_sb->s_blocksize -
1706 					sizeof(struct unallocSpaceEntry));
1707 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1708 		crclen = sizeof(struct unallocSpaceEntry);
1709 
1710 		goto finish;
1711 	}
1712 
1713 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1714 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1715 	else
1716 		fe->uid = cpu_to_le32(i_uid_read(inode));
1717 
1718 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1719 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1720 	else
1721 		fe->gid = cpu_to_le32(i_gid_read(inode));
1722 
1723 	udfperms = ((inode->i_mode & 0007)) |
1724 		   ((inode->i_mode & 0070) << 2) |
1725 		   ((inode->i_mode & 0700) << 4);
1726 
1727 	udfperms |= iinfo->i_extraPerms;
1728 	fe->permissions = cpu_to_le32(udfperms);
1729 
1730 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1731 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1732 	else {
1733 		if (iinfo->i_hidden)
1734 			fe->fileLinkCount = cpu_to_le16(0);
1735 		else
1736 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1737 	}
1738 
1739 	fe->informationLength = cpu_to_le64(inode->i_size);
1740 
1741 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742 		struct regid *eid;
1743 		struct deviceSpec *dsea =
1744 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745 		if (!dsea) {
1746 			dsea = (struct deviceSpec *)
1747 				udf_add_extendedattr(inode,
1748 						     sizeof(struct deviceSpec) +
1749 						     sizeof(struct regid), 12, 0x3);
1750 			dsea->attrType = cpu_to_le32(12);
1751 			dsea->attrSubtype = 1;
1752 			dsea->attrLength = cpu_to_le32(
1753 						sizeof(struct deviceSpec) +
1754 						sizeof(struct regid));
1755 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756 		}
1757 		eid = (struct regid *)dsea->impUse;
1758 		memset(eid, 0, sizeof(*eid));
1759 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764 	}
1765 
1766 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767 		lb_recorded = 0; /* No extents => no blocks! */
1768 	else
1769 		lb_recorded =
1770 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771 			(blocksize_bits - 9);
1772 
1773 	if (iinfo->i_efe == 0) {
1774 		memcpy(bh->b_data + sizeof(struct fileEntry),
1775 		       iinfo->i_data,
1776 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778 
1779 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791 		crclen = sizeof(struct fileEntry);
1792 	} else {
1793 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794 		       iinfo->i_data,
1795 		       inode->i_sb->s_blocksize -
1796 					sizeof(struct extendedFileEntry));
1797 		efe->objectSize =
1798 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800 
1801 		if (iinfo->i_streamdir) {
1802 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803 
1804 			icb_lad->extLocation =
1805 				cpu_to_lelb(iinfo->i_locStreamdir);
1806 			icb_lad->extLength =
1807 				cpu_to_le32(inode->i_sb->s_blocksize);
1808 		}
1809 
1810 		udf_adjust_time(iinfo, inode->i_atime);
1811 		udf_adjust_time(iinfo, inode->i_mtime);
1812 		udf_adjust_time(iinfo, inode->i_ctime);
1813 
1814 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818 
1819 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828 		crclen = sizeof(struct extendedFileEntry);
1829 	}
1830 
1831 finish:
1832 	if (iinfo->i_strat4096) {
1833 		fe->icbTag.strategyType = cpu_to_le16(4096);
1834 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835 		fe->icbTag.numEntries = cpu_to_le16(2);
1836 	} else {
1837 		fe->icbTag.strategyType = cpu_to_le16(4);
1838 		fe->icbTag.numEntries = cpu_to_le16(1);
1839 	}
1840 
1841 	if (iinfo->i_use)
1842 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843 	else if (S_ISDIR(inode->i_mode))
1844 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845 	else if (S_ISREG(inode->i_mode))
1846 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847 	else if (S_ISLNK(inode->i_mode))
1848 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849 	else if (S_ISBLK(inode->i_mode))
1850 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851 	else if (S_ISCHR(inode->i_mode))
1852 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853 	else if (S_ISFIFO(inode->i_mode))
1854 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855 	else if (S_ISSOCK(inode->i_mode))
1856 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857 
1858 	icbflags =	iinfo->i_alloc_type |
1859 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862 			(le16_to_cpu(fe->icbTag.flags) &
1863 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865 
1866 	fe->icbTag.flags = cpu_to_le16(icbflags);
1867 	if (sbi->s_udfrev >= 0x0200)
1868 		fe->descTag.descVersion = cpu_to_le16(3);
1869 	else
1870 		fe->descTag.descVersion = cpu_to_le16(2);
1871 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872 	fe->descTag.tagLocation = cpu_to_le32(
1873 					iinfo->i_location.logicalBlockNum);
1874 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877 						  crclen));
1878 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879 
1880 	set_buffer_uptodate(bh);
1881 	unlock_buffer(bh);
1882 
1883 	/* write the data blocks */
1884 	mark_buffer_dirty(bh);
1885 	if (do_sync) {
1886 		sync_dirty_buffer(bh);
1887 		if (buffer_write_io_error(bh)) {
1888 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889 				 inode->i_ino);
1890 			err = -EIO;
1891 		}
1892 	}
1893 	brelse(bh);
1894 
1895 	return err;
1896 }
1897 
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1898 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899 			 bool hidden_inode)
1900 {
1901 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902 	struct inode *inode = iget_locked(sb, block);
1903 	int err;
1904 
1905 	if (!inode)
1906 		return ERR_PTR(-ENOMEM);
1907 
1908 	if (!(inode->i_state & I_NEW)) {
1909 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1910 			iput(inode);
1911 			return ERR_PTR(-EFSCORRUPTED);
1912 		}
1913 		return inode;
1914 	}
1915 
1916 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 	err = udf_read_inode(inode, hidden_inode);
1918 	if (err < 0) {
1919 		iget_failed(inode);
1920 		return ERR_PTR(err);
1921 	}
1922 	unlock_new_inode(inode);
1923 
1924 	return inode;
1925 }
1926 
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1927 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 			    struct extent_position *epos)
1929 {
1930 	struct super_block *sb = inode->i_sb;
1931 	struct buffer_head *bh;
1932 	struct allocExtDesc *aed;
1933 	struct extent_position nepos;
1934 	struct kernel_lb_addr neloc;
1935 	int ver, adsize;
1936 
1937 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 		adsize = sizeof(struct short_ad);
1939 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 		adsize = sizeof(struct long_ad);
1941 	else
1942 		return -EIO;
1943 
1944 	neloc.logicalBlockNum = block;
1945 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946 
1947 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 	if (!bh)
1949 		return -EIO;
1950 	lock_buffer(bh);
1951 	memset(bh->b_data, 0x00, sb->s_blocksize);
1952 	set_buffer_uptodate(bh);
1953 	unlock_buffer(bh);
1954 	mark_buffer_dirty_inode(bh, inode);
1955 
1956 	aed = (struct allocExtDesc *)(bh->b_data);
1957 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 		aed->previousAllocExtLocation =
1959 				cpu_to_le32(epos->block.logicalBlockNum);
1960 	}
1961 	aed->lengthAllocDescs = cpu_to_le32(0);
1962 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 		ver = 3;
1964 	else
1965 		ver = 2;
1966 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 		    sizeof(struct tag));
1968 
1969 	nepos.block = neloc;
1970 	nepos.offset = sizeof(struct allocExtDesc);
1971 	nepos.bh = bh;
1972 
1973 	/*
1974 	 * Do we have to copy current last extent to make space for indirect
1975 	 * one?
1976 	 */
1977 	if (epos->offset + adsize > sb->s_blocksize) {
1978 		struct kernel_lb_addr cp_loc;
1979 		uint32_t cp_len;
1980 		int cp_type;
1981 
1982 		epos->offset -= adsize;
1983 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 		cp_len |= ((uint32_t)cp_type) << 30;
1985 
1986 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 		udf_write_aext(inode, epos, &nepos.block,
1988 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 	} else {
1990 		__udf_add_aext(inode, epos, &nepos.block,
1991 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 	}
1993 
1994 	brelse(epos->bh);
1995 	*epos = nepos;
1996 
1997 	return 0;
1998 }
1999 
2000 /*
2001  * Append extent at the given position - should be the first free one in inode
2002  * / indirect extent. This function assumes there is enough space in the inode
2003  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004  */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2005 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008 	struct udf_inode_info *iinfo = UDF_I(inode);
2009 	struct allocExtDesc *aed;
2010 	int adsize;
2011 
2012 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 		adsize = sizeof(struct short_ad);
2014 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 		adsize = sizeof(struct long_ad);
2016 	else
2017 		return -EIO;
2018 
2019 	if (!epos->bh) {
2020 		WARN_ON(iinfo->i_lenAlloc !=
2021 			epos->offset - udf_file_entry_alloc_offset(inode));
2022 	} else {
2023 		aed = (struct allocExtDesc *)epos->bh->b_data;
2024 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 			epos->offset - sizeof(struct allocExtDesc));
2026 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 	}
2028 
2029 	udf_write_aext(inode, epos, eloc, elen, inc);
2030 
2031 	if (!epos->bh) {
2032 		iinfo->i_lenAlloc += adsize;
2033 		mark_inode_dirty(inode);
2034 	} else {
2035 		aed = (struct allocExtDesc *)epos->bh->b_data;
2036 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 			udf_update_tag(epos->bh->b_data,
2040 					epos->offset + (inc ? 0 : adsize));
2041 		else
2042 			udf_update_tag(epos->bh->b_data,
2043 					sizeof(struct allocExtDesc));
2044 		mark_buffer_dirty_inode(epos->bh, inode);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 /*
2051  * Append extent at given position - should be the first free one in inode
2052  * / indirect extent. Takes care of allocating and linking indirect blocks.
2053  */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2054 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056 {
2057 	int adsize;
2058 	struct super_block *sb = inode->i_sb;
2059 
2060 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 		adsize = sizeof(struct short_ad);
2062 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 		adsize = sizeof(struct long_ad);
2064 	else
2065 		return -EIO;
2066 
2067 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 		int err;
2069 		udf_pblk_t new_block;
2070 
2071 		new_block = udf_new_block(sb, NULL,
2072 					  epos->block.partitionReferenceNum,
2073 					  epos->block.logicalBlockNum, &err);
2074 		if (!new_block)
2075 			return -ENOSPC;
2076 
2077 		err = udf_setup_indirect_aext(inode, new_block, epos);
2078 		if (err)
2079 			return err;
2080 	}
2081 
2082 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083 }
2084 
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2085 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087 {
2088 	int adsize;
2089 	uint8_t *ptr;
2090 	struct short_ad *sad;
2091 	struct long_ad *lad;
2092 	struct udf_inode_info *iinfo = UDF_I(inode);
2093 
2094 	if (!epos->bh)
2095 		ptr = iinfo->i_data + epos->offset -
2096 			udf_file_entry_alloc_offset(inode) +
2097 			iinfo->i_lenEAttr;
2098 	else
2099 		ptr = epos->bh->b_data + epos->offset;
2100 
2101 	switch (iinfo->i_alloc_type) {
2102 	case ICBTAG_FLAG_AD_SHORT:
2103 		sad = (struct short_ad *)ptr;
2104 		sad->extLength = cpu_to_le32(elen);
2105 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 		adsize = sizeof(struct short_ad);
2107 		break;
2108 	case ICBTAG_FLAG_AD_LONG:
2109 		lad = (struct long_ad *)ptr;
2110 		lad->extLength = cpu_to_le32(elen);
2111 		lad->extLocation = cpu_to_lelb(*eloc);
2112 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 		adsize = sizeof(struct long_ad);
2114 		break;
2115 	default:
2116 		return;
2117 	}
2118 
2119 	if (epos->bh) {
2120 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 			struct allocExtDesc *aed =
2123 				(struct allocExtDesc *)epos->bh->b_data;
2124 			udf_update_tag(epos->bh->b_data,
2125 				       le32_to_cpu(aed->lengthAllocDescs) +
2126 				       sizeof(struct allocExtDesc));
2127 		}
2128 		mark_buffer_dirty_inode(epos->bh, inode);
2129 	} else {
2130 		mark_inode_dirty(inode);
2131 	}
2132 
2133 	if (inc)
2134 		epos->offset += adsize;
2135 }
2136 
2137 /*
2138  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139  * someone does some weird stuff.
2140  */
2141 #define UDF_MAX_INDIR_EXTS 16
2142 
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2143 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145 {
2146 	int8_t etype;
2147 	unsigned int indirections = 0;
2148 
2149 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 		udf_pblk_t block;
2152 
2153 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 			udf_err(inode->i_sb,
2155 				"too many indirect extents in inode %lu\n",
2156 				inode->i_ino);
2157 			return -1;
2158 		}
2159 
2160 		epos->block = *eloc;
2161 		epos->offset = sizeof(struct allocExtDesc);
2162 		brelse(epos->bh);
2163 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 		epos->bh = udf_tread(inode->i_sb, block);
2165 		if (!epos->bh) {
2166 			udf_debug("reading block %u failed!\n", block);
2167 			return -1;
2168 		}
2169 	}
2170 
2171 	return etype;
2172 }
2173 
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2174 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176 {
2177 	int alen;
2178 	int8_t etype;
2179 	uint8_t *ptr;
2180 	struct short_ad *sad;
2181 	struct long_ad *lad;
2182 	struct udf_inode_info *iinfo = UDF_I(inode);
2183 
2184 	if (!epos->bh) {
2185 		if (!epos->offset)
2186 			epos->offset = udf_file_entry_alloc_offset(inode);
2187 		ptr = iinfo->i_data + epos->offset -
2188 			udf_file_entry_alloc_offset(inode) +
2189 			iinfo->i_lenEAttr;
2190 		alen = udf_file_entry_alloc_offset(inode) +
2191 							iinfo->i_lenAlloc;
2192 	} else {
2193 		if (!epos->offset)
2194 			epos->offset = sizeof(struct allocExtDesc);
2195 		ptr = epos->bh->b_data + epos->offset;
2196 		alen = sizeof(struct allocExtDesc) +
2197 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 							lengthAllocDescs);
2199 	}
2200 
2201 	switch (iinfo->i_alloc_type) {
2202 	case ICBTAG_FLAG_AD_SHORT:
2203 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 		if (!sad)
2205 			return -1;
2206 		etype = le32_to_cpu(sad->extLength) >> 30;
2207 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 		eloc->partitionReferenceNum =
2209 				iinfo->i_location.partitionReferenceNum;
2210 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 		break;
2212 	case ICBTAG_FLAG_AD_LONG:
2213 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 		if (!lad)
2215 			return -1;
2216 		etype = le32_to_cpu(lad->extLength) >> 30;
2217 		*eloc = lelb_to_cpu(lad->extLocation);
2218 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 		break;
2220 	default:
2221 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 		return -1;
2223 	}
2224 
2225 	return etype;
2226 }
2227 
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2228 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 			   struct kernel_lb_addr neloc, uint32_t nelen)
2230 {
2231 	struct kernel_lb_addr oeloc;
2232 	uint32_t oelen;
2233 	int8_t etype;
2234 	int err;
2235 
2236 	if (epos.bh)
2237 		get_bh(epos.bh);
2238 
2239 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2240 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2241 		neloc = oeloc;
2242 		nelen = (etype << 30) | oelen;
2243 	}
2244 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2245 	brelse(epos.bh);
2246 
2247 	return err;
2248 }
2249 
udf_delete_aext(struct inode * inode,struct extent_position epos)2250 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2251 {
2252 	struct extent_position oepos;
2253 	int adsize;
2254 	int8_t etype;
2255 	struct allocExtDesc *aed;
2256 	struct udf_inode_info *iinfo;
2257 	struct kernel_lb_addr eloc;
2258 	uint32_t elen;
2259 
2260 	if (epos.bh) {
2261 		get_bh(epos.bh);
2262 		get_bh(epos.bh);
2263 	}
2264 
2265 	iinfo = UDF_I(inode);
2266 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2267 		adsize = sizeof(struct short_ad);
2268 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2269 		adsize = sizeof(struct long_ad);
2270 	else
2271 		adsize = 0;
2272 
2273 	oepos = epos;
2274 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2275 		return -1;
2276 
2277 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2278 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2279 		if (oepos.bh != epos.bh) {
2280 			oepos.block = epos.block;
2281 			brelse(oepos.bh);
2282 			get_bh(epos.bh);
2283 			oepos.bh = epos.bh;
2284 			oepos.offset = epos.offset - adsize;
2285 		}
2286 	}
2287 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2288 	elen = 0;
2289 
2290 	if (epos.bh != oepos.bh) {
2291 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2292 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2294 		if (!oepos.bh) {
2295 			iinfo->i_lenAlloc -= (adsize * 2);
2296 			mark_inode_dirty(inode);
2297 		} else {
2298 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2299 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2300 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2301 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2302 				udf_update_tag(oepos.bh->b_data,
2303 						oepos.offset - (2 * adsize));
2304 			else
2305 				udf_update_tag(oepos.bh->b_data,
2306 						sizeof(struct allocExtDesc));
2307 			mark_buffer_dirty_inode(oepos.bh, inode);
2308 		}
2309 	} else {
2310 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2311 		if (!oepos.bh) {
2312 			iinfo->i_lenAlloc -= adsize;
2313 			mark_inode_dirty(inode);
2314 		} else {
2315 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2316 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2317 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2318 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2319 				udf_update_tag(oepos.bh->b_data,
2320 						epos.offset - adsize);
2321 			else
2322 				udf_update_tag(oepos.bh->b_data,
2323 						sizeof(struct allocExtDesc));
2324 			mark_buffer_dirty_inode(oepos.bh, inode);
2325 		}
2326 	}
2327 
2328 	brelse(epos.bh);
2329 	brelse(oepos.bh);
2330 
2331 	return (elen >> 30);
2332 }
2333 
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2334 int8_t inode_bmap(struct inode *inode, sector_t block,
2335 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2336 		  uint32_t *elen, sector_t *offset)
2337 {
2338 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2339 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2340 	int8_t etype;
2341 	struct udf_inode_info *iinfo;
2342 
2343 	iinfo = UDF_I(inode);
2344 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2345 		pos->offset = 0;
2346 		pos->block = iinfo->i_location;
2347 		pos->bh = NULL;
2348 	}
2349 	*elen = 0;
2350 	do {
2351 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2352 		if (etype == -1) {
2353 			*offset = (bcount - lbcount) >> blocksize_bits;
2354 			iinfo->i_lenExtents = lbcount;
2355 			return -1;
2356 		}
2357 		lbcount += *elen;
2358 	} while (lbcount <= bcount);
2359 	/* update extent cache */
2360 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2361 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2362 
2363 	return etype;
2364 }
2365 
udf_block_map(struct inode * inode,sector_t block)2366 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2367 {
2368 	struct kernel_lb_addr eloc;
2369 	uint32_t elen;
2370 	sector_t offset;
2371 	struct extent_position epos = {};
2372 	udf_pblk_t ret;
2373 
2374 	down_read(&UDF_I(inode)->i_data_sem);
2375 
2376 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2377 						(EXT_RECORDED_ALLOCATED >> 30))
2378 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2379 	else
2380 		ret = 0;
2381 
2382 	up_read(&UDF_I(inode)->i_data_sem);
2383 	brelse(epos.bh);
2384 
2385 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2386 		return udf_fixed_to_variable(ret);
2387 	else
2388 		return ret;
2389 }
2390