• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *	   Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *	(c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31 
32 #include <trace/events/vb2.h>
33 
34 static int debug;
35 module_param(debug, int, 0644);
36 
37 #define dprintk(q, level, fmt, arg...)					\
38 	do {								\
39 		if (debug >= level)					\
40 			pr_info("[%s] %s: " fmt, (q)->name, __func__,	\
41 				## arg);				\
42 	} while (0)
43 
44 #ifdef CONFIG_VIDEO_ADV_DEBUG
45 
46 /*
47  * If advanced debugging is on, then count how often each op is called
48  * successfully, which can either be per-buffer or per-queue.
49  *
50  * This makes it easy to check that the 'init' and 'cleanup'
51  * (and variations thereof) stay balanced.
52  */
53 
54 #define log_memop(vb, op)						\
55 	dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n",		\
56 		(vb)->index, #op,					\
57 		(vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
58 
59 #define call_memop(vb, op, args...)					\
60 ({									\
61 	struct vb2_queue *_q = (vb)->vb2_queue;				\
62 	int err;							\
63 									\
64 	log_memop(vb, op);						\
65 	err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;		\
66 	if (!err)							\
67 		(vb)->cnt_mem_ ## op++;					\
68 	err;								\
69 })
70 
71 #define call_ptr_memop(vb, op, args...)					\
72 ({									\
73 	struct vb2_queue *_q = (vb)->vb2_queue;				\
74 	void *ptr;							\
75 									\
76 	log_memop(vb, op);						\
77 	ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL;		\
78 	if (!IS_ERR_OR_NULL(ptr))					\
79 		(vb)->cnt_mem_ ## op++;					\
80 	ptr;								\
81 })
82 
83 #define call_void_memop(vb, op, args...)				\
84 ({									\
85 	struct vb2_queue *_q = (vb)->vb2_queue;				\
86 									\
87 	log_memop(vb, op);						\
88 	if (_q->mem_ops->op)						\
89 		_q->mem_ops->op(args);					\
90 	(vb)->cnt_mem_ ## op++;						\
91 })
92 
93 #define log_qop(q, op)							\
94 	dprintk(q, 2, "call_qop(%s)%s\n", #op,				\
95 		(q)->ops->op ? "" : " (nop)")
96 
97 #define call_qop(q, op, args...)					\
98 ({									\
99 	int err;							\
100 									\
101 	log_qop(q, op);							\
102 	err = (q)->ops->op ? (q)->ops->op(args) : 0;			\
103 	if (!err)							\
104 		(q)->cnt_ ## op++;					\
105 	err;								\
106 })
107 
108 #define call_void_qop(q, op, args...)					\
109 ({									\
110 	log_qop(q, op);							\
111 	if ((q)->ops->op)						\
112 		(q)->ops->op(args);					\
113 	(q)->cnt_ ## op++;						\
114 })
115 
116 #define log_vb_qop(vb, op, args...)					\
117 	dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n",		\
118 		(vb)->index, #op,					\
119 		(vb)->vb2_queue->ops->op ? "" : " (nop)")
120 
121 #define call_vb_qop(vb, op, args...)					\
122 ({									\
123 	int err;							\
124 									\
125 	log_vb_qop(vb, op);						\
126 	err = (vb)->vb2_queue->ops->op ?				\
127 		(vb)->vb2_queue->ops->op(args) : 0;			\
128 	if (!err)							\
129 		(vb)->cnt_ ## op++;					\
130 	err;								\
131 })
132 
133 #define call_void_vb_qop(vb, op, args...)				\
134 ({									\
135 	log_vb_qop(vb, op);						\
136 	if ((vb)->vb2_queue->ops->op)					\
137 		(vb)->vb2_queue->ops->op(args);				\
138 	(vb)->cnt_ ## op++;						\
139 })
140 
141 #else
142 
143 #define call_memop(vb, op, args...)					\
144 	((vb)->vb2_queue->mem_ops->op ?					\
145 		(vb)->vb2_queue->mem_ops->op(args) : 0)
146 
147 #define call_ptr_memop(vb, op, args...)					\
148 	((vb)->vb2_queue->mem_ops->op ?					\
149 		(vb)->vb2_queue->mem_ops->op(args) : NULL)
150 
151 #define call_void_memop(vb, op, args...)				\
152 	do {								\
153 		if ((vb)->vb2_queue->mem_ops->op)			\
154 			(vb)->vb2_queue->mem_ops->op(args);		\
155 	} while (0)
156 
157 #define call_qop(q, op, args...)					\
158 	((q)->ops->op ? (q)->ops->op(args) : 0)
159 
160 #define call_void_qop(q, op, args...)					\
161 	do {								\
162 		if ((q)->ops->op)					\
163 			(q)->ops->op(args);				\
164 	} while (0)
165 
166 #define call_vb_qop(vb, op, args...)					\
167 	((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
168 
169 #define call_void_vb_qop(vb, op, args...)				\
170 	do {								\
171 		if ((vb)->vb2_queue->ops->op)				\
172 			(vb)->vb2_queue->ops->op(args);			\
173 	} while (0)
174 
175 #endif
176 
177 #define call_bufop(q, op, args...)					\
178 ({									\
179 	int ret = 0;							\
180 	if (q && q->buf_ops && q->buf_ops->op)				\
181 		ret = q->buf_ops->op(args);				\
182 	ret;								\
183 })
184 
185 #define call_void_bufop(q, op, args...)					\
186 ({									\
187 	if (q && q->buf_ops && q->buf_ops->op)				\
188 		q->buf_ops->op(args);					\
189 })
190 
191 static void __vb2_queue_cancel(struct vb2_queue *q);
192 static void __enqueue_in_driver(struct vb2_buffer *vb);
193 
vb2_state_name(enum vb2_buffer_state s)194 static const char *vb2_state_name(enum vb2_buffer_state s)
195 {
196 	static const char * const state_names[] = {
197 		[VB2_BUF_STATE_DEQUEUED] = "dequeued",
198 		[VB2_BUF_STATE_IN_REQUEST] = "in request",
199 		[VB2_BUF_STATE_PREPARING] = "preparing",
200 		[VB2_BUF_STATE_QUEUED] = "queued",
201 		[VB2_BUF_STATE_ACTIVE] = "active",
202 		[VB2_BUF_STATE_DONE] = "done",
203 		[VB2_BUF_STATE_ERROR] = "error",
204 	};
205 
206 	if ((unsigned int)(s) < ARRAY_SIZE(state_names))
207 		return state_names[s];
208 	return "unknown";
209 }
210 
211 /*
212  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
213  */
__vb2_buf_mem_alloc(struct vb2_buffer * vb)214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
215 {
216 	struct vb2_queue *q = vb->vb2_queue;
217 	void *mem_priv;
218 	int plane;
219 	int ret = -ENOMEM;
220 
221 	/*
222 	 * Allocate memory for all planes in this buffer
223 	 * NOTE: mmapped areas should be page aligned
224 	 */
225 	for (plane = 0; plane < vb->num_planes; ++plane) {
226 		/* Memops alloc requires size to be page aligned. */
227 		unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
228 
229 		/* Did it wrap around? */
230 		if (size < vb->planes[plane].length)
231 			goto free;
232 
233 		mem_priv = call_ptr_memop(vb, alloc,
234 				q->alloc_devs[plane] ? : q->dev,
235 				q->dma_attrs, size, q->dma_dir, q->gfp_flags);
236 		if (IS_ERR_OR_NULL(mem_priv)) {
237 			if (mem_priv)
238 				ret = PTR_ERR(mem_priv);
239 			goto free;
240 		}
241 
242 		/* Associate allocator private data with this plane */
243 		vb->planes[plane].mem_priv = mem_priv;
244 	}
245 
246 	return 0;
247 free:
248 	/* Free already allocated memory if one of the allocations failed */
249 	for (; plane > 0; --plane) {
250 		call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
251 		vb->planes[plane - 1].mem_priv = NULL;
252 	}
253 
254 	return ret;
255 }
256 
257 /*
258  * __vb2_buf_mem_free() - free memory of the given buffer
259  */
__vb2_buf_mem_free(struct vb2_buffer * vb)260 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
261 {
262 	unsigned int plane;
263 
264 	for (plane = 0; plane < vb->num_planes; ++plane) {
265 		call_void_memop(vb, put, vb->planes[plane].mem_priv);
266 		vb->planes[plane].mem_priv = NULL;
267 		dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
268 			plane, vb->index);
269 	}
270 }
271 
272 /*
273  * __vb2_buf_userptr_put() - release userspace memory associated with
274  * a USERPTR buffer
275  */
__vb2_buf_userptr_put(struct vb2_buffer * vb)276 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
277 {
278 	unsigned int plane;
279 
280 	for (plane = 0; plane < vb->num_planes; ++plane) {
281 		if (vb->planes[plane].mem_priv)
282 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
283 		vb->planes[plane].mem_priv = NULL;
284 	}
285 }
286 
287 /*
288  * __vb2_plane_dmabuf_put() - release memory associated with
289  * a DMABUF shared plane
290  */
__vb2_plane_dmabuf_put(struct vb2_buffer * vb,struct vb2_plane * p)291 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
292 {
293 	if (!p->mem_priv)
294 		return;
295 
296 	if (p->dbuf_mapped)
297 		call_void_memop(vb, unmap_dmabuf, p->mem_priv);
298 
299 	call_void_memop(vb, detach_dmabuf, p->mem_priv);
300 	dma_buf_put(p->dbuf);
301 	p->mem_priv = NULL;
302 	p->dbuf = NULL;
303 	p->dbuf_mapped = 0;
304 }
305 
306 /*
307  * __vb2_buf_dmabuf_put() - release memory associated with
308  * a DMABUF shared buffer
309  */
__vb2_buf_dmabuf_put(struct vb2_buffer * vb)310 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
311 {
312 	unsigned int plane;
313 
314 	for (plane = 0; plane < vb->num_planes; ++plane)
315 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
316 }
317 
318 /*
319  * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
320  * to sync caches
321  */
__vb2_buf_mem_prepare(struct vb2_buffer * vb)322 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
323 {
324 	unsigned int plane;
325 
326 	if (vb->synced)
327 		return;
328 
329 	if (vb->need_cache_sync_on_prepare) {
330 		for (plane = 0; plane < vb->num_planes; ++plane)
331 			call_void_memop(vb, prepare,
332 					vb->planes[plane].mem_priv);
333 	}
334 	vb->synced = 1;
335 }
336 
337 /*
338  * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
339  * to sync caches
340  */
__vb2_buf_mem_finish(struct vb2_buffer * vb)341 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
342 {
343 	unsigned int plane;
344 
345 	if (!vb->synced)
346 		return;
347 
348 	if (vb->need_cache_sync_on_finish) {
349 		for (plane = 0; plane < vb->num_planes; ++plane)
350 			call_void_memop(vb, finish,
351 					vb->planes[plane].mem_priv);
352 	}
353 	vb->synced = 0;
354 }
355 
356 /*
357  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
358  * the buffer.
359  */
__setup_offsets(struct vb2_buffer * vb)360 static void __setup_offsets(struct vb2_buffer *vb)
361 {
362 	struct vb2_queue *q = vb->vb2_queue;
363 	unsigned int plane;
364 	unsigned long off = 0;
365 
366 	if (vb->index) {
367 		struct vb2_buffer *prev = q->bufs[vb->index - 1];
368 		struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
369 
370 		off = PAGE_ALIGN(p->m.offset + p->length);
371 	}
372 
373 	for (plane = 0; plane < vb->num_planes; ++plane) {
374 		vb->planes[plane].m.offset = off;
375 
376 		dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
377 				vb->index, plane, off);
378 
379 		off += vb->planes[plane].length;
380 		off = PAGE_ALIGN(off);
381 	}
382 }
383 
384 /*
385  * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
386  * video buffer memory for all buffers/planes on the queue and initializes the
387  * queue
388  *
389  * Returns the number of buffers successfully allocated.
390  */
__vb2_queue_alloc(struct vb2_queue * q,enum vb2_memory memory,unsigned int num_buffers,unsigned int num_planes,const unsigned plane_sizes[VB2_MAX_PLANES])391 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
392 			     unsigned int num_buffers, unsigned int num_planes,
393 			     const unsigned plane_sizes[VB2_MAX_PLANES])
394 {
395 	unsigned int buffer, plane;
396 	struct vb2_buffer *vb;
397 	int ret;
398 
399 	/* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */
400 	num_buffers = min_t(unsigned int, num_buffers,
401 			    VB2_MAX_FRAME - q->num_buffers);
402 
403 	for (buffer = 0; buffer < num_buffers; ++buffer) {
404 		/* Allocate videobuf buffer structures */
405 		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
406 		if (!vb) {
407 			dprintk(q, 1, "memory alloc for buffer struct failed\n");
408 			break;
409 		}
410 
411 		vb->state = VB2_BUF_STATE_DEQUEUED;
412 		vb->vb2_queue = q;
413 		vb->num_planes = num_planes;
414 		vb->index = q->num_buffers + buffer;
415 		vb->type = q->type;
416 		vb->memory = memory;
417 		/*
418 		 * We need to set these flags here so that the videobuf2 core
419 		 * will call ->prepare()/->finish() cache sync/flush on vb2
420 		 * buffers when appropriate. However, we can avoid explicit
421 		 * ->prepare() and ->finish() cache sync for DMABUF buffers,
422 		 * because DMA exporter takes care of it.
423 		 */
424 		if (q->memory != VB2_MEMORY_DMABUF) {
425 			vb->need_cache_sync_on_prepare = 1;
426 			vb->need_cache_sync_on_finish = 1;
427 		}
428 		for (plane = 0; plane < num_planes; ++plane) {
429 			vb->planes[plane].length = plane_sizes[plane];
430 			vb->planes[plane].min_length = plane_sizes[plane];
431 		}
432 		call_void_bufop(q, init_buffer, vb);
433 
434 		q->bufs[vb->index] = vb;
435 
436 		/* Allocate video buffer memory for the MMAP type */
437 		if (memory == VB2_MEMORY_MMAP) {
438 			ret = __vb2_buf_mem_alloc(vb);
439 			if (ret) {
440 				dprintk(q, 1, "failed allocating memory for buffer %d\n",
441 					buffer);
442 				q->bufs[vb->index] = NULL;
443 				kfree(vb);
444 				break;
445 			}
446 			__setup_offsets(vb);
447 			/*
448 			 * Call the driver-provided buffer initialization
449 			 * callback, if given. An error in initialization
450 			 * results in queue setup failure.
451 			 */
452 			ret = call_vb_qop(vb, buf_init, vb);
453 			if (ret) {
454 				dprintk(q, 1, "buffer %d %p initialization failed\n",
455 					buffer, vb);
456 				__vb2_buf_mem_free(vb);
457 				q->bufs[vb->index] = NULL;
458 				kfree(vb);
459 				break;
460 			}
461 		}
462 	}
463 
464 	dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
465 		buffer, num_planes);
466 
467 	return buffer;
468 }
469 
470 /*
471  * __vb2_free_mem() - release all video buffer memory for a given queue
472  */
__vb2_free_mem(struct vb2_queue * q,unsigned int buffers)473 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
474 {
475 	unsigned int buffer;
476 	struct vb2_buffer *vb;
477 
478 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
479 	     ++buffer) {
480 		vb = q->bufs[buffer];
481 		if (!vb)
482 			continue;
483 
484 		/* Free MMAP buffers or release USERPTR buffers */
485 		if (q->memory == VB2_MEMORY_MMAP)
486 			__vb2_buf_mem_free(vb);
487 		else if (q->memory == VB2_MEMORY_DMABUF)
488 			__vb2_buf_dmabuf_put(vb);
489 		else
490 			__vb2_buf_userptr_put(vb);
491 	}
492 }
493 
494 /*
495  * __vb2_queue_free() - free buffers at the end of the queue - video memory and
496  * related information, if no buffers are left return the queue to an
497  * uninitialized state. Might be called even if the queue has already been freed.
498  */
__vb2_queue_free(struct vb2_queue * q,unsigned int buffers)499 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
500 {
501 	unsigned int buffer;
502 
503 	/*
504 	 * Sanity check: when preparing a buffer the queue lock is released for
505 	 * a short while (see __buf_prepare for the details), which would allow
506 	 * a race with a reqbufs which can call this function. Removing the
507 	 * buffers from underneath __buf_prepare is obviously a bad idea, so we
508 	 * check if any of the buffers is in the state PREPARING, and if so we
509 	 * just return -EAGAIN.
510 	 */
511 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
512 	     ++buffer) {
513 		if (q->bufs[buffer] == NULL)
514 			continue;
515 		if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
516 			dprintk(q, 1, "preparing buffers, cannot free\n");
517 			return -EAGAIN;
518 		}
519 	}
520 
521 	/* Call driver-provided cleanup function for each buffer, if provided */
522 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
523 	     ++buffer) {
524 		struct vb2_buffer *vb = q->bufs[buffer];
525 
526 		if (vb && vb->planes[0].mem_priv)
527 			call_void_vb_qop(vb, buf_cleanup, vb);
528 	}
529 
530 	/* Release video buffer memory */
531 	__vb2_free_mem(q, buffers);
532 
533 #ifdef CONFIG_VIDEO_ADV_DEBUG
534 	/*
535 	 * Check that all the calls were balances during the life-time of this
536 	 * queue. If not (or if the debug level is 1 or up), then dump the
537 	 * counters to the kernel log.
538 	 */
539 	if (q->num_buffers) {
540 		bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
541 				  q->cnt_wait_prepare != q->cnt_wait_finish;
542 
543 		if (unbalanced || debug) {
544 			pr_info("counters for queue %p:%s\n", q,
545 				unbalanced ? " UNBALANCED!" : "");
546 			pr_info("     setup: %u start_streaming: %u stop_streaming: %u\n",
547 				q->cnt_queue_setup, q->cnt_start_streaming,
548 				q->cnt_stop_streaming);
549 			pr_info("     wait_prepare: %u wait_finish: %u\n",
550 				q->cnt_wait_prepare, q->cnt_wait_finish);
551 		}
552 		q->cnt_queue_setup = 0;
553 		q->cnt_wait_prepare = 0;
554 		q->cnt_wait_finish = 0;
555 		q->cnt_start_streaming = 0;
556 		q->cnt_stop_streaming = 0;
557 	}
558 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
559 		struct vb2_buffer *vb = q->bufs[buffer];
560 		bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
561 				  vb->cnt_mem_prepare != vb->cnt_mem_finish ||
562 				  vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
563 				  vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
564 				  vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
565 				  vb->cnt_buf_queue != vb->cnt_buf_done ||
566 				  vb->cnt_buf_prepare != vb->cnt_buf_finish ||
567 				  vb->cnt_buf_init != vb->cnt_buf_cleanup;
568 
569 		if (unbalanced || debug) {
570 			pr_info("   counters for queue %p, buffer %d:%s\n",
571 				q, buffer, unbalanced ? " UNBALANCED!" : "");
572 			pr_info("     buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
573 				vb->cnt_buf_init, vb->cnt_buf_cleanup,
574 				vb->cnt_buf_prepare, vb->cnt_buf_finish);
575 			pr_info("     buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
576 				vb->cnt_buf_out_validate, vb->cnt_buf_queue,
577 				vb->cnt_buf_done, vb->cnt_buf_request_complete);
578 			pr_info("     alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
579 				vb->cnt_mem_alloc, vb->cnt_mem_put,
580 				vb->cnt_mem_prepare, vb->cnt_mem_finish,
581 				vb->cnt_mem_mmap);
582 			pr_info("     get_userptr: %u put_userptr: %u\n",
583 				vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
584 			pr_info("     attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
585 				vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
586 				vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
587 			pr_info("     get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
588 				vb->cnt_mem_get_dmabuf,
589 				vb->cnt_mem_num_users,
590 				vb->cnt_mem_vaddr,
591 				vb->cnt_mem_cookie);
592 		}
593 	}
594 #endif
595 
596 	/* Free videobuf buffers */
597 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
598 	     ++buffer) {
599 		kfree(q->bufs[buffer]);
600 		q->bufs[buffer] = NULL;
601 	}
602 
603 	q->num_buffers -= buffers;
604 	if (!q->num_buffers) {
605 		q->memory = VB2_MEMORY_UNKNOWN;
606 		INIT_LIST_HEAD(&q->queued_list);
607 	}
608 	return 0;
609 }
610 
vb2_buffer_in_use(struct vb2_queue * q,struct vb2_buffer * vb)611 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
612 {
613 	unsigned int plane;
614 	for (plane = 0; plane < vb->num_planes; ++plane) {
615 		void *mem_priv = vb->planes[plane].mem_priv;
616 		/*
617 		 * If num_users() has not been provided, call_memop
618 		 * will return 0, apparently nobody cares about this
619 		 * case anyway. If num_users() returns more than 1,
620 		 * we are not the only user of the plane's memory.
621 		 */
622 		if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
623 			return true;
624 	}
625 	return false;
626 }
627 EXPORT_SYMBOL(vb2_buffer_in_use);
628 
629 /*
630  * __buffers_in_use() - return true if any buffers on the queue are in use and
631  * the queue cannot be freed (by the means of REQBUFS(0)) call
632  */
__buffers_in_use(struct vb2_queue * q)633 static bool __buffers_in_use(struct vb2_queue *q)
634 {
635 	unsigned int buffer;
636 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
637 		if (vb2_buffer_in_use(q, q->bufs[buffer]))
638 			return true;
639 	}
640 	return false;
641 }
642 
vb2_core_querybuf(struct vb2_queue * q,unsigned int index,void * pb)643 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
644 {
645 	call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
646 }
647 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
648 
649 /*
650  * __verify_userptr_ops() - verify that all memory operations required for
651  * USERPTR queue type have been provided
652  */
__verify_userptr_ops(struct vb2_queue * q)653 static int __verify_userptr_ops(struct vb2_queue *q)
654 {
655 	if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
656 	    !q->mem_ops->put_userptr)
657 		return -EINVAL;
658 
659 	return 0;
660 }
661 
662 /*
663  * __verify_mmap_ops() - verify that all memory operations required for
664  * MMAP queue type have been provided
665  */
__verify_mmap_ops(struct vb2_queue * q)666 static int __verify_mmap_ops(struct vb2_queue *q)
667 {
668 	if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
669 	    !q->mem_ops->put || !q->mem_ops->mmap)
670 		return -EINVAL;
671 
672 	return 0;
673 }
674 
675 /*
676  * __verify_dmabuf_ops() - verify that all memory operations required for
677  * DMABUF queue type have been provided
678  */
__verify_dmabuf_ops(struct vb2_queue * q)679 static int __verify_dmabuf_ops(struct vb2_queue *q)
680 {
681 	if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
682 	    !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
683 	    !q->mem_ops->unmap_dmabuf)
684 		return -EINVAL;
685 
686 	return 0;
687 }
688 
vb2_verify_memory_type(struct vb2_queue * q,enum vb2_memory memory,unsigned int type)689 int vb2_verify_memory_type(struct vb2_queue *q,
690 		enum vb2_memory memory, unsigned int type)
691 {
692 	if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
693 	    memory != VB2_MEMORY_DMABUF) {
694 		dprintk(q, 1, "unsupported memory type\n");
695 		return -EINVAL;
696 	}
697 
698 	if (type != q->type) {
699 		dprintk(q, 1, "requested type is incorrect\n");
700 		return -EINVAL;
701 	}
702 
703 	/*
704 	 * Make sure all the required memory ops for given memory type
705 	 * are available.
706 	 */
707 	if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
708 		dprintk(q, 1, "MMAP for current setup unsupported\n");
709 		return -EINVAL;
710 	}
711 
712 	if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
713 		dprintk(q, 1, "USERPTR for current setup unsupported\n");
714 		return -EINVAL;
715 	}
716 
717 	if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
718 		dprintk(q, 1, "DMABUF for current setup unsupported\n");
719 		return -EINVAL;
720 	}
721 
722 	/*
723 	 * Place the busy tests at the end: -EBUSY can be ignored when
724 	 * create_bufs is called with count == 0, but count == 0 should still
725 	 * do the memory and type validation.
726 	 */
727 	if (vb2_fileio_is_active(q)) {
728 		dprintk(q, 1, "file io in progress\n");
729 		return -EBUSY;
730 	}
731 	return 0;
732 }
733 EXPORT_SYMBOL(vb2_verify_memory_type);
734 
vb2_core_reqbufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int * count)735 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
736 		     unsigned int *count)
737 {
738 	unsigned int num_buffers, allocated_buffers, num_planes = 0;
739 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
740 	unsigned int i;
741 	int ret;
742 
743 	if (q->streaming) {
744 		dprintk(q, 1, "streaming active\n");
745 		return -EBUSY;
746 	}
747 
748 	if (q->waiting_in_dqbuf && *count) {
749 		dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
750 		return -EBUSY;
751 	}
752 
753 	if (*count == 0 || q->num_buffers != 0 ||
754 	    (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) {
755 		/*
756 		 * We already have buffers allocated, so first check if they
757 		 * are not in use and can be freed.
758 		 */
759 		mutex_lock(&q->mmap_lock);
760 		if (debug && q->memory == VB2_MEMORY_MMAP &&
761 		    __buffers_in_use(q))
762 			dprintk(q, 1, "memory in use, orphaning buffers\n");
763 
764 		/*
765 		 * Call queue_cancel to clean up any buffers in the
766 		 * QUEUED state which is possible if buffers were prepared or
767 		 * queued without ever calling STREAMON.
768 		 */
769 		__vb2_queue_cancel(q);
770 		ret = __vb2_queue_free(q, q->num_buffers);
771 		mutex_unlock(&q->mmap_lock);
772 		if (ret)
773 			return ret;
774 
775 		/*
776 		 * In case of REQBUFS(0) return immediately without calling
777 		 * driver's queue_setup() callback and allocating resources.
778 		 */
779 		if (*count == 0)
780 			return 0;
781 	}
782 
783 	/*
784 	 * Make sure the requested values and current defaults are sane.
785 	 */
786 	WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME);
787 	num_buffers = max_t(unsigned int, *count, q->min_buffers_needed);
788 	num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME);
789 	memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
790 	/*
791 	 * Set this now to ensure that drivers see the correct q->memory value
792 	 * in the queue_setup op.
793 	 */
794 	mutex_lock(&q->mmap_lock);
795 	q->memory = memory;
796 	mutex_unlock(&q->mmap_lock);
797 
798 	/*
799 	 * Ask the driver how many buffers and planes per buffer it requires.
800 	 * Driver also sets the size and allocator context for each plane.
801 	 */
802 	ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
803 		       plane_sizes, q->alloc_devs);
804 	if (ret)
805 		goto error;
806 
807 	/* Check that driver has set sane values */
808 	if (WARN_ON(!num_planes)) {
809 		ret = -EINVAL;
810 		goto error;
811 	}
812 
813 	for (i = 0; i < num_planes; i++)
814 		if (WARN_ON(!plane_sizes[i])) {
815 			ret = -EINVAL;
816 			goto error;
817 		}
818 
819 	/* Finally, allocate buffers and video memory */
820 	allocated_buffers =
821 		__vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
822 	if (allocated_buffers == 0) {
823 		dprintk(q, 1, "memory allocation failed\n");
824 		ret = -ENOMEM;
825 		goto error;
826 	}
827 
828 	/*
829 	 * There is no point in continuing if we can't allocate the minimum
830 	 * number of buffers needed by this vb2_queue.
831 	 */
832 	if (allocated_buffers < q->min_buffers_needed)
833 		ret = -ENOMEM;
834 
835 	/*
836 	 * Check if driver can handle the allocated number of buffers.
837 	 */
838 	if (!ret && allocated_buffers < num_buffers) {
839 		num_buffers = allocated_buffers;
840 		/*
841 		 * num_planes is set by the previous queue_setup(), but since it
842 		 * signals to queue_setup() whether it is called from create_bufs()
843 		 * vs reqbufs() we zero it here to signal that queue_setup() is
844 		 * called for the reqbufs() case.
845 		 */
846 		num_planes = 0;
847 
848 		ret = call_qop(q, queue_setup, q, &num_buffers,
849 			       &num_planes, plane_sizes, q->alloc_devs);
850 
851 		if (!ret && allocated_buffers < num_buffers)
852 			ret = -ENOMEM;
853 
854 		/*
855 		 * Either the driver has accepted a smaller number of buffers,
856 		 * or .queue_setup() returned an error
857 		 */
858 	}
859 
860 	mutex_lock(&q->mmap_lock);
861 	q->num_buffers = allocated_buffers;
862 
863 	if (ret < 0) {
864 		/*
865 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
866 		 * from q->num_buffers and it will reset q->memory to
867 		 * VB2_MEMORY_UNKNOWN.
868 		 */
869 		__vb2_queue_free(q, allocated_buffers);
870 		mutex_unlock(&q->mmap_lock);
871 		return ret;
872 	}
873 	mutex_unlock(&q->mmap_lock);
874 
875 	/*
876 	 * Return the number of successfully allocated buffers
877 	 * to the userspace.
878 	 */
879 	*count = allocated_buffers;
880 	q->waiting_for_buffers = !q->is_output;
881 
882 	return 0;
883 
884 error:
885 	mutex_lock(&q->mmap_lock);
886 	q->memory = VB2_MEMORY_UNKNOWN;
887 	mutex_unlock(&q->mmap_lock);
888 	return ret;
889 }
890 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
891 
vb2_core_create_bufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int * count,unsigned int requested_planes,const unsigned int requested_sizes[])892 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
893 			 unsigned int *count,
894 			 unsigned int requested_planes,
895 			 const unsigned int requested_sizes[])
896 {
897 	unsigned int num_planes = 0, num_buffers, allocated_buffers;
898 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
899 	bool no_previous_buffers = !q->num_buffers;
900 	int ret;
901 
902 	if (q->num_buffers == VB2_MAX_FRAME) {
903 		dprintk(q, 1, "maximum number of buffers already allocated\n");
904 		return -ENOBUFS;
905 	}
906 
907 	if (no_previous_buffers) {
908 		if (q->waiting_in_dqbuf && *count) {
909 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
910 			return -EBUSY;
911 		}
912 		memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
913 		/*
914 		 * Set this now to ensure that drivers see the correct q->memory
915 		 * value in the queue_setup op.
916 		 */
917 		mutex_lock(&q->mmap_lock);
918 		q->memory = memory;
919 		mutex_unlock(&q->mmap_lock);
920 		q->waiting_for_buffers = !q->is_output;
921 	} else {
922 		if (q->memory != memory) {
923 			dprintk(q, 1, "memory model mismatch\n");
924 			return -EINVAL;
925 		}
926 	}
927 
928 	num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
929 
930 	if (requested_planes && requested_sizes) {
931 		num_planes = requested_planes;
932 		memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
933 	}
934 
935 	/*
936 	 * Ask the driver, whether the requested number of buffers, planes per
937 	 * buffer and their sizes are acceptable
938 	 */
939 	ret = call_qop(q, queue_setup, q, &num_buffers,
940 		       &num_planes, plane_sizes, q->alloc_devs);
941 	if (ret)
942 		goto error;
943 
944 	/* Finally, allocate buffers and video memory */
945 	allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
946 				num_planes, plane_sizes);
947 	if (allocated_buffers == 0) {
948 		dprintk(q, 1, "memory allocation failed\n");
949 		ret = -ENOMEM;
950 		goto error;
951 	}
952 
953 	/*
954 	 * Check if driver can handle the so far allocated number of buffers.
955 	 */
956 	if (allocated_buffers < num_buffers) {
957 		num_buffers = allocated_buffers;
958 
959 		/*
960 		 * q->num_buffers contains the total number of buffers, that the
961 		 * queue driver has set up
962 		 */
963 		ret = call_qop(q, queue_setup, q, &num_buffers,
964 			       &num_planes, plane_sizes, q->alloc_devs);
965 
966 		if (!ret && allocated_buffers < num_buffers)
967 			ret = -ENOMEM;
968 
969 		/*
970 		 * Either the driver has accepted a smaller number of buffers,
971 		 * or .queue_setup() returned an error
972 		 */
973 	}
974 
975 	mutex_lock(&q->mmap_lock);
976 	q->num_buffers += allocated_buffers;
977 
978 	if (ret < 0) {
979 		/*
980 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
981 		 * from q->num_buffers and it will reset q->memory to
982 		 * VB2_MEMORY_UNKNOWN.
983 		 */
984 		__vb2_queue_free(q, allocated_buffers);
985 		mutex_unlock(&q->mmap_lock);
986 		return -ENOMEM;
987 	}
988 	mutex_unlock(&q->mmap_lock);
989 
990 	/*
991 	 * Return the number of successfully allocated buffers
992 	 * to the userspace.
993 	 */
994 	*count = allocated_buffers;
995 
996 	return 0;
997 
998 error:
999 	if (no_previous_buffers) {
1000 		mutex_lock(&q->mmap_lock);
1001 		q->memory = VB2_MEMORY_UNKNOWN;
1002 		mutex_unlock(&q->mmap_lock);
1003 	}
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1007 
vb2_plane_vaddr(struct vb2_buffer * vb,unsigned int plane_no)1008 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1009 {
1010 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1011 		return NULL;
1012 
1013 	return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
1014 
1015 }
1016 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1017 
vb2_plane_cookie(struct vb2_buffer * vb,unsigned int plane_no)1018 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1019 {
1020 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1021 		return NULL;
1022 
1023 	return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
1024 }
1025 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1026 
vb2_buffer_done(struct vb2_buffer * vb,enum vb2_buffer_state state)1027 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1028 {
1029 	struct vb2_queue *q = vb->vb2_queue;
1030 	unsigned long flags;
1031 
1032 	if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1033 		return;
1034 
1035 	if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1036 		    state != VB2_BUF_STATE_ERROR &&
1037 		    state != VB2_BUF_STATE_QUEUED))
1038 		state = VB2_BUF_STATE_ERROR;
1039 
1040 #ifdef CONFIG_VIDEO_ADV_DEBUG
1041 	/*
1042 	 * Although this is not a callback, it still does have to balance
1043 	 * with the buf_queue op. So update this counter manually.
1044 	 */
1045 	vb->cnt_buf_done++;
1046 #endif
1047 	dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1048 		vb->index, vb2_state_name(state));
1049 
1050 	if (state != VB2_BUF_STATE_QUEUED)
1051 		__vb2_buf_mem_finish(vb);
1052 
1053 	spin_lock_irqsave(&q->done_lock, flags);
1054 	if (state == VB2_BUF_STATE_QUEUED) {
1055 		vb->state = VB2_BUF_STATE_QUEUED;
1056 	} else {
1057 		/* Add the buffer to the done buffers list */
1058 		list_add_tail(&vb->done_entry, &q->done_list);
1059 		vb->state = state;
1060 	}
1061 	atomic_dec(&q->owned_by_drv_count);
1062 
1063 	if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1064 		media_request_object_unbind(&vb->req_obj);
1065 		media_request_object_put(&vb->req_obj);
1066 	}
1067 
1068 	spin_unlock_irqrestore(&q->done_lock, flags);
1069 
1070 	trace_vb2_buf_done(q, vb);
1071 
1072 	switch (state) {
1073 	case VB2_BUF_STATE_QUEUED:
1074 		return;
1075 	default:
1076 		/* Inform any processes that may be waiting for buffers */
1077 		wake_up(&q->done_wq);
1078 		break;
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1082 
vb2_discard_done(struct vb2_queue * q)1083 void vb2_discard_done(struct vb2_queue *q)
1084 {
1085 	struct vb2_buffer *vb;
1086 	unsigned long flags;
1087 
1088 	spin_lock_irqsave(&q->done_lock, flags);
1089 	list_for_each_entry(vb, &q->done_list, done_entry)
1090 		vb->state = VB2_BUF_STATE_ERROR;
1091 	spin_unlock_irqrestore(&q->done_lock, flags);
1092 }
1093 EXPORT_SYMBOL_GPL(vb2_discard_done);
1094 
1095 /*
1096  * __prepare_mmap() - prepare an MMAP buffer
1097  */
__prepare_mmap(struct vb2_buffer * vb)1098 static int __prepare_mmap(struct vb2_buffer *vb)
1099 {
1100 	int ret = 0;
1101 
1102 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1103 			 vb, vb->planes);
1104 	return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1105 }
1106 
1107 /*
1108  * __prepare_userptr() - prepare a USERPTR buffer
1109  */
__prepare_userptr(struct vb2_buffer * vb)1110 static int __prepare_userptr(struct vb2_buffer *vb)
1111 {
1112 	struct vb2_plane planes[VB2_MAX_PLANES];
1113 	struct vb2_queue *q = vb->vb2_queue;
1114 	void *mem_priv;
1115 	unsigned int plane;
1116 	int ret = 0;
1117 	bool reacquired = vb->planes[0].mem_priv == NULL;
1118 
1119 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1120 	/* Copy relevant information provided by the userspace */
1121 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1122 			 vb, planes);
1123 	if (ret)
1124 		return ret;
1125 
1126 	for (plane = 0; plane < vb->num_planes; ++plane) {
1127 		/* Skip the plane if already verified */
1128 		if (vb->planes[plane].m.userptr &&
1129 			vb->planes[plane].m.userptr == planes[plane].m.userptr
1130 			&& vb->planes[plane].length == planes[plane].length)
1131 			continue;
1132 
1133 		dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1134 			plane);
1135 
1136 		/* Check if the provided plane buffer is large enough */
1137 		if (planes[plane].length < vb->planes[plane].min_length) {
1138 			dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1139 						planes[plane].length,
1140 						vb->planes[plane].min_length,
1141 						plane);
1142 			ret = -EINVAL;
1143 			goto err;
1144 		}
1145 
1146 		/* Release previously acquired memory if present */
1147 		if (vb->planes[plane].mem_priv) {
1148 			if (!reacquired) {
1149 				reacquired = true;
1150 				vb->copied_timestamp = 0;
1151 				call_void_vb_qop(vb, buf_cleanup, vb);
1152 			}
1153 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1154 		}
1155 
1156 		vb->planes[plane].mem_priv = NULL;
1157 		vb->planes[plane].bytesused = 0;
1158 		vb->planes[plane].length = 0;
1159 		vb->planes[plane].m.userptr = 0;
1160 		vb->planes[plane].data_offset = 0;
1161 
1162 		/* Acquire each plane's memory */
1163 		mem_priv = call_ptr_memop(vb, get_userptr,
1164 				q->alloc_devs[plane] ? : q->dev,
1165 				planes[plane].m.userptr,
1166 				planes[plane].length, q->dma_dir);
1167 		if (IS_ERR(mem_priv)) {
1168 			dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1169 				plane);
1170 			ret = PTR_ERR(mem_priv);
1171 			goto err;
1172 		}
1173 		vb->planes[plane].mem_priv = mem_priv;
1174 	}
1175 
1176 	/*
1177 	 * Now that everything is in order, copy relevant information
1178 	 * provided by userspace.
1179 	 */
1180 	for (plane = 0; plane < vb->num_planes; ++plane) {
1181 		vb->planes[plane].bytesused = planes[plane].bytesused;
1182 		vb->planes[plane].length = planes[plane].length;
1183 		vb->planes[plane].m.userptr = planes[plane].m.userptr;
1184 		vb->planes[plane].data_offset = planes[plane].data_offset;
1185 	}
1186 
1187 	if (reacquired) {
1188 		/*
1189 		 * One or more planes changed, so we must call buf_init to do
1190 		 * the driver-specific initialization on the newly acquired
1191 		 * buffer, if provided.
1192 		 */
1193 		ret = call_vb_qop(vb, buf_init, vb);
1194 		if (ret) {
1195 			dprintk(q, 1, "buffer initialization failed\n");
1196 			goto err;
1197 		}
1198 	}
1199 
1200 	ret = call_vb_qop(vb, buf_prepare, vb);
1201 	if (ret) {
1202 		dprintk(q, 1, "buffer preparation failed\n");
1203 		call_void_vb_qop(vb, buf_cleanup, vb);
1204 		goto err;
1205 	}
1206 
1207 	return 0;
1208 err:
1209 	/* In case of errors, release planes that were already acquired */
1210 	for (plane = 0; plane < vb->num_planes; ++plane) {
1211 		if (vb->planes[plane].mem_priv)
1212 			call_void_memop(vb, put_userptr,
1213 				vb->planes[plane].mem_priv);
1214 		vb->planes[plane].mem_priv = NULL;
1215 		vb->planes[plane].m.userptr = 0;
1216 		vb->planes[plane].length = 0;
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 /*
1223  * __prepare_dmabuf() - prepare a DMABUF buffer
1224  */
__prepare_dmabuf(struct vb2_buffer * vb)1225 static int __prepare_dmabuf(struct vb2_buffer *vb)
1226 {
1227 	struct vb2_plane planes[VB2_MAX_PLANES];
1228 	struct vb2_queue *q = vb->vb2_queue;
1229 	void *mem_priv;
1230 	unsigned int plane;
1231 	int ret = 0;
1232 	bool reacquired = vb->planes[0].mem_priv == NULL;
1233 
1234 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1235 	/* Copy relevant information provided by the userspace */
1236 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1237 			 vb, planes);
1238 	if (ret)
1239 		return ret;
1240 
1241 	for (plane = 0; plane < vb->num_planes; ++plane) {
1242 		struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1243 
1244 		if (IS_ERR_OR_NULL(dbuf)) {
1245 			dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1246 				plane);
1247 			ret = -EINVAL;
1248 			goto err;
1249 		}
1250 
1251 		/* use DMABUF size if length is not provided */
1252 		if (planes[plane].length == 0)
1253 			planes[plane].length = dbuf->size;
1254 
1255 		if (planes[plane].length < vb->planes[plane].min_length) {
1256 			dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1257 				planes[plane].length, plane,
1258 				vb->planes[plane].min_length);
1259 			dma_buf_put(dbuf);
1260 			ret = -EINVAL;
1261 			goto err;
1262 		}
1263 
1264 		/* Skip the plane if already verified */
1265 		if (dbuf == vb->planes[plane].dbuf &&
1266 			vb->planes[plane].length == planes[plane].length) {
1267 			dma_buf_put(dbuf);
1268 			continue;
1269 		}
1270 
1271 		dprintk(q, 3, "buffer for plane %d changed\n", plane);
1272 
1273 		if (!reacquired) {
1274 			reacquired = true;
1275 			vb->copied_timestamp = 0;
1276 			call_void_vb_qop(vb, buf_cleanup, vb);
1277 		}
1278 
1279 		/* Release previously acquired memory if present */
1280 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1281 		vb->planes[plane].bytesused = 0;
1282 		vb->planes[plane].length = 0;
1283 		vb->planes[plane].m.fd = 0;
1284 		vb->planes[plane].data_offset = 0;
1285 
1286 		/* Acquire each plane's memory */
1287 		mem_priv = call_ptr_memop(vb, attach_dmabuf,
1288 				q->alloc_devs[plane] ? : q->dev,
1289 				dbuf, planes[plane].length, q->dma_dir);
1290 		if (IS_ERR(mem_priv)) {
1291 			dprintk(q, 1, "failed to attach dmabuf\n");
1292 			ret = PTR_ERR(mem_priv);
1293 			dma_buf_put(dbuf);
1294 			goto err;
1295 		}
1296 
1297 		vb->planes[plane].dbuf = dbuf;
1298 		vb->planes[plane].mem_priv = mem_priv;
1299 	}
1300 
1301 	/*
1302 	 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1303 	 * here instead just before the DMA, while queueing the buffer(s) so
1304 	 * userspace knows sooner rather than later if the dma-buf map fails.
1305 	 */
1306 	for (plane = 0; plane < vb->num_planes; ++plane) {
1307 		if (vb->planes[plane].dbuf_mapped)
1308 			continue;
1309 
1310 		ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1311 		if (ret) {
1312 			dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1313 				plane);
1314 			goto err;
1315 		}
1316 		vb->planes[plane].dbuf_mapped = 1;
1317 	}
1318 
1319 	/*
1320 	 * Now that everything is in order, copy relevant information
1321 	 * provided by userspace.
1322 	 */
1323 	for (plane = 0; plane < vb->num_planes; ++plane) {
1324 		vb->planes[plane].bytesused = planes[plane].bytesused;
1325 		vb->planes[plane].length = planes[plane].length;
1326 		vb->planes[plane].m.fd = planes[plane].m.fd;
1327 		vb->planes[plane].data_offset = planes[plane].data_offset;
1328 	}
1329 
1330 	if (reacquired) {
1331 		/*
1332 		 * Call driver-specific initialization on the newly acquired buffer,
1333 		 * if provided.
1334 		 */
1335 		ret = call_vb_qop(vb, buf_init, vb);
1336 		if (ret) {
1337 			dprintk(q, 1, "buffer initialization failed\n");
1338 			goto err;
1339 		}
1340 	}
1341 
1342 	ret = call_vb_qop(vb, buf_prepare, vb);
1343 	if (ret) {
1344 		dprintk(q, 1, "buffer preparation failed\n");
1345 		call_void_vb_qop(vb, buf_cleanup, vb);
1346 		goto err;
1347 	}
1348 
1349 	return 0;
1350 err:
1351 	/* In case of errors, release planes that were already acquired */
1352 	__vb2_buf_dmabuf_put(vb);
1353 
1354 	return ret;
1355 }
1356 
1357 /*
1358  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1359  */
__enqueue_in_driver(struct vb2_buffer * vb)1360 static void __enqueue_in_driver(struct vb2_buffer *vb)
1361 {
1362 	struct vb2_queue *q = vb->vb2_queue;
1363 
1364 	vb->state = VB2_BUF_STATE_ACTIVE;
1365 	atomic_inc(&q->owned_by_drv_count);
1366 
1367 	trace_vb2_buf_queue(q, vb);
1368 
1369 	call_void_vb_qop(vb, buf_queue, vb);
1370 }
1371 
__buf_prepare(struct vb2_buffer * vb)1372 static int __buf_prepare(struct vb2_buffer *vb)
1373 {
1374 	struct vb2_queue *q = vb->vb2_queue;
1375 	enum vb2_buffer_state orig_state = vb->state;
1376 	int ret;
1377 
1378 	if (q->error) {
1379 		dprintk(q, 1, "fatal error occurred on queue\n");
1380 		return -EIO;
1381 	}
1382 
1383 	if (vb->prepared)
1384 		return 0;
1385 	WARN_ON(vb->synced);
1386 
1387 	if (q->is_output) {
1388 		ret = call_vb_qop(vb, buf_out_validate, vb);
1389 		if (ret) {
1390 			dprintk(q, 1, "buffer validation failed\n");
1391 			return ret;
1392 		}
1393 	}
1394 
1395 	vb->state = VB2_BUF_STATE_PREPARING;
1396 
1397 	switch (q->memory) {
1398 	case VB2_MEMORY_MMAP:
1399 		ret = __prepare_mmap(vb);
1400 		break;
1401 	case VB2_MEMORY_USERPTR:
1402 		ret = __prepare_userptr(vb);
1403 		break;
1404 	case VB2_MEMORY_DMABUF:
1405 		ret = __prepare_dmabuf(vb);
1406 		break;
1407 	default:
1408 		WARN(1, "Invalid queue type\n");
1409 		ret = -EINVAL;
1410 		break;
1411 	}
1412 
1413 	if (ret) {
1414 		dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1415 		vb->state = orig_state;
1416 		return ret;
1417 	}
1418 
1419 	__vb2_buf_mem_prepare(vb);
1420 	vb->prepared = 1;
1421 	vb->state = orig_state;
1422 
1423 	return 0;
1424 }
1425 
vb2_req_prepare(struct media_request_object * obj)1426 static int vb2_req_prepare(struct media_request_object *obj)
1427 {
1428 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1429 	int ret;
1430 
1431 	if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1432 		return -EINVAL;
1433 
1434 	mutex_lock(vb->vb2_queue->lock);
1435 	ret = __buf_prepare(vb);
1436 	mutex_unlock(vb->vb2_queue->lock);
1437 	return ret;
1438 }
1439 
1440 static void __vb2_dqbuf(struct vb2_buffer *vb);
1441 
vb2_req_unprepare(struct media_request_object * obj)1442 static void vb2_req_unprepare(struct media_request_object *obj)
1443 {
1444 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1445 
1446 	mutex_lock(vb->vb2_queue->lock);
1447 	__vb2_dqbuf(vb);
1448 	vb->state = VB2_BUF_STATE_IN_REQUEST;
1449 	mutex_unlock(vb->vb2_queue->lock);
1450 	WARN_ON(!vb->req_obj.req);
1451 }
1452 
1453 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1454 		  struct media_request *req);
1455 
vb2_req_queue(struct media_request_object * obj)1456 static void vb2_req_queue(struct media_request_object *obj)
1457 {
1458 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1459 
1460 	mutex_lock(vb->vb2_queue->lock);
1461 	vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL);
1462 	mutex_unlock(vb->vb2_queue->lock);
1463 }
1464 
vb2_req_unbind(struct media_request_object * obj)1465 static void vb2_req_unbind(struct media_request_object *obj)
1466 {
1467 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1468 
1469 	if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1470 		call_void_bufop(vb->vb2_queue, init_buffer, vb);
1471 }
1472 
vb2_req_release(struct media_request_object * obj)1473 static void vb2_req_release(struct media_request_object *obj)
1474 {
1475 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1476 
1477 	if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1478 		vb->state = VB2_BUF_STATE_DEQUEUED;
1479 		if (vb->request)
1480 			media_request_put(vb->request);
1481 		vb->request = NULL;
1482 	}
1483 }
1484 
1485 static const struct media_request_object_ops vb2_core_req_ops = {
1486 	.prepare = vb2_req_prepare,
1487 	.unprepare = vb2_req_unprepare,
1488 	.queue = vb2_req_queue,
1489 	.unbind = vb2_req_unbind,
1490 	.release = vb2_req_release,
1491 };
1492 
vb2_request_object_is_buffer(struct media_request_object * obj)1493 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1494 {
1495 	return obj->ops == &vb2_core_req_ops;
1496 }
1497 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1498 
vb2_request_buffer_cnt(struct media_request * req)1499 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1500 {
1501 	struct media_request_object *obj;
1502 	unsigned long flags;
1503 	unsigned int buffer_cnt = 0;
1504 
1505 	spin_lock_irqsave(&req->lock, flags);
1506 	list_for_each_entry(obj, &req->objects, list)
1507 		if (vb2_request_object_is_buffer(obj))
1508 			buffer_cnt++;
1509 	spin_unlock_irqrestore(&req->lock, flags);
1510 
1511 	return buffer_cnt;
1512 }
1513 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1514 
vb2_core_prepare_buf(struct vb2_queue * q,unsigned int index,void * pb)1515 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1516 {
1517 	struct vb2_buffer *vb;
1518 	int ret;
1519 
1520 	vb = q->bufs[index];
1521 	if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1522 		dprintk(q, 1, "invalid buffer state %s\n",
1523 			vb2_state_name(vb->state));
1524 		return -EINVAL;
1525 	}
1526 	if (vb->prepared) {
1527 		dprintk(q, 1, "buffer already prepared\n");
1528 		return -EINVAL;
1529 	}
1530 
1531 	ret = __buf_prepare(vb);
1532 	if (ret)
1533 		return ret;
1534 
1535 	/* Fill buffer information for the userspace */
1536 	call_void_bufop(q, fill_user_buffer, vb, pb);
1537 
1538 	dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1543 
1544 /*
1545  * vb2_start_streaming() - Attempt to start streaming.
1546  * @q:		videobuf2 queue
1547  *
1548  * Attempt to start streaming. When this function is called there must be
1549  * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1550  * number of buffers required for the DMA engine to function). If the
1551  * @start_streaming op fails it is supposed to return all the driver-owned
1552  * buffers back to vb2 in state QUEUED. Check if that happened and if
1553  * not warn and reclaim them forcefully.
1554  */
vb2_start_streaming(struct vb2_queue * q)1555 static int vb2_start_streaming(struct vb2_queue *q)
1556 {
1557 	struct vb2_buffer *vb;
1558 	int ret;
1559 
1560 	/*
1561 	 * If any buffers were queued before streamon,
1562 	 * we can now pass them to driver for processing.
1563 	 */
1564 	list_for_each_entry(vb, &q->queued_list, queued_entry)
1565 		__enqueue_in_driver(vb);
1566 
1567 	/* Tell the driver to start streaming */
1568 	q->start_streaming_called = 1;
1569 	ret = call_qop(q, start_streaming, q,
1570 		       atomic_read(&q->owned_by_drv_count));
1571 	if (!ret)
1572 		return 0;
1573 
1574 	q->start_streaming_called = 0;
1575 
1576 	dprintk(q, 1, "driver refused to start streaming\n");
1577 	/*
1578 	 * If you see this warning, then the driver isn't cleaning up properly
1579 	 * after a failed start_streaming(). See the start_streaming()
1580 	 * documentation in videobuf2-core.h for more information how buffers
1581 	 * should be returned to vb2 in start_streaming().
1582 	 */
1583 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1584 		unsigned i;
1585 
1586 		/*
1587 		 * Forcefully reclaim buffers if the driver did not
1588 		 * correctly return them to vb2.
1589 		 */
1590 		for (i = 0; i < q->num_buffers; ++i) {
1591 			vb = q->bufs[i];
1592 			if (vb->state == VB2_BUF_STATE_ACTIVE)
1593 				vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1594 		}
1595 		/* Must be zero now */
1596 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1597 	}
1598 	/*
1599 	 * If done_list is not empty, then start_streaming() didn't call
1600 	 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1601 	 * STATE_DONE.
1602 	 */
1603 	WARN_ON(!list_empty(&q->done_list));
1604 	return ret;
1605 }
1606 
vb2_core_qbuf(struct vb2_queue * q,unsigned int index,void * pb,struct media_request * req)1607 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1608 		  struct media_request *req)
1609 {
1610 	struct vb2_buffer *vb;
1611 	enum vb2_buffer_state orig_state;
1612 	int ret;
1613 
1614 	if (q->error) {
1615 		dprintk(q, 1, "fatal error occurred on queue\n");
1616 		return -EIO;
1617 	}
1618 
1619 	vb = q->bufs[index];
1620 
1621 	if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1622 	    q->requires_requests) {
1623 		dprintk(q, 1, "qbuf requires a request\n");
1624 		return -EBADR;
1625 	}
1626 
1627 	if ((req && q->uses_qbuf) ||
1628 	    (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1629 	     q->uses_requests)) {
1630 		dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1631 		return -EBUSY;
1632 	}
1633 
1634 	if (req) {
1635 		int ret;
1636 
1637 		q->uses_requests = 1;
1638 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1639 			dprintk(q, 1, "buffer %d not in dequeued state\n",
1640 				vb->index);
1641 			return -EINVAL;
1642 		}
1643 
1644 		if (q->is_output && !vb->prepared) {
1645 			ret = call_vb_qop(vb, buf_out_validate, vb);
1646 			if (ret) {
1647 				dprintk(q, 1, "buffer validation failed\n");
1648 				return ret;
1649 			}
1650 		}
1651 
1652 		media_request_object_init(&vb->req_obj);
1653 
1654 		/* Make sure the request is in a safe state for updating. */
1655 		ret = media_request_lock_for_update(req);
1656 		if (ret)
1657 			return ret;
1658 		ret = media_request_object_bind(req, &vb2_core_req_ops,
1659 						q, true, &vb->req_obj);
1660 		media_request_unlock_for_update(req);
1661 		if (ret)
1662 			return ret;
1663 
1664 		vb->state = VB2_BUF_STATE_IN_REQUEST;
1665 
1666 		/*
1667 		 * Increment the refcount and store the request.
1668 		 * The request refcount is decremented again when the
1669 		 * buffer is dequeued. This is to prevent vb2_buffer_done()
1670 		 * from freeing the request from interrupt context, which can
1671 		 * happen if the application closed the request fd after
1672 		 * queueing the request.
1673 		 */
1674 		media_request_get(req);
1675 		vb->request = req;
1676 
1677 		/* Fill buffer information for the userspace */
1678 		if (pb) {
1679 			call_void_bufop(q, copy_timestamp, vb, pb);
1680 			call_void_bufop(q, fill_user_buffer, vb, pb);
1681 		}
1682 
1683 		dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1684 		return 0;
1685 	}
1686 
1687 	if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1688 		q->uses_qbuf = 1;
1689 
1690 	switch (vb->state) {
1691 	case VB2_BUF_STATE_DEQUEUED:
1692 	case VB2_BUF_STATE_IN_REQUEST:
1693 		if (!vb->prepared) {
1694 			ret = __buf_prepare(vb);
1695 			if (ret)
1696 				return ret;
1697 		}
1698 		break;
1699 	case VB2_BUF_STATE_PREPARING:
1700 		dprintk(q, 1, "buffer still being prepared\n");
1701 		return -EINVAL;
1702 	default:
1703 		dprintk(q, 1, "invalid buffer state %s\n",
1704 			vb2_state_name(vb->state));
1705 		return -EINVAL;
1706 	}
1707 
1708 	/*
1709 	 * Add to the queued buffers list, a buffer will stay on it until
1710 	 * dequeued in dqbuf.
1711 	 */
1712 	orig_state = vb->state;
1713 	list_add_tail(&vb->queued_entry, &q->queued_list);
1714 	q->queued_count++;
1715 	q->waiting_for_buffers = false;
1716 	vb->state = VB2_BUF_STATE_QUEUED;
1717 
1718 	if (pb)
1719 		call_void_bufop(q, copy_timestamp, vb, pb);
1720 
1721 	trace_vb2_qbuf(q, vb);
1722 
1723 	/*
1724 	 * If already streaming, give the buffer to driver for processing.
1725 	 * If not, the buffer will be given to driver on next streamon.
1726 	 */
1727 	if (q->start_streaming_called)
1728 		__enqueue_in_driver(vb);
1729 
1730 	/* Fill buffer information for the userspace */
1731 	if (pb)
1732 		call_void_bufop(q, fill_user_buffer, vb, pb);
1733 
1734 	/*
1735 	 * If streamon has been called, and we haven't yet called
1736 	 * start_streaming() since not enough buffers were queued, and
1737 	 * we now have reached the minimum number of queued buffers,
1738 	 * then we can finally call start_streaming().
1739 	 */
1740 	if (q->streaming && !q->start_streaming_called &&
1741 	    q->queued_count >= q->min_buffers_needed) {
1742 		ret = vb2_start_streaming(q);
1743 		if (ret) {
1744 			/*
1745 			 * Since vb2_core_qbuf will return with an error,
1746 			 * we should return it to state DEQUEUED since
1747 			 * the error indicates that the buffer wasn't queued.
1748 			 */
1749 			list_del(&vb->queued_entry);
1750 			q->queued_count--;
1751 			vb->state = orig_state;
1752 			return ret;
1753 		}
1754 	}
1755 
1756 	dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1760 
1761 /*
1762  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1763  * for dequeuing
1764  *
1765  * Will sleep if required for nonblocking == false.
1766  */
__vb2_wait_for_done_vb(struct vb2_queue * q,int nonblocking)1767 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1768 {
1769 	/*
1770 	 * All operations on vb_done_list are performed under done_lock
1771 	 * spinlock protection. However, buffers may be removed from
1772 	 * it and returned to userspace only while holding both driver's
1773 	 * lock and the done_lock spinlock. Thus we can be sure that as
1774 	 * long as we hold the driver's lock, the list will remain not
1775 	 * empty if list_empty() check succeeds.
1776 	 */
1777 
1778 	for (;;) {
1779 		int ret;
1780 
1781 		if (q->waiting_in_dqbuf) {
1782 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1783 			return -EBUSY;
1784 		}
1785 
1786 		if (!q->streaming) {
1787 			dprintk(q, 1, "streaming off, will not wait for buffers\n");
1788 			return -EINVAL;
1789 		}
1790 
1791 		if (q->error) {
1792 			dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
1793 			return -EIO;
1794 		}
1795 
1796 		if (q->last_buffer_dequeued) {
1797 			dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
1798 			return -EPIPE;
1799 		}
1800 
1801 		if (!list_empty(&q->done_list)) {
1802 			/*
1803 			 * Found a buffer that we were waiting for.
1804 			 */
1805 			break;
1806 		}
1807 
1808 		if (nonblocking) {
1809 			dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
1810 			return -EAGAIN;
1811 		}
1812 
1813 		q->waiting_in_dqbuf = 1;
1814 		/*
1815 		 * We are streaming and blocking, wait for another buffer to
1816 		 * become ready or for streamoff. Driver's lock is released to
1817 		 * allow streamoff or qbuf to be called while waiting.
1818 		 */
1819 		call_void_qop(q, wait_prepare, q);
1820 
1821 		/*
1822 		 * All locks have been released, it is safe to sleep now.
1823 		 */
1824 		dprintk(q, 3, "will sleep waiting for buffers\n");
1825 		ret = wait_event_interruptible(q->done_wq,
1826 				!list_empty(&q->done_list) || !q->streaming ||
1827 				q->error);
1828 
1829 		/*
1830 		 * We need to reevaluate both conditions again after reacquiring
1831 		 * the locks or return an error if one occurred.
1832 		 */
1833 		call_void_qop(q, wait_finish, q);
1834 		q->waiting_in_dqbuf = 0;
1835 		if (ret) {
1836 			dprintk(q, 1, "sleep was interrupted\n");
1837 			return ret;
1838 		}
1839 	}
1840 	return 0;
1841 }
1842 
1843 /*
1844  * __vb2_get_done_vb() - get a buffer ready for dequeuing
1845  *
1846  * Will sleep if required for nonblocking == false.
1847  */
__vb2_get_done_vb(struct vb2_queue * q,struct vb2_buffer ** vb,void * pb,int nonblocking)1848 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1849 			     void *pb, int nonblocking)
1850 {
1851 	unsigned long flags;
1852 	int ret = 0;
1853 
1854 	/*
1855 	 * Wait for at least one buffer to become available on the done_list.
1856 	 */
1857 	ret = __vb2_wait_for_done_vb(q, nonblocking);
1858 	if (ret)
1859 		return ret;
1860 
1861 	/*
1862 	 * Driver's lock has been held since we last verified that done_list
1863 	 * is not empty, so no need for another list_empty(done_list) check.
1864 	 */
1865 	spin_lock_irqsave(&q->done_lock, flags);
1866 	*vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1867 	/*
1868 	 * Only remove the buffer from done_list if all planes can be
1869 	 * handled. Some cases such as V4L2 file I/O and DVB have pb
1870 	 * == NULL; skip the check then as there's nothing to verify.
1871 	 */
1872 	if (pb)
1873 		ret = call_bufop(q, verify_planes_array, *vb, pb);
1874 	if (!ret)
1875 		list_del(&(*vb)->done_entry);
1876 	spin_unlock_irqrestore(&q->done_lock, flags);
1877 
1878 	return ret;
1879 }
1880 
vb2_wait_for_all_buffers(struct vb2_queue * q)1881 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1882 {
1883 	if (!q->streaming) {
1884 		dprintk(q, 1, "streaming off, will not wait for buffers\n");
1885 		return -EINVAL;
1886 	}
1887 
1888 	if (q->start_streaming_called)
1889 		wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1893 
1894 /*
1895  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1896  */
__vb2_dqbuf(struct vb2_buffer * vb)1897 static void __vb2_dqbuf(struct vb2_buffer *vb)
1898 {
1899 	struct vb2_queue *q = vb->vb2_queue;
1900 
1901 	/* nothing to do if the buffer is already dequeued */
1902 	if (vb->state == VB2_BUF_STATE_DEQUEUED)
1903 		return;
1904 
1905 	vb->state = VB2_BUF_STATE_DEQUEUED;
1906 
1907 	call_void_bufop(q, init_buffer, vb);
1908 }
1909 
vb2_core_dqbuf(struct vb2_queue * q,unsigned int * pindex,void * pb,bool nonblocking)1910 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1911 		   bool nonblocking)
1912 {
1913 	struct vb2_buffer *vb = NULL;
1914 	int ret;
1915 
1916 	ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1917 	if (ret < 0)
1918 		return ret;
1919 
1920 	switch (vb->state) {
1921 	case VB2_BUF_STATE_DONE:
1922 		dprintk(q, 3, "returning done buffer\n");
1923 		break;
1924 	case VB2_BUF_STATE_ERROR:
1925 		dprintk(q, 3, "returning done buffer with errors\n");
1926 		break;
1927 	default:
1928 		dprintk(q, 1, "invalid buffer state %s\n",
1929 			vb2_state_name(vb->state));
1930 		return -EINVAL;
1931 	}
1932 
1933 	call_void_vb_qop(vb, buf_finish, vb);
1934 	vb->prepared = 0;
1935 
1936 	if (pindex)
1937 		*pindex = vb->index;
1938 
1939 	/* Fill buffer information for the userspace */
1940 	if (pb)
1941 		call_void_bufop(q, fill_user_buffer, vb, pb);
1942 
1943 	/* Remove from videobuf queue */
1944 	list_del(&vb->queued_entry);
1945 	q->queued_count--;
1946 
1947 	trace_vb2_dqbuf(q, vb);
1948 
1949 	/* go back to dequeued state */
1950 	__vb2_dqbuf(vb);
1951 
1952 	if (WARN_ON(vb->req_obj.req)) {
1953 		media_request_object_unbind(&vb->req_obj);
1954 		media_request_object_put(&vb->req_obj);
1955 	}
1956 	if (vb->request)
1957 		media_request_put(vb->request);
1958 	vb->request = NULL;
1959 
1960 	dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
1961 		vb->index, vb2_state_name(vb->state));
1962 
1963 	return 0;
1964 
1965 }
1966 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
1967 
1968 /*
1969  * __vb2_queue_cancel() - cancel and stop (pause) streaming
1970  *
1971  * Removes all queued buffers from driver's queue and all buffers queued by
1972  * userspace from videobuf's queue. Returns to state after reqbufs.
1973  */
__vb2_queue_cancel(struct vb2_queue * q)1974 static void __vb2_queue_cancel(struct vb2_queue *q)
1975 {
1976 	unsigned int i;
1977 
1978 	/*
1979 	 * Tell driver to stop all transactions and release all queued
1980 	 * buffers.
1981 	 */
1982 	if (q->start_streaming_called)
1983 		call_void_qop(q, stop_streaming, q);
1984 
1985 	/*
1986 	 * If you see this warning, then the driver isn't cleaning up properly
1987 	 * in stop_streaming(). See the stop_streaming() documentation in
1988 	 * videobuf2-core.h for more information how buffers should be returned
1989 	 * to vb2 in stop_streaming().
1990 	 */
1991 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1992 		for (i = 0; i < q->num_buffers; ++i)
1993 			if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) {
1994 				pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n",
1995 					q->bufs[i]);
1996 				vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
1997 			}
1998 		/* Must be zero now */
1999 		WARN_ON(atomic_read(&q->owned_by_drv_count));
2000 	}
2001 
2002 	q->streaming = 0;
2003 	q->start_streaming_called = 0;
2004 	q->queued_count = 0;
2005 	q->error = 0;
2006 	q->uses_requests = 0;
2007 	q->uses_qbuf = 0;
2008 
2009 	/*
2010 	 * Remove all buffers from videobuf's list...
2011 	 */
2012 	INIT_LIST_HEAD(&q->queued_list);
2013 	/*
2014 	 * ...and done list; userspace will not receive any buffers it
2015 	 * has not already dequeued before initiating cancel.
2016 	 */
2017 	INIT_LIST_HEAD(&q->done_list);
2018 	atomic_set(&q->owned_by_drv_count, 0);
2019 	wake_up_all(&q->done_wq);
2020 
2021 	/*
2022 	 * Reinitialize all buffers for next use.
2023 	 * Make sure to call buf_finish for any queued buffers. Normally
2024 	 * that's done in dqbuf, but that's not going to happen when we
2025 	 * cancel the whole queue. Note: this code belongs here, not in
2026 	 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2027 	 * call to __fill_user_buffer() after buf_finish(). That order can't
2028 	 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2029 	 */
2030 	for (i = 0; i < q->num_buffers; ++i) {
2031 		struct vb2_buffer *vb = q->bufs[i];
2032 		struct media_request *req = vb->req_obj.req;
2033 
2034 		/*
2035 		 * If a request is associated with this buffer, then
2036 		 * call buf_request_cancel() to give the driver to complete()
2037 		 * related request objects. Otherwise those objects would
2038 		 * never complete.
2039 		 */
2040 		if (req) {
2041 			enum media_request_state state;
2042 			unsigned long flags;
2043 
2044 			spin_lock_irqsave(&req->lock, flags);
2045 			state = req->state;
2046 			spin_unlock_irqrestore(&req->lock, flags);
2047 
2048 			if (state == MEDIA_REQUEST_STATE_QUEUED)
2049 				call_void_vb_qop(vb, buf_request_complete, vb);
2050 		}
2051 
2052 		__vb2_buf_mem_finish(vb);
2053 
2054 		if (vb->prepared) {
2055 			call_void_vb_qop(vb, buf_finish, vb);
2056 			vb->prepared = 0;
2057 		}
2058 		__vb2_dqbuf(vb);
2059 
2060 		if (vb->req_obj.req) {
2061 			media_request_object_unbind(&vb->req_obj);
2062 			media_request_object_put(&vb->req_obj);
2063 		}
2064 		if (vb->request)
2065 			media_request_put(vb->request);
2066 		vb->request = NULL;
2067 		vb->copied_timestamp = 0;
2068 	}
2069 }
2070 
vb2_core_streamon(struct vb2_queue * q,unsigned int type)2071 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2072 {
2073 	int ret;
2074 
2075 	if (type != q->type) {
2076 		dprintk(q, 1, "invalid stream type\n");
2077 		return -EINVAL;
2078 	}
2079 
2080 	if (q->streaming) {
2081 		dprintk(q, 3, "already streaming\n");
2082 		return 0;
2083 	}
2084 
2085 	if (!q->num_buffers) {
2086 		dprintk(q, 1, "no buffers have been allocated\n");
2087 		return -EINVAL;
2088 	}
2089 
2090 	if (q->num_buffers < q->min_buffers_needed) {
2091 		dprintk(q, 1, "need at least %u allocated buffers\n",
2092 				q->min_buffers_needed);
2093 		return -EINVAL;
2094 	}
2095 
2096 	/*
2097 	 * Tell driver to start streaming provided sufficient buffers
2098 	 * are available.
2099 	 */
2100 	if (q->queued_count >= q->min_buffers_needed) {
2101 		ret = v4l_vb2q_enable_media_source(q);
2102 		if (ret)
2103 			return ret;
2104 		ret = vb2_start_streaming(q);
2105 		if (ret)
2106 			return ret;
2107 	}
2108 
2109 	q->streaming = 1;
2110 
2111 	dprintk(q, 3, "successful\n");
2112 	return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2115 
vb2_queue_error(struct vb2_queue * q)2116 void vb2_queue_error(struct vb2_queue *q)
2117 {
2118 	q->error = 1;
2119 
2120 	wake_up_all(&q->done_wq);
2121 }
2122 EXPORT_SYMBOL_GPL(vb2_queue_error);
2123 
vb2_core_streamoff(struct vb2_queue * q,unsigned int type)2124 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2125 {
2126 	if (type != q->type) {
2127 		dprintk(q, 1, "invalid stream type\n");
2128 		return -EINVAL;
2129 	}
2130 
2131 	/*
2132 	 * Cancel will pause streaming and remove all buffers from the driver
2133 	 * and videobuf, effectively returning control over them to userspace.
2134 	 *
2135 	 * Note that we do this even if q->streaming == 0: if you prepare or
2136 	 * queue buffers, and then call streamoff without ever having called
2137 	 * streamon, you would still expect those buffers to be returned to
2138 	 * their normal dequeued state.
2139 	 */
2140 	__vb2_queue_cancel(q);
2141 	q->waiting_for_buffers = !q->is_output;
2142 	q->last_buffer_dequeued = false;
2143 
2144 	dprintk(q, 3, "successful\n");
2145 	return 0;
2146 }
2147 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2148 
2149 /*
2150  * __find_plane_by_offset() - find plane associated with the given offset off
2151  */
__find_plane_by_offset(struct vb2_queue * q,unsigned long off,unsigned int * _buffer,unsigned int * _plane)2152 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2153 			unsigned int *_buffer, unsigned int *_plane)
2154 {
2155 	struct vb2_buffer *vb;
2156 	unsigned int buffer, plane;
2157 
2158 	/*
2159 	 * Sanity checks to ensure the lock is held, MEMORY_MMAP is
2160 	 * used and fileio isn't active.
2161 	 */
2162 	lockdep_assert_held(&q->mmap_lock);
2163 
2164 	if (q->memory != VB2_MEMORY_MMAP) {
2165 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2166 		return -EINVAL;
2167 	}
2168 
2169 	if (vb2_fileio_is_active(q)) {
2170 		dprintk(q, 1, "file io in progress\n");
2171 		return -EBUSY;
2172 	}
2173 
2174 	/*
2175 	 * Go over all buffers and their planes, comparing the given offset
2176 	 * with an offset assigned to each plane. If a match is found,
2177 	 * return its buffer and plane numbers.
2178 	 */
2179 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2180 		vb = q->bufs[buffer];
2181 
2182 		for (plane = 0; plane < vb->num_planes; ++plane) {
2183 			if (vb->planes[plane].m.offset == off) {
2184 				*_buffer = buffer;
2185 				*_plane = plane;
2186 				return 0;
2187 			}
2188 		}
2189 	}
2190 
2191 	return -EINVAL;
2192 }
2193 
vb2_core_expbuf(struct vb2_queue * q,int * fd,unsigned int type,unsigned int index,unsigned int plane,unsigned int flags)2194 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2195 		unsigned int index, unsigned int plane, unsigned int flags)
2196 {
2197 	struct vb2_buffer *vb = NULL;
2198 	struct vb2_plane *vb_plane;
2199 	int ret;
2200 	struct dma_buf *dbuf;
2201 
2202 	if (q->memory != VB2_MEMORY_MMAP) {
2203 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2204 		return -EINVAL;
2205 	}
2206 
2207 	if (!q->mem_ops->get_dmabuf) {
2208 		dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2209 		return -EINVAL;
2210 	}
2211 
2212 	if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2213 		dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2214 		return -EINVAL;
2215 	}
2216 
2217 	if (type != q->type) {
2218 		dprintk(q, 1, "invalid buffer type\n");
2219 		return -EINVAL;
2220 	}
2221 
2222 	if (index >= q->num_buffers) {
2223 		dprintk(q, 1, "buffer index out of range\n");
2224 		return -EINVAL;
2225 	}
2226 
2227 	vb = q->bufs[index];
2228 
2229 	if (plane >= vb->num_planes) {
2230 		dprintk(q, 1, "buffer plane out of range\n");
2231 		return -EINVAL;
2232 	}
2233 
2234 	if (vb2_fileio_is_active(q)) {
2235 		dprintk(q, 1, "expbuf: file io in progress\n");
2236 		return -EBUSY;
2237 	}
2238 
2239 	vb_plane = &vb->planes[plane];
2240 
2241 	dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv,
2242 				flags & O_ACCMODE);
2243 	if (IS_ERR_OR_NULL(dbuf)) {
2244 		dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2245 			index, plane);
2246 		return -EINVAL;
2247 	}
2248 
2249 	ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2250 	if (ret < 0) {
2251 		dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2252 			index, plane, ret);
2253 		dma_buf_put(dbuf);
2254 		return ret;
2255 	}
2256 
2257 	dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2258 		index, plane, ret);
2259 	*fd = ret;
2260 
2261 	return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2264 
vb2_mmap(struct vb2_queue * q,struct vm_area_struct * vma)2265 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2266 {
2267 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2268 	struct vb2_buffer *vb;
2269 	unsigned int buffer = 0, plane = 0;
2270 	int ret;
2271 	unsigned long length;
2272 
2273 	/*
2274 	 * Check memory area access mode.
2275 	 */
2276 	if (!(vma->vm_flags & VM_SHARED)) {
2277 		dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2278 		return -EINVAL;
2279 	}
2280 	if (q->is_output) {
2281 		if (!(vma->vm_flags & VM_WRITE)) {
2282 			dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2283 			return -EINVAL;
2284 		}
2285 	} else {
2286 		if (!(vma->vm_flags & VM_READ)) {
2287 			dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2288 			return -EINVAL;
2289 		}
2290 	}
2291 
2292 	mutex_lock(&q->mmap_lock);
2293 
2294 	/*
2295 	 * Find the plane corresponding to the offset passed by userspace. This
2296 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2297 	 */
2298 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2299 	if (ret)
2300 		goto unlock;
2301 
2302 	vb = q->bufs[buffer];
2303 
2304 	/*
2305 	 * MMAP requires page_aligned buffers.
2306 	 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2307 	 * so, we need to do the same here.
2308 	 */
2309 	length = PAGE_ALIGN(vb->planes[plane].length);
2310 	if (length < (vma->vm_end - vma->vm_start)) {
2311 		dprintk(q, 1,
2312 			"MMAP invalid, as it would overflow buffer length\n");
2313 		ret = -EINVAL;
2314 		goto unlock;
2315 	}
2316 
2317 	/*
2318 	 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2319 	 * not as a in-buffer offset. We always want to mmap a whole buffer
2320 	 * from its beginning.
2321 	 */
2322 	vma->vm_pgoff = 0;
2323 
2324 	ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2325 
2326 unlock:
2327 	mutex_unlock(&q->mmap_lock);
2328 	if (ret)
2329 		return ret;
2330 
2331 	dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(vb2_mmap);
2335 
2336 #ifndef CONFIG_MMU
vb2_get_unmapped_area(struct vb2_queue * q,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2337 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2338 				    unsigned long addr,
2339 				    unsigned long len,
2340 				    unsigned long pgoff,
2341 				    unsigned long flags)
2342 {
2343 	unsigned long off = pgoff << PAGE_SHIFT;
2344 	struct vb2_buffer *vb;
2345 	unsigned int buffer, plane;
2346 	void *vaddr;
2347 	int ret;
2348 
2349 	mutex_lock(&q->mmap_lock);
2350 
2351 	/*
2352 	 * Find the plane corresponding to the offset passed by userspace. This
2353 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2354 	 */
2355 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2356 	if (ret)
2357 		goto unlock;
2358 
2359 	vb = q->bufs[buffer];
2360 
2361 	vaddr = vb2_plane_vaddr(vb, plane);
2362 	mutex_unlock(&q->mmap_lock);
2363 	return vaddr ? (unsigned long)vaddr : -EINVAL;
2364 
2365 unlock:
2366 	mutex_unlock(&q->mmap_lock);
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2370 #endif
2371 
vb2_core_queue_init(struct vb2_queue * q)2372 int vb2_core_queue_init(struct vb2_queue *q)
2373 {
2374 	/*
2375 	 * Sanity check
2376 	 */
2377 	if (WARN_ON(!q)			  ||
2378 	    WARN_ON(!q->ops)		  ||
2379 	    WARN_ON(!q->mem_ops)	  ||
2380 	    WARN_ON(!q->type)		  ||
2381 	    WARN_ON(!q->io_modes)	  ||
2382 	    WARN_ON(!q->ops->queue_setup) ||
2383 	    WARN_ON(!q->ops->buf_queue))
2384 		return -EINVAL;
2385 
2386 	if (WARN_ON(q->requires_requests && !q->supports_requests))
2387 		return -EINVAL;
2388 
2389 	INIT_LIST_HEAD(&q->queued_list);
2390 	INIT_LIST_HEAD(&q->done_list);
2391 	spin_lock_init(&q->done_lock);
2392 	mutex_init(&q->mmap_lock);
2393 	init_waitqueue_head(&q->done_wq);
2394 
2395 	q->memory = VB2_MEMORY_UNKNOWN;
2396 
2397 	if (q->buf_struct_size == 0)
2398 		q->buf_struct_size = sizeof(struct vb2_buffer);
2399 
2400 	if (q->bidirectional)
2401 		q->dma_dir = DMA_BIDIRECTIONAL;
2402 	else
2403 		q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2404 
2405 	if (q->name[0] == '\0')
2406 		snprintf(q->name, sizeof(q->name), "%s-%p",
2407 			 q->is_output ? "out" : "cap", q);
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2412 
2413 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2414 static int __vb2_cleanup_fileio(struct vb2_queue *q);
vb2_core_queue_release(struct vb2_queue * q)2415 void vb2_core_queue_release(struct vb2_queue *q)
2416 {
2417 	__vb2_cleanup_fileio(q);
2418 	__vb2_queue_cancel(q);
2419 	mutex_lock(&q->mmap_lock);
2420 	__vb2_queue_free(q, q->num_buffers);
2421 	mutex_unlock(&q->mmap_lock);
2422 }
2423 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2424 
vb2_core_poll(struct vb2_queue * q,struct file * file,poll_table * wait)2425 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2426 		poll_table *wait)
2427 {
2428 	__poll_t req_events = poll_requested_events(wait);
2429 	struct vb2_buffer *vb = NULL;
2430 	unsigned long flags;
2431 
2432 	if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2433 		return 0;
2434 	if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2435 		return 0;
2436 
2437 	poll_wait(file, &q->done_wq, wait);
2438 
2439 	/*
2440 	 * Start file I/O emulator only if streaming API has not been used yet.
2441 	 */
2442 	if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2443 		if (!q->is_output && (q->io_modes & VB2_READ) &&
2444 				(req_events & (EPOLLIN | EPOLLRDNORM))) {
2445 			if (__vb2_init_fileio(q, 1))
2446 				return EPOLLERR;
2447 		}
2448 		if (q->is_output && (q->io_modes & VB2_WRITE) &&
2449 				(req_events & (EPOLLOUT | EPOLLWRNORM))) {
2450 			if (__vb2_init_fileio(q, 0))
2451 				return EPOLLERR;
2452 			/*
2453 			 * Write to OUTPUT queue can be done immediately.
2454 			 */
2455 			return EPOLLOUT | EPOLLWRNORM;
2456 		}
2457 	}
2458 
2459 	/*
2460 	 * There is nothing to wait for if the queue isn't streaming, or if the
2461 	 * error flag is set.
2462 	 */
2463 	if (!vb2_is_streaming(q) || q->error)
2464 		return EPOLLERR;
2465 
2466 	/*
2467 	 * If this quirk is set and QBUF hasn't been called yet then
2468 	 * return EPOLLERR as well. This only affects capture queues, output
2469 	 * queues will always initialize waiting_for_buffers to false.
2470 	 * This quirk is set by V4L2 for backwards compatibility reasons.
2471 	 */
2472 	if (q->quirk_poll_must_check_waiting_for_buffers &&
2473 	    q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2474 		return EPOLLERR;
2475 
2476 	/*
2477 	 * For output streams you can call write() as long as there are fewer
2478 	 * buffers queued than there are buffers available.
2479 	 */
2480 	if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2481 		return EPOLLOUT | EPOLLWRNORM;
2482 
2483 	if (list_empty(&q->done_list)) {
2484 		/*
2485 		 * If the last buffer was dequeued from a capture queue,
2486 		 * return immediately. DQBUF will return -EPIPE.
2487 		 */
2488 		if (q->last_buffer_dequeued)
2489 			return EPOLLIN | EPOLLRDNORM;
2490 	}
2491 
2492 	/*
2493 	 * Take first buffer available for dequeuing.
2494 	 */
2495 	spin_lock_irqsave(&q->done_lock, flags);
2496 	if (!list_empty(&q->done_list))
2497 		vb = list_first_entry(&q->done_list, struct vb2_buffer,
2498 					done_entry);
2499 	spin_unlock_irqrestore(&q->done_lock, flags);
2500 
2501 	if (vb && (vb->state == VB2_BUF_STATE_DONE
2502 			|| vb->state == VB2_BUF_STATE_ERROR)) {
2503 		return (q->is_output) ?
2504 				EPOLLOUT | EPOLLWRNORM :
2505 				EPOLLIN | EPOLLRDNORM;
2506 	}
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL_GPL(vb2_core_poll);
2510 
2511 /*
2512  * struct vb2_fileio_buf - buffer context used by file io emulator
2513  *
2514  * vb2 provides a compatibility layer and emulator of file io (read and
2515  * write) calls on top of streaming API. This structure is used for
2516  * tracking context related to the buffers.
2517  */
2518 struct vb2_fileio_buf {
2519 	void *vaddr;
2520 	unsigned int size;
2521 	unsigned int pos;
2522 	unsigned int queued:1;
2523 };
2524 
2525 /*
2526  * struct vb2_fileio_data - queue context used by file io emulator
2527  *
2528  * @cur_index:	the index of the buffer currently being read from or
2529  *		written to. If equal to q->num_buffers then a new buffer
2530  *		must be dequeued.
2531  * @initial_index: in the read() case all buffers are queued up immediately
2532  *		in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2533  *		buffers. However, in the write() case no buffers are initially
2534  *		queued, instead whenever a buffer is full it is queued up by
2535  *		__vb2_perform_fileio(). Only once all available buffers have
2536  *		been queued up will __vb2_perform_fileio() start to dequeue
2537  *		buffers. This means that initially __vb2_perform_fileio()
2538  *		needs to know what buffer index to use when it is queuing up
2539  *		the buffers for the first time. That initial index is stored
2540  *		in this field. Once it is equal to q->num_buffers all
2541  *		available buffers have been queued and __vb2_perform_fileio()
2542  *		should start the normal dequeue/queue cycle.
2543  *
2544  * vb2 provides a compatibility layer and emulator of file io (read and
2545  * write) calls on top of streaming API. For proper operation it required
2546  * this structure to save the driver state between each call of the read
2547  * or write function.
2548  */
2549 struct vb2_fileio_data {
2550 	unsigned int count;
2551 	unsigned int type;
2552 	unsigned int memory;
2553 	struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2554 	unsigned int cur_index;
2555 	unsigned int initial_index;
2556 	unsigned int q_count;
2557 	unsigned int dq_count;
2558 	unsigned read_once:1;
2559 	unsigned write_immediately:1;
2560 };
2561 
2562 /*
2563  * __vb2_init_fileio() - initialize file io emulator
2564  * @q:		videobuf2 queue
2565  * @read:	mode selector (1 means read, 0 means write)
2566  */
__vb2_init_fileio(struct vb2_queue * q,int read)2567 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2568 {
2569 	struct vb2_fileio_data *fileio;
2570 	int i, ret;
2571 	unsigned int count = 0;
2572 
2573 	/*
2574 	 * Sanity check
2575 	 */
2576 	if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2577 		    (!read && !(q->io_modes & VB2_WRITE))))
2578 		return -EINVAL;
2579 
2580 	/*
2581 	 * Check if device supports mapping buffers to kernel virtual space.
2582 	 */
2583 	if (!q->mem_ops->vaddr)
2584 		return -EBUSY;
2585 
2586 	/*
2587 	 * Check if streaming api has not been already activated.
2588 	 */
2589 	if (q->streaming || q->num_buffers > 0)
2590 		return -EBUSY;
2591 
2592 	/*
2593 	 * Start with count 1, driver can increase it in queue_setup()
2594 	 */
2595 	count = 1;
2596 
2597 	dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2598 		(read) ? "read" : "write", count, q->fileio_read_once,
2599 		q->fileio_write_immediately);
2600 
2601 	fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2602 	if (fileio == NULL)
2603 		return -ENOMEM;
2604 
2605 	fileio->read_once = q->fileio_read_once;
2606 	fileio->write_immediately = q->fileio_write_immediately;
2607 
2608 	/*
2609 	 * Request buffers and use MMAP type to force driver
2610 	 * to allocate buffers by itself.
2611 	 */
2612 	fileio->count = count;
2613 	fileio->memory = VB2_MEMORY_MMAP;
2614 	fileio->type = q->type;
2615 	q->fileio = fileio;
2616 	ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2617 	if (ret)
2618 		goto err_kfree;
2619 
2620 	/*
2621 	 * Check if plane_count is correct
2622 	 * (multiplane buffers are not supported).
2623 	 */
2624 	if (q->bufs[0]->num_planes != 1) {
2625 		ret = -EBUSY;
2626 		goto err_reqbufs;
2627 	}
2628 
2629 	/*
2630 	 * Get kernel address of each buffer.
2631 	 */
2632 	for (i = 0; i < q->num_buffers; i++) {
2633 		fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2634 		if (fileio->bufs[i].vaddr == NULL) {
2635 			ret = -EINVAL;
2636 			goto err_reqbufs;
2637 		}
2638 		fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2639 	}
2640 
2641 	/*
2642 	 * Read mode requires pre queuing of all buffers.
2643 	 */
2644 	if (read) {
2645 		/*
2646 		 * Queue all buffers.
2647 		 */
2648 		for (i = 0; i < q->num_buffers; i++) {
2649 			ret = vb2_core_qbuf(q, i, NULL, NULL);
2650 			if (ret)
2651 				goto err_reqbufs;
2652 			fileio->bufs[i].queued = 1;
2653 		}
2654 		/*
2655 		 * All buffers have been queued, so mark that by setting
2656 		 * initial_index to q->num_buffers
2657 		 */
2658 		fileio->initial_index = q->num_buffers;
2659 		fileio->cur_index = q->num_buffers;
2660 	}
2661 
2662 	/*
2663 	 * Start streaming.
2664 	 */
2665 	ret = vb2_core_streamon(q, q->type);
2666 	if (ret)
2667 		goto err_reqbufs;
2668 
2669 	return ret;
2670 
2671 err_reqbufs:
2672 	fileio->count = 0;
2673 	vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2674 
2675 err_kfree:
2676 	q->fileio = NULL;
2677 	kfree(fileio);
2678 	return ret;
2679 }
2680 
2681 /*
2682  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2683  * @q:		videobuf2 queue
2684  */
__vb2_cleanup_fileio(struct vb2_queue * q)2685 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2686 {
2687 	struct vb2_fileio_data *fileio = q->fileio;
2688 
2689 	if (fileio) {
2690 		vb2_core_streamoff(q, q->type);
2691 		q->fileio = NULL;
2692 		fileio->count = 0;
2693 		vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2694 		kfree(fileio);
2695 		dprintk(q, 3, "file io emulator closed\n");
2696 	}
2697 	return 0;
2698 }
2699 
2700 /*
2701  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2702  * @q:		videobuf2 queue
2703  * @data:	pointed to target userspace buffer
2704  * @count:	number of bytes to read or write
2705  * @ppos:	file handle position tracking pointer
2706  * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
2707  * @read:	access mode selector (1 means read, 0 means write)
2708  */
__vb2_perform_fileio(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblock,int read)2709 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2710 		loff_t *ppos, int nonblock, int read)
2711 {
2712 	struct vb2_fileio_data *fileio;
2713 	struct vb2_fileio_buf *buf;
2714 	bool is_multiplanar = q->is_multiplanar;
2715 	/*
2716 	 * When using write() to write data to an output video node the vb2 core
2717 	 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2718 	 * else is able to provide this information with the write() operation.
2719 	 */
2720 	bool copy_timestamp = !read && q->copy_timestamp;
2721 	unsigned index;
2722 	int ret;
2723 
2724 	dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
2725 		read ? "read" : "write", (long)*ppos, count,
2726 		nonblock ? "non" : "");
2727 
2728 	if (!data)
2729 		return -EINVAL;
2730 
2731 	if (q->waiting_in_dqbuf) {
2732 		dprintk(q, 3, "another dup()ped fd is %s\n",
2733 			read ? "reading" : "writing");
2734 		return -EBUSY;
2735 	}
2736 
2737 	/*
2738 	 * Initialize emulator on first call.
2739 	 */
2740 	if (!vb2_fileio_is_active(q)) {
2741 		ret = __vb2_init_fileio(q, read);
2742 		dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
2743 		if (ret)
2744 			return ret;
2745 	}
2746 	fileio = q->fileio;
2747 
2748 	/*
2749 	 * Check if we need to dequeue the buffer.
2750 	 */
2751 	index = fileio->cur_index;
2752 	if (index >= q->num_buffers) {
2753 		struct vb2_buffer *b;
2754 
2755 		/*
2756 		 * Call vb2_dqbuf to get buffer back.
2757 		 */
2758 		ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2759 		dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
2760 		if (ret)
2761 			return ret;
2762 		fileio->dq_count += 1;
2763 
2764 		fileio->cur_index = index;
2765 		buf = &fileio->bufs[index];
2766 		b = q->bufs[index];
2767 
2768 		/*
2769 		 * Get number of bytes filled by the driver
2770 		 */
2771 		buf->pos = 0;
2772 		buf->queued = 0;
2773 		buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2774 				 : vb2_plane_size(q->bufs[index], 0);
2775 		/* Compensate for data_offset on read in the multiplanar case. */
2776 		if (is_multiplanar && read &&
2777 				b->planes[0].data_offset < buf->size) {
2778 			buf->pos = b->planes[0].data_offset;
2779 			buf->size -= buf->pos;
2780 		}
2781 	} else {
2782 		buf = &fileio->bufs[index];
2783 	}
2784 
2785 	/*
2786 	 * Limit count on last few bytes of the buffer.
2787 	 */
2788 	if (buf->pos + count > buf->size) {
2789 		count = buf->size - buf->pos;
2790 		dprintk(q, 5, "reducing read count: %zd\n", count);
2791 	}
2792 
2793 	/*
2794 	 * Transfer data to userspace.
2795 	 */
2796 	dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
2797 		count, index, buf->pos);
2798 	if (read)
2799 		ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2800 	else
2801 		ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2802 	if (ret) {
2803 		dprintk(q, 3, "error copying data\n");
2804 		return -EFAULT;
2805 	}
2806 
2807 	/*
2808 	 * Update counters.
2809 	 */
2810 	buf->pos += count;
2811 	*ppos += count;
2812 
2813 	/*
2814 	 * Queue next buffer if required.
2815 	 */
2816 	if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2817 		struct vb2_buffer *b = q->bufs[index];
2818 
2819 		/*
2820 		 * Check if this is the last buffer to read.
2821 		 */
2822 		if (read && fileio->read_once && fileio->dq_count == 1) {
2823 			dprintk(q, 3, "read limit reached\n");
2824 			return __vb2_cleanup_fileio(q);
2825 		}
2826 
2827 		/*
2828 		 * Call vb2_qbuf and give buffer to the driver.
2829 		 */
2830 		b->planes[0].bytesused = buf->pos;
2831 
2832 		if (copy_timestamp)
2833 			b->timestamp = ktime_get_ns();
2834 		ret = vb2_core_qbuf(q, index, NULL, NULL);
2835 		dprintk(q, 5, "vb2_dbuf result: %d\n", ret);
2836 		if (ret)
2837 			return ret;
2838 
2839 		/*
2840 		 * Buffer has been queued, update the status
2841 		 */
2842 		buf->pos = 0;
2843 		buf->queued = 1;
2844 		buf->size = vb2_plane_size(q->bufs[index], 0);
2845 		fileio->q_count += 1;
2846 		/*
2847 		 * If we are queuing up buffers for the first time, then
2848 		 * increase initial_index by one.
2849 		 */
2850 		if (fileio->initial_index < q->num_buffers)
2851 			fileio->initial_index++;
2852 		/*
2853 		 * The next buffer to use is either a buffer that's going to be
2854 		 * queued for the first time (initial_index < q->num_buffers)
2855 		 * or it is equal to q->num_buffers, meaning that the next
2856 		 * time we need to dequeue a buffer since we've now queued up
2857 		 * all the 'first time' buffers.
2858 		 */
2859 		fileio->cur_index = fileio->initial_index;
2860 	}
2861 
2862 	/*
2863 	 * Return proper number of bytes processed.
2864 	 */
2865 	if (ret == 0)
2866 		ret = count;
2867 	return ret;
2868 }
2869 
vb2_read(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblocking)2870 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2871 		loff_t *ppos, int nonblocking)
2872 {
2873 	return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2874 }
2875 EXPORT_SYMBOL_GPL(vb2_read);
2876 
vb2_write(struct vb2_queue * q,const char __user * data,size_t count,loff_t * ppos,int nonblocking)2877 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2878 		loff_t *ppos, int nonblocking)
2879 {
2880 	return __vb2_perform_fileio(q, (char __user *) data, count,
2881 							ppos, nonblocking, 0);
2882 }
2883 EXPORT_SYMBOL_GPL(vb2_write);
2884 
2885 struct vb2_threadio_data {
2886 	struct task_struct *thread;
2887 	vb2_thread_fnc fnc;
2888 	void *priv;
2889 	bool stop;
2890 };
2891 
vb2_thread(void * data)2892 static int vb2_thread(void *data)
2893 {
2894 	struct vb2_queue *q = data;
2895 	struct vb2_threadio_data *threadio = q->threadio;
2896 	bool copy_timestamp = false;
2897 	unsigned prequeue = 0;
2898 	unsigned index = 0;
2899 	int ret = 0;
2900 
2901 	if (q->is_output) {
2902 		prequeue = q->num_buffers;
2903 		copy_timestamp = q->copy_timestamp;
2904 	}
2905 
2906 	set_freezable();
2907 
2908 	for (;;) {
2909 		struct vb2_buffer *vb;
2910 
2911 		/*
2912 		 * Call vb2_dqbuf to get buffer back.
2913 		 */
2914 		if (prequeue) {
2915 			vb = q->bufs[index++];
2916 			prequeue--;
2917 		} else {
2918 			call_void_qop(q, wait_finish, q);
2919 			if (!threadio->stop)
2920 				ret = vb2_core_dqbuf(q, &index, NULL, 0);
2921 			call_void_qop(q, wait_prepare, q);
2922 			dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
2923 			if (!ret)
2924 				vb = q->bufs[index];
2925 		}
2926 		if (ret || threadio->stop)
2927 			break;
2928 		try_to_freeze();
2929 
2930 		if (vb->state != VB2_BUF_STATE_ERROR)
2931 			if (threadio->fnc(vb, threadio->priv))
2932 				break;
2933 		call_void_qop(q, wait_finish, q);
2934 		if (copy_timestamp)
2935 			vb->timestamp = ktime_get_ns();
2936 		if (!threadio->stop)
2937 			ret = vb2_core_qbuf(q, vb->index, NULL, NULL);
2938 		call_void_qop(q, wait_prepare, q);
2939 		if (ret || threadio->stop)
2940 			break;
2941 	}
2942 
2943 	/* Hmm, linux becomes *very* unhappy without this ... */
2944 	while (!kthread_should_stop()) {
2945 		set_current_state(TASK_INTERRUPTIBLE);
2946 		schedule();
2947 	}
2948 	return 0;
2949 }
2950 
2951 /*
2952  * This function should not be used for anything else but the videobuf2-dvb
2953  * support. If you think you have another good use-case for this, then please
2954  * contact the linux-media mailinglist first.
2955  */
vb2_thread_start(struct vb2_queue * q,vb2_thread_fnc fnc,void * priv,const char * thread_name)2956 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
2957 		     const char *thread_name)
2958 {
2959 	struct vb2_threadio_data *threadio;
2960 	int ret = 0;
2961 
2962 	if (q->threadio)
2963 		return -EBUSY;
2964 	if (vb2_is_busy(q))
2965 		return -EBUSY;
2966 	if (WARN_ON(q->fileio))
2967 		return -EBUSY;
2968 
2969 	threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
2970 	if (threadio == NULL)
2971 		return -ENOMEM;
2972 	threadio->fnc = fnc;
2973 	threadio->priv = priv;
2974 
2975 	ret = __vb2_init_fileio(q, !q->is_output);
2976 	dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
2977 	if (ret)
2978 		goto nomem;
2979 	q->threadio = threadio;
2980 	threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
2981 	if (IS_ERR(threadio->thread)) {
2982 		ret = PTR_ERR(threadio->thread);
2983 		threadio->thread = NULL;
2984 		goto nothread;
2985 	}
2986 	return 0;
2987 
2988 nothread:
2989 	__vb2_cleanup_fileio(q);
2990 nomem:
2991 	kfree(threadio);
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(vb2_thread_start);
2995 
vb2_thread_stop(struct vb2_queue * q)2996 int vb2_thread_stop(struct vb2_queue *q)
2997 {
2998 	struct vb2_threadio_data *threadio = q->threadio;
2999 	int err;
3000 
3001 	if (threadio == NULL)
3002 		return 0;
3003 	threadio->stop = true;
3004 	/* Wake up all pending sleeps in the thread */
3005 	vb2_queue_error(q);
3006 	err = kthread_stop(threadio->thread);
3007 	__vb2_cleanup_fileio(q);
3008 	threadio->thread = NULL;
3009 	kfree(threadio);
3010 	q->threadio = NULL;
3011 	return err;
3012 }
3013 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3014 
3015 MODULE_DESCRIPTION("Media buffer core framework");
3016 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3017 MODULE_LICENSE("GPL");
3018