• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include "ufshcd.h"
20 #include "ufshcd-add-info.h"
21 #include "ufs_quirks.h"
22 #include "unipro.h"
23 #include "ufs-sysfs.h"
24 #include "ufs-debugfs.h"
25 #include "ufs_bsg.h"
26 #include "ufshcd-crypto.h"
27 #include "ufshpb.h"
28 #include <asm/unaligned.h>
29 #include <linux/blkdev.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/ufs.h>
33 
34 #undef CREATE_TRACE_POINTS
35 #include <trace/hooks/ufshcd.h>
36 
37 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
38 				 UTP_TASK_REQ_COMPL |\
39 				 UFSHCD_ERROR_MASK)
40 /* UIC command timeout, unit: ms */
41 #define UIC_CMD_TIMEOUT	5000
42 
43 /* NOP OUT retries waiting for NOP IN response */
44 #define NOP_OUT_RETRIES    10
45 /* Timeout after 50 msecs if NOP OUT hangs without response */
46 #define NOP_OUT_TIMEOUT    50 /* msecs */
47 
48 /* Query request retries */
49 #define QUERY_REQ_RETRIES 3
50 /* Query request timeout */
51 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
52 
53 /* Task management command timeout */
54 #define TM_CMD_TIMEOUT	100 /* msecs */
55 
56 /* maximum number of retries for a general UIC command  */
57 #define UFS_UIC_COMMAND_RETRIES 3
58 
59 /* maximum number of link-startup retries */
60 #define DME_LINKSTARTUP_RETRIES 3
61 
62 /* Maximum retries for Hibern8 enter */
63 #define UIC_HIBERN8_ENTER_RETRIES 3
64 
65 /* maximum number of reset retries before giving up */
66 #define MAX_HOST_RESET_RETRIES 5
67 
68 /* Expose the flag value from utp_upiu_query.value */
69 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
70 
71 /* Interrupt aggregation default timeout, unit: 40us */
72 #define INT_AGGR_DEF_TO	0x02
73 
74 /* default delay of autosuspend: 2000 ms */
75 #define RPM_AUTOSUSPEND_DELAY_MS 2000
76 
77 /* Default delay of RPM device flush delayed work */
78 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
79 
80 /* Default value of wait time before gating device ref clock */
81 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
82 
83 /* Polling time to wait for fDeviceInit */
84 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
85 
86 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
87 	({                                                              \
88 		int _ret;                                               \
89 		if (_on)                                                \
90 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
91 		else                                                    \
92 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
93 		_ret;                                                   \
94 	})
95 
96 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
97 	size_t __len = (len);                                            \
98 	print_hex_dump(KERN_ERR, prefix_str,                             \
99 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
100 		       16, 4, buf, __len, false);                        \
101 } while (0)
102 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)103 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
104 		     const char *prefix)
105 {
106 	u32 *regs;
107 	size_t pos;
108 
109 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
110 		return -EINVAL;
111 
112 	regs = kzalloc(len, GFP_ATOMIC);
113 	if (!regs)
114 		return -ENOMEM;
115 
116 	for (pos = 0; pos < len; pos += 4) {
117 		if (offset == 0 &&
118 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
119 		    pos <= REG_UIC_ERROR_CODE_DME)
120 			continue;
121 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
122 	}
123 
124 	ufshcd_hex_dump(prefix, regs, len);
125 	kfree(regs);
126 
127 	return 0;
128 }
129 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
130 
131 enum {
132 	UFSHCD_MAX_CHANNEL	= 0,
133 	UFSHCD_MAX_ID		= 1,
134 	UFSHCD_NUM_RESERVED	= 1,
135 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
136 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
137 };
138 
139 /* UFSHCD states */
140 enum {
141 	UFSHCD_STATE_RESET,
142 	UFSHCD_STATE_ERROR,
143 	UFSHCD_STATE_OPERATIONAL,
144 	UFSHCD_STATE_EH_SCHEDULED_FATAL,
145 	UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
146 };
147 
148 
149 
150 /* UFSHCD UIC layer error flags */
151 enum {
152 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
153 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
154 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
155 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
156 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
157 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
158 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
159 };
160 
161 
162 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
163 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
164 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
165 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
166 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
167 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
168 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
169 };
170 
171 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)172 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
173 {
174 	return ufs_pm_lvl_states[lvl].dev_state;
175 }
176 
177 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)178 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
179 {
180 	return ufs_pm_lvl_states[lvl].link_state;
181 }
182 
183 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)184 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
185 					enum uic_link_state link_state)
186 {
187 	enum ufs_pm_level lvl;
188 
189 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
190 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
191 			(ufs_pm_lvl_states[lvl].link_state == link_state))
192 			return lvl;
193 	}
194 
195 	/* if no match found, return the level 0 */
196 	return UFS_PM_LVL_0;
197 }
198 
199 static struct ufs_dev_fix ufs_fixups[] = {
200 	/* UFS cards deviations table */
201 	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
202 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
203 		UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ),
204 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
205 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
206 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
207 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
208 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
209 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
210 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
211 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
212 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
213 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
214 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
215 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
216 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
217 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
218 	END_FIX
219 };
220 
221 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
222 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
223 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
224 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
225 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
226 static void ufshcd_hba_exit(struct ufs_hba *hba);
227 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
228 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
229 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
230 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
231 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
232 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
233 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
234 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
235 static irqreturn_t ufshcd_intr(int irq, void *__hba);
236 static int ufshcd_change_power_mode(struct ufs_hba *hba,
237 			     struct ufs_pa_layer_attr *pwr_mode);
238 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
239 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
240 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
241 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
242 					 struct ufs_vreg *vreg);
243 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
244 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
245 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
246 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
247 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
248 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
249 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
250 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
251 
ufshcd_valid_tag(struct ufs_hba * hba,int tag)252 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
253 {
254 	return tag >= 0 && tag < hba->nutrs;
255 }
256 
ufshcd_enable_irq(struct ufs_hba * hba)257 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
258 {
259 	if (!hba->is_irq_enabled) {
260 		enable_irq(hba->irq);
261 		hba->is_irq_enabled = true;
262 	}
263 }
264 
ufshcd_disable_irq(struct ufs_hba * hba)265 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
266 {
267 	if (hba->is_irq_enabled) {
268 		disable_irq(hba->irq);
269 		hba->is_irq_enabled = false;
270 	}
271 }
272 
ufshcd_wb_config(struct ufs_hba * hba)273 static inline void ufshcd_wb_config(struct ufs_hba *hba)
274 {
275 	int ret;
276 
277 	if (!ufshcd_is_wb_allowed(hba))
278 		return;
279 
280 	ret = ufshcd_wb_ctrl(hba, true);
281 	if (ret)
282 		dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
283 	else
284 		dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
285 	ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
286 	if (ret)
287 		dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
288 			__func__, ret);
289 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
290 		ufshcd_wb_toggle_flush(hba, true);
291 }
292 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)293 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
294 {
295 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
296 		scsi_unblock_requests(hba->host);
297 }
298 
ufshcd_scsi_block_requests(struct ufs_hba * hba)299 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
300 {
301 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
302 		scsi_block_requests(hba->host);
303 }
304 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)305 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
306 		const char *str)
307 {
308 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
309 
310 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
311 }
312 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)313 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
314 		const char *str)
315 {
316 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
317 
318 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
319 }
320 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)321 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
322 		const char *str)
323 {
324 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
325 
326 	trace_android_vh_ufs_send_tm_command(hba, tag, str);
327 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
328 			&descp->input_param1);
329 }
330 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)331 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
332 					 struct uic_command *ucmd,
333 					 const char *str)
334 {
335 	u32 cmd;
336 
337 	trace_android_vh_ufs_send_uic_command(hba, ucmd, str);
338 
339 	if (!trace_ufshcd_uic_command_enabled())
340 		return;
341 
342 	if (!strcmp(str, "send"))
343 		cmd = ucmd->command;
344 	else
345 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
346 
347 	trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
348 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
349 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
350 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
351 }
352 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)353 static void ufshcd_add_command_trace(struct ufs_hba *hba,
354 		unsigned int tag, const char *str)
355 {
356 	sector_t lba = -1;
357 	u8 opcode = 0, group_id = 0;
358 	u32 intr, doorbell;
359 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
360 	struct scsi_cmnd *cmd = lrbp->cmd;
361 	int transfer_len = -1;
362 
363 	if (!trace_ufshcd_command_enabled()) {
364 		/* trace UPIU W/O tracing command */
365 		if (cmd)
366 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
367 		return;
368 	}
369 
370 	if (cmd) { /* data phase exists */
371 		/* trace UPIU also */
372 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
373 		opcode = cmd->cmnd[0];
374 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
375 			/*
376 			 * Currently we only fully trace read(10) and write(10)
377 			 * commands
378 			 */
379 			if (cmd->request && cmd->request->bio)
380 				lba = cmd->request->bio->bi_iter.bi_sector;
381 			transfer_len = be32_to_cpu(
382 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
383 			if (opcode == WRITE_10)
384 				group_id = lrbp->cmd->cmnd[6];
385 		} else if (opcode == UNMAP) {
386 			if (cmd->request) {
387 				lba = scsi_get_lba(cmd);
388 				transfer_len = blk_rq_bytes(cmd->request);
389 			}
390 		}
391 	}
392 
393 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
394 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
395 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
396 			doorbell, transfer_len, intr, lba, opcode, group_id);
397 }
398 
ufshcd_print_clk_freqs(struct ufs_hba * hba)399 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
400 {
401 	struct ufs_clk_info *clki;
402 	struct list_head *head = &hba->clk_list_head;
403 
404 	if (list_empty(head))
405 		return;
406 
407 	list_for_each_entry(clki, head, list) {
408 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
409 				clki->max_freq)
410 			dev_err(hba->dev, "clk: %s, rate: %u\n",
411 					clki->name, clki->curr_freq);
412 	}
413 }
414 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,char * err_name)415 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
416 			     char *err_name)
417 {
418 	int i;
419 	bool found = false;
420 	struct ufs_event_hist *e;
421 
422 	if (id >= UFS_EVT_CNT)
423 		return;
424 
425 	e = &hba->ufs_stats.event[id];
426 
427 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
428 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
429 
430 		if (e->tstamp[p] == 0)
431 			continue;
432 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
433 			e->val[p], ktime_to_us(e->tstamp[p]));
434 		found = true;
435 	}
436 
437 	if (!found)
438 		dev_err(hba->dev, "No record of %s\n", err_name);
439 }
440 
ufshcd_print_evt_hist(struct ufs_hba * hba)441 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
442 {
443 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
444 
445 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
446 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
447 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
448 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
449 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
450 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
451 			 "auto_hibern8_err");
452 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
453 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
454 			 "link_startup_fail");
455 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
456 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
457 			 "suspend_fail");
458 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
459 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
460 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
461 
462 	ufshcd_vops_dbg_register_dump(hba);
463 }
464 
465 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)466 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
467 {
468 	struct ufshcd_lrb *lrbp;
469 	int prdt_length;
470 	int tag;
471 
472 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
473 		lrbp = &hba->lrb[tag];
474 
475 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
476 				tag, ktime_to_us(lrbp->issue_time_stamp));
477 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
478 				tag, ktime_to_us(lrbp->compl_time_stamp));
479 		dev_err(hba->dev,
480 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
481 			tag, (u64)lrbp->utrd_dma_addr);
482 
483 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
484 				sizeof(struct utp_transfer_req_desc));
485 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
486 			(u64)lrbp->ucd_req_dma_addr);
487 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
488 				sizeof(struct utp_upiu_req));
489 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
490 			(u64)lrbp->ucd_rsp_dma_addr);
491 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
492 				sizeof(struct utp_upiu_rsp));
493 
494 		prdt_length = le16_to_cpu(
495 			lrbp->utr_descriptor_ptr->prd_table_length);
496 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
497 			prdt_length /= hba->sg_entry_size;
498 
499 		dev_err(hba->dev,
500 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
501 			tag, prdt_length,
502 			(u64)lrbp->ucd_prdt_dma_addr);
503 
504 		if (pr_prdt)
505 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
506 				hba->sg_entry_size * prdt_length);
507 	}
508 }
509 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)510 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
511 {
512 	int tag;
513 
514 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
515 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
516 
517 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
518 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
519 	}
520 }
521 
ufshcd_print_host_state(struct ufs_hba * hba)522 static void ufshcd_print_host_state(struct ufs_hba *hba)
523 {
524 	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
525 
526 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
527 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
528 		hba->outstanding_reqs, hba->outstanding_tasks);
529 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
530 		hba->saved_err, hba->saved_uic_err);
531 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
532 		hba->curr_dev_pwr_mode, hba->uic_link_state);
533 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
534 		hba->pm_op_in_progress, hba->is_sys_suspended);
535 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
536 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
537 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
538 	dev_err(hba->dev,
539 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
540 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
541 		hba->ufs_stats.hibern8_exit_cnt);
542 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
543 		ktime_to_us(hba->ufs_stats.last_intr_ts),
544 		hba->ufs_stats.last_intr_status);
545 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
546 		hba->eh_flags, hba->req_abort_count);
547 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
548 		hba->ufs_version, hba->capabilities, hba->caps);
549 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
550 		hba->dev_quirks);
551 	if (sdev_ufs)
552 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
553 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
554 
555 	ufshcd_print_clk_freqs(hba);
556 }
557 
558 /**
559  * ufshcd_print_pwr_info - print power params as saved in hba
560  * power info
561  * @hba: per-adapter instance
562  */
ufshcd_print_pwr_info(struct ufs_hba * hba)563 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
564 {
565 	static const char * const names[] = {
566 		"INVALID MODE",
567 		"FAST MODE",
568 		"SLOW_MODE",
569 		"INVALID MODE",
570 		"FASTAUTO_MODE",
571 		"SLOWAUTO_MODE",
572 		"INVALID MODE",
573 	};
574 
575 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
576 		 __func__,
577 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
578 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
579 		 names[hba->pwr_info.pwr_rx],
580 		 names[hba->pwr_info.pwr_tx],
581 		 hba->pwr_info.hs_rate);
582 }
583 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)584 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
585 {
586 	if (!us)
587 		return;
588 
589 	if (us < 10)
590 		udelay(us);
591 	else
592 		usleep_range(us, us + tolerance);
593 }
594 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
595 
596 /**
597  * ufshcd_wait_for_register - wait for register value to change
598  * @hba: per-adapter interface
599  * @reg: mmio register offset
600  * @mask: mask to apply to the read register value
601  * @val: value to wait for
602  * @interval_us: polling interval in microseconds
603  * @timeout_ms: timeout in milliseconds
604  *
605  * Return:
606  * -ETIMEDOUT on error, zero on success.
607  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)608 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
609 				u32 val, unsigned long interval_us,
610 				unsigned long timeout_ms)
611 {
612 	int err = 0;
613 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
614 
615 	/* ignore bits that we don't intend to wait on */
616 	val = val & mask;
617 
618 	while ((ufshcd_readl(hba, reg) & mask) != val) {
619 		usleep_range(interval_us, interval_us + 50);
620 		if (time_after(jiffies, timeout)) {
621 			if ((ufshcd_readl(hba, reg) & mask) != val)
622 				err = -ETIMEDOUT;
623 			break;
624 		}
625 	}
626 
627 	return err;
628 }
629 
630 /**
631  * ufshcd_get_intr_mask - Get the interrupt bit mask
632  * @hba: Pointer to adapter instance
633  *
634  * Returns interrupt bit mask per version
635  */
ufshcd_get_intr_mask(struct ufs_hba * hba)636 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
637 {
638 	if (hba->ufs_version == ufshci_version(1, 0))
639 		return INTERRUPT_MASK_ALL_VER_10;
640 	if (hba->ufs_version <= ufshci_version(2, 0))
641 		return INTERRUPT_MASK_ALL_VER_11;
642 
643 	return INTERRUPT_MASK_ALL_VER_21;
644 }
645 
646 /**
647  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
648  * @hba: Pointer to adapter instance
649  *
650  * Returns UFSHCI version supported by the controller
651  */
ufshcd_get_ufs_version(struct ufs_hba * hba)652 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
653 {
654 	u32 ufshci_ver;
655 
656 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
657 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
658 	else
659 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
660 
661 	/*
662 	 * UFSHCI v1.x uses a different version scheme, in order
663 	 * to allow the use of comparisons with the ufshci_version
664 	 * function, we convert it to the same scheme as ufs 2.0+.
665 	 */
666 	if (ufshci_ver & 0x00010000)
667 		return ufshci_version(1, ufshci_ver & 0x00000100);
668 
669 	return ufshci_ver;
670 }
671 
672 /**
673  * ufshcd_is_device_present - Check if any device connected to
674  *			      the host controller
675  * @hba: pointer to adapter instance
676  *
677  * Returns true if device present, false if no device detected
678  */
ufshcd_is_device_present(struct ufs_hba * hba)679 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
680 {
681 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
682 						DEVICE_PRESENT) ? true : false;
683 }
684 
685 /**
686  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
687  * @lrbp: pointer to local command reference block
688  *
689  * This function is used to get the OCS field from UTRD
690  * Returns the OCS field in the UTRD
691  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)692 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
693 {
694 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
695 }
696 
697 /**
698  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
699  * @hba: per adapter instance
700  * @pos: position of the bit to be cleared
701  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)702 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
703 {
704 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
705 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
706 	else
707 		ufshcd_writel(hba, ~(1 << pos),
708 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
709 }
710 
711 /**
712  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
713  * @hba: per adapter instance
714  * @pos: position of the bit to be cleared
715  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)716 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
717 {
718 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
719 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
720 	else
721 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
722 }
723 
724 /**
725  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
726  * @reg: Register value of host controller status
727  *
728  * Returns integer, 0 on Success and positive value if failed
729  */
ufshcd_get_lists_status(u32 reg)730 static inline int ufshcd_get_lists_status(u32 reg)
731 {
732 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
733 }
734 
735 /**
736  * ufshcd_get_uic_cmd_result - Get the UIC command result
737  * @hba: Pointer to adapter instance
738  *
739  * This function gets the result of UIC command completion
740  * Returns 0 on success, non zero value on error
741  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)742 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
743 {
744 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
745 	       MASK_UIC_COMMAND_RESULT;
746 }
747 
748 /**
749  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
750  * @hba: Pointer to adapter instance
751  *
752  * This function gets UIC command argument3
753  * Returns 0 on success, non zero value on error
754  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)755 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
756 {
757 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
758 }
759 
760 /**
761  * ufshcd_get_req_rsp - returns the TR response transaction type
762  * @ucd_rsp_ptr: pointer to response UPIU
763  */
764 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)765 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
766 {
767 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
768 }
769 
770 /**
771  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
772  * @ucd_rsp_ptr: pointer to response UPIU
773  *
774  * This function gets the response status and scsi_status from response UPIU
775  * Returns the response result code.
776  */
777 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)778 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
779 {
780 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
781 }
782 
783 /*
784  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
785  *				from response UPIU
786  * @ucd_rsp_ptr: pointer to response UPIU
787  *
788  * Return the data segment length.
789  */
790 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)791 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
792 {
793 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
794 		MASK_RSP_UPIU_DATA_SEG_LEN;
795 }
796 
797 /**
798  * ufshcd_is_exception_event - Check if the device raised an exception event
799  * @ucd_rsp_ptr: pointer to response UPIU
800  *
801  * The function checks if the device raised an exception event indicated in
802  * the Device Information field of response UPIU.
803  *
804  * Returns true if exception is raised, false otherwise.
805  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)806 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
807 {
808 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
809 			MASK_RSP_EXCEPTION_EVENT ? true : false;
810 }
811 
812 /**
813  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
814  * @hba: per adapter instance
815  */
816 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)817 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
818 {
819 	ufshcd_writel(hba, INT_AGGR_ENABLE |
820 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
821 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
822 }
823 
824 /**
825  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
826  * @hba: per adapter instance
827  * @cnt: Interrupt aggregation counter threshold
828  * @tmout: Interrupt aggregation timeout value
829  */
830 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)831 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
832 {
833 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
834 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
835 		      INT_AGGR_TIMEOUT_VAL(tmout),
836 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
837 }
838 
839 /**
840  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
841  * @hba: per adapter instance
842  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)843 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
844 {
845 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
846 }
847 
848 /**
849  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
850  *			When run-stop registers are set to 1, it indicates the
851  *			host controller that it can process the requests
852  * @hba: per adapter instance
853  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)854 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
855 {
856 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
857 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
858 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
859 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
860 }
861 
862 /**
863  * ufshcd_hba_start - Start controller initialization sequence
864  * @hba: per adapter instance
865  */
ufshcd_hba_start(struct ufs_hba * hba)866 static inline void ufshcd_hba_start(struct ufs_hba *hba)
867 {
868 	u32 val = CONTROLLER_ENABLE;
869 
870 	if (ufshcd_crypto_enable(hba))
871 		val |= CRYPTO_GENERAL_ENABLE;
872 
873 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
874 }
875 
876 /**
877  * ufshcd_is_hba_active - Get controller state
878  * @hba: per adapter instance
879  *
880  * Returns false if controller is active, true otherwise
881  */
ufshcd_is_hba_active(struct ufs_hba * hba)882 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
883 {
884 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
885 		? false : true;
886 }
887 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)888 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
889 {
890 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
891 	if (hba->ufs_version <= ufshci_version(1, 1))
892 		return UFS_UNIPRO_VER_1_41;
893 	else
894 		return UFS_UNIPRO_VER_1_6;
895 }
896 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
897 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)898 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
899 {
900 	/*
901 	 * If both host and device support UniPro ver1.6 or later, PA layer
902 	 * parameters tuning happens during link startup itself.
903 	 *
904 	 * We can manually tune PA layer parameters if either host or device
905 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
906 	 * logic simple, we will only do manual tuning if local unipro version
907 	 * doesn't support ver1.6 or later.
908 	 */
909 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
910 		return true;
911 	else
912 		return false;
913 }
914 
915 /**
916  * ufshcd_set_clk_freq - set UFS controller clock frequencies
917  * @hba: per adapter instance
918  * @scale_up: If True, set max possible frequency othewise set low frequency
919  *
920  * Returns 0 if successful
921  * Returns < 0 for any other errors
922  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)923 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
924 {
925 	int ret = 0;
926 	struct ufs_clk_info *clki;
927 	struct list_head *head = &hba->clk_list_head;
928 
929 	if (list_empty(head))
930 		goto out;
931 
932 	list_for_each_entry(clki, head, list) {
933 		if (!IS_ERR_OR_NULL(clki->clk)) {
934 			if (scale_up && clki->max_freq) {
935 				if (clki->curr_freq == clki->max_freq)
936 					continue;
937 
938 				ret = clk_set_rate(clki->clk, clki->max_freq);
939 				if (ret) {
940 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
941 						__func__, clki->name,
942 						clki->max_freq, ret);
943 					break;
944 				}
945 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
946 						"scaled up", clki->name,
947 						clki->curr_freq,
948 						clki->max_freq);
949 
950 				clki->curr_freq = clki->max_freq;
951 
952 			} else if (!scale_up && clki->min_freq) {
953 				if (clki->curr_freq == clki->min_freq)
954 					continue;
955 
956 				ret = clk_set_rate(clki->clk, clki->min_freq);
957 				if (ret) {
958 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
959 						__func__, clki->name,
960 						clki->min_freq, ret);
961 					break;
962 				}
963 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
964 						"scaled down", clki->name,
965 						clki->curr_freq,
966 						clki->min_freq);
967 				clki->curr_freq = clki->min_freq;
968 			}
969 		}
970 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
971 				clki->name, clk_get_rate(clki->clk));
972 	}
973 
974 out:
975 	return ret;
976 }
977 
978 /**
979  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
980  * @hba: per adapter instance
981  * @scale_up: True if scaling up and false if scaling down
982  *
983  * Returns 0 if successful
984  * Returns < 0 for any other errors
985  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)986 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
987 {
988 	int ret = 0;
989 	ktime_t start = ktime_get();
990 
991 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
992 	if (ret)
993 		goto out;
994 
995 	ret = ufshcd_set_clk_freq(hba, scale_up);
996 	if (ret)
997 		goto out;
998 
999 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1000 	if (ret)
1001 		ufshcd_set_clk_freq(hba, !scale_up);
1002 
1003 out:
1004 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1005 			(scale_up ? "up" : "down"),
1006 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1007 	return ret;
1008 }
1009 
1010 /**
1011  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1012  * @hba: per adapter instance
1013  * @scale_up: True if scaling up and false if scaling down
1014  *
1015  * Returns true if scaling is required, false otherwise.
1016  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1017 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1018 					       bool scale_up)
1019 {
1020 	struct ufs_clk_info *clki;
1021 	struct list_head *head = &hba->clk_list_head;
1022 
1023 	if (list_empty(head))
1024 		return false;
1025 
1026 	list_for_each_entry(clki, head, list) {
1027 		if (!IS_ERR_OR_NULL(clki->clk)) {
1028 			if (scale_up && clki->max_freq) {
1029 				if (clki->curr_freq == clki->max_freq)
1030 					continue;
1031 				return true;
1032 			} else if (!scale_up && clki->min_freq) {
1033 				if (clki->curr_freq == clki->min_freq)
1034 					continue;
1035 				return true;
1036 			}
1037 		}
1038 	}
1039 
1040 	return false;
1041 }
1042 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1043 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1044 					u64 wait_timeout_us)
1045 {
1046 	unsigned long flags;
1047 	int ret = 0;
1048 	u32 tm_doorbell;
1049 	u32 tr_doorbell;
1050 	bool timeout = false, do_last_check = false;
1051 	ktime_t start;
1052 
1053 	ufshcd_hold(hba, false);
1054 	spin_lock_irqsave(hba->host->host_lock, flags);
1055 	/*
1056 	 * Wait for all the outstanding tasks/transfer requests.
1057 	 * Verify by checking the doorbell registers are clear.
1058 	 */
1059 	start = ktime_get();
1060 	do {
1061 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1062 			ret = -EBUSY;
1063 			goto out;
1064 		}
1065 
1066 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1067 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1068 		if (!tm_doorbell && !tr_doorbell) {
1069 			timeout = false;
1070 			break;
1071 		} else if (do_last_check) {
1072 			break;
1073 		}
1074 
1075 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1076 		schedule();
1077 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1078 		    wait_timeout_us) {
1079 			timeout = true;
1080 			/*
1081 			 * We might have scheduled out for long time so make
1082 			 * sure to check if doorbells are cleared by this time
1083 			 * or not.
1084 			 */
1085 			do_last_check = true;
1086 		}
1087 		spin_lock_irqsave(hba->host->host_lock, flags);
1088 	} while (tm_doorbell || tr_doorbell);
1089 
1090 	if (timeout) {
1091 		dev_err(hba->dev,
1092 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1093 			__func__, tm_doorbell, tr_doorbell);
1094 		ret = -EBUSY;
1095 	}
1096 out:
1097 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1098 	ufshcd_release(hba);
1099 	return ret;
1100 }
1101 
1102 /**
1103  * ufshcd_scale_gear - scale up/down UFS gear
1104  * @hba: per adapter instance
1105  * @scale_up: True for scaling up gear and false for scaling down
1106  *
1107  * Returns 0 for success,
1108  * Returns -EBUSY if scaling can't happen at this time
1109  * Returns non-zero for any other errors
1110  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1111 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1112 {
1113 	int ret = 0;
1114 	struct ufs_pa_layer_attr new_pwr_info;
1115 
1116 	if (scale_up) {
1117 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1118 		       sizeof(struct ufs_pa_layer_attr));
1119 	} else {
1120 		memcpy(&new_pwr_info, &hba->pwr_info,
1121 		       sizeof(struct ufs_pa_layer_attr));
1122 
1123 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1124 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1125 			/* save the current power mode */
1126 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1127 				&hba->pwr_info,
1128 				sizeof(struct ufs_pa_layer_attr));
1129 
1130 			/* scale down gear */
1131 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1132 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1133 		}
1134 	}
1135 
1136 	/* check if the power mode needs to be changed or not? */
1137 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1138 	if (ret)
1139 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1140 			__func__, ret,
1141 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1142 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1143 
1144 	return ret;
1145 }
1146 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1147 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1148 {
1149 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1150 	int ret = 0;
1151 	/*
1152 	 * make sure that there are no outstanding requests when
1153 	 * clock scaling is in progress
1154 	 */
1155 	ufshcd_scsi_block_requests(hba);
1156 	down_write(&hba->clk_scaling_lock);
1157 
1158 	if (!hba->clk_scaling.is_allowed ||
1159 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1160 		ret = -EBUSY;
1161 		up_write(&hba->clk_scaling_lock);
1162 		ufshcd_scsi_unblock_requests(hba);
1163 		goto out;
1164 	}
1165 
1166 	/* let's not get into low power until clock scaling is completed */
1167 	ufshcd_hold(hba, false);
1168 
1169 out:
1170 	return ret;
1171 }
1172 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,bool writelock)1173 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1174 {
1175 	if (writelock)
1176 		up_write(&hba->clk_scaling_lock);
1177 	else
1178 		up_read(&hba->clk_scaling_lock);
1179 	ufshcd_scsi_unblock_requests(hba);
1180 	ufshcd_release(hba);
1181 }
1182 
1183 /**
1184  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1185  * @hba: per adapter instance
1186  * @scale_up: True for scaling up and false for scalin down
1187  *
1188  * Returns 0 for success,
1189  * Returns -EBUSY if scaling can't happen at this time
1190  * Returns non-zero for any other errors
1191  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1192 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1193 {
1194 	int ret = 0;
1195 	bool is_writelock = true;
1196 
1197 	ret = ufshcd_clock_scaling_prepare(hba);
1198 	if (ret)
1199 		return ret;
1200 
1201 	/* scale down the gear before scaling down clocks */
1202 	if (!scale_up) {
1203 		ret = ufshcd_scale_gear(hba, false);
1204 		if (ret)
1205 			goto out_unprepare;
1206 	}
1207 
1208 	ret = ufshcd_scale_clks(hba, scale_up);
1209 	if (ret) {
1210 		if (!scale_up)
1211 			ufshcd_scale_gear(hba, true);
1212 		goto out_unprepare;
1213 	}
1214 
1215 	/* scale up the gear after scaling up clocks */
1216 	if (scale_up) {
1217 		ret = ufshcd_scale_gear(hba, true);
1218 		if (ret) {
1219 			ufshcd_scale_clks(hba, false);
1220 			goto out_unprepare;
1221 		}
1222 	}
1223 
1224 	/* Enable Write Booster if we have scaled up else disable it */
1225 	downgrade_write(&hba->clk_scaling_lock);
1226 	is_writelock = false;
1227 	ufshcd_wb_ctrl(hba, scale_up);
1228 
1229 out_unprepare:
1230 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1231 	return ret;
1232 }
1233 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1234 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1235 {
1236 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1237 					   clk_scaling.suspend_work);
1238 	unsigned long irq_flags;
1239 
1240 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1241 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1242 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1243 		return;
1244 	}
1245 	hba->clk_scaling.is_suspended = true;
1246 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1247 
1248 	__ufshcd_suspend_clkscaling(hba);
1249 }
1250 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1251 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1252 {
1253 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1254 					   clk_scaling.resume_work);
1255 	unsigned long irq_flags;
1256 
1257 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1258 	if (!hba->clk_scaling.is_suspended) {
1259 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1260 		return;
1261 	}
1262 	hba->clk_scaling.is_suspended = false;
1263 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1264 
1265 	devfreq_resume_device(hba->devfreq);
1266 }
1267 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1268 static int ufshcd_devfreq_target(struct device *dev,
1269 				unsigned long *freq, u32 flags)
1270 {
1271 	int ret = 0;
1272 	struct ufs_hba *hba = dev_get_drvdata(dev);
1273 	ktime_t start;
1274 	bool scale_up, sched_clk_scaling_suspend_work = false;
1275 	struct list_head *clk_list = &hba->clk_list_head;
1276 	struct ufs_clk_info *clki;
1277 	unsigned long irq_flags;
1278 	bool force_out = false;
1279 	bool force_scaling = false;
1280 
1281 	if (!ufshcd_is_clkscaling_supported(hba))
1282 		return -EINVAL;
1283 
1284 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1285 	/* Override with the closest supported frequency */
1286 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1287 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1288 	if (ufshcd_eh_in_progress(hba)) {
1289 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1290 		return 0;
1291 	}
1292 
1293 	if (!hba->clk_scaling.active_reqs)
1294 		sched_clk_scaling_suspend_work = true;
1295 
1296 	if (list_empty(clk_list)) {
1297 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1298 		goto out;
1299 	}
1300 
1301 	/* Decide based on the rounded-off frequency and update */
1302 	scale_up = (*freq == clki->max_freq) ? true : false;
1303 	if (!scale_up)
1304 		*freq = clki->min_freq;
1305 
1306 	trace_android_vh_ufs_clock_scaling(hba, &force_out, &force_scaling, &scale_up);
1307 
1308 	/* Update the frequency */
1309 	if (force_out || (!force_scaling && !ufshcd_is_devfreq_scaling_required(hba, scale_up))) {
1310 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1311 		ret = 0;
1312 		goto out; /* no state change required */
1313 	}
1314 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1315 
1316 	start = ktime_get();
1317 	ret = ufshcd_devfreq_scale(hba, scale_up);
1318 
1319 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1320 		(scale_up ? "up" : "down"),
1321 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1322 
1323 out:
1324 	if (sched_clk_scaling_suspend_work)
1325 		queue_work(hba->clk_scaling.workq,
1326 			   &hba->clk_scaling.suspend_work);
1327 
1328 	return ret;
1329 }
1330 
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1331 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1332 {
1333 	int *busy = priv;
1334 
1335 	WARN_ON_ONCE(reserved);
1336 	(*busy)++;
1337 	return false;
1338 }
1339 
1340 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1341 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1342 {
1343 	struct request_queue *q = hba->cmd_queue;
1344 	int busy = 0;
1345 
1346 	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1347 	return busy;
1348 }
1349 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1350 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1351 		struct devfreq_dev_status *stat)
1352 {
1353 	struct ufs_hba *hba = dev_get_drvdata(dev);
1354 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1355 	unsigned long flags;
1356 	struct list_head *clk_list = &hba->clk_list_head;
1357 	struct ufs_clk_info *clki;
1358 	ktime_t curr_t;
1359 
1360 	if (!ufshcd_is_clkscaling_supported(hba))
1361 		return -EINVAL;
1362 
1363 	memset(stat, 0, sizeof(*stat));
1364 
1365 	spin_lock_irqsave(hba->host->host_lock, flags);
1366 	curr_t = ktime_get();
1367 	if (!scaling->window_start_t)
1368 		goto start_window;
1369 
1370 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1371 	/*
1372 	 * If current frequency is 0, then the ondemand governor considers
1373 	 * there's no initial frequency set. And it always requests to set
1374 	 * to max. frequency.
1375 	 */
1376 	stat->current_frequency = clki->curr_freq;
1377 	if (scaling->is_busy_started)
1378 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1379 				scaling->busy_start_t);
1380 
1381 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1382 	stat->busy_time = scaling->tot_busy_t;
1383 start_window:
1384 	scaling->window_start_t = curr_t;
1385 	scaling->tot_busy_t = 0;
1386 
1387 	if (hba->outstanding_reqs) {
1388 		scaling->busy_start_t = curr_t;
1389 		scaling->is_busy_started = true;
1390 	} else {
1391 		scaling->busy_start_t = 0;
1392 		scaling->is_busy_started = false;
1393 	}
1394 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1395 	return 0;
1396 }
1397 
ufshcd_devfreq_init(struct ufs_hba * hba)1398 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1399 {
1400 	struct list_head *clk_list = &hba->clk_list_head;
1401 	struct ufs_clk_info *clki;
1402 	struct devfreq *devfreq;
1403 	int ret;
1404 
1405 	/* Skip devfreq if we don't have any clocks in the list */
1406 	if (list_empty(clk_list))
1407 		return 0;
1408 
1409 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1410 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1411 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1412 
1413 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1414 					 &hba->vps->ondemand_data);
1415 	devfreq = devfreq_add_device(hba->dev,
1416 			&hba->vps->devfreq_profile,
1417 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1418 			&hba->vps->ondemand_data);
1419 	if (IS_ERR(devfreq)) {
1420 		ret = PTR_ERR(devfreq);
1421 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1422 
1423 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1424 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1425 		return ret;
1426 	}
1427 
1428 	hba->devfreq = devfreq;
1429 
1430 	return 0;
1431 }
1432 
ufshcd_devfreq_remove(struct ufs_hba * hba)1433 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1434 {
1435 	struct list_head *clk_list = &hba->clk_list_head;
1436 	struct ufs_clk_info *clki;
1437 
1438 	if (!hba->devfreq)
1439 		return;
1440 
1441 	devfreq_remove_device(hba->devfreq);
1442 	hba->devfreq = NULL;
1443 
1444 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1445 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1446 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1447 }
1448 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1449 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1450 {
1451 	unsigned long flags;
1452 
1453 	devfreq_suspend_device(hba->devfreq);
1454 	spin_lock_irqsave(hba->host->host_lock, flags);
1455 	hba->clk_scaling.window_start_t = 0;
1456 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1457 }
1458 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1459 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1460 {
1461 	unsigned long flags;
1462 	bool suspend = false;
1463 
1464 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1465 	cancel_work_sync(&hba->clk_scaling.resume_work);
1466 
1467 	spin_lock_irqsave(hba->host->host_lock, flags);
1468 	if (!hba->clk_scaling.is_suspended) {
1469 		suspend = true;
1470 		hba->clk_scaling.is_suspended = true;
1471 	}
1472 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1473 
1474 	if (suspend)
1475 		__ufshcd_suspend_clkscaling(hba);
1476 }
1477 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1478 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1479 {
1480 	unsigned long flags;
1481 	bool resume = false;
1482 
1483 	spin_lock_irqsave(hba->host->host_lock, flags);
1484 	if (hba->clk_scaling.is_suspended) {
1485 		resume = true;
1486 		hba->clk_scaling.is_suspended = false;
1487 	}
1488 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1489 
1490 	if (resume)
1491 		devfreq_resume_device(hba->devfreq);
1492 }
1493 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1494 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1495 		struct device_attribute *attr, char *buf)
1496 {
1497 	struct ufs_hba *hba = dev_get_drvdata(dev);
1498 
1499 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_enabled);
1500 }
1501 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1502 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1503 		struct device_attribute *attr, const char *buf, size_t count)
1504 {
1505 	struct ufs_hba *hba = dev_get_drvdata(dev);
1506 	u32 value;
1507 	int err = 0;
1508 
1509 	if (kstrtou32(buf, 0, &value))
1510 		return -EINVAL;
1511 
1512 	down(&hba->host_sem);
1513 	if (!ufshcd_is_user_access_allowed(hba)) {
1514 		err = -EBUSY;
1515 		goto out;
1516 	}
1517 
1518 	value = !!value;
1519 	if (value == hba->clk_scaling.is_enabled)
1520 		goto out;
1521 
1522 	pm_runtime_get_sync(hba->dev);
1523 	ufshcd_hold(hba, false);
1524 
1525 	hba->clk_scaling.is_enabled = value;
1526 
1527 	if (value) {
1528 		ufshcd_resume_clkscaling(hba);
1529 	} else {
1530 		ufshcd_suspend_clkscaling(hba);
1531 		err = ufshcd_devfreq_scale(hba, true);
1532 		if (err)
1533 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1534 					__func__, err);
1535 	}
1536 
1537 	ufshcd_release(hba);
1538 	pm_runtime_put_sync(hba->dev);
1539 out:
1540 	up(&hba->host_sem);
1541 	return err ? err : count;
1542 }
1543 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1544 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1545 {
1546 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1547 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1548 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1549 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1550 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1551 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1552 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1553 }
1554 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1555 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1556 {
1557 	if (hba->clk_scaling.enable_attr.attr.name)
1558 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1559 }
1560 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1561 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1562 {
1563 	char wq_name[sizeof("ufs_clkscaling_00")];
1564 
1565 	if (!ufshcd_is_clkscaling_supported(hba))
1566 		return;
1567 
1568 	if (!hba->clk_scaling.min_gear)
1569 		hba->clk_scaling.min_gear = UFS_HS_G1;
1570 
1571 	INIT_WORK(&hba->clk_scaling.suspend_work,
1572 		  ufshcd_clk_scaling_suspend_work);
1573 	INIT_WORK(&hba->clk_scaling.resume_work,
1574 		  ufshcd_clk_scaling_resume_work);
1575 
1576 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1577 		 hba->host->host_no);
1578 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1579 
1580 	hba->clk_scaling.is_initialized = true;
1581 }
1582 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1583 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1584 {
1585 	if (!hba->clk_scaling.is_initialized)
1586 		return;
1587 
1588 	ufshcd_remove_clk_scaling_sysfs(hba);
1589 	destroy_workqueue(hba->clk_scaling.workq);
1590 	ufshcd_devfreq_remove(hba);
1591 	hba->clk_scaling.is_initialized = false;
1592 }
1593 
ufshcd_ungate_work(struct work_struct * work)1594 static void ufshcd_ungate_work(struct work_struct *work)
1595 {
1596 	int ret;
1597 	unsigned long flags;
1598 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1599 			clk_gating.ungate_work);
1600 
1601 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1602 
1603 	spin_lock_irqsave(hba->host->host_lock, flags);
1604 	if (hba->clk_gating.state == CLKS_ON) {
1605 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1606 		goto unblock_reqs;
1607 	}
1608 
1609 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1610 	ufshcd_hba_vreg_set_hpm(hba);
1611 	ufshcd_setup_clocks(hba, true);
1612 
1613 	ufshcd_enable_irq(hba);
1614 
1615 	/* Exit from hibern8 */
1616 	if (ufshcd_can_hibern8_during_gating(hba)) {
1617 		/* Prevent gating in this path */
1618 		hba->clk_gating.is_suspended = true;
1619 		if (ufshcd_is_link_hibern8(hba)) {
1620 			ret = ufshcd_uic_hibern8_exit(hba);
1621 			if (ret)
1622 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1623 					__func__, ret);
1624 			else
1625 				ufshcd_set_link_active(hba);
1626 		}
1627 		hba->clk_gating.is_suspended = false;
1628 	}
1629 unblock_reqs:
1630 	ufshcd_scsi_unblock_requests(hba);
1631 }
1632 
1633 /**
1634  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1635  * Also, exit from hibern8 mode and set the link as active.
1636  * @hba: per adapter instance
1637  * @async: This indicates whether caller should ungate clocks asynchronously.
1638  */
ufshcd_hold(struct ufs_hba * hba,bool async)1639 int ufshcd_hold(struct ufs_hba *hba, bool async)
1640 {
1641 	int rc = 0;
1642 	bool flush_result;
1643 	unsigned long flags;
1644 
1645 	if (!ufshcd_is_clkgating_allowed(hba))
1646 		goto out;
1647 	spin_lock_irqsave(hba->host->host_lock, flags);
1648 	hba->clk_gating.active_reqs++;
1649 
1650 start:
1651 	switch (hba->clk_gating.state) {
1652 	case CLKS_ON:
1653 		/*
1654 		 * Wait for the ungate work to complete if in progress.
1655 		 * Though the clocks may be in ON state, the link could
1656 		 * still be in hibner8 state if hibern8 is allowed
1657 		 * during clock gating.
1658 		 * Make sure we exit hibern8 state also in addition to
1659 		 * clocks being ON.
1660 		 */
1661 		if (ufshcd_can_hibern8_during_gating(hba) &&
1662 		    ufshcd_is_link_hibern8(hba)) {
1663 			if (async) {
1664 				rc = -EAGAIN;
1665 				hba->clk_gating.active_reqs--;
1666 				break;
1667 			}
1668 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1669 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1670 			if (hba->clk_gating.is_suspended && !flush_result)
1671 				goto out;
1672 			spin_lock_irqsave(hba->host->host_lock, flags);
1673 			goto start;
1674 		}
1675 		break;
1676 	case REQ_CLKS_OFF:
1677 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1678 			hba->clk_gating.state = CLKS_ON;
1679 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1680 						hba->clk_gating.state);
1681 			break;
1682 		}
1683 		/*
1684 		 * If we are here, it means gating work is either done or
1685 		 * currently running. Hence, fall through to cancel gating
1686 		 * work and to enable clocks.
1687 		 */
1688 		fallthrough;
1689 	case CLKS_OFF:
1690 		hba->clk_gating.state = REQ_CLKS_ON;
1691 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1692 					hba->clk_gating.state);
1693 		if (queue_work(hba->clk_gating.clk_gating_workq,
1694 			       &hba->clk_gating.ungate_work))
1695 			ufshcd_scsi_block_requests(hba);
1696 		/*
1697 		 * fall through to check if we should wait for this
1698 		 * work to be done or not.
1699 		 */
1700 		fallthrough;
1701 	case REQ_CLKS_ON:
1702 		if (async) {
1703 			rc = -EAGAIN;
1704 			hba->clk_gating.active_reqs--;
1705 			break;
1706 		}
1707 
1708 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1709 		flush_work(&hba->clk_gating.ungate_work);
1710 		/* Make sure state is CLKS_ON before returning */
1711 		spin_lock_irqsave(hba->host->host_lock, flags);
1712 		goto start;
1713 	default:
1714 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1715 				__func__, hba->clk_gating.state);
1716 		break;
1717 	}
1718 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1719 out:
1720 	return rc;
1721 }
1722 EXPORT_SYMBOL_GPL(ufshcd_hold);
1723 
ufshcd_gate_work(struct work_struct * work)1724 static void ufshcd_gate_work(struct work_struct *work)
1725 {
1726 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1727 			clk_gating.gate_work.work);
1728 	unsigned long flags;
1729 	int ret;
1730 
1731 	spin_lock_irqsave(hba->host->host_lock, flags);
1732 	/*
1733 	 * In case you are here to cancel this work the gating state
1734 	 * would be marked as REQ_CLKS_ON. In this case save time by
1735 	 * skipping the gating work and exit after changing the clock
1736 	 * state to CLKS_ON.
1737 	 */
1738 	if (hba->clk_gating.is_suspended ||
1739 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1740 		hba->clk_gating.state = CLKS_ON;
1741 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1742 					hba->clk_gating.state);
1743 		goto rel_lock;
1744 	}
1745 
1746 	if (hba->clk_gating.active_reqs
1747 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1748 		|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1749 		|| hba->active_uic_cmd || hba->uic_async_done)
1750 		goto rel_lock;
1751 
1752 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1753 
1754 	/* put the link into hibern8 mode before turning off clocks */
1755 	if (ufshcd_can_hibern8_during_gating(hba)) {
1756 		ret = ufshcd_uic_hibern8_enter(hba);
1757 		if (ret) {
1758 			hba->clk_gating.state = CLKS_ON;
1759 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1760 					__func__, ret);
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			goto out;
1764 		}
1765 		ufshcd_set_link_hibern8(hba);
1766 	}
1767 
1768 	ufshcd_disable_irq(hba);
1769 
1770 	ufshcd_setup_clocks(hba, false);
1771 
1772 	/* Put the host controller in low power mode if possible */
1773 	ufshcd_hba_vreg_set_lpm(hba);
1774 	/*
1775 	 * In case you are here to cancel this work the gating state
1776 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1777 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1778 	 * and a request to turn them on is pending. By doing this way,
1779 	 * we keep the state machine in tact and this would ultimately
1780 	 * prevent from doing cancel work multiple times when there are
1781 	 * new requests arriving before the current cancel work is done.
1782 	 */
1783 	spin_lock_irqsave(hba->host->host_lock, flags);
1784 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1785 		hba->clk_gating.state = CLKS_OFF;
1786 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1787 					hba->clk_gating.state);
1788 	}
1789 rel_lock:
1790 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1791 out:
1792 	return;
1793 }
1794 
1795 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1796 static void __ufshcd_release(struct ufs_hba *hba)
1797 {
1798 	if (!ufshcd_is_clkgating_allowed(hba))
1799 		return;
1800 
1801 	hba->clk_gating.active_reqs--;
1802 
1803 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1804 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1805 	    hba->outstanding_tasks ||
1806 	    hba->active_uic_cmd || hba->uic_async_done ||
1807 	    hba->clk_gating.state == CLKS_OFF)
1808 		return;
1809 
1810 	hba->clk_gating.state = REQ_CLKS_OFF;
1811 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1812 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1813 			   &hba->clk_gating.gate_work,
1814 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1815 }
1816 
ufshcd_release(struct ufs_hba * hba)1817 void ufshcd_release(struct ufs_hba *hba)
1818 {
1819 	unsigned long flags;
1820 
1821 	spin_lock_irqsave(hba->host->host_lock, flags);
1822 	__ufshcd_release(hba);
1823 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1824 }
1825 EXPORT_SYMBOL_GPL(ufshcd_release);
1826 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1827 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1828 		struct device_attribute *attr, char *buf)
1829 {
1830 	struct ufs_hba *hba = dev_get_drvdata(dev);
1831 
1832 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1833 }
1834 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1835 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1836 		struct device_attribute *attr, const char *buf, size_t count)
1837 {
1838 	struct ufs_hba *hba = dev_get_drvdata(dev);
1839 	unsigned long flags, value;
1840 
1841 	if (kstrtoul(buf, 0, &value))
1842 		return -EINVAL;
1843 
1844 	spin_lock_irqsave(hba->host->host_lock, flags);
1845 	hba->clk_gating.delay_ms = value;
1846 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1847 	return count;
1848 }
1849 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1850 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1851 		struct device_attribute *attr, char *buf)
1852 {
1853 	struct ufs_hba *hba = dev_get_drvdata(dev);
1854 
1855 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1856 }
1857 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1858 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1859 		struct device_attribute *attr, const char *buf, size_t count)
1860 {
1861 	struct ufs_hba *hba = dev_get_drvdata(dev);
1862 	unsigned long flags;
1863 	u32 value;
1864 
1865 	if (kstrtou32(buf, 0, &value))
1866 		return -EINVAL;
1867 
1868 	value = !!value;
1869 
1870 	spin_lock_irqsave(hba->host->host_lock, flags);
1871 	if (value == hba->clk_gating.is_enabled)
1872 		goto out;
1873 
1874 	if (value)
1875 		__ufshcd_release(hba);
1876 	else
1877 		hba->clk_gating.active_reqs++;
1878 
1879 	hba->clk_gating.is_enabled = value;
1880 out:
1881 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1882 	return count;
1883 }
1884 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1885 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1886 {
1887 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1888 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1889 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1890 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1891 	hba->clk_gating.delay_attr.attr.mode = 0644;
1892 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1893 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1894 
1895 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1896 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1897 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1898 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1899 	hba->clk_gating.enable_attr.attr.mode = 0644;
1900 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1901 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1902 }
1903 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1904 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1905 {
1906 	if (hba->clk_gating.delay_attr.attr.name)
1907 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1908 	if (hba->clk_gating.enable_attr.attr.name)
1909 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1910 }
1911 
ufshcd_init_clk_gating(struct ufs_hba * hba)1912 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1913 {
1914 	char wq_name[sizeof("ufs_clk_gating_00")];
1915 
1916 	if (!ufshcd_is_clkgating_allowed(hba))
1917 		return;
1918 
1919 	hba->clk_gating.state = CLKS_ON;
1920 
1921 	hba->clk_gating.delay_ms = 150;
1922 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1923 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1924 
1925 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1926 		 hba->host->host_no);
1927 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1928 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1929 
1930 	ufshcd_init_clk_gating_sysfs(hba);
1931 
1932 	hba->clk_gating.is_enabled = true;
1933 	hba->clk_gating.is_initialized = true;
1934 }
1935 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1936 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1937 {
1938 	if (!hba->clk_gating.is_initialized)
1939 		return;
1940 	ufshcd_remove_clk_gating_sysfs(hba);
1941 	cancel_work_sync(&hba->clk_gating.ungate_work);
1942 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1943 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1944 	hba->clk_gating.is_initialized = false;
1945 }
1946 
1947 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1948 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1949 {
1950 	bool queue_resume_work = false;
1951 	ktime_t curr_t = ktime_get();
1952 	unsigned long flags;
1953 
1954 	if (!ufshcd_is_clkscaling_supported(hba))
1955 		return;
1956 
1957 	spin_lock_irqsave(hba->host->host_lock, flags);
1958 	if (!hba->clk_scaling.active_reqs++)
1959 		queue_resume_work = true;
1960 
1961 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
1962 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 		return;
1964 	}
1965 
1966 	if (queue_resume_work)
1967 		queue_work(hba->clk_scaling.workq,
1968 			   &hba->clk_scaling.resume_work);
1969 
1970 	if (!hba->clk_scaling.window_start_t) {
1971 		hba->clk_scaling.window_start_t = curr_t;
1972 		hba->clk_scaling.tot_busy_t = 0;
1973 		hba->clk_scaling.is_busy_started = false;
1974 	}
1975 
1976 	if (!hba->clk_scaling.is_busy_started) {
1977 		hba->clk_scaling.busy_start_t = curr_t;
1978 		hba->clk_scaling.is_busy_started = true;
1979 	}
1980 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1981 }
1982 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)1983 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
1984 {
1985 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1986 	unsigned long flags;
1987 
1988 	if (!ufshcd_is_clkscaling_supported(hba))
1989 		return;
1990 
1991 	spin_lock_irqsave(hba->host->host_lock, flags);
1992 	hba->clk_scaling.active_reqs--;
1993 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
1994 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
1995 					scaling->busy_start_t));
1996 		scaling->busy_start_t = 0;
1997 		scaling->is_busy_started = false;
1998 	}
1999 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2000 }
2001 
ufshcd_monitor_opcode2dir(u8 opcode)2002 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2003 {
2004 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2005 		return READ;
2006 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2007 		return WRITE;
2008 	else
2009 		return -EINVAL;
2010 }
2011 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2012 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2013 						struct ufshcd_lrb *lrbp)
2014 {
2015 	struct ufs_hba_monitor *m = &hba->monitor;
2016 
2017 	return (m->enabled && lrbp && lrbp->cmd &&
2018 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2019 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2020 }
2021 
ufshcd_start_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2022 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2023 {
2024 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2025 	unsigned long flags;
2026 
2027 	spin_lock_irqsave(hba->host->host_lock, flags);
2028 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2029 		hba->monitor.busy_start_ts[dir] = ktime_get();
2030 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2031 }
2032 
ufshcd_update_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2033 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2034 {
2035 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2036 	unsigned long flags;
2037 
2038 	spin_lock_irqsave(hba->host->host_lock, flags);
2039 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2040 		struct request *req = lrbp->cmd->request;
2041 		struct ufs_hba_monitor *m = &hba->monitor;
2042 		ktime_t now, inc, lat;
2043 
2044 		now = lrbp->compl_time_stamp;
2045 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2046 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2047 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2048 
2049 		/* Update latencies */
2050 		m->nr_req[dir]++;
2051 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2052 		m->lat_sum[dir] += lat;
2053 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2054 			m->lat_max[dir] = lat;
2055 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2056 			m->lat_min[dir] = lat;
2057 
2058 		m->nr_queued[dir]--;
2059 		/* Push forward the busy start of monitor */
2060 		m->busy_start_ts[dir] = now;
2061 	}
2062 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2063 }
2064 
2065 /**
2066  * ufshcd_send_command - Send SCSI or device management commands
2067  * @hba: per adapter instance
2068  * @task_tag: Task tag of the command
2069  */
2070 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)2071 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2072 {
2073 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2074 
2075 	lrbp->issue_time_stamp = ktime_get();
2076 	lrbp->compl_time_stamp = ktime_set(0, 0);
2077 	trace_android_vh_ufs_send_command(hba, lrbp);
2078 	ufshcd_add_command_trace(hba, task_tag, "send");
2079 	ufshcd_clk_scaling_start_busy(hba);
2080 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2081 		ufshcd_start_monitor(hba, lrbp);
2082 	if (hba->vops && hba->vops->setup_xfer_req)
2083 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2084 	if (ufshcd_has_utrlcnr(hba)) {
2085 		set_bit(task_tag, &hba->outstanding_reqs);
2086 		ufshcd_writel(hba, 1 << task_tag,
2087 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2088 	} else {
2089 		unsigned long flags;
2090 
2091 		spin_lock_irqsave(hba->host->host_lock, flags);
2092 		set_bit(task_tag, &hba->outstanding_reqs);
2093 		ufshcd_writel(hba, 1 << task_tag,
2094 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2095 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2096 	}
2097 	/* Make sure that doorbell is committed immediately */
2098 	wmb();
2099 	trace_android_vh_ufs_send_command_post_change(hba, lrbp);
2100 }
2101 
2102 /**
2103  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2104  * @lrbp: pointer to local reference block
2105  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2106 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2107 {
2108 	int len;
2109 	if (lrbp->sense_buffer &&
2110 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2111 		int len_to_copy;
2112 
2113 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2114 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2115 
2116 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2117 		       len_to_copy);
2118 	}
2119 }
2120 
2121 /**
2122  * ufshcd_copy_query_response() - Copy the Query Response and the data
2123  * descriptor
2124  * @hba: per adapter instance
2125  * @lrbp: pointer to local reference block
2126  */
2127 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2128 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2129 {
2130 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2131 
2132 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2133 
2134 	/* Get the descriptor */
2135 	if (hba->dev_cmd.query.descriptor &&
2136 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2137 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2138 				GENERAL_UPIU_REQUEST_SIZE;
2139 		u16 resp_len;
2140 		u16 buf_len;
2141 
2142 		/* data segment length */
2143 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2144 						MASK_QUERY_DATA_SEG_LEN;
2145 		buf_len = be16_to_cpu(
2146 				hba->dev_cmd.query.request.upiu_req.length);
2147 		if (likely(buf_len >= resp_len)) {
2148 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2149 		} else {
2150 			dev_warn(hba->dev,
2151 				 "%s: rsp size %d is bigger than buffer size %d",
2152 				 __func__, resp_len, buf_len);
2153 			return -EINVAL;
2154 		}
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 /**
2161  * ufshcd_hba_capabilities - Read controller capabilities
2162  * @hba: per adapter instance
2163  *
2164  * Return: 0 on success, negative on error.
2165  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2166 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2167 {
2168 	int err;
2169 
2170 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2171 
2172 	/* nutrs and nutmrs are 0 based values */
2173 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2174 	hba->nutmrs =
2175 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2176 	ufs_hba_add_info(hba)->reserved_slot = hba->nutrs - 1;
2177 
2178 	/* Read crypto capabilities */
2179 	err = ufshcd_hba_init_crypto_capabilities(hba);
2180 	if (err)
2181 		dev_err(hba->dev, "crypto setup failed\n");
2182 
2183 	return err;
2184 }
2185 
2186 /**
2187  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2188  *                            to accept UIC commands
2189  * @hba: per adapter instance
2190  * Return true on success, else false
2191  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2192 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2193 {
2194 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2195 		return true;
2196 	else
2197 		return false;
2198 }
2199 
2200 /**
2201  * ufshcd_get_upmcrs - Get the power mode change request status
2202  * @hba: Pointer to adapter instance
2203  *
2204  * This function gets the UPMCRS field of HCS register
2205  * Returns value of UPMCRS field
2206  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2207 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2208 {
2209 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2210 }
2211 
2212 /**
2213  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2214  * @hba: per adapter instance
2215  * @uic_cmd: UIC command
2216  *
2217  * Mutex must be held.
2218  */
2219 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2220 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2221 {
2222 	WARN_ON(hba->active_uic_cmd);
2223 
2224 	hba->active_uic_cmd = uic_cmd;
2225 
2226 	/* Write Args */
2227 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2228 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2229 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2230 
2231 	ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2232 
2233 	/* Write UIC Cmd */
2234 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2235 		      REG_UIC_COMMAND);
2236 }
2237 
2238 /**
2239  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2240  * @hba: per adapter instance
2241  * @uic_cmd: UIC command
2242  *
2243  * Must be called with mutex held.
2244  * Returns 0 only if success.
2245  */
2246 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2247 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2248 {
2249 	int ret;
2250 	unsigned long flags;
2251 
2252 	if (wait_for_completion_timeout(&uic_cmd->done,
2253 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2254 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2255 	} else {
2256 		ret = -ETIMEDOUT;
2257 		dev_err(hba->dev,
2258 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2259 			uic_cmd->command, uic_cmd->argument3);
2260 
2261 		if (!uic_cmd->cmd_active) {
2262 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2263 				__func__);
2264 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2265 		}
2266 	}
2267 
2268 	spin_lock_irqsave(hba->host->host_lock, flags);
2269 	hba->active_uic_cmd = NULL;
2270 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2271 
2272 	return ret;
2273 }
2274 
2275 /**
2276  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2277  * @hba: per adapter instance
2278  * @uic_cmd: UIC command
2279  * @completion: initialize the completion only if this is set to true
2280  *
2281  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2282  * with mutex held and host_lock locked.
2283  * Returns 0 only if success.
2284  */
2285 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2286 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2287 		      bool completion)
2288 {
2289 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2290 		dev_err(hba->dev,
2291 			"Controller not ready to accept UIC commands\n");
2292 		return -EIO;
2293 	}
2294 
2295 	if (completion)
2296 		init_completion(&uic_cmd->done);
2297 
2298 	uic_cmd->cmd_active = 1;
2299 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2300 
2301 	return 0;
2302 }
2303 
2304 /**
2305  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2306  * @hba: per adapter instance
2307  * @uic_cmd: UIC command
2308  *
2309  * Returns 0 only if success.
2310  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2311 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2312 {
2313 	int ret;
2314 	unsigned long flags;
2315 
2316 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2317 		return 0;
2318 
2319 	ufshcd_hold(hba, false);
2320 	mutex_lock(&hba->uic_cmd_mutex);
2321 	ufshcd_add_delay_before_dme_cmd(hba);
2322 
2323 	spin_lock_irqsave(hba->host->host_lock, flags);
2324 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2325 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2326 	if (!ret)
2327 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2328 
2329 	mutex_unlock(&hba->uic_cmd_mutex);
2330 
2331 	ufshcd_release(hba);
2332 	return ret;
2333 }
2334 
2335 /**
2336  * ufshcd_map_sg - Map scatter-gather list to prdt
2337  * @hba: per adapter instance
2338  * @lrbp: pointer to local reference block
2339  *
2340  * Returns 0 in case of success, non-zero value in case of failure
2341  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2342 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2343 {
2344 	struct ufshcd_sg_entry *prd;
2345 	struct scatterlist *sg;
2346 	struct scsi_cmnd *cmd;
2347 	int sg_segments;
2348 	int i;
2349 	int err;
2350 
2351 	cmd = lrbp->cmd;
2352 	sg_segments = scsi_dma_map(cmd);
2353 	if (sg_segments < 0)
2354 		return sg_segments;
2355 
2356 	if (sg_segments) {
2357 
2358 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2359 			lrbp->utr_descriptor_ptr->prd_table_length =
2360 				cpu_to_le16(sg_segments * hba->sg_entry_size);
2361 		else
2362 			lrbp->utr_descriptor_ptr->prd_table_length =
2363 				cpu_to_le16((u16) (sg_segments));
2364 
2365 		prd = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2366 
2367 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2368 			prd->size =
2369 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2370 			prd->base_addr =
2371 				cpu_to_le32(lower_32_bits(sg->dma_address));
2372 			prd->upper_addr =
2373 				cpu_to_le32(upper_32_bits(sg->dma_address));
2374 			prd->reserved = 0;
2375 			prd = (void *)prd + hba->sg_entry_size;
2376 		}
2377 	} else {
2378 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2379 	}
2380 
2381 	err = 0;
2382 	trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2383 	return err;
2384 }
2385 
2386 /**
2387  * ufshcd_enable_intr - enable interrupts
2388  * @hba: per adapter instance
2389  * @intrs: interrupt bits
2390  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2391 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2392 {
2393 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2394 
2395 	if (hba->ufs_version == ufshci_version(1, 0)) {
2396 		u32 rw;
2397 		rw = set & INTERRUPT_MASK_RW_VER_10;
2398 		set = rw | ((set ^ intrs) & intrs);
2399 	} else {
2400 		set |= intrs;
2401 	}
2402 
2403 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2404 }
2405 
2406 /**
2407  * ufshcd_disable_intr - disable interrupts
2408  * @hba: per adapter instance
2409  * @intrs: interrupt bits
2410  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2411 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2412 {
2413 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2414 
2415 	if (hba->ufs_version == ufshci_version(1, 0)) {
2416 		u32 rw;
2417 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2418 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2419 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2420 
2421 	} else {
2422 		set &= ~intrs;
2423 	}
2424 
2425 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2426 }
2427 
2428 /**
2429  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2430  * descriptor according to request
2431  * @lrbp: pointer to local reference block
2432  * @upiu_flags: flags required in the header
2433  * @cmd_dir: requests data direction
2434  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2435 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2436 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2437 {
2438 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2439 	u32 data_direction;
2440 	u32 dword_0;
2441 	u32 dword_1 = 0;
2442 	u32 dword_3 = 0;
2443 
2444 	if (cmd_dir == DMA_FROM_DEVICE) {
2445 		data_direction = UTP_DEVICE_TO_HOST;
2446 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2447 	} else if (cmd_dir == DMA_TO_DEVICE) {
2448 		data_direction = UTP_HOST_TO_DEVICE;
2449 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2450 	} else {
2451 		data_direction = UTP_NO_DATA_TRANSFER;
2452 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2453 	}
2454 
2455 	dword_0 = data_direction | (lrbp->command_type
2456 				<< UPIU_COMMAND_TYPE_OFFSET);
2457 	if (lrbp->intr_cmd)
2458 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2459 
2460 	/* Prepare crypto related dwords */
2461 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2462 
2463 	/* Transfer request descriptor header fields */
2464 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2465 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2466 	/*
2467 	 * assigning invalid value for command status. Controller
2468 	 * updates OCS on command completion, with the command
2469 	 * status
2470 	 */
2471 	req_desc->header.dword_2 =
2472 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2473 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2474 
2475 	req_desc->prd_table_length = 0;
2476 }
2477 
2478 /**
2479  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2480  * for scsi commands
2481  * @lrbp: local reference block pointer
2482  * @upiu_flags: flags
2483  */
2484 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2485 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2486 {
2487 	struct scsi_cmnd *cmd = lrbp->cmd;
2488 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2489 	unsigned short cdb_len;
2490 
2491 	/* command descriptor fields */
2492 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2493 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2494 				lrbp->lun, lrbp->task_tag);
2495 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2496 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2497 
2498 	/* Total EHS length and Data segment length will be zero */
2499 	ucd_req_ptr->header.dword_2 = 0;
2500 
2501 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2502 
2503 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2504 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2505 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2506 
2507 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2508 }
2509 
2510 /**
2511  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2512  * for query requsts
2513  * @hba: UFS hba
2514  * @lrbp: local reference block pointer
2515  * @upiu_flags: flags
2516  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2517 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2518 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2519 {
2520 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2521 	struct ufs_query *query = &hba->dev_cmd.query;
2522 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2523 
2524 	/* Query request header */
2525 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2526 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2527 			lrbp->lun, lrbp->task_tag);
2528 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2529 			0, query->request.query_func, 0, 0);
2530 
2531 	/* Data segment length only need for WRITE_DESC */
2532 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2533 		ucd_req_ptr->header.dword_2 =
2534 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2535 	else
2536 		ucd_req_ptr->header.dword_2 = 0;
2537 
2538 	/* Copy the Query Request buffer as is */
2539 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2540 			QUERY_OSF_SIZE);
2541 
2542 	/* Copy the Descriptor */
2543 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2544 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2545 
2546 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2547 }
2548 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2549 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2550 {
2551 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2552 
2553 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2554 
2555 	/* command descriptor fields */
2556 	ucd_req_ptr->header.dword_0 =
2557 		UPIU_HEADER_DWORD(
2558 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2559 	/* clear rest of the fields of basic header */
2560 	ucd_req_ptr->header.dword_1 = 0;
2561 	ucd_req_ptr->header.dword_2 = 0;
2562 
2563 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2564 }
2565 
2566 /**
2567  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2568  *			     for Device Management Purposes
2569  * @hba: per adapter instance
2570  * @lrbp: pointer to local reference block
2571  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2572 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2573 				      struct ufshcd_lrb *lrbp)
2574 {
2575 	u8 upiu_flags;
2576 	int ret = 0;
2577 
2578 	if (hba->ufs_version <= ufshci_version(1, 1))
2579 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2580 	else
2581 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2582 
2583 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2584 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2585 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2586 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2587 		ufshcd_prepare_utp_nop_upiu(lrbp);
2588 	else
2589 		ret = -EINVAL;
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2596  *			   for SCSI Purposes
2597  * @hba: per adapter instance
2598  * @lrbp: pointer to local reference block
2599  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2600 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2601 {
2602 	u8 upiu_flags;
2603 	int ret = 0;
2604 
2605 	if (hba->ufs_version <= ufshci_version(1, 1))
2606 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2607 	else
2608 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2609 
2610 	if (likely(lrbp->cmd)) {
2611 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2612 						lrbp->cmd->sc_data_direction);
2613 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2614 	} else {
2615 		ret = -EINVAL;
2616 	}
2617 
2618 	return ret;
2619 }
2620 
2621 /**
2622  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2623  * @upiu_wlun_id: UPIU W-LUN id
2624  *
2625  * Returns SCSI W-LUN id
2626  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2627 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2628 {
2629 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2630 }
2631 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2632 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2633 {
2634 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2635 		i * sizeof_utp_transfer_cmd_desc(hba);
2636 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2637 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2638 		i * sizeof_utp_transfer_cmd_desc(hba);
2639 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2640 				       response_upiu);
2641 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2642 
2643 	lrb->utr_descriptor_ptr = utrdlp + i;
2644 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2645 		i * sizeof(struct utp_transfer_req_desc);
2646 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp;
2647 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2648 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2649 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2650 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2651 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2652 }
2653 
2654 /**
2655  * ufshcd_queuecommand - main entry point for SCSI requests
2656  * @host: SCSI host pointer
2657  * @cmd: command from SCSI Midlayer
2658  *
2659  * Returns 0 for success, non-zero in case of failure
2660  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2661 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2662 {
2663 	struct ufshcd_lrb *lrbp;
2664 	struct ufs_hba *hba;
2665 	int tag;
2666 	int err = 0;
2667 
2668 	hba = shost_priv(host);
2669 
2670 	tag = cmd->request->tag;
2671 	if (!ufshcd_valid_tag(hba, tag)) {
2672 		dev_err(hba->dev,
2673 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2674 			__func__, tag, cmd, cmd->request);
2675 		BUG();
2676 	}
2677 
2678 	if (!down_read_trylock(&hba->clk_scaling_lock))
2679 		return SCSI_MLQUEUE_HOST_BUSY;
2680 
2681 	switch (hba->ufshcd_state) {
2682 	case UFSHCD_STATE_OPERATIONAL:
2683 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2684 		break;
2685 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2686 		/*
2687 		 * pm_runtime_get_sync() is used at error handling preparation
2688 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2689 		 * PM ops, it can never be finished if we let SCSI layer keep
2690 		 * retrying it, which gets err handler stuck forever. Neither
2691 		 * can we let the scsi cmd pass through, because UFS is in bad
2692 		 * state, the scsi cmd may eventually time out, which will get
2693 		 * err handler blocked for too long. So, just fail the scsi cmd
2694 		 * sent from PM ops, err handler can recover PM error anyways.
2695 		 */
2696 		if (hba->pm_op_in_progress) {
2697 			hba->force_reset = true;
2698 			set_host_byte(cmd, DID_BAD_TARGET);
2699 			cmd->scsi_done(cmd);
2700 			goto out;
2701 		}
2702 		fallthrough;
2703 	case UFSHCD_STATE_RESET:
2704 		err = SCSI_MLQUEUE_HOST_BUSY;
2705 		goto out;
2706 	case UFSHCD_STATE_ERROR:
2707 		set_host_byte(cmd, DID_ERROR);
2708 		cmd->scsi_done(cmd);
2709 		goto out;
2710 	default:
2711 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2712 				__func__, hba->ufshcd_state);
2713 		set_host_byte(cmd, DID_BAD_TARGET);
2714 		cmd->scsi_done(cmd);
2715 		goto out;
2716 	}
2717 
2718 	hba->req_abort_count = 0;
2719 
2720 	err = ufshcd_hold(hba, true);
2721 	if (err) {
2722 		err = SCSI_MLQUEUE_HOST_BUSY;
2723 		goto out;
2724 	}
2725 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2726 		(hba->clk_gating.state != CLKS_ON));
2727 
2728 	lrbp = &hba->lrb[tag];
2729 	WARN_ON(lrbp->cmd);
2730 	lrbp->cmd = cmd;
2731 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2732 	lrbp->sense_buffer = cmd->sense_buffer;
2733 	lrbp->task_tag = tag;
2734 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2735 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2736 
2737 	ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2738 
2739 	trace_android_vh_ufs_prepare_command(hba, cmd->request, lrbp, &err);
2740 	if (err) {
2741 		lrbp->cmd = NULL;
2742 		ufshcd_release(hba);
2743 		goto out;
2744 	}
2745 
2746 	lrbp->req_abort_skip = false;
2747 
2748 	err = ufshpb_prep(hba, lrbp);
2749 	if (err == -EAGAIN) {
2750 		lrbp->cmd = NULL;
2751 		ufshcd_release(hba);
2752 		goto out;
2753 	}
2754 
2755 	ufshcd_comp_scsi_upiu(hba, lrbp);
2756 
2757 	err = ufshcd_map_sg(hba, lrbp);
2758 	if (err) {
2759 		lrbp->cmd = NULL;
2760 		ufshcd_release(hba);
2761 		goto out;
2762 	}
2763 	/* Make sure descriptors are ready before ringing the doorbell */
2764 	wmb();
2765 	trace_android_vh_ufs_perf_huristic_ctrl(hba, lrbp, &err);
2766 	if (err)
2767 		goto out;
2768 	ufshcd_send_command(hba, tag);
2769 out:
2770 	up_read(&hba->clk_scaling_lock);
2771 	return err;
2772 }
2773 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2774 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2775 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2776 {
2777 	lrbp->cmd = NULL;
2778 	lrbp->sense_bufflen = 0;
2779 	lrbp->sense_buffer = NULL;
2780 	lrbp->task_tag = tag;
2781 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2782 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2783 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2784 	hba->dev_cmd.type = cmd_type;
2785 
2786 	return ufshcd_compose_devman_upiu(hba, lrbp);
2787 }
2788 
2789 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2790 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2791 {
2792 	int err = 0;
2793 	unsigned long flags;
2794 	u32 mask = 1 << tag;
2795 
2796 	/* clear outstanding transaction before retry */
2797 	spin_lock_irqsave(hba->host->host_lock, flags);
2798 	ufshcd_utrl_clear(hba, tag);
2799 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2800 
2801 	/*
2802 	 * wait for for h/w to clear corresponding bit in door-bell.
2803 	 * max. wait is 1 sec.
2804 	 */
2805 	err = ufshcd_wait_for_register(hba,
2806 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2807 			mask, ~mask, 1000, 1000);
2808 
2809 	return err;
2810 }
2811 
2812 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2813 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2814 {
2815 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2816 
2817 	/* Get the UPIU response */
2818 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2819 				UPIU_RSP_CODE_OFFSET;
2820 	return query_res->response;
2821 }
2822 
2823 /**
2824  * ufshcd_dev_cmd_completion() - handles device management command responses
2825  * @hba: per adapter instance
2826  * @lrbp: pointer to local reference block
2827  */
2828 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2829 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2830 {
2831 	int resp;
2832 	int err = 0;
2833 
2834 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2835 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2836 
2837 	switch (resp) {
2838 	case UPIU_TRANSACTION_NOP_IN:
2839 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2840 			err = -EINVAL;
2841 			dev_err(hba->dev, "%s: unexpected response %x\n",
2842 					__func__, resp);
2843 		}
2844 		break;
2845 	case UPIU_TRANSACTION_QUERY_RSP:
2846 		err = ufshcd_check_query_response(hba, lrbp);
2847 		if (!err)
2848 			err = ufshcd_copy_query_response(hba, lrbp);
2849 		break;
2850 	case UPIU_TRANSACTION_REJECT_UPIU:
2851 		/* TODO: handle Reject UPIU Response */
2852 		err = -EPERM;
2853 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2854 				__func__);
2855 		break;
2856 	default:
2857 		err = -EINVAL;
2858 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2859 				__func__, resp);
2860 		break;
2861 	}
2862 
2863 	return err;
2864 }
2865 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2866 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2867 		struct ufshcd_lrb *lrbp, int max_timeout)
2868 {
2869 	unsigned long time_left = msecs_to_jiffies(max_timeout);
2870 	unsigned long flags;
2871 	bool pending;
2872 	int err;
2873 
2874 retry:
2875 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2876 					time_left);
2877 
2878 	/* Make sure descriptors are ready before ringing the doorbell */
2879 	wmb();
2880 	if (likely(time_left)) {
2881 		/*
2882 		* The completion handler called complete() and the caller of
2883 		* this function still owns the @lrbp tag so the code below does
2884 		* not trigger any race conditions.
2885 		*/
2886 		hba->dev_cmd.complete = NULL;
2887 		err = ufshcd_get_tr_ocs(lrbp);
2888 		if (!err)
2889 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2890 	} else {
2891 		err = -ETIMEDOUT;
2892 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2893 			__func__, lrbp->task_tag);
2894 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
2895 			/* successfully cleared the command, retry if needed */
2896 			err = -EAGAIN;
2897 			/*
2898 			* Since clearing the command succeeded we also need to
2899 			* clear the task tag bit from the outstanding_reqs
2900 			* variable.
2901 			*/
2902 			spin_lock_irqsave(hba->host->host_lock, flags);
2903 			pending = test_bit(lrbp->task_tag,
2904 						&hba->outstanding_reqs);
2905 			if (pending) {
2906 					hba->dev_cmd.complete = NULL;
2907 					__clear_bit(lrbp->task_tag,
2908 							&hba->outstanding_reqs);
2909 			}
2910 			spin_unlock_irqrestore(hba->host->host_lock, flags);
2911 
2912 			if (!pending) {
2913 				/*
2914 				* The completion handler ran while we tried to
2915 				* clear the command.
2916 				*/
2917 				time_left = 1;
2918 				goto retry;
2919 			}
2920 		} else {
2921 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
2922 				__func__, lrbp->task_tag);
2923 			spin_lock_irqsave(hba->host->host_lock, flags);
2924 			pending = test_bit(lrbp->task_tag,
2925 					   &hba->outstanding_reqs);
2926 			if (pending)
2927 				hba->dev_cmd.complete = NULL;
2928 			spin_unlock_irqrestore(hba->host->host_lock, flags);
2929 
2930 			if (!pending) {
2931 				/*
2932 				 * The completion handler ran while we tried to
2933 				 * clear the command.
2934 				 */
2935 				time_left = 1;
2936 				goto retry;
2937 			}
2938 		}
2939 	}
2940 
2941 	return err;
2942 }
2943 
2944 /**
2945  * ufshcd_exec_dev_cmd - API for sending device management requests
2946  * @hba: UFS hba
2947  * @cmd_type: specifies the type (NOP, Query...)
2948  * @timeout: timeout in milliseconds
2949  *
2950  * NOTE: Since there is only one available tag for device management commands,
2951  * it is expected you hold the hba->dev_cmd.lock mutex.
2952  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2953 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2954 		enum dev_cmd_type cmd_type, int timeout)
2955 {
2956 	DECLARE_COMPLETION_ONSTACK(wait);
2957 	const u32 tag = ufs_hba_add_info(hba)->reserved_slot;
2958 	struct ufshcd_lrb *lrbp;
2959 	int err;
2960 
2961 	/* Protects use of ufs_hba_add_info(hba)->reserved_slot. */
2962 	lockdep_assert_held(&hba->dev_cmd.lock);
2963 
2964 	down_read(&hba->clk_scaling_lock);
2965 
2966 	lrbp = &hba->lrb[tag];
2967 	WARN_ON(lrbp->cmd);
2968 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2969 	if (unlikely(err))
2970 		goto out;
2971 
2972 	hba->dev_cmd.complete = &wait;
2973 
2974 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2975 	/* Make sure descriptors are ready before ringing the doorbell */
2976 	wmb();
2977 
2978 	ufshcd_send_command(hba, tag);
2979 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2980 	ufshcd_add_query_upiu_trace(hba, tag,
2981 			err ? "query_complete_err" : "query_complete");
2982 
2983 out:
2984 	up_read(&hba->clk_scaling_lock);
2985 	return err;
2986 }
2987 
2988 /**
2989  * ufshcd_init_query() - init the query response and request parameters
2990  * @hba: per-adapter instance
2991  * @request: address of the request pointer to be initialized
2992  * @response: address of the response pointer to be initialized
2993  * @opcode: operation to perform
2994  * @idn: flag idn to access
2995  * @index: LU number to access
2996  * @selector: query/flag/descriptor further identification
2997  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2998 static inline void ufshcd_init_query(struct ufs_hba *hba,
2999 		struct ufs_query_req **request, struct ufs_query_res **response,
3000 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3001 {
3002 	*request = &hba->dev_cmd.query.request;
3003 	*response = &hba->dev_cmd.query.response;
3004 	memset(*request, 0, sizeof(struct ufs_query_req));
3005 	memset(*response, 0, sizeof(struct ufs_query_res));
3006 	(*request)->upiu_req.opcode = opcode;
3007 	(*request)->upiu_req.idn = idn;
3008 	(*request)->upiu_req.index = index;
3009 	(*request)->upiu_req.selector = selector;
3010 }
3011 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3012 int ufshcd_query_flag_retry(struct ufs_hba *hba,
3013 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3014 {
3015 	int ret;
3016 	int retries;
3017 
3018 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3019 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3020 		if (ret)
3021 			dev_dbg(hba->dev,
3022 				"%s: failed with error %d, retries %d\n",
3023 				__func__, ret, retries);
3024 		else
3025 			break;
3026 	}
3027 
3028 	if (ret)
3029 		dev_err(hba->dev,
3030 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3031 			__func__, opcode, idn, ret, retries);
3032 	return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3035 
3036 /**
3037  * ufshcd_query_flag() - API function for sending flag query requests
3038  * @hba: per-adapter instance
3039  * @opcode: flag query to perform
3040  * @idn: flag idn to access
3041  * @index: flag index to access
3042  * @flag_res: the flag value after the query request completes
3043  *
3044  * Returns 0 for success, non-zero in case of failure
3045  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3046 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3047 			enum flag_idn idn, u8 index, bool *flag_res)
3048 {
3049 	struct ufs_query_req *request = NULL;
3050 	struct ufs_query_res *response = NULL;
3051 	int err, selector = 0;
3052 	int timeout = QUERY_REQ_TIMEOUT;
3053 
3054 	BUG_ON(!hba);
3055 
3056 	ufshcd_hold(hba, false);
3057 	mutex_lock(&hba->dev_cmd.lock);
3058 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3059 			selector);
3060 
3061 	switch (opcode) {
3062 	case UPIU_QUERY_OPCODE_SET_FLAG:
3063 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3064 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3065 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3066 		break;
3067 	case UPIU_QUERY_OPCODE_READ_FLAG:
3068 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3069 		if (!flag_res) {
3070 			/* No dummy reads */
3071 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3072 					__func__);
3073 			err = -EINVAL;
3074 			goto out_unlock;
3075 		}
3076 		break;
3077 	default:
3078 		dev_err(hba->dev,
3079 			"%s: Expected query flag opcode but got = %d\n",
3080 			__func__, opcode);
3081 		err = -EINVAL;
3082 		goto out_unlock;
3083 	}
3084 
3085 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3086 
3087 	if (err) {
3088 		dev_err(hba->dev,
3089 			"%s: Sending flag query for idn %d failed, err = %d\n",
3090 			__func__, idn, err);
3091 		goto out_unlock;
3092 	}
3093 
3094 	if (flag_res)
3095 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3096 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3097 
3098 out_unlock:
3099 	mutex_unlock(&hba->dev_cmd.lock);
3100 	ufshcd_release(hba);
3101 	return err;
3102 }
3103 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3104 
3105 /**
3106  * ufshcd_query_attr - API function for sending attribute requests
3107  * @hba: per-adapter instance
3108  * @opcode: attribute opcode
3109  * @idn: attribute idn to access
3110  * @index: index field
3111  * @selector: selector field
3112  * @attr_val: the attribute value after the query request completes
3113  *
3114  * Returns 0 for success, non-zero in case of failure
3115 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3116 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3117 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3118 {
3119 	struct ufs_query_req *request = NULL;
3120 	struct ufs_query_res *response = NULL;
3121 	int err;
3122 
3123 	BUG_ON(!hba);
3124 
3125 	if (!attr_val) {
3126 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3127 				__func__, opcode);
3128 		return -EINVAL;
3129 	}
3130 
3131 	ufshcd_hold(hba, false);
3132 
3133 	mutex_lock(&hba->dev_cmd.lock);
3134 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3135 			selector);
3136 
3137 	switch (opcode) {
3138 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3139 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3140 		request->upiu_req.value = cpu_to_be32(*attr_val);
3141 		break;
3142 	case UPIU_QUERY_OPCODE_READ_ATTR:
3143 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3144 		break;
3145 	default:
3146 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3147 				__func__, opcode);
3148 		err = -EINVAL;
3149 		goto out_unlock;
3150 	}
3151 
3152 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3153 
3154 	if (err) {
3155 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3156 				__func__, opcode, idn, index, err);
3157 		goto out_unlock;
3158 	}
3159 
3160 	*attr_val = be32_to_cpu(response->upiu_res.value);
3161 
3162 out_unlock:
3163 	mutex_unlock(&hba->dev_cmd.lock);
3164 	ufshcd_release(hba);
3165 	return err;
3166 }
3167 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3168 
3169 /**
3170  * ufshcd_query_attr_retry() - API function for sending query
3171  * attribute with retries
3172  * @hba: per-adapter instance
3173  * @opcode: attribute opcode
3174  * @idn: attribute idn to access
3175  * @index: index field
3176  * @selector: selector field
3177  * @attr_val: the attribute value after the query request
3178  * completes
3179  *
3180  * Returns 0 for success, non-zero in case of failure
3181 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3182 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3183 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3184 	u32 *attr_val)
3185 {
3186 	int ret = 0;
3187 	u32 retries;
3188 
3189 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3190 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3191 						selector, attr_val);
3192 		if (ret)
3193 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3194 				__func__, ret, retries);
3195 		else
3196 			break;
3197 	}
3198 
3199 	if (ret)
3200 		dev_err(hba->dev,
3201 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3202 			__func__, idn, ret, QUERY_REQ_RETRIES);
3203 	return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3206 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3207 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3208 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3209 			u8 selector, u8 *desc_buf, int *buf_len)
3210 {
3211 	struct ufs_query_req *request = NULL;
3212 	struct ufs_query_res *response = NULL;
3213 	int err;
3214 
3215 	BUG_ON(!hba);
3216 
3217 	if (!desc_buf) {
3218 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3219 				__func__, opcode);
3220 		return -EINVAL;
3221 	}
3222 
3223 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3224 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3225 				__func__, *buf_len);
3226 		return -EINVAL;
3227 	}
3228 
3229 	ufshcd_hold(hba, false);
3230 
3231 	mutex_lock(&hba->dev_cmd.lock);
3232 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3233 			selector);
3234 	hba->dev_cmd.query.descriptor = desc_buf;
3235 	request->upiu_req.length = cpu_to_be16(*buf_len);
3236 
3237 	switch (opcode) {
3238 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3239 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3240 		break;
3241 	case UPIU_QUERY_OPCODE_READ_DESC:
3242 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3243 		break;
3244 	default:
3245 		dev_err(hba->dev,
3246 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3247 				__func__, opcode);
3248 		err = -EINVAL;
3249 		goto out_unlock;
3250 	}
3251 
3252 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3253 
3254 	if (err) {
3255 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3256 				__func__, opcode, idn, index, err);
3257 		goto out_unlock;
3258 	}
3259 
3260 	*buf_len = be16_to_cpu(response->upiu_res.length);
3261 
3262 out_unlock:
3263 	hba->dev_cmd.query.descriptor = NULL;
3264 	mutex_unlock(&hba->dev_cmd.lock);
3265 	ufshcd_release(hba);
3266 	return err;
3267 }
3268 
3269 /**
3270  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3271  * @hba: per-adapter instance
3272  * @opcode: attribute opcode
3273  * @idn: attribute idn to access
3274  * @index: index field
3275  * @selector: selector field
3276  * @desc_buf: the buffer that contains the descriptor
3277  * @buf_len: length parameter passed to the device
3278  *
3279  * Returns 0 for success, non-zero in case of failure.
3280  * The buf_len parameter will contain, on return, the length parameter
3281  * received on the response.
3282  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3283 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3284 				  enum query_opcode opcode,
3285 				  enum desc_idn idn, u8 index,
3286 				  u8 selector,
3287 				  u8 *desc_buf, int *buf_len)
3288 {
3289 	int err;
3290 	int retries;
3291 
3292 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3293 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3294 						selector, desc_buf, buf_len);
3295 		if (!err || err == -EINVAL)
3296 			break;
3297 	}
3298 
3299 	return err;
3300 }
3301 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3302 
3303 /**
3304  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3305  * @hba: Pointer to adapter instance
3306  * @desc_id: descriptor idn value
3307  * @desc_len: mapped desc length (out)
3308  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3309 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3310 				  int *desc_len)
3311 {
3312 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3313 	    desc_id == QUERY_DESC_IDN_RFU_1)
3314 		*desc_len = 0;
3315 	else
3316 		*desc_len = hba->desc_size[desc_id];
3317 }
3318 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3319 
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3320 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3321 				      enum desc_idn desc_id, int desc_index,
3322 				      unsigned char desc_len)
3323 {
3324 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3325 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3326 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3327 		 * than the RPMB unit, however, both descriptors share the same
3328 		 * desc_idn, to cover both unit descriptors with one length, we
3329 		 * choose the normal unit descriptor length by desc_index.
3330 		 */
3331 		hba->desc_size[desc_id] = desc_len;
3332 }
3333 
3334 /**
3335  * ufshcd_read_desc_param - read the specified descriptor parameter
3336  * @hba: Pointer to adapter instance
3337  * @desc_id: descriptor idn value
3338  * @desc_index: descriptor index
3339  * @param_offset: offset of the parameter to read
3340  * @param_read_buf: pointer to buffer where parameter would be read
3341  * @param_size: sizeof(param_read_buf)
3342  *
3343  * Return 0 in case of success, non-zero otherwise
3344  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3345 int ufshcd_read_desc_param(struct ufs_hba *hba,
3346 			   enum desc_idn desc_id,
3347 			   int desc_index,
3348 			   u8 param_offset,
3349 			   u8 *param_read_buf,
3350 			   u8 param_size)
3351 {
3352 	int ret;
3353 	u8 *desc_buf;
3354 	int buff_len;
3355 	bool is_kmalloc = true;
3356 
3357 	/* Safety check */
3358 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3359 		return -EINVAL;
3360 
3361 	/* Get the length of descriptor */
3362 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3363 	if (!buff_len) {
3364 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3365 		return -EINVAL;
3366 	}
3367 
3368 	if (param_offset >= buff_len) {
3369 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3370 			__func__, param_offset, desc_id, buff_len);
3371 		return -EINVAL;
3372 	}
3373 
3374 	/* Check whether we need temp memory */
3375 	if (param_offset != 0 || param_size < buff_len) {
3376 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3377 		if (!desc_buf)
3378 			return -ENOMEM;
3379 	} else {
3380 		desc_buf = param_read_buf;
3381 		is_kmalloc = false;
3382 	}
3383 
3384 	/* Request for full descriptor */
3385 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3386 					desc_id, desc_index, 0,
3387 					desc_buf, &buff_len);
3388 
3389 	if (ret) {
3390 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3391 			__func__, desc_id, desc_index, param_offset, ret);
3392 		goto out;
3393 	}
3394 
3395 	/* Sanity check */
3396 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3397 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3398 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3399 		ret = -EINVAL;
3400 		goto out;
3401 	}
3402 
3403 	/* Update descriptor length */
3404 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3405 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3406 
3407 	if (is_kmalloc) {
3408 		/* Make sure we don't copy more data than available */
3409 		if (param_offset >= buff_len)
3410 			ret = -EINVAL;
3411 		else
3412 			memcpy(param_read_buf, &desc_buf[param_offset],
3413 			       min_t(u32, param_size, buff_len - param_offset));
3414 	}
3415 out:
3416 	if (is_kmalloc)
3417 		kfree(desc_buf);
3418 	return ret;
3419 }
3420 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3421 
3422 /**
3423  * struct uc_string_id - unicode string
3424  *
3425  * @len: size of this descriptor inclusive
3426  * @type: descriptor type
3427  * @uc: unicode string character
3428  */
3429 struct uc_string_id {
3430 	u8 len;
3431 	u8 type;
3432 	wchar_t uc[];
3433 } __packed;
3434 
3435 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3436 static inline char ufshcd_remove_non_printable(u8 ch)
3437 {
3438 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3439 }
3440 
3441 /**
3442  * ufshcd_read_string_desc - read string descriptor
3443  * @hba: pointer to adapter instance
3444  * @desc_index: descriptor index
3445  * @buf: pointer to buffer where descriptor would be read,
3446  *       the caller should free the memory.
3447  * @ascii: if true convert from unicode to ascii characters
3448  *         null terminated string.
3449  *
3450  * Return:
3451  * *      string size on success.
3452  * *      -ENOMEM: on allocation failure
3453  * *      -EINVAL: on a wrong parameter
3454  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3455 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3456 			    u8 **buf, bool ascii)
3457 {
3458 	struct uc_string_id *uc_str;
3459 	u8 *str;
3460 	int ret;
3461 
3462 	if (!buf)
3463 		return -EINVAL;
3464 
3465 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3466 	if (!uc_str)
3467 		return -ENOMEM;
3468 
3469 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3470 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3471 	if (ret < 0) {
3472 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3473 			QUERY_REQ_RETRIES, ret);
3474 		str = NULL;
3475 		goto out;
3476 	}
3477 
3478 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3479 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3480 		str = NULL;
3481 		ret = 0;
3482 		goto out;
3483 	}
3484 
3485 	if (ascii) {
3486 		ssize_t ascii_len;
3487 		int i;
3488 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3489 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3490 		str = kzalloc(ascii_len, GFP_KERNEL);
3491 		if (!str) {
3492 			ret = -ENOMEM;
3493 			goto out;
3494 		}
3495 
3496 		/*
3497 		 * the descriptor contains string in UTF16 format
3498 		 * we need to convert to utf-8 so it can be displayed
3499 		 */
3500 		ret = utf16s_to_utf8s(uc_str->uc,
3501 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3502 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3503 
3504 		/* replace non-printable or non-ASCII characters with spaces */
3505 		for (i = 0; i < ret; i++)
3506 			str[i] = ufshcd_remove_non_printable(str[i]);
3507 
3508 		str[ret++] = '\0';
3509 
3510 	} else {
3511 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3512 		if (!str) {
3513 			ret = -ENOMEM;
3514 			goto out;
3515 		}
3516 		ret = uc_str->len;
3517 	}
3518 out:
3519 	*buf = str;
3520 	kfree(uc_str);
3521 	return ret;
3522 }
3523 
3524 /**
3525  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3526  * @hba: Pointer to adapter instance
3527  * @lun: lun id
3528  * @param_offset: offset of the parameter to read
3529  * @param_read_buf: pointer to buffer where parameter would be read
3530  * @param_size: sizeof(param_read_buf)
3531  *
3532  * Return 0 in case of success, non-zero otherwise
3533  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3534 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3535 					      int lun,
3536 					      enum unit_desc_param param_offset,
3537 					      u8 *param_read_buf,
3538 					      u32 param_size)
3539 {
3540 	/*
3541 	 * Unit descriptors are only available for general purpose LUs (LUN id
3542 	 * from 0 to 7) and RPMB Well known LU.
3543 	 */
3544 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3545 		return -EOPNOTSUPP;
3546 
3547 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3548 				      param_offset, param_read_buf, param_size);
3549 }
3550 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3551 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3552 {
3553 	int err = 0;
3554 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3555 
3556 	if (hba->dev_info.wspecversion >= 0x300) {
3557 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3558 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3559 				&gating_wait);
3560 		if (err)
3561 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3562 					 err, gating_wait);
3563 
3564 		if (gating_wait == 0) {
3565 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3566 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3567 					 gating_wait);
3568 		}
3569 
3570 		hba->dev_info.clk_gating_wait_us = gating_wait;
3571 	}
3572 
3573 	return err;
3574 }
3575 
3576 /**
3577  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3578  * @hba: per adapter instance
3579  *
3580  * 1. Allocate DMA memory for Command Descriptor array
3581  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3582  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3583  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3584  *	(UTMRDL)
3585  * 4. Allocate memory for local reference block(lrb).
3586  *
3587  * Returns 0 for success, non-zero in case of failure
3588  */
ufshcd_memory_alloc(struct ufs_hba * hba)3589 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3590 {
3591 	size_t utmrdl_size, utrdl_size, ucdl_size;
3592 
3593 	/* Allocate memory for UTP command descriptors */
3594 	ucdl_size = (sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs);
3595 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3596 						  ucdl_size,
3597 						  &hba->ucdl_dma_addr,
3598 						  GFP_KERNEL);
3599 
3600 	/*
3601 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3602 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3603 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3604 	 * be aligned to 128 bytes as well
3605 	 */
3606 	if (!hba->ucdl_base_addr ||
3607 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3608 		dev_err(hba->dev,
3609 			"Command Descriptor Memory allocation failed\n");
3610 		goto out;
3611 	}
3612 
3613 	/*
3614 	 * Allocate memory for UTP Transfer descriptors
3615 	 * UFSHCI requires 1024 byte alignment of UTRD
3616 	 */
3617 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3618 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3619 						   utrdl_size,
3620 						   &hba->utrdl_dma_addr,
3621 						   GFP_KERNEL);
3622 	if (!hba->utrdl_base_addr ||
3623 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3624 		dev_err(hba->dev,
3625 			"Transfer Descriptor Memory allocation failed\n");
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * Allocate memory for UTP Task Management descriptors
3631 	 * UFSHCI requires 1024 byte alignment of UTMRD
3632 	 */
3633 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3634 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3635 						    utmrdl_size,
3636 						    &hba->utmrdl_dma_addr,
3637 						    GFP_KERNEL);
3638 	if (!hba->utmrdl_base_addr ||
3639 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3640 		dev_err(hba->dev,
3641 		"Task Management Descriptor Memory allocation failed\n");
3642 		goto out;
3643 	}
3644 
3645 	/* Allocate memory for local reference block */
3646 	hba->lrb = devm_kcalloc(hba->dev,
3647 				hba->nutrs, sizeof(struct ufshcd_lrb),
3648 				GFP_KERNEL);
3649 	if (!hba->lrb) {
3650 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3651 		goto out;
3652 	}
3653 	return 0;
3654 out:
3655 	return -ENOMEM;
3656 }
3657 
3658 /**
3659  * ufshcd_host_memory_configure - configure local reference block with
3660  *				memory offsets
3661  * @hba: per adapter instance
3662  *
3663  * Configure Host memory space
3664  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3665  * address.
3666  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3667  * and PRDT offset.
3668  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3669  * into local reference block.
3670  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3671 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3672 {
3673 	struct utp_transfer_req_desc *utrdlp;
3674 	dma_addr_t cmd_desc_dma_addr;
3675 	dma_addr_t cmd_desc_element_addr;
3676 	u16 response_offset;
3677 	u16 prdt_offset;
3678 	int cmd_desc_size;
3679 	int i;
3680 
3681 	utrdlp = hba->utrdl_base_addr;
3682 
3683 	response_offset =
3684 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3685 	prdt_offset =
3686 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3687 
3688 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3689 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3690 
3691 	for (i = 0; i < hba->nutrs; i++) {
3692 		/* Configure UTRD with command descriptor base address */
3693 		cmd_desc_element_addr =
3694 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3695 		utrdlp[i].command_desc_base_addr_lo =
3696 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3697 		utrdlp[i].command_desc_base_addr_hi =
3698 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3699 
3700 		/* Response upiu and prdt offset should be in double words */
3701 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3702 			utrdlp[i].response_upiu_offset =
3703 				cpu_to_le16(response_offset);
3704 			utrdlp[i].prd_table_offset =
3705 				cpu_to_le16(prdt_offset);
3706 			utrdlp[i].response_upiu_length =
3707 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3708 		} else {
3709 			utrdlp[i].response_upiu_offset =
3710 				cpu_to_le16(response_offset >> 2);
3711 			utrdlp[i].prd_table_offset =
3712 				cpu_to_le16(prdt_offset >> 2);
3713 			utrdlp[i].response_upiu_length =
3714 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3715 		}
3716 
3717 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3718 	}
3719 }
3720 
3721 /**
3722  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3723  * @hba: per adapter instance
3724  *
3725  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3726  * in order to initialize the Unipro link startup procedure.
3727  * Once the Unipro links are up, the device connected to the controller
3728  * is detected.
3729  *
3730  * Returns 0 on success, non-zero value on failure
3731  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3732 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3733 {
3734 	struct uic_command uic_cmd = {0};
3735 	int ret;
3736 
3737 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3738 
3739 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3740 	if (ret)
3741 		dev_dbg(hba->dev,
3742 			"dme-link-startup: error code %d\n", ret);
3743 	return ret;
3744 }
3745 /**
3746  * ufshcd_dme_reset - UIC command for DME_RESET
3747  * @hba: per adapter instance
3748  *
3749  * DME_RESET command is issued in order to reset UniPro stack.
3750  * This function now deals with cold reset.
3751  *
3752  * Returns 0 on success, non-zero value on failure
3753  */
ufshcd_dme_reset(struct ufs_hba * hba)3754 static int ufshcd_dme_reset(struct ufs_hba *hba)
3755 {
3756 	struct uic_command uic_cmd = {0};
3757 	int ret;
3758 
3759 	uic_cmd.command = UIC_CMD_DME_RESET;
3760 
3761 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3762 	if (ret)
3763 		dev_err(hba->dev,
3764 			"dme-reset: error code %d\n", ret);
3765 
3766 	return ret;
3767 }
3768 
3769 /**
3770  * ufshcd_dme_enable - UIC command for DME_ENABLE
3771  * @hba: per adapter instance
3772  *
3773  * DME_ENABLE command is issued in order to enable UniPro stack.
3774  *
3775  * Returns 0 on success, non-zero value on failure
3776  */
ufshcd_dme_enable(struct ufs_hba * hba)3777 static int ufshcd_dme_enable(struct ufs_hba *hba)
3778 {
3779 	struct uic_command uic_cmd = {0};
3780 	int ret;
3781 
3782 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3783 
3784 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3785 	if (ret)
3786 		dev_err(hba->dev,
3787 			"dme-enable: error code %d\n", ret);
3788 
3789 	return ret;
3790 }
3791 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3792 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3793 {
3794 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3795 	unsigned long min_sleep_time_us;
3796 
3797 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3798 		return;
3799 
3800 	/*
3801 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3802 	 * this function
3803 	 */
3804 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3805 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3806 	} else {
3807 		unsigned long delta =
3808 			(unsigned long) ktime_to_us(
3809 				ktime_sub(ktime_get(),
3810 				hba->last_dme_cmd_tstamp));
3811 
3812 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3813 			min_sleep_time_us =
3814 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3815 		else
3816 			return; /* no more delay required */
3817 	}
3818 
3819 	/* allow sleep for extra 50us if needed */
3820 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3821 }
3822 
3823 /**
3824  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3825  * @hba: per adapter instance
3826  * @attr_sel: uic command argument1
3827  * @attr_set: attribute set type as uic command argument2
3828  * @mib_val: setting value as uic command argument3
3829  * @peer: indicate whether peer or local
3830  *
3831  * Returns 0 on success, non-zero value on failure
3832  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3833 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3834 			u8 attr_set, u32 mib_val, u8 peer)
3835 {
3836 	struct uic_command uic_cmd = {0};
3837 	static const char *const action[] = {
3838 		"dme-set",
3839 		"dme-peer-set"
3840 	};
3841 	const char *set = action[!!peer];
3842 	int ret;
3843 	int retries = UFS_UIC_COMMAND_RETRIES;
3844 
3845 	uic_cmd.command = peer ?
3846 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3847 	uic_cmd.argument1 = attr_sel;
3848 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3849 	uic_cmd.argument3 = mib_val;
3850 
3851 	do {
3852 		/* for peer attributes we retry upon failure */
3853 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3854 		if (ret)
3855 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3856 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3857 	} while (ret && peer && --retries);
3858 
3859 	if (ret)
3860 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3861 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3862 			UFS_UIC_COMMAND_RETRIES - retries);
3863 
3864 	return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3867 
3868 /**
3869  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3870  * @hba: per adapter instance
3871  * @attr_sel: uic command argument1
3872  * @mib_val: the value of the attribute as returned by the UIC command
3873  * @peer: indicate whether peer or local
3874  *
3875  * Returns 0 on success, non-zero value on failure
3876  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3877 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3878 			u32 *mib_val, u8 peer)
3879 {
3880 	struct uic_command uic_cmd = {0};
3881 	static const char *const action[] = {
3882 		"dme-get",
3883 		"dme-peer-get"
3884 	};
3885 	const char *get = action[!!peer];
3886 	int ret;
3887 	int retries = UFS_UIC_COMMAND_RETRIES;
3888 	struct ufs_pa_layer_attr orig_pwr_info;
3889 	struct ufs_pa_layer_attr temp_pwr_info;
3890 	bool pwr_mode_change = false;
3891 
3892 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3893 		orig_pwr_info = hba->pwr_info;
3894 		temp_pwr_info = orig_pwr_info;
3895 
3896 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3897 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3898 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3899 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3900 			pwr_mode_change = true;
3901 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3902 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3903 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3904 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3905 			pwr_mode_change = true;
3906 		}
3907 		if (pwr_mode_change) {
3908 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3909 			if (ret)
3910 				goto out;
3911 		}
3912 	}
3913 
3914 	uic_cmd.command = peer ?
3915 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3916 	uic_cmd.argument1 = attr_sel;
3917 
3918 	do {
3919 		/* for peer attributes we retry upon failure */
3920 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3921 		if (ret)
3922 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3923 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3924 	} while (ret && peer && --retries);
3925 
3926 	if (ret)
3927 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3928 			get, UIC_GET_ATTR_ID(attr_sel),
3929 			UFS_UIC_COMMAND_RETRIES - retries);
3930 
3931 	if (mib_val && !ret)
3932 		*mib_val = uic_cmd.argument3;
3933 
3934 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3935 	    && pwr_mode_change)
3936 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3937 out:
3938 	return ret;
3939 }
3940 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3941 
3942 /**
3943  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3944  * state) and waits for it to take effect.
3945  *
3946  * @hba: per adapter instance
3947  * @cmd: UIC command to execute
3948  *
3949  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3950  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3951  * and device UniPro link and hence it's final completion would be indicated by
3952  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3953  * addition to normal UIC command completion Status (UCCS). This function only
3954  * returns after the relevant status bits indicate the completion.
3955  *
3956  * Returns 0 on success, non-zero value on failure
3957  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3958 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3959 {
3960 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
3961 	unsigned long flags;
3962 	u8 status;
3963 	int ret;
3964 	bool reenable_intr = false;
3965 
3966 	mutex_lock(&hba->uic_cmd_mutex);
3967 	ufshcd_add_delay_before_dme_cmd(hba);
3968 
3969 	spin_lock_irqsave(hba->host->host_lock, flags);
3970 	if (ufshcd_is_link_broken(hba)) {
3971 		ret = -ENOLINK;
3972 		goto out_unlock;
3973 	}
3974 	hba->uic_async_done = &uic_async_done;
3975 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3976 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3977 		/*
3978 		 * Make sure UIC command completion interrupt is disabled before
3979 		 * issuing UIC command.
3980 		 */
3981 		wmb();
3982 		reenable_intr = true;
3983 	}
3984 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3985 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3986 	if (ret) {
3987 		dev_err(hba->dev,
3988 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3989 			cmd->command, cmd->argument3, ret);
3990 		goto out;
3991 	}
3992 
3993 	if (!wait_for_completion_timeout(hba->uic_async_done,
3994 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3995 		dev_err(hba->dev,
3996 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3997 			cmd->command, cmd->argument3);
3998 
3999 		if (!cmd->cmd_active) {
4000 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4001 				__func__);
4002 			goto check_upmcrs;
4003 		}
4004 
4005 		ret = -ETIMEDOUT;
4006 		goto out;
4007 	}
4008 
4009 check_upmcrs:
4010 	status = ufshcd_get_upmcrs(hba);
4011 	if (status != PWR_LOCAL) {
4012 		dev_err(hba->dev,
4013 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4014 			cmd->command, status);
4015 		ret = (status != PWR_OK) ? status : -1;
4016 	}
4017 out:
4018 	if (ret) {
4019 		ufshcd_print_host_state(hba);
4020 		ufshcd_print_pwr_info(hba);
4021 		ufshcd_print_evt_hist(hba);
4022 	}
4023 
4024 	spin_lock_irqsave(hba->host->host_lock, flags);
4025 	hba->active_uic_cmd = NULL;
4026 	hba->uic_async_done = NULL;
4027 	if (reenable_intr)
4028 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4029 	if (ret) {
4030 		dev_err(hba->dev,
4031 			"%s: Changing link power status failed (%d). Scheduling error handler\n",
4032 			__func__, ret);
4033 		ufshcd_set_link_broken(hba);
4034 		ufshcd_schedule_eh_work(hba);
4035 	}
4036 out_unlock:
4037 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4038 	mutex_unlock(&hba->uic_cmd_mutex);
4039 
4040 	return ret;
4041 }
4042 
4043 /**
4044  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4045  *				using DME_SET primitives.
4046  * @hba: per adapter instance
4047  * @mode: powr mode value
4048  *
4049  * Returns 0 on success, non-zero value on failure
4050  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4051 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4052 {
4053 	struct uic_command uic_cmd = {0};
4054 	int ret;
4055 
4056 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4057 		ret = ufshcd_dme_set(hba,
4058 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4059 		if (ret) {
4060 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4061 						__func__, ret);
4062 			goto out;
4063 		}
4064 	}
4065 
4066 	uic_cmd.command = UIC_CMD_DME_SET;
4067 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4068 	uic_cmd.argument3 = mode;
4069 	ufshcd_hold(hba, false);
4070 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4071 	ufshcd_release(hba);
4072 
4073 out:
4074 	return ret;
4075 }
4076 
ufshcd_link_recovery(struct ufs_hba * hba)4077 int ufshcd_link_recovery(struct ufs_hba *hba)
4078 {
4079 	int ret;
4080 	unsigned long flags;
4081 
4082 	spin_lock_irqsave(hba->host->host_lock, flags);
4083 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4084 	ufshcd_set_eh_in_progress(hba);
4085 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4086 
4087 	/* Reset the attached device */
4088 	ufshcd_vops_device_reset(hba);
4089 
4090 	ret = ufshcd_host_reset_and_restore(hba);
4091 
4092 	spin_lock_irqsave(hba->host->host_lock, flags);
4093 	if (ret)
4094 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4095 	ufshcd_clear_eh_in_progress(hba);
4096 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4097 
4098 	if (ret)
4099 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4100 			__func__, ret);
4101 
4102 	return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4105 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4106 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4107 {
4108 	int ret;
4109 	struct uic_command uic_cmd = {0};
4110 	ktime_t start = ktime_get();
4111 
4112 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4113 
4114 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4115 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4116 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4117 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4118 
4119 	if (ret)
4120 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4121 			__func__, ret);
4122 	else
4123 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4124 								POST_CHANGE);
4125 
4126 	return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4129 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4130 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4131 {
4132 	struct uic_command uic_cmd = {0};
4133 	int ret;
4134 	ktime_t start = ktime_get();
4135 
4136 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4137 
4138 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4139 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4140 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4141 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4142 
4143 	if (ret) {
4144 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4145 			__func__, ret);
4146 	} else {
4147 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4148 								POST_CHANGE);
4149 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4150 		hba->ufs_stats.hibern8_exit_cnt++;
4151 	}
4152 
4153 	return ret;
4154 }
4155 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4156 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4157 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4158 {
4159 	unsigned long flags;
4160 	bool update = false;
4161 
4162 	if (!ufshcd_is_auto_hibern8_supported(hba))
4163 		return;
4164 
4165 	spin_lock_irqsave(hba->host->host_lock, flags);
4166 	if (hba->ahit != ahit) {
4167 		hba->ahit = ahit;
4168 		update = true;
4169 	}
4170 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4171 
4172 	if (update && !pm_runtime_suspended(hba->dev)) {
4173 		pm_runtime_get_sync(hba->dev);
4174 		ufshcd_hold(hba, false);
4175 		ufshcd_auto_hibern8_enable(hba);
4176 		ufshcd_release(hba);
4177 		pm_runtime_put(hba->dev);
4178 	}
4179 }
4180 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4181 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4182 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4183 {
4184 	unsigned long flags;
4185 
4186 	if (!ufshcd_is_auto_hibern8_supported(hba))
4187 		return;
4188 
4189 	spin_lock_irqsave(hba->host->host_lock, flags);
4190 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4191 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4192 }
4193 
4194  /**
4195  * ufshcd_init_pwr_info - setting the POR (power on reset)
4196  * values in hba power info
4197  * @hba: per-adapter instance
4198  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4199 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4200 {
4201 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4202 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4203 	hba->pwr_info.lane_rx = 1;
4204 	hba->pwr_info.lane_tx = 1;
4205 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4206 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4207 	hba->pwr_info.hs_rate = 0;
4208 }
4209 
4210 /**
4211  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4212  * @hba: per-adapter instance
4213  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4214 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4215 {
4216 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4217 
4218 	if (hba->max_pwr_info.is_valid)
4219 		return 0;
4220 
4221 	pwr_info->pwr_tx = FAST_MODE;
4222 	pwr_info->pwr_rx = FAST_MODE;
4223 	pwr_info->hs_rate = PA_HS_MODE_B;
4224 
4225 	/* Get the connected lane count */
4226 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4227 			&pwr_info->lane_rx);
4228 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4229 			&pwr_info->lane_tx);
4230 
4231 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4232 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4233 				__func__,
4234 				pwr_info->lane_rx,
4235 				pwr_info->lane_tx);
4236 		return -EINVAL;
4237 	}
4238 
4239 	/*
4240 	 * First, get the maximum gears of HS speed.
4241 	 * If a zero value, it means there is no HSGEAR capability.
4242 	 * Then, get the maximum gears of PWM speed.
4243 	 */
4244 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4245 	if (!pwr_info->gear_rx) {
4246 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4247 				&pwr_info->gear_rx);
4248 		if (!pwr_info->gear_rx) {
4249 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4250 				__func__, pwr_info->gear_rx);
4251 			return -EINVAL;
4252 		}
4253 		pwr_info->pwr_rx = SLOW_MODE;
4254 	}
4255 
4256 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4257 			&pwr_info->gear_tx);
4258 	if (!pwr_info->gear_tx) {
4259 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4260 				&pwr_info->gear_tx);
4261 		if (!pwr_info->gear_tx) {
4262 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4263 				__func__, pwr_info->gear_tx);
4264 			return -EINVAL;
4265 		}
4266 		pwr_info->pwr_tx = SLOW_MODE;
4267 	}
4268 
4269 	hba->max_pwr_info.is_valid = true;
4270 	return 0;
4271 }
4272 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4273 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4274 			     struct ufs_pa_layer_attr *pwr_mode)
4275 {
4276 	int ret;
4277 
4278 	/* if already configured to the requested pwr_mode */
4279 	if (!hba->force_pmc &&
4280 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4281 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4282 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4283 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4284 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4285 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4286 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4287 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4288 		return 0;
4289 	}
4290 
4291 	/*
4292 	 * Configure attributes for power mode change with below.
4293 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4294 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4295 	 * - PA_HSSERIES
4296 	 */
4297 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4298 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4299 			pwr_mode->lane_rx);
4300 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4301 			pwr_mode->pwr_rx == FAST_MODE)
4302 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4303 	else
4304 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4305 
4306 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4307 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4308 			pwr_mode->lane_tx);
4309 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4310 			pwr_mode->pwr_tx == FAST_MODE)
4311 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4312 	else
4313 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4314 
4315 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4316 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4317 	    pwr_mode->pwr_rx == FAST_MODE ||
4318 	    pwr_mode->pwr_tx == FAST_MODE)
4319 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4320 						pwr_mode->hs_rate);
4321 
4322 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4323 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4324 				DL_FC0ProtectionTimeOutVal_Default);
4325 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4326 				DL_TC0ReplayTimeOutVal_Default);
4327 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4328 				DL_AFC0ReqTimeOutVal_Default);
4329 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4330 				DL_FC1ProtectionTimeOutVal_Default);
4331 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4332 				DL_TC1ReplayTimeOutVal_Default);
4333 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4334 				DL_AFC1ReqTimeOutVal_Default);
4335 
4336 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4337 				DL_FC0ProtectionTimeOutVal_Default);
4338 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4339 				DL_TC0ReplayTimeOutVal_Default);
4340 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4341 				DL_AFC0ReqTimeOutVal_Default);
4342 	}
4343 
4344 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4345 			| pwr_mode->pwr_tx);
4346 
4347 	if (ret) {
4348 		dev_err(hba->dev,
4349 			"%s: power mode change failed %d\n", __func__, ret);
4350 	} else {
4351 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4352 								pwr_mode);
4353 
4354 		memcpy(&hba->pwr_info, pwr_mode,
4355 			sizeof(struct ufs_pa_layer_attr));
4356 	}
4357 
4358 	return ret;
4359 }
4360 
4361 /**
4362  * ufshcd_config_pwr_mode - configure a new power mode
4363  * @hba: per-adapter instance
4364  * @desired_pwr_mode: desired power configuration
4365  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4366 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4367 		struct ufs_pa_layer_attr *desired_pwr_mode)
4368 {
4369 	struct ufs_pa_layer_attr final_params = { 0 };
4370 	int ret;
4371 
4372 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4373 					desired_pwr_mode, &final_params);
4374 
4375 	if (ret)
4376 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4377 
4378 	ret = ufshcd_change_power_mode(hba, &final_params);
4379 
4380 	return ret;
4381 }
4382 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4383 
4384 /**
4385  * ufshcd_complete_dev_init() - checks device readiness
4386  * @hba: per-adapter instance
4387  *
4388  * Set fDeviceInit flag and poll until device toggles it.
4389  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4390 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4391 {
4392 	int err;
4393 	bool flag_res = true;
4394 	ktime_t timeout;
4395 
4396 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4397 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4398 	if (err) {
4399 		dev_err(hba->dev,
4400 			"%s setting fDeviceInit flag failed with error %d\n",
4401 			__func__, err);
4402 		goto out;
4403 	}
4404 
4405 	/* Poll fDeviceInit flag to be cleared */
4406 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4407 	do {
4408 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4409 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4410 		if (!flag_res)
4411 			break;
4412 		usleep_range(500, 1000);
4413 	} while (ktime_before(ktime_get(), timeout));
4414 
4415 	if (err) {
4416 		dev_err(hba->dev,
4417 				"%s reading fDeviceInit flag failed with error %d\n",
4418 				__func__, err);
4419 	} else if (flag_res) {
4420 		dev_err(hba->dev,
4421 				"%s fDeviceInit was not cleared by the device\n",
4422 				__func__);
4423 		err = -EBUSY;
4424 	}
4425 out:
4426 	return err;
4427 }
4428 
4429 /**
4430  * ufshcd_make_hba_operational - Make UFS controller operational
4431  * @hba: per adapter instance
4432  *
4433  * To bring UFS host controller to operational state,
4434  * 1. Enable required interrupts
4435  * 2. Configure interrupt aggregation
4436  * 3. Program UTRL and UTMRL base address
4437  * 4. Configure run-stop-registers
4438  *
4439  * Returns 0 on success, non-zero value on failure
4440  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4441 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4442 {
4443 	int err = 0;
4444 	u32 reg;
4445 
4446 	/* Enable required interrupts */
4447 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4448 
4449 	/* Configure interrupt aggregation */
4450 	if (ufshcd_is_intr_aggr_allowed(hba))
4451 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4452 	else
4453 		ufshcd_disable_intr_aggr(hba);
4454 
4455 	/* Configure UTRL and UTMRL base address registers */
4456 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4457 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4458 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4459 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4460 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4461 			REG_UTP_TASK_REQ_LIST_BASE_L);
4462 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4463 			REG_UTP_TASK_REQ_LIST_BASE_H);
4464 
4465 	/*
4466 	 * Make sure base address and interrupt setup are updated before
4467 	 * enabling the run/stop registers below.
4468 	 */
4469 	wmb();
4470 
4471 	/*
4472 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4473 	 */
4474 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4475 	if (!(ufshcd_get_lists_status(reg))) {
4476 		ufshcd_enable_run_stop_reg(hba);
4477 	} else {
4478 		dev_err(hba->dev,
4479 			"Host controller not ready to process requests");
4480 		err = -EIO;
4481 	}
4482 
4483 	return err;
4484 }
4485 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4486 
4487 /**
4488  * ufshcd_hba_stop - Send controller to reset state
4489  * @hba: per adapter instance
4490  */
ufshcd_hba_stop(struct ufs_hba * hba)4491 void ufshcd_hba_stop(struct ufs_hba *hba)
4492 {
4493 	unsigned long flags;
4494 	int err;
4495 
4496 	/*
4497 	 * Obtain the host lock to prevent that the controller is disabled
4498 	 * while the UFS interrupt handler is active on another CPU.
4499 	 */
4500 	spin_lock_irqsave(hba->host->host_lock, flags);
4501 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4502 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4503 
4504 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4505 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4506 					10, 1);
4507 	if (err)
4508 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4509 }
4510 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4511 
4512 /**
4513  * ufshcd_hba_execute_hce - initialize the controller
4514  * @hba: per adapter instance
4515  *
4516  * The controller resets itself and controller firmware initialization
4517  * sequence kicks off. When controller is ready it will set
4518  * the Host Controller Enable bit to 1.
4519  *
4520  * Returns 0 on success, non-zero value on failure
4521  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4522 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4523 {
4524 	int retry_outer = 3;
4525 	int retry_inner;
4526 
4527 start:
4528 	if (!ufshcd_is_hba_active(hba))
4529 		/* change controller state to "reset state" */
4530 		ufshcd_hba_stop(hba);
4531 
4532 	/* UniPro link is disabled at this point */
4533 	ufshcd_set_link_off(hba);
4534 
4535 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4536 
4537 	/* start controller initialization sequence */
4538 	ufshcd_hba_start(hba);
4539 
4540 	/*
4541 	 * To initialize a UFS host controller HCE bit must be set to 1.
4542 	 * During initialization the HCE bit value changes from 1->0->1.
4543 	 * When the host controller completes initialization sequence
4544 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4545 	 * to check if the controller has completed initialization sequence.
4546 	 * So without this delay the value HCE = 1, set in the previous
4547 	 * instruction might be read back.
4548 	 * This delay can be changed based on the controller.
4549 	 */
4550 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4551 
4552 	/* wait for the host controller to complete initialization */
4553 	retry_inner = 50;
4554 	while (ufshcd_is_hba_active(hba)) {
4555 		if (retry_inner) {
4556 			retry_inner--;
4557 		} else {
4558 			dev_err(hba->dev,
4559 				"Controller enable failed\n");
4560 			if (retry_outer) {
4561 				retry_outer--;
4562 				goto start;
4563 			}
4564 			return -EIO;
4565 		}
4566 		usleep_range(1000, 1100);
4567 	}
4568 
4569 	/* enable UIC related interrupts */
4570 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4571 
4572 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4573 
4574 	return 0;
4575 }
4576 
ufshcd_hba_enable(struct ufs_hba * hba)4577 int ufshcd_hba_enable(struct ufs_hba *hba)
4578 {
4579 	int ret;
4580 
4581 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4582 		ufshcd_set_link_off(hba);
4583 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4584 
4585 		/* enable UIC related interrupts */
4586 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4587 		ret = ufshcd_dme_reset(hba);
4588 		if (!ret) {
4589 			ret = ufshcd_dme_enable(hba);
4590 			if (!ret)
4591 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4592 			if (ret)
4593 				dev_err(hba->dev,
4594 					"Host controller enable failed with non-hce\n");
4595 		}
4596 	} else {
4597 		ret = ufshcd_hba_execute_hce(hba);
4598 	}
4599 
4600 	return ret;
4601 }
4602 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4603 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4604 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4605 {
4606 	int tx_lanes = 0, i, err = 0;
4607 
4608 	if (!peer)
4609 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4610 			       &tx_lanes);
4611 	else
4612 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4613 				    &tx_lanes);
4614 	for (i = 0; i < tx_lanes; i++) {
4615 		if (!peer)
4616 			err = ufshcd_dme_set(hba,
4617 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4618 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4619 					0);
4620 		else
4621 			err = ufshcd_dme_peer_set(hba,
4622 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4623 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4624 					0);
4625 		if (err) {
4626 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4627 				__func__, peer, i, err);
4628 			break;
4629 		}
4630 	}
4631 
4632 	return err;
4633 }
4634 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4635 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4636 {
4637 	return ufshcd_disable_tx_lcc(hba, true);
4638 }
4639 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4640 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4641 {
4642 	struct ufs_event_hist *e;
4643 
4644 	if (id >= UFS_EVT_CNT)
4645 		return;
4646 
4647 	e = &hba->ufs_stats.event[id];
4648 	e->val[e->pos] = val;
4649 	e->tstamp[e->pos] = ktime_get();
4650 	e->cnt += 1;
4651 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4652 
4653 	ufshcd_vops_event_notify(hba, id, &val);
4654 }
4655 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4656 
4657 /**
4658  * ufshcd_link_startup - Initialize unipro link startup
4659  * @hba: per adapter instance
4660  *
4661  * Returns 0 for success, non-zero in case of failure
4662  */
ufshcd_link_startup(struct ufs_hba * hba)4663 static int ufshcd_link_startup(struct ufs_hba *hba)
4664 {
4665 	int ret;
4666 	int retries = DME_LINKSTARTUP_RETRIES;
4667 	bool link_startup_again = false;
4668 
4669 	/*
4670 	 * If UFS device isn't active then we will have to issue link startup
4671 	 * 2 times to make sure the device state move to active.
4672 	 */
4673 	if (!ufshcd_is_ufs_dev_active(hba))
4674 		link_startup_again = true;
4675 
4676 link_startup:
4677 	do {
4678 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4679 
4680 		ret = ufshcd_dme_link_startup(hba);
4681 
4682 		/* check if device is detected by inter-connect layer */
4683 		if (!ret && !ufshcd_is_device_present(hba)) {
4684 			ufshcd_update_evt_hist(hba,
4685 					       UFS_EVT_LINK_STARTUP_FAIL,
4686 					       0);
4687 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4688 			ret = -ENXIO;
4689 			goto out;
4690 		}
4691 
4692 		/*
4693 		 * DME link lost indication is only received when link is up,
4694 		 * but we can't be sure if the link is up until link startup
4695 		 * succeeds. So reset the local Uni-Pro and try again.
4696 		 */
4697 		if (ret && ufshcd_hba_enable(hba)) {
4698 			ufshcd_update_evt_hist(hba,
4699 					       UFS_EVT_LINK_STARTUP_FAIL,
4700 					       (u32)ret);
4701 			goto out;
4702 		}
4703 	} while (ret && retries--);
4704 
4705 	if (ret) {
4706 		/* failed to get the link up... retire */
4707 		ufshcd_update_evt_hist(hba,
4708 				       UFS_EVT_LINK_STARTUP_FAIL,
4709 				       (u32)ret);
4710 		goto out;
4711 	}
4712 
4713 	if (link_startup_again) {
4714 		link_startup_again = false;
4715 		retries = DME_LINKSTARTUP_RETRIES;
4716 		goto link_startup;
4717 	}
4718 
4719 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4720 	ufshcd_init_pwr_info(hba);
4721 	ufshcd_print_pwr_info(hba);
4722 
4723 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4724 		ret = ufshcd_disable_device_tx_lcc(hba);
4725 		if (ret)
4726 			goto out;
4727 	}
4728 
4729 	/* Include any host controller configuration via UIC commands */
4730 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4731 	if (ret)
4732 		goto out;
4733 
4734 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4735 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4736 	ret = ufshcd_make_hba_operational(hba);
4737 out:
4738 	if (ret) {
4739 		dev_err(hba->dev, "link startup failed %d\n", ret);
4740 		ufshcd_print_host_state(hba);
4741 		ufshcd_print_pwr_info(hba);
4742 		ufshcd_print_evt_hist(hba);
4743 	}
4744 	return ret;
4745 }
4746 
4747 /**
4748  * ufshcd_verify_dev_init() - Verify device initialization
4749  * @hba: per-adapter instance
4750  *
4751  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4752  * device Transport Protocol (UTP) layer is ready after a reset.
4753  * If the UTP layer at the device side is not initialized, it may
4754  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4755  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4756  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4757 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4758 {
4759 	int err = 0;
4760 	int retries;
4761 
4762 	ufshcd_hold(hba, false);
4763 	mutex_lock(&hba->dev_cmd.lock);
4764 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4765 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4766 					       NOP_OUT_TIMEOUT);
4767 
4768 		if (!err || err == -ETIMEDOUT)
4769 			break;
4770 
4771 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4772 	}
4773 	mutex_unlock(&hba->dev_cmd.lock);
4774 	ufshcd_release(hba);
4775 
4776 	if (err)
4777 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4778 	return err;
4779 }
4780 
4781 /**
4782  * ufshcd_set_queue_depth - set lun queue depth
4783  * @sdev: pointer to SCSI device
4784  *
4785  * Read bLUQueueDepth value and activate scsi tagged command
4786  * queueing. For WLUN, queue depth is set to 1. For best-effort
4787  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4788  * value that host can queue.
4789  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4790 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4791 {
4792 	int ret = 0;
4793 	u8 lun_qdepth;
4794 	struct ufs_hba *hba;
4795 
4796 	hba = shost_priv(sdev->host);
4797 
4798 	lun_qdepth = hba->nutrs;
4799 	ret = ufshcd_read_unit_desc_param(hba,
4800 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4801 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4802 					  &lun_qdepth,
4803 					  sizeof(lun_qdepth));
4804 
4805 	/* Some WLUN doesn't support unit descriptor */
4806 	if (ret == -EOPNOTSUPP)
4807 		lun_qdepth = 1;
4808 	else if (!lun_qdepth)
4809 		/* eventually, we can figure out the real queue depth */
4810 		lun_qdepth = hba->nutrs;
4811 	else
4812 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4813 
4814 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4815 			__func__, lun_qdepth);
4816 	scsi_change_queue_depth(sdev, lun_qdepth);
4817 }
4818 
4819 /*
4820  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4821  * @hba: per-adapter instance
4822  * @lun: UFS device lun id
4823  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4824  *
4825  * Returns 0 in case of success and b_lu_write_protect status would be returned
4826  * @b_lu_write_protect parameter.
4827  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4828  * Returns -EINVAL in case of invalid parameters passed to this function.
4829  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4830 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4831 			    u8 lun,
4832 			    u8 *b_lu_write_protect)
4833 {
4834 	int ret;
4835 
4836 	if (!b_lu_write_protect)
4837 		ret = -EINVAL;
4838 	/*
4839 	 * According to UFS device spec, RPMB LU can't be write
4840 	 * protected so skip reading bLUWriteProtect parameter for
4841 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4842 	 */
4843 	else if (lun >= hba->dev_info.max_lu_supported)
4844 		ret = -ENOTSUPP;
4845 	else
4846 		ret = ufshcd_read_unit_desc_param(hba,
4847 					  lun,
4848 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4849 					  b_lu_write_protect,
4850 					  sizeof(*b_lu_write_protect));
4851 	return ret;
4852 }
4853 
4854 /**
4855  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4856  * status
4857  * @hba: per-adapter instance
4858  * @sdev: pointer to SCSI device
4859  *
4860  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4861 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4862 						    struct scsi_device *sdev)
4863 {
4864 	if (hba->dev_info.f_power_on_wp_en &&
4865 	    !hba->dev_info.is_lu_power_on_wp) {
4866 		u8 b_lu_write_protect;
4867 
4868 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4869 				      &b_lu_write_protect) &&
4870 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4871 			hba->dev_info.is_lu_power_on_wp = true;
4872 	}
4873 }
4874 
4875 /**
4876  * ufshcd_slave_alloc - handle initial SCSI device configurations
4877  * @sdev: pointer to SCSI device
4878  *
4879  * Returns success
4880  */
ufshcd_slave_alloc(struct scsi_device * sdev)4881 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4882 {
4883 	struct ufs_hba *hba;
4884 
4885 	hba = shost_priv(sdev->host);
4886 
4887 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4888 	sdev->use_10_for_ms = 1;
4889 
4890 	/* DBD field should be set to 1 in mode sense(10) */
4891 	sdev->set_dbd_for_ms = 1;
4892 
4893 	/* allow SCSI layer to restart the device in case of errors */
4894 	sdev->allow_restart = 1;
4895 
4896 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4897 	sdev->no_report_opcodes = 1;
4898 
4899 	/* WRITE_SAME command is not supported */
4900 	sdev->no_write_same = 1;
4901 
4902 	ufshcd_set_queue_depth(sdev);
4903 
4904 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4905 
4906 	return 0;
4907 }
4908 
4909 /**
4910  * ufshcd_change_queue_depth - change queue depth
4911  * @sdev: pointer to SCSI device
4912  * @depth: required depth to set
4913  *
4914  * Change queue depth and make sure the max. limits are not crossed.
4915  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4916 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4917 {
4918 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
4919 }
4920 
ufshcd_hpb_destroy(struct ufs_hba * hba,struct scsi_device * sdev)4921 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
4922 {
4923 	/* skip well-known LU */
4924 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
4925 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
4926 		return;
4927 
4928 	ufshpb_destroy_lu(hba, sdev);
4929 }
4930 
ufshcd_hpb_configure(struct ufs_hba * hba,struct scsi_device * sdev)4931 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
4932 {
4933 	/* skip well-known LU */
4934 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
4935 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
4936 		return;
4937 
4938 	ufshpb_init_hpb_lu(hba, sdev);
4939 }
4940 
4941 /**
4942  * ufshcd_slave_configure - adjust SCSI device configurations
4943  * @sdev: pointer to SCSI device
4944  */
ufshcd_slave_configure(struct scsi_device * sdev)4945 static int ufshcd_slave_configure(struct scsi_device *sdev)
4946 {
4947 	struct ufs_hba *hba = shost_priv(sdev->host);
4948 	struct request_queue *q = sdev->request_queue;
4949 
4950 	ufshcd_hpb_configure(hba, sdev);
4951 
4952 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4953 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
4954 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
4955 
4956 	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4957 		sdev->rpm_autosuspend = 1;
4958 
4959 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4960 
4961 	trace_android_vh_ufs_update_sdev(sdev);
4962 
4963 	return 0;
4964 }
4965 
4966 /**
4967  * ufshcd_slave_destroy - remove SCSI device configurations
4968  * @sdev: pointer to SCSI device
4969  */
ufshcd_slave_destroy(struct scsi_device * sdev)4970 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4971 {
4972 	struct ufs_hba *hba;
4973 
4974 	hba = shost_priv(sdev->host);
4975 
4976 	ufshcd_hpb_destroy(hba, sdev);
4977 
4978 	/* Drop the reference as it won't be needed anymore */
4979 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4980 		unsigned long flags;
4981 
4982 		spin_lock_irqsave(hba->host->host_lock, flags);
4983 		hba->sdev_ufs_device = NULL;
4984 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4985 	}
4986 }
4987 
4988 /**
4989  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4990  * @lrbp: pointer to local reference block of completed command
4991  * @scsi_status: SCSI command status
4992  *
4993  * Returns value base on SCSI command status
4994  */
4995 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4996 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4997 {
4998 	int result = 0;
4999 
5000 	switch (scsi_status) {
5001 	case SAM_STAT_CHECK_CONDITION:
5002 		ufshcd_copy_sense_data(lrbp);
5003 		fallthrough;
5004 	case SAM_STAT_GOOD:
5005 		result |= DID_OK << 16 |
5006 			  COMMAND_COMPLETE << 8 |
5007 			  scsi_status;
5008 		break;
5009 	case SAM_STAT_TASK_SET_FULL:
5010 	case SAM_STAT_BUSY:
5011 	case SAM_STAT_TASK_ABORTED:
5012 		ufshcd_copy_sense_data(lrbp);
5013 		result |= scsi_status;
5014 		break;
5015 	default:
5016 		result |= DID_ERROR << 16;
5017 		break;
5018 	} /* end of switch */
5019 
5020 	return result;
5021 }
5022 
5023 /**
5024  * ufshcd_transfer_rsp_status - Get overall status of the response
5025  * @hba: per adapter instance
5026  * @lrbp: pointer to local reference block of completed command
5027  *
5028  * Returns result of the command to notify SCSI midlayer
5029  */
5030 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5031 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5032 {
5033 	int result = 0;
5034 	int scsi_status;
5035 	int ocs;
5036 
5037 	/* overall command status of utrd */
5038 	ocs = ufshcd_get_tr_ocs(lrbp);
5039 
5040 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5041 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5042 					MASK_RSP_UPIU_RESULT)
5043 			ocs = OCS_SUCCESS;
5044 	}
5045 
5046 	switch (ocs) {
5047 	case OCS_SUCCESS:
5048 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5049 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5050 		switch (result) {
5051 		case UPIU_TRANSACTION_RESPONSE:
5052 			/*
5053 			 * get the response UPIU result to extract
5054 			 * the SCSI command status
5055 			 */
5056 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5057 
5058 			/*
5059 			 * get the result based on SCSI status response
5060 			 * to notify the SCSI midlayer of the command status
5061 			 */
5062 			scsi_status = result & MASK_SCSI_STATUS;
5063 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5064 
5065 			/*
5066 			 * Currently we are only supporting BKOPs exception
5067 			 * events hence we can ignore BKOPs exception event
5068 			 * during power management callbacks. BKOPs exception
5069 			 * event is not expected to be raised in runtime suspend
5070 			 * callback as it allows the urgent bkops.
5071 			 * During system suspend, we are anyway forcefully
5072 			 * disabling the bkops and if urgent bkops is needed
5073 			 * it will be enabled on system resume. Long term
5074 			 * solution could be to abort the system suspend if
5075 			 * UFS device needs urgent BKOPs.
5076 			 */
5077 			if (!hba->pm_op_in_progress &&
5078 			    !ufshcd_eh_in_progress(hba) &&
5079 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
5080 			    schedule_work(&hba->eeh_work)) {
5081 				/*
5082 				 * Prevent suspend once eeh_work is scheduled
5083 				 * to avoid deadlock between ufshcd_suspend
5084 				 * and exception event handler.
5085 				 */
5086 				pm_runtime_get_noresume(hba->dev);
5087 			}
5088 
5089 			if (scsi_status == SAM_STAT_GOOD)
5090 				ufshpb_rsp_upiu(hba, lrbp);
5091 			break;
5092 		case UPIU_TRANSACTION_REJECT_UPIU:
5093 			/* TODO: handle Reject UPIU Response */
5094 			result = DID_ERROR << 16;
5095 			dev_err(hba->dev,
5096 				"Reject UPIU not fully implemented\n");
5097 			break;
5098 		default:
5099 			dev_err(hba->dev,
5100 				"Unexpected request response code = %x\n",
5101 				result);
5102 			result = DID_ERROR << 16;
5103 			break;
5104 		}
5105 		break;
5106 	case OCS_ABORTED:
5107 		result |= DID_ABORT << 16;
5108 		break;
5109 	case OCS_INVALID_COMMAND_STATUS:
5110 		dev_err_ratelimited(hba->dev,
5111 			"Retrying request with tag %d / cdb %#02x because of invalid command status\n",
5112 			lrbp->task_tag, lrbp->cmd && lrbp->cmd->cmnd ?
5113 			lrbp->cmd->cmnd[0] : 0);
5114 		result |= DID_REQUEUE << 16;
5115 		break;
5116 	case OCS_INVALID_CMD_TABLE_ATTR:
5117 	case OCS_INVALID_PRDT_ATTR:
5118 	case OCS_MISMATCH_DATA_BUF_SIZE:
5119 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5120 	case OCS_PEER_COMM_FAILURE:
5121 	case OCS_FATAL_ERROR:
5122 	case OCS_DEVICE_FATAL_ERROR:
5123 	case OCS_INVALID_CRYPTO_CONFIG:
5124 	case OCS_GENERAL_CRYPTO_ERROR:
5125 	default:
5126 		result |= DID_ERROR << 16;
5127 		dev_err(hba->dev,
5128 				"OCS error from controller = %x for tag %d\n",
5129 				ocs, lrbp->task_tag);
5130 		ufshcd_print_evt_hist(hba);
5131 		ufshcd_print_host_state(hba);
5132 		break;
5133 	} /* end of switch */
5134 
5135 	if ((host_byte(result) != DID_OK) &&
5136 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5137 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5138 	return result;
5139 }
5140 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5141 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5142 					 u32 intr_mask)
5143 {
5144 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5145 	    !ufshcd_is_auto_hibern8_enabled(hba))
5146 		return false;
5147 
5148 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5149 		return false;
5150 
5151 	if (hba->active_uic_cmd &&
5152 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5153 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5154 		return false;
5155 
5156 	return true;
5157 }
5158 
5159 /**
5160  * ufshcd_uic_cmd_compl - handle completion of uic command
5161  * @hba: per adapter instance
5162  * @intr_status: interrupt status generated by the controller
5163  *
5164  * Returns
5165  *  IRQ_HANDLED - If interrupt is valid
5166  *  IRQ_NONE    - If invalid interrupt
5167  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5168 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5169 {
5170 	irqreturn_t retval = IRQ_NONE;
5171 
5172 	spin_lock(hba->host->host_lock);
5173 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5174 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5175 
5176 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5177 		hba->active_uic_cmd->argument2 |=
5178 			ufshcd_get_uic_cmd_result(hba);
5179 		hba->active_uic_cmd->argument3 =
5180 			ufshcd_get_dme_attr_val(hba);
5181 		if (!hba->uic_async_done)
5182 			hba->active_uic_cmd->cmd_active = 0;
5183 		complete(&hba->active_uic_cmd->done);
5184 		retval = IRQ_HANDLED;
5185 	}
5186 
5187 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5188 		hba->active_uic_cmd->cmd_active = 0;
5189 		complete(hba->uic_async_done);
5190 		retval = IRQ_HANDLED;
5191 	}
5192 
5193 	if (retval == IRQ_HANDLED)
5194 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5195 					     "complete");
5196 	spin_unlock(hba->host->host_lock);
5197 	return retval;
5198 }
5199 
5200 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5201 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5202 				    struct ufshcd_lrb *lrbp)
5203 {
5204 	struct scsi_cmnd *cmd = lrbp->cmd;
5205 
5206 	scsi_dma_unmap(cmd);
5207 	ufshcd_crypto_clear_prdt(hba, lrbp);
5208 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5209 	ufshcd_release(hba);
5210 	ufshcd_clk_scaling_update_busy(hba);
5211 }
5212 EXPORT_SYMBOL_GPL(ufshcd_release_scsi_cmd);
5213 
5214 /**
5215  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5216  * @hba: per adapter instance
5217  * @completed_reqs: requests to complete
5218  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5219 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5220 					unsigned long completed_reqs)
5221 {
5222 	struct ufshcd_lrb *lrbp;
5223 	struct scsi_cmnd *cmd;
5224 	int index;
5225 
5226 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5227 		if (!test_and_clear_bit(index, &hba->outstanding_reqs))
5228 			continue;
5229 		lrbp = &hba->lrb[index];
5230 		lrbp->compl_time_stamp = ktime_get();
5231 		cmd = lrbp->cmd;
5232 		if (cmd) {
5233 			bool done = false;
5234 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5235 				ufshcd_update_monitor(hba, lrbp);
5236 			trace_android_vh_ufs_compl_command(hba, lrbp);
5237 			trace_android_vh_ufs_compl_rsp_check_done(hba, lrbp, &done);
5238 			if (done)
5239 				return;
5240 			ufshcd_add_command_trace(hba, index, "complete");
5241 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5242 			ufshcd_release_scsi_cmd(hba, lrbp);
5243 			/* Do not touch lrbp after scsi done */
5244 			cmd->scsi_done(cmd);
5245 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5246 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5247 			if (hba->dev_cmd.complete) {
5248 				trace_android_vh_ufs_compl_command(hba, lrbp);
5249 				ufshcd_add_command_trace(hba, index,
5250 						"dev_complete");
5251 				complete(hba->dev_cmd.complete);
5252 				ufshcd_clk_scaling_update_busy(hba);
5253 			}
5254 		}
5255 	}
5256 }
5257 
5258 /**
5259  * ufshcd_trc_handler - handle transfer requests completion
5260  * @hba: per adapter instance
5261  * @use_utrlcnr: get completed requests from UTRLCNR
5262  *
5263  * Returns
5264  *  IRQ_HANDLED - If interrupt is valid
5265  *  IRQ_NONE    - If invalid interrupt
5266  */
ufshcd_trc_handler(struct ufs_hba * hba,bool use_utrlcnr)5267 static irqreturn_t ufshcd_trc_handler(struct ufs_hba *hba, bool use_utrlcnr)
5268 {
5269 	unsigned long completed_reqs = 0;
5270 
5271 	/* Resetting interrupt aggregation counters first and reading the
5272 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5273 	 * In order to prevent other interrupts starvation the DB is read once
5274 	 * after reset. The down side of this solution is the possibility of
5275 	 * false interrupt if device completes another request after resetting
5276 	 * aggregation and before reading the DB.
5277 	 */
5278 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5279 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5280 		ufshcd_reset_intr_aggr(hba);
5281 
5282 	if (use_utrlcnr) {
5283 		u32 utrlcnr;
5284 
5285 		utrlcnr = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_LIST_COMPL);
5286 		if (utrlcnr) {
5287 			ufshcd_writel(hba, utrlcnr,
5288 				      REG_UTP_TRANSFER_REQ_LIST_COMPL);
5289 			completed_reqs = utrlcnr;
5290 		}
5291 	} else {
5292 		unsigned long flags;
5293 		u32 tr_doorbell;
5294 
5295 		spin_lock_irqsave(hba->host->host_lock, flags);
5296 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5297 		completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5298 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5299 	}
5300 
5301 	if (completed_reqs) {
5302 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5303 		return IRQ_HANDLED;
5304 	} else {
5305 		return IRQ_NONE;
5306 	}
5307 }
5308 
5309 /**
5310  * ufshcd_disable_ee - disable exception event
5311  * @hba: per-adapter instance
5312  * @mask: exception event to disable
5313  *
5314  * Disables exception event in the device so that the EVENT_ALERT
5315  * bit is not set.
5316  *
5317  * Returns zero on success, non-zero error value on failure.
5318  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5319 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5320 {
5321 	int err = 0;
5322 	u32 val;
5323 
5324 	if (!(hba->ee_ctrl_mask & mask))
5325 		goto out;
5326 
5327 	val = hba->ee_ctrl_mask & ~mask;
5328 	val &= MASK_EE_STATUS;
5329 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5330 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5331 	if (!err)
5332 		hba->ee_ctrl_mask &= ~mask;
5333 out:
5334 	return err;
5335 }
5336 
5337 /**
5338  * ufshcd_enable_ee - enable exception event
5339  * @hba: per-adapter instance
5340  * @mask: exception event to enable
5341  *
5342  * Enable corresponding exception event in the device to allow
5343  * device to alert host in critical scenarios.
5344  *
5345  * Returns zero on success, non-zero error value on failure.
5346  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5347 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5348 {
5349 	int err = 0;
5350 	u32 val;
5351 
5352 	if (hba->ee_ctrl_mask & mask)
5353 		goto out;
5354 
5355 	val = hba->ee_ctrl_mask | mask;
5356 	val &= MASK_EE_STATUS;
5357 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5358 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5359 	if (!err)
5360 		hba->ee_ctrl_mask |= mask;
5361 out:
5362 	return err;
5363 }
5364 
5365 /**
5366  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5367  * @hba: per-adapter instance
5368  *
5369  * Allow device to manage background operations on its own. Enabling
5370  * this might lead to inconsistent latencies during normal data transfers
5371  * as the device is allowed to manage its own way of handling background
5372  * operations.
5373  *
5374  * Returns zero on success, non-zero on failure.
5375  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5376 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5377 {
5378 	int err = 0;
5379 
5380 	if (hba->auto_bkops_enabled)
5381 		goto out;
5382 
5383 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5384 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5385 	if (err) {
5386 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5387 				__func__, err);
5388 		goto out;
5389 	}
5390 
5391 	hba->auto_bkops_enabled = true;
5392 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5393 
5394 	/* No need of URGENT_BKOPS exception from the device */
5395 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5396 	if (err)
5397 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5398 				__func__, err);
5399 out:
5400 	return err;
5401 }
5402 
5403 /**
5404  * ufshcd_disable_auto_bkops - block device in doing background operations
5405  * @hba: per-adapter instance
5406  *
5407  * Disabling background operations improves command response latency but
5408  * has drawback of device moving into critical state where the device is
5409  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5410  * host is idle so that BKOPS are managed effectively without any negative
5411  * impacts.
5412  *
5413  * Returns zero on success, non-zero on failure.
5414  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5415 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5416 {
5417 	int err = 0;
5418 
5419 	if (!hba->auto_bkops_enabled)
5420 		goto out;
5421 
5422 	/*
5423 	 * If host assisted BKOPs is to be enabled, make sure
5424 	 * urgent bkops exception is allowed.
5425 	 */
5426 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5427 	if (err) {
5428 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5429 				__func__, err);
5430 		goto out;
5431 	}
5432 
5433 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5434 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5435 	if (err) {
5436 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5437 				__func__, err);
5438 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5439 		goto out;
5440 	}
5441 
5442 	hba->auto_bkops_enabled = false;
5443 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5444 	hba->is_urgent_bkops_lvl_checked = false;
5445 out:
5446 	return err;
5447 }
5448 
5449 /**
5450  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5451  * @hba: per adapter instance
5452  *
5453  * After a device reset the device may toggle the BKOPS_EN flag
5454  * to default value. The s/w tracking variables should be updated
5455  * as well. This function would change the auto-bkops state based on
5456  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5457  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5458 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5459 {
5460 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5461 		hba->auto_bkops_enabled = false;
5462 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5463 		ufshcd_enable_auto_bkops(hba);
5464 	} else {
5465 		hba->auto_bkops_enabled = true;
5466 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5467 		ufshcd_disable_auto_bkops(hba);
5468 	}
5469 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5470 	hba->is_urgent_bkops_lvl_checked = false;
5471 }
5472 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5473 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5474 {
5475 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5476 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5477 }
5478 
5479 /**
5480  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5481  * @hba: per-adapter instance
5482  * @status: bkops_status value
5483  *
5484  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5485  * flag in the device to permit background operations if the device
5486  * bkops_status is greater than or equal to "status" argument passed to
5487  * this function, disable otherwise.
5488  *
5489  * Returns 0 for success, non-zero in case of failure.
5490  *
5491  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5492  * to know whether auto bkops is enabled or disabled after this function
5493  * returns control to it.
5494  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5495 int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5496 			     enum bkops_status status)
5497 {
5498 	int err;
5499 	u32 curr_status = 0;
5500 
5501 	err = ufshcd_get_bkops_status(hba, &curr_status);
5502 	if (err) {
5503 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5504 				__func__, err);
5505 		goto out;
5506 	} else if (curr_status > BKOPS_STATUS_MAX) {
5507 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5508 				__func__, curr_status);
5509 		err = -EINVAL;
5510 		goto out;
5511 	}
5512 
5513 	if (curr_status >= status)
5514 		err = ufshcd_enable_auto_bkops(hba);
5515 	else
5516 		err = ufshcd_disable_auto_bkops(hba);
5517 out:
5518 	return err;
5519 }
5520 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
5521 
5522 /**
5523  * ufshcd_urgent_bkops - handle urgent bkops exception event
5524  * @hba: per-adapter instance
5525  *
5526  * Enable fBackgroundOpsEn flag in the device to permit background
5527  * operations.
5528  *
5529  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5530  * and negative error value for any other failure.
5531  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5532 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5533 {
5534 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5535 }
5536 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5537 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5538 {
5539 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5540 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5541 }
5542 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5543 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5544 {
5545 	int err;
5546 	u32 curr_status = 0;
5547 
5548 	if (hba->is_urgent_bkops_lvl_checked)
5549 		goto enable_auto_bkops;
5550 
5551 	err = ufshcd_get_bkops_status(hba, &curr_status);
5552 	if (err) {
5553 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5554 				__func__, err);
5555 		goto out;
5556 	}
5557 
5558 	/*
5559 	 * We are seeing that some devices are raising the urgent bkops
5560 	 * exception events even when BKOPS status doesn't indicate performace
5561 	 * impacted or critical. Handle these device by determining their urgent
5562 	 * bkops status at runtime.
5563 	 */
5564 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5565 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5566 				__func__, curr_status);
5567 		/* update the current status as the urgent bkops level */
5568 		hba->urgent_bkops_lvl = curr_status;
5569 		hba->is_urgent_bkops_lvl_checked = true;
5570 	}
5571 
5572 enable_auto_bkops:
5573 	err = ufshcd_enable_auto_bkops(hba);
5574 out:
5575 	if (err < 0)
5576 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5577 				__func__, err);
5578 }
5579 
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5580 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5581 {
5582 	int ret;
5583 	u8 index;
5584 	enum query_opcode opcode;
5585 
5586 	if (!ufshcd_is_wb_allowed(hba))
5587 		return 0;
5588 
5589 	if (!(enable ^ hba->wb_enabled))
5590 		return 0;
5591 	if (enable)
5592 		opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5593 	else
5594 		opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5595 
5596 	index = ufshcd_wb_get_query_index(hba);
5597 	ret = ufshcd_query_flag_retry(hba, opcode,
5598 				      QUERY_FLAG_IDN_WB_EN, index, NULL);
5599 	if (ret) {
5600 		dev_err(hba->dev, "%s write booster %s failed %d\n",
5601 			__func__, enable ? "enable" : "disable", ret);
5602 		return ret;
5603 	}
5604 
5605 	hba->wb_enabled = enable;
5606 	dev_dbg(hba->dev, "%s write booster %s %d\n",
5607 			__func__, enable ? "enable" : "disable", ret);
5608 
5609 	return ret;
5610 }
5611 
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5612 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5613 {
5614 	int val;
5615 	u8 index;
5616 
5617 	if (set)
5618 		val =  UPIU_QUERY_OPCODE_SET_FLAG;
5619 	else
5620 		val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5621 
5622 	index = ufshcd_wb_get_query_index(hba);
5623 	return ufshcd_query_flag_retry(hba, val,
5624 				QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5625 				index, NULL);
5626 }
5627 
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5628 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5629 {
5630 	if (enable)
5631 		ufshcd_wb_buf_flush_enable(hba);
5632 	else
5633 		ufshcd_wb_buf_flush_disable(hba);
5634 
5635 }
5636 
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5637 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5638 {
5639 	int ret;
5640 	u8 index;
5641 
5642 	if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5643 		return 0;
5644 
5645 	index = ufshcd_wb_get_query_index(hba);
5646 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5647 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5648 				      index, NULL);
5649 	if (ret)
5650 		dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5651 			__func__, ret);
5652 	else
5653 		hba->wb_buf_flush_enabled = true;
5654 
5655 	dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5656 	return ret;
5657 }
5658 
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5659 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5660 {
5661 	int ret;
5662 	u8 index;
5663 
5664 	if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5665 		return 0;
5666 
5667 	index = ufshcd_wb_get_query_index(hba);
5668 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5669 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5670 				      index, NULL);
5671 	if (ret) {
5672 		dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5673 			 __func__, ret);
5674 	} else {
5675 		hba->wb_buf_flush_enabled = false;
5676 		dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5677 	}
5678 
5679 	return ret;
5680 }
5681 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5682 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5683 						u32 avail_buf)
5684 {
5685 	u32 cur_buf;
5686 	int ret;
5687 	u8 index;
5688 
5689 	index = ufshcd_wb_get_query_index(hba);
5690 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5691 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5692 					      index, 0, &cur_buf);
5693 	if (ret) {
5694 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5695 			__func__, ret);
5696 		return false;
5697 	}
5698 
5699 	if (!cur_buf) {
5700 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5701 			 cur_buf);
5702 		return false;
5703 	}
5704 	/* Let it continue to flush when available buffer exceeds threshold */
5705 	if (avail_buf < hba->vps->wb_flush_threshold)
5706 		return true;
5707 
5708 	return false;
5709 }
5710 
ufshcd_wb_need_flush(struct ufs_hba * hba)5711 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5712 {
5713 	int ret;
5714 	u32 avail_buf;
5715 	u8 index;
5716 
5717 	if (!ufshcd_is_wb_allowed(hba))
5718 		return false;
5719 	/*
5720 	 * The ufs device needs the vcc to be ON to flush.
5721 	 * With user-space reduction enabled, it's enough to enable flush
5722 	 * by checking only the available buffer. The threshold
5723 	 * defined here is > 90% full.
5724 	 * With user-space preserved enabled, the current-buffer
5725 	 * should be checked too because the wb buffer size can reduce
5726 	 * when disk tends to be full. This info is provided by current
5727 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5728 	 * keeping vcc on when current buffer is empty.
5729 	 */
5730 	index = ufshcd_wb_get_query_index(hba);
5731 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5732 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5733 				      index, 0, &avail_buf);
5734 	if (ret) {
5735 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5736 			 __func__, ret);
5737 		return false;
5738 	}
5739 
5740 	if (!hba->dev_info.b_presrv_uspc_en) {
5741 		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5742 			return true;
5743 		return false;
5744 	}
5745 
5746 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5747 }
5748 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5749 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5750 {
5751 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5752 					   struct ufs_hba,
5753 					   rpm_dev_flush_recheck_work);
5754 	/*
5755 	 * To prevent unnecessary VCC power drain after device finishes
5756 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5757 	 * after a certain delay to recheck the threshold by next runtime
5758 	 * suspend.
5759 	 */
5760 	pm_runtime_get_sync(hba->dev);
5761 	pm_runtime_put_sync(hba->dev);
5762 }
5763 
5764 /**
5765  * ufshcd_exception_event_handler - handle exceptions raised by device
5766  * @work: pointer to work data
5767  *
5768  * Read bExceptionEventStatus attribute from the device and handle the
5769  * exception event accordingly.
5770  */
ufshcd_exception_event_handler(struct work_struct * work)5771 static void ufshcd_exception_event_handler(struct work_struct *work)
5772 {
5773 	struct ufs_hba *hba;
5774 	int err;
5775 	u32 status = 0;
5776 	hba = container_of(work, struct ufs_hba, eeh_work);
5777 
5778 	pm_runtime_get_sync(hba->dev);
5779 	ufshcd_scsi_block_requests(hba);
5780 	err = ufshcd_get_ee_status(hba, &status);
5781 	if (err) {
5782 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5783 				__func__, err);
5784 		goto out;
5785 	}
5786 
5787 	status &= hba->ee_ctrl_mask;
5788 
5789 	if (status & MASK_EE_URGENT_BKOPS)
5790 		ufshcd_bkops_exception_event_handler(hba);
5791 
5792 out:
5793 	ufshcd_scsi_unblock_requests(hba);
5794 	/*
5795 	 * pm_runtime_get_noresume is called while scheduling
5796 	 * eeh_work to avoid suspend racing with exception work.
5797 	 * Hence decrement usage counter using pm_runtime_put_noidle
5798 	 * to allow suspend on completion of exception event handler.
5799 	 */
5800 	pm_runtime_put_noidle(hba->dev);
5801 	pm_runtime_put(hba->dev);
5802 	return;
5803 }
5804 
5805 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5806 void ufshcd_complete_requests(struct ufs_hba *hba)
5807 {
5808 	ufshcd_trc_handler(hba, false);
5809 	ufshcd_tmc_handler(hba);
5810 }
5811 EXPORT_SYMBOL_GPL(ufshcd_complete_requests);
5812 
5813 
5814 /**
5815  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5816  *				to recover from the DL NAC errors or not.
5817  * @hba: per-adapter instance
5818  *
5819  * Returns true if error handling is required, false otherwise
5820  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5821 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5822 {
5823 	unsigned long flags;
5824 	bool err_handling = true;
5825 
5826 	spin_lock_irqsave(hba->host->host_lock, flags);
5827 	/*
5828 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5829 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5830 	 */
5831 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5832 		goto out;
5833 
5834 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5835 	    ((hba->saved_err & UIC_ERROR) &&
5836 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5837 		goto out;
5838 
5839 	if ((hba->saved_err & UIC_ERROR) &&
5840 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5841 		int err;
5842 		/*
5843 		 * wait for 50ms to see if we can get any other errors or not.
5844 		 */
5845 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5846 		msleep(50);
5847 		spin_lock_irqsave(hba->host->host_lock, flags);
5848 
5849 		/*
5850 		 * now check if we have got any other severe errors other than
5851 		 * DL NAC error?
5852 		 */
5853 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5854 		    ((hba->saved_err & UIC_ERROR) &&
5855 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5856 			goto out;
5857 
5858 		/*
5859 		 * As DL NAC is the only error received so far, send out NOP
5860 		 * command to confirm if link is still active or not.
5861 		 *   - If we don't get any response then do error recovery.
5862 		 *   - If we get response then clear the DL NAC error bit.
5863 		 */
5864 
5865 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5866 		err = ufshcd_verify_dev_init(hba);
5867 		spin_lock_irqsave(hba->host->host_lock, flags);
5868 
5869 		if (err)
5870 			goto out;
5871 
5872 		/* Link seems to be alive hence ignore the DL NAC errors */
5873 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5874 			hba->saved_err &= ~UIC_ERROR;
5875 		/* clear NAC error */
5876 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5877 		if (!hba->saved_uic_err)
5878 			err_handling = false;
5879 	}
5880 out:
5881 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5882 	return err_handling;
5883 }
5884 
5885 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5886 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5887 {
5888 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5889 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5890 }
5891 
5892 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5893 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5894 {
5895 	/* handle fatal errors only when link is not in error state */
5896 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5897 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5898 		    ufshcd_is_saved_err_fatal(hba))
5899 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5900 		else
5901 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5902 		queue_work(hba->eh_wq, &hba->eh_work);
5903 	}
5904 }
5905 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)5906 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
5907 {
5908 	down_write(&hba->clk_scaling_lock);
5909 	hba->clk_scaling.is_allowed = allow;
5910 	up_write(&hba->clk_scaling_lock);
5911 }
5912 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)5913 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
5914 {
5915 	if (suspend) {
5916 		if (hba->clk_scaling.is_enabled)
5917 			ufshcd_suspend_clkscaling(hba);
5918 		ufshcd_clk_scaling_allow(hba, false);
5919 	} else {
5920 		ufshcd_clk_scaling_allow(hba, true);
5921 		if (hba->clk_scaling.is_enabled)
5922 			ufshcd_resume_clkscaling(hba);
5923 	}
5924 }
5925 
ufshcd_err_handling_prepare(struct ufs_hba * hba)5926 void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5927 {
5928 	pm_runtime_get_sync(hba->dev);
5929 	if (pm_runtime_status_suspended(hba->dev) || hba->is_sys_suspended) {
5930 		enum ufs_pm_op pm_op;
5931 
5932 		/*
5933 		 * Don't assume anything of pm_runtime_get_sync(), if
5934 		 * resume fails, irq and clocks can be OFF, and powers
5935 		 * can be OFF or in LPM.
5936 		 */
5937 		ufshcd_setup_hba_vreg(hba, true);
5938 		ufshcd_enable_irq(hba);
5939 		ufshcd_setup_vreg(hba, true);
5940 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5941 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5942 		ufshcd_hold(hba, false);
5943 		if (!ufshcd_is_clkgating_allowed(hba))
5944 			ufshcd_setup_clocks(hba, true);
5945 		ufshcd_release(hba);
5946 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
5947 		ufshcd_vops_resume(hba, pm_op);
5948 	} else {
5949 		ufshcd_hold(hba, false);
5950 		if (ufshcd_is_clkscaling_supported(hba) &&
5951 		    hba->clk_scaling.is_enabled)
5952 			ufshcd_suspend_clkscaling(hba);
5953 		ufshcd_clk_scaling_allow(hba, false);
5954 	}
5955 	ufshcd_scsi_block_requests(hba);
5956 	/* Drain ufshcd_queuecommand() */
5957 	down_write(&hba->clk_scaling_lock);
5958 	up_write(&hba->clk_scaling_lock);
5959 	cancel_work_sync(&hba->eeh_work);
5960 }
5961 EXPORT_SYMBOL_GPL(ufshcd_err_handling_prepare);
5962 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5963 void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5964 {
5965 	ufshcd_scsi_unblock_requests(hba);
5966 	ufshcd_release(hba);
5967 	if (ufshcd_is_clkscaling_supported(hba))
5968 		ufshcd_clk_scaling_suspend(hba, false);
5969 	pm_runtime_put(hba->dev);
5970 }
5971 EXPORT_SYMBOL_GPL(ufshcd_err_handling_unprepare);
5972 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5973 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5974 {
5975 	return (!hba->is_powered || hba->shutting_down ||
5976 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5977 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5978 		   ufshcd_is_link_broken(hba))));
5979 }
5980 
5981 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5982 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5983 {
5984 	struct Scsi_Host *shost = hba->host;
5985 	struct scsi_device *sdev;
5986 	struct request_queue *q;
5987 	int ret;
5988 
5989 	hba->is_sys_suspended = false;
5990 	/*
5991 	 * Set RPM status of hba device to RPM_ACTIVE,
5992 	 * this also clears its runtime error.
5993 	 */
5994 	ret = pm_runtime_set_active(hba->dev);
5995 	/*
5996 	 * If hba device had runtime error, we also need to resume those
5997 	 * scsi devices under hba in case any of them has failed to be
5998 	 * resumed due to hba runtime resume failure. This is to unblock
5999 	 * blk_queue_enter in case there are bios waiting inside it.
6000 	 */
6001 	if (!ret) {
6002 		shost_for_each_device(sdev, shost) {
6003 			q = sdev->request_queue;
6004 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6005 				       q->rpm_status == RPM_SUSPENDING))
6006 				pm_request_resume(q->dev);
6007 		}
6008 	}
6009 }
6010 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6011 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6012 {
6013 }
6014 #endif
6015 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6016 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6017 {
6018 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6019 	u32 mode;
6020 
6021 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6022 
6023 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6024 		return true;
6025 
6026 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6027 		return true;
6028 
6029 	return false;
6030 }
6031 
6032 /**
6033  * ufshcd_err_handler - handle UFS errors that require s/w attention
6034  * @work: pointer to work structure
6035  */
ufshcd_err_handler(struct work_struct * work)6036 static void ufshcd_err_handler(struct work_struct *work)
6037 {
6038 	struct ufs_hba *hba;
6039 	unsigned long flags;
6040 	bool err_xfer = false;
6041 	bool err_tm = false;
6042 	int err = 0, pmc_err;
6043 	int tag;
6044 	bool err_handled = false;
6045 	bool needs_reset = false, needs_restore = false;
6046 
6047 	hba = container_of(work, struct ufs_hba, eh_work);
6048 
6049 	trace_android_vh_ufs_err_handler(hba, &err_handled);
6050 
6051 	if (err_handled)
6052 		return;
6053 
6054 	down(&hba->host_sem);
6055 	spin_lock_irqsave(hba->host->host_lock, flags);
6056 	if (ufshcd_err_handling_should_stop(hba)) {
6057 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6058 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6059 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6060 		up(&hba->host_sem);
6061 		return;
6062 	}
6063 	ufshcd_set_eh_in_progress(hba);
6064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6065 	ufshcd_err_handling_prepare(hba);
6066 	/* Complete requests that have door-bell cleared by h/w */
6067 	ufshcd_complete_requests(hba);
6068 	spin_lock_irqsave(hba->host->host_lock, flags);
6069 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6070 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6071 	/*
6072 	 * A full reset and restore might have happened after preparation
6073 	 * is finished, double check whether we should stop.
6074 	 */
6075 	if (ufshcd_err_handling_should_stop(hba))
6076 		goto skip_err_handling;
6077 
6078 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6079 		bool ret;
6080 
6081 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6082 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6083 		ret = ufshcd_quirk_dl_nac_errors(hba);
6084 		spin_lock_irqsave(hba->host->host_lock, flags);
6085 		if (!ret && ufshcd_err_handling_should_stop(hba))
6086 			goto skip_err_handling;
6087 	}
6088 
6089 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6090 	    (hba->saved_uic_err &&
6091 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6092 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6093 
6094 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6095 		ufshcd_print_host_state(hba);
6096 		ufshcd_print_pwr_info(hba);
6097 		ufshcd_print_evt_hist(hba);
6098 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6099 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6100 		spin_lock_irqsave(hba->host->host_lock, flags);
6101 	}
6102 
6103 	/*
6104 	 * if host reset is required then skip clearing the pending
6105 	 * transfers forcefully because they will get cleared during
6106 	 * host reset and restore
6107 	 */
6108 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6109 	    ufshcd_is_saved_err_fatal(hba) ||
6110 	    ((hba->saved_err & UIC_ERROR) &&
6111 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6112 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6113 		needs_reset = true;
6114 		goto do_reset;
6115 	}
6116 
6117 	/*
6118 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6119 	 * check if power mode restore is needed.
6120 	 */
6121 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6122 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6123 		if (!hba->saved_uic_err)
6124 			hba->saved_err &= ~UIC_ERROR;
6125 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6126 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6127 			needs_restore = true;
6128 		spin_lock_irqsave(hba->host->host_lock, flags);
6129 		if (!hba->saved_err && !needs_restore)
6130 			goto skip_err_handling;
6131 	}
6132 
6133 	hba->silence_err_logs = true;
6134 	/* release lock as clear command might sleep */
6135 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6136 	/* Clear pending transfer requests */
6137 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6138 		if (ufshcd_try_to_abort_task(hba, tag)) {
6139 			err_xfer = true;
6140 			goto lock_skip_pending_xfer_clear;
6141 		}
6142 	}
6143 
6144 	/* Clear pending task management requests */
6145 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6146 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6147 			err_tm = true;
6148 			goto lock_skip_pending_xfer_clear;
6149 		}
6150 	}
6151 
6152 lock_skip_pending_xfer_clear:
6153 	/* Complete the requests that are cleared by s/w */
6154 	ufshcd_complete_requests(hba);
6155 
6156 	spin_lock_irqsave(hba->host->host_lock, flags);
6157 	hba->silence_err_logs = false;
6158 	if (err_xfer || err_tm) {
6159 		needs_reset = true;
6160 		goto do_reset;
6161 	}
6162 
6163 	/*
6164 	 * After all reqs and tasks are cleared from doorbell,
6165 	 * now it is safe to retore power mode.
6166 	 */
6167 	if (needs_restore) {
6168 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6169 		/*
6170 		 * Hold the scaling lock just in case dev cmds
6171 		 * are sent via bsg and/or sysfs.
6172 		 */
6173 		down_write(&hba->clk_scaling_lock);
6174 		hba->force_pmc = true;
6175 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6176 		if (pmc_err) {
6177 			needs_reset = true;
6178 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6179 					__func__, pmc_err);
6180 		}
6181 		hba->force_pmc = false;
6182 		ufshcd_print_pwr_info(hba);
6183 		up_write(&hba->clk_scaling_lock);
6184 		spin_lock_irqsave(hba->host->host_lock, flags);
6185 	}
6186 
6187 do_reset:
6188 	/* Fatal errors need reset */
6189 	if (needs_reset) {
6190 		hba->force_reset = false;
6191 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6192 		err = ufshcd_reset_and_restore(hba);
6193 		if (err)
6194 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6195 					__func__, err);
6196 		else
6197 			ufshcd_recover_pm_error(hba);
6198 		spin_lock_irqsave(hba->host->host_lock, flags);
6199 	}
6200 
6201 skip_err_handling:
6202 	if (!needs_reset) {
6203 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6204 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6205 		if (hba->saved_err || hba->saved_uic_err)
6206 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6207 			    __func__, hba->saved_err, hba->saved_uic_err);
6208 	}
6209 	ufshcd_clear_eh_in_progress(hba);
6210 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6211 	ufshcd_err_handling_unprepare(hba);
6212 	up(&hba->host_sem);
6213 }
6214 
6215 /**
6216  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6217  * @hba: per-adapter instance
6218  *
6219  * Returns
6220  *  IRQ_HANDLED - If interrupt is valid
6221  *  IRQ_NONE    - If invalid interrupt
6222  */
ufshcd_update_uic_error(struct ufs_hba * hba)6223 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6224 {
6225 	u32 reg;
6226 	irqreturn_t retval = IRQ_NONE;
6227 
6228 	/* PHY layer error */
6229 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6230 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6231 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6232 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6233 		/*
6234 		 * To know whether this error is fatal or not, DB timeout
6235 		 * must be checked but this error is handled separately.
6236 		 */
6237 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6238 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6239 					__func__);
6240 
6241 		/* Got a LINERESET indication. */
6242 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6243 			struct uic_command *cmd = NULL;
6244 
6245 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6246 			if (hba->uic_async_done && hba->active_uic_cmd)
6247 				cmd = hba->active_uic_cmd;
6248 			/*
6249 			 * Ignore the LINERESET during power mode change
6250 			 * operation via DME_SET command.
6251 			 */
6252 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6253 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6254 		}
6255 		retval |= IRQ_HANDLED;
6256 	}
6257 
6258 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6259 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6260 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6261 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6262 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6263 
6264 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6265 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6266 		else if (hba->dev_quirks &
6267 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6268 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6269 				hba->uic_error |=
6270 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6271 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6272 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6273 		}
6274 		retval |= IRQ_HANDLED;
6275 	}
6276 
6277 	/* UIC NL/TL/DME errors needs software retry */
6278 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6279 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6280 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6281 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6282 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6283 		retval |= IRQ_HANDLED;
6284 	}
6285 
6286 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6287 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6288 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6289 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6290 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6291 		retval |= IRQ_HANDLED;
6292 	}
6293 
6294 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6295 	if ((reg & UIC_DME_ERROR) &&
6296 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6297 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6298 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6299 		retval |= IRQ_HANDLED;
6300 	}
6301 
6302 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6303 			__func__, hba->uic_error);
6304 	return retval;
6305 }
6306 
6307 /**
6308  * ufshcd_check_errors - Check for errors that need s/w attention
6309  * @hba: per-adapter instance
6310  * @intr_status: interrupt status generated by the controller
6311  *
6312  * Returns
6313  *  IRQ_HANDLED - If interrupt is valid
6314  *  IRQ_NONE    - If invalid interrupt
6315  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6316 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6317 {
6318 	bool queue_eh_work = false;
6319 	irqreturn_t retval = IRQ_NONE;
6320 
6321 	spin_lock(hba->host->host_lock);
6322 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6323 
6324 	if (hba->errors & INT_FATAL_ERRORS) {
6325 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6326 				       hba->errors);
6327 		queue_eh_work = true;
6328 	}
6329 
6330 	if (hba->errors & UIC_ERROR) {
6331 		hba->uic_error = 0;
6332 		retval = ufshcd_update_uic_error(hba);
6333 		if (hba->uic_error) {
6334 			dev_err(hba->dev,
6335 			  "Scheduling error handler because of an UIC error\n");
6336 			queue_eh_work = true;
6337 		}
6338 	}
6339 
6340 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6341 		dev_err(hba->dev,
6342 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6343 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6344 			"Enter" : "Exit",
6345 			hba->errors, ufshcd_get_upmcrs(hba));
6346 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6347 				       hba->errors);
6348 		ufshcd_set_link_broken(hba);
6349 		queue_eh_work = true;
6350 	}
6351 
6352 	trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
6353 
6354 	if (queue_eh_work) {
6355 		/*
6356 		 * update the transfer error masks to sticky bits, let's do this
6357 		 * irrespective of current ufshcd_state.
6358 		 */
6359 		bool skip = false;
6360 		hba->saved_err |= hba->errors;
6361 		hba->saved_uic_err |= hba->uic_error;
6362 
6363 		trace_android_vh_ufs_err_print_ctrl(hba, &skip);
6364 		/* dump controller state before resetting */
6365 		if (!skip &&((hba->saved_err &
6366 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6367 		    (hba->saved_uic_err &&
6368 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR)))) {
6369 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6370 					__func__, hba->saved_err,
6371 					hba->saved_uic_err);
6372 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6373 					 "host_regs: ");
6374 			ufshcd_print_pwr_info(hba);
6375 		}
6376 		ufshcd_schedule_eh_work(hba);
6377 		retval |= IRQ_HANDLED;
6378 	}
6379 	/*
6380 	 * if (!queue_eh_work) -
6381 	 * Other errors are either non-fatal where host recovers
6382 	 * itself without s/w intervention or errors that will be
6383 	 * handled by the SCSI core layer.
6384 	 */
6385 	hba->errors = 0;
6386 	hba->uic_error = 0;
6387 	spin_unlock(hba->host->host_lock);
6388 	return retval;
6389 }
6390 
6391 /**
6392  * ufshcd_tmc_handler - handle task management function completion
6393  * @hba: per adapter instance
6394  *
6395  * Returns
6396  *  IRQ_HANDLED - If interrupt is valid
6397  *  IRQ_NONE    - If invalid interrupt
6398  */
ufshcd_tmc_handler(struct ufs_hba * hba)6399 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6400 {
6401 	struct request **tmf_rqs = ufs_hba_add_info(hba)->tmf_rqs;
6402 	unsigned long flags, pending, issued;
6403 	irqreturn_t ret = IRQ_NONE;
6404 	int tag;
6405 
6406 	spin_lock_irqsave(hba->host->host_lock, flags);
6407 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6408 	issued = hba->outstanding_tasks & ~pending;
6409 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6410 		struct request *req = tmf_rqs[tag];
6411 		struct completion *c = req->end_io_data;
6412 
6413 		complete(c);
6414 		ret = IRQ_HANDLED;
6415 	}
6416 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6417 
6418 	return ret;
6419 }
6420 
6421 /**
6422  * ufshcd_sl_intr - Interrupt service routine
6423  * @hba: per adapter instance
6424  * @intr_status: contains interrupts generated by the controller
6425  *
6426  * Returns
6427  *  IRQ_HANDLED - If interrupt is valid
6428  *  IRQ_NONE    - If invalid interrupt
6429  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6430 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6431 {
6432 	irqreturn_t retval = IRQ_NONE;
6433 	bool err_check = false;
6434 
6435 	if (intr_status & UFSHCD_UIC_MASK)
6436 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6437 
6438 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6439 		retval |= ufshcd_check_errors(hba, intr_status);
6440 
6441 	if (intr_status & UTP_TASK_REQ_COMPL)
6442 		retval |= ufshcd_tmc_handler(hba);
6443 
6444 	if (intr_status & UTP_TRANSFER_REQ_COMPL) {
6445 		retval |= ufshcd_trc_handler(hba, ufshcd_has_utrlcnr(hba));
6446 
6447 		trace_android_vh_ufs_err_check_ctrl(hba, &err_check);
6448 		if (err_check)
6449 			ufshcd_check_errors(hba, hba->errors);
6450 	}
6451 
6452 	return retval;
6453 }
6454 
6455 /**
6456  * ufshcd_intr - Main interrupt service routine
6457  * @irq: irq number
6458  * @__hba: pointer to adapter instance
6459  *
6460  * Returns
6461  *  IRQ_HANDLED - If interrupt is valid
6462  *  IRQ_NONE    - If invalid interrupt
6463  */
ufshcd_intr(int irq,void * __hba)6464 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6465 {
6466 	u32 intr_status, enabled_intr_status = 0;
6467 	irqreturn_t retval = IRQ_NONE;
6468 	struct ufs_hba *hba = __hba;
6469 	int retries = hba->nutrs;
6470 
6471 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6472 	hba->ufs_stats.last_intr_status = intr_status;
6473 	hba->ufs_stats.last_intr_ts = ktime_get();
6474 
6475 	/*
6476 	 * There could be max of hba->nutrs reqs in flight and in worst case
6477 	 * if the reqs get finished 1 by 1 after the interrupt status is
6478 	 * read, make sure we handle them by checking the interrupt status
6479 	 * again in a loop until we process all of the reqs before returning.
6480 	 */
6481 	while (intr_status && retries--) {
6482 		enabled_intr_status =
6483 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6484 		if (intr_status)
6485 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6486 		if (enabled_intr_status)
6487 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6488 
6489 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6490 	}
6491 
6492 	if (enabled_intr_status && retval == IRQ_NONE &&
6493 				!ufshcd_eh_in_progress(hba)) {
6494 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6495 					__func__,
6496 					intr_status,
6497 					hba->ufs_stats.last_intr_status,
6498 					enabled_intr_status);
6499 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6500 	}
6501 
6502 	return retval;
6503 }
6504 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6505 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6506 {
6507 	int err = 0;
6508 	u32 mask = 1 << tag;
6509 	unsigned long flags;
6510 
6511 	if (!test_bit(tag, &hba->outstanding_tasks))
6512 		goto out;
6513 
6514 	spin_lock_irqsave(hba->host->host_lock, flags);
6515 	ufshcd_utmrl_clear(hba, tag);
6516 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6517 
6518 	/* poll for max. 1 sec to clear door bell register by h/w */
6519 	err = ufshcd_wait_for_register(hba,
6520 			REG_UTP_TASK_REQ_DOOR_BELL,
6521 			mask, 0, 1000, 1000);
6522 out:
6523 	return err;
6524 }
6525 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6526 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6527 		struct utp_task_req_desc *treq, u8 tm_function)
6528 {
6529 	struct request **tmf_rqs = ufs_hba_add_info(hba)->tmf_rqs;
6530 	struct request_queue *q = hba->tmf_queue;
6531 	struct Scsi_Host *host = hba->host;
6532 	DECLARE_COMPLETION_ONSTACK(wait);
6533 	struct request *req;
6534 	unsigned long flags;
6535 	int task_tag, err;
6536 
6537 	/*
6538 	 * blk_get_request() is used here only to get a free tag.
6539 	 */
6540 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6541 	if (IS_ERR(req))
6542 		return PTR_ERR(req);
6543 
6544 	req->end_io_data = &wait;
6545 	ufshcd_hold(hba, false);
6546 
6547 	spin_lock_irqsave(host->host_lock, flags);
6548 
6549 	task_tag = req->tag;
6550 	tmf_rqs[req->tag] = req;
6551 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6552 
6553 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6554 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6555 
6556 	/* send command to the controller */
6557 	__set_bit(task_tag, &hba->outstanding_tasks);
6558 
6559 	/* Make sure descriptors are ready before ringing the task doorbell */
6560 	wmb();
6561 
6562 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6563 	/* Make sure that doorbell is committed immediately */
6564 	wmb();
6565 
6566 	spin_unlock_irqrestore(host->host_lock, flags);
6567 
6568 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6569 
6570 	/* wait until the task management command is completed */
6571 	err = wait_for_completion_io_timeout(&wait,
6572 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6573 	if (!err) {
6574 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6575 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6576 				__func__, tm_function);
6577 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6578 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6579 					__func__, task_tag);
6580 		err = -ETIMEDOUT;
6581 	} else {
6582 		err = 0;
6583 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6584 
6585 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6586 	}
6587 
6588 	spin_lock_irqsave(hba->host->host_lock, flags);
6589 	tmf_rqs[req->tag] = NULL;
6590 	__clear_bit(task_tag, &hba->outstanding_tasks);
6591 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6592 
6593 	ufshcd_release(hba);
6594 	blk_put_request(req);
6595 
6596 	return err;
6597 }
6598 
6599 /**
6600  * ufshcd_issue_tm_cmd - issues task management commands to controller
6601  * @hba: per adapter instance
6602  * @lun_id: LUN ID to which TM command is sent
6603  * @task_id: task ID to which the TM command is applicable
6604  * @tm_function: task management function opcode
6605  * @tm_response: task management service response return value
6606  *
6607  * Returns non-zero value on error, zero on success.
6608  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6609 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6610 		u8 tm_function, u8 *tm_response)
6611 {
6612 	struct utp_task_req_desc treq = { { 0 }, };
6613 	int ocs_value, err;
6614 
6615 	/* Configure task request descriptor */
6616 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6617 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6618 
6619 	/* Configure task request UPIU */
6620 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6621 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6622 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6623 
6624 	/*
6625 	 * The host shall provide the same value for LUN field in the basic
6626 	 * header and for Input Parameter.
6627 	 */
6628 	treq.input_param1 = cpu_to_be32(lun_id);
6629 	treq.input_param2 = cpu_to_be32(task_id);
6630 
6631 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6632 	if (err == -ETIMEDOUT)
6633 		return err;
6634 
6635 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6636 	if (ocs_value != OCS_SUCCESS)
6637 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6638 				__func__, ocs_value);
6639 	else if (tm_response)
6640 		*tm_response = be32_to_cpu(treq.output_param1) &
6641 				MASK_TM_SERVICE_RESP;
6642 	return err;
6643 }
6644 
6645 /**
6646  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6647  * @hba:	per-adapter instance
6648  * @req_upiu:	upiu request
6649  * @rsp_upiu:	upiu reply
6650  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6651  * @buff_len:	descriptor size, 0 if NA
6652  * @cmd_type:	specifies the type (NOP, Query...)
6653  * @desc_op:	descriptor operation
6654  *
6655  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6656  * Therefore, it "rides" the device management infrastructure: uses its tag and
6657  * tasks work queues.
6658  *
6659  * Since there is only one available tag for device management commands,
6660  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6661  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6662 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6663 					struct utp_upiu_req *req_upiu,
6664 					struct utp_upiu_req *rsp_upiu,
6665 					u8 *desc_buff, int *buff_len,
6666 					enum dev_cmd_type cmd_type,
6667 					enum query_opcode desc_op)
6668 {
6669 	DECLARE_COMPLETION_ONSTACK(wait);
6670 	const u32 tag = ufs_hba_add_info(hba)->reserved_slot;
6671 	struct ufshcd_lrb *lrbp;
6672 	int err = 0;
6673 	u8 upiu_flags;
6674 
6675 	/* Protects use of ufs_hba_add_info(hba)->reserved_slot. */
6676 	lockdep_assert_held(&hba->dev_cmd.lock);
6677 
6678 	down_read(&hba->clk_scaling_lock);
6679 
6680 	lrbp = &hba->lrb[tag];
6681 	WARN_ON(lrbp->cmd);
6682 	lrbp->cmd = NULL;
6683 	lrbp->sense_bufflen = 0;
6684 	lrbp->sense_buffer = NULL;
6685 	lrbp->task_tag = tag;
6686 	lrbp->lun = 0;
6687 	lrbp->intr_cmd = true;
6688 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6689 	hba->dev_cmd.type = cmd_type;
6690 
6691 	if (hba->ufs_version <= ufshci_version(1, 1))
6692 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6693 	else
6694 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6695 
6696 	/* update the task tag in the request upiu */
6697 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6698 
6699 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6700 
6701 	/* just copy the upiu request as it is */
6702 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6703 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6704 		/* The Data Segment Area is optional depending upon the query
6705 		 * function value. for WRITE DESCRIPTOR, the data segment
6706 		 * follows right after the tsf.
6707 		 */
6708 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6709 		*buff_len = 0;
6710 	}
6711 
6712 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6713 
6714 	hba->dev_cmd.complete = &wait;
6715 
6716 	/* Make sure descriptors are ready before ringing the doorbell */
6717 	wmb();
6718 
6719 	ufshcd_send_command(hba, tag);
6720 	/*
6721 	 * ignore the returning value here - ufshcd_check_query_response is
6722 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6723 	 * read the response directly ignoring all errors.
6724 	 */
6725 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6726 
6727 	/* just copy the upiu response as it is */
6728 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6729 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6730 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6731 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6732 			       MASK_QUERY_DATA_SEG_LEN;
6733 
6734 		if (*buff_len >= resp_len) {
6735 			memcpy(desc_buff, descp, resp_len);
6736 			*buff_len = resp_len;
6737 		} else {
6738 			dev_warn(hba->dev,
6739 				 "%s: rsp size %d is bigger than buffer size %d",
6740 				 __func__, resp_len, *buff_len);
6741 			*buff_len = 0;
6742 			err = -EINVAL;
6743 		}
6744 	}
6745 
6746 	up_read(&hba->clk_scaling_lock);
6747 	return err;
6748 }
6749 
6750 /**
6751  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6752  * @hba:	per-adapter instance
6753  * @req_upiu:	upiu request
6754  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6755  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6756  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6757  * @buff_len:	descriptor size, 0 if NA
6758  * @desc_op:	descriptor operation
6759  *
6760  * Supports UTP Transfer requests (nop and query), and UTP Task
6761  * Management requests.
6762  * It is up to the caller to fill the upiu conent properly, as it will
6763  * be copied without any further input validations.
6764  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6765 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6766 			     struct utp_upiu_req *req_upiu,
6767 			     struct utp_upiu_req *rsp_upiu,
6768 			     int msgcode,
6769 			     u8 *desc_buff, int *buff_len,
6770 			     enum query_opcode desc_op)
6771 {
6772 	int err;
6773 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6774 	struct utp_task_req_desc treq = { { 0 }, };
6775 	int ocs_value;
6776 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6777 
6778 	switch (msgcode) {
6779 	case UPIU_TRANSACTION_NOP_OUT:
6780 		cmd_type = DEV_CMD_TYPE_NOP;
6781 		fallthrough;
6782 	case UPIU_TRANSACTION_QUERY_REQ:
6783 		ufshcd_hold(hba, false);
6784 		mutex_lock(&hba->dev_cmd.lock);
6785 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6786 						   desc_buff, buff_len,
6787 						   cmd_type, desc_op);
6788 		mutex_unlock(&hba->dev_cmd.lock);
6789 		ufshcd_release(hba);
6790 
6791 		break;
6792 	case UPIU_TRANSACTION_TASK_REQ:
6793 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6794 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6795 
6796 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6797 
6798 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6799 		if (err == -ETIMEDOUT)
6800 			break;
6801 
6802 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6803 		if (ocs_value != OCS_SUCCESS) {
6804 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6805 				ocs_value);
6806 			break;
6807 		}
6808 
6809 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6810 
6811 		break;
6812 	default:
6813 		err = -EINVAL;
6814 
6815 		break;
6816 	}
6817 
6818 	return err;
6819 }
6820 
6821 /**
6822  * ufshcd_eh_device_reset_handler - device reset handler registered to
6823  *                                    scsi layer.
6824  * @cmd: SCSI command pointer
6825  *
6826  * Returns SUCCESS/FAILED
6827  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6828 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6829 {
6830 	struct Scsi_Host *host;
6831 	struct ufs_hba *hba;
6832 	u32 pos;
6833 	int err;
6834 	u8 resp = 0xF, lun;
6835 
6836 	host = cmd->device->host;
6837 	hba = shost_priv(host);
6838 
6839 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6840 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6841 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6842 		if (!err)
6843 			err = resp;
6844 		goto out;
6845 	}
6846 
6847 	/* clear the commands that were pending for corresponding LUN */
6848 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6849 		if (hba->lrb[pos].lun == lun) {
6850 			err = ufshcd_clear_cmd(hba, pos);
6851 			if (err)
6852 				break;
6853 			__ufshcd_transfer_req_compl(hba, 1U << pos);
6854 		}
6855 	}
6856 
6857 out:
6858 	hba->req_abort_count = 0;
6859 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
6860 	if (!err) {
6861 		err = SUCCESS;
6862 	} else {
6863 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6864 		err = FAILED;
6865 	}
6866 	return err;
6867 }
6868 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6869 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6870 {
6871 	struct ufshcd_lrb *lrbp;
6872 	int tag;
6873 
6874 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6875 		lrbp = &hba->lrb[tag];
6876 		lrbp->req_abort_skip = true;
6877 	}
6878 }
6879 
6880 /**
6881  * ufshcd_try_to_abort_task - abort a specific task
6882  * @hba: Pointer to adapter instance
6883  * @tag: Task tag/index to be aborted
6884  *
6885  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6886  * command, and in host controller by clearing the door-bell register. There can
6887  * be race between controller sending the command to the device while abort is
6888  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6889  * really issued and then try to abort it.
6890  *
6891  * Returns zero on success, non-zero on failure
6892  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6893 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6894 {
6895 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6896 	int err = 0;
6897 	int poll_cnt;
6898 	u8 resp = 0xF;
6899 	u32 reg;
6900 
6901 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6902 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6903 				UFS_QUERY_TASK, &resp);
6904 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6905 			/* cmd pending in the device */
6906 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6907 				__func__, tag);
6908 			break;
6909 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6910 			/*
6911 			 * cmd not pending in the device, check if it is
6912 			 * in transition.
6913 			 */
6914 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6915 				__func__, tag);
6916 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6917 			if (reg & (1 << tag)) {
6918 				/* sleep for max. 200us to stabilize */
6919 				usleep_range(100, 200);
6920 				continue;
6921 			}
6922 			/* command completed already */
6923 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6924 				__func__, tag);
6925 			goto out;
6926 		} else {
6927 			dev_err(hba->dev,
6928 				"%s: no response from device. tag = %d, err %d\n",
6929 				__func__, tag, err);
6930 			if (!err)
6931 				err = resp; /* service response error */
6932 			goto out;
6933 		}
6934 	}
6935 
6936 	if (!poll_cnt) {
6937 		err = -EBUSY;
6938 		goto out;
6939 	}
6940 
6941 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6942 			UFS_ABORT_TASK, &resp);
6943 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6944 		if (!err) {
6945 			err = resp; /* service response error */
6946 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6947 				__func__, tag, err);
6948 		}
6949 		goto out;
6950 	}
6951 
6952 	err = ufshcd_clear_cmd(hba, tag);
6953 	if (err)
6954 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6955 			__func__, tag, err);
6956 
6957 out:
6958 	return err;
6959 }
6960 
6961 /**
6962  * ufshcd_abort - scsi host template eh_abort_handler callback
6963  * @cmd: SCSI command pointer
6964  *
6965  * Returns SUCCESS/FAILED
6966  */
ufshcd_abort(struct scsi_cmnd * cmd)6967 static int ufshcd_abort(struct scsi_cmnd *cmd)
6968 {
6969 	struct Scsi_Host *host;
6970 	struct ufs_hba *hba;
6971 	unsigned long flags;
6972 	unsigned int tag;
6973 	int err = FAILED, res;
6974 	bool outstanding;
6975 	struct ufshcd_lrb *lrbp;
6976 	u32 reg;
6977 
6978 	host = cmd->device->host;
6979 	hba = shost_priv(host);
6980 	tag = cmd->request->tag;
6981 	lrbp = &hba->lrb[tag];
6982 	if (!ufshcd_valid_tag(hba, tag)) {
6983 		dev_err(hba->dev,
6984 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6985 			__func__, tag, cmd, cmd->request);
6986 		BUG();
6987 	}
6988 
6989 	ufshcd_hold(hba, false);
6990 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6991 	/* If command is already aborted/completed, return FAILED. */
6992 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6993 		dev_err(hba->dev,
6994 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6995 			__func__, tag, hba->outstanding_reqs, reg);
6996 		goto release;
6997 	}
6998 
6999 	/* Print Transfer Request of aborted task */
7000 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7001 
7002 	/*
7003 	 * Print detailed info about aborted request.
7004 	 * As more than one request might get aborted at the same time,
7005 	 * print full information only for the first aborted request in order
7006 	 * to reduce repeated printouts. For other aborted requests only print
7007 	 * basic details.
7008 	 */
7009 	scsi_print_command(cmd);
7010 	if (!hba->req_abort_count) {
7011 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7012 		ufshcd_print_evt_hist(hba);
7013 		ufshcd_print_host_state(hba);
7014 		ufshcd_print_pwr_info(hba);
7015 		ufshcd_print_trs(hba, 1 << tag, true);
7016 	} else {
7017 		ufshcd_print_trs(hba, 1 << tag, false);
7018 	}
7019 	hba->req_abort_count++;
7020 
7021 	if (!(reg & (1 << tag))) {
7022 		dev_err(hba->dev,
7023 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7024 		__func__, tag);
7025 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7026 		goto release;
7027 	}
7028 
7029 	/*
7030 	 * Task abort to the device W-LUN is illegal. When this command
7031 	 * will fail, due to spec violation, scsi err handling next step
7032 	 * will be to send LU reset which, again, is a spec violation.
7033 	 * To avoid these unnecessary/illegal steps, first we clean up
7034 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7035 	 * then queue the eh_work and bail.
7036 	 */
7037 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7038 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7039 
7040 		spin_lock_irqsave(host->host_lock, flags);
7041 		hba->force_reset = true;
7042 		ufshcd_schedule_eh_work(hba);
7043 		spin_unlock_irqrestore(host->host_lock, flags);
7044 		goto release;
7045 	}
7046 
7047 	/* Skip task abort in case previous aborts failed and report failure */
7048 	if (lrbp->req_abort_skip) {
7049 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7050 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7051 		goto release;
7052 	}
7053 
7054 	res = ufshcd_try_to_abort_task(hba, tag);
7055 	if (res) {
7056 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, res);
7057 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7058 		goto release;
7059 	}
7060 
7061 	/*
7062 	 * Clear the corresponding bit from outstanding_reqs since the command
7063 	 * has been aborted successfully.
7064 	 */
7065 	spin_lock_irqsave(host->host_lock, flags);
7066 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7067 	spin_unlock_irqrestore(host->host_lock, flags);
7068 
7069 	if (outstanding) {
7070 		ufshcd_release_scsi_cmd(hba, lrbp);
7071 		trace_android_vh_ufs_abort_success_ctrl(hba, lrbp);
7072 	}
7073 
7074 	err = SUCCESS;
7075 
7076 release:
7077 	/* Matches the ufshcd_hold() call at the start of this function. */
7078 	ufshcd_release(hba);
7079 	return err;
7080 }
7081 
7082 /**
7083  * ufshcd_host_reset_and_restore - reset and restore host controller
7084  * @hba: per-adapter instance
7085  *
7086  * Note that host controller reset may issue DME_RESET to
7087  * local and remote (device) Uni-Pro stack and the attributes
7088  * are reset to default state.
7089  *
7090  * Returns zero on success, non-zero on failure
7091  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7092 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7093 {
7094 	int err;
7095 
7096 	ufshpb_reset_host(hba);
7097 	/*
7098 	 * Stop the host controller and complete the requests
7099 	 * cleared by h/w
7100 	 */
7101 	ufshcd_hba_stop(hba);
7102 	hba->silence_err_logs = true;
7103 	ufshcd_complete_requests(hba);
7104 	hba->silence_err_logs = false;
7105 
7106 	/* scale up clocks to max frequency before full reinitialization */
7107 	ufshcd_set_clk_freq(hba, true);
7108 
7109 	err = ufshcd_hba_enable(hba);
7110 
7111 	/* Establish the link again and restore the device */
7112 	if (!err)
7113 		err = ufshcd_probe_hba(hba, false);
7114 
7115 	if (err)
7116 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7117 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7118 	return err;
7119 }
7120 
7121 /**
7122  * ufshcd_reset_and_restore - reset and re-initialize host/device
7123  * @hba: per-adapter instance
7124  *
7125  * Reset and recover device, host and re-establish link. This
7126  * is helpful to recover the communication in fatal error conditions.
7127  *
7128  * Returns zero on success, non-zero on failure
7129  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7130 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7131 {
7132 	u32 saved_err;
7133 	u32 saved_uic_err;
7134 	int err = 0;
7135 	unsigned long flags;
7136 	int retries = MAX_HOST_RESET_RETRIES;
7137 
7138 	/*
7139 	 * This is a fresh start, cache and clear saved error first,
7140 	 * in case new error generated during reset and restore.
7141 	 */
7142 	spin_lock_irqsave(hba->host->host_lock, flags);
7143 	saved_err = hba->saved_err;
7144 	saved_uic_err = hba->saved_uic_err;
7145 	hba->saved_err = 0;
7146 	hba->saved_uic_err = 0;
7147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7148 
7149 	do {
7150 		/* Reset the attached device */
7151 		ufshcd_vops_device_reset(hba);
7152 
7153 		err = ufshcd_host_reset_and_restore(hba);
7154 	} while (err && --retries);
7155 
7156 	spin_lock_irqsave(hba->host->host_lock, flags);
7157 	/*
7158 	 * Inform scsi mid-layer that we did reset and allow to handle
7159 	 * Unit Attention properly.
7160 	 */
7161 	scsi_report_bus_reset(hba->host, 0);
7162 	if (err) {
7163 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7164 		hba->saved_err |= saved_err;
7165 		hba->saved_uic_err |= saved_uic_err;
7166 	}
7167 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7168 
7169 	return err;
7170 }
7171 
7172 /**
7173  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7174  * @cmd: SCSI command pointer
7175  *
7176  * Returns SUCCESS/FAILED
7177  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7178 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7179 {
7180 	int err = SUCCESS;
7181 	unsigned long flags;
7182 	struct ufs_hba *hba;
7183 
7184 	hba = shost_priv(cmd->device->host);
7185 
7186 	/*
7187 	 * If runtime pm send SSU and got timeout, scsi_error_handler
7188 	 * stuck at this function to wait for flush_work(&hba->eh_work).
7189 	 * And ufshcd_err_handler(eh_work) stuck at wait for runtime pm active.
7190 	 * Do ufshcd_link_recovery instead schedule eh_work can prevent
7191 	 * dead lock to happen.
7192 	 */
7193 	if (hba->pm_op_in_progress) {
7194 		if (ufshcd_link_recovery(hba))
7195 			err = FAILED;
7196 
7197 		return err;
7198 	}
7199 
7200 	spin_lock_irqsave(hba->host->host_lock, flags);
7201 	hba->force_reset = true;
7202 	ufshcd_schedule_eh_work(hba);
7203 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7204 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7205 
7206 	flush_work(&hba->eh_work);
7207 
7208 	spin_lock_irqsave(hba->host->host_lock, flags);
7209 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7210 		err = FAILED;
7211 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7212 
7213 	return err;
7214 }
7215 
7216 /**
7217  * ufshcd_get_max_icc_level - calculate the ICC level
7218  * @sup_curr_uA: max. current supported by the regulator
7219  * @start_scan: row at the desc table to start scan from
7220  * @buff: power descriptor buffer
7221  *
7222  * Returns calculated max ICC level for specific regulator
7223  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)7224 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7225 {
7226 	int i;
7227 	int curr_uA;
7228 	u16 data;
7229 	u16 unit;
7230 
7231 	for (i = start_scan; i >= 0; i--) {
7232 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
7233 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7234 						ATTR_ICC_LVL_UNIT_OFFSET;
7235 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7236 		switch (unit) {
7237 		case UFSHCD_NANO_AMP:
7238 			curr_uA = curr_uA / 1000;
7239 			break;
7240 		case UFSHCD_MILI_AMP:
7241 			curr_uA = curr_uA * 1000;
7242 			break;
7243 		case UFSHCD_AMP:
7244 			curr_uA = curr_uA * 1000 * 1000;
7245 			break;
7246 		case UFSHCD_MICRO_AMP:
7247 		default:
7248 			break;
7249 		}
7250 		if (sup_curr_uA >= curr_uA)
7251 			break;
7252 	}
7253 	if (i < 0) {
7254 		i = 0;
7255 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7256 	}
7257 
7258 	return (u32)i;
7259 }
7260 
7261 /**
7262  * ufshcd_calc_icc_level - calculate the max ICC level
7263  * In case regulators are not initialized we'll return 0
7264  * @hba: per-adapter instance
7265  * @desc_buf: power descriptor buffer to extract ICC levels from.
7266  * @len: length of desc_buff
7267  *
7268  * Returns calculated ICC level
7269  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)7270 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7271 							u8 *desc_buf, int len)
7272 {
7273 	u32 icc_level = 0;
7274 
7275 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7276 						!hba->vreg_info.vccq2) {
7277 		dev_err(hba->dev,
7278 			"%s: Regulator capability was not set, actvIccLevel=%d",
7279 							__func__, icc_level);
7280 		goto out;
7281 	}
7282 
7283 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
7284 		icc_level = ufshcd_get_max_icc_level(
7285 				hba->vreg_info.vcc->max_uA,
7286 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7287 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7288 
7289 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
7290 		icc_level = ufshcd_get_max_icc_level(
7291 				hba->vreg_info.vccq->max_uA,
7292 				icc_level,
7293 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7294 
7295 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
7296 		icc_level = ufshcd_get_max_icc_level(
7297 				hba->vreg_info.vccq2->max_uA,
7298 				icc_level,
7299 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7300 out:
7301 	return icc_level;
7302 }
7303 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7304 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7305 {
7306 	int ret;
7307 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7308 	u8 *desc_buf;
7309 	u32 icc_level;
7310 
7311 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7312 	if (!desc_buf)
7313 		return;
7314 
7315 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7316 				     desc_buf, buff_len);
7317 	if (ret) {
7318 		dev_err(hba->dev,
7319 			"%s: Failed reading power descriptor.len = %d ret = %d",
7320 			__func__, buff_len, ret);
7321 		goto out;
7322 	}
7323 
7324 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7325 							 buff_len);
7326 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7327 
7328 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7329 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7330 
7331 	if (ret)
7332 		dev_err(hba->dev,
7333 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7334 			__func__, icc_level, ret);
7335 
7336 out:
7337 	kfree(desc_buf);
7338 }
7339 
7340 /**
7341  * ufshcd_scsi_add_wlus - Adds required W-LUs
7342  * @hba: per-adapter instance
7343  *
7344  * UFS device specification requires the UFS devices to support 4 well known
7345  * logical units:
7346  *	"REPORT_LUNS" (address: 01h)
7347  *	"UFS Device" (address: 50h)
7348  *	"RPMB" (address: 44h)
7349  *	"BOOT" (address: 30h)
7350  * UFS device's power management needs to be controlled by "POWER CONDITION"
7351  * field of SSU (START STOP UNIT) command. But this "power condition" field
7352  * will take effect only when its sent to "UFS device" well known logical unit
7353  * hence we require the scsi_device instance to represent this logical unit in
7354  * order for the UFS host driver to send the SSU command for power management.
7355  *
7356  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7357  * Block) LU so user space process can control this LU. User space may also
7358  * want to have access to BOOT LU.
7359  *
7360  * This function adds scsi device instances for each of all well known LUs
7361  * (except "REPORT LUNS" LU).
7362  *
7363  * Returns zero on success (all required W-LUs are added successfully),
7364  * non-zero error value on failure (if failed to add any of the required W-LU).
7365  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7366 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7367 {
7368 	int ret = 0;
7369 	struct scsi_device *sdev_boot;
7370 
7371 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7372 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7373 	if (IS_ERR(hba->sdev_ufs_device)) {
7374 		ret = PTR_ERR(hba->sdev_ufs_device);
7375 		hba->sdev_ufs_device = NULL;
7376 		goto out;
7377 	}
7378 	scsi_device_put(hba->sdev_ufs_device);
7379 
7380 	hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7381 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7382 	if (IS_ERR(hba->sdev_rpmb)) {
7383 		ret = PTR_ERR(hba->sdev_rpmb);
7384 		goto remove_sdev_ufs_device;
7385 	}
7386 	scsi_device_put(hba->sdev_rpmb);
7387 
7388 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7389 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7390 	if (IS_ERR(sdev_boot))
7391 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7392 	else
7393 		scsi_device_put(sdev_boot);
7394 	goto out;
7395 
7396 remove_sdev_ufs_device:
7397 	scsi_remove_device(hba->sdev_ufs_device);
7398 out:
7399 	return ret;
7400 }
7401 
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7402 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7403 {
7404 	struct ufs_dev_info *dev_info = &hba->dev_info;
7405 	u8 lun;
7406 	u32 d_lu_wb_buf_alloc;
7407 
7408 	if (!ufshcd_is_wb_allowed(hba))
7409 		return;
7410 	/*
7411 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7412 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7413 	 * enabled
7414 	 */
7415 	if (!(dev_info->wspecversion >= 0x310 ||
7416 	      dev_info->wspecversion == 0x220 ||
7417 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7418 		goto wb_disabled;
7419 
7420 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7421 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7422 		goto wb_disabled;
7423 
7424 	dev_info->d_ext_ufs_feature_sup =
7425 		get_unaligned_be32(desc_buf +
7426 				   DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7427 
7428 	if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7429 		goto wb_disabled;
7430 
7431 	/*
7432 	 * WB may be supported but not configured while provisioning.
7433 	 * The spec says, in dedicated wb buffer mode,
7434 	 * a max of 1 lun would have wb buffer configured.
7435 	 * Now only shared buffer mode is supported.
7436 	 */
7437 	dev_info->b_wb_buffer_type =
7438 		desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7439 
7440 	dev_info->b_presrv_uspc_en =
7441 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7442 
7443 	if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7444 		dev_info->d_wb_alloc_units =
7445 		get_unaligned_be32(desc_buf +
7446 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7447 		if (!dev_info->d_wb_alloc_units)
7448 			goto wb_disabled;
7449 	} else {
7450 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7451 			d_lu_wb_buf_alloc = 0;
7452 			ufshcd_read_unit_desc_param(hba,
7453 					lun,
7454 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7455 					(u8 *)&d_lu_wb_buf_alloc,
7456 					sizeof(d_lu_wb_buf_alloc));
7457 			if (d_lu_wb_buf_alloc) {
7458 				dev_info->wb_dedicated_lu = lun;
7459 				break;
7460 			}
7461 		}
7462 
7463 		if (!d_lu_wb_buf_alloc)
7464 			goto wb_disabled;
7465 	}
7466 	return;
7467 
7468 wb_disabled:
7469 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7470 }
7471 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7472 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7473 {
7474 	struct ufs_dev_fix *f;
7475 	struct ufs_dev_info *dev_info = &hba->dev_info;
7476 
7477 	if (!fixups)
7478 		return;
7479 
7480 	for (f = fixups; f->quirk; f++) {
7481 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7482 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7483 		     ((dev_info->model &&
7484 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7485 		      !strcmp(f->model, UFS_ANY_MODEL)))
7486 			hba->dev_quirks |= f->quirk;
7487 	}
7488 }
7489 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7490 
ufs_fixup_device_setup(struct ufs_hba * hba)7491 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7492 {
7493 	/* fix by general quirk table */
7494 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7495 
7496 	/* allow vendors to fix quirks */
7497 	ufshcd_vops_fixup_dev_quirks(hba);
7498 }
7499 
ufs_get_device_desc(struct ufs_hba * hba)7500 static int ufs_get_device_desc(struct ufs_hba *hba)
7501 {
7502 	int err;
7503 	u8 model_index;
7504 	u8 b_ufs_feature_sup;
7505 	u8 *desc_buf;
7506 	struct ufs_dev_info *dev_info = &hba->dev_info;
7507 
7508 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7509 	if (!desc_buf) {
7510 		err = -ENOMEM;
7511 		goto out;
7512 	}
7513 
7514 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7515 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7516 	if (err) {
7517 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7518 			__func__, err);
7519 		goto out;
7520 	}
7521 
7522 	/*
7523 	 * getting vendor (manufacturerID) and Bank Index in big endian
7524 	 * format
7525 	 */
7526 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7527 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7528 
7529 	/* getting Specification Version in big endian format */
7530 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7531 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7532 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7533 
7534 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7535 
7536 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7537 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7538 		bool hpb_en = false;
7539 
7540 		ufshpb_get_dev_info(hba, desc_buf);
7541 
7542 		if (!ufshpb_is_legacy(hba))
7543 			err = ufshcd_query_flag_retry(hba,
7544 						      UPIU_QUERY_OPCODE_READ_FLAG,
7545 						      QUERY_FLAG_IDN_HPB_EN, 0,
7546 						      &hpb_en);
7547 
7548 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7549 			dev_info->hpb_enabled = true;
7550 	}
7551 
7552 	err = ufshcd_read_string_desc(hba, model_index,
7553 				      &dev_info->model, SD_ASCII_STD);
7554 	if (err < 0) {
7555 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7556 			__func__, err);
7557 		goto out;
7558 	}
7559 
7560 	ufs_fixup_device_setup(hba);
7561 
7562 	ufshcd_wb_probe(hba, desc_buf);
7563 
7564 	/*
7565 	 * ufshcd_read_string_desc returns size of the string
7566 	 * reset the error value
7567 	 */
7568 	err = 0;
7569 
7570 out:
7571 	kfree(desc_buf);
7572 	return err;
7573 }
7574 
ufs_put_device_desc(struct ufs_hba * hba)7575 static void ufs_put_device_desc(struct ufs_hba *hba)
7576 {
7577 	struct ufs_dev_info *dev_info = &hba->dev_info;
7578 
7579 	kfree(dev_info->model);
7580 	dev_info->model = NULL;
7581 }
7582 
7583 /**
7584  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7585  * @hba: per-adapter instance
7586  *
7587  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7588  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7589  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7590  * the hibern8 exit latency.
7591  *
7592  * Returns zero on success, non-zero error value on failure.
7593  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7594 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7595 {
7596 	int ret = 0;
7597 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7598 
7599 	ret = ufshcd_dme_peer_get(hba,
7600 				  UIC_ARG_MIB_SEL(
7601 					RX_MIN_ACTIVATETIME_CAPABILITY,
7602 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7603 				  &peer_rx_min_activatetime);
7604 	if (ret)
7605 		goto out;
7606 
7607 	/* make sure proper unit conversion is applied */
7608 	tuned_pa_tactivate =
7609 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7610 		 / PA_TACTIVATE_TIME_UNIT_US);
7611 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7612 			     tuned_pa_tactivate);
7613 
7614 out:
7615 	return ret;
7616 }
7617 
7618 /**
7619  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7620  * @hba: per-adapter instance
7621  *
7622  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7623  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7624  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7625  * This optimal value can help reduce the hibern8 exit latency.
7626  *
7627  * Returns zero on success, non-zero error value on failure.
7628  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7629 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7630 {
7631 	int ret = 0;
7632 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7633 	u32 max_hibern8_time, tuned_pa_hibern8time;
7634 
7635 	ret = ufshcd_dme_get(hba,
7636 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7637 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7638 				  &local_tx_hibern8_time_cap);
7639 	if (ret)
7640 		goto out;
7641 
7642 	ret = ufshcd_dme_peer_get(hba,
7643 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7644 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7645 				  &peer_rx_hibern8_time_cap);
7646 	if (ret)
7647 		goto out;
7648 
7649 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7650 			       peer_rx_hibern8_time_cap);
7651 	/* make sure proper unit conversion is applied */
7652 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7653 				/ PA_HIBERN8_TIME_UNIT_US);
7654 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7655 			     tuned_pa_hibern8time);
7656 out:
7657 	return ret;
7658 }
7659 
7660 /**
7661  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7662  * less than device PA_TACTIVATE time.
7663  * @hba: per-adapter instance
7664  *
7665  * Some UFS devices require host PA_TACTIVATE to be lower than device
7666  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7667  * for such devices.
7668  *
7669  * Returns zero on success, non-zero error value on failure.
7670  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7671 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7672 {
7673 	int ret = 0;
7674 	u32 granularity, peer_granularity;
7675 	u32 pa_tactivate, peer_pa_tactivate;
7676 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7677 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7678 
7679 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7680 				  &granularity);
7681 	if (ret)
7682 		goto out;
7683 
7684 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7685 				  &peer_granularity);
7686 	if (ret)
7687 		goto out;
7688 
7689 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7690 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7691 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7692 			__func__, granularity);
7693 		return -EINVAL;
7694 	}
7695 
7696 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7697 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7698 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7699 			__func__, peer_granularity);
7700 		return -EINVAL;
7701 	}
7702 
7703 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7704 	if (ret)
7705 		goto out;
7706 
7707 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7708 				  &peer_pa_tactivate);
7709 	if (ret)
7710 		goto out;
7711 
7712 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7713 	peer_pa_tactivate_us = peer_pa_tactivate *
7714 			     gran_to_us_table[peer_granularity - 1];
7715 
7716 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7717 		u32 new_peer_pa_tactivate;
7718 
7719 		new_peer_pa_tactivate = pa_tactivate_us /
7720 				      gran_to_us_table[peer_granularity - 1];
7721 		new_peer_pa_tactivate++;
7722 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7723 					  new_peer_pa_tactivate);
7724 	}
7725 
7726 out:
7727 	return ret;
7728 }
7729 
ufshcd_tune_unipro_params(struct ufs_hba * hba)7730 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7731 {
7732 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7733 		ufshcd_tune_pa_tactivate(hba);
7734 		ufshcd_tune_pa_hibern8time(hba);
7735 	}
7736 
7737 	ufshcd_vops_apply_dev_quirks(hba);
7738 
7739 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7740 		/* set 1ms timeout for PA_TACTIVATE */
7741 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7742 
7743 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7744 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7745 }
7746 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7747 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7748 {
7749 	hba->ufs_stats.hibern8_exit_cnt = 0;
7750 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7751 	hba->req_abort_count = 0;
7752 }
7753 
ufshcd_device_geo_params_init(struct ufs_hba * hba)7754 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7755 {
7756 	int err;
7757 	size_t buff_len;
7758 	u8 *desc_buf;
7759 
7760 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7761 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7762 	if (!desc_buf) {
7763 		err = -ENOMEM;
7764 		goto out;
7765 	}
7766 
7767 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7768 				     desc_buf, buff_len);
7769 	if (err) {
7770 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7771 				__func__, err);
7772 		goto out;
7773 	}
7774 
7775 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7776 		hba->dev_info.max_lu_supported = 32;
7777 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7778 		hba->dev_info.max_lu_supported = 8;
7779 
7780 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
7781 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
7782 		ufshpb_get_geo_info(hba, desc_buf);
7783 
7784 out:
7785 	kfree(desc_buf);
7786 	return err;
7787 }
7788 
7789 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7790 	{19200000, REF_CLK_FREQ_19_2_MHZ},
7791 	{26000000, REF_CLK_FREQ_26_MHZ},
7792 	{38400000, REF_CLK_FREQ_38_4_MHZ},
7793 	{52000000, REF_CLK_FREQ_52_MHZ},
7794 	{0, REF_CLK_FREQ_INVAL},
7795 };
7796 
7797 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7798 ufs_get_bref_clk_from_hz(unsigned long freq)
7799 {
7800 	int i;
7801 
7802 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7803 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
7804 			return ufs_ref_clk_freqs[i].val;
7805 
7806 	return REF_CLK_FREQ_INVAL;
7807 }
7808 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7809 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7810 {
7811 	unsigned long freq;
7812 
7813 	freq = clk_get_rate(refclk);
7814 
7815 	hba->dev_ref_clk_freq =
7816 		ufs_get_bref_clk_from_hz(freq);
7817 
7818 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7819 		dev_err(hba->dev,
7820 		"invalid ref_clk setting = %ld\n", freq);
7821 }
7822 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7823 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7824 {
7825 	int err;
7826 	u32 ref_clk;
7827 	u32 freq = hba->dev_ref_clk_freq;
7828 
7829 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7830 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7831 
7832 	if (err) {
7833 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7834 			err);
7835 		goto out;
7836 	}
7837 
7838 	if (ref_clk == freq)
7839 		goto out; /* nothing to update */
7840 
7841 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7842 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7843 
7844 	if (err) {
7845 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7846 			ufs_ref_clk_freqs[freq].freq_hz);
7847 		goto out;
7848 	}
7849 
7850 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7851 			ufs_ref_clk_freqs[freq].freq_hz);
7852 
7853 out:
7854 	return err;
7855 }
7856 
ufshcd_device_params_init(struct ufs_hba * hba)7857 static int ufshcd_device_params_init(struct ufs_hba *hba)
7858 {
7859 	bool flag;
7860 	int ret, i;
7861 
7862 	 /* Init device descriptor sizes */
7863 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7864 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7865 
7866 	/* Init UFS geometry descriptor related parameters */
7867 	ret = ufshcd_device_geo_params_init(hba);
7868 	if (ret)
7869 		goto out;
7870 
7871 	/* Check and apply UFS device quirks */
7872 	ret = ufs_get_device_desc(hba);
7873 	if (ret) {
7874 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7875 			__func__, ret);
7876 		goto out;
7877 	}
7878 
7879 	ufshcd_get_ref_clk_gating_wait(hba);
7880 
7881 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7882 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7883 		hba->dev_info.f_power_on_wp_en = flag;
7884 
7885 	/* Probe maximum power mode co-supported by both UFS host and device */
7886 	if (ufshcd_get_max_pwr_mode(hba))
7887 		dev_err(hba->dev,
7888 			"%s: Failed getting max supported power mode\n",
7889 			__func__);
7890 out:
7891 	return ret;
7892 }
7893 
7894 /**
7895  * ufshcd_add_lus - probe and add UFS logical units
7896  * @hba: per-adapter instance
7897  */
ufshcd_add_lus(struct ufs_hba * hba)7898 static int ufshcd_add_lus(struct ufs_hba *hba)
7899 {
7900 	int ret;
7901 
7902 	/* Add required well known logical units to scsi mid layer */
7903 	ret = ufshcd_scsi_add_wlus(hba);
7904 	if (ret)
7905 		goto out;
7906 
7907 	/* Initialize devfreq after UFS device is detected */
7908 	if (ufshcd_is_clkscaling_supported(hba)) {
7909 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
7910 			&hba->pwr_info,
7911 			sizeof(struct ufs_pa_layer_attr));
7912 		hba->clk_scaling.saved_pwr_info.is_valid = true;
7913 		hba->clk_scaling.is_allowed = true;
7914 
7915 		ret = ufshcd_devfreq_init(hba);
7916 		if (ret)
7917 			goto out;
7918 
7919 		hba->clk_scaling.is_enabled = true;
7920 		ufshcd_init_clk_scaling_sysfs(hba);
7921 	}
7922 
7923 	ufs_bsg_probe(hba);
7924 	ufshpb_init(hba);
7925 	scsi_scan_host(hba->host);
7926 	pm_runtime_put_sync(hba->dev);
7927 
7928 out:
7929 	return ret;
7930 }
7931 
7932 /**
7933  * ufshcd_probe_hba - probe hba to detect device and initialize
7934  * @hba: per-adapter instance
7935  * @async: asynchronous execution or not
7936  *
7937  * Execute link-startup and verify device initialization
7938  */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7939 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7940 {
7941 	int ret;
7942 	unsigned long flags;
7943 	ktime_t start = ktime_get();
7944 
7945 	hba->ufshcd_state = UFSHCD_STATE_RESET;
7946 
7947 	ret = ufshcd_link_startup(hba);
7948 	if (ret)
7949 		goto out;
7950 
7951 	if (hba->quirks & UFSHCD_QUIRK_SKIP_INTERFACE_CONFIGURATION)
7952 		goto out;
7953 
7954 	/* Debug counters initialization */
7955 	ufshcd_clear_dbg_ufs_stats(hba);
7956 
7957 	/* UniPro link is active now */
7958 	ufshcd_set_link_active(hba);
7959 
7960 	/* Verify device initialization by sending NOP OUT UPIU */
7961 	ret = ufshcd_verify_dev_init(hba);
7962 	if (ret)
7963 		goto out;
7964 
7965 	/* Initiate UFS initialization, and waiting until completion */
7966 	ret = ufshcd_complete_dev_init(hba);
7967 	if (ret)
7968 		goto out;
7969 
7970 	/*
7971 	 * Initialize UFS device parameters used by driver, these
7972 	 * parameters are associated with UFS descriptors.
7973 	 */
7974 	if (async) {
7975 		ret = ufshcd_device_params_init(hba);
7976 		if (ret)
7977 			goto out;
7978 	}
7979 
7980 	ufshcd_tune_unipro_params(hba);
7981 
7982 	/* UFS device is also active now */
7983 	ufshcd_set_ufs_dev_active(hba);
7984 	ufshcd_force_reset_auto_bkops(hba);
7985 
7986 	/* Gear up to HS gear if supported */
7987 	if (hba->max_pwr_info.is_valid) {
7988 		/*
7989 		 * Set the right value to bRefClkFreq before attempting to
7990 		 * switch to HS gears.
7991 		 */
7992 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7993 			ufshcd_set_dev_ref_clk(hba);
7994 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7995 		if (ret) {
7996 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7997 					__func__, ret);
7998 			goto out;
7999 		}
8000 		ufshcd_print_pwr_info(hba);
8001 	}
8002 
8003 	/*
8004 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8005 	 * and for removable UFS card as well, hence always set the parameter.
8006 	 * Note: Error handler may issue the device reset hence resetting
8007 	 * bActiveICCLevel as well so it is always safe to set this here.
8008 	 */
8009 	ufshcd_set_active_icc_lvl(hba);
8010 
8011 	ufshcd_wb_config(hba);
8012 	/* Enable Auto-Hibernate if configured */
8013 	ufshcd_auto_hibern8_enable(hba);
8014 
8015 	ufshpb_reset(hba);
8016 
8017 	trace_android_rvh_ufs_complete_init(hba);
8018 out:
8019 	spin_lock_irqsave(hba->host->host_lock, flags);
8020 	if (ret)
8021 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8022 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8023 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8024 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8025 
8026 	trace_ufshcd_init(dev_name(hba->dev), ret,
8027 		ktime_to_us(ktime_sub(ktime_get(), start)),
8028 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8029 	return ret;
8030 }
8031 
8032 /**
8033  * ufshcd_async_scan - asynchronous execution for probing hba
8034  * @data: data pointer to pass to this function
8035  * @cookie: cookie data
8036  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8037 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8038 {
8039 	struct ufs_hba *hba = (struct ufs_hba *)data;
8040 	int ret;
8041 
8042 	down(&hba->host_sem);
8043 	/* Initialize hba, detect and initialize UFS device */
8044 	ret = ufshcd_probe_hba(hba, true);
8045 	up(&hba->host_sem);
8046 	if (ret)
8047 		goto out;
8048 
8049 	/* Probe and add UFS logical units  */
8050 	ret = ufshcd_add_lus(hba);
8051 out:
8052 	/*
8053 	 * If we failed to initialize the device or the device is not
8054 	 * present, turn off the power/clocks etc.
8055 	 */
8056 	if (ret) {
8057 		pm_runtime_put_sync(hba->dev);
8058 		ufshcd_hba_exit(hba);
8059 	}
8060 }
8061 
8062 static const struct attribute_group *ufshcd_driver_groups[] = {
8063 	&ufs_sysfs_unit_descriptor_group,
8064 	&ufs_sysfs_lun_attributes_group,
8065 #ifdef CONFIG_SCSI_UFS_HPB
8066 	&ufs_sysfs_hpb_stat_group,
8067 	&ufs_sysfs_hpb_param_group,
8068 #endif
8069 	NULL,
8070 };
8071 
8072 static struct ufs_hba_variant_params ufs_hba_vps = {
8073 	.hba_enable_delay_us		= 1000,
8074 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8075 	.devfreq_profile.polling_ms	= 100,
8076 	.devfreq_profile.target		= ufshcd_devfreq_target,
8077 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8078 	.ondemand_data.upthreshold	= 70,
8079 	.ondemand_data.downdifferential	= 5,
8080 };
8081 
8082 static struct scsi_host_template ufshcd_driver_template = {
8083 	.module			= THIS_MODULE,
8084 	.name			= UFSHCD,
8085 	.proc_name		= UFSHCD,
8086 	.queuecommand		= ufshcd_queuecommand,
8087 	.slave_alloc		= ufshcd_slave_alloc,
8088 	.slave_configure	= ufshcd_slave_configure,
8089 	.slave_destroy		= ufshcd_slave_destroy,
8090 	.change_queue_depth	= ufshcd_change_queue_depth,
8091 	.eh_abort_handler	= ufshcd_abort,
8092 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8093 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8094 	.this_id		= -1,
8095 	.sg_tablesize		= SG_ALL,
8096 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8097 	.can_queue		= UFSHCD_CAN_QUEUE,
8098 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8099 	.max_host_blocked	= 1,
8100 	.track_queue_depth	= 1,
8101 	.sdev_groups		= ufshcd_driver_groups,
8102 	.dma_boundary		= PAGE_SIZE - 1,
8103 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8104 };
8105 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8106 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8107 				   int ua)
8108 {
8109 	int ret;
8110 
8111 	if (!vreg)
8112 		return 0;
8113 
8114 	/*
8115 	 * "set_load" operation shall be required on those regulators
8116 	 * which specifically configured current limitation. Otherwise
8117 	 * zero max_uA may cause unexpected behavior when regulator is
8118 	 * enabled or set as high power mode.
8119 	 */
8120 	if (!vreg->max_uA)
8121 		return 0;
8122 
8123 	ret = regulator_set_load(vreg->reg, ua);
8124 	if (ret < 0) {
8125 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8126 				__func__, vreg->name, ua, ret);
8127 	}
8128 
8129 	return ret;
8130 }
8131 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8132 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8133 					 struct ufs_vreg *vreg)
8134 {
8135 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8136 }
8137 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8138 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8139 					 struct ufs_vreg *vreg)
8140 {
8141 	if (!vreg)
8142 		return 0;
8143 
8144 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8145 }
8146 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8147 static int ufshcd_config_vreg(struct device *dev,
8148 		struct ufs_vreg *vreg, bool on)
8149 {
8150 	int ret = 0;
8151 	struct regulator *reg;
8152 	const char *name;
8153 	int min_uV, uA_load;
8154 
8155 	BUG_ON(!vreg);
8156 
8157 	reg = vreg->reg;
8158 	name = vreg->name;
8159 
8160 	if (regulator_count_voltages(reg) > 0) {
8161 		uA_load = on ? vreg->max_uA : 0;
8162 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
8163 		if (ret)
8164 			goto out;
8165 
8166 		if (vreg->min_uV && vreg->max_uV) {
8167 			min_uV = on ? vreg->min_uV : 0;
8168 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
8169 			if (ret)
8170 				dev_err(dev,
8171 					"%s: %s set voltage failed, err=%d\n",
8172 					__func__, name, ret);
8173 		}
8174 	}
8175 out:
8176 	return ret;
8177 }
8178 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8179 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8180 {
8181 	int ret = 0;
8182 
8183 	if (!vreg || vreg->enabled)
8184 		goto out;
8185 
8186 	ret = ufshcd_config_vreg(dev, vreg, true);
8187 	if (!ret)
8188 		ret = regulator_enable(vreg->reg);
8189 
8190 	if (!ret)
8191 		vreg->enabled = true;
8192 	else
8193 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8194 				__func__, vreg->name, ret);
8195 out:
8196 	return ret;
8197 }
8198 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8199 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8200 {
8201 	int ret = 0;
8202 
8203 	if (!vreg || !vreg->enabled || vreg->always_on)
8204 		goto out;
8205 
8206 	ret = regulator_disable(vreg->reg);
8207 
8208 	if (!ret) {
8209 		/* ignore errors on applying disable config */
8210 		ufshcd_config_vreg(dev, vreg, false);
8211 		vreg->enabled = false;
8212 	} else {
8213 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8214 				__func__, vreg->name, ret);
8215 	}
8216 out:
8217 	return ret;
8218 }
8219 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8220 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8221 {
8222 	int ret = 0;
8223 	struct device *dev = hba->dev;
8224 	struct ufs_vreg_info *info = &hba->vreg_info;
8225 
8226 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8227 	if (ret)
8228 		goto out;
8229 
8230 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8231 	if (ret)
8232 		goto out;
8233 
8234 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8235 
8236 out:
8237 	if (ret) {
8238 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8239 		ufshcd_toggle_vreg(dev, info->vccq, false);
8240 		ufshcd_toggle_vreg(dev, info->vcc, false);
8241 	}
8242 	return ret;
8243 }
8244 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8245 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8246 {
8247 	struct ufs_vreg_info *info = &hba->vreg_info;
8248 
8249 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8250 }
8251 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8252 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8253 {
8254 	int ret = 0;
8255 
8256 	if (!vreg)
8257 		goto out;
8258 
8259 	vreg->reg = devm_regulator_get(dev, vreg->name);
8260 	if (IS_ERR(vreg->reg)) {
8261 		ret = PTR_ERR(vreg->reg);
8262 		dev_err(dev, "%s: %s get failed, err=%d\n",
8263 				__func__, vreg->name, ret);
8264 	}
8265 out:
8266 	return ret;
8267 }
8268 
ufshcd_init_vreg(struct ufs_hba * hba)8269 static int ufshcd_init_vreg(struct ufs_hba *hba)
8270 {
8271 	int ret = 0;
8272 	struct device *dev = hba->dev;
8273 	struct ufs_vreg_info *info = &hba->vreg_info;
8274 
8275 	ret = ufshcd_get_vreg(dev, info->vcc);
8276 	if (ret)
8277 		goto out;
8278 
8279 	ret = ufshcd_get_vreg(dev, info->vccq);
8280 	if (!ret)
8281 		ret = ufshcd_get_vreg(dev, info->vccq2);
8282 out:
8283 	return ret;
8284 }
8285 
ufshcd_init_hba_vreg(struct ufs_hba * hba)8286 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8287 {
8288 	struct ufs_vreg_info *info = &hba->vreg_info;
8289 
8290 	if (info)
8291 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8292 
8293 	return 0;
8294 }
8295 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8296 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8297 {
8298 	int ret = 0;
8299 	struct ufs_clk_info *clki;
8300 	struct list_head *head = &hba->clk_list_head;
8301 	unsigned long flags;
8302 	ktime_t start = ktime_get();
8303 	bool clk_state_changed = false;
8304 
8305 	if (list_empty(head))
8306 		goto out;
8307 
8308 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8309 	if (ret)
8310 		return ret;
8311 
8312 	list_for_each_entry(clki, head, list) {
8313 		if (!IS_ERR_OR_NULL(clki->clk)) {
8314 			/*
8315 			 * Don't disable clocks which are needed
8316 			 * to keep the link active.
8317 			 */
8318 			if (ufshcd_is_link_active(hba) &&
8319 			    clki->keep_link_active)
8320 				continue;
8321 
8322 			clk_state_changed = on ^ clki->enabled;
8323 			if (on && !clki->enabled) {
8324 				ret = clk_prepare_enable(clki->clk);
8325 				if (ret) {
8326 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8327 						__func__, clki->name, ret);
8328 					goto out;
8329 				}
8330 			} else if (!on && clki->enabled) {
8331 				clk_disable_unprepare(clki->clk);
8332 			}
8333 			clki->enabled = on;
8334 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8335 					clki->name, on ? "en" : "dis");
8336 		}
8337 	}
8338 
8339 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8340 	if (ret)
8341 		return ret;
8342 
8343 out:
8344 	if (ret) {
8345 		list_for_each_entry(clki, head, list) {
8346 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8347 				clk_disable_unprepare(clki->clk);
8348 		}
8349 	} else if (!ret && on) {
8350 		spin_lock_irqsave(hba->host->host_lock, flags);
8351 		hba->clk_gating.state = CLKS_ON;
8352 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8353 					hba->clk_gating.state);
8354 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8355 	}
8356 
8357 	if (clk_state_changed)
8358 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8359 			(on ? "on" : "off"),
8360 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8361 	return ret;
8362 }
8363 
ufshcd_init_clocks(struct ufs_hba * hba)8364 static int ufshcd_init_clocks(struct ufs_hba *hba)
8365 {
8366 	int ret = 0;
8367 	struct ufs_clk_info *clki;
8368 	struct device *dev = hba->dev;
8369 	struct list_head *head = &hba->clk_list_head;
8370 
8371 	if (list_empty(head))
8372 		goto out;
8373 
8374 	list_for_each_entry(clki, head, list) {
8375 		if (!clki->name)
8376 			continue;
8377 
8378 		clki->clk = devm_clk_get(dev, clki->name);
8379 		if (IS_ERR(clki->clk)) {
8380 			ret = PTR_ERR(clki->clk);
8381 			dev_err(dev, "%s: %s clk get failed, %d\n",
8382 					__func__, clki->name, ret);
8383 			goto out;
8384 		}
8385 
8386 		/*
8387 		 * Parse device ref clk freq as per device tree "ref_clk".
8388 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8389 		 * in ufshcd_alloc_host().
8390 		 */
8391 		if (!strcmp(clki->name, "ref_clk"))
8392 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8393 
8394 		if (clki->max_freq) {
8395 			ret = clk_set_rate(clki->clk, clki->max_freq);
8396 			if (ret) {
8397 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8398 					__func__, clki->name,
8399 					clki->max_freq, ret);
8400 				goto out;
8401 			}
8402 			clki->curr_freq = clki->max_freq;
8403 		}
8404 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8405 				clki->name, clk_get_rate(clki->clk));
8406 	}
8407 out:
8408 	return ret;
8409 }
8410 
ufshcd_variant_hba_init(struct ufs_hba * hba)8411 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8412 {
8413 	int err = 0;
8414 
8415 	if (!hba->vops)
8416 		goto out;
8417 
8418 	err = ufshcd_vops_init(hba);
8419 	if (err)
8420 		goto out;
8421 
8422 	err = ufshcd_vops_setup_regulators(hba, true);
8423 	if (err)
8424 		ufshcd_vops_exit(hba);
8425 out:
8426 	if (err)
8427 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8428 			__func__, ufshcd_get_var_name(hba), err);
8429 	return err;
8430 }
8431 
ufshcd_variant_hba_exit(struct ufs_hba * hba)8432 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8433 {
8434 	if (!hba->vops)
8435 		return;
8436 
8437 	ufshcd_vops_setup_regulators(hba, false);
8438 
8439 	ufshcd_vops_exit(hba);
8440 }
8441 
ufshcd_hba_init(struct ufs_hba * hba)8442 static int ufshcd_hba_init(struct ufs_hba *hba)
8443 {
8444 	int err;
8445 
8446 	/*
8447 	 * Handle host controller power separately from the UFS device power
8448 	 * rails as it will help controlling the UFS host controller power
8449 	 * collapse easily which is different than UFS device power collapse.
8450 	 * Also, enable the host controller power before we go ahead with rest
8451 	 * of the initialization here.
8452 	 */
8453 	err = ufshcd_init_hba_vreg(hba);
8454 	if (err)
8455 		goto out;
8456 
8457 	err = ufshcd_setup_hba_vreg(hba, true);
8458 	if (err)
8459 		goto out;
8460 
8461 	err = ufshcd_init_clocks(hba);
8462 	if (err)
8463 		goto out_disable_hba_vreg;
8464 
8465 	err = ufshcd_setup_clocks(hba, true);
8466 	if (err)
8467 		goto out_disable_hba_vreg;
8468 
8469 	err = ufshcd_init_vreg(hba);
8470 	if (err)
8471 		goto out_disable_clks;
8472 
8473 	err = ufshcd_setup_vreg(hba, true);
8474 	if (err)
8475 		goto out_disable_clks;
8476 
8477 	err = ufshcd_variant_hba_init(hba);
8478 	if (err)
8479 		goto out_disable_vreg;
8480 
8481 	ufs_debugfs_hba_init(hba);
8482 
8483 	hba->is_powered = true;
8484 	goto out;
8485 
8486 out_disable_vreg:
8487 	ufshcd_setup_vreg(hba, false);
8488 out_disable_clks:
8489 	ufshcd_setup_clocks(hba, false);
8490 out_disable_hba_vreg:
8491 	ufshcd_setup_hba_vreg(hba, false);
8492 out:
8493 	return err;
8494 }
8495 
ufshcd_hba_exit(struct ufs_hba * hba)8496 static void ufshcd_hba_exit(struct ufs_hba *hba)
8497 {
8498 	if (hba->is_powered) {
8499 		ufshcd_exit_clk_scaling(hba);
8500 		ufshcd_exit_clk_gating(hba);
8501 		if (hba->eh_wq)
8502 			destroy_workqueue(hba->eh_wq);
8503 		ufs_debugfs_hba_exit(hba);
8504 		ufshcd_variant_hba_exit(hba);
8505 		ufshcd_setup_vreg(hba, false);
8506 		ufshcd_setup_clocks(hba, false);
8507 		ufshcd_setup_hba_vreg(hba, false);
8508 		hba->is_powered = false;
8509 		ufs_put_device_desc(hba);
8510 	}
8511 }
8512 
8513 /**
8514  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8515  *			     power mode
8516  * @hba: per adapter instance
8517  * @pwr_mode: device power mode to set
8518  *
8519  * Returns 0 if requested power mode is set successfully
8520  * Returns non-zero if failed to set the requested power mode
8521  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8522 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8523 				     enum ufs_dev_pwr_mode pwr_mode)
8524 {
8525 	unsigned char cmd[6] = { START_STOP };
8526 	struct scsi_sense_hdr sshdr;
8527 	struct scsi_device *sdp;
8528 	unsigned long flags;
8529 	int ret, retries;
8530 
8531 	spin_lock_irqsave(hba->host->host_lock, flags);
8532 	sdp = hba->sdev_ufs_device;
8533 	if (sdp) {
8534 		ret = scsi_device_get(sdp);
8535 		if (!ret && !scsi_device_online(sdp)) {
8536 			ret = -ENODEV;
8537 			scsi_device_put(sdp);
8538 		}
8539 	} else {
8540 		ret = -ENODEV;
8541 	}
8542 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8543 
8544 	if (ret)
8545 		return ret;
8546 
8547 	/*
8548 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8549 	 * handling, which would wait for host to be resumed. Since we know
8550 	 * we are functional while we are here, skip host resume in error
8551 	 * handling context.
8552 	 */
8553 	hba->host->eh_noresume = 1;
8554 
8555 	cmd[4] = pwr_mode << 4;
8556 
8557 	/*
8558 	 * Current function would be generally called from the power management
8559 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8560 	 * already suspended childs.
8561 	 */
8562 	for (retries = 3; retries > 0; --retries) {
8563 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8564 				START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8565 		if (!scsi_status_is_check_condition(ret) ||
8566 				!scsi_sense_valid(&sshdr) ||
8567 				sshdr.sense_key != UNIT_ATTENTION)
8568 			break;
8569 	}
8570 	if (ret) {
8571 		sdev_printk(KERN_WARNING, sdp,
8572 			    "START_STOP failed for power mode: %d, result %x\n",
8573 			    pwr_mode, ret);
8574 		if (driver_byte(ret) == DRIVER_SENSE)
8575 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
8576 	}
8577 
8578 	if (!ret)
8579 		hba->curr_dev_pwr_mode = pwr_mode;
8580 
8581 	scsi_device_put(sdp);
8582 	hba->host->eh_noresume = 0;
8583 	return ret;
8584 }
8585 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8586 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8587 					enum uic_link_state req_link_state,
8588 					int check_for_bkops)
8589 {
8590 	int ret = 0;
8591 
8592 	if (req_link_state == hba->uic_link_state)
8593 		return 0;
8594 
8595 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8596 		ret = ufshcd_uic_hibern8_enter(hba);
8597 		if (!ret) {
8598 			ufshcd_set_link_hibern8(hba);
8599 		} else {
8600 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8601 					__func__, ret);
8602 			goto out;
8603 		}
8604 	}
8605 	/*
8606 	 * If autobkops is enabled, link can't be turned off because
8607 	 * turning off the link would also turn off the device.
8608 	 */
8609 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8610 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8611 		/*
8612 		 * Let's make sure that link is in low power mode, we are doing
8613 		 * this currently by putting the link in Hibern8. Otherway to
8614 		 * put the link in low power mode is to send the DME end point
8615 		 * to device and then send the DME reset command to local
8616 		 * unipro. But putting the link in hibern8 is much faster.
8617 		 */
8618 		ret = ufshcd_uic_hibern8_enter(hba);
8619 		if (ret) {
8620 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8621 					__func__, ret);
8622 			goto out;
8623 		}
8624 		/*
8625 		 * Change controller state to "reset state" which
8626 		 * should also put the link in off/reset state
8627 		 */
8628 		ufshcd_hba_stop(hba);
8629 		/*
8630 		 * TODO: Check if we need any delay to make sure that
8631 		 * controller is reset
8632 		 */
8633 		ufshcd_set_link_off(hba);
8634 	}
8635 
8636 out:
8637 	return ret;
8638 }
8639 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8640 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8641 {
8642 	bool vcc_off = false;
8643 
8644 	/*
8645 	 * It seems some UFS devices may keep drawing more than sleep current
8646 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8647 	 * To avoid this situation, add 2ms delay before putting these UFS
8648 	 * rails in LPM mode.
8649 	 */
8650 	if (!ufshcd_is_link_active(hba) &&
8651 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8652 		usleep_range(2000, 2100);
8653 
8654 	/*
8655 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8656 	 * power.
8657 	 *
8658 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8659 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8660 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8661 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8662 	 *
8663 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8664 	 * in low power state which would save some power.
8665 	 *
8666 	 * If Write Booster is enabled and the device needs to flush the WB
8667 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8668 	 */
8669 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8670 	    !hba->dev_info.is_lu_power_on_wp) {
8671 		ufshcd_setup_vreg(hba, false);
8672 		vcc_off = true;
8673 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8674 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8675 		vcc_off = true;
8676 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8677 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8678 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8679 		}
8680 	}
8681 
8682 	/*
8683 	 * Some UFS devices require delay after VCC power rail is turned-off.
8684 	 */
8685 	if (vcc_off && hba->vreg_info.vcc &&
8686 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8687 		usleep_range(5000, 5100);
8688 }
8689 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8690 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8691 {
8692 	int ret = 0;
8693 
8694 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8695 	    !hba->dev_info.is_lu_power_on_wp) {
8696 		ret = ufshcd_setup_vreg(hba, true);
8697 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8698 		if (!ufshcd_is_link_active(hba)) {
8699 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8700 			if (ret)
8701 				goto vcc_disable;
8702 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8703 			if (ret)
8704 				goto vccq_lpm;
8705 		}
8706 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8707 	}
8708 	goto out;
8709 
8710 vccq_lpm:
8711 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8712 vcc_disable:
8713 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8714 out:
8715 	return ret;
8716 }
8717 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8718 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8719 {
8720 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8721 		ufshcd_setup_hba_vreg(hba, false);
8722 }
8723 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8724 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8725 {
8726 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8727 		ufshcd_setup_hba_vreg(hba, true);
8728 }
8729 
8730 /**
8731  * ufshcd_suspend - helper function for suspend operations
8732  * @hba: per adapter instance
8733  * @pm_op: desired low power operation type
8734  *
8735  * This function will try to put the UFS device and link into low power
8736  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8737  * (System PM level).
8738  *
8739  * If this function is called during shutdown, it will make sure that
8740  * both UFS device and UFS link is powered off.
8741  *
8742  * NOTE: UFS device & link must be active before we enter in this function.
8743  *
8744  * Returns 0 for success and non-zero for failure
8745  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8746 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8747 {
8748 	int ret = 0;
8749 	enum ufs_pm_level pm_lvl;
8750 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8751 	enum uic_link_state req_link_state;
8752 
8753 	hba->pm_op_in_progress = 1;
8754 	if (!ufshcd_is_shutdown_pm(pm_op)) {
8755 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8756 			 hba->rpm_lvl : hba->spm_lvl;
8757 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8758 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8759 	} else {
8760 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8761 		req_link_state = UIC_LINK_OFF_STATE;
8762 	}
8763 
8764 	ufshpb_suspend(hba);
8765 
8766 	/*
8767 	 * If we can't transition into any of the low power modes
8768 	 * just gate the clocks.
8769 	 */
8770 	ufshcd_hold(hba, false);
8771 	hba->clk_gating.is_suspended = true;
8772 
8773 	if (ufshcd_is_clkscaling_supported(hba))
8774 		ufshcd_clk_scaling_suspend(hba, true);
8775 
8776 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8777 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8778 		goto disable_clks;
8779 	}
8780 
8781 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8782 	    (req_link_state == hba->uic_link_state))
8783 		goto enable_gating;
8784 
8785 	/* UFS device & link must be active before we enter in this function */
8786 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8787 		ret = -EINVAL;
8788 		goto enable_gating;
8789 	}
8790 
8791 	if (ufshcd_is_runtime_pm(pm_op)) {
8792 		if (ufshcd_can_autobkops_during_suspend(hba)) {
8793 			/*
8794 			 * The device is idle with no requests in the queue,
8795 			 * allow background operations if bkops status shows
8796 			 * that performance might be impacted.
8797 			 */
8798 			ret = ufshcd_urgent_bkops(hba);
8799 			if (ret)
8800 				goto enable_gating;
8801 		} else {
8802 			/* make sure that auto bkops is disabled */
8803 			ufshcd_disable_auto_bkops(hba);
8804 		}
8805 		/*
8806 		 * If device needs to do BKOP or WB buffer flush during
8807 		 * Hibern8, keep device power mode as "active power mode"
8808 		 * and VCC supply.
8809 		 */
8810 		hba->dev_info.b_rpm_dev_flush_capable =
8811 			hba->auto_bkops_enabled ||
8812 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8813 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8814 			ufshcd_is_auto_hibern8_enabled(hba))) &&
8815 			ufshcd_wb_need_flush(hba));
8816 	}
8817 
8818 	flush_work(&hba->eeh_work);
8819 
8820 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8821 		if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8822 		    !ufshcd_is_runtime_pm(pm_op)) {
8823 			/* ensure that bkops is disabled */
8824 			ufshcd_disable_auto_bkops(hba);
8825 		}
8826 
8827 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
8828 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8829 			if (ret)
8830 				goto enable_gating;
8831 		}
8832 	}
8833 
8834 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8835 	if (ret)
8836 		goto set_dev_active;
8837 
8838 disable_clks:
8839 	/*
8840 	 * Call vendor specific suspend callback. As these callbacks may access
8841 	 * vendor specific host controller register space call them before the
8842 	 * host clocks are ON.
8843 	 */
8844 	ret = ufshcd_vops_suspend(hba, pm_op);
8845 	if (ret)
8846 		goto set_link_active;
8847 	/*
8848 	 * Disable the host irq as host controller as there won't be any
8849 	 * host controller transaction expected till resume.
8850 	 */
8851 	ufshcd_disable_irq(hba);
8852 
8853 	ufshcd_setup_clocks(hba, false);
8854 
8855 	if (ufshcd_is_clkgating_allowed(hba)) {
8856 		hba->clk_gating.state = CLKS_OFF;
8857 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8858 					hba->clk_gating.state);
8859 	}
8860 
8861 	ufshcd_vreg_set_lpm(hba);
8862 
8863 	/* Put the host controller in low power mode if possible */
8864 	ufshcd_hba_vreg_set_lpm(hba);
8865 	goto out;
8866 
8867 set_link_active:
8868 	ufshcd_vreg_set_hpm(hba);
8869 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8870 		ufshcd_set_link_active(hba);
8871 	else if (ufshcd_is_link_off(hba))
8872 		ufshcd_host_reset_and_restore(hba);
8873 set_dev_active:
8874 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8875 		ufshcd_disable_auto_bkops(hba);
8876 enable_gating:
8877 	if (ufshcd_is_clkscaling_supported(hba))
8878 		ufshcd_clk_scaling_suspend(hba, false);
8879 
8880 	hba->clk_gating.is_suspended = false;
8881 	hba->dev_info.b_rpm_dev_flush_capable = false;
8882 	ufshcd_release(hba);
8883 	ufshpb_resume(hba);
8884 out:
8885 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8886 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8887 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8888 	}
8889 
8890 	hba->pm_op_in_progress = 0;
8891 
8892 	if (ret)
8893 		ufshcd_update_evt_hist(hba, UFS_EVT_SUSPEND_ERR, (u32)ret);
8894 	return ret;
8895 }
8896 
8897 /**
8898  * ufshcd_resume - helper function for resume operations
8899  * @hba: per adapter instance
8900  * @pm_op: runtime PM or system PM
8901  *
8902  * This function basically brings the UFS device, UniPro link and controller
8903  * to active state.
8904  *
8905  * Returns 0 for success and non-zero for failure
8906  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8907 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8908 {
8909 	int ret;
8910 	enum uic_link_state old_link_state;
8911 
8912 	hba->pm_op_in_progress = 1;
8913 	old_link_state = hba->uic_link_state;
8914 
8915 	ufshcd_hba_vreg_set_hpm(hba);
8916 	ret = ufshcd_vreg_set_hpm(hba);
8917 	if (ret)
8918 		goto out;
8919 
8920 	/* Make sure clocks are enabled before accessing controller */
8921 	ret = ufshcd_setup_clocks(hba, true);
8922 	if (ret)
8923 		goto disable_vreg;
8924 
8925 	/* enable the host irq as host controller would be active soon */
8926 	ufshcd_enable_irq(hba);
8927 
8928 	/*
8929 	 * Call vendor specific resume callback. As these callbacks may access
8930 	 * vendor specific host controller register space call them when the
8931 	 * host clocks are ON.
8932 	 */
8933 	ret = ufshcd_vops_resume(hba, pm_op);
8934 	if (ret)
8935 		goto disable_irq_and_vops_clks;
8936 
8937 	if (ufshcd_is_link_hibern8(hba)) {
8938 		ret = ufshcd_uic_hibern8_exit(hba);
8939 		if (!ret) {
8940 			ufshcd_set_link_active(hba);
8941 		} else {
8942 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8943 					__func__, ret);
8944 			goto vendor_suspend;
8945 		}
8946 	} else if (ufshcd_is_link_off(hba)) {
8947 		/*
8948 		 * A full initialization of the host and the device is
8949 		 * required since the link was put to off during suspend.
8950 		 */
8951 		ret = ufshcd_reset_and_restore(hba);
8952 		/*
8953 		 * ufshcd_reset_and_restore() should have already
8954 		 * set the link state as active
8955 		 */
8956 		if (ret || !ufshcd_is_link_active(hba))
8957 			goto vendor_suspend;
8958 	}
8959 
8960 	if (!ufshcd_is_ufs_dev_active(hba)) {
8961 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8962 		if (ret)
8963 			goto set_old_link_state;
8964 	}
8965 
8966 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8967 		ufshcd_enable_auto_bkops(hba);
8968 	else
8969 		/*
8970 		 * If BKOPs operations are urgently needed at this moment then
8971 		 * keep auto-bkops enabled or else disable it.
8972 		 */
8973 		ufshcd_urgent_bkops(hba);
8974 
8975 	hba->clk_gating.is_suspended = false;
8976 
8977 	if (ufshcd_is_clkscaling_supported(hba))
8978 		ufshcd_clk_scaling_suspend(hba, false);
8979 
8980 	/* Enable Auto-Hibernate if configured */
8981 	ufshcd_auto_hibern8_enable(hba);
8982 
8983 	ufshpb_resume(hba);
8984 
8985 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8986 		hba->dev_info.b_rpm_dev_flush_capable = false;
8987 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8988 	}
8989 
8990 	/* Schedule clock gating in case of no access to UFS device yet */
8991 	ufshcd_release(hba);
8992 
8993 	goto out;
8994 
8995 set_old_link_state:
8996 	ufshcd_link_state_transition(hba, old_link_state, 0);
8997 vendor_suspend:
8998 	ufshcd_vops_suspend(hba, pm_op);
8999 disable_irq_and_vops_clks:
9000 	ufshcd_disable_irq(hba);
9001 	ufshcd_setup_clocks(hba, false);
9002 	if (ufshcd_is_clkgating_allowed(hba)) {
9003 		hba->clk_gating.state = CLKS_OFF;
9004 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9005 					hba->clk_gating.state);
9006 	}
9007 disable_vreg:
9008 	ufshcd_vreg_set_lpm(hba);
9009 out:
9010 	hba->pm_op_in_progress = 0;
9011 	if (ret)
9012 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9013 	return ret;
9014 }
9015 
9016 /**
9017  * ufshcd_system_suspend - system suspend routine
9018  * @hba: per adapter instance
9019  *
9020  * Check the description of ufshcd_suspend() function for more details.
9021  *
9022  * Returns 0 for success and non-zero for failure
9023  */
ufshcd_system_suspend(struct ufs_hba * hba)9024 int ufshcd_system_suspend(struct ufs_hba *hba)
9025 {
9026 	int ret = 0;
9027 	ktime_t start = ktime_get();
9028 
9029 	down(&hba->host_sem);
9030 
9031 	if (!hba->is_powered)
9032 		return 0;
9033 
9034 	cancel_delayed_work_sync(&hba->rpm_dev_flush_recheck_work);
9035 
9036 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
9037 	     hba->curr_dev_pwr_mode) &&
9038 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
9039 	     hba->uic_link_state) &&
9040 	     pm_runtime_suspended(hba->dev) &&
9041 	     !hba->dev_info.b_rpm_dev_flush_capable)
9042 		goto out;
9043 
9044 	if (pm_runtime_suspended(hba->dev)) {
9045 		/*
9046 		 * UFS device and/or UFS link low power states during runtime
9047 		 * suspend seems to be different than what is expected during
9048 		 * system suspend. Hence runtime resume the devic & link and
9049 		 * let the system suspend low power states to take effect.
9050 		 * TODO: If resume takes longer time, we might have optimize
9051 		 * it in future by not resuming everything if possible.
9052 		 */
9053 		ret = ufshcd_runtime_resume(hba);
9054 		if (ret)
9055 			goto out;
9056 	}
9057 
9058 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
9059 out:
9060 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9061 		ktime_to_us(ktime_sub(ktime_get(), start)),
9062 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9063 	if (!ret)
9064 		hba->is_sys_suspended = true;
9065 	else
9066 		up(&hba->host_sem);
9067 	return ret;
9068 }
9069 EXPORT_SYMBOL(ufshcd_system_suspend);
9070 
9071 /**
9072  * ufshcd_system_resume - system resume routine
9073  * @hba: per adapter instance
9074  *
9075  * Returns 0 for success and non-zero for failure
9076  */
9077 
ufshcd_system_resume(struct ufs_hba * hba)9078 int ufshcd_system_resume(struct ufs_hba *hba)
9079 {
9080 	int ret = 0;
9081 	ktime_t start = ktime_get();
9082 
9083 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
9084 		/*
9085 		 * Let the runtime resume take care of resuming
9086 		 * if runtime suspended.
9087 		 */
9088 		goto out;
9089 	else
9090 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
9091 out:
9092 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9093 		ktime_to_us(ktime_sub(ktime_get(), start)),
9094 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9095 	if (!ret)
9096 		hba->is_sys_suspended = false;
9097 	up(&hba->host_sem);
9098 	return ret;
9099 }
9100 EXPORT_SYMBOL(ufshcd_system_resume);
9101 
9102 /**
9103  * ufshcd_runtime_suspend - runtime suspend routine
9104  * @hba: per adapter instance
9105  *
9106  * Check the description of ufshcd_suspend() function for more details.
9107  *
9108  * Returns 0 for success and non-zero for failure
9109  */
ufshcd_runtime_suspend(struct ufs_hba * hba)9110 int ufshcd_runtime_suspend(struct ufs_hba *hba)
9111 {
9112 	int ret = 0;
9113 	ktime_t start = ktime_get();
9114 
9115 	if (!hba->is_powered)
9116 		goto out;
9117 	else
9118 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
9119 out:
9120 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9121 		ktime_to_us(ktime_sub(ktime_get(), start)),
9122 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9123 	return ret;
9124 }
9125 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9126 
9127 /**
9128  * ufshcd_runtime_resume - runtime resume routine
9129  * @hba: per adapter instance
9130  *
9131  * This function basically brings the UFS device, UniPro link and controller
9132  * to active state. Following operations are done in this function:
9133  *
9134  * 1. Turn on all the controller related clocks
9135  * 2. Bring the UniPro link out of Hibernate state
9136  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
9137  *    to active state.
9138  * 4. If auto-bkops is enabled on the device, disable it.
9139  *
9140  * So following would be the possible power state after this function return
9141  * successfully:
9142  *	S1: UFS device in Active state with VCC rail ON
9143  *	    UniPro link in Active state
9144  *	    All the UFS/UniPro controller clocks are ON
9145  *
9146  * Returns 0 for success and non-zero for failure
9147  */
ufshcd_runtime_resume(struct ufs_hba * hba)9148 int ufshcd_runtime_resume(struct ufs_hba *hba)
9149 {
9150 	int ret = 0;
9151 	ktime_t start = ktime_get();
9152 
9153 	if (!hba->is_powered)
9154 		goto out;
9155 	else
9156 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
9157 out:
9158 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9159 		ktime_to_us(ktime_sub(ktime_get(), start)),
9160 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9161 	return ret;
9162 }
9163 EXPORT_SYMBOL(ufshcd_runtime_resume);
9164 
ufshcd_runtime_idle(struct ufs_hba * hba)9165 int ufshcd_runtime_idle(struct ufs_hba *hba)
9166 {
9167 	return 0;
9168 }
9169 EXPORT_SYMBOL(ufshcd_runtime_idle);
9170 
9171 /**
9172  * ufshcd_shutdown - shutdown routine
9173  * @hba: per adapter instance
9174  *
9175  * This function would power off both UFS device and UFS link.
9176  *
9177  * Returns 0 always to allow force shutdown even in case of errors.
9178  */
ufshcd_shutdown(struct ufs_hba * hba)9179 int ufshcd_shutdown(struct ufs_hba *hba)
9180 {
9181 	int ret = 0;
9182 
9183 	down(&hba->host_sem);
9184 	hba->shutting_down = true;
9185 	up(&hba->host_sem);
9186 
9187 	if (!hba->is_powered)
9188 		goto out;
9189 
9190 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9191 		goto out;
9192 
9193 	pm_runtime_get_sync(hba->dev);
9194 
9195 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
9196 out:
9197 	if (ret)
9198 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
9199 	hba->is_powered = false;
9200 	/* allow force shutdown even in case of errors */
9201 	return 0;
9202 }
9203 EXPORT_SYMBOL(ufshcd_shutdown);
9204 
9205 /**
9206  * ufshcd_remove - de-allocate SCSI host and host memory space
9207  *		data structure memory
9208  * @hba: per adapter instance
9209  */
ufshcd_remove(struct ufs_hba * hba)9210 void ufshcd_remove(struct ufs_hba *hba)
9211 {
9212 	ufs_bsg_remove(hba);
9213 	ufshpb_remove(hba);
9214 	ufs_sysfs_remove_nodes(hba->dev);
9215 	blk_cleanup_queue(hba->tmf_queue);
9216 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9217 	blk_cleanup_queue(hba->cmd_queue);
9218 	scsi_remove_host(hba->host);
9219 	/* disable interrupts */
9220 	ufshcd_disable_intr(hba, hba->intr_mask);
9221 	ufshcd_hba_stop(hba);
9222 	ufshcd_hba_exit(hba);
9223 }
9224 EXPORT_SYMBOL_GPL(ufshcd_remove);
9225 
9226 /**
9227  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9228  * @hba: pointer to Host Bus Adapter (HBA)
9229  */
ufshcd_dealloc_host(struct ufs_hba * hba)9230 void ufshcd_dealloc_host(struct ufs_hba *hba)
9231 {
9232 	scsi_host_put(hba->host);
9233 }
9234 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9235 
9236 /**
9237  * ufshcd_set_dma_mask - Set dma mask based on the controller
9238  *			 addressing capability
9239  * @hba: per adapter instance
9240  *
9241  * Returns 0 for success, non-zero for failure
9242  */
ufshcd_set_dma_mask(struct ufs_hba * hba)9243 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9244 {
9245 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9246 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9247 			return 0;
9248 	}
9249 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9250 }
9251 
9252 /**
9253  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9254  * @dev: pointer to device handle
9255  * @hba_handle: driver private handle
9256  * Returns 0 on success, non-zero value on failure
9257  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9258 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9259 {
9260 	struct Scsi_Host *host;
9261 	struct ufs_hba *hba;
9262 	int err = 0;
9263 
9264 	if (!dev) {
9265 		dev_err(dev,
9266 		"Invalid memory reference for dev is NULL\n");
9267 		err = -ENODEV;
9268 		goto out_error;
9269 	}
9270 
9271 	host = scsi_host_alloc(&ufshcd_driver_template,
9272 			       sizeof(struct ufs_hba_add_info));
9273 	if (!host) {
9274 		dev_err(dev, "scsi_host_alloc failed\n");
9275 		err = -ENOMEM;
9276 		goto out_error;
9277 	}
9278 	hba = shost_priv(host);
9279 	hba->host = host;
9280 	hba->dev = dev;
9281 	*hba_handle = hba;
9282 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9283 	hba->sg_entry_size = sizeof(struct ufshcd_sg_entry);
9284 
9285 	INIT_LIST_HEAD(&hba->clk_list_head);
9286 
9287 out_error:
9288 	return err;
9289 }
9290 EXPORT_SYMBOL(ufshcd_alloc_host);
9291 
9292 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9293 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9294 				     const struct blk_mq_queue_data *qd)
9295 {
9296 	WARN_ON_ONCE(true);
9297 	return BLK_STS_NOTSUPP;
9298 }
9299 
9300 static const struct blk_mq_ops ufshcd_tmf_ops = {
9301 	.queue_rq = ufshcd_queue_tmf,
9302 };
9303 
9304 /**
9305  * ufshcd_init - Driver initialization routine
9306  * @hba: per-adapter instance
9307  * @mmio_base: base register address
9308  * @irq: Interrupt line of device
9309  * Returns 0 on success, non-zero value on failure
9310  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9311 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9312 {
9313 	struct request ***tmf_rqs = &ufs_hba_add_info(hba)->tmf_rqs;
9314 	int err;
9315 	struct Scsi_Host *host = hba->host;
9316 	struct device *dev = hba->dev;
9317 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9318 
9319 	/*
9320 	 * dev_set_drvdata() must be called before any callbacks are registered
9321 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9322 	 * sysfs).
9323 	 */
9324 	dev_set_drvdata(dev, hba);
9325 
9326 	if (!mmio_base) {
9327 		dev_err(hba->dev,
9328 		"Invalid memory reference for mmio_base is NULL\n");
9329 		err = -ENODEV;
9330 		goto out_error;
9331 	}
9332 
9333 	hba->mmio_base = mmio_base;
9334 	hba->irq = irq;
9335 	hba->vps = &ufs_hba_vps;
9336 
9337 	err = ufshcd_hba_init(hba);
9338 	if (err)
9339 		goto out_error;
9340 
9341 	/* Read capabilities registers */
9342 	err = ufshcd_hba_capabilities(hba);
9343 	if (err)
9344 		goto out_disable;
9345 
9346 	/* Get UFS version supported by the controller */
9347 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9348 
9349 	if (hba->ufs_version < ufshci_version(1, 0))
9350 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
9351 			hba->ufs_version);
9352 
9353 	/* Get Interrupt bit mask per version */
9354 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9355 
9356 	err = ufshcd_set_dma_mask(hba);
9357 	if (err) {
9358 		dev_err(hba->dev, "set dma mask failed\n");
9359 		goto out_disable;
9360 	}
9361 
9362 	/* Allocate memory for host memory space */
9363 	err = ufshcd_memory_alloc(hba);
9364 	if (err) {
9365 		dev_err(hba->dev, "Memory allocation failed\n");
9366 		goto out_disable;
9367 	}
9368 
9369 	/* Configure LRB */
9370 	ufshcd_host_memory_configure(hba);
9371 
9372 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9373 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9374 	host->max_id = UFSHCD_MAX_ID;
9375 	host->max_lun = UFS_MAX_LUNS;
9376 	host->max_channel = UFSHCD_MAX_CHANNEL;
9377 	host->unique_id = host->host_no;
9378 	host->max_cmd_len = UFS_CDB_SIZE;
9379 
9380 	hba->max_pwr_info.is_valid = false;
9381 
9382 	/* Initialize work queues */
9383 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9384 		 hba->host->host_no);
9385 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9386 	if (!hba->eh_wq) {
9387 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9388 				__func__);
9389 		err = -ENOMEM;
9390 		goto out_disable;
9391 	}
9392 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9393 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9394 
9395 	sema_init(&hba->host_sem, 1);
9396 
9397 	/* Initialize UIC command mutex */
9398 	mutex_init(&hba->uic_cmd_mutex);
9399 
9400 	/* Initialize mutex for device management commands */
9401 	mutex_init(&hba->dev_cmd.lock);
9402 
9403 	init_rwsem(&hba->clk_scaling_lock);
9404 
9405 	ufshcd_init_clk_gating(hba);
9406 
9407 	ufshcd_init_clk_scaling(hba);
9408 
9409 	/*
9410 	 * In order to avoid any spurious interrupt immediately after
9411 	 * registering UFS controller interrupt handler, clear any pending UFS
9412 	 * interrupt status and disable all the UFS interrupts.
9413 	 */
9414 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9415 		      REG_INTERRUPT_STATUS);
9416 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9417 	/*
9418 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9419 	 * status is cleared before registering UFS interrupt handler.
9420 	 */
9421 	mb();
9422 
9423 	/* IRQ registration */
9424 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9425 	if (err) {
9426 		dev_err(hba->dev, "request irq failed\n");
9427 		goto out_disable;
9428 	} else {
9429 		hba->is_irq_enabled = true;
9430 	}
9431 
9432 	err = scsi_add_host(host, hba->dev);
9433 	if (err) {
9434 		dev_err(hba->dev, "scsi_add_host failed\n");
9435 		goto out_disable;
9436 	}
9437 
9438 	hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9439 	if (IS_ERR(hba->cmd_queue)) {
9440 		err = PTR_ERR(hba->cmd_queue);
9441 		goto out_remove_scsi_host;
9442 	}
9443 
9444 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9445 		.nr_hw_queues	= 1,
9446 		.queue_depth	= hba->nutmrs,
9447 		.ops		= &ufshcd_tmf_ops,
9448 		.flags		= BLK_MQ_F_NO_SCHED,
9449 	};
9450 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9451 	if (err < 0)
9452 		goto free_cmd_queue;
9453 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9454 	if (IS_ERR(hba->tmf_queue)) {
9455 		err = PTR_ERR(hba->tmf_queue);
9456 		goto free_tmf_tag_set;
9457 	}
9458 	*tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, sizeof(**tmf_rqs),
9459 				GFP_KERNEL);
9460 	if (!*tmf_rqs) {
9461 		err = -ENOMEM;
9462 		goto free_tmf_queue;
9463 	}
9464 
9465 	/* Reset the attached device */
9466 	ufshcd_vops_device_reset(hba);
9467 
9468 	ufshcd_init_crypto(hba);
9469 
9470 	/* Host controller enable */
9471 	err = ufshcd_hba_enable(hba);
9472 	if (err) {
9473 		dev_err(hba->dev, "Host controller enable failed\n");
9474 		ufshcd_print_evt_hist(hba);
9475 		ufshcd_print_host_state(hba);
9476 		goto free_tmf_queue;
9477 	}
9478 
9479 	/*
9480 	 * Set the default power management level for runtime and system PM.
9481 	 * Default power saving mode is to keep UFS link in Hibern8 state
9482 	 * and UFS device in sleep state.
9483 	 */
9484 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9485 						UFS_SLEEP_PWR_MODE,
9486 						UIC_LINK_HIBERN8_STATE);
9487 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9488 						UFS_SLEEP_PWR_MODE,
9489 						UIC_LINK_HIBERN8_STATE);
9490 
9491 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9492 			  ufshcd_rpm_dev_flush_recheck_work);
9493 
9494 	/* Set the default auto-hiberate idle timer value to 150 ms */
9495 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9496 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9497 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9498 	}
9499 
9500 	/* Hold auto suspend until async scan completes */
9501 	pm_runtime_get_sync(dev);
9502 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9503 	/*
9504 	 * We are assuming that device wasn't put in sleep/power-down
9505 	 * state exclusively during the boot stage before kernel.
9506 	 * This assumption helps avoid doing link startup twice during
9507 	 * ufshcd_probe_hba().
9508 	 */
9509 	ufshcd_set_ufs_dev_active(hba);
9510 
9511 	async_schedule(ufshcd_async_scan, hba);
9512 	ufs_sysfs_add_nodes(hba);
9513 
9514 	device_enable_async_suspend(dev);
9515 	return 0;
9516 
9517 free_tmf_queue:
9518 	blk_cleanup_queue(hba->tmf_queue);
9519 free_tmf_tag_set:
9520 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9521 free_cmd_queue:
9522 	blk_cleanup_queue(hba->cmd_queue);
9523 out_remove_scsi_host:
9524 	scsi_remove_host(hba->host);
9525 out_disable:
9526 	hba->is_irq_enabled = false;
9527 	ufshcd_hba_exit(hba);
9528 out_error:
9529 	return err;
9530 }
9531 EXPORT_SYMBOL_GPL(ufshcd_init);
9532 
ufshcd_core_init(void)9533 static int __init ufshcd_core_init(void)
9534 {
9535 	ufs_debugfs_init();
9536 	return 0;
9537 }
9538 
ufshcd_core_exit(void)9539 static void __exit ufshcd_core_exit(void)
9540 {
9541 	ufs_debugfs_exit();
9542 }
9543 
9544 module_init(ufshcd_core_init);
9545 module_exit(ufshcd_core_exit);
9546 
9547 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9548 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9549 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9550 MODULE_SOFTDEP("pre: governor_simpleondemand");
9551 MODULE_LICENSE("GPL");
9552 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9553