• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * USB4 specific functionality
4  *
5  * Copyright (C) 2019, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *	    Rajmohan Mani <rajmohan.mani@intel.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12 
13 #include "sb_regs.h"
14 #include "tb.h"
15 
16 #define USB4_DATA_DWORDS		16
17 #define USB4_DATA_RETRIES		3
18 
19 enum usb4_switch_op {
20 	USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 	USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 	USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 	USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 	USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 	USB4_SWITCH_OP_NVM_READ = 0x22,
26 	USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 	USB4_SWITCH_OP_DROM_READ = 0x24,
28 	USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
29 };
30 
31 enum usb4_sb_target {
32 	USB4_SB_TARGET_ROUTER,
33 	USB4_SB_TARGET_PARTNER,
34 	USB4_SB_TARGET_RETIMER,
35 };
36 
37 #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
38 #define USB4_NVM_READ_OFFSET_SHIFT	2
39 #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
40 #define USB4_NVM_READ_LENGTH_SHIFT	24
41 
42 #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
43 #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
44 
45 #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
46 #define USB4_DROM_ADDRESS_SHIFT		2
47 #define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
48 #define USB4_DROM_SIZE_SHIFT		15
49 
50 #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
51 
52 typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53 typedef int (*write_block_fn)(void *, const void *, size_t);
54 
usb4_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)55 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 				    u32 value, int timeout_msec)
57 {
58 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
59 
60 	do {
61 		u32 val;
62 		int ret;
63 
64 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
65 		if (ret)
66 			return ret;
67 
68 		if ((val & bit) == value)
69 			return 0;
70 
71 		usleep_range(50, 100);
72 	} while (ktime_before(ktime_get(), timeout));
73 
74 	return -ETIMEDOUT;
75 }
76 
usb4_switch_op_read_data(struct tb_switch * sw,void * data,size_t dwords)77 static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
78 				    size_t dwords)
79 {
80 	if (dwords > USB4_DATA_DWORDS)
81 		return -EINVAL;
82 
83 	return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
84 }
85 
usb4_switch_op_write_data(struct tb_switch * sw,const void * data,size_t dwords)86 static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
87 				     size_t dwords)
88 {
89 	if (dwords > USB4_DATA_DWORDS)
90 		return -EINVAL;
91 
92 	return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
93 }
94 
usb4_switch_op_read_metadata(struct tb_switch * sw,u32 * metadata)95 static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
96 {
97 	return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
98 }
99 
usb4_switch_op_write_metadata(struct tb_switch * sw,u32 metadata)100 static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
101 {
102 	return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
103 }
104 
usb4_do_read_data(u16 address,void * buf,size_t size,read_block_fn read_block,void * read_block_data)105 static int usb4_do_read_data(u16 address, void *buf, size_t size,
106 			     read_block_fn read_block, void *read_block_data)
107 {
108 	unsigned int retries = USB4_DATA_RETRIES;
109 	unsigned int offset;
110 
111 	do {
112 		unsigned int dwaddress, dwords;
113 		u8 data[USB4_DATA_DWORDS * 4];
114 		size_t nbytes;
115 		int ret;
116 
117 		offset = address & 3;
118 		nbytes = min_t(size_t, size + offset, USB4_DATA_DWORDS * 4);
119 
120 		dwaddress = address / 4;
121 		dwords = ALIGN(nbytes, 4) / 4;
122 
123 		ret = read_block(read_block_data, dwaddress, data, dwords);
124 		if (ret) {
125 			if (ret != -ENODEV && retries--)
126 				continue;
127 			return ret;
128 		}
129 
130 		nbytes -= offset;
131 		memcpy(buf, data + offset, nbytes);
132 
133 		size -= nbytes;
134 		address += nbytes;
135 		buf += nbytes;
136 	} while (size > 0);
137 
138 	return 0;
139 }
140 
usb4_do_write_data(unsigned int address,const void * buf,size_t size,write_block_fn write_next_block,void * write_block_data)141 static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
142 	write_block_fn write_next_block, void *write_block_data)
143 {
144 	unsigned int retries = USB4_DATA_RETRIES;
145 	unsigned int offset;
146 
147 	offset = address & 3;
148 	address = address & ~3;
149 
150 	do {
151 		u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
152 		u8 data[USB4_DATA_DWORDS * 4];
153 		int ret;
154 
155 		memcpy(data + offset, buf, nbytes);
156 
157 		ret = write_next_block(write_block_data, data, nbytes / 4);
158 		if (ret) {
159 			if (ret == -ETIMEDOUT) {
160 				if (retries--)
161 					continue;
162 				ret = -EIO;
163 			}
164 			return ret;
165 		}
166 
167 		size -= nbytes;
168 		address += nbytes;
169 		buf += nbytes;
170 	} while (size > 0);
171 
172 	return 0;
173 }
174 
usb4_switch_op(struct tb_switch * sw,u16 opcode,u8 * status)175 static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
176 {
177 	u32 val;
178 	int ret;
179 
180 	val = opcode | ROUTER_CS_26_OV;
181 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
182 	if (ret)
183 		return ret;
184 
185 	ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
186 	if (ret)
187 		return ret;
188 
189 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
190 	if (ret)
191 		return ret;
192 
193 	if (val & ROUTER_CS_26_ONS)
194 		return -EOPNOTSUPP;
195 
196 	*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
197 	return 0;
198 }
199 
usb4_switch_check_wakes(struct tb_switch * sw)200 static void usb4_switch_check_wakes(struct tb_switch *sw)
201 {
202 	struct tb_port *port;
203 	bool wakeup = false;
204 	u32 val;
205 
206 	if (!device_may_wakeup(&sw->dev))
207 		return;
208 
209 	if (tb_route(sw)) {
210 		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
211 			return;
212 
213 		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
214 			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
215 			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
216 
217 		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
218 	}
219 
220 	/* Check for any connected downstream ports for USB4 wake */
221 	tb_switch_for_each_port(sw, port) {
222 		if (!tb_port_has_remote(port))
223 			continue;
224 
225 		if (tb_port_read(port, &val, TB_CFG_PORT,
226 				 port->cap_usb4 + PORT_CS_18, 1))
227 			break;
228 
229 		tb_port_dbg(port, "USB4 wake: %s\n",
230 			    (val & PORT_CS_18_WOU4S) ? "yes" : "no");
231 
232 		if (val & PORT_CS_18_WOU4S)
233 			wakeup = true;
234 	}
235 
236 	if (wakeup)
237 		pm_wakeup_event(&sw->dev, 0);
238 }
239 
link_is_usb4(struct tb_port * port)240 static bool link_is_usb4(struct tb_port *port)
241 {
242 	u32 val;
243 
244 	if (!port->cap_usb4)
245 		return false;
246 
247 	if (tb_port_read(port, &val, TB_CFG_PORT,
248 			 port->cap_usb4 + PORT_CS_18, 1))
249 		return false;
250 
251 	return !(val & PORT_CS_18_TCM);
252 }
253 
254 /**
255  * usb4_switch_setup() - Additional setup for USB4 device
256  * @sw: USB4 router to setup
257  *
258  * USB4 routers need additional settings in order to enable all the
259  * tunneling. This function enables USB and PCIe tunneling if it can be
260  * enabled (e.g the parent switch also supports them). If USB tunneling
261  * is not available for some reason (like that there is Thunderbolt 3
262  * switch upstream) then the internal xHCI controller is enabled
263  * instead.
264  */
usb4_switch_setup(struct tb_switch * sw)265 int usb4_switch_setup(struct tb_switch *sw)
266 {
267 	struct tb_port *downstream_port;
268 	struct tb_switch *parent;
269 	bool tbt3, xhci;
270 	u32 val = 0;
271 	int ret;
272 
273 	usb4_switch_check_wakes(sw);
274 
275 	if (!tb_route(sw))
276 		return 0;
277 
278 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
279 	if (ret)
280 		return ret;
281 
282 	parent = tb_switch_parent(sw);
283 	downstream_port = tb_port_at(tb_route(sw), parent);
284 	sw->link_usb4 = link_is_usb4(downstream_port);
285 	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
286 
287 	xhci = val & ROUTER_CS_6_HCI;
288 	tbt3 = !(val & ROUTER_CS_6_TNS);
289 
290 	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
291 		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
292 
293 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 	if (ret)
295 		return ret;
296 
297 	if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
298 		val |= ROUTER_CS_5_UTO;
299 		xhci = false;
300 	}
301 
302 	/* Only enable PCIe tunneling if the parent router supports it */
303 	if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
304 		val |= ROUTER_CS_5_PTO;
305 		/*
306 		 * xHCI can be enabled if PCIe tunneling is supported
307 		 * and the parent does not have any USB3 dowstream
308 		 * adapters (so we cannot do USB 3.x tunneling).
309 		 */
310 		if (xhci)
311 			val |= ROUTER_CS_5_HCO;
312 	}
313 
314 	/* TBT3 supported by the CM */
315 	val |= ROUTER_CS_5_C3S;
316 	/* Tunneling configuration is ready now */
317 	val |= ROUTER_CS_5_CV;
318 
319 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
320 	if (ret)
321 		return ret;
322 
323 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
324 					ROUTER_CS_6_CR, 50);
325 }
326 
327 /**
328  * usb4_switch_read_uid() - Read UID from USB4 router
329  * @sw: USB4 router
330  * @uid: UID is stored here
331  *
332  * Reads 64-bit UID from USB4 router config space.
333  */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)334 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
335 {
336 	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
337 }
338 
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)339 static int usb4_switch_drom_read_block(void *data,
340 				       unsigned int dwaddress, void *buf,
341 				       size_t dwords)
342 {
343 	struct tb_switch *sw = data;
344 	u8 status = 0;
345 	u32 metadata;
346 	int ret;
347 
348 	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
349 	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
350 		USB4_DROM_ADDRESS_MASK;
351 
352 	ret = usb4_switch_op_write_metadata(sw, metadata);
353 	if (ret)
354 		return ret;
355 
356 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
357 	if (ret)
358 		return ret;
359 
360 	if (status)
361 		return -EIO;
362 
363 	return usb4_switch_op_read_data(sw, buf, dwords);
364 }
365 
366 /**
367  * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
368  * @sw: USB4 router
369  * @address: Byte address inside DROM to start reading
370  * @buf: Buffer where the DROM content is stored
371  * @size: Number of bytes to read from DROM
372  *
373  * Uses USB4 router operations to read router DROM. For devices this
374  * should always work but for hosts it may return %-EOPNOTSUPP in which
375  * case the host router does not have DROM.
376  */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)377 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
378 			  size_t size)
379 {
380 	return usb4_do_read_data(address, buf, size,
381 				 usb4_switch_drom_read_block, sw);
382 }
383 
384 /**
385  * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
386  * @sw: USB4 router
387  *
388  * Checks whether conditions are met so that lane bonding can be
389  * established with the upstream router. Call only for device routers.
390  */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)391 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
392 {
393 	struct tb_port *up;
394 	int ret;
395 	u32 val;
396 
397 	up = tb_upstream_port(sw);
398 	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
399 	if (ret)
400 		return false;
401 
402 	return !!(val & PORT_CS_18_BE);
403 }
404 
405 /**
406  * usb4_switch_set_wake() - Enabled/disable wake
407  * @sw: USB4 router
408  * @flags: Wakeup flags (%0 to disable)
409  *
410  * Enables/disables router to wake up from sleep.
411  */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)412 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
413 {
414 	struct tb_port *port;
415 	u64 route = tb_route(sw);
416 	u32 val;
417 	int ret;
418 
419 	/*
420 	 * Enable wakes coming from all USB4 downstream ports (from
421 	 * child routers). For device routers do this also for the
422 	 * upstream USB4 port.
423 	 */
424 	tb_switch_for_each_port(sw, port) {
425 		if (!tb_port_is_null(port))
426 			continue;
427 		if (!route && tb_is_upstream_port(port))
428 			continue;
429 		if (!port->cap_usb4)
430 			continue;
431 
432 		ret = tb_port_read(port, &val, TB_CFG_PORT,
433 				   port->cap_usb4 + PORT_CS_19, 1);
434 		if (ret)
435 			return ret;
436 
437 		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
438 
439 		if (flags & TB_WAKE_ON_CONNECT)
440 			val |= PORT_CS_19_WOC;
441 		if (flags & TB_WAKE_ON_DISCONNECT)
442 			val |= PORT_CS_19_WOD;
443 		if (flags & TB_WAKE_ON_USB4)
444 			val |= PORT_CS_19_WOU4;
445 
446 		ret = tb_port_write(port, &val, TB_CFG_PORT,
447 				    port->cap_usb4 + PORT_CS_19, 1);
448 		if (ret)
449 			return ret;
450 	}
451 
452 	/*
453 	 * Enable wakes from PCIe and USB 3.x on this router. Only
454 	 * needed for device routers.
455 	 */
456 	if (route) {
457 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
458 		if (ret)
459 			return ret;
460 
461 		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
462 		if (flags & TB_WAKE_ON_USB3)
463 			val |= ROUTER_CS_5_WOU;
464 		if (flags & TB_WAKE_ON_PCIE)
465 			val |= ROUTER_CS_5_WOP;
466 
467 		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
468 		if (ret)
469 			return ret;
470 	}
471 
472 	return 0;
473 }
474 
475 /**
476  * usb4_switch_set_sleep() - Prepare the router to enter sleep
477  * @sw: USB4 router
478  *
479  * Sets sleep bit for the router. Returns when the router sleep ready
480  * bit has been asserted.
481  */
usb4_switch_set_sleep(struct tb_switch * sw)482 int usb4_switch_set_sleep(struct tb_switch *sw)
483 {
484 	int ret;
485 	u32 val;
486 
487 	/* Set sleep bit and wait for sleep ready to be asserted */
488 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
489 	if (ret)
490 		return ret;
491 
492 	val |= ROUTER_CS_5_SLP;
493 
494 	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
495 	if (ret)
496 		return ret;
497 
498 	return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
499 					ROUTER_CS_6_SLPR, 500);
500 }
501 
502 /**
503  * usb4_switch_nvm_sector_size() - Return router NVM sector size
504  * @sw: USB4 router
505  *
506  * If the router supports NVM operations this function returns the NVM
507  * sector size in bytes. If NVM operations are not supported returns
508  * %-EOPNOTSUPP.
509  */
usb4_switch_nvm_sector_size(struct tb_switch * sw)510 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
511 {
512 	u32 metadata;
513 	u8 status;
514 	int ret;
515 
516 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
517 	if (ret)
518 		return ret;
519 
520 	if (status)
521 		return status == 0x2 ? -EOPNOTSUPP : -EIO;
522 
523 	ret = usb4_switch_op_read_metadata(sw, &metadata);
524 	if (ret)
525 		return ret;
526 
527 	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
528 }
529 
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)530 static int usb4_switch_nvm_read_block(void *data,
531 	unsigned int dwaddress, void *buf, size_t dwords)
532 {
533 	struct tb_switch *sw = data;
534 	u8 status = 0;
535 	u32 metadata;
536 	int ret;
537 
538 	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
539 		   USB4_NVM_READ_LENGTH_MASK;
540 	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
541 		   USB4_NVM_READ_OFFSET_MASK;
542 
543 	ret = usb4_switch_op_write_metadata(sw, metadata);
544 	if (ret)
545 		return ret;
546 
547 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
548 	if (ret)
549 		return ret;
550 
551 	if (status)
552 		return -EIO;
553 
554 	return usb4_switch_op_read_data(sw, buf, dwords);
555 }
556 
557 /**
558  * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
559  * @sw: USB4 router
560  * @address: Starting address in bytes
561  * @buf: Read data is placed here
562  * @size: How many bytes to read
563  *
564  * Reads NVM contents of the router. If NVM is not supported returns
565  * %-EOPNOTSUPP.
566  */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)567 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
568 			 size_t size)
569 {
570 	return usb4_do_read_data(address, buf, size,
571 				 usb4_switch_nvm_read_block, sw);
572 }
573 
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)574 static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
575 				      unsigned int address)
576 {
577 	u32 metadata, dwaddress;
578 	u8 status = 0;
579 	int ret;
580 
581 	dwaddress = address / 4;
582 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
583 		   USB4_NVM_SET_OFFSET_MASK;
584 
585 	ret = usb4_switch_op_write_metadata(sw, metadata);
586 	if (ret)
587 		return ret;
588 
589 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
590 	if (ret)
591 		return ret;
592 
593 	return status ? -EIO : 0;
594 }
595 
usb4_switch_nvm_write_next_block(void * data,const void * buf,size_t dwords)596 static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
597 					    size_t dwords)
598 {
599 	struct tb_switch *sw = data;
600 	u8 status;
601 	int ret;
602 
603 	ret = usb4_switch_op_write_data(sw, buf, dwords);
604 	if (ret)
605 		return ret;
606 
607 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
608 	if (ret)
609 		return ret;
610 
611 	return status ? -EIO : 0;
612 }
613 
614 /**
615  * usb4_switch_nvm_write() - Write to the router NVM
616  * @sw: USB4 router
617  * @address: Start address where to write in bytes
618  * @buf: Pointer to the data to write
619  * @size: Size of @buf in bytes
620  *
621  * Writes @buf to the router NVM using USB4 router operations. If NVM
622  * write is not supported returns %-EOPNOTSUPP.
623  */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)624 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
625 			  const void *buf, size_t size)
626 {
627 	int ret;
628 
629 	ret = usb4_switch_nvm_set_offset(sw, address);
630 	if (ret)
631 		return ret;
632 
633 	return usb4_do_write_data(address, buf, size,
634 				  usb4_switch_nvm_write_next_block, sw);
635 }
636 
637 /**
638  * usb4_switch_nvm_authenticate() - Authenticate new NVM
639  * @sw: USB4 router
640  *
641  * After the new NVM has been written via usb4_switch_nvm_write(), this
642  * function triggers NVM authentication process. If the authentication
643  * is successful the router is power cycled and the new NVM starts
644  * running. In case of failure returns negative errno.
645  */
usb4_switch_nvm_authenticate(struct tb_switch * sw)646 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
647 {
648 	u8 status = 0;
649 	int ret;
650 
651 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
652 	if (ret)
653 		return ret;
654 
655 	switch (status) {
656 	case 0x0:
657 		tb_sw_dbg(sw, "NVM authentication successful\n");
658 		return 0;
659 	case 0x1:
660 		return -EINVAL;
661 	case 0x2:
662 		return -EAGAIN;
663 	case 0x3:
664 		return -EOPNOTSUPP;
665 	default:
666 		return -EIO;
667 	}
668 }
669 
670 /**
671  * usb4_switch_query_dp_resource() - Query availability of DP IN resource
672  * @sw: USB4 router
673  * @in: DP IN adapter
674  *
675  * For DP tunneling this function can be used to query availability of
676  * DP IN resource. Returns true if the resource is available for DP
677  * tunneling, false otherwise.
678  */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)679 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
680 {
681 	u8 status;
682 	int ret;
683 
684 	ret = usb4_switch_op_write_metadata(sw, in->port);
685 	if (ret)
686 		return false;
687 
688 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
689 	/*
690 	 * If DP resource allocation is not supported assume it is
691 	 * always available.
692 	 */
693 	if (ret == -EOPNOTSUPP)
694 		return true;
695 	else if (ret)
696 		return false;
697 
698 	return !status;
699 }
700 
701 /**
702  * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
703  * @sw: USB4 router
704  * @in: DP IN adapter
705  *
706  * Allocates DP IN resource for DP tunneling using USB4 router
707  * operations. If the resource was allocated returns %0. Otherwise
708  * returns negative errno, in particular %-EBUSY if the resource is
709  * already allocated.
710  */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)711 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
712 {
713 	u8 status;
714 	int ret;
715 
716 	ret = usb4_switch_op_write_metadata(sw, in->port);
717 	if (ret)
718 		return ret;
719 
720 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
721 	if (ret == -EOPNOTSUPP)
722 		return 0;
723 	else if (ret)
724 		return ret;
725 
726 	return status ? -EBUSY : 0;
727 }
728 
729 /**
730  * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
731  * @sw: USB4 router
732  * @in: DP IN adapter
733  *
734  * Releases the previously allocated DP IN resource.
735  */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)736 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
737 {
738 	u8 status;
739 	int ret;
740 
741 	ret = usb4_switch_op_write_metadata(sw, in->port);
742 	if (ret)
743 		return ret;
744 
745 	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
746 	if (ret == -EOPNOTSUPP)
747 		return 0;
748 	else if (ret)
749 		return ret;
750 
751 	return status ? -EIO : 0;
752 }
753 
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)754 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
755 {
756 	struct tb_port *p;
757 	int usb4_idx = 0;
758 
759 	/* Assume port is primary */
760 	tb_switch_for_each_port(sw, p) {
761 		if (!tb_port_is_null(p))
762 			continue;
763 		if (tb_is_upstream_port(p))
764 			continue;
765 		if (!p->link_nr) {
766 			if (p == port)
767 				break;
768 			usb4_idx++;
769 		}
770 	}
771 
772 	return usb4_idx;
773 }
774 
775 /**
776  * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
777  * @sw: USB4 router
778  * @port: USB4 port
779  *
780  * USB4 routers have direct mapping between USB4 ports and PCIe
781  * downstream adapters where the PCIe topology is extended. This
782  * function returns the corresponding downstream PCIe adapter or %NULL
783  * if no such mapping was possible.
784  */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)785 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
786 					  const struct tb_port *port)
787 {
788 	int usb4_idx = usb4_port_idx(sw, port);
789 	struct tb_port *p;
790 	int pcie_idx = 0;
791 
792 	/* Find PCIe down port matching usb4_port */
793 	tb_switch_for_each_port(sw, p) {
794 		if (!tb_port_is_pcie_down(p))
795 			continue;
796 
797 		if (pcie_idx == usb4_idx)
798 			return p;
799 
800 		pcie_idx++;
801 	}
802 
803 	return NULL;
804 }
805 
806 /**
807  * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
808  * @sw: USB4 router
809  * @port: USB4 port
810  *
811  * USB4 routers have direct mapping between USB4 ports and USB 3.x
812  * downstream adapters where the USB 3.x topology is extended. This
813  * function returns the corresponding downstream USB 3.x adapter or
814  * %NULL if no such mapping was possible.
815  */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)816 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
817 					  const struct tb_port *port)
818 {
819 	int usb4_idx = usb4_port_idx(sw, port);
820 	struct tb_port *p;
821 	int usb_idx = 0;
822 
823 	/* Find USB3 down port matching usb4_port */
824 	tb_switch_for_each_port(sw, p) {
825 		if (!tb_port_is_usb3_down(p))
826 			continue;
827 
828 		if (usb_idx == usb4_idx)
829 			return p;
830 
831 		usb_idx++;
832 	}
833 
834 	return NULL;
835 }
836 
837 /**
838  * usb4_port_unlock() - Unlock USB4 downstream port
839  * @port: USB4 port to unlock
840  *
841  * Unlocks USB4 downstream port so that the connection manager can
842  * access the router below this port.
843  */
usb4_port_unlock(struct tb_port * port)844 int usb4_port_unlock(struct tb_port *port)
845 {
846 	int ret;
847 	u32 val;
848 
849 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
850 	if (ret)
851 		return ret;
852 
853 	val &= ~ADP_CS_4_LCK;
854 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
855 }
856 
857 /**
858  * usb4_port_hotplug_enable() - Enables hotplug for a port
859  * @port: USB4 port to operate on
860  *
861  * Enables hot plug events on a given port. This is only intended
862  * to be used on lane, DP-IN, and DP-OUT adapters.
863  */
usb4_port_hotplug_enable(struct tb_port * port)864 int usb4_port_hotplug_enable(struct tb_port *port)
865 {
866 	int ret;
867 	u32 val;
868 
869 	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
870 	if (ret)
871 		return ret;
872 
873 	val &= ~ADP_CS_5_DHP;
874 	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
875 }
876 
usb4_port_set_configured(struct tb_port * port,bool configured)877 static int usb4_port_set_configured(struct tb_port *port, bool configured)
878 {
879 	int ret;
880 	u32 val;
881 
882 	if (!port->cap_usb4)
883 		return -EINVAL;
884 
885 	ret = tb_port_read(port, &val, TB_CFG_PORT,
886 			   port->cap_usb4 + PORT_CS_19, 1);
887 	if (ret)
888 		return ret;
889 
890 	if (configured)
891 		val |= PORT_CS_19_PC;
892 	else
893 		val &= ~PORT_CS_19_PC;
894 
895 	return tb_port_write(port, &val, TB_CFG_PORT,
896 			     port->cap_usb4 + PORT_CS_19, 1);
897 }
898 
899 /**
900  * usb4_port_configure() - Set USB4 port configured
901  * @port: USB4 router
902  *
903  * Sets the USB4 link to be configured for power management purposes.
904  */
usb4_port_configure(struct tb_port * port)905 int usb4_port_configure(struct tb_port *port)
906 {
907 	return usb4_port_set_configured(port, true);
908 }
909 
910 /**
911  * usb4_port_unconfigure() - Set USB4 port unconfigured
912  * @port: USB4 router
913  *
914  * Sets the USB4 link to be unconfigured for power management purposes.
915  */
usb4_port_unconfigure(struct tb_port * port)916 void usb4_port_unconfigure(struct tb_port *port)
917 {
918 	usb4_port_set_configured(port, false);
919 }
920 
usb4_set_xdomain_configured(struct tb_port * port,bool configured)921 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
922 {
923 	int ret;
924 	u32 val;
925 
926 	if (!port->cap_usb4)
927 		return -EINVAL;
928 
929 	ret = tb_port_read(port, &val, TB_CFG_PORT,
930 			   port->cap_usb4 + PORT_CS_19, 1);
931 	if (ret)
932 		return ret;
933 
934 	if (configured)
935 		val |= PORT_CS_19_PID;
936 	else
937 		val &= ~PORT_CS_19_PID;
938 
939 	return tb_port_write(port, &val, TB_CFG_PORT,
940 			     port->cap_usb4 + PORT_CS_19, 1);
941 }
942 
943 /**
944  * usb4_port_configure_xdomain() - Configure port for XDomain
945  * @port: USB4 port connected to another host
946  *
947  * Marks the USB4 port as being connected to another host. Returns %0 in
948  * success and negative errno in failure.
949  */
usb4_port_configure_xdomain(struct tb_port * port)950 int usb4_port_configure_xdomain(struct tb_port *port)
951 {
952 	return usb4_set_xdomain_configured(port, true);
953 }
954 
955 /**
956  * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
957  * @port: USB4 port that was connected to another host
958  *
959  * Clears USB4 port from being marked as XDomain.
960  */
usb4_port_unconfigure_xdomain(struct tb_port * port)961 void usb4_port_unconfigure_xdomain(struct tb_port *port)
962 {
963 	usb4_set_xdomain_configured(port, false);
964 }
965 
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)966 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
967 				  u32 value, int timeout_msec)
968 {
969 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
970 
971 	do {
972 		u32 val;
973 		int ret;
974 
975 		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
976 		if (ret)
977 			return ret;
978 
979 		if ((val & bit) == value)
980 			return 0;
981 
982 		usleep_range(50, 100);
983 	} while (ktime_before(ktime_get(), timeout));
984 
985 	return -ETIMEDOUT;
986 }
987 
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)988 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
989 {
990 	if (dwords > USB4_DATA_DWORDS)
991 		return -EINVAL;
992 
993 	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
994 			    dwords);
995 }
996 
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)997 static int usb4_port_write_data(struct tb_port *port, const void *data,
998 				size_t dwords)
999 {
1000 	if (dwords > USB4_DATA_DWORDS)
1001 		return -EINVAL;
1002 
1003 	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1004 			     dwords);
1005 }
1006 
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1007 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1008 			     u8 index, u8 reg, void *buf, u8 size)
1009 {
1010 	size_t dwords = DIV_ROUND_UP(size, 4);
1011 	int ret;
1012 	u32 val;
1013 
1014 	if (!port->cap_usb4)
1015 		return -EINVAL;
1016 
1017 	val = reg;
1018 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1019 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1020 	if (target == USB4_SB_TARGET_RETIMER)
1021 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1022 	val |= PORT_CS_1_PND;
1023 
1024 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1025 			    port->cap_usb4 + PORT_CS_1, 1);
1026 	if (ret)
1027 		return ret;
1028 
1029 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1030 				     PORT_CS_1_PND, 0, 500);
1031 	if (ret)
1032 		return ret;
1033 
1034 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1035 			    port->cap_usb4 + PORT_CS_1, 1);
1036 	if (ret)
1037 		return ret;
1038 
1039 	if (val & PORT_CS_1_NR)
1040 		return -ENODEV;
1041 	if (val & PORT_CS_1_RC)
1042 		return -EIO;
1043 
1044 	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1045 }
1046 
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1047 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1048 			      u8 index, u8 reg, const void *buf, u8 size)
1049 {
1050 	size_t dwords = DIV_ROUND_UP(size, 4);
1051 	int ret;
1052 	u32 val;
1053 
1054 	if (!port->cap_usb4)
1055 		return -EINVAL;
1056 
1057 	if (buf) {
1058 		ret = usb4_port_write_data(port, buf, dwords);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 
1063 	val = reg;
1064 	val |= size << PORT_CS_1_LENGTH_SHIFT;
1065 	val |= PORT_CS_1_WNR_WRITE;
1066 	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1067 	if (target == USB4_SB_TARGET_RETIMER)
1068 		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1069 	val |= PORT_CS_1_PND;
1070 
1071 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1072 			    port->cap_usb4 + PORT_CS_1, 1);
1073 	if (ret)
1074 		return ret;
1075 
1076 	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1077 				     PORT_CS_1_PND, 0, 500);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1082 			    port->cap_usb4 + PORT_CS_1, 1);
1083 	if (ret)
1084 		return ret;
1085 
1086 	if (val & PORT_CS_1_NR)
1087 		return -ENODEV;
1088 	if (val & PORT_CS_1_RC)
1089 		return -EIO;
1090 
1091 	return 0;
1092 }
1093 
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1094 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1095 			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1096 {
1097 	ktime_t timeout;
1098 	u32 val;
1099 	int ret;
1100 
1101 	val = opcode;
1102 	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1103 				 sizeof(val));
1104 	if (ret)
1105 		return ret;
1106 
1107 	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1108 
1109 	do {
1110 		/* Check results */
1111 		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1112 					&val, sizeof(val));
1113 		if (ret)
1114 			return ret;
1115 
1116 		switch (val) {
1117 		case 0:
1118 			return 0;
1119 
1120 		case USB4_SB_OPCODE_ERR:
1121 			return -EAGAIN;
1122 
1123 		case USB4_SB_OPCODE_ONS:
1124 			return -EOPNOTSUPP;
1125 
1126 		default:
1127 			if (val != opcode)
1128 				return -EIO;
1129 			break;
1130 		}
1131 	} while (ktime_before(ktime_get(), timeout));
1132 
1133 	return -ETIMEDOUT;
1134 }
1135 
1136 /**
1137  * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1138  * @port: USB4 port
1139  *
1140  * This forces the USB4 port to send broadcast RT transaction which
1141  * makes the retimers on the link to assign index to themselves. Returns
1142  * %0 in case of success and negative errno if there was an error.
1143  */
usb4_port_enumerate_retimers(struct tb_port * port)1144 int usb4_port_enumerate_retimers(struct tb_port *port)
1145 {
1146 	u32 val;
1147 
1148 	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1149 	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1150 				  USB4_SB_OPCODE, &val, sizeof(val));
1151 }
1152 
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1153 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1154 				       enum usb4_sb_opcode opcode,
1155 				       int timeout_msec)
1156 {
1157 	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1158 			       timeout_msec);
1159 }
1160 
1161 /**
1162  * usb4_port_retimer_read() - Read from retimer sideband registers
1163  * @port: USB4 port
1164  * @index: Retimer index
1165  * @reg: Sideband register to read
1166  * @buf: Data from @reg is stored here
1167  * @size: Number of bytes to read
1168  *
1169  * Function reads retimer sideband registers starting from @reg. The
1170  * retimer is connected to @port at @index. Returns %0 in case of
1171  * success, and read data is copied to @buf. If there is no retimer
1172  * present at given @index returns %-ENODEV. In any other failure
1173  * returns negative errno.
1174  */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1175 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1176 			   u8 size)
1177 {
1178 	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1179 				 size);
1180 }
1181 
1182 /**
1183  * usb4_port_retimer_write() - Write to retimer sideband registers
1184  * @port: USB4 port
1185  * @index: Retimer index
1186  * @reg: Sideband register to write
1187  * @buf: Data that is written starting from @reg
1188  * @size: Number of bytes to write
1189  *
1190  * Writes retimer sideband registers starting from @reg. The retimer is
1191  * connected to @port at @index. Returns %0 in case of success. If there
1192  * is no retimer present at given @index returns %-ENODEV. In any other
1193  * failure returns negative errno.
1194  */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1195 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1196 			    const void *buf, u8 size)
1197 {
1198 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1199 				  size);
1200 }
1201 
1202 /**
1203  * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1204  * @port: USB4 port
1205  * @index: Retimer index
1206  *
1207  * If the retimer at @index is last one (connected directly to the
1208  * Type-C port) this function returns %1. If it is not returns %0. If
1209  * the retimer is not present returns %-ENODEV. Otherwise returns
1210  * negative errno.
1211  */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1212 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1213 {
1214 	u32 metadata;
1215 	int ret;
1216 
1217 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1218 				   500);
1219 	if (ret)
1220 		return ret;
1221 
1222 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1223 				     sizeof(metadata));
1224 	return ret ? ret : metadata & 1;
1225 }
1226 
1227 /**
1228  * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1229  * @port: USB4 port
1230  * @index: Retimer index
1231  *
1232  * Reads NVM sector size (in bytes) of a retimer at @index. This
1233  * operation can be used to determine whether the retimer supports NVM
1234  * upgrade for example. Returns sector size in bytes or negative errno
1235  * in case of error. Specifically returns %-ENODEV if there is no
1236  * retimer at @index.
1237  */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1238 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1239 {
1240 	u32 metadata;
1241 	int ret;
1242 
1243 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1244 				   500);
1245 	if (ret)
1246 		return ret;
1247 
1248 	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1249 				     sizeof(metadata));
1250 	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1251 }
1252 
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1253 static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1254 					    unsigned int address)
1255 {
1256 	u32 metadata, dwaddress;
1257 	int ret;
1258 
1259 	dwaddress = address / 4;
1260 	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1261 		  USB4_NVM_SET_OFFSET_MASK;
1262 
1263 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1264 				      sizeof(metadata));
1265 	if (ret)
1266 		return ret;
1267 
1268 	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1269 				    500);
1270 }
1271 
1272 struct retimer_info {
1273 	struct tb_port *port;
1274 	u8 index;
1275 };
1276 
usb4_port_retimer_nvm_write_next_block(void * data,const void * buf,size_t dwords)1277 static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1278 						  size_t dwords)
1279 
1280 {
1281 	const struct retimer_info *info = data;
1282 	struct tb_port *port = info->port;
1283 	u8 index = info->index;
1284 	int ret;
1285 
1286 	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1287 				      buf, dwords * 4);
1288 	if (ret)
1289 		return ret;
1290 
1291 	return usb4_port_retimer_op(port, index,
1292 			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1293 }
1294 
1295 /**
1296  * usb4_port_retimer_nvm_write() - Write to retimer NVM
1297  * @port: USB4 port
1298  * @index: Retimer index
1299  * @address: Byte address where to start the write
1300  * @buf: Data to write
1301  * @size: Size in bytes how much to write
1302  *
1303  * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1304  * upgrade. Returns %0 if the data was written successfully and negative
1305  * errno in case of failure. Specifically returns %-ENODEV if there is
1306  * no retimer at @index.
1307  */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1308 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1309 				const void *buf, size_t size)
1310 {
1311 	struct retimer_info info = { .port = port, .index = index };
1312 	int ret;
1313 
1314 	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1315 	if (ret)
1316 		return ret;
1317 
1318 	return usb4_do_write_data(address, buf, size,
1319 			usb4_port_retimer_nvm_write_next_block, &info);
1320 }
1321 
1322 /**
1323  * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1324  * @port: USB4 port
1325  * @index: Retimer index
1326  *
1327  * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1328  * this function can be used to trigger the NVM upgrade process. If
1329  * successful the retimer restarts with the new NVM and may not have the
1330  * index set so one needs to call usb4_port_enumerate_retimers() to
1331  * force index to be assigned.
1332  */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1333 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1334 {
1335 	u32 val;
1336 
1337 	/*
1338 	 * We need to use the raw operation here because once the
1339 	 * authentication completes the retimer index is not set anymore
1340 	 * so we do not get back the status now.
1341 	 */
1342 	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1343 	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1344 				  USB4_SB_OPCODE, &val, sizeof(val));
1345 }
1346 
1347 /**
1348  * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1349  * @port: USB4 port
1350  * @index: Retimer index
1351  * @status: Raw status code read from metadata
1352  *
1353  * This can be called after usb4_port_retimer_nvm_authenticate() and
1354  * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1355  *
1356  * Returns %0 if the authentication status was successfully read. The
1357  * completion metadata (the result) is then stored into @status. If
1358  * reading the status fails, returns negative errno.
1359  */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1360 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1361 					      u32 *status)
1362 {
1363 	u32 metadata, val;
1364 	int ret;
1365 
1366 	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1367 				     sizeof(val));
1368 	if (ret)
1369 		return ret;
1370 
1371 	switch (val) {
1372 	case 0:
1373 		*status = 0;
1374 		return 0;
1375 
1376 	case USB4_SB_OPCODE_ERR:
1377 		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1378 					     &metadata, sizeof(metadata));
1379 		if (ret)
1380 			return ret;
1381 
1382 		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1383 		return 0;
1384 
1385 	case USB4_SB_OPCODE_ONS:
1386 		return -EOPNOTSUPP;
1387 
1388 	default:
1389 		return -EIO;
1390 	}
1391 }
1392 
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1393 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1394 					    void *buf, size_t dwords)
1395 {
1396 	const struct retimer_info *info = data;
1397 	struct tb_port *port = info->port;
1398 	u8 index = info->index;
1399 	u32 metadata;
1400 	int ret;
1401 
1402 	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1403 	if (dwords < USB4_DATA_DWORDS)
1404 		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1405 
1406 	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1407 				      sizeof(metadata));
1408 	if (ret)
1409 		return ret;
1410 
1411 	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1412 	if (ret)
1413 		return ret;
1414 
1415 	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1416 				      dwords * 4);
1417 }
1418 
1419 /**
1420  * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1421  * @port: USB4 port
1422  * @index: Retimer index
1423  * @address: NVM address (in bytes) to start reading
1424  * @buf: Data read from NVM is stored here
1425  * @size: Number of bytes to read
1426  *
1427  * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1428  * read was successful and negative errno in case of failure.
1429  * Specifically returns %-ENODEV if there is no retimer at @index.
1430  */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1431 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1432 			       unsigned int address, void *buf, size_t size)
1433 {
1434 	struct retimer_info info = { .port = port, .index = index };
1435 
1436 	return usb4_do_read_data(address, buf, size,
1437 			usb4_port_retimer_nvm_read_block, &info);
1438 }
1439 
1440 /**
1441  * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1442  * @port: USB3 adapter port
1443  *
1444  * Return maximum supported link rate of a USB3 adapter in Mb/s.
1445  * Negative errno in case of error.
1446  */
usb4_usb3_port_max_link_rate(struct tb_port * port)1447 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1448 {
1449 	int ret, lr;
1450 	u32 val;
1451 
1452 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1453 		return -EINVAL;
1454 
1455 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1456 			   port->cap_adap + ADP_USB3_CS_4, 1);
1457 	if (ret)
1458 		return ret;
1459 
1460 	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1461 	return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1462 }
1463 
1464 /**
1465  * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1466  * @port: USB3 adapter port
1467  *
1468  * Return actual established link rate of a USB3 adapter in Mb/s. If the
1469  * link is not up returns %0 and negative errno in case of failure.
1470  */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1471 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1472 {
1473 	int ret, lr;
1474 	u32 val;
1475 
1476 	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1477 		return -EINVAL;
1478 
1479 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1480 			   port->cap_adap + ADP_USB3_CS_4, 1);
1481 	if (ret)
1482 		return ret;
1483 
1484 	if (!(val & ADP_USB3_CS_4_ULV))
1485 		return 0;
1486 
1487 	lr = val & ADP_USB3_CS_4_ALR_MASK;
1488 	return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1489 }
1490 
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1491 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1492 {
1493 	int ret;
1494 	u32 val;
1495 
1496 	if (!tb_port_is_usb3_down(port))
1497 		return -EINVAL;
1498 	if (tb_route(port->sw))
1499 		return -EINVAL;
1500 
1501 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1502 			   port->cap_adap + ADP_USB3_CS_2, 1);
1503 	if (ret)
1504 		return ret;
1505 
1506 	if (request)
1507 		val |= ADP_USB3_CS_2_CMR;
1508 	else
1509 		val &= ~ADP_USB3_CS_2_CMR;
1510 
1511 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1512 			    port->cap_adap + ADP_USB3_CS_2, 1);
1513 	if (ret)
1514 		return ret;
1515 
1516 	/*
1517 	 * We can use val here directly as the CMR bit is in the same place
1518 	 * as HCA. Just mask out others.
1519 	 */
1520 	val &= ADP_USB3_CS_2_CMR;
1521 	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1522 				      ADP_USB3_CS_1_HCA, val, 1500);
1523 }
1524 
usb4_usb3_port_set_cm_request(struct tb_port * port)1525 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1526 {
1527 	return usb4_usb3_port_cm_request(port, true);
1528 }
1529 
usb4_usb3_port_clear_cm_request(struct tb_port * port)1530 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1531 {
1532 	return usb4_usb3_port_cm_request(port, false);
1533 }
1534 
usb3_bw_to_mbps(u32 bw,u8 scale)1535 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1536 {
1537 	unsigned long uframes;
1538 
1539 	uframes = bw * 512UL << scale;
1540 	return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1541 }
1542 
mbps_to_usb3_bw(unsigned int mbps,u8 scale)1543 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1544 {
1545 	unsigned long uframes;
1546 
1547 	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1548 	uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
1549 	return DIV_ROUND_UP(uframes, 512UL << scale);
1550 }
1551 
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1552 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1553 						   int *upstream_bw,
1554 						   int *downstream_bw)
1555 {
1556 	u32 val, bw, scale;
1557 	int ret;
1558 
1559 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1560 			   port->cap_adap + ADP_USB3_CS_2, 1);
1561 	if (ret)
1562 		return ret;
1563 
1564 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1565 			   port->cap_adap + ADP_USB3_CS_3, 1);
1566 	if (ret)
1567 		return ret;
1568 
1569 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1570 
1571 	bw = val & ADP_USB3_CS_2_AUBW_MASK;
1572 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1573 
1574 	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1575 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1576 
1577 	return 0;
1578 }
1579 
1580 /**
1581  * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1582  * @port: USB3 adapter port
1583  * @upstream_bw: Allocated upstream bandwidth is stored here
1584  * @downstream_bw: Allocated downstream bandwidth is stored here
1585  *
1586  * Stores currently allocated USB3 bandwidth into @upstream_bw and
1587  * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1588  * errno in failure.
1589  */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1590 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1591 				       int *downstream_bw)
1592 {
1593 	int ret;
1594 
1595 	ret = usb4_usb3_port_set_cm_request(port);
1596 	if (ret)
1597 		return ret;
1598 
1599 	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1600 						      downstream_bw);
1601 	usb4_usb3_port_clear_cm_request(port);
1602 
1603 	return ret;
1604 }
1605 
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1606 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1607 						  int *upstream_bw,
1608 						  int *downstream_bw)
1609 {
1610 	u32 val, bw, scale;
1611 	int ret;
1612 
1613 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1614 			   port->cap_adap + ADP_USB3_CS_1, 1);
1615 	if (ret)
1616 		return ret;
1617 
1618 	ret = tb_port_read(port, &scale, TB_CFG_PORT,
1619 			   port->cap_adap + ADP_USB3_CS_3, 1);
1620 	if (ret)
1621 		return ret;
1622 
1623 	scale &= ADP_USB3_CS_3_SCALE_MASK;
1624 
1625 	bw = val & ADP_USB3_CS_1_CUBW_MASK;
1626 	*upstream_bw = usb3_bw_to_mbps(bw, scale);
1627 
1628 	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1629 	*downstream_bw = usb3_bw_to_mbps(bw, scale);
1630 
1631 	return 0;
1632 }
1633 
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)1634 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1635 						    int upstream_bw,
1636 						    int downstream_bw)
1637 {
1638 	u32 val, ubw, dbw, scale;
1639 	int ret, max_bw;
1640 
1641 	/* Figure out suitable scale */
1642 	scale = 0;
1643 	max_bw = max(upstream_bw, downstream_bw);
1644 	while (scale < 64) {
1645 		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
1646 			break;
1647 		scale++;
1648 	}
1649 
1650 	if (WARN_ON(scale >= 64))
1651 		return -EINVAL;
1652 
1653 	ret = tb_port_write(port, &scale, TB_CFG_PORT,
1654 			    port->cap_adap + ADP_USB3_CS_3, 1);
1655 	if (ret)
1656 		return ret;
1657 
1658 	ubw = mbps_to_usb3_bw(upstream_bw, scale);
1659 	dbw = mbps_to_usb3_bw(downstream_bw, scale);
1660 
1661 	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
1662 
1663 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1664 			   port->cap_adap + ADP_USB3_CS_2, 1);
1665 	if (ret)
1666 		return ret;
1667 
1668 	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1669 	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1670 	val |= ubw;
1671 
1672 	return tb_port_write(port, &val, TB_CFG_PORT,
1673 			     port->cap_adap + ADP_USB3_CS_2, 1);
1674 }
1675 
1676 /**
1677  * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1678  * @port: USB3 adapter port
1679  * @upstream_bw: New upstream bandwidth
1680  * @downstream_bw: New downstream bandwidth
1681  *
1682  * This can be used to set how much bandwidth is allocated for the USB3
1683  * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1684  * new values programmed to the USB3 adapter allocation registers. If
1685  * the values are lower than what is currently consumed the allocation
1686  * is set to what is currently consumed instead (consumed bandwidth
1687  * cannot be taken away by CM). The actual new values are returned in
1688  * @upstream_bw and @downstream_bw.
1689  *
1690  * Returns %0 in case of success and negative errno if there was a
1691  * failure.
1692  */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1693 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1694 				      int *downstream_bw)
1695 {
1696 	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1697 
1698 	ret = usb4_usb3_port_set_cm_request(port);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1703 						     &consumed_down);
1704 	if (ret)
1705 		goto err_request;
1706 
1707 	/* Don't allow it go lower than what is consumed */
1708 	allocate_up = max(*upstream_bw, consumed_up);
1709 	allocate_down = max(*downstream_bw, consumed_down);
1710 
1711 	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1712 						       allocate_down);
1713 	if (ret)
1714 		goto err_request;
1715 
1716 	*upstream_bw = allocate_up;
1717 	*downstream_bw = allocate_down;
1718 
1719 err_request:
1720 	usb4_usb3_port_clear_cm_request(port);
1721 	return ret;
1722 }
1723 
1724 /**
1725  * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1726  * @port: USB3 adapter port
1727  * @upstream_bw: New allocated upstream bandwidth
1728  * @downstream_bw: New allocated downstream bandwidth
1729  *
1730  * Releases USB3 allocated bandwidth down to what is actually consumed.
1731  * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1732  *
1733  * Returns 0% in success and negative errno in case of failure.
1734  */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1735 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1736 				     int *downstream_bw)
1737 {
1738 	int ret, consumed_up, consumed_down;
1739 
1740 	ret = usb4_usb3_port_set_cm_request(port);
1741 	if (ret)
1742 		return ret;
1743 
1744 	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1745 						     &consumed_down);
1746 	if (ret)
1747 		goto err_request;
1748 
1749 	/*
1750 	 * Always keep 1000 Mb/s to make sure xHCI has at least some
1751 	 * bandwidth available for isochronous traffic.
1752 	 */
1753 	if (consumed_up < 1000)
1754 		consumed_up = 1000;
1755 	if (consumed_down < 1000)
1756 		consumed_down = 1000;
1757 
1758 	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1759 						       consumed_down);
1760 	if (ret)
1761 		goto err_request;
1762 
1763 	*upstream_bw = consumed_up;
1764 	*downstream_bw = consumed_down;
1765 
1766 err_request:
1767 	usb4_usb3_port_clear_cm_request(port);
1768 	return ret;
1769 }
1770