1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754 {
755 struct urb *urb;
756 int length;
757 int status;
758 unsigned long flags;
759 char buffer[6]; /* Any root hubs with > 31 ports? */
760
761 if (unlikely(!hcd->rh_pollable))
762 return;
763 if (!hcd->uses_new_polling && !hcd->status_urb)
764 return;
765
766 length = hcd->driver->hub_status_data(hcd, buffer);
767 if (length > 0) {
768
769 /* try to complete the status urb */
770 spin_lock_irqsave(&hcd_root_hub_lock, flags);
771 urb = hcd->status_urb;
772 if (urb) {
773 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774 hcd->status_urb = NULL;
775 if (urb->transfer_buffer_length >= length) {
776 status = 0;
777 } else {
778 status = -EOVERFLOW;
779 length = urb->transfer_buffer_length;
780 }
781 urb->actual_length = length;
782 memcpy(urb->transfer_buffer, buffer, length);
783
784 usb_hcd_unlink_urb_from_ep(hcd, urb);
785 usb_hcd_giveback_urb(hcd, urb, status);
786 } else {
787 length = 0;
788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789 }
790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791 }
792
793 /* The USB 2.0 spec says 256 ms. This is close enough and won't
794 * exceed that limit if HZ is 100. The math is more clunky than
795 * maybe expected, this is to make sure that all timers for USB devices
796 * fire at the same time to give the CPU a break in between */
797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798 (length == 0 && hcd->status_urb != NULL))
799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800 }
801 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802
803 /* timer callback */
rh_timer_func(struct timer_list * t)804 static void rh_timer_func (struct timer_list *t)
805 {
806 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807
808 usb_hcd_poll_rh_status(_hcd);
809 }
810
811 /*-------------------------------------------------------------------------*/
812
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)813 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814 {
815 int retval;
816 unsigned long flags;
817 unsigned len = 1 + (urb->dev->maxchild / 8);
818
819 spin_lock_irqsave (&hcd_root_hub_lock, flags);
820 if (hcd->status_urb || urb->transfer_buffer_length < len) {
821 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822 retval = -EINVAL;
823 goto done;
824 }
825
826 retval = usb_hcd_link_urb_to_ep(hcd, urb);
827 if (retval)
828 goto done;
829
830 hcd->status_urb = urb;
831 urb->hcpriv = hcd; /* indicate it's queued */
832 if (!hcd->uses_new_polling)
833 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834
835 /* If a status change has already occurred, report it ASAP */
836 else if (HCD_POLL_PENDING(hcd))
837 mod_timer(&hcd->rh_timer, jiffies);
838 retval = 0;
839 done:
840 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841 return retval;
842 }
843
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)844 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845 {
846 if (usb_endpoint_xfer_int(&urb->ep->desc))
847 return rh_queue_status (hcd, urb);
848 if (usb_endpoint_xfer_control(&urb->ep->desc))
849 return rh_call_control (hcd, urb);
850 return -EINVAL;
851 }
852
853 /*-------------------------------------------------------------------------*/
854
855 /* Unlinks of root-hub control URBs are legal, but they don't do anything
856 * since these URBs always execute synchronously.
857 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)858 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859 {
860 unsigned long flags;
861 int rc;
862
863 spin_lock_irqsave(&hcd_root_hub_lock, flags);
864 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865 if (rc)
866 goto done;
867
868 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
869 ; /* Do nothing */
870
871 } else { /* Status URB */
872 if (!hcd->uses_new_polling)
873 del_timer (&hcd->rh_timer);
874 if (urb == hcd->status_urb) {
875 hcd->status_urb = NULL;
876 usb_hcd_unlink_urb_from_ep(hcd, urb);
877 usb_hcd_giveback_urb(hcd, urb, status);
878 }
879 }
880 done:
881 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882 return rc;
883 }
884
885
886 /*-------------------------------------------------------------------------*/
887
888 /**
889 * usb_bus_init - shared initialization code
890 * @bus: the bus structure being initialized
891 *
892 * This code is used to initialize a usb_bus structure, memory for which is
893 * separately managed.
894 */
usb_bus_init(struct usb_bus * bus)895 static void usb_bus_init (struct usb_bus *bus)
896 {
897 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898
899 bus->devnum_next = 1;
900
901 bus->root_hub = NULL;
902 bus->busnum = -1;
903 bus->bandwidth_allocated = 0;
904 bus->bandwidth_int_reqs = 0;
905 bus->bandwidth_isoc_reqs = 0;
906 mutex_init(&bus->devnum_next_mutex);
907 }
908
909 /*-------------------------------------------------------------------------*/
910
911 /**
912 * usb_register_bus - registers the USB host controller with the usb core
913 * @bus: pointer to the bus to register
914 * Context: !in_interrupt()
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 * Context: !in_interrupt()
950 *
951 * Recycles the bus number, and unlinks the controller from usbcore data
952 * structures so that it won't be seen by scanning the bus list.
953 */
usb_deregister_bus(struct usb_bus * bus)954 static void usb_deregister_bus (struct usb_bus *bus)
955 {
956 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958 /*
959 * NOTE: make sure that all the devices are removed by the
960 * controller code, as well as having it call this when cleaning
961 * itself up
962 */
963 mutex_lock(&usb_bus_idr_lock);
964 idr_remove(&usb_bus_idr, bus->busnum);
965 mutex_unlock(&usb_bus_idr_lock);
966
967 usb_notify_remove_bus(bus);
968 }
969
970 /**
971 * register_root_hub - called by usb_add_hcd() to register a root hub
972 * @hcd: host controller for this root hub
973 *
974 * This function registers the root hub with the USB subsystem. It sets up
975 * the device properly in the device tree and then calls usb_new_device()
976 * to register the usb device. It also assigns the root hub's USB address
977 * (always 1).
978 *
979 * Return: 0 if successful. A negative error code otherwise.
980 */
register_root_hub(struct usb_hcd * hcd)981 static int register_root_hub(struct usb_hcd *hcd)
982 {
983 struct device *parent_dev = hcd->self.controller;
984 struct usb_device *usb_dev = hcd->self.root_hub;
985 struct usb_device_descriptor *descr;
986 const int devnum = 1;
987 int retval;
988
989 usb_dev->devnum = devnum;
990 usb_dev->bus->devnum_next = devnum + 1;
991 set_bit (devnum, usb_dev->bus->devmap.devicemap);
992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993
994 mutex_lock(&usb_bus_idr_lock);
995
996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997 descr = usb_get_device_descriptor(usb_dev);
998 if (IS_ERR(descr)) {
999 retval = PTR_ERR(descr);
1000 mutex_unlock(&usb_bus_idr_lock);
1001 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002 dev_name(&usb_dev->dev), retval);
1003 return retval;
1004 }
1005 usb_dev->descriptor = *descr;
1006 kfree(descr);
1007
1008 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1009 retval = usb_get_bos_descriptor(usb_dev);
1010 if (!retval) {
1011 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1012 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1013 mutex_unlock(&usb_bus_idr_lock);
1014 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1015 dev_name(&usb_dev->dev), retval);
1016 return retval;
1017 }
1018 }
1019
1020 retval = usb_new_device (usb_dev);
1021 if (retval) {
1022 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1023 dev_name(&usb_dev->dev), retval);
1024 } else {
1025 spin_lock_irq (&hcd_root_hub_lock);
1026 hcd->rh_registered = 1;
1027 spin_unlock_irq (&hcd_root_hub_lock);
1028
1029 /* Did the HC die before the root hub was registered? */
1030 if (HCD_DEAD(hcd))
1031 usb_hc_died (hcd); /* This time clean up */
1032 }
1033 mutex_unlock(&usb_bus_idr_lock);
1034
1035 return retval;
1036 }
1037
1038 /*
1039 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1040 * @bus: the bus which the root hub belongs to
1041 * @portnum: the port which is being resumed
1042 *
1043 * HCDs should call this function when they know that a resume signal is
1044 * being sent to a root-hub port. The root hub will be prevented from
1045 * going into autosuspend until usb_hcd_end_port_resume() is called.
1046 *
1047 * The bus's private lock must be held by the caller.
1048 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1049 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1050 {
1051 unsigned bit = 1 << portnum;
1052
1053 if (!(bus->resuming_ports & bit)) {
1054 bus->resuming_ports |= bit;
1055 pm_runtime_get_noresume(&bus->root_hub->dev);
1056 }
1057 }
1058 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1059
1060 /*
1061 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1062 * @bus: the bus which the root hub belongs to
1063 * @portnum: the port which is being resumed
1064 *
1065 * HCDs should call this function when they know that a resume signal has
1066 * stopped being sent to a root-hub port. The root hub will be allowed to
1067 * autosuspend again.
1068 *
1069 * The bus's private lock must be held by the caller.
1070 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1071 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1072 {
1073 unsigned bit = 1 << portnum;
1074
1075 if (bus->resuming_ports & bit) {
1076 bus->resuming_ports &= ~bit;
1077 pm_runtime_put_noidle(&bus->root_hub->dev);
1078 }
1079 }
1080 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1081
1082 /*-------------------------------------------------------------------------*/
1083
1084 /**
1085 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1086 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1087 * @is_input: true iff the transaction sends data to the host
1088 * @isoc: true for isochronous transactions, false for interrupt ones
1089 * @bytecount: how many bytes in the transaction.
1090 *
1091 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1092 *
1093 * Note:
1094 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1095 * scheduled in software, this function is only used for such scheduling.
1096 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1097 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1098 {
1099 unsigned long tmp;
1100
1101 switch (speed) {
1102 case USB_SPEED_LOW: /* INTR only */
1103 if (is_input) {
1104 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106 } else {
1107 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1108 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1109 }
1110 case USB_SPEED_FULL: /* ISOC or INTR */
1111 if (isoc) {
1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1114 } else {
1115 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1116 return 9107L + BW_HOST_DELAY + tmp;
1117 }
1118 case USB_SPEED_HIGH: /* ISOC or INTR */
1119 /* FIXME adjust for input vs output */
1120 if (isoc)
1121 tmp = HS_NSECS_ISO (bytecount);
1122 else
1123 tmp = HS_NSECS (bytecount);
1124 return tmp;
1125 default:
1126 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1127 return -1;
1128 }
1129 }
1130 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1131
1132
1133 /*-------------------------------------------------------------------------*/
1134
1135 /*
1136 * Generic HC operations.
1137 */
1138
1139 /*-------------------------------------------------------------------------*/
1140
1141 /**
1142 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1143 * @hcd: host controller to which @urb was submitted
1144 * @urb: URB being submitted
1145 *
1146 * Host controller drivers should call this routine in their enqueue()
1147 * method. The HCD's private spinlock must be held and interrupts must
1148 * be disabled. The actions carried out here are required for URB
1149 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1150 *
1151 * Return: 0 for no error, otherwise a negative error code (in which case
1152 * the enqueue() method must fail). If no error occurs but enqueue() fails
1153 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1154 * the private spinlock and returning.
1155 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1156 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1157 {
1158 int rc = 0;
1159
1160 spin_lock(&hcd_urb_list_lock);
1161
1162 /* Check that the URB isn't being killed */
1163 if (unlikely(atomic_read(&urb->reject))) {
1164 rc = -EPERM;
1165 goto done;
1166 }
1167
1168 if (unlikely(!urb->ep->enabled)) {
1169 rc = -ENOENT;
1170 goto done;
1171 }
1172
1173 if (unlikely(!urb->dev->can_submit)) {
1174 rc = -EHOSTUNREACH;
1175 goto done;
1176 }
1177
1178 /*
1179 * Check the host controller's state and add the URB to the
1180 * endpoint's queue.
1181 */
1182 if (HCD_RH_RUNNING(hcd)) {
1183 urb->unlinked = 0;
1184 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1185 } else {
1186 rc = -ESHUTDOWN;
1187 goto done;
1188 }
1189 done:
1190 spin_unlock(&hcd_urb_list_lock);
1191 return rc;
1192 }
1193 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1194
1195 /**
1196 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1197 * @hcd: host controller to which @urb was submitted
1198 * @urb: URB being checked for unlinkability
1199 * @status: error code to store in @urb if the unlink succeeds
1200 *
1201 * Host controller drivers should call this routine in their dequeue()
1202 * method. The HCD's private spinlock must be held and interrupts must
1203 * be disabled. The actions carried out here are required for making
1204 * sure than an unlink is valid.
1205 *
1206 * Return: 0 for no error, otherwise a negative error code (in which case
1207 * the dequeue() method must fail). The possible error codes are:
1208 *
1209 * -EIDRM: @urb was not submitted or has already completed.
1210 * The completion function may not have been called yet.
1211 *
1212 * -EBUSY: @urb has already been unlinked.
1213 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1214 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1215 int status)
1216 {
1217 struct list_head *tmp;
1218
1219 /* insist the urb is still queued */
1220 list_for_each(tmp, &urb->ep->urb_list) {
1221 if (tmp == &urb->urb_list)
1222 break;
1223 }
1224 if (tmp != &urb->urb_list)
1225 return -EIDRM;
1226
1227 /* Any status except -EINPROGRESS means something already started to
1228 * unlink this URB from the hardware. So there's no more work to do.
1229 */
1230 if (urb->unlinked)
1231 return -EBUSY;
1232 urb->unlinked = status;
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1236
1237 /**
1238 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1239 * @hcd: host controller to which @urb was submitted
1240 * @urb: URB being unlinked
1241 *
1242 * Host controller drivers should call this routine before calling
1243 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1244 * interrupts must be disabled. The actions carried out here are required
1245 * for URB completion.
1246 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1247 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1248 {
1249 /* clear all state linking urb to this dev (and hcd) */
1250 spin_lock(&hcd_urb_list_lock);
1251 list_del_init(&urb->urb_list);
1252 spin_unlock(&hcd_urb_list_lock);
1253 }
1254 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1255
1256 /*
1257 * Some usb host controllers can only perform dma using a small SRAM area.
1258 * The usb core itself is however optimized for host controllers that can dma
1259 * using regular system memory - like pci devices doing bus mastering.
1260 *
1261 * To support host controllers with limited dma capabilities we provide dma
1262 * bounce buffers. This feature can be enabled by initializing
1263 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1264 *
1265 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1266 * data for dma using the genalloc API.
1267 *
1268 * So, to summarize...
1269 *
1270 * - We need "local" memory, canonical example being
1271 * a small SRAM on a discrete controller being the
1272 * only memory that the controller can read ...
1273 * (a) "normal" kernel memory is no good, and
1274 * (b) there's not enough to share
1275 *
1276 * - So we use that, even though the primary requirement
1277 * is that the memory be "local" (hence addressable
1278 * by that device), not "coherent".
1279 *
1280 */
1281
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1282 static int hcd_alloc_coherent(struct usb_bus *bus,
1283 gfp_t mem_flags, dma_addr_t *dma_handle,
1284 void **vaddr_handle, size_t size,
1285 enum dma_data_direction dir)
1286 {
1287 unsigned char *vaddr;
1288
1289 if (*vaddr_handle == NULL) {
1290 WARN_ON_ONCE(1);
1291 return -EFAULT;
1292 }
1293
1294 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1295 mem_flags, dma_handle);
1296 if (!vaddr)
1297 return -ENOMEM;
1298
1299 /*
1300 * Store the virtual address of the buffer at the end
1301 * of the allocated dma buffer. The size of the buffer
1302 * may be uneven so use unaligned functions instead
1303 * of just rounding up. It makes sense to optimize for
1304 * memory footprint over access speed since the amount
1305 * of memory available for dma may be limited.
1306 */
1307 put_unaligned((unsigned long)*vaddr_handle,
1308 (unsigned long *)(vaddr + size));
1309
1310 if (dir == DMA_TO_DEVICE)
1311 memcpy(vaddr, *vaddr_handle, size);
1312
1313 *vaddr_handle = vaddr;
1314 return 0;
1315 }
1316
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1317 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1318 void **vaddr_handle, size_t size,
1319 enum dma_data_direction dir)
1320 {
1321 unsigned char *vaddr = *vaddr_handle;
1322
1323 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1324
1325 if (dir == DMA_FROM_DEVICE)
1326 memcpy(vaddr, *vaddr_handle, size);
1327
1328 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1329
1330 *vaddr_handle = vaddr;
1331 *dma_handle = 0;
1332 }
1333
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1334 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1335 {
1336 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1337 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1338 dma_unmap_single(hcd->self.sysdev,
1339 urb->setup_dma,
1340 sizeof(struct usb_ctrlrequest),
1341 DMA_TO_DEVICE);
1342 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1343 hcd_free_coherent(urb->dev->bus,
1344 &urb->setup_dma,
1345 (void **) &urb->setup_packet,
1346 sizeof(struct usb_ctrlrequest),
1347 DMA_TO_DEVICE);
1348
1349 /* Make it safe to call this routine more than once */
1350 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1351 }
1352 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1353
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1354 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1355 {
1356 if (hcd->driver->unmap_urb_for_dma)
1357 hcd->driver->unmap_urb_for_dma(hcd, urb);
1358 else
1359 usb_hcd_unmap_urb_for_dma(hcd, urb);
1360 }
1361
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1362 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1363 {
1364 enum dma_data_direction dir;
1365
1366 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1367
1368 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1369 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370 (urb->transfer_flags & URB_DMA_MAP_SG))
1371 dma_unmap_sg(hcd->self.sysdev,
1372 urb->sg,
1373 urb->num_sgs,
1374 dir);
1375 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1376 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1377 dma_unmap_page(hcd->self.sysdev,
1378 urb->transfer_dma,
1379 urb->transfer_buffer_length,
1380 dir);
1381 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1382 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1383 dma_unmap_single(hcd->self.sysdev,
1384 urb->transfer_dma,
1385 urb->transfer_buffer_length,
1386 dir);
1387 else if (urb->transfer_flags & URB_MAP_LOCAL)
1388 hcd_free_coherent(urb->dev->bus,
1389 &urb->transfer_dma,
1390 &urb->transfer_buffer,
1391 urb->transfer_buffer_length,
1392 dir);
1393
1394 /* Make it safe to call this routine more than once */
1395 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1396 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1397 }
1398 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1399
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1400 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1401 gfp_t mem_flags)
1402 {
1403 if (hcd->driver->map_urb_for_dma)
1404 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1405 else
1406 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1407 }
1408
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1409 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1410 gfp_t mem_flags)
1411 {
1412 enum dma_data_direction dir;
1413 int ret = 0;
1414
1415 /* Map the URB's buffers for DMA access.
1416 * Lower level HCD code should use *_dma exclusively,
1417 * unless it uses pio or talks to another transport,
1418 * or uses the provided scatter gather list for bulk.
1419 */
1420
1421 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1422 if (hcd->self.uses_pio_for_control)
1423 return ret;
1424 if (hcd->localmem_pool) {
1425 ret = hcd_alloc_coherent(
1426 urb->dev->bus, mem_flags,
1427 &urb->setup_dma,
1428 (void **)&urb->setup_packet,
1429 sizeof(struct usb_ctrlrequest),
1430 DMA_TO_DEVICE);
1431 if (ret)
1432 return ret;
1433 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1434 } else if (hcd_uses_dma(hcd)) {
1435 if (object_is_on_stack(urb->setup_packet)) {
1436 WARN_ONCE(1, "setup packet is on stack\n");
1437 return -EAGAIN;
1438 }
1439
1440 urb->setup_dma = dma_map_single(
1441 hcd->self.sysdev,
1442 urb->setup_packet,
1443 sizeof(struct usb_ctrlrequest),
1444 DMA_TO_DEVICE);
1445 if (dma_mapping_error(hcd->self.sysdev,
1446 urb->setup_dma))
1447 return -EAGAIN;
1448 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1449 }
1450 }
1451
1452 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1453 if (urb->transfer_buffer_length != 0
1454 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1455 if (hcd->localmem_pool) {
1456 ret = hcd_alloc_coherent(
1457 urb->dev->bus, mem_flags,
1458 &urb->transfer_dma,
1459 &urb->transfer_buffer,
1460 urb->transfer_buffer_length,
1461 dir);
1462 if (ret == 0)
1463 urb->transfer_flags |= URB_MAP_LOCAL;
1464 } else if (hcd_uses_dma(hcd)) {
1465 if (urb->num_sgs) {
1466 int n;
1467
1468 /* We don't support sg for isoc transfers ! */
1469 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1470 WARN_ON(1);
1471 return -EINVAL;
1472 }
1473
1474 n = dma_map_sg(
1475 hcd->self.sysdev,
1476 urb->sg,
1477 urb->num_sgs,
1478 dir);
1479 if (n <= 0)
1480 ret = -EAGAIN;
1481 else
1482 urb->transfer_flags |= URB_DMA_MAP_SG;
1483 urb->num_mapped_sgs = n;
1484 if (n != urb->num_sgs)
1485 urb->transfer_flags |=
1486 URB_DMA_SG_COMBINED;
1487 } else if (urb->sg) {
1488 struct scatterlist *sg = urb->sg;
1489 urb->transfer_dma = dma_map_page(
1490 hcd->self.sysdev,
1491 sg_page(sg),
1492 sg->offset,
1493 urb->transfer_buffer_length,
1494 dir);
1495 if (dma_mapping_error(hcd->self.sysdev,
1496 urb->transfer_dma))
1497 ret = -EAGAIN;
1498 else
1499 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1500 } else if (object_is_on_stack(urb->transfer_buffer)) {
1501 WARN_ONCE(1, "transfer buffer is on stack\n");
1502 ret = -EAGAIN;
1503 } else {
1504 urb->transfer_dma = dma_map_single(
1505 hcd->self.sysdev,
1506 urb->transfer_buffer,
1507 urb->transfer_buffer_length,
1508 dir);
1509 if (dma_mapping_error(hcd->self.sysdev,
1510 urb->transfer_dma))
1511 ret = -EAGAIN;
1512 else
1513 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1514 }
1515 }
1516 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1517 URB_SETUP_MAP_LOCAL)))
1518 usb_hcd_unmap_urb_for_dma(hcd, urb);
1519 }
1520 return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1523
1524 /*-------------------------------------------------------------------------*/
1525
1526 /* may be called in any context with a valid urb->dev usecount
1527 * caller surrenders "ownership" of urb
1528 * expects usb_submit_urb() to have sanity checked and conditioned all
1529 * inputs in the urb
1530 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1531 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1532 {
1533 int status;
1534 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1535
1536 /* increment urb's reference count as part of giving it to the HCD
1537 * (which will control it). HCD guarantees that it either returns
1538 * an error or calls giveback(), but not both.
1539 */
1540 usb_get_urb(urb);
1541 atomic_inc(&urb->use_count);
1542 atomic_inc(&urb->dev->urbnum);
1543 usbmon_urb_submit(&hcd->self, urb);
1544
1545 /* NOTE requirements on root-hub callers (usbfs and the hub
1546 * driver, for now): URBs' urb->transfer_buffer must be
1547 * valid and usb_buffer_{sync,unmap}() not be needed, since
1548 * they could clobber root hub response data. Also, control
1549 * URBs must be submitted in process context with interrupts
1550 * enabled.
1551 */
1552
1553 if (is_root_hub(urb->dev)) {
1554 status = rh_urb_enqueue(hcd, urb);
1555 } else {
1556 status = map_urb_for_dma(hcd, urb, mem_flags);
1557 if (likely(status == 0)) {
1558 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1559 if (unlikely(status))
1560 unmap_urb_for_dma(hcd, urb);
1561 }
1562 }
1563
1564 if (unlikely(status)) {
1565 usbmon_urb_submit_error(&hcd->self, urb, status);
1566 urb->hcpriv = NULL;
1567 INIT_LIST_HEAD(&urb->urb_list);
1568 atomic_dec(&urb->use_count);
1569 /*
1570 * Order the write of urb->use_count above before the read
1571 * of urb->reject below. Pairs with the memory barriers in
1572 * usb_kill_urb() and usb_poison_urb().
1573 */
1574 smp_mb__after_atomic();
1575
1576 atomic_dec(&urb->dev->urbnum);
1577 if (atomic_read(&urb->reject))
1578 wake_up(&usb_kill_urb_queue);
1579 usb_put_urb(urb);
1580 }
1581 return status;
1582 }
1583
1584 /*-------------------------------------------------------------------------*/
1585
1586 /* this makes the hcd giveback() the urb more quickly, by kicking it
1587 * off hardware queues (which may take a while) and returning it as
1588 * soon as practical. we've already set up the urb's return status,
1589 * but we can't know if the callback completed already.
1590 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1591 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1592 {
1593 int value;
1594
1595 if (is_root_hub(urb->dev))
1596 value = usb_rh_urb_dequeue(hcd, urb, status);
1597 else {
1598
1599 /* The only reason an HCD might fail this call is if
1600 * it has not yet fully queued the urb to begin with.
1601 * Such failures should be harmless. */
1602 value = hcd->driver->urb_dequeue(hcd, urb, status);
1603 }
1604 return value;
1605 }
1606
1607 /*
1608 * called in any context
1609 *
1610 * caller guarantees urb won't be recycled till both unlink()
1611 * and the urb's completion function return
1612 */
usb_hcd_unlink_urb(struct urb * urb,int status)1613 int usb_hcd_unlink_urb (struct urb *urb, int status)
1614 {
1615 struct usb_hcd *hcd;
1616 struct usb_device *udev = urb->dev;
1617 int retval = -EIDRM;
1618 unsigned long flags;
1619
1620 /* Prevent the device and bus from going away while
1621 * the unlink is carried out. If they are already gone
1622 * then urb->use_count must be 0, since disconnected
1623 * devices can't have any active URBs.
1624 */
1625 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1626 if (atomic_read(&urb->use_count) > 0) {
1627 retval = 0;
1628 usb_get_dev(udev);
1629 }
1630 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1631 if (retval == 0) {
1632 hcd = bus_to_hcd(urb->dev->bus);
1633 retval = unlink1(hcd, urb, status);
1634 if (retval == 0)
1635 retval = -EINPROGRESS;
1636 else if (retval != -EIDRM && retval != -EBUSY)
1637 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1638 urb, retval);
1639 usb_put_dev(udev);
1640 }
1641 return retval;
1642 }
1643
1644 /*-------------------------------------------------------------------------*/
1645
__usb_hcd_giveback_urb(struct urb * urb)1646 static void __usb_hcd_giveback_urb(struct urb *urb)
1647 {
1648 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1649 struct usb_anchor *anchor = urb->anchor;
1650 int status = urb->unlinked;
1651
1652 urb->hcpriv = NULL;
1653 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1654 urb->actual_length < urb->transfer_buffer_length &&
1655 !status))
1656 status = -EREMOTEIO;
1657
1658 unmap_urb_for_dma(hcd, urb);
1659 usbmon_urb_complete(&hcd->self, urb, status);
1660 usb_anchor_suspend_wakeups(anchor);
1661 usb_unanchor_urb(urb);
1662 if (likely(status == 0))
1663 usb_led_activity(USB_LED_EVENT_HOST);
1664
1665 /* pass ownership to the completion handler */
1666 urb->status = status;
1667 /*
1668 * This function can be called in task context inside another remote
1669 * coverage collection section, but KCOV doesn't support that kind of
1670 * recursion yet. Only collect coverage in softirq context for now.
1671 */
1672 if (in_serving_softirq())
1673 kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1674 urb->complete(urb);
1675 if (in_serving_softirq())
1676 kcov_remote_stop();
1677
1678 usb_anchor_resume_wakeups(anchor);
1679 atomic_dec(&urb->use_count);
1680 /*
1681 * Order the write of urb->use_count above before the read
1682 * of urb->reject below. Pairs with the memory barriers in
1683 * usb_kill_urb() and usb_poison_urb().
1684 */
1685 smp_mb__after_atomic();
1686
1687 if (unlikely(atomic_read(&urb->reject)))
1688 wake_up(&usb_kill_urb_queue);
1689 usb_put_urb(urb);
1690 }
1691
usb_giveback_urb_bh(struct tasklet_struct * t)1692 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1693 {
1694 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1695 struct list_head local_list;
1696
1697 spin_lock_irq(&bh->lock);
1698 bh->running = true;
1699 restart:
1700 list_replace_init(&bh->head, &local_list);
1701 spin_unlock_irq(&bh->lock);
1702
1703 while (!list_empty(&local_list)) {
1704 struct urb *urb;
1705
1706 urb = list_entry(local_list.next, struct urb, urb_list);
1707 list_del_init(&urb->urb_list);
1708 bh->completing_ep = urb->ep;
1709 __usb_hcd_giveback_urb(urb);
1710 bh->completing_ep = NULL;
1711 }
1712
1713 /* check if there are new URBs to giveback */
1714 spin_lock_irq(&bh->lock);
1715 if (!list_empty(&bh->head))
1716 goto restart;
1717 bh->running = false;
1718 spin_unlock_irq(&bh->lock);
1719 }
1720
1721 /**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function. The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv). It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked. Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1738 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740 struct giveback_urb_bh *bh;
1741 bool running, high_prio_bh;
1742
1743 /* pass status to tasklet via unlinked */
1744 if (likely(!urb->unlinked))
1745 urb->unlinked = status;
1746
1747 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748 __usb_hcd_giveback_urb(urb);
1749 return;
1750 }
1751
1752 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753 bh = &hcd->high_prio_bh;
1754 high_prio_bh = true;
1755 } else {
1756 bh = &hcd->low_prio_bh;
1757 high_prio_bh = false;
1758 }
1759
1760 spin_lock(&bh->lock);
1761 list_add_tail(&urb->urb_list, &bh->head);
1762 running = bh->running;
1763 spin_unlock(&bh->lock);
1764
1765 if (running)
1766 ;
1767 else if (high_prio_bh)
1768 tasklet_hi_schedule(&bh->bh);
1769 else
1770 tasklet_schedule(&bh->bh);
1771 }
1772 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774 /*-------------------------------------------------------------------------*/
1775
1776 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely. The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1780 void usb_hcd_flush_endpoint(struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1782 {
1783 struct usb_hcd *hcd;
1784 struct urb *urb;
1785
1786 if (!ep)
1787 return;
1788 might_sleep();
1789 hcd = bus_to_hcd(udev->bus);
1790
1791 /* No more submits can occur */
1792 spin_lock_irq(&hcd_urb_list_lock);
1793 rescan:
1794 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1795 int is_in;
1796
1797 if (urb->unlinked)
1798 continue;
1799 usb_get_urb (urb);
1800 is_in = usb_urb_dir_in(urb);
1801 spin_unlock(&hcd_urb_list_lock);
1802
1803 /* kick hcd */
1804 unlink1(hcd, urb, -ESHUTDOWN);
1805 dev_dbg (hcd->self.controller,
1806 "shutdown urb %pK ep%d%s-%s\n",
1807 urb, usb_endpoint_num(&ep->desc),
1808 is_in ? "in" : "out",
1809 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1810 usb_put_urb (urb);
1811
1812 /* list contents may have changed */
1813 spin_lock(&hcd_urb_list_lock);
1814 goto rescan;
1815 }
1816 spin_unlock_irq(&hcd_urb_list_lock);
1817
1818 /* Wait until the endpoint queue is completely empty */
1819 while (!list_empty (&ep->urb_list)) {
1820 spin_lock_irq(&hcd_urb_list_lock);
1821
1822 /* The list may have changed while we acquired the spinlock */
1823 urb = NULL;
1824 if (!list_empty (&ep->urb_list)) {
1825 urb = list_entry (ep->urb_list.prev, struct urb,
1826 urb_list);
1827 usb_get_urb (urb);
1828 }
1829 spin_unlock_irq(&hcd_urb_list_lock);
1830
1831 if (urb) {
1832 usb_kill_urb (urb);
1833 usb_put_urb (urb);
1834 }
1835 }
1836 }
1837
1838 /**
1839 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1840 * the bus bandwidth
1841 * @udev: target &usb_device
1842 * @new_config: new configuration to install
1843 * @cur_alt: the current alternate interface setting
1844 * @new_alt: alternate interface setting that is being installed
1845 *
1846 * To change configurations, pass in the new configuration in new_config,
1847 * and pass NULL for cur_alt and new_alt.
1848 *
1849 * To reset a device's configuration (put the device in the ADDRESSED state),
1850 * pass in NULL for new_config, cur_alt, and new_alt.
1851 *
1852 * To change alternate interface settings, pass in NULL for new_config,
1853 * pass in the current alternate interface setting in cur_alt,
1854 * and pass in the new alternate interface setting in new_alt.
1855 *
1856 * Return: An error if the requested bandwidth change exceeds the
1857 * bus bandwidth or host controller internal resources.
1858 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1859 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1860 struct usb_host_config *new_config,
1861 struct usb_host_interface *cur_alt,
1862 struct usb_host_interface *new_alt)
1863 {
1864 int num_intfs, i, j;
1865 struct usb_host_interface *alt = NULL;
1866 int ret = 0;
1867 struct usb_hcd *hcd;
1868 struct usb_host_endpoint *ep;
1869
1870 hcd = bus_to_hcd(udev->bus);
1871 if (!hcd->driver->check_bandwidth)
1872 return 0;
1873
1874 /* Configuration is being removed - set configuration 0 */
1875 if (!new_config && !cur_alt) {
1876 for (i = 1; i < 16; ++i) {
1877 ep = udev->ep_out[i];
1878 if (ep)
1879 hcd->driver->drop_endpoint(hcd, udev, ep);
1880 ep = udev->ep_in[i];
1881 if (ep)
1882 hcd->driver->drop_endpoint(hcd, udev, ep);
1883 }
1884 hcd->driver->check_bandwidth(hcd, udev);
1885 return 0;
1886 }
1887 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1888 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1889 * of the bus. There will always be bandwidth for endpoint 0, so it's
1890 * ok to exclude it.
1891 */
1892 if (new_config) {
1893 num_intfs = new_config->desc.bNumInterfaces;
1894 /* Remove endpoints (except endpoint 0, which is always on the
1895 * schedule) from the old config from the schedule
1896 */
1897 for (i = 1; i < 16; ++i) {
1898 ep = udev->ep_out[i];
1899 if (ep) {
1900 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1901 if (ret < 0)
1902 goto reset;
1903 }
1904 ep = udev->ep_in[i];
1905 if (ep) {
1906 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1907 if (ret < 0)
1908 goto reset;
1909 }
1910 }
1911 for (i = 0; i < num_intfs; ++i) {
1912 struct usb_host_interface *first_alt;
1913 int iface_num;
1914
1915 first_alt = &new_config->intf_cache[i]->altsetting[0];
1916 iface_num = first_alt->desc.bInterfaceNumber;
1917 /* Set up endpoints for alternate interface setting 0 */
1918 alt = usb_find_alt_setting(new_config, iface_num, 0);
1919 if (!alt)
1920 /* No alt setting 0? Pick the first setting. */
1921 alt = first_alt;
1922
1923 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1924 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1925 if (ret < 0)
1926 goto reset;
1927 }
1928 }
1929 }
1930 if (cur_alt && new_alt) {
1931 struct usb_interface *iface = usb_ifnum_to_if(udev,
1932 cur_alt->desc.bInterfaceNumber);
1933
1934 if (!iface)
1935 return -EINVAL;
1936 if (iface->resetting_device) {
1937 /*
1938 * The USB core just reset the device, so the xHCI host
1939 * and the device will think alt setting 0 is installed.
1940 * However, the USB core will pass in the alternate
1941 * setting installed before the reset as cur_alt. Dig
1942 * out the alternate setting 0 structure, or the first
1943 * alternate setting if a broken device doesn't have alt
1944 * setting 0.
1945 */
1946 cur_alt = usb_altnum_to_altsetting(iface, 0);
1947 if (!cur_alt)
1948 cur_alt = &iface->altsetting[0];
1949 }
1950
1951 /* Drop all the endpoints in the current alt setting */
1952 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1953 ret = hcd->driver->drop_endpoint(hcd, udev,
1954 &cur_alt->endpoint[i]);
1955 if (ret < 0)
1956 goto reset;
1957 }
1958 /* Add all the endpoints in the new alt setting */
1959 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1960 ret = hcd->driver->add_endpoint(hcd, udev,
1961 &new_alt->endpoint[i]);
1962 if (ret < 0)
1963 goto reset;
1964 }
1965 }
1966 ret = hcd->driver->check_bandwidth(hcd, udev);
1967 reset:
1968 if (ret < 0)
1969 hcd->driver->reset_bandwidth(hcd, udev);
1970 return ret;
1971 }
1972
1973 /* Disables the endpoint: synchronizes with the hcd to make sure all
1974 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1975 * have been called previously. Use for set_configuration, set_interface,
1976 * driver removal, physical disconnect.
1977 *
1978 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1979 * type, maxpacket size, toggle, halt status, and scheduling.
1980 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1981 void usb_hcd_disable_endpoint(struct usb_device *udev,
1982 struct usb_host_endpoint *ep)
1983 {
1984 struct usb_hcd *hcd;
1985
1986 might_sleep();
1987 hcd = bus_to_hcd(udev->bus);
1988 if (hcd->driver->endpoint_disable)
1989 hcd->driver->endpoint_disable(hcd, ep);
1990 }
1991
1992 /**
1993 * usb_hcd_reset_endpoint - reset host endpoint state
1994 * @udev: USB device.
1995 * @ep: the endpoint to reset.
1996 *
1997 * Resets any host endpoint state such as the toggle bit, sequence
1998 * number and current window.
1999 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2000 void usb_hcd_reset_endpoint(struct usb_device *udev,
2001 struct usb_host_endpoint *ep)
2002 {
2003 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2004
2005 if (hcd->driver->endpoint_reset)
2006 hcd->driver->endpoint_reset(hcd, ep);
2007 else {
2008 int epnum = usb_endpoint_num(&ep->desc);
2009 int is_out = usb_endpoint_dir_out(&ep->desc);
2010 int is_control = usb_endpoint_xfer_control(&ep->desc);
2011
2012 usb_settoggle(udev, epnum, is_out, 0);
2013 if (is_control)
2014 usb_settoggle(udev, epnum, !is_out, 0);
2015 }
2016 }
2017
2018 /**
2019 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2020 * @interface: alternate setting that includes all endpoints.
2021 * @eps: array of endpoints that need streams.
2022 * @num_eps: number of endpoints in the array.
2023 * @num_streams: number of streams to allocate.
2024 * @mem_flags: flags hcd should use to allocate memory.
2025 *
2026 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2027 * Drivers may queue multiple transfers to different stream IDs, which may
2028 * complete in a different order than they were queued.
2029 *
2030 * Return: On success, the number of allocated streams. On failure, a negative
2031 * error code.
2032 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2033 int usb_alloc_streams(struct usb_interface *interface,
2034 struct usb_host_endpoint **eps, unsigned int num_eps,
2035 unsigned int num_streams, gfp_t mem_flags)
2036 {
2037 struct usb_hcd *hcd;
2038 struct usb_device *dev;
2039 int i, ret;
2040
2041 dev = interface_to_usbdev(interface);
2042 hcd = bus_to_hcd(dev->bus);
2043 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2044 return -EINVAL;
2045 if (dev->speed < USB_SPEED_SUPER)
2046 return -EINVAL;
2047 if (dev->state < USB_STATE_CONFIGURED)
2048 return -ENODEV;
2049
2050 for (i = 0; i < num_eps; i++) {
2051 /* Streams only apply to bulk endpoints. */
2052 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2053 return -EINVAL;
2054 /* Re-alloc is not allowed */
2055 if (eps[i]->streams)
2056 return -EINVAL;
2057 }
2058
2059 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2060 num_streams, mem_flags);
2061 if (ret < 0)
2062 return ret;
2063
2064 for (i = 0; i < num_eps; i++)
2065 eps[i]->streams = ret;
2066
2067 return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2070
2071 /**
2072 * usb_free_streams - free bulk endpoint stream IDs.
2073 * @interface: alternate setting that includes all endpoints.
2074 * @eps: array of endpoints to remove streams from.
2075 * @num_eps: number of endpoints in the array.
2076 * @mem_flags: flags hcd should use to allocate memory.
2077 *
2078 * Reverts a group of bulk endpoints back to not using stream IDs.
2079 * Can fail if we are given bad arguments, or HCD is broken.
2080 *
2081 * Return: 0 on success. On failure, a negative error code.
2082 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2083 int usb_free_streams(struct usb_interface *interface,
2084 struct usb_host_endpoint **eps, unsigned int num_eps,
2085 gfp_t mem_flags)
2086 {
2087 struct usb_hcd *hcd;
2088 struct usb_device *dev;
2089 int i, ret;
2090
2091 dev = interface_to_usbdev(interface);
2092 hcd = bus_to_hcd(dev->bus);
2093 if (dev->speed < USB_SPEED_SUPER)
2094 return -EINVAL;
2095
2096 /* Double-free is not allowed */
2097 for (i = 0; i < num_eps; i++)
2098 if (!eps[i] || !eps[i]->streams)
2099 return -EINVAL;
2100
2101 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2102 if (ret < 0)
2103 return ret;
2104
2105 for (i = 0; i < num_eps; i++)
2106 eps[i]->streams = 0;
2107
2108 return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(usb_free_streams);
2111
2112 /* Protect against drivers that try to unlink URBs after the device
2113 * is gone, by waiting until all unlinks for @udev are finished.
2114 * Since we don't currently track URBs by device, simply wait until
2115 * nothing is running in the locked region of usb_hcd_unlink_urb().
2116 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2117 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2118 {
2119 spin_lock_irq(&hcd_urb_unlink_lock);
2120 spin_unlock_irq(&hcd_urb_unlink_lock);
2121 }
2122
2123 /*-------------------------------------------------------------------------*/
2124
2125 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2126 int usb_hcd_get_frame_number (struct usb_device *udev)
2127 {
2128 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2129
2130 if (!HCD_RH_RUNNING(hcd))
2131 return -ESHUTDOWN;
2132 return hcd->driver->get_frame_number (hcd);
2133 }
2134
2135 /*-------------------------------------------------------------------------*/
2136
2137 #ifdef CONFIG_PM
2138
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2139 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2140 {
2141 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2142 int status;
2143 int old_state = hcd->state;
2144
2145 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2146 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2147 rhdev->do_remote_wakeup);
2148 if (HCD_DEAD(hcd)) {
2149 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2150 return 0;
2151 }
2152
2153 if (!hcd->driver->bus_suspend) {
2154 status = -ENOENT;
2155 } else {
2156 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2157 hcd->state = HC_STATE_QUIESCING;
2158 status = hcd->driver->bus_suspend(hcd);
2159 }
2160 if (status == 0) {
2161 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2162 hcd->state = HC_STATE_SUSPENDED;
2163
2164 if (!PMSG_IS_AUTO(msg))
2165 usb_phy_roothub_suspend(hcd->self.sysdev,
2166 hcd->phy_roothub);
2167
2168 /* Did we race with a root-hub wakeup event? */
2169 if (rhdev->do_remote_wakeup) {
2170 char buffer[6];
2171
2172 status = hcd->driver->hub_status_data(hcd, buffer);
2173 if (status != 0) {
2174 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2175 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2176 status = -EBUSY;
2177 }
2178 }
2179 } else {
2180 spin_lock_irq(&hcd_root_hub_lock);
2181 if (!HCD_DEAD(hcd)) {
2182 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2183 hcd->state = old_state;
2184 }
2185 spin_unlock_irq(&hcd_root_hub_lock);
2186 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2187 "suspend", status);
2188 }
2189 return status;
2190 }
2191
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2192 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2193 {
2194 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2195 int status;
2196 int old_state = hcd->state;
2197
2198 dev_dbg(&rhdev->dev, "usb %sresume\n",
2199 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2200 if (HCD_DEAD(hcd)) {
2201 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2202 return 0;
2203 }
2204
2205 if (!PMSG_IS_AUTO(msg)) {
2206 status = usb_phy_roothub_resume(hcd->self.sysdev,
2207 hcd->phy_roothub);
2208 if (status)
2209 return status;
2210 }
2211
2212 if (!hcd->driver->bus_resume)
2213 return -ENOENT;
2214 if (HCD_RH_RUNNING(hcd))
2215 return 0;
2216
2217 hcd->state = HC_STATE_RESUMING;
2218 status = hcd->driver->bus_resume(hcd);
2219 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2220 if (status == 0)
2221 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2222
2223 if (status == 0) {
2224 struct usb_device *udev;
2225 int port1;
2226
2227 spin_lock_irq(&hcd_root_hub_lock);
2228 if (!HCD_DEAD(hcd)) {
2229 usb_set_device_state(rhdev, rhdev->actconfig
2230 ? USB_STATE_CONFIGURED
2231 : USB_STATE_ADDRESS);
2232 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2233 hcd->state = HC_STATE_RUNNING;
2234 }
2235 spin_unlock_irq(&hcd_root_hub_lock);
2236
2237 /*
2238 * Check whether any of the enabled ports on the root hub are
2239 * unsuspended. If they are then a TRSMRCY delay is needed
2240 * (this is what the USB-2 spec calls a "global resume").
2241 * Otherwise we can skip the delay.
2242 */
2243 usb_hub_for_each_child(rhdev, port1, udev) {
2244 if (udev->state != USB_STATE_NOTATTACHED &&
2245 !udev->port_is_suspended) {
2246 usleep_range(10000, 11000); /* TRSMRCY */
2247 break;
2248 }
2249 }
2250 } else {
2251 hcd->state = old_state;
2252 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2253 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2254 "resume", status);
2255 if (status != -ESHUTDOWN)
2256 usb_hc_died(hcd);
2257 }
2258 return status;
2259 }
2260
2261 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2262 static void hcd_resume_work(struct work_struct *work)
2263 {
2264 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2265 struct usb_device *udev = hcd->self.root_hub;
2266
2267 usb_remote_wakeup(udev);
2268 }
2269
2270 /**
2271 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2272 * @hcd: host controller for this root hub
2273 *
2274 * The USB host controller calls this function when its root hub is
2275 * suspended (with the remote wakeup feature enabled) and a remote
2276 * wakeup request is received. The routine submits a workqueue request
2277 * to resume the root hub (that is, manage its downstream ports again).
2278 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2279 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2280 {
2281 unsigned long flags;
2282
2283 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2284 if (hcd->rh_registered) {
2285 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2286 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287 queue_work(pm_wq, &hcd->wakeup_work);
2288 }
2289 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290 }
2291 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293 #endif /* CONFIG_PM */
2294
2295 /*-------------------------------------------------------------------------*/
2296
2297 #ifdef CONFIG_USB_OTG
2298
2299 /**
2300 * usb_bus_start_enum - start immediate enumeration (for OTG)
2301 * @bus: the bus (must use hcd framework)
2302 * @port_num: 1-based number of port; usually bus->otg_port
2303 * Context: in_interrupt()
2304 *
2305 * Starts enumeration, with an immediate reset followed later by
2306 * hub_wq identifying and possibly configuring the device.
2307 * This is needed by OTG controller drivers, where it helps meet
2308 * HNP protocol timing requirements for starting a port reset.
2309 *
2310 * Return: 0 if successful.
2311 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2312 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313 {
2314 struct usb_hcd *hcd;
2315 int status = -EOPNOTSUPP;
2316
2317 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318 * boards with root hubs hooked up to internal devices (instead of
2319 * just the OTG port) may need more attention to resetting...
2320 */
2321 hcd = bus_to_hcd(bus);
2322 if (port_num && hcd->driver->start_port_reset)
2323 status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325 /* allocate hub_wq shortly after (first) root port reset finishes;
2326 * it may issue others, until at least 50 msecs have passed.
2327 */
2328 if (status == 0)
2329 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330 return status;
2331 }
2332 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334 #endif
2335
2336 /*-------------------------------------------------------------------------*/
2337
2338 /**
2339 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340 * @irq: the IRQ being raised
2341 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 *
2343 * If the controller isn't HALTed, calls the driver's irq handler.
2344 * Checks whether the controller is now dead.
2345 *
2346 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 */
usb_hcd_irq(int irq,void * __hcd)2348 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349 {
2350 struct usb_hcd *hcd = __hcd;
2351 irqreturn_t rc;
2352
2353 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354 rc = IRQ_NONE;
2355 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356 rc = IRQ_NONE;
2357 else
2358 rc = IRQ_HANDLED;
2359
2360 return rc;
2361 }
2362 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364 /*-------------------------------------------------------------------------*/
2365
2366 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2367 static void hcd_died_work(struct work_struct *work)
2368 {
2369 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2370 static char *env[] = {
2371 "ERROR=DEAD",
2372 NULL
2373 };
2374
2375 /* Notify user space that the host controller has died */
2376 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2377 }
2378
2379 /**
2380 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2381 * @hcd: pointer to the HCD representing the controller
2382 *
2383 * This is called by bus glue to report a USB host controller that died
2384 * while operations may still have been pending. It's called automatically
2385 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2386 *
2387 * Only call this function with the primary HCD.
2388 */
usb_hc_died(struct usb_hcd * hcd)2389 void usb_hc_died (struct usb_hcd *hcd)
2390 {
2391 unsigned long flags;
2392
2393 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2394
2395 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2396 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2397 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2398 if (hcd->rh_registered) {
2399 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2400
2401 /* make hub_wq clean up old urbs and devices */
2402 usb_set_device_state (hcd->self.root_hub,
2403 USB_STATE_NOTATTACHED);
2404 usb_kick_hub_wq(hcd->self.root_hub);
2405 }
2406 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2407 hcd = hcd->shared_hcd;
2408 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2409 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2410 if (hcd->rh_registered) {
2411 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2412
2413 /* make hub_wq clean up old urbs and devices */
2414 usb_set_device_state(hcd->self.root_hub,
2415 USB_STATE_NOTATTACHED);
2416 usb_kick_hub_wq(hcd->self.root_hub);
2417 }
2418 }
2419
2420 /* Handle the case where this function gets called with a shared HCD */
2421 if (usb_hcd_is_primary_hcd(hcd))
2422 schedule_work(&hcd->died_work);
2423 else
2424 schedule_work(&hcd->primary_hcd->died_work);
2425
2426 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2427 /* Make sure that the other roothub is also deallocated. */
2428 }
2429 EXPORT_SYMBOL_GPL (usb_hc_died);
2430
2431 /*-------------------------------------------------------------------------*/
2432
init_giveback_urb_bh(struct giveback_urb_bh * bh)2433 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2434 {
2435
2436 spin_lock_init(&bh->lock);
2437 INIT_LIST_HEAD(&bh->head);
2438 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2439 }
2440
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2441 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2442 struct device *sysdev, struct device *dev, const char *bus_name,
2443 struct usb_hcd *primary_hcd)
2444 {
2445 struct usb_hcd *hcd;
2446
2447 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2448 if (!hcd)
2449 return NULL;
2450 if (primary_hcd == NULL) {
2451 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2452 GFP_KERNEL);
2453 if (!hcd->address0_mutex) {
2454 kfree(hcd);
2455 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2456 return NULL;
2457 }
2458 mutex_init(hcd->address0_mutex);
2459 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2460 GFP_KERNEL);
2461 if (!hcd->bandwidth_mutex) {
2462 kfree(hcd->address0_mutex);
2463 kfree(hcd);
2464 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2465 return NULL;
2466 }
2467 mutex_init(hcd->bandwidth_mutex);
2468 dev_set_drvdata(dev, hcd);
2469 } else {
2470 mutex_lock(&usb_port_peer_mutex);
2471 hcd->address0_mutex = primary_hcd->address0_mutex;
2472 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2473 hcd->primary_hcd = primary_hcd;
2474 primary_hcd->primary_hcd = primary_hcd;
2475 hcd->shared_hcd = primary_hcd;
2476 primary_hcd->shared_hcd = hcd;
2477 mutex_unlock(&usb_port_peer_mutex);
2478 }
2479
2480 kref_init(&hcd->kref);
2481
2482 usb_bus_init(&hcd->self);
2483 hcd->self.controller = dev;
2484 hcd->self.sysdev = sysdev;
2485 hcd->self.bus_name = bus_name;
2486
2487 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2488 #ifdef CONFIG_PM
2489 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2490 #endif
2491
2492 INIT_WORK(&hcd->died_work, hcd_died_work);
2493
2494 hcd->driver = driver;
2495 hcd->speed = driver->flags & HCD_MASK;
2496 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2497 "USB Host Controller";
2498 return hcd;
2499 }
2500 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2501
2502 /**
2503 * usb_create_shared_hcd - create and initialize an HCD structure
2504 * @driver: HC driver that will use this hcd
2505 * @dev: device for this HC, stored in hcd->self.controller
2506 * @bus_name: value to store in hcd->self.bus_name
2507 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2508 * PCI device. Only allocate certain resources for the primary HCD
2509 * Context: !in_interrupt()
2510 *
2511 * Allocate a struct usb_hcd, with extra space at the end for the
2512 * HC driver's private data. Initialize the generic members of the
2513 * hcd structure.
2514 *
2515 * Return: On success, a pointer to the created and initialized HCD structure.
2516 * On failure (e.g. if memory is unavailable), %NULL.
2517 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2518 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2519 struct device *dev, const char *bus_name,
2520 struct usb_hcd *primary_hcd)
2521 {
2522 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2523 }
2524 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2525
2526 /**
2527 * usb_create_hcd - create and initialize an HCD structure
2528 * @driver: HC driver that will use this hcd
2529 * @dev: device for this HC, stored in hcd->self.controller
2530 * @bus_name: value to store in hcd->self.bus_name
2531 * Context: !in_interrupt()
2532 *
2533 * Allocate a struct usb_hcd, with extra space at the end for the
2534 * HC driver's private data. Initialize the generic members of the
2535 * hcd structure.
2536 *
2537 * Return: On success, a pointer to the created and initialized HCD
2538 * structure. On failure (e.g. if memory is unavailable), %NULL.
2539 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2540 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2541 struct device *dev, const char *bus_name)
2542 {
2543 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2544 }
2545 EXPORT_SYMBOL_GPL(usb_create_hcd);
2546
2547 /*
2548 * Roothubs that share one PCI device must also share the bandwidth mutex.
2549 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2550 * deallocated.
2551 *
2552 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2553 * freed. When hcd_release() is called for either hcd in a peer set,
2554 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2555 */
hcd_release(struct kref * kref)2556 static void hcd_release(struct kref *kref)
2557 {
2558 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2559
2560 mutex_lock(&usb_port_peer_mutex);
2561 if (hcd->shared_hcd) {
2562 struct usb_hcd *peer = hcd->shared_hcd;
2563
2564 peer->shared_hcd = NULL;
2565 peer->primary_hcd = NULL;
2566 } else {
2567 kfree(hcd->address0_mutex);
2568 kfree(hcd->bandwidth_mutex);
2569 }
2570 mutex_unlock(&usb_port_peer_mutex);
2571 kfree(hcd);
2572 }
2573
usb_get_hcd(struct usb_hcd * hcd)2574 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2575 {
2576 if (hcd)
2577 kref_get (&hcd->kref);
2578 return hcd;
2579 }
2580 EXPORT_SYMBOL_GPL(usb_get_hcd);
2581
usb_put_hcd(struct usb_hcd * hcd)2582 void usb_put_hcd (struct usb_hcd *hcd)
2583 {
2584 if (hcd)
2585 kref_put (&hcd->kref, hcd_release);
2586 }
2587 EXPORT_SYMBOL_GPL(usb_put_hcd);
2588
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2589 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2590 {
2591 if (!hcd->primary_hcd)
2592 return 1;
2593 return hcd == hcd->primary_hcd;
2594 }
2595 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2596
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2597 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2598 {
2599 if (!hcd->driver->find_raw_port_number)
2600 return port1;
2601
2602 return hcd->driver->find_raw_port_number(hcd, port1);
2603 }
2604
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2605 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2606 unsigned int irqnum, unsigned long irqflags)
2607 {
2608 int retval;
2609
2610 if (hcd->driver->irq) {
2611
2612 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2613 hcd->driver->description, hcd->self.busnum);
2614 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2615 hcd->irq_descr, hcd);
2616 if (retval != 0) {
2617 dev_err(hcd->self.controller,
2618 "request interrupt %d failed\n",
2619 irqnum);
2620 return retval;
2621 }
2622 hcd->irq = irqnum;
2623 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2624 (hcd->driver->flags & HCD_MEMORY) ?
2625 "io mem" : "io base",
2626 (unsigned long long)hcd->rsrc_start);
2627 } else {
2628 hcd->irq = 0;
2629 if (hcd->rsrc_start)
2630 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2631 (hcd->driver->flags & HCD_MEMORY) ?
2632 "io mem" : "io base",
2633 (unsigned long long)hcd->rsrc_start);
2634 }
2635 return 0;
2636 }
2637
2638 /*
2639 * Before we free this root hub, flush in-flight peering attempts
2640 * and disable peer lookups
2641 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2642 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2643 {
2644 struct usb_device *rhdev;
2645
2646 mutex_lock(&usb_port_peer_mutex);
2647 rhdev = hcd->self.root_hub;
2648 hcd->self.root_hub = NULL;
2649 mutex_unlock(&usb_port_peer_mutex);
2650 usb_put_dev(rhdev);
2651 }
2652
2653 /**
2654 * usb_add_hcd - finish generic HCD structure initialization and register
2655 * @hcd: the usb_hcd structure to initialize
2656 * @irqnum: Interrupt line to allocate
2657 * @irqflags: Interrupt type flags
2658 *
2659 * Finish the remaining parts of generic HCD initialization: allocate the
2660 * buffers of consistent memory, register the bus, request the IRQ line,
2661 * and call the driver's reset() and start() routines.
2662 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2663 int usb_add_hcd(struct usb_hcd *hcd,
2664 unsigned int irqnum, unsigned long irqflags)
2665 {
2666 int retval;
2667 struct usb_device *rhdev;
2668 struct usb_hcd *shared_hcd;
2669
2670 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2671 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2672 if (IS_ERR(hcd->phy_roothub))
2673 return PTR_ERR(hcd->phy_roothub);
2674
2675 retval = usb_phy_roothub_init(hcd->phy_roothub);
2676 if (retval)
2677 return retval;
2678
2679 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2680 PHY_MODE_USB_HOST_SS);
2681 if (retval)
2682 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2683 PHY_MODE_USB_HOST);
2684 if (retval)
2685 goto err_usb_phy_roothub_power_on;
2686
2687 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2688 if (retval)
2689 goto err_usb_phy_roothub_power_on;
2690 }
2691
2692 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2693
2694 switch (authorized_default) {
2695 case USB_AUTHORIZE_NONE:
2696 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2697 break;
2698
2699 case USB_AUTHORIZE_ALL:
2700 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2701 break;
2702
2703 case USB_AUTHORIZE_INTERNAL:
2704 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2705 break;
2706
2707 case USB_AUTHORIZE_WIRED:
2708 default:
2709 hcd->dev_policy = hcd->wireless ?
2710 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2711 break;
2712 }
2713
2714 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2715
2716 /* per default all interfaces are authorized */
2717 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2718
2719 /* HC is in reset state, but accessible. Now do the one-time init,
2720 * bottom up so that hcds can customize the root hubs before hub_wq
2721 * starts talking to them. (Note, bus id is assigned early too.)
2722 */
2723 retval = hcd_buffer_create(hcd);
2724 if (retval != 0) {
2725 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2726 goto err_create_buf;
2727 }
2728
2729 retval = usb_register_bus(&hcd->self);
2730 if (retval < 0)
2731 goto err_register_bus;
2732
2733 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2734 if (rhdev == NULL) {
2735 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2736 retval = -ENOMEM;
2737 goto err_allocate_root_hub;
2738 }
2739 mutex_lock(&usb_port_peer_mutex);
2740 hcd->self.root_hub = rhdev;
2741 mutex_unlock(&usb_port_peer_mutex);
2742
2743 rhdev->rx_lanes = 1;
2744 rhdev->tx_lanes = 1;
2745
2746 switch (hcd->speed) {
2747 case HCD_USB11:
2748 rhdev->speed = USB_SPEED_FULL;
2749 break;
2750 case HCD_USB2:
2751 rhdev->speed = USB_SPEED_HIGH;
2752 break;
2753 case HCD_USB25:
2754 rhdev->speed = USB_SPEED_WIRELESS;
2755 break;
2756 case HCD_USB3:
2757 rhdev->speed = USB_SPEED_SUPER;
2758 break;
2759 case HCD_USB32:
2760 rhdev->rx_lanes = 2;
2761 rhdev->tx_lanes = 2;
2762 fallthrough;
2763 case HCD_USB31:
2764 rhdev->speed = USB_SPEED_SUPER_PLUS;
2765 break;
2766 default:
2767 retval = -EINVAL;
2768 goto err_set_rh_speed;
2769 }
2770
2771 /* wakeup flag init defaults to "everything works" for root hubs,
2772 * but drivers can override it in reset() if needed, along with
2773 * recording the overall controller's system wakeup capability.
2774 */
2775 device_set_wakeup_capable(&rhdev->dev, 1);
2776
2777 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2778 * registered. But since the controller can die at any time,
2779 * let's initialize the flag before touching the hardware.
2780 */
2781 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2782
2783 /* "reset" is misnamed; its role is now one-time init. the controller
2784 * should already have been reset (and boot firmware kicked off etc).
2785 */
2786 if (hcd->driver->reset) {
2787 retval = hcd->driver->reset(hcd);
2788 if (retval < 0) {
2789 dev_err(hcd->self.controller, "can't setup: %d\n",
2790 retval);
2791 goto err_hcd_driver_setup;
2792 }
2793 }
2794 hcd->rh_pollable = 1;
2795
2796 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2797 if (retval)
2798 goto err_hcd_driver_setup;
2799
2800 /* NOTE: root hub and controller capabilities may not be the same */
2801 if (device_can_wakeup(hcd->self.controller)
2802 && device_can_wakeup(&hcd->self.root_hub->dev))
2803 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2804
2805 /* initialize tasklets */
2806 init_giveback_urb_bh(&hcd->high_prio_bh);
2807 init_giveback_urb_bh(&hcd->low_prio_bh);
2808
2809 /* enable irqs just before we start the controller,
2810 * if the BIOS provides legacy PCI irqs.
2811 */
2812 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2813 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2814 if (retval)
2815 goto err_request_irq;
2816 }
2817
2818 hcd->state = HC_STATE_RUNNING;
2819 retval = hcd->driver->start(hcd);
2820 if (retval < 0) {
2821 dev_err(hcd->self.controller, "startup error %d\n", retval);
2822 goto err_hcd_driver_start;
2823 }
2824
2825 /* starting here, usbcore will pay attention to the shared HCD roothub */
2826 shared_hcd = hcd->shared_hcd;
2827 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2828 retval = register_root_hub(shared_hcd);
2829 if (retval != 0)
2830 goto err_register_root_hub;
2831
2832 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2833 usb_hcd_poll_rh_status(shared_hcd);
2834 }
2835
2836 /* starting here, usbcore will pay attention to this root hub */
2837 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2838 retval = register_root_hub(hcd);
2839 if (retval != 0)
2840 goto err_register_root_hub;
2841
2842 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2843 usb_hcd_poll_rh_status(hcd);
2844 }
2845
2846 return retval;
2847
2848 err_register_root_hub:
2849 hcd->rh_pollable = 0;
2850 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2851 del_timer_sync(&hcd->rh_timer);
2852 hcd->driver->stop(hcd);
2853 hcd->state = HC_STATE_HALT;
2854 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2855 del_timer_sync(&hcd->rh_timer);
2856 err_hcd_driver_start:
2857 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2858 free_irq(irqnum, hcd);
2859 err_request_irq:
2860 err_hcd_driver_setup:
2861 err_set_rh_speed:
2862 usb_put_invalidate_rhdev(hcd);
2863 err_allocate_root_hub:
2864 usb_deregister_bus(&hcd->self);
2865 err_register_bus:
2866 hcd_buffer_destroy(hcd);
2867 err_create_buf:
2868 usb_phy_roothub_power_off(hcd->phy_roothub);
2869 err_usb_phy_roothub_power_on:
2870 usb_phy_roothub_exit(hcd->phy_roothub);
2871
2872 return retval;
2873 }
2874 EXPORT_SYMBOL_GPL(usb_add_hcd);
2875
2876 /**
2877 * usb_remove_hcd - shutdown processing for generic HCDs
2878 * @hcd: the usb_hcd structure to remove
2879 * Context: !in_interrupt()
2880 *
2881 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2882 * invoking the HCD's stop() method.
2883 */
usb_remove_hcd(struct usb_hcd * hcd)2884 void usb_remove_hcd(struct usb_hcd *hcd)
2885 {
2886 struct usb_device *rhdev = hcd->self.root_hub;
2887 bool rh_registered;
2888
2889 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2890
2891 usb_get_dev(rhdev);
2892 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2893 if (HC_IS_RUNNING (hcd->state))
2894 hcd->state = HC_STATE_QUIESCING;
2895
2896 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2897 spin_lock_irq (&hcd_root_hub_lock);
2898 rh_registered = hcd->rh_registered;
2899 hcd->rh_registered = 0;
2900 spin_unlock_irq (&hcd_root_hub_lock);
2901
2902 #ifdef CONFIG_PM
2903 cancel_work_sync(&hcd->wakeup_work);
2904 #endif
2905 cancel_work_sync(&hcd->died_work);
2906
2907 mutex_lock(&usb_bus_idr_lock);
2908 if (rh_registered)
2909 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2910 mutex_unlock(&usb_bus_idr_lock);
2911
2912 /*
2913 * tasklet_kill() isn't needed here because:
2914 * - driver's disconnect() called from usb_disconnect() should
2915 * make sure its URBs are completed during the disconnect()
2916 * callback
2917 *
2918 * - it is too late to run complete() here since driver may have
2919 * been removed already now
2920 */
2921
2922 /* Prevent any more root-hub status calls from the timer.
2923 * The HCD might still restart the timer (if a port status change
2924 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2925 * the hub_status_data() callback.
2926 */
2927 hcd->rh_pollable = 0;
2928 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2929 del_timer_sync(&hcd->rh_timer);
2930
2931 hcd->driver->stop(hcd);
2932 hcd->state = HC_STATE_HALT;
2933
2934 /* In case the HCD restarted the timer, stop it again. */
2935 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2936 del_timer_sync(&hcd->rh_timer);
2937
2938 if (usb_hcd_is_primary_hcd(hcd)) {
2939 if (hcd->irq > 0)
2940 free_irq(hcd->irq, hcd);
2941 }
2942
2943 usb_deregister_bus(&hcd->self);
2944 hcd_buffer_destroy(hcd);
2945
2946 usb_phy_roothub_power_off(hcd->phy_roothub);
2947 usb_phy_roothub_exit(hcd->phy_roothub);
2948
2949 usb_put_invalidate_rhdev(hcd);
2950 hcd->flags = 0;
2951 }
2952 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2953
2954 void
usb_hcd_platform_shutdown(struct platform_device * dev)2955 usb_hcd_platform_shutdown(struct platform_device *dev)
2956 {
2957 struct usb_hcd *hcd = platform_get_drvdata(dev);
2958
2959 /* No need for pm_runtime_put(), we're shutting down */
2960 pm_runtime_get_sync(&dev->dev);
2961
2962 if (hcd->driver->shutdown)
2963 hcd->driver->shutdown(hcd);
2964 }
2965 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2966
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)2967 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2968 dma_addr_t dma, size_t size)
2969 {
2970 int err;
2971 void *local_mem;
2972
2973 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2974 dev_to_node(hcd->self.sysdev),
2975 dev_name(hcd->self.sysdev));
2976 if (IS_ERR(hcd->localmem_pool))
2977 return PTR_ERR(hcd->localmem_pool);
2978
2979 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2980 size, MEMREMAP_WC);
2981 if (IS_ERR(local_mem))
2982 return PTR_ERR(local_mem);
2983
2984 /*
2985 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2986 * It's not backed by system memory and thus there's no kernel mapping
2987 * for it.
2988 */
2989 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2990 dma, size, dev_to_node(hcd->self.sysdev));
2991 if (err < 0) {
2992 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2993 err);
2994 return err;
2995 }
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3000
3001 /*-------------------------------------------------------------------------*/
3002
3003 #if IS_ENABLED(CONFIG_USB_MON)
3004
3005 const struct usb_mon_operations *mon_ops;
3006
3007 /*
3008 * The registration is unlocked.
3009 * We do it this way because we do not want to lock in hot paths.
3010 *
3011 * Notice that the code is minimally error-proof. Because usbmon needs
3012 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3013 */
3014
usb_mon_register(const struct usb_mon_operations * ops)3015 int usb_mon_register(const struct usb_mon_operations *ops)
3016 {
3017
3018 if (mon_ops)
3019 return -EBUSY;
3020
3021 mon_ops = ops;
3022 mb();
3023 return 0;
3024 }
3025 EXPORT_SYMBOL_GPL (usb_mon_register);
3026
usb_mon_deregister(void)3027 void usb_mon_deregister (void)
3028 {
3029
3030 if (mon_ops == NULL) {
3031 printk(KERN_ERR "USB: monitor was not registered\n");
3032 return;
3033 }
3034 mon_ops = NULL;
3035 mb();
3036 }
3037 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3038
3039 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3040