1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/namei.h>
48
49 /* [Feb-1997 T. Schoebel-Theuer]
50 * Fundamental changes in the pathname lookup mechanisms (namei)
51 * were necessary because of omirr. The reason is that omirr needs
52 * to know the _real_ pathname, not the user-supplied one, in case
53 * of symlinks (and also when transname replacements occur).
54 *
55 * The new code replaces the old recursive symlink resolution with
56 * an iterative one (in case of non-nested symlink chains). It does
57 * this with calls to <fs>_follow_link().
58 * As a side effect, dir_namei(), _namei() and follow_link() are now
59 * replaced with a single function lookup_dentry() that can handle all
60 * the special cases of the former code.
61 *
62 * With the new dcache, the pathname is stored at each inode, at least as
63 * long as the refcount of the inode is positive. As a side effect, the
64 * size of the dcache depends on the inode cache and thus is dynamic.
65 *
66 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
67 * resolution to correspond with current state of the code.
68 *
69 * Note that the symlink resolution is not *completely* iterative.
70 * There is still a significant amount of tail- and mid- recursion in
71 * the algorithm. Also, note that <fs>_readlink() is not used in
72 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
73 * may return different results than <fs>_follow_link(). Many virtual
74 * filesystems (including /proc) exhibit this behavior.
75 */
76
77 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
78 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
79 * and the name already exists in form of a symlink, try to create the new
80 * name indicated by the symlink. The old code always complained that the
81 * name already exists, due to not following the symlink even if its target
82 * is nonexistent. The new semantics affects also mknod() and link() when
83 * the name is a symlink pointing to a non-existent name.
84 *
85 * I don't know which semantics is the right one, since I have no access
86 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
87 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
88 * "old" one. Personally, I think the new semantics is much more logical.
89 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
90 * file does succeed in both HP-UX and SunOs, but not in Solaris
91 * and in the old Linux semantics.
92 */
93
94 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
95 * semantics. See the comments in "open_namei" and "do_link" below.
96 *
97 * [10-Sep-98 Alan Modra] Another symlink change.
98 */
99
100 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
101 * inside the path - always follow.
102 * in the last component in creation/removal/renaming - never follow.
103 * if LOOKUP_FOLLOW passed - follow.
104 * if the pathname has trailing slashes - follow.
105 * otherwise - don't follow.
106 * (applied in that order).
107 *
108 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
109 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
110 * During the 2.4 we need to fix the userland stuff depending on it -
111 * hopefully we will be able to get rid of that wart in 2.5. So far only
112 * XEmacs seems to be relying on it...
113 */
114 /*
115 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
116 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
117 * any extra contention...
118 */
119
120 /* In order to reduce some races, while at the same time doing additional
121 * checking and hopefully speeding things up, we copy filenames to the
122 * kernel data space before using them..
123 *
124 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
125 * PATH_MAX includes the nul terminator --RR.
126 */
127
128 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129
130 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)131 getname_flags(const char __user *filename, int flags, int *empty)
132 {
133 struct filename *result;
134 char *kname;
135 int len;
136
137 result = audit_reusename(filename);
138 if (result)
139 return result;
140
141 result = __getname();
142 if (unlikely(!result))
143 return ERR_PTR(-ENOMEM);
144
145 /*
146 * First, try to embed the struct filename inside the names_cache
147 * allocation
148 */
149 kname = (char *)result->iname;
150 result->name = kname;
151
152 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
153 if (unlikely(len < 0)) {
154 __putname(result);
155 return ERR_PTR(len);
156 }
157
158 /*
159 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
160 * separate struct filename so we can dedicate the entire
161 * names_cache allocation for the pathname, and re-do the copy from
162 * userland.
163 */
164 if (unlikely(len == EMBEDDED_NAME_MAX)) {
165 const size_t size = offsetof(struct filename, iname[1]);
166 kname = (char *)result;
167
168 /*
169 * size is chosen that way we to guarantee that
170 * result->iname[0] is within the same object and that
171 * kname can't be equal to result->iname, no matter what.
172 */
173 result = kzalloc(size, GFP_KERNEL);
174 if (unlikely(!result)) {
175 __putname(kname);
176 return ERR_PTR(-ENOMEM);
177 }
178 result->name = kname;
179 len = strncpy_from_user(kname, filename, PATH_MAX);
180 if (unlikely(len < 0)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(len);
184 }
185 if (unlikely(len == PATH_MAX)) {
186 __putname(kname);
187 kfree(result);
188 return ERR_PTR(-ENAMETOOLONG);
189 }
190 }
191
192 result->refcnt = 1;
193 /* The empty path is special. */
194 if (unlikely(!len)) {
195 if (empty)
196 *empty = 1;
197 if (!(flags & LOOKUP_EMPTY)) {
198 putname(result);
199 return ERR_PTR(-ENOENT);
200 }
201 }
202
203 result->uptr = filename;
204 result->aname = NULL;
205 audit_getname(result);
206 return result;
207 }
208
209 struct filename *
getname(const char __user * filename)210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 struct filename *
getname_kernel(const char * filename)216 getname_kernel(const char * filename)
217 {
218 struct filename *result;
219 int len = strlen(filename) + 1;
220
221 result = __getname();
222 if (unlikely(!result))
223 return ERR_PTR(-ENOMEM);
224
225 if (len <= EMBEDDED_NAME_MAX) {
226 result->name = (char *)result->iname;
227 } else if (len <= PATH_MAX) {
228 const size_t size = offsetof(struct filename, iname[1]);
229 struct filename *tmp;
230
231 tmp = kmalloc(size, GFP_KERNEL);
232 if (unlikely(!tmp)) {
233 __putname(result);
234 return ERR_PTR(-ENOMEM);
235 }
236 tmp->name = (char *)result;
237 result = tmp;
238 } else {
239 __putname(result);
240 return ERR_PTR(-ENAMETOOLONG);
241 }
242 memcpy((char *)result->name, filename, len);
243 result->uptr = NULL;
244 result->aname = NULL;
245 result->refcnt = 1;
246 audit_getname(result);
247
248 return result;
249 }
250
putname(struct filename * name)251 void putname(struct filename *name)
252 {
253 BUG_ON(name->refcnt <= 0);
254
255 if (--name->refcnt > 0)
256 return;
257
258 if (name->name != name->iname) {
259 __putname(name->name);
260 kfree(name);
261 } else
262 __putname(name);
263 }
264
check_acl(struct inode * inode,int mask)265 static int check_acl(struct inode *inode, int mask)
266 {
267 #ifdef CONFIG_FS_POSIX_ACL
268 struct posix_acl *acl;
269
270 if (mask & MAY_NOT_BLOCK) {
271 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
272 if (!acl)
273 return -EAGAIN;
274 /* no ->get_acl() calls in RCU mode... */
275 if (is_uncached_acl(acl))
276 return -ECHILD;
277 return posix_acl_permission(inode, acl, mask);
278 }
279
280 acl = get_acl(inode, ACL_TYPE_ACCESS);
281 if (IS_ERR(acl))
282 return PTR_ERR(acl);
283 if (acl) {
284 int error = posix_acl_permission(inode, acl, mask);
285 posix_acl_release(acl);
286 return error;
287 }
288 #endif
289
290 return -EAGAIN;
291 }
292
293 /*
294 * This does the basic UNIX permission checking.
295 *
296 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
297 * for RCU walking.
298 */
acl_permission_check(struct inode * inode,int mask)299 static int acl_permission_check(struct inode *inode, int mask)
300 {
301 unsigned int mode = inode->i_mode;
302
303 /* Are we the owner? If so, ACL's don't matter */
304 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
305 mask &= 7;
306 mode >>= 6;
307 return (mask & ~mode) ? -EACCES : 0;
308 }
309
310 /* Do we have ACL's? */
311 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
312 int error = check_acl(inode, mask);
313 if (error != -EAGAIN)
314 return error;
315 }
316
317 /* Only RWX matters for group/other mode bits */
318 mask &= 7;
319
320 /*
321 * Are the group permissions different from
322 * the other permissions in the bits we care
323 * about? Need to check group ownership if so.
324 */
325 if (mask & (mode ^ (mode >> 3))) {
326 if (in_group_p(inode->i_gid))
327 mode >>= 3;
328 }
329
330 /* Bits in 'mode' clear that we require? */
331 return (mask & ~mode) ? -EACCES : 0;
332 }
333
334 /**
335 * generic_permission - check for access rights on a Posix-like filesystem
336 * @inode: inode to check access rights for
337 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
338 * %MAY_NOT_BLOCK ...)
339 *
340 * Used to check for read/write/execute permissions on a file.
341 * We use "fsuid" for this, letting us set arbitrary permissions
342 * for filesystem access without changing the "normal" uids which
343 * are used for other things.
344 *
345 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
346 * request cannot be satisfied (eg. requires blocking or too much complexity).
347 * It would then be called again in ref-walk mode.
348 */
generic_permission(struct inode * inode,int mask)349 int generic_permission(struct inode *inode, int mask)
350 {
351 int ret;
352
353 /*
354 * Do the basic permission checks.
355 */
356 ret = acl_permission_check(inode, mask);
357 if (ret != -EACCES)
358 return ret;
359
360 if (S_ISDIR(inode->i_mode)) {
361 /* DACs are overridable for directories */
362 if (!(mask & MAY_WRITE))
363 if (capable_wrt_inode_uidgid(inode,
364 CAP_DAC_READ_SEARCH))
365 return 0;
366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 return 0;
368 return -EACCES;
369 }
370
371 /*
372 * Searching includes executable on directories, else just read.
373 */
374 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
375 if (mask == MAY_READ)
376 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
377 return 0;
378 /*
379 * Read/write DACs are always overridable.
380 * Executable DACs are overridable when there is
381 * at least one exec bit set.
382 */
383 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
384 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
385 return 0;
386
387 return -EACCES;
388 }
389 EXPORT_SYMBOL(generic_permission);
390
391 /*
392 * We _really_ want to just do "generic_permission()" without
393 * even looking at the inode->i_op values. So we keep a cache
394 * flag in inode->i_opflags, that says "this has not special
395 * permission function, use the fast case".
396 */
do_inode_permission(struct inode * inode,int mask)397 static inline int do_inode_permission(struct inode *inode, int mask)
398 {
399 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
400 if (likely(inode->i_op->permission))
401 return inode->i_op->permission(inode, mask);
402
403 /* This gets set once for the inode lifetime */
404 spin_lock(&inode->i_lock);
405 inode->i_opflags |= IOP_FASTPERM;
406 spin_unlock(&inode->i_lock);
407 }
408 return generic_permission(inode, mask);
409 }
410
411 /**
412 * sb_permission - Check superblock-level permissions
413 * @sb: Superblock of inode to check permission on
414 * @inode: Inode to check permission on
415 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
416 *
417 * Separate out file-system wide checks from inode-specific permission checks.
418 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)419 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
420 {
421 if (unlikely(mask & MAY_WRITE)) {
422 umode_t mode = inode->i_mode;
423
424 /* Nobody gets write access to a read-only fs. */
425 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
426 return -EROFS;
427 }
428 return 0;
429 }
430
431 /**
432 * inode_permission - Check for access rights to a given inode
433 * @inode: Inode to check permission on
434 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
435 *
436 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
437 * this, letting us set arbitrary permissions for filesystem access without
438 * changing the "normal" UIDs which are used for other things.
439 *
440 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
441 */
inode_permission(struct inode * inode,int mask)442 int inode_permission(struct inode *inode, int mask)
443 {
444 int retval;
445
446 retval = sb_permission(inode->i_sb, inode, mask);
447 if (retval)
448 return retval;
449
450 if (unlikely(mask & MAY_WRITE)) {
451 /*
452 * Nobody gets write access to an immutable file.
453 */
454 if (IS_IMMUTABLE(inode))
455 return -EPERM;
456
457 /*
458 * Updating mtime will likely cause i_uid and i_gid to be
459 * written back improperly if their true value is unknown
460 * to the vfs.
461 */
462 if (HAS_UNMAPPED_ID(inode))
463 return -EACCES;
464 }
465
466 retval = do_inode_permission(inode, mask);
467 if (retval)
468 return retval;
469
470 retval = devcgroup_inode_permission(inode, mask);
471 if (retval)
472 return retval;
473
474 return security_inode_permission(inode, mask);
475 }
476 EXPORT_SYMBOL(inode_permission);
477
478 /**
479 * path_get - get a reference to a path
480 * @path: path to get the reference to
481 *
482 * Given a path increment the reference count to the dentry and the vfsmount.
483 */
path_get(const struct path * path)484 void path_get(const struct path *path)
485 {
486 mntget(path->mnt);
487 dget(path->dentry);
488 }
489 EXPORT_SYMBOL(path_get);
490
491 /**
492 * path_put - put a reference to a path
493 * @path: path to put the reference to
494 *
495 * Given a path decrement the reference count to the dentry and the vfsmount.
496 */
path_put(const struct path * path)497 void path_put(const struct path *path)
498 {
499 dput(path->dentry);
500 mntput(path->mnt);
501 }
502 EXPORT_SYMBOL(path_put);
503
504 #define EMBEDDED_LEVELS 2
505 struct nameidata {
506 struct path path;
507 struct qstr last;
508 struct path root;
509 struct inode *inode; /* path.dentry.d_inode */
510 unsigned int flags;
511 unsigned seq, m_seq, r_seq;
512 int last_type;
513 unsigned depth;
514 int total_link_count;
515 struct saved {
516 struct path link;
517 struct delayed_call done;
518 const char *name;
519 unsigned seq;
520 } *stack, internal[EMBEDDED_LEVELS];
521 struct filename *name;
522 struct nameidata *saved;
523 unsigned root_seq;
524 int dfd;
525 kuid_t dir_uid;
526 umode_t dir_mode;
527 } __randomize_layout;
528
set_nameidata(struct nameidata * p,int dfd,struct filename * name)529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->path.mnt = NULL;
536 p->path.dentry = NULL;
537 p->total_link_count = old ? old->total_link_count : 0;
538 p->saved = old;
539 current->nameidata = p;
540 }
541
restore_nameidata(void)542 static void restore_nameidata(void)
543 {
544 struct nameidata *now = current->nameidata, *old = now->saved;
545
546 current->nameidata = old;
547 if (old)
548 old->total_link_count = now->total_link_count;
549 if (now->stack != now->internal)
550 kfree(now->stack);
551 }
552
nd_alloc_stack(struct nameidata * nd)553 static bool nd_alloc_stack(struct nameidata *nd)
554 {
555 struct saved *p;
556
557 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
558 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
559 if (unlikely(!p))
560 return false;
561 memcpy(p, nd->internal, sizeof(nd->internal));
562 nd->stack = p;
563 return true;
564 }
565
566 /**
567 * path_connected - Verify that a dentry is below mnt.mnt_root
568 *
569 * Rename can sometimes move a file or directory outside of a bind
570 * mount, path_connected allows those cases to be detected.
571 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)572 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
573 {
574 struct super_block *sb = mnt->mnt_sb;
575
576 /* Bind mounts can have disconnected paths */
577 if (mnt->mnt_root == sb->s_root)
578 return true;
579
580 return is_subdir(dentry, mnt->mnt_root);
581 }
582
drop_links(struct nameidata * nd)583 static void drop_links(struct nameidata *nd)
584 {
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
590 }
591 }
592
terminate_walk(struct nameidata * nd)593 static void terminate_walk(struct nameidata *nd)
594 {
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->flags & LOOKUP_ROOT_GRABBED) {
602 path_put(&nd->root);
603 nd->flags &= ~LOOKUP_ROOT_GRABBED;
604 }
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 rcu_read_unlock();
608 }
609 nd->depth = 0;
610 nd->path.mnt = NULL;
611 nd->path.dentry = NULL;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)615 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
616 {
617 int res = __legitimize_mnt(path->mnt, mseq);
618 if (unlikely(res)) {
619 if (res > 0)
620 path->mnt = NULL;
621 path->dentry = NULL;
622 return false;
623 }
624 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
625 path->dentry = NULL;
626 return false;
627 }
628 return !read_seqcount_retry(&path->dentry->d_seq, seq);
629 }
630
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)631 static inline bool legitimize_path(struct nameidata *nd,
632 struct path *path, unsigned seq)
633 {
634 return __legitimize_path(path, seq, nd->m_seq);
635 }
636
legitimize_links(struct nameidata * nd)637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 if (unlikely(nd->flags & LOOKUP_CACHED)) {
641 drop_links(nd);
642 nd->depth = 0;
643 return false;
644 }
645 for (i = 0; i < nd->depth; i++) {
646 struct saved *last = nd->stack + i;
647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 drop_links(nd);
649 nd->depth = i + 1;
650 return false;
651 }
652 }
653 return true;
654 }
655
legitimize_root(struct nameidata * nd)656 static bool legitimize_root(struct nameidata *nd)
657 {
658 /*
659 * For scoped-lookups (where nd->root has been zeroed), we need to
660 * restart the whole lookup from scratch -- because set_root() is wrong
661 * for these lookups (nd->dfd is the root, not the filesystem root).
662 */
663 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
664 return false;
665 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
666 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
667 return true;
668 nd->flags |= LOOKUP_ROOT_GRABBED;
669 return legitimize_path(nd, &nd->root, nd->root_seq);
670 }
671
672 /*
673 * Path walking has 2 modes, rcu-walk and ref-walk (see
674 * Documentation/filesystems/path-lookup.txt). In situations when we can't
675 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
676 * normal reference counts on dentries and vfsmounts to transition to ref-walk
677 * mode. Refcounts are grabbed at the last known good point before rcu-walk
678 * got stuck, so ref-walk may continue from there. If this is not successful
679 * (eg. a seqcount has changed), then failure is returned and it's up to caller
680 * to restart the path walk from the beginning in ref-walk mode.
681 */
682
683 /**
684 * try_to_unlazy - try to switch to ref-walk mode.
685 * @nd: nameidata pathwalk data
686 * Returns: true on success, false on failure
687 *
688 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
689 * for ref-walk mode.
690 * Must be called from rcu-walk context.
691 * Nothing should touch nameidata between try_to_unlazy() failure and
692 * terminate_walk().
693 */
try_to_unlazy(struct nameidata * nd)694 static bool try_to_unlazy(struct nameidata *nd)
695 {
696 struct dentry *parent = nd->path.dentry;
697
698 BUG_ON(!(nd->flags & LOOKUP_RCU));
699
700 nd->flags &= ~LOOKUP_RCU;
701 if (unlikely(!legitimize_links(nd)))
702 goto out1;
703 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
704 goto out;
705 if (unlikely(!legitimize_root(nd)))
706 goto out;
707 rcu_read_unlock();
708 BUG_ON(nd->inode != parent->d_inode);
709 return true;
710
711 out1:
712 nd->path.mnt = NULL;
713 nd->path.dentry = NULL;
714 out:
715 rcu_read_unlock();
716 return false;
717 }
718
719 /**
720 * try_to_unlazy_next - try to switch to ref-walk mode.
721 * @nd: nameidata pathwalk data
722 * @dentry: next dentry to step into
723 * @seq: seq number to check @dentry against
724 * Returns: true on success, false on failure
725 *
726 * Similar to to try_to_unlazy(), but here we have the next dentry already
727 * picked by rcu-walk and want to legitimize that in addition to the current
728 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
729 * Nothing should touch nameidata between try_to_unlazy_next() failure and
730 * terminate_walk().
731 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry,unsigned seq)732 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
733 {
734 BUG_ON(!(nd->flags & LOOKUP_RCU));
735
736 nd->flags &= ~LOOKUP_RCU;
737 if (unlikely(!legitimize_links(nd)))
738 goto out2;
739 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
740 goto out2;
741 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
742 goto out1;
743
744 /*
745 * We need to move both the parent and the dentry from the RCU domain
746 * to be properly refcounted. And the sequence number in the dentry
747 * validates *both* dentry counters, since we checked the sequence
748 * number of the parent after we got the child sequence number. So we
749 * know the parent must still be valid if the child sequence number is
750 */
751 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
752 goto out;
753 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
754 goto out_dput;
755 /*
756 * Sequence counts matched. Now make sure that the root is
757 * still valid and get it if required.
758 */
759 if (unlikely(!legitimize_root(nd)))
760 goto out_dput;
761 rcu_read_unlock();
762 return true;
763
764 out2:
765 nd->path.mnt = NULL;
766 out1:
767 nd->path.dentry = NULL;
768 out:
769 rcu_read_unlock();
770 return false;
771 out_dput:
772 rcu_read_unlock();
773 dput(dentry);
774 return false;
775 }
776
d_revalidate(struct dentry * dentry,unsigned int flags)777 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
778 {
779 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
780 return dentry->d_op->d_revalidate(dentry, flags);
781 else
782 return 1;
783 }
784
785 #define INIT_PATH_SIZE 64
786
success_walk_trace(struct nameidata * nd)787 static void success_walk_trace(struct nameidata *nd)
788 {
789 struct path *pt = &nd->path;
790 struct inode *i = nd->inode;
791 char buf[INIT_PATH_SIZE], *try_buf;
792 int cur_path_size;
793 char *p;
794
795 /* When eBPF/ tracepoint is disabled, keep overhead low. */
796 if (!trace_inodepath_enabled())
797 return;
798
799 /* First try stack allocated buffer. */
800 try_buf = buf;
801 cur_path_size = INIT_PATH_SIZE;
802
803 while (cur_path_size <= PATH_MAX) {
804 /* Free previous heap allocation if we are now trying
805 * a second or later heap allocation.
806 */
807 if (try_buf != buf)
808 kfree(try_buf);
809
810 /* All but the first alloc are on the heap. */
811 if (cur_path_size != INIT_PATH_SIZE) {
812 try_buf = kmalloc(cur_path_size, GFP_KERNEL);
813 if (!try_buf) {
814 try_buf = buf;
815 sprintf(try_buf, "error:buf_alloc_failed");
816 break;
817 }
818 }
819
820 p = d_path(pt, try_buf, cur_path_size);
821
822 if (!IS_ERR(p)) {
823 char *end = mangle_path(try_buf, p, "\n");
824
825 if (end) {
826 try_buf[end - try_buf] = 0;
827 break;
828 } else {
829 /* On mangle errors, double path size
830 * till PATH_MAX.
831 */
832 cur_path_size = cur_path_size << 1;
833 continue;
834 }
835 }
836
837 if (PTR_ERR(p) == -ENAMETOOLONG) {
838 /* If d_path complains that name is too long,
839 * then double path size till PATH_MAX.
840 */
841 cur_path_size = cur_path_size << 1;
842 continue;
843 }
844
845 sprintf(try_buf, "error:d_path_failed_%lu",
846 -1 * PTR_ERR(p));
847 break;
848 }
849
850 if (cur_path_size > PATH_MAX)
851 sprintf(try_buf, "error:d_path_name_too_long");
852
853 trace_inodepath(i, try_buf);
854
855 if (try_buf != buf)
856 kfree(try_buf);
857 return;
858 }
859
860 /**
861 * complete_walk - successful completion of path walk
862 * @nd: pointer nameidata
863 *
864 * If we had been in RCU mode, drop out of it and legitimize nd->path.
865 * Revalidate the final result, unless we'd already done that during
866 * the path walk or the filesystem doesn't ask for it. Return 0 on
867 * success, -error on failure. In case of failure caller does not
868 * need to drop nd->path.
869 */
complete_walk(struct nameidata * nd)870 static int complete_walk(struct nameidata *nd)
871 {
872 struct dentry *dentry = nd->path.dentry;
873 int status;
874
875 if (nd->flags & LOOKUP_RCU) {
876 /*
877 * We don't want to zero nd->root for scoped-lookups or
878 * externally-managed nd->root.
879 */
880 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
881 nd->root.mnt = NULL;
882 nd->flags &= ~LOOKUP_CACHED;
883 if (!try_to_unlazy(nd))
884 return -ECHILD;
885 }
886
887 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
888 /*
889 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
890 * ever step outside the root during lookup" and should already
891 * be guaranteed by the rest of namei, we want to avoid a namei
892 * BUG resulting in userspace being given a path that was not
893 * scoped within the root at some point during the lookup.
894 *
895 * So, do a final sanity-check to make sure that in the
896 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
897 * we won't silently return an fd completely outside of the
898 * requested root to userspace.
899 *
900 * Userspace could move the path outside the root after this
901 * check, but as discussed elsewhere this is not a concern (the
902 * resolved file was inside the root at some point).
903 */
904 if (!path_is_under(&nd->path, &nd->root))
905 return -EXDEV;
906 }
907
908 if (likely(!(nd->flags & LOOKUP_JUMPED))) {
909 success_walk_trace(nd);
910 return 0;
911 }
912
913 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) {
914 success_walk_trace(nd);
915 return 0;
916 }
917
918 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
919 if (status > 0) {
920 success_walk_trace(nd);
921 return 0;
922 }
923
924 if (!status)
925 status = -ESTALE;
926
927 return status;
928 }
929
set_root(struct nameidata * nd)930 static int set_root(struct nameidata *nd)
931 {
932 struct fs_struct *fs = current->fs;
933
934 /*
935 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
936 * still have to ensure it doesn't happen because it will cause a breakout
937 * from the dirfd.
938 */
939 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
940 return -ENOTRECOVERABLE;
941
942 if (nd->flags & LOOKUP_RCU) {
943 unsigned seq;
944
945 do {
946 seq = read_seqcount_begin(&fs->seq);
947 nd->root = fs->root;
948 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
949 } while (read_seqcount_retry(&fs->seq, seq));
950 } else {
951 get_fs_root(fs, &nd->root);
952 nd->flags |= LOOKUP_ROOT_GRABBED;
953 }
954 return 0;
955 }
956
nd_jump_root(struct nameidata * nd)957 static int nd_jump_root(struct nameidata *nd)
958 {
959 if (unlikely(nd->flags & LOOKUP_BENEATH))
960 return -EXDEV;
961 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
962 /* Absolute path arguments to path_init() are allowed. */
963 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
964 return -EXDEV;
965 }
966 if (!nd->root.mnt) {
967 int error = set_root(nd);
968 if (error)
969 return error;
970 }
971 if (nd->flags & LOOKUP_RCU) {
972 struct dentry *d;
973 nd->path = nd->root;
974 d = nd->path.dentry;
975 nd->inode = d->d_inode;
976 nd->seq = nd->root_seq;
977 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
978 return -ECHILD;
979 } else {
980 path_put(&nd->path);
981 nd->path = nd->root;
982 path_get(&nd->path);
983 nd->inode = nd->path.dentry->d_inode;
984 }
985 nd->flags |= LOOKUP_JUMPED;
986 return 0;
987 }
988
989 /*
990 * Helper to directly jump to a known parsed path from ->get_link,
991 * caller must have taken a reference to path beforehand.
992 */
nd_jump_link(struct path * path)993 int nd_jump_link(struct path *path)
994 {
995 int error = -ELOOP;
996 struct nameidata *nd = current->nameidata;
997
998 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
999 goto err;
1000
1001 error = -EXDEV;
1002 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1003 if (nd->path.mnt != path->mnt)
1004 goto err;
1005 }
1006 /* Not currently safe for scoped-lookups. */
1007 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1008 goto err;
1009
1010 path_put(&nd->path);
1011 nd->path = *path;
1012 nd->inode = nd->path.dentry->d_inode;
1013 nd->flags |= LOOKUP_JUMPED;
1014 return 0;
1015
1016 err:
1017 path_put(path);
1018 return error;
1019 }
1020
put_link(struct nameidata * nd)1021 static inline void put_link(struct nameidata *nd)
1022 {
1023 struct saved *last = nd->stack + --nd->depth;
1024 do_delayed_call(&last->done);
1025 if (!(nd->flags & LOOKUP_RCU))
1026 path_put(&last->link);
1027 }
1028
1029 int sysctl_protected_symlinks __read_mostly = 0;
1030 int sysctl_protected_hardlinks __read_mostly = 0;
1031 int sysctl_protected_fifos __read_mostly;
1032 int sysctl_protected_regular __read_mostly;
1033
1034 /**
1035 * may_follow_link - Check symlink following for unsafe situations
1036 * @nd: nameidata pathwalk data
1037 *
1038 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1039 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1040 * in a sticky world-writable directory. This is to protect privileged
1041 * processes from failing races against path names that may change out
1042 * from under them by way of other users creating malicious symlinks.
1043 * It will permit symlinks to be followed only when outside a sticky
1044 * world-writable directory, or when the uid of the symlink and follower
1045 * match, or when the directory owner matches the symlink's owner.
1046 *
1047 * Returns 0 if following the symlink is allowed, -ve on error.
1048 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1049 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1050 {
1051 if (!sysctl_protected_symlinks)
1052 return 0;
1053
1054 /* Allowed if owner and follower match. */
1055 if (uid_eq(current_cred()->fsuid, inode->i_uid))
1056 return 0;
1057
1058 /* Allowed if parent directory not sticky and world-writable. */
1059 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1060 return 0;
1061
1062 /* Allowed if parent directory and link owner match. */
1063 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
1064 return 0;
1065
1066 if (nd->flags & LOOKUP_RCU)
1067 return -ECHILD;
1068
1069 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1070 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1071 return -EACCES;
1072 }
1073
1074 /**
1075 * safe_hardlink_source - Check for safe hardlink conditions
1076 * @inode: the source inode to hardlink from
1077 *
1078 * Return false if at least one of the following conditions:
1079 * - inode is not a regular file
1080 * - inode is setuid
1081 * - inode is setgid and group-exec
1082 * - access failure for read and write
1083 *
1084 * Otherwise returns true.
1085 */
safe_hardlink_source(struct inode * inode)1086 static bool safe_hardlink_source(struct inode *inode)
1087 {
1088 umode_t mode = inode->i_mode;
1089
1090 /* Special files should not get pinned to the filesystem. */
1091 if (!S_ISREG(mode))
1092 return false;
1093
1094 /* Setuid files should not get pinned to the filesystem. */
1095 if (mode & S_ISUID)
1096 return false;
1097
1098 /* Executable setgid files should not get pinned to the filesystem. */
1099 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1100 return false;
1101
1102 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1103 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1104 return false;
1105
1106 return true;
1107 }
1108
1109 /**
1110 * may_linkat - Check permissions for creating a hardlink
1111 * @link: the source to hardlink from
1112 *
1113 * Block hardlink when all of:
1114 * - sysctl_protected_hardlinks enabled
1115 * - fsuid does not match inode
1116 * - hardlink source is unsafe (see safe_hardlink_source() above)
1117 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1118 *
1119 * Returns 0 if successful, -ve on error.
1120 */
may_linkat(struct path * link)1121 int may_linkat(struct path *link)
1122 {
1123 struct inode *inode = link->dentry->d_inode;
1124
1125 /* Inode writeback is not safe when the uid or gid are invalid. */
1126 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1127 return -EOVERFLOW;
1128
1129 if (!sysctl_protected_hardlinks)
1130 return 0;
1131
1132 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1133 * otherwise, it must be a safe source.
1134 */
1135 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1136 return 0;
1137
1138 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1139 return -EPERM;
1140 }
1141
1142 /**
1143 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1144 * should be allowed, or not, on files that already
1145 * exist.
1146 * @dir_mode: mode bits of directory
1147 * @dir_uid: owner of directory
1148 * @inode: the inode of the file to open
1149 *
1150 * Block an O_CREAT open of a FIFO (or a regular file) when:
1151 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1152 * - the file already exists
1153 * - we are in a sticky directory
1154 * - we don't own the file
1155 * - the owner of the directory doesn't own the file
1156 * - the directory is world writable
1157 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1158 * the directory doesn't have to be world writable: being group writable will
1159 * be enough.
1160 *
1161 * Returns 0 if the open is allowed, -ve on error.
1162 */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1163 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1164 struct inode * const inode)
1165 {
1166 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1167 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1168 likely(!(dir_mode & S_ISVTX)) ||
1169 uid_eq(inode->i_uid, dir_uid) ||
1170 uid_eq(current_fsuid(), inode->i_uid))
1171 return 0;
1172
1173 if (likely(dir_mode & 0002) ||
1174 (dir_mode & 0020 &&
1175 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1176 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1177 const char *operation = S_ISFIFO(inode->i_mode) ?
1178 "sticky_create_fifo" :
1179 "sticky_create_regular";
1180 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1181 return -EACCES;
1182 }
1183 return 0;
1184 }
1185
1186 /*
1187 * follow_up - Find the mountpoint of path's vfsmount
1188 *
1189 * Given a path, find the mountpoint of its source file system.
1190 * Replace @path with the path of the mountpoint in the parent mount.
1191 * Up is towards /.
1192 *
1193 * Return 1 if we went up a level and 0 if we were already at the
1194 * root.
1195 */
follow_up(struct path * path)1196 int follow_up(struct path *path)
1197 {
1198 struct mount *mnt = real_mount(path->mnt);
1199 struct mount *parent;
1200 struct dentry *mountpoint;
1201
1202 read_seqlock_excl(&mount_lock);
1203 parent = mnt->mnt_parent;
1204 if (parent == mnt) {
1205 read_sequnlock_excl(&mount_lock);
1206 return 0;
1207 }
1208 mntget(&parent->mnt);
1209 mountpoint = dget(mnt->mnt_mountpoint);
1210 read_sequnlock_excl(&mount_lock);
1211 dput(path->dentry);
1212 path->dentry = mountpoint;
1213 mntput(path->mnt);
1214 path->mnt = &parent->mnt;
1215 return 1;
1216 }
1217 EXPORT_SYMBOL(follow_up);
1218
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1219 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1220 struct path *path, unsigned *seqp)
1221 {
1222 while (mnt_has_parent(m)) {
1223 struct dentry *mountpoint = m->mnt_mountpoint;
1224
1225 m = m->mnt_parent;
1226 if (unlikely(root->dentry == mountpoint &&
1227 root->mnt == &m->mnt))
1228 break;
1229 if (mountpoint != m->mnt.mnt_root) {
1230 path->mnt = &m->mnt;
1231 path->dentry = mountpoint;
1232 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1233 return true;
1234 }
1235 }
1236 return false;
1237 }
1238
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1239 static bool choose_mountpoint(struct mount *m, const struct path *root,
1240 struct path *path)
1241 {
1242 bool found;
1243
1244 rcu_read_lock();
1245 while (1) {
1246 unsigned seq, mseq = read_seqbegin(&mount_lock);
1247
1248 found = choose_mountpoint_rcu(m, root, path, &seq);
1249 if (unlikely(!found)) {
1250 if (!read_seqretry(&mount_lock, mseq))
1251 break;
1252 } else {
1253 if (likely(__legitimize_path(path, seq, mseq)))
1254 break;
1255 rcu_read_unlock();
1256 path_put(path);
1257 rcu_read_lock();
1258 }
1259 }
1260 rcu_read_unlock();
1261 return found;
1262 }
1263
1264 /*
1265 * Perform an automount
1266 * - return -EISDIR to tell follow_managed() to stop and return the path we
1267 * were called with.
1268 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1269 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1270 {
1271 struct dentry *dentry = path->dentry;
1272
1273 /* We don't want to mount if someone's just doing a stat -
1274 * unless they're stat'ing a directory and appended a '/' to
1275 * the name.
1276 *
1277 * We do, however, want to mount if someone wants to open or
1278 * create a file of any type under the mountpoint, wants to
1279 * traverse through the mountpoint or wants to open the
1280 * mounted directory. Also, autofs may mark negative dentries
1281 * as being automount points. These will need the attentions
1282 * of the daemon to instantiate them before they can be used.
1283 */
1284 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1285 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1286 dentry->d_inode)
1287 return -EISDIR;
1288
1289 if (count && (*count)++ >= MAXSYMLINKS)
1290 return -ELOOP;
1291
1292 return finish_automount(dentry->d_op->d_automount(path), path);
1293 }
1294
1295 /*
1296 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1297 * dentries are pinned but not locked here, so negative dentry can go
1298 * positive right under us. Use of smp_load_acquire() provides a barrier
1299 * sufficient for ->d_inode and ->d_flags consistency.
1300 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1301 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1302 int *count, unsigned lookup_flags)
1303 {
1304 struct vfsmount *mnt = path->mnt;
1305 bool need_mntput = false;
1306 int ret = 0;
1307
1308 while (flags & DCACHE_MANAGED_DENTRY) {
1309 /* Allow the filesystem to manage the transit without i_mutex
1310 * being held. */
1311 if (flags & DCACHE_MANAGE_TRANSIT) {
1312 ret = path->dentry->d_op->d_manage(path, false);
1313 flags = smp_load_acquire(&path->dentry->d_flags);
1314 if (ret < 0)
1315 break;
1316 }
1317
1318 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1319 struct vfsmount *mounted = lookup_mnt(path);
1320 if (mounted) { // ... in our namespace
1321 dput(path->dentry);
1322 if (need_mntput)
1323 mntput(path->mnt);
1324 path->mnt = mounted;
1325 path->dentry = dget(mounted->mnt_root);
1326 // here we know it's positive
1327 flags = path->dentry->d_flags;
1328 need_mntput = true;
1329 continue;
1330 }
1331 }
1332
1333 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1334 break;
1335
1336 // uncovered automount point
1337 ret = follow_automount(path, count, lookup_flags);
1338 flags = smp_load_acquire(&path->dentry->d_flags);
1339 if (ret < 0)
1340 break;
1341 }
1342
1343 if (ret == -EISDIR)
1344 ret = 0;
1345 // possible if you race with several mount --move
1346 if (need_mntput && path->mnt == mnt)
1347 mntput(path->mnt);
1348 if (!ret && unlikely(d_flags_negative(flags)))
1349 ret = -ENOENT;
1350 *jumped = need_mntput;
1351 return ret;
1352 }
1353
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1354 static inline int traverse_mounts(struct path *path, bool *jumped,
1355 int *count, unsigned lookup_flags)
1356 {
1357 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1358
1359 /* fastpath */
1360 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1361 *jumped = false;
1362 if (unlikely(d_flags_negative(flags)))
1363 return -ENOENT;
1364 return 0;
1365 }
1366 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1367 }
1368
follow_down_one(struct path * path)1369 int follow_down_one(struct path *path)
1370 {
1371 struct vfsmount *mounted;
1372
1373 mounted = lookup_mnt(path);
1374 if (mounted) {
1375 dput(path->dentry);
1376 mntput(path->mnt);
1377 path->mnt = mounted;
1378 path->dentry = dget(mounted->mnt_root);
1379 return 1;
1380 }
1381 return 0;
1382 }
1383 EXPORT_SYMBOL(follow_down_one);
1384
1385 /*
1386 * Follow down to the covering mount currently visible to userspace. At each
1387 * point, the filesystem owning that dentry may be queried as to whether the
1388 * caller is permitted to proceed or not.
1389 */
follow_down(struct path * path)1390 int follow_down(struct path *path)
1391 {
1392 struct vfsmount *mnt = path->mnt;
1393 bool jumped;
1394 int ret = traverse_mounts(path, &jumped, NULL, 0);
1395
1396 if (path->mnt != mnt)
1397 mntput(mnt);
1398 return ret;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1404 * we meet a managed dentry that would need blocking.
1405 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1406 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1407 struct inode **inode, unsigned *seqp)
1408 {
1409 struct dentry *dentry = path->dentry;
1410 unsigned int flags = dentry->d_flags;
1411
1412 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1413 return true;
1414
1415 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1416 return false;
1417
1418 for (;;) {
1419 /*
1420 * Don't forget we might have a non-mountpoint managed dentry
1421 * that wants to block transit.
1422 */
1423 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1424 int res = dentry->d_op->d_manage(path, true);
1425 if (res)
1426 return res == -EISDIR;
1427 flags = dentry->d_flags;
1428 }
1429
1430 if (flags & DCACHE_MOUNTED) {
1431 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1432 if (mounted) {
1433 path->mnt = &mounted->mnt;
1434 dentry = path->dentry = mounted->mnt.mnt_root;
1435 nd->flags |= LOOKUP_JUMPED;
1436 *seqp = read_seqcount_begin(&dentry->d_seq);
1437 *inode = dentry->d_inode;
1438 /*
1439 * We don't need to re-check ->d_seq after this
1440 * ->d_inode read - there will be an RCU delay
1441 * between mount hash removal and ->mnt_root
1442 * becoming unpinned.
1443 */
1444 flags = dentry->d_flags;
1445 if (read_seqretry(&mount_lock, nd->m_seq))
1446 return false;
1447 continue;
1448 }
1449 if (read_seqretry(&mount_lock, nd->m_seq))
1450 return false;
1451 }
1452 return !(flags & DCACHE_NEED_AUTOMOUNT);
1453 }
1454 }
1455
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path,struct inode ** inode,unsigned int * seqp)1456 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1457 struct path *path, struct inode **inode,
1458 unsigned int *seqp)
1459 {
1460 bool jumped;
1461 int ret;
1462
1463 path->mnt = nd->path.mnt;
1464 path->dentry = dentry;
1465 if (nd->flags & LOOKUP_RCU) {
1466 unsigned int seq = *seqp;
1467 if (unlikely(!*inode))
1468 return -ENOENT;
1469 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1470 return 0;
1471 if (!try_to_unlazy_next(nd, dentry, seq))
1472 return -ECHILD;
1473 // *path might've been clobbered by __follow_mount_rcu()
1474 path->mnt = nd->path.mnt;
1475 path->dentry = dentry;
1476 }
1477 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1478 if (jumped) {
1479 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1480 ret = -EXDEV;
1481 else
1482 nd->flags |= LOOKUP_JUMPED;
1483 }
1484 if (unlikely(ret)) {
1485 dput(path->dentry);
1486 if (path->mnt != nd->path.mnt)
1487 mntput(path->mnt);
1488 } else {
1489 *inode = d_backing_inode(path->dentry);
1490 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1491 }
1492 return ret;
1493 }
1494
1495 /*
1496 * This looks up the name in dcache and possibly revalidates the found dentry.
1497 * NULL is returned if the dentry does not exist in the cache.
1498 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1499 static struct dentry *lookup_dcache(const struct qstr *name,
1500 struct dentry *dir,
1501 unsigned int flags)
1502 {
1503 struct dentry *dentry = d_lookup(dir, name);
1504 if (dentry) {
1505 int error = d_revalidate(dentry, flags);
1506 if (unlikely(error <= 0)) {
1507 if (!error)
1508 d_invalidate(dentry);
1509 dput(dentry);
1510 return ERR_PTR(error);
1511 }
1512 }
1513 return dentry;
1514 }
1515
1516 /*
1517 * Parent directory has inode locked exclusive. This is one
1518 * and only case when ->lookup() gets called on non in-lookup
1519 * dentries - as the matter of fact, this only gets called
1520 * when directory is guaranteed to have no in-lookup children
1521 * at all.
1522 */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1523 static struct dentry *__lookup_hash(const struct qstr *name,
1524 struct dentry *base, unsigned int flags)
1525 {
1526 struct dentry *dentry = lookup_dcache(name, base, flags);
1527 struct dentry *old;
1528 struct inode *dir = base->d_inode;
1529
1530 if (dentry)
1531 return dentry;
1532
1533 /* Don't create child dentry for a dead directory. */
1534 if (unlikely(IS_DEADDIR(dir)))
1535 return ERR_PTR(-ENOENT);
1536
1537 dentry = d_alloc(base, name);
1538 if (unlikely(!dentry))
1539 return ERR_PTR(-ENOMEM);
1540
1541 old = dir->i_op->lookup(dir, dentry, flags);
1542 if (unlikely(old)) {
1543 dput(dentry);
1544 dentry = old;
1545 }
1546 return dentry;
1547 }
1548
lookup_fast(struct nameidata * nd,struct inode ** inode,unsigned * seqp)1549 static struct dentry *lookup_fast(struct nameidata *nd,
1550 struct inode **inode,
1551 unsigned *seqp)
1552 {
1553 struct dentry *dentry, *parent = nd->path.dentry;
1554 int status = 1;
1555
1556 /*
1557 * Rename seqlock is not required here because in the off chance
1558 * of a false negative due to a concurrent rename, the caller is
1559 * going to fall back to non-racy lookup.
1560 */
1561 if (nd->flags & LOOKUP_RCU) {
1562 unsigned seq;
1563 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564 if (unlikely(!dentry)) {
1565 if (!try_to_unlazy(nd))
1566 return ERR_PTR(-ECHILD);
1567 return NULL;
1568 }
1569
1570 /*
1571 * This sequence count validates that the inode matches
1572 * the dentry name information from lookup.
1573 */
1574 *inode = d_backing_inode(dentry);
1575 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1576 return ERR_PTR(-ECHILD);
1577
1578 /*
1579 * This sequence count validates that the parent had no
1580 * changes while we did the lookup of the dentry above.
1581 *
1582 * The memory barrier in read_seqcount_begin of child is
1583 * enough, we can use __read_seqcount_retry here.
1584 */
1585 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1586 return ERR_PTR(-ECHILD);
1587
1588 *seqp = seq;
1589 status = d_revalidate(dentry, nd->flags);
1590 if (likely(status > 0))
1591 return dentry;
1592 if (!try_to_unlazy_next(nd, dentry, seq))
1593 return ERR_PTR(-ECHILD);
1594 if (unlikely(status == -ECHILD))
1595 /* we'd been told to redo it in non-rcu mode */
1596 status = d_revalidate(dentry, nd->flags);
1597 } else {
1598 dentry = __d_lookup(parent, &nd->last);
1599 if (unlikely(!dentry))
1600 return NULL;
1601 status = d_revalidate(dentry, nd->flags);
1602 }
1603 if (unlikely(status <= 0)) {
1604 if (!status)
1605 d_invalidate(dentry);
1606 dput(dentry);
1607 return ERR_PTR(status);
1608 }
1609 return dentry;
1610 }
1611
1612 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1613 static struct dentry *__lookup_slow(const struct qstr *name,
1614 struct dentry *dir,
1615 unsigned int flags)
1616 {
1617 struct dentry *dentry, *old;
1618 struct inode *inode = dir->d_inode;
1619 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1620
1621 /* Don't go there if it's already dead */
1622 if (unlikely(IS_DEADDIR(inode)))
1623 return ERR_PTR(-ENOENT);
1624 again:
1625 dentry = d_alloc_parallel(dir, name, &wq);
1626 if (IS_ERR(dentry))
1627 return dentry;
1628 if (unlikely(!d_in_lookup(dentry))) {
1629 int error = d_revalidate(dentry, flags);
1630 if (unlikely(error <= 0)) {
1631 if (!error) {
1632 d_invalidate(dentry);
1633 dput(dentry);
1634 goto again;
1635 }
1636 dput(dentry);
1637 dentry = ERR_PTR(error);
1638 }
1639 } else {
1640 old = inode->i_op->lookup(inode, dentry, flags);
1641 d_lookup_done(dentry);
1642 if (unlikely(old)) {
1643 dput(dentry);
1644 dentry = old;
1645 }
1646 }
1647 return dentry;
1648 }
1649
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1650 static struct dentry *lookup_slow(const struct qstr *name,
1651 struct dentry *dir,
1652 unsigned int flags)
1653 {
1654 struct inode *inode = dir->d_inode;
1655 struct dentry *res;
1656 inode_lock_shared(inode);
1657 res = __lookup_slow(name, dir, flags);
1658 inode_unlock_shared(inode);
1659 return res;
1660 }
1661
may_lookup(struct nameidata * nd)1662 static inline int may_lookup(struct nameidata *nd)
1663 {
1664 if (nd->flags & LOOKUP_RCU) {
1665 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1666 if (err != -ECHILD || !try_to_unlazy(nd))
1667 return err;
1668 }
1669 return inode_permission(nd->inode, MAY_EXEC);
1670 }
1671
reserve_stack(struct nameidata * nd,struct path * link,unsigned seq)1672 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1673 {
1674 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1675 return -ELOOP;
1676
1677 if (likely(nd->depth != EMBEDDED_LEVELS))
1678 return 0;
1679 if (likely(nd->stack != nd->internal))
1680 return 0;
1681 if (likely(nd_alloc_stack(nd)))
1682 return 0;
1683
1684 if (nd->flags & LOOKUP_RCU) {
1685 // we need to grab link before we do unlazy. And we can't skip
1686 // unlazy even if we fail to grab the link - cleanup needs it
1687 bool grabbed_link = legitimize_path(nd, link, seq);
1688
1689 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1690 return -ECHILD;
1691
1692 if (nd_alloc_stack(nd))
1693 return 0;
1694 }
1695 return -ENOMEM;
1696 }
1697
1698 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1699
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq,int flags)1700 static const char *pick_link(struct nameidata *nd, struct path *link,
1701 struct inode *inode, unsigned seq, int flags)
1702 {
1703 struct saved *last;
1704 const char *res;
1705 int error = reserve_stack(nd, link, seq);
1706
1707 if (unlikely(error)) {
1708 if (!(nd->flags & LOOKUP_RCU))
1709 path_put(link);
1710 return ERR_PTR(error);
1711 }
1712 last = nd->stack + nd->depth++;
1713 last->link = *link;
1714 clear_delayed_call(&last->done);
1715 last->seq = seq;
1716
1717 if (flags & WALK_TRAILING) {
1718 error = may_follow_link(nd, inode);
1719 if (unlikely(error))
1720 return ERR_PTR(error);
1721 }
1722
1723 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1724 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1725 return ERR_PTR(-ELOOP);
1726
1727 if (!(nd->flags & LOOKUP_RCU)) {
1728 touch_atime(&last->link);
1729 cond_resched();
1730 } else if (atime_needs_update(&last->link, inode)) {
1731 if (!try_to_unlazy(nd))
1732 return ERR_PTR(-ECHILD);
1733 touch_atime(&last->link);
1734 }
1735
1736 error = security_inode_follow_link(link->dentry, inode,
1737 nd->flags & LOOKUP_RCU);
1738 if (unlikely(error))
1739 return ERR_PTR(error);
1740
1741 res = READ_ONCE(inode->i_link);
1742 if (!res) {
1743 const char * (*get)(struct dentry *, struct inode *,
1744 struct delayed_call *);
1745 get = inode->i_op->get_link;
1746 if (nd->flags & LOOKUP_RCU) {
1747 res = get(NULL, inode, &last->done);
1748 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1749 res = get(link->dentry, inode, &last->done);
1750 } else {
1751 res = get(link->dentry, inode, &last->done);
1752 }
1753 if (!res)
1754 goto all_done;
1755 if (IS_ERR(res))
1756 return res;
1757 }
1758 if (*res == '/') {
1759 error = nd_jump_root(nd);
1760 if (unlikely(error))
1761 return ERR_PTR(error);
1762 while (unlikely(*++res == '/'))
1763 ;
1764 }
1765 if (*res)
1766 return res;
1767 all_done: // pure jump
1768 put_link(nd);
1769 return NULL;
1770 }
1771
1772 /*
1773 * Do we need to follow links? We _really_ want to be able
1774 * to do this check without having to look at inode->i_op,
1775 * so we keep a cache of "no, this doesn't need follow_link"
1776 * for the common case.
1777 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry,struct inode * inode,unsigned seq)1778 static const char *step_into(struct nameidata *nd, int flags,
1779 struct dentry *dentry, struct inode *inode, unsigned seq)
1780 {
1781 struct path path;
1782 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1783
1784 if (err < 0)
1785 return ERR_PTR(err);
1786 if (likely(!d_is_symlink(path.dentry)) ||
1787 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1788 (flags & WALK_NOFOLLOW)) {
1789 /* not a symlink or should not follow */
1790 if (!(nd->flags & LOOKUP_RCU)) {
1791 dput(nd->path.dentry);
1792 if (nd->path.mnt != path.mnt)
1793 mntput(nd->path.mnt);
1794 }
1795 nd->path = path;
1796 nd->inode = inode;
1797 nd->seq = seq;
1798 return NULL;
1799 }
1800 if (nd->flags & LOOKUP_RCU) {
1801 /* make sure that d_is_symlink above matches inode */
1802 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1803 return ERR_PTR(-ECHILD);
1804 } else {
1805 if (path.mnt == nd->path.mnt)
1806 mntget(path.mnt);
1807 }
1808 return pick_link(nd, &path, inode, seq, flags);
1809 }
1810
follow_dotdot_rcu(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1811 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1812 struct inode **inodep,
1813 unsigned *seqp)
1814 {
1815 struct dentry *parent, *old;
1816
1817 if (path_equal(&nd->path, &nd->root))
1818 goto in_root;
1819 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1820 struct path path;
1821 unsigned seq;
1822 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1823 &nd->root, &path, &seq))
1824 goto in_root;
1825 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1826 return ERR_PTR(-ECHILD);
1827 nd->path = path;
1828 nd->inode = path.dentry->d_inode;
1829 nd->seq = seq;
1830 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1831 return ERR_PTR(-ECHILD);
1832 /* we know that mountpoint was pinned */
1833 }
1834 old = nd->path.dentry;
1835 parent = old->d_parent;
1836 *inodep = parent->d_inode;
1837 *seqp = read_seqcount_begin(&parent->d_seq);
1838 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1839 return ERR_PTR(-ECHILD);
1840 if (unlikely(!path_connected(nd->path.mnt, parent)))
1841 return ERR_PTR(-ECHILD);
1842 return parent;
1843 in_root:
1844 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1845 return ERR_PTR(-ECHILD);
1846 if (unlikely(nd->flags & LOOKUP_BENEATH))
1847 return ERR_PTR(-ECHILD);
1848 return NULL;
1849 }
1850
follow_dotdot(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1851 static struct dentry *follow_dotdot(struct nameidata *nd,
1852 struct inode **inodep,
1853 unsigned *seqp)
1854 {
1855 struct dentry *parent;
1856
1857 if (path_equal(&nd->path, &nd->root))
1858 goto in_root;
1859 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1860 struct path path;
1861
1862 if (!choose_mountpoint(real_mount(nd->path.mnt),
1863 &nd->root, &path))
1864 goto in_root;
1865 path_put(&nd->path);
1866 nd->path = path;
1867 nd->inode = path.dentry->d_inode;
1868 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1869 return ERR_PTR(-EXDEV);
1870 }
1871 /* rare case of legitimate dget_parent()... */
1872 parent = dget_parent(nd->path.dentry);
1873 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1874 dput(parent);
1875 return ERR_PTR(-ENOENT);
1876 }
1877 *seqp = 0;
1878 *inodep = parent->d_inode;
1879 return parent;
1880
1881 in_root:
1882 if (unlikely(nd->flags & LOOKUP_BENEATH))
1883 return ERR_PTR(-EXDEV);
1884 dget(nd->path.dentry);
1885 return NULL;
1886 }
1887
handle_dots(struct nameidata * nd,int type)1888 static const char *handle_dots(struct nameidata *nd, int type)
1889 {
1890 if (type == LAST_DOTDOT) {
1891 const char *error = NULL;
1892 struct dentry *parent;
1893 struct inode *inode;
1894 unsigned seq;
1895
1896 if (!nd->root.mnt) {
1897 error = ERR_PTR(set_root(nd));
1898 if (error)
1899 return error;
1900 }
1901 if (nd->flags & LOOKUP_RCU)
1902 parent = follow_dotdot_rcu(nd, &inode, &seq);
1903 else
1904 parent = follow_dotdot(nd, &inode, &seq);
1905 if (IS_ERR(parent))
1906 return ERR_CAST(parent);
1907 if (unlikely(!parent))
1908 error = step_into(nd, WALK_NOFOLLOW,
1909 nd->path.dentry, nd->inode, nd->seq);
1910 else
1911 error = step_into(nd, WALK_NOFOLLOW,
1912 parent, inode, seq);
1913 if (unlikely(error))
1914 return error;
1915
1916 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1917 /*
1918 * If there was a racing rename or mount along our
1919 * path, then we can't be sure that ".." hasn't jumped
1920 * above nd->root (and so userspace should retry or use
1921 * some fallback).
1922 */
1923 smp_rmb();
1924 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1925 return ERR_PTR(-EAGAIN);
1926 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1927 return ERR_PTR(-EAGAIN);
1928 }
1929 }
1930 return NULL;
1931 }
1932
walk_component(struct nameidata * nd,int flags)1933 static const char *walk_component(struct nameidata *nd, int flags)
1934 {
1935 struct dentry *dentry;
1936 struct inode *inode;
1937 unsigned seq;
1938 /*
1939 * "." and ".." are special - ".." especially so because it has
1940 * to be able to know about the current root directory and
1941 * parent relationships.
1942 */
1943 if (unlikely(nd->last_type != LAST_NORM)) {
1944 if (!(flags & WALK_MORE) && nd->depth)
1945 put_link(nd);
1946 return handle_dots(nd, nd->last_type);
1947 }
1948 dentry = lookup_fast(nd, &inode, &seq);
1949 if (IS_ERR(dentry))
1950 return ERR_CAST(dentry);
1951 if (unlikely(!dentry)) {
1952 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1953 if (IS_ERR(dentry))
1954 return ERR_CAST(dentry);
1955 }
1956 if (!(flags & WALK_MORE) && nd->depth)
1957 put_link(nd);
1958 return step_into(nd, flags, dentry, inode, seq);
1959 }
1960
1961 /*
1962 * We can do the critical dentry name comparison and hashing
1963 * operations one word at a time, but we are limited to:
1964 *
1965 * - Architectures with fast unaligned word accesses. We could
1966 * do a "get_unaligned()" if this helps and is sufficiently
1967 * fast.
1968 *
1969 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1970 * do not trap on the (extremely unlikely) case of a page
1971 * crossing operation.
1972 *
1973 * - Furthermore, we need an efficient 64-bit compile for the
1974 * 64-bit case in order to generate the "number of bytes in
1975 * the final mask". Again, that could be replaced with a
1976 * efficient population count instruction or similar.
1977 */
1978 #ifdef CONFIG_DCACHE_WORD_ACCESS
1979
1980 #include <asm/word-at-a-time.h>
1981
1982 #ifdef HASH_MIX
1983
1984 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1985
1986 #elif defined(CONFIG_64BIT)
1987 /*
1988 * Register pressure in the mixing function is an issue, particularly
1989 * on 32-bit x86, but almost any function requires one state value and
1990 * one temporary. Instead, use a function designed for two state values
1991 * and no temporaries.
1992 *
1993 * This function cannot create a collision in only two iterations, so
1994 * we have two iterations to achieve avalanche. In those two iterations,
1995 * we have six layers of mixing, which is enough to spread one bit's
1996 * influence out to 2^6 = 64 state bits.
1997 *
1998 * Rotate constants are scored by considering either 64 one-bit input
1999 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2000 * probability of that delta causing a change to each of the 128 output
2001 * bits, using a sample of random initial states.
2002 *
2003 * The Shannon entropy of the computed probabilities is then summed
2004 * to produce a score. Ideally, any input change has a 50% chance of
2005 * toggling any given output bit.
2006 *
2007 * Mixing scores (in bits) for (12,45):
2008 * Input delta: 1-bit 2-bit
2009 * 1 round: 713.3 42542.6
2010 * 2 rounds: 2753.7 140389.8
2011 * 3 rounds: 5954.1 233458.2
2012 * 4 rounds: 7862.6 256672.2
2013 * Perfect: 8192 258048
2014 * (64*128) (64*63/2 * 128)
2015 */
2016 #define HASH_MIX(x, y, a) \
2017 ( x ^= (a), \
2018 y ^= x, x = rol64(x,12),\
2019 x += y, y = rol64(y,45),\
2020 y *= 9 )
2021
2022 /*
2023 * Fold two longs into one 32-bit hash value. This must be fast, but
2024 * latency isn't quite as critical, as there is a fair bit of additional
2025 * work done before the hash value is used.
2026 */
fold_hash(unsigned long x,unsigned long y)2027 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2028 {
2029 y ^= x * GOLDEN_RATIO_64;
2030 y *= GOLDEN_RATIO_64;
2031 return y >> 32;
2032 }
2033
2034 #else /* 32-bit case */
2035
2036 /*
2037 * Mixing scores (in bits) for (7,20):
2038 * Input delta: 1-bit 2-bit
2039 * 1 round: 330.3 9201.6
2040 * 2 rounds: 1246.4 25475.4
2041 * 3 rounds: 1907.1 31295.1
2042 * 4 rounds: 2042.3 31718.6
2043 * Perfect: 2048 31744
2044 * (32*64) (32*31/2 * 64)
2045 */
2046 #define HASH_MIX(x, y, a) \
2047 ( x ^= (a), \
2048 y ^= x, x = rol32(x, 7),\
2049 x += y, y = rol32(y,20),\
2050 y *= 9 )
2051
fold_hash(unsigned long x,unsigned long y)2052 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2053 {
2054 /* Use arch-optimized multiply if one exists */
2055 return __hash_32(y ^ __hash_32(x));
2056 }
2057
2058 #endif
2059
2060 /*
2061 * Return the hash of a string of known length. This is carfully
2062 * designed to match hash_name(), which is the more critical function.
2063 * In particular, we must end by hashing a final word containing 0..7
2064 * payload bytes, to match the way that hash_name() iterates until it
2065 * finds the delimiter after the name.
2066 */
full_name_hash(const void * salt,const char * name,unsigned int len)2067 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2068 {
2069 unsigned long a, x = 0, y = (unsigned long)salt;
2070
2071 for (;;) {
2072 if (!len)
2073 goto done;
2074 a = load_unaligned_zeropad(name);
2075 if (len < sizeof(unsigned long))
2076 break;
2077 HASH_MIX(x, y, a);
2078 name += sizeof(unsigned long);
2079 len -= sizeof(unsigned long);
2080 }
2081 x ^= a & bytemask_from_count(len);
2082 done:
2083 return fold_hash(x, y);
2084 }
2085 EXPORT_SYMBOL(full_name_hash);
2086
2087 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2088 u64 hashlen_string(const void *salt, const char *name)
2089 {
2090 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2091 unsigned long adata, mask, len;
2092 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2093
2094 len = 0;
2095 goto inside;
2096
2097 do {
2098 HASH_MIX(x, y, a);
2099 len += sizeof(unsigned long);
2100 inside:
2101 a = load_unaligned_zeropad(name+len);
2102 } while (!has_zero(a, &adata, &constants));
2103
2104 adata = prep_zero_mask(a, adata, &constants);
2105 mask = create_zero_mask(adata);
2106 x ^= a & zero_bytemask(mask);
2107
2108 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2109 }
2110 EXPORT_SYMBOL(hashlen_string);
2111
2112 /*
2113 * Calculate the length and hash of the path component, and
2114 * return the "hash_len" as the result.
2115 */
hash_name(const void * salt,const char * name)2116 static inline u64 hash_name(const void *salt, const char *name)
2117 {
2118 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2119 unsigned long adata, bdata, mask, len;
2120 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2121
2122 len = 0;
2123 goto inside;
2124
2125 do {
2126 HASH_MIX(x, y, a);
2127 len += sizeof(unsigned long);
2128 inside:
2129 a = load_unaligned_zeropad(name+len);
2130 b = a ^ REPEAT_BYTE('/');
2131 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2132
2133 adata = prep_zero_mask(a, adata, &constants);
2134 bdata = prep_zero_mask(b, bdata, &constants);
2135 mask = create_zero_mask(adata | bdata);
2136 x ^= a & zero_bytemask(mask);
2137
2138 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2139 }
2140
2141 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2142
2143 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2144 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2145 {
2146 unsigned long hash = init_name_hash(salt);
2147 while (len--)
2148 hash = partial_name_hash((unsigned char)*name++, hash);
2149 return end_name_hash(hash);
2150 }
2151 EXPORT_SYMBOL(full_name_hash);
2152
2153 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2154 u64 hashlen_string(const void *salt, const char *name)
2155 {
2156 unsigned long hash = init_name_hash(salt);
2157 unsigned long len = 0, c;
2158
2159 c = (unsigned char)*name;
2160 while (c) {
2161 len++;
2162 hash = partial_name_hash(c, hash);
2163 c = (unsigned char)name[len];
2164 }
2165 return hashlen_create(end_name_hash(hash), len);
2166 }
2167 EXPORT_SYMBOL(hashlen_string);
2168
2169 /*
2170 * We know there's a real path component here of at least
2171 * one character.
2172 */
hash_name(const void * salt,const char * name)2173 static inline u64 hash_name(const void *salt, const char *name)
2174 {
2175 unsigned long hash = init_name_hash(salt);
2176 unsigned long len = 0, c;
2177
2178 c = (unsigned char)*name;
2179 do {
2180 len++;
2181 hash = partial_name_hash(c, hash);
2182 c = (unsigned char)name[len];
2183 } while (c && c != '/');
2184 return hashlen_create(end_name_hash(hash), len);
2185 }
2186
2187 #endif
2188
2189 /*
2190 * Name resolution.
2191 * This is the basic name resolution function, turning a pathname into
2192 * the final dentry. We expect 'base' to be positive and a directory.
2193 *
2194 * Returns 0 and nd will have valid dentry and mnt on success.
2195 * Returns error and drops reference to input namei data on failure.
2196 */
link_path_walk(const char * name,struct nameidata * nd)2197 static int link_path_walk(const char *name, struct nameidata *nd)
2198 {
2199 int depth = 0; // depth <= nd->depth
2200 int err;
2201
2202 nd->last_type = LAST_ROOT;
2203 nd->flags |= LOOKUP_PARENT;
2204 if (IS_ERR(name))
2205 return PTR_ERR(name);
2206 while (*name=='/')
2207 name++;
2208 if (!*name)
2209 return 0;
2210
2211 /* At this point we know we have a real path component. */
2212 for(;;) {
2213 const char *link;
2214 u64 hash_len;
2215 int type;
2216
2217 err = may_lookup(nd);
2218 if (err)
2219 return err;
2220
2221 hash_len = hash_name(nd->path.dentry, name);
2222
2223 type = LAST_NORM;
2224 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2225 case 2:
2226 if (name[1] == '.') {
2227 type = LAST_DOTDOT;
2228 nd->flags |= LOOKUP_JUMPED;
2229 }
2230 break;
2231 case 1:
2232 type = LAST_DOT;
2233 }
2234 if (likely(type == LAST_NORM)) {
2235 struct dentry *parent = nd->path.dentry;
2236 nd->flags &= ~LOOKUP_JUMPED;
2237 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2238 struct qstr this = { { .hash_len = hash_len }, .name = name };
2239 err = parent->d_op->d_hash(parent, &this);
2240 if (err < 0)
2241 return err;
2242 hash_len = this.hash_len;
2243 name = this.name;
2244 }
2245 }
2246
2247 nd->last.hash_len = hash_len;
2248 nd->last.name = name;
2249 nd->last_type = type;
2250
2251 name += hashlen_len(hash_len);
2252 if (!*name)
2253 goto OK;
2254 /*
2255 * If it wasn't NUL, we know it was '/'. Skip that
2256 * slash, and continue until no more slashes.
2257 */
2258 do {
2259 name++;
2260 } while (unlikely(*name == '/'));
2261 if (unlikely(!*name)) {
2262 OK:
2263 /* pathname or trailing symlink, done */
2264 if (!depth) {
2265 nd->dir_uid = nd->inode->i_uid;
2266 nd->dir_mode = nd->inode->i_mode;
2267 nd->flags &= ~LOOKUP_PARENT;
2268 return 0;
2269 }
2270 /* last component of nested symlink */
2271 name = nd->stack[--depth].name;
2272 link = walk_component(nd, 0);
2273 } else {
2274 /* not the last component */
2275 link = walk_component(nd, WALK_MORE);
2276 }
2277 if (unlikely(link)) {
2278 if (IS_ERR(link))
2279 return PTR_ERR(link);
2280 /* a symlink to follow */
2281 nd->stack[depth++].name = name;
2282 name = link;
2283 continue;
2284 }
2285 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2286 if (nd->flags & LOOKUP_RCU) {
2287 if (!try_to_unlazy(nd))
2288 return -ECHILD;
2289 }
2290 return -ENOTDIR;
2291 }
2292 }
2293 }
2294
2295 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2296 static const char *path_init(struct nameidata *nd, unsigned flags)
2297 {
2298 int error;
2299 const char *s = nd->name->name;
2300
2301 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2302 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2303 return ERR_PTR(-EAGAIN);
2304
2305 if (!*s)
2306 flags &= ~LOOKUP_RCU;
2307 if (flags & LOOKUP_RCU)
2308 rcu_read_lock();
2309
2310 nd->flags = flags | LOOKUP_JUMPED;
2311 nd->depth = 0;
2312
2313 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2314 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2315 smp_rmb();
2316
2317 if (flags & LOOKUP_ROOT) {
2318 struct dentry *root = nd->root.dentry;
2319 struct inode *inode = root->d_inode;
2320 if (*s && unlikely(!d_can_lookup(root)))
2321 return ERR_PTR(-ENOTDIR);
2322 nd->path = nd->root;
2323 nd->inode = inode;
2324 if (flags & LOOKUP_RCU) {
2325 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2326 nd->root_seq = nd->seq;
2327 } else {
2328 path_get(&nd->path);
2329 }
2330 return s;
2331 }
2332
2333 nd->root.mnt = NULL;
2334
2335 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2336 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2337 error = nd_jump_root(nd);
2338 if (unlikely(error))
2339 return ERR_PTR(error);
2340 return s;
2341 }
2342
2343 /* Relative pathname -- get the starting-point it is relative to. */
2344 if (nd->dfd == AT_FDCWD) {
2345 if (flags & LOOKUP_RCU) {
2346 struct fs_struct *fs = current->fs;
2347 unsigned seq;
2348
2349 do {
2350 seq = read_seqcount_begin(&fs->seq);
2351 nd->path = fs->pwd;
2352 nd->inode = nd->path.dentry->d_inode;
2353 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2354 } while (read_seqcount_retry(&fs->seq, seq));
2355 } else {
2356 get_fs_pwd(current->fs, &nd->path);
2357 nd->inode = nd->path.dentry->d_inode;
2358 }
2359 } else {
2360 /* Caller must check execute permissions on the starting path component */
2361 struct fd f = fdget_raw(nd->dfd);
2362 struct dentry *dentry;
2363
2364 if (!f.file)
2365 return ERR_PTR(-EBADF);
2366
2367 dentry = f.file->f_path.dentry;
2368
2369 if (*s && unlikely(!d_can_lookup(dentry))) {
2370 fdput(f);
2371 return ERR_PTR(-ENOTDIR);
2372 }
2373
2374 nd->path = f.file->f_path;
2375 if (flags & LOOKUP_RCU) {
2376 nd->inode = nd->path.dentry->d_inode;
2377 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2378 } else {
2379 path_get(&nd->path);
2380 nd->inode = nd->path.dentry->d_inode;
2381 }
2382 fdput(f);
2383 }
2384
2385 /* For scoped-lookups we need to set the root to the dirfd as well. */
2386 if (flags & LOOKUP_IS_SCOPED) {
2387 nd->root = nd->path;
2388 if (flags & LOOKUP_RCU) {
2389 nd->root_seq = nd->seq;
2390 } else {
2391 path_get(&nd->root);
2392 nd->flags |= LOOKUP_ROOT_GRABBED;
2393 }
2394 }
2395 return s;
2396 }
2397
lookup_last(struct nameidata * nd)2398 static inline const char *lookup_last(struct nameidata *nd)
2399 {
2400 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2401 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2402
2403 return walk_component(nd, WALK_TRAILING);
2404 }
2405
handle_lookup_down(struct nameidata * nd)2406 static int handle_lookup_down(struct nameidata *nd)
2407 {
2408 if (!(nd->flags & LOOKUP_RCU))
2409 dget(nd->path.dentry);
2410 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2411 nd->path.dentry, nd->inode, nd->seq));
2412 }
2413
2414 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2415 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2416 {
2417 const char *s = path_init(nd, flags);
2418 int err;
2419
2420 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2421 err = handle_lookup_down(nd);
2422 if (unlikely(err < 0))
2423 s = ERR_PTR(err);
2424 }
2425
2426 while (!(err = link_path_walk(s, nd)) &&
2427 (s = lookup_last(nd)) != NULL)
2428 ;
2429 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2430 err = handle_lookup_down(nd);
2431 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2432 }
2433 if (!err)
2434 err = complete_walk(nd);
2435
2436 if (!err && nd->flags & LOOKUP_DIRECTORY)
2437 if (!d_can_lookup(nd->path.dentry))
2438 err = -ENOTDIR;
2439 if (!err) {
2440 *path = nd->path;
2441 nd->path.mnt = NULL;
2442 nd->path.dentry = NULL;
2443 }
2444 terminate_walk(nd);
2445 return err;
2446 }
2447
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2448 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2449 struct path *path, struct path *root)
2450 {
2451 int retval;
2452 struct nameidata nd;
2453 if (IS_ERR(name))
2454 return PTR_ERR(name);
2455 if (unlikely(root)) {
2456 nd.root = *root;
2457 flags |= LOOKUP_ROOT;
2458 }
2459 set_nameidata(&nd, dfd, name);
2460 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2461 if (unlikely(retval == -ECHILD))
2462 retval = path_lookupat(&nd, flags, path);
2463 if (unlikely(retval == -ESTALE))
2464 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2465
2466 if (likely(!retval))
2467 audit_inode(name, path->dentry,
2468 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2469 restore_nameidata();
2470 putname(name);
2471 return retval;
2472 }
2473
2474 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2475 static int path_parentat(struct nameidata *nd, unsigned flags,
2476 struct path *parent)
2477 {
2478 const char *s = path_init(nd, flags);
2479 int err = link_path_walk(s, nd);
2480 if (!err)
2481 err = complete_walk(nd);
2482 if (!err) {
2483 *parent = nd->path;
2484 nd->path.mnt = NULL;
2485 nd->path.dentry = NULL;
2486 }
2487 terminate_walk(nd);
2488 return err;
2489 }
2490
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2491 static struct filename *filename_parentat(int dfd, struct filename *name,
2492 unsigned int flags, struct path *parent,
2493 struct qstr *last, int *type)
2494 {
2495 int retval;
2496 struct nameidata nd;
2497
2498 if (IS_ERR(name))
2499 return name;
2500 set_nameidata(&nd, dfd, name);
2501 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2502 if (unlikely(retval == -ECHILD))
2503 retval = path_parentat(&nd, flags, parent);
2504 if (unlikely(retval == -ESTALE))
2505 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2506 if (likely(!retval)) {
2507 *last = nd.last;
2508 *type = nd.last_type;
2509 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2510 } else {
2511 putname(name);
2512 name = ERR_PTR(retval);
2513 }
2514 restore_nameidata();
2515 return name;
2516 }
2517
2518 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2519 struct dentry *kern_path_locked(const char *name, struct path *path)
2520 {
2521 struct filename *filename;
2522 struct dentry *d;
2523 struct qstr last;
2524 int type;
2525
2526 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2527 &last, &type);
2528 if (IS_ERR(filename))
2529 return ERR_CAST(filename);
2530 if (unlikely(type != LAST_NORM)) {
2531 path_put(path);
2532 putname(filename);
2533 return ERR_PTR(-EINVAL);
2534 }
2535 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2536 d = __lookup_hash(&last, path->dentry, 0);
2537 if (IS_ERR(d)) {
2538 inode_unlock(path->dentry->d_inode);
2539 path_put(path);
2540 }
2541 putname(filename);
2542 return d;
2543 }
2544
kern_path(const char * name,unsigned int flags,struct path * path)2545 int kern_path(const char *name, unsigned int flags, struct path *path)
2546 {
2547 return filename_lookup(AT_FDCWD, getname_kernel(name),
2548 flags, path, NULL);
2549 }
2550 EXPORT_SYMBOL(kern_path);
2551
2552 /**
2553 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2554 * @dentry: pointer to dentry of the base directory
2555 * @mnt: pointer to vfs mount of the base directory
2556 * @name: pointer to file name
2557 * @flags: lookup flags
2558 * @path: pointer to struct path to fill
2559 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2560 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2561 const char *name, unsigned int flags,
2562 struct path *path)
2563 {
2564 struct path root = {.mnt = mnt, .dentry = dentry};
2565 /* the first argument of filename_lookup() is ignored with root */
2566 return filename_lookup(AT_FDCWD, getname_kernel(name),
2567 flags , path, &root);
2568 }
2569 EXPORT_SYMBOL(vfs_path_lookup);
2570
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2571 static int lookup_one_len_common(const char *name, struct dentry *base,
2572 int len, struct qstr *this)
2573 {
2574 this->name = name;
2575 this->len = len;
2576 this->hash = full_name_hash(base, name, len);
2577 if (!len)
2578 return -EACCES;
2579
2580 if (unlikely(name[0] == '.')) {
2581 if (len < 2 || (len == 2 && name[1] == '.'))
2582 return -EACCES;
2583 }
2584
2585 while (len--) {
2586 unsigned int c = *(const unsigned char *)name++;
2587 if (c == '/' || c == '\0')
2588 return -EACCES;
2589 }
2590 /*
2591 * See if the low-level filesystem might want
2592 * to use its own hash..
2593 */
2594 if (base->d_flags & DCACHE_OP_HASH) {
2595 int err = base->d_op->d_hash(base, this);
2596 if (err < 0)
2597 return err;
2598 }
2599
2600 return inode_permission(base->d_inode, MAY_EXEC);
2601 }
2602
2603 /**
2604 * try_lookup_one_len - filesystem helper to lookup single pathname component
2605 * @name: pathname component to lookup
2606 * @base: base directory to lookup from
2607 * @len: maximum length @len should be interpreted to
2608 *
2609 * Look up a dentry by name in the dcache, returning NULL if it does not
2610 * currently exist. The function does not try to create a dentry.
2611 *
2612 * Note that this routine is purely a helper for filesystem usage and should
2613 * not be called by generic code.
2614 *
2615 * The caller must hold base->i_mutex.
2616 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2617 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2618 {
2619 struct qstr this;
2620 int err;
2621
2622 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2623
2624 err = lookup_one_len_common(name, base, len, &this);
2625 if (err)
2626 return ERR_PTR(err);
2627
2628 return lookup_dcache(&this, base, 0);
2629 }
2630 EXPORT_SYMBOL(try_lookup_one_len);
2631
2632 /**
2633 * lookup_one_len - filesystem helper to lookup single pathname component
2634 * @name: pathname component to lookup
2635 * @base: base directory to lookup from
2636 * @len: maximum length @len should be interpreted to
2637 *
2638 * Note that this routine is purely a helper for filesystem usage and should
2639 * not be called by generic code.
2640 *
2641 * The caller must hold base->i_mutex.
2642 */
lookup_one_len(const char * name,struct dentry * base,int len)2643 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2644 {
2645 struct dentry *dentry;
2646 struct qstr this;
2647 int err;
2648
2649 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2650
2651 err = lookup_one_len_common(name, base, len, &this);
2652 if (err)
2653 return ERR_PTR(err);
2654
2655 dentry = lookup_dcache(&this, base, 0);
2656 return dentry ? dentry : __lookup_slow(&this, base, 0);
2657 }
2658 EXPORT_SYMBOL(lookup_one_len);
2659
2660 /**
2661 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2662 * @name: pathname component to lookup
2663 * @base: base directory to lookup from
2664 * @len: maximum length @len should be interpreted to
2665 *
2666 * Note that this routine is purely a helper for filesystem usage and should
2667 * not be called by generic code.
2668 *
2669 * Unlike lookup_one_len, it should be called without the parent
2670 * i_mutex held, and will take the i_mutex itself if necessary.
2671 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2672 struct dentry *lookup_one_len_unlocked(const char *name,
2673 struct dentry *base, int len)
2674 {
2675 struct qstr this;
2676 int err;
2677 struct dentry *ret;
2678
2679 err = lookup_one_len_common(name, base, len, &this);
2680 if (err)
2681 return ERR_PTR(err);
2682
2683 ret = lookup_dcache(&this, base, 0);
2684 if (!ret)
2685 ret = lookup_slow(&this, base, 0);
2686 return ret;
2687 }
2688 EXPORT_SYMBOL(lookup_one_len_unlocked);
2689
2690 /*
2691 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2692 * on negatives. Returns known positive or ERR_PTR(); that's what
2693 * most of the users want. Note that pinned negative with unlocked parent
2694 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2695 * need to be very careful; pinned positives have ->d_inode stable, so
2696 * this one avoids such problems.
2697 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2698 struct dentry *lookup_positive_unlocked(const char *name,
2699 struct dentry *base, int len)
2700 {
2701 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2702 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2703 dput(ret);
2704 ret = ERR_PTR(-ENOENT);
2705 }
2706 return ret;
2707 }
2708 EXPORT_SYMBOL(lookup_positive_unlocked);
2709
2710 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2711 int path_pts(struct path *path)
2712 {
2713 /* Find something mounted on "pts" in the same directory as
2714 * the input path.
2715 */
2716 struct dentry *parent = dget_parent(path->dentry);
2717 struct dentry *child;
2718 struct qstr this = QSTR_INIT("pts", 3);
2719
2720 if (unlikely(!path_connected(path->mnt, parent))) {
2721 dput(parent);
2722 return -ENOENT;
2723 }
2724 dput(path->dentry);
2725 path->dentry = parent;
2726 child = d_hash_and_lookup(parent, &this);
2727 if (IS_ERR_OR_NULL(child))
2728 return -ENOENT;
2729
2730 path->dentry = child;
2731 dput(parent);
2732 follow_down(path);
2733 return 0;
2734 }
2735 #endif
2736
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2737 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2738 struct path *path, int *empty)
2739 {
2740 return filename_lookup(dfd, getname_flags(name, flags, empty),
2741 flags, path, NULL);
2742 }
2743 EXPORT_SYMBOL(user_path_at_empty);
2744
__check_sticky(struct inode * dir,struct inode * inode)2745 int __check_sticky(struct inode *dir, struct inode *inode)
2746 {
2747 kuid_t fsuid = current_fsuid();
2748
2749 if (uid_eq(inode->i_uid, fsuid))
2750 return 0;
2751 if (uid_eq(dir->i_uid, fsuid))
2752 return 0;
2753 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2754 }
2755 EXPORT_SYMBOL(__check_sticky);
2756
2757 /*
2758 * Check whether we can remove a link victim from directory dir, check
2759 * whether the type of victim is right.
2760 * 1. We can't do it if dir is read-only (done in permission())
2761 * 2. We should have write and exec permissions on dir
2762 * 3. We can't remove anything from append-only dir
2763 * 4. We can't do anything with immutable dir (done in permission())
2764 * 5. If the sticky bit on dir is set we should either
2765 * a. be owner of dir, or
2766 * b. be owner of victim, or
2767 * c. have CAP_FOWNER capability
2768 * 6. If the victim is append-only or immutable we can't do antyhing with
2769 * links pointing to it.
2770 * 7. If the victim has an unknown uid or gid we can't change the inode.
2771 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773 * 10. We can't remove a root or mountpoint.
2774 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775 * nfs_async_unlink().
2776 */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2778 {
2779 struct inode *inode = d_backing_inode(victim);
2780 int error;
2781
2782 if (d_is_negative(victim))
2783 return -ENOENT;
2784 BUG_ON(!inode);
2785
2786 BUG_ON(victim->d_parent->d_inode != dir);
2787
2788 /* Inode writeback is not safe when the uid or gid are invalid. */
2789 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2790 return -EOVERFLOW;
2791
2792 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2793
2794 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2795 if (error)
2796 return error;
2797 if (IS_APPEND(dir))
2798 return -EPERM;
2799
2800 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2801 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2802 return -EPERM;
2803 if (isdir) {
2804 if (!d_is_dir(victim))
2805 return -ENOTDIR;
2806 if (IS_ROOT(victim))
2807 return -EBUSY;
2808 } else if (d_is_dir(victim))
2809 return -EISDIR;
2810 if (IS_DEADDIR(dir))
2811 return -ENOENT;
2812 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2813 return -EBUSY;
2814 return 0;
2815 }
2816
2817 /* Check whether we can create an object with dentry child in directory
2818 * dir.
2819 * 1. We can't do it if child already exists (open has special treatment for
2820 * this case, but since we are inlined it's OK)
2821 * 2. We can't do it if dir is read-only (done in permission())
2822 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2823 * 4. We should have write and exec permissions on dir
2824 * 5. We can't do it if dir is immutable (done in permission())
2825 */
may_create(struct inode * dir,struct dentry * child)2826 static inline int may_create(struct inode *dir, struct dentry *child)
2827 {
2828 struct user_namespace *s_user_ns;
2829 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2830 if (child->d_inode)
2831 return -EEXIST;
2832 if (IS_DEADDIR(dir))
2833 return -ENOENT;
2834 s_user_ns = dir->i_sb->s_user_ns;
2835 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2836 !kgid_has_mapping(s_user_ns, current_fsgid()))
2837 return -EOVERFLOW;
2838 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2839 }
2840
2841 /*
2842 * p1 and p2 should be directories on the same fs.
2843 */
lock_rename(struct dentry * p1,struct dentry * p2)2844 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2845 {
2846 struct dentry *p;
2847
2848 if (p1 == p2) {
2849 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2850 return NULL;
2851 }
2852
2853 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2854
2855 p = d_ancestor(p2, p1);
2856 if (p) {
2857 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2858 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
2859 return p;
2860 }
2861
2862 p = d_ancestor(p1, p2);
2863 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865 return p;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868
unlock_rename(struct dentry * p1,struct dentry * p2)2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871 inode_unlock(p1->d_inode);
2872 if (p1 != p2) {
2873 inode_unlock(p2->d_inode);
2874 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875 }
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878
2879 /**
2880 * mode_strip_umask - handle vfs umask stripping
2881 * @dir: parent directory of the new inode
2882 * @mode: mode of the new inode to be created in @dir
2883 *
2884 * Umask stripping depends on whether or not the filesystem supports POSIX
2885 * ACLs. If the filesystem doesn't support it umask stripping is done directly
2886 * in here. If the filesystem does support POSIX ACLs umask stripping is
2887 * deferred until the filesystem calls posix_acl_create().
2888 *
2889 * Returns: mode
2890 */
mode_strip_umask(const struct inode * dir,umode_t mode)2891 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
2892 {
2893 if (!IS_POSIXACL(dir))
2894 mode &= ~current_umask();
2895 return mode;
2896 }
2897
2898 /**
2899 * vfs_prepare_mode - prepare the mode to be used for a new inode
2900 * @dir: parent directory of the new inode
2901 * @mode: mode of the new inode
2902 * @mask_perms: allowed permission by the vfs
2903 * @type: type of file to be created
2904 *
2905 * This helper consolidates and enforces vfs restrictions on the @mode of a new
2906 * object to be created.
2907 *
2908 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
2909 * the kernel documentation for mode_strip_umask()). Moving umask stripping
2910 * after setgid stripping allows the same ordering for both non-POSIX ACL and
2911 * POSIX ACL supporting filesystems.
2912 *
2913 * Note that it's currently valid for @type to be 0 if a directory is created.
2914 * Filesystems raise that flag individually and we need to check whether each
2915 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
2916 * non-zero type.
2917 *
2918 * Returns: mode to be passed to the filesystem
2919 */
vfs_prepare_mode(const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)2920 static inline umode_t vfs_prepare_mode(const struct inode *dir, umode_t mode,
2921 umode_t mask_perms, umode_t type)
2922 {
2923 mode = mode_strip_sgid(dir, mode);
2924 mode = mode_strip_umask(dir, mode);
2925
2926 /*
2927 * Apply the vfs mandated allowed permission mask and set the type of
2928 * file to be created before we call into the filesystem.
2929 */
2930 mode &= (mask_perms & ~S_IFMT);
2931 mode |= (type & S_IFMT);
2932
2933 return mode;
2934 }
2935
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2936 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2937 bool want_excl)
2938 {
2939 int error = may_create(dir, dentry);
2940 if (error)
2941 return error;
2942
2943 if (!dir->i_op->create)
2944 return -EACCES; /* shouldn't it be ENOSYS? */
2945
2946 mode = vfs_prepare_mode(dir, mode, S_IALLUGO, S_IFREG);
2947 error = security_inode_create(dir, dentry, mode);
2948 if (error)
2949 return error;
2950 error = dir->i_op->create(dir, dentry, mode, want_excl);
2951 if (!error)
2952 fsnotify_create(dir, dentry);
2953 return error;
2954 }
2955 EXPORT_SYMBOL_NS(vfs_create, ANDROID_GKI_VFS_EXPORT_ONLY);
2956
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)2957 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2958 int (*f)(struct dentry *, umode_t, void *),
2959 void *arg)
2960 {
2961 struct inode *dir = dentry->d_parent->d_inode;
2962 int error = may_create(dir, dentry);
2963 if (error)
2964 return error;
2965
2966 mode &= S_IALLUGO;
2967 mode |= S_IFREG;
2968 error = security_inode_create(dir, dentry, mode);
2969 if (error)
2970 return error;
2971 error = f(dentry, mode, arg);
2972 if (!error)
2973 fsnotify_create(dir, dentry);
2974 return error;
2975 }
2976 EXPORT_SYMBOL(vfs_mkobj);
2977
may_open_dev(const struct path * path)2978 bool may_open_dev(const struct path *path)
2979 {
2980 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2981 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2982 }
2983
may_open(const struct path * path,int acc_mode,int flag)2984 static int may_open(const struct path *path, int acc_mode, int flag)
2985 {
2986 struct dentry *dentry = path->dentry;
2987 struct inode *inode = dentry->d_inode;
2988 int error;
2989
2990 if (!inode)
2991 return -ENOENT;
2992
2993 switch (inode->i_mode & S_IFMT) {
2994 case S_IFLNK:
2995 return -ELOOP;
2996 case S_IFDIR:
2997 if (acc_mode & MAY_WRITE)
2998 return -EISDIR;
2999 if (acc_mode & MAY_EXEC)
3000 return -EACCES;
3001 break;
3002 case S_IFBLK:
3003 case S_IFCHR:
3004 if (!may_open_dev(path))
3005 return -EACCES;
3006 fallthrough;
3007 case S_IFIFO:
3008 case S_IFSOCK:
3009 if (acc_mode & MAY_EXEC)
3010 return -EACCES;
3011 flag &= ~O_TRUNC;
3012 break;
3013 case S_IFREG:
3014 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3015 return -EACCES;
3016 break;
3017 }
3018
3019 error = inode_permission(inode, MAY_OPEN | acc_mode);
3020 if (error)
3021 return error;
3022
3023 /*
3024 * An append-only file must be opened in append mode for writing.
3025 */
3026 if (IS_APPEND(inode)) {
3027 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3028 return -EPERM;
3029 if (flag & O_TRUNC)
3030 return -EPERM;
3031 }
3032
3033 /* O_NOATIME can only be set by the owner or superuser */
3034 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3035 return -EPERM;
3036
3037 return 0;
3038 }
3039
handle_truncate(struct file * filp)3040 static int handle_truncate(struct file *filp)
3041 {
3042 const struct path *path = &filp->f_path;
3043 struct inode *inode = path->dentry->d_inode;
3044 int error = get_write_access(inode);
3045 if (error)
3046 return error;
3047 /*
3048 * Refuse to truncate files with mandatory locks held on them.
3049 */
3050 error = locks_verify_locked(filp);
3051 if (!error)
3052 error = security_path_truncate(path);
3053 if (!error) {
3054 error = do_truncate(path->dentry, 0,
3055 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3056 filp);
3057 }
3058 put_write_access(inode);
3059 return error;
3060 }
3061
open_to_namei_flags(int flag)3062 static inline int open_to_namei_flags(int flag)
3063 {
3064 if ((flag & O_ACCMODE) == 3)
3065 flag--;
3066 return flag;
3067 }
3068
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3069 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3070 {
3071 struct user_namespace *s_user_ns;
3072 int error = security_path_mknod(dir, dentry, mode, 0);
3073 if (error)
3074 return error;
3075
3076 s_user_ns = dir->dentry->d_sb->s_user_ns;
3077 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3078 !kgid_has_mapping(s_user_ns, current_fsgid()))
3079 return -EOVERFLOW;
3080
3081 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3082 if (error)
3083 return error;
3084
3085 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3086 }
3087
3088 /*
3089 * Attempt to atomically look up, create and open a file from a negative
3090 * dentry.
3091 *
3092 * Returns 0 if successful. The file will have been created and attached to
3093 * @file by the filesystem calling finish_open().
3094 *
3095 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3096 * be set. The caller will need to perform the open themselves. @path will
3097 * have been updated to point to the new dentry. This may be negative.
3098 *
3099 * Returns an error code otherwise.
3100 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3101 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3102 struct file *file,
3103 int open_flag, umode_t mode)
3104 {
3105 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3106 struct inode *dir = nd->path.dentry->d_inode;
3107 int error;
3108
3109 if (nd->flags & LOOKUP_DIRECTORY)
3110 open_flag |= O_DIRECTORY;
3111
3112 file->f_path.dentry = DENTRY_NOT_SET;
3113 file->f_path.mnt = nd->path.mnt;
3114 error = dir->i_op->atomic_open(dir, dentry, file,
3115 open_to_namei_flags(open_flag), mode);
3116 d_lookup_done(dentry);
3117 if (!error) {
3118 if (file->f_mode & FMODE_OPENED) {
3119 if (unlikely(dentry != file->f_path.dentry)) {
3120 dput(dentry);
3121 dentry = dget(file->f_path.dentry);
3122 }
3123 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3124 error = -EIO;
3125 } else {
3126 if (file->f_path.dentry) {
3127 dput(dentry);
3128 dentry = file->f_path.dentry;
3129 }
3130 if (unlikely(d_is_negative(dentry)))
3131 error = -ENOENT;
3132 }
3133 }
3134 if (error) {
3135 dput(dentry);
3136 dentry = ERR_PTR(error);
3137 }
3138 return dentry;
3139 }
3140
3141 /*
3142 * Look up and maybe create and open the last component.
3143 *
3144 * Must be called with parent locked (exclusive in O_CREAT case).
3145 *
3146 * Returns 0 on success, that is, if
3147 * the file was successfully atomically created (if necessary) and opened, or
3148 * the file was not completely opened at this time, though lookups and
3149 * creations were performed.
3150 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3151 * In the latter case dentry returned in @path might be negative if O_CREAT
3152 * hadn't been specified.
3153 *
3154 * An error code is returned on failure.
3155 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3156 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3157 const struct open_flags *op,
3158 bool got_write)
3159 {
3160 struct dentry *dir = nd->path.dentry;
3161 struct inode *dir_inode = dir->d_inode;
3162 int open_flag = op->open_flag;
3163 struct dentry *dentry;
3164 int error, create_error = 0;
3165 umode_t mode = op->mode;
3166 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3167
3168 if (unlikely(IS_DEADDIR(dir_inode)))
3169 return ERR_PTR(-ENOENT);
3170
3171 file->f_mode &= ~FMODE_CREATED;
3172 dentry = d_lookup(dir, &nd->last);
3173 for (;;) {
3174 if (!dentry) {
3175 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3176 if (IS_ERR(dentry))
3177 return dentry;
3178 }
3179 if (d_in_lookup(dentry))
3180 break;
3181
3182 error = d_revalidate(dentry, nd->flags);
3183 if (likely(error > 0))
3184 break;
3185 if (error)
3186 goto out_dput;
3187 d_invalidate(dentry);
3188 dput(dentry);
3189 dentry = NULL;
3190 }
3191 if (dentry->d_inode) {
3192 /* Cached positive dentry: will open in f_op->open */
3193 return dentry;
3194 }
3195
3196 /*
3197 * Checking write permission is tricky, bacuse we don't know if we are
3198 * going to actually need it: O_CREAT opens should work as long as the
3199 * file exists. But checking existence breaks atomicity. The trick is
3200 * to check access and if not granted clear O_CREAT from the flags.
3201 *
3202 * Another problem is returing the "right" error value (e.g. for an
3203 * O_EXCL open we want to return EEXIST not EROFS).
3204 */
3205 if (unlikely(!got_write))
3206 open_flag &= ~O_TRUNC;
3207 if (open_flag & O_CREAT) {
3208 if (open_flag & O_EXCL)
3209 open_flag &= ~O_TRUNC;
3210 mode = vfs_prepare_mode(dir->d_inode, mode, mode, mode);
3211 if (likely(got_write))
3212 create_error = may_o_create(&nd->path, dentry, mode);
3213 else
3214 create_error = -EROFS;
3215 }
3216 if (create_error)
3217 open_flag &= ~O_CREAT;
3218 if (dir_inode->i_op->atomic_open) {
3219 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3220 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3221 dentry = ERR_PTR(create_error);
3222 return dentry;
3223 }
3224
3225 if (d_in_lookup(dentry)) {
3226 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3227 nd->flags);
3228 d_lookup_done(dentry);
3229 if (unlikely(res)) {
3230 if (IS_ERR(res)) {
3231 error = PTR_ERR(res);
3232 goto out_dput;
3233 }
3234 dput(dentry);
3235 dentry = res;
3236 }
3237 }
3238
3239 /* Negative dentry, just create the file */
3240 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3241 file->f_mode |= FMODE_CREATED;
3242 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3243 if (!dir_inode->i_op->create) {
3244 error = -EACCES;
3245 goto out_dput;
3246 }
3247 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3248 open_flag & O_EXCL);
3249 if (error)
3250 goto out_dput;
3251 }
3252 if (unlikely(create_error) && !dentry->d_inode) {
3253 error = create_error;
3254 goto out_dput;
3255 }
3256 return dentry;
3257
3258 out_dput:
3259 dput(dentry);
3260 return ERR_PTR(error);
3261 }
3262
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3263 static const char *open_last_lookups(struct nameidata *nd,
3264 struct file *file, const struct open_flags *op)
3265 {
3266 struct dentry *dir = nd->path.dentry;
3267 int open_flag = op->open_flag;
3268 bool got_write = false;
3269 unsigned seq;
3270 struct inode *inode;
3271 struct dentry *dentry;
3272 const char *res;
3273
3274 nd->flags |= op->intent;
3275
3276 if (nd->last_type != LAST_NORM) {
3277 if (nd->depth)
3278 put_link(nd);
3279 return handle_dots(nd, nd->last_type);
3280 }
3281
3282 if (!(open_flag & O_CREAT)) {
3283 if (nd->last.name[nd->last.len])
3284 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3285 /* we _can_ be in RCU mode here */
3286 dentry = lookup_fast(nd, &inode, &seq);
3287 if (IS_ERR(dentry))
3288 return ERR_CAST(dentry);
3289 if (likely(dentry))
3290 goto finish_lookup;
3291
3292 BUG_ON(nd->flags & LOOKUP_RCU);
3293 } else {
3294 /* create side of things */
3295 if (nd->flags & LOOKUP_RCU) {
3296 if (!try_to_unlazy(nd))
3297 return ERR_PTR(-ECHILD);
3298 }
3299 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3300 /* trailing slashes? */
3301 if (unlikely(nd->last.name[nd->last.len]))
3302 return ERR_PTR(-EISDIR);
3303 }
3304
3305 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3306 got_write = !mnt_want_write(nd->path.mnt);
3307 /*
3308 * do _not_ fail yet - we might not need that or fail with
3309 * a different error; let lookup_open() decide; we'll be
3310 * dropping this one anyway.
3311 */
3312 }
3313 if (open_flag & O_CREAT)
3314 inode_lock(dir->d_inode);
3315 else
3316 inode_lock_shared(dir->d_inode);
3317 dentry = lookup_open(nd, file, op, got_write);
3318 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3319 fsnotify_create(dir->d_inode, dentry);
3320 if (open_flag & O_CREAT)
3321 inode_unlock(dir->d_inode);
3322 else
3323 inode_unlock_shared(dir->d_inode);
3324
3325 if (got_write)
3326 mnt_drop_write(nd->path.mnt);
3327
3328 if (IS_ERR(dentry))
3329 return ERR_CAST(dentry);
3330
3331 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3332 dput(nd->path.dentry);
3333 nd->path.dentry = dentry;
3334 return NULL;
3335 }
3336
3337 finish_lookup:
3338 if (nd->depth)
3339 put_link(nd);
3340 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3341 if (unlikely(res))
3342 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3343 return res;
3344 }
3345
3346 /*
3347 * Handle the last step of open()
3348 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3349 static int do_open(struct nameidata *nd,
3350 struct file *file, const struct open_flags *op)
3351 {
3352 int open_flag = op->open_flag;
3353 bool do_truncate;
3354 int acc_mode;
3355 int error;
3356
3357 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3358 error = complete_walk(nd);
3359 if (error)
3360 return error;
3361 }
3362 if (!(file->f_mode & FMODE_CREATED))
3363 audit_inode(nd->name, nd->path.dentry, 0);
3364 if (open_flag & O_CREAT) {
3365 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3366 return -EEXIST;
3367 if (d_is_dir(nd->path.dentry))
3368 return -EISDIR;
3369 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3370 d_backing_inode(nd->path.dentry));
3371 if (unlikely(error))
3372 return error;
3373 }
3374 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3375 return -ENOTDIR;
3376
3377 do_truncate = false;
3378 acc_mode = op->acc_mode;
3379 if (file->f_mode & FMODE_CREATED) {
3380 /* Don't check for write permission, don't truncate */
3381 open_flag &= ~O_TRUNC;
3382 acc_mode = 0;
3383 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3384 error = mnt_want_write(nd->path.mnt);
3385 if (error)
3386 return error;
3387 do_truncate = true;
3388 }
3389 error = may_open(&nd->path, acc_mode, open_flag);
3390 if (!error && !(file->f_mode & FMODE_OPENED))
3391 error = vfs_open(&nd->path, file);
3392 if (!error)
3393 error = ima_file_check(file, op->acc_mode);
3394 if (!error && do_truncate)
3395 error = handle_truncate(file);
3396 if (unlikely(error > 0)) {
3397 WARN_ON(1);
3398 error = -EINVAL;
3399 }
3400 if (do_truncate)
3401 mnt_drop_write(nd->path.mnt);
3402 return error;
3403 }
3404
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3405 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3406 {
3407 struct dentry *child = NULL;
3408 struct inode *dir = dentry->d_inode;
3409 struct inode *inode;
3410 int error;
3411
3412 /* we want directory to be writable */
3413 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3414 if (error)
3415 goto out_err;
3416 error = -EOPNOTSUPP;
3417 if (!dir->i_op->tmpfile)
3418 goto out_err;
3419 error = -ENOMEM;
3420 child = d_alloc(dentry, &slash_name);
3421 if (unlikely(!child))
3422 goto out_err;
3423 mode = vfs_prepare_mode(dir, mode, mode, mode);
3424 error = dir->i_op->tmpfile(dir, child, mode);
3425 if (error)
3426 goto out_err;
3427 error = -ENOENT;
3428 inode = child->d_inode;
3429 if (unlikely(!inode))
3430 goto out_err;
3431 if (!(open_flag & O_EXCL)) {
3432 spin_lock(&inode->i_lock);
3433 inode->i_state |= I_LINKABLE;
3434 spin_unlock(&inode->i_lock);
3435 }
3436 ima_post_create_tmpfile(inode);
3437 return child;
3438
3439 out_err:
3440 dput(child);
3441 return ERR_PTR(error);
3442 }
3443 EXPORT_SYMBOL(vfs_tmpfile);
3444
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3445 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3446 const struct open_flags *op,
3447 struct file *file)
3448 {
3449 struct dentry *child;
3450 struct path path;
3451 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3452 if (unlikely(error))
3453 return error;
3454 error = mnt_want_write(path.mnt);
3455 if (unlikely(error))
3456 goto out;
3457 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3458 error = PTR_ERR(child);
3459 if (IS_ERR(child))
3460 goto out2;
3461 dput(path.dentry);
3462 path.dentry = child;
3463 audit_inode(nd->name, child, 0);
3464 /* Don't check for other permissions, the inode was just created */
3465 error = may_open(&path, 0, op->open_flag);
3466 if (error)
3467 goto out2;
3468 file->f_path.mnt = path.mnt;
3469 error = finish_open(file, child, NULL);
3470 out2:
3471 mnt_drop_write(path.mnt);
3472 out:
3473 path_put(&path);
3474 return error;
3475 }
3476
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3477 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3478 {
3479 struct path path;
3480 int error = path_lookupat(nd, flags, &path);
3481 if (!error) {
3482 audit_inode(nd->name, path.dentry, 0);
3483 error = vfs_open(&path, file);
3484 path_put(&path);
3485 }
3486 return error;
3487 }
3488
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3489 static struct file *path_openat(struct nameidata *nd,
3490 const struct open_flags *op, unsigned flags)
3491 {
3492 struct file *file;
3493 int error;
3494
3495 file = alloc_empty_file(op->open_flag, current_cred());
3496 if (IS_ERR(file))
3497 return file;
3498
3499 if (unlikely(file->f_flags & __O_TMPFILE)) {
3500 error = do_tmpfile(nd, flags, op, file);
3501 } else if (unlikely(file->f_flags & O_PATH)) {
3502 error = do_o_path(nd, flags, file);
3503 } else {
3504 const char *s = path_init(nd, flags);
3505 while (!(error = link_path_walk(s, nd)) &&
3506 (s = open_last_lookups(nd, file, op)) != NULL)
3507 ;
3508 if (!error)
3509 error = do_open(nd, file, op);
3510 terminate_walk(nd);
3511 }
3512 if (likely(!error)) {
3513 if (likely(file->f_mode & FMODE_OPENED))
3514 return file;
3515 WARN_ON(1);
3516 error = -EINVAL;
3517 }
3518 fput(file);
3519 if (error == -EOPENSTALE) {
3520 if (flags & LOOKUP_RCU)
3521 error = -ECHILD;
3522 else
3523 error = -ESTALE;
3524 }
3525 return ERR_PTR(error);
3526 }
3527
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3528 struct file *do_filp_open(int dfd, struct filename *pathname,
3529 const struct open_flags *op)
3530 {
3531 struct nameidata nd;
3532 int flags = op->lookup_flags;
3533 struct file *filp;
3534
3535 set_nameidata(&nd, dfd, pathname);
3536 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3537 if (unlikely(filp == ERR_PTR(-ECHILD)))
3538 filp = path_openat(&nd, op, flags);
3539 if (unlikely(filp == ERR_PTR(-ESTALE)))
3540 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3541 restore_nameidata();
3542 return filp;
3543 }
3544
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3545 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3546 const char *name, const struct open_flags *op)
3547 {
3548 struct nameidata nd;
3549 struct file *file;
3550 struct filename *filename;
3551 int flags = op->lookup_flags | LOOKUP_ROOT;
3552
3553 nd.root.mnt = mnt;
3554 nd.root.dentry = dentry;
3555
3556 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3557 return ERR_PTR(-ELOOP);
3558
3559 filename = getname_kernel(name);
3560 if (IS_ERR(filename))
3561 return ERR_CAST(filename);
3562
3563 set_nameidata(&nd, -1, filename);
3564 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3565 if (unlikely(file == ERR_PTR(-ECHILD)))
3566 file = path_openat(&nd, op, flags);
3567 if (unlikely(file == ERR_PTR(-ESTALE)))
3568 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3569 restore_nameidata();
3570 putname(filename);
3571 return file;
3572 }
3573
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3574 static struct dentry *filename_create(int dfd, struct filename *name,
3575 struct path *path, unsigned int lookup_flags)
3576 {
3577 struct dentry *dentry = ERR_PTR(-EEXIST);
3578 struct qstr last;
3579 int type;
3580 int err2;
3581 int error;
3582 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3583
3584 /*
3585 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3586 * other flags passed in are ignored!
3587 */
3588 lookup_flags &= LOOKUP_REVAL;
3589
3590 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3591 if (IS_ERR(name))
3592 return ERR_CAST(name);
3593
3594 /*
3595 * Yucky last component or no last component at all?
3596 * (foo/., foo/.., /////)
3597 */
3598 if (unlikely(type != LAST_NORM))
3599 goto out;
3600
3601 /* don't fail immediately if it's r/o, at least try to report other errors */
3602 err2 = mnt_want_write(path->mnt);
3603 /*
3604 * Do the final lookup.
3605 */
3606 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3607 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3608 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3609 if (IS_ERR(dentry))
3610 goto unlock;
3611
3612 error = -EEXIST;
3613 if (d_is_positive(dentry))
3614 goto fail;
3615
3616 /*
3617 * Special case - lookup gave negative, but... we had foo/bar/
3618 * From the vfs_mknod() POV we just have a negative dentry -
3619 * all is fine. Let's be bastards - you had / on the end, you've
3620 * been asking for (non-existent) directory. -ENOENT for you.
3621 */
3622 if (unlikely(!is_dir && last.name[last.len])) {
3623 error = -ENOENT;
3624 goto fail;
3625 }
3626 if (unlikely(err2)) {
3627 error = err2;
3628 goto fail;
3629 }
3630 putname(name);
3631 return dentry;
3632 fail:
3633 dput(dentry);
3634 dentry = ERR_PTR(error);
3635 unlock:
3636 inode_unlock(path->dentry->d_inode);
3637 if (!err2)
3638 mnt_drop_write(path->mnt);
3639 out:
3640 path_put(path);
3641 putname(name);
3642 return dentry;
3643 }
3644
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3645 struct dentry *kern_path_create(int dfd, const char *pathname,
3646 struct path *path, unsigned int lookup_flags)
3647 {
3648 return filename_create(dfd, getname_kernel(pathname),
3649 path, lookup_flags);
3650 }
3651 EXPORT_SYMBOL(kern_path_create);
3652
done_path_create(struct path * path,struct dentry * dentry)3653 void done_path_create(struct path *path, struct dentry *dentry)
3654 {
3655 dput(dentry);
3656 inode_unlock(path->dentry->d_inode);
3657 mnt_drop_write(path->mnt);
3658 path_put(path);
3659 }
3660 EXPORT_SYMBOL(done_path_create);
3661
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3662 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3663 struct path *path, unsigned int lookup_flags)
3664 {
3665 return filename_create(dfd, getname(pathname), path, lookup_flags);
3666 }
3667 EXPORT_SYMBOL(user_path_create);
3668
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3669 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3670 {
3671 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3672 int error = may_create(dir, dentry);
3673
3674 if (error)
3675 return error;
3676
3677 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3678 !capable(CAP_MKNOD))
3679 return -EPERM;
3680
3681 if (!dir->i_op->mknod)
3682 return -EPERM;
3683
3684 mode = vfs_prepare_mode(dir, mode, mode, mode);
3685 error = devcgroup_inode_mknod(mode, dev);
3686 if (error)
3687 return error;
3688
3689 error = security_inode_mknod(dir, dentry, mode, dev);
3690 if (error)
3691 return error;
3692
3693 error = dir->i_op->mknod(dir, dentry, mode, dev);
3694 if (!error)
3695 fsnotify_create(dir, dentry);
3696 return error;
3697 }
3698 EXPORT_SYMBOL(vfs_mknod);
3699
may_mknod(umode_t mode)3700 static int may_mknod(umode_t mode)
3701 {
3702 switch (mode & S_IFMT) {
3703 case S_IFREG:
3704 case S_IFCHR:
3705 case S_IFBLK:
3706 case S_IFIFO:
3707 case S_IFSOCK:
3708 case 0: /* zero mode translates to S_IFREG */
3709 return 0;
3710 case S_IFDIR:
3711 return -EPERM;
3712 default:
3713 return -EINVAL;
3714 }
3715 }
3716
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3717 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3718 unsigned int dev)
3719 {
3720 struct dentry *dentry;
3721 struct path path;
3722 int error;
3723 unsigned int lookup_flags = 0;
3724
3725 error = may_mknod(mode);
3726 if (error)
3727 return error;
3728 retry:
3729 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3730 if (IS_ERR(dentry))
3731 return PTR_ERR(dentry);
3732
3733 error = security_path_mknod(&path, dentry,
3734 mode_strip_umask(path.dentry->d_inode, mode), dev);
3735 if (error)
3736 goto out;
3737 switch (mode & S_IFMT) {
3738 case 0: case S_IFREG:
3739 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3740 if (!error)
3741 ima_post_path_mknod(dentry);
3742 break;
3743 case S_IFCHR: case S_IFBLK:
3744 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3745 new_decode_dev(dev));
3746 break;
3747 case S_IFIFO: case S_IFSOCK:
3748 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3749 break;
3750 }
3751 out:
3752 done_path_create(&path, dentry);
3753 if (retry_estale(error, lookup_flags)) {
3754 lookup_flags |= LOOKUP_REVAL;
3755 goto retry;
3756 }
3757 return error;
3758 }
3759
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3760 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3761 unsigned int, dev)
3762 {
3763 return do_mknodat(dfd, filename, mode, dev);
3764 }
3765
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3766 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3767 {
3768 return do_mknodat(AT_FDCWD, filename, mode, dev);
3769 }
3770
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3771 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3772 {
3773 int error = may_create(dir, dentry);
3774 unsigned max_links = dir->i_sb->s_max_links;
3775
3776 if (error)
3777 return error;
3778
3779 if (!dir->i_op->mkdir)
3780 return -EPERM;
3781
3782 mode = vfs_prepare_mode(dir, mode, S_IRWXUGO | S_ISVTX, 0);
3783 error = security_inode_mkdir(dir, dentry, mode);
3784 if (error)
3785 return error;
3786
3787 if (max_links && dir->i_nlink >= max_links)
3788 return -EMLINK;
3789
3790 error = dir->i_op->mkdir(dir, dentry, mode);
3791 if (!error)
3792 fsnotify_mkdir(dir, dentry);
3793 return error;
3794 }
3795 EXPORT_SYMBOL_NS(vfs_mkdir, ANDROID_GKI_VFS_EXPORT_ONLY);
3796
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3797 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3798 {
3799 struct dentry *dentry;
3800 struct path path;
3801 int error;
3802 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3803
3804 retry:
3805 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3806 if (IS_ERR(dentry))
3807 return PTR_ERR(dentry);
3808
3809 error = security_path_mkdir(&path, dentry,
3810 mode_strip_umask(path.dentry->d_inode, mode));
3811 if (!error)
3812 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3813 done_path_create(&path, dentry);
3814 if (retry_estale(error, lookup_flags)) {
3815 lookup_flags |= LOOKUP_REVAL;
3816 goto retry;
3817 }
3818 return error;
3819 }
3820
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3821 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3822 {
3823 return do_mkdirat(dfd, pathname, mode);
3824 }
3825
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3826 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3827 {
3828 return do_mkdirat(AT_FDCWD, pathname, mode);
3829 }
3830
vfs_rmdir(struct inode * dir,struct dentry * dentry)3831 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3832 {
3833 int error = may_delete(dir, dentry, 1);
3834
3835 if (error)
3836 return error;
3837
3838 if (!dir->i_op->rmdir)
3839 return -EPERM;
3840
3841 dget(dentry);
3842 inode_lock(dentry->d_inode);
3843
3844 error = -EBUSY;
3845 if (is_local_mountpoint(dentry))
3846 goto out;
3847
3848 error = security_inode_rmdir(dir, dentry);
3849 if (error)
3850 goto out;
3851
3852 error = dir->i_op->rmdir(dir, dentry);
3853 if (error)
3854 goto out;
3855
3856 shrink_dcache_parent(dentry);
3857 dentry->d_inode->i_flags |= S_DEAD;
3858 dont_mount(dentry);
3859 detach_mounts(dentry);
3860
3861 out:
3862 inode_unlock(dentry->d_inode);
3863 dput(dentry);
3864 if (!error)
3865 d_delete_notify(dir, dentry);
3866 return error;
3867 }
3868 EXPORT_SYMBOL_NS(vfs_rmdir, ANDROID_GKI_VFS_EXPORT_ONLY);
3869
do_rmdir(int dfd,struct filename * name)3870 long do_rmdir(int dfd, struct filename *name)
3871 {
3872 int error = 0;
3873 struct dentry *dentry;
3874 struct path path;
3875 struct qstr last;
3876 int type;
3877 unsigned int lookup_flags = 0;
3878 retry:
3879 name = filename_parentat(dfd, name, lookup_flags,
3880 &path, &last, &type);
3881 if (IS_ERR(name))
3882 return PTR_ERR(name);
3883
3884 switch (type) {
3885 case LAST_DOTDOT:
3886 error = -ENOTEMPTY;
3887 goto exit1;
3888 case LAST_DOT:
3889 error = -EINVAL;
3890 goto exit1;
3891 case LAST_ROOT:
3892 error = -EBUSY;
3893 goto exit1;
3894 }
3895
3896 error = mnt_want_write(path.mnt);
3897 if (error)
3898 goto exit1;
3899
3900 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3901 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3902 error = PTR_ERR(dentry);
3903 if (IS_ERR(dentry))
3904 goto exit2;
3905 if (!dentry->d_inode) {
3906 error = -ENOENT;
3907 goto exit3;
3908 }
3909 error = security_path_rmdir(&path, dentry);
3910 if (error)
3911 goto exit3;
3912 error = vfs_rmdir(path.dentry->d_inode, dentry);
3913 exit3:
3914 dput(dentry);
3915 exit2:
3916 inode_unlock(path.dentry->d_inode);
3917 mnt_drop_write(path.mnt);
3918 exit1:
3919 path_put(&path);
3920 if (retry_estale(error, lookup_flags)) {
3921 lookup_flags |= LOOKUP_REVAL;
3922 goto retry;
3923 }
3924 putname(name);
3925 return error;
3926 }
3927
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3928 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3929 {
3930 return do_rmdir(AT_FDCWD, getname(pathname));
3931 }
3932
3933 /**
3934 * vfs_unlink - unlink a filesystem object
3935 * @dir: parent directory
3936 * @dentry: victim
3937 * @delegated_inode: returns victim inode, if the inode is delegated.
3938 *
3939 * The caller must hold dir->i_mutex.
3940 *
3941 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3942 * return a reference to the inode in delegated_inode. The caller
3943 * should then break the delegation on that inode and retry. Because
3944 * breaking a delegation may take a long time, the caller should drop
3945 * dir->i_mutex before doing so.
3946 *
3947 * Alternatively, a caller may pass NULL for delegated_inode. This may
3948 * be appropriate for callers that expect the underlying filesystem not
3949 * to be NFS exported.
3950 */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3951 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3952 {
3953 struct inode *target = dentry->d_inode;
3954 int error = may_delete(dir, dentry, 0);
3955
3956 if (error)
3957 return error;
3958
3959 if (!dir->i_op->unlink)
3960 return -EPERM;
3961
3962 inode_lock(target);
3963 if (is_local_mountpoint(dentry))
3964 error = -EBUSY;
3965 else {
3966 error = security_inode_unlink(dir, dentry);
3967 if (!error) {
3968 error = try_break_deleg(target, delegated_inode);
3969 if (error)
3970 goto out;
3971 error = dir->i_op->unlink(dir, dentry);
3972 if (!error) {
3973 dont_mount(dentry);
3974 detach_mounts(dentry);
3975 }
3976 }
3977 }
3978 out:
3979 inode_unlock(target);
3980
3981 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3982 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
3983 fsnotify_unlink(dir, dentry);
3984 } else if (!error) {
3985 fsnotify_link_count(target);
3986 d_delete_notify(dir, dentry);
3987 }
3988
3989 return error;
3990 }
3991 EXPORT_SYMBOL_NS(vfs_unlink, ANDROID_GKI_VFS_EXPORT_ONLY);
3992
3993 /*
3994 * Make sure that the actual truncation of the file will occur outside its
3995 * directory's i_mutex. Truncate can take a long time if there is a lot of
3996 * writeout happening, and we don't want to prevent access to the directory
3997 * while waiting on the I/O.
3998 */
do_unlinkat(int dfd,struct filename * name)3999 long do_unlinkat(int dfd, struct filename *name)
4000 {
4001 int error;
4002 struct dentry *dentry;
4003 struct path path;
4004 struct qstr last;
4005 int type;
4006 struct inode *inode = NULL;
4007 struct inode *delegated_inode = NULL;
4008 unsigned int lookup_flags = 0;
4009 retry:
4010 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4011 if (IS_ERR(name))
4012 return PTR_ERR(name);
4013
4014 error = -EISDIR;
4015 if (type != LAST_NORM)
4016 goto exit1;
4017
4018 error = mnt_want_write(path.mnt);
4019 if (error)
4020 goto exit1;
4021 retry_deleg:
4022 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4023 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4024 error = PTR_ERR(dentry);
4025 if (!IS_ERR(dentry)) {
4026 /* Why not before? Because we want correct error value */
4027 if (last.name[last.len])
4028 goto slashes;
4029 inode = dentry->d_inode;
4030 if (d_is_negative(dentry))
4031 goto slashes;
4032 ihold(inode);
4033 error = security_path_unlink(&path, dentry);
4034 if (error)
4035 goto exit2;
4036 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4037 exit2:
4038 dput(dentry);
4039 }
4040 inode_unlock(path.dentry->d_inode);
4041 if (inode)
4042 iput(inode); /* truncate the inode here */
4043 inode = NULL;
4044 if (delegated_inode) {
4045 error = break_deleg_wait(&delegated_inode);
4046 if (!error)
4047 goto retry_deleg;
4048 }
4049 mnt_drop_write(path.mnt);
4050 exit1:
4051 path_put(&path);
4052 if (retry_estale(error, lookup_flags)) {
4053 lookup_flags |= LOOKUP_REVAL;
4054 inode = NULL;
4055 goto retry;
4056 }
4057 putname(name);
4058 return error;
4059
4060 slashes:
4061 if (d_is_negative(dentry))
4062 error = -ENOENT;
4063 else if (d_is_dir(dentry))
4064 error = -EISDIR;
4065 else
4066 error = -ENOTDIR;
4067 goto exit2;
4068 }
4069
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4070 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4071 {
4072 if ((flag & ~AT_REMOVEDIR) != 0)
4073 return -EINVAL;
4074
4075 if (flag & AT_REMOVEDIR)
4076 return do_rmdir(dfd, getname(pathname));
4077 return do_unlinkat(dfd, getname(pathname));
4078 }
4079
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4080 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4081 {
4082 return do_unlinkat(AT_FDCWD, getname(pathname));
4083 }
4084
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4085 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4086 {
4087 int error = may_create(dir, dentry);
4088
4089 if (error)
4090 return error;
4091
4092 if (!dir->i_op->symlink)
4093 return -EPERM;
4094
4095 error = security_inode_symlink(dir, dentry, oldname);
4096 if (error)
4097 return error;
4098
4099 error = dir->i_op->symlink(dir, dentry, oldname);
4100 if (!error)
4101 fsnotify_create(dir, dentry);
4102 return error;
4103 }
4104 EXPORT_SYMBOL(vfs_symlink);
4105
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4106 static long do_symlinkat(const char __user *oldname, int newdfd,
4107 const char __user *newname)
4108 {
4109 int error;
4110 struct filename *from;
4111 struct dentry *dentry;
4112 struct path path;
4113 unsigned int lookup_flags = 0;
4114
4115 from = getname(oldname);
4116 if (IS_ERR(from))
4117 return PTR_ERR(from);
4118 retry:
4119 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4120 error = PTR_ERR(dentry);
4121 if (IS_ERR(dentry))
4122 goto out_putname;
4123
4124 error = security_path_symlink(&path, dentry, from->name);
4125 if (!error)
4126 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4127 done_path_create(&path, dentry);
4128 if (retry_estale(error, lookup_flags)) {
4129 lookup_flags |= LOOKUP_REVAL;
4130 goto retry;
4131 }
4132 out_putname:
4133 putname(from);
4134 return error;
4135 }
4136
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4137 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4138 int, newdfd, const char __user *, newname)
4139 {
4140 return do_symlinkat(oldname, newdfd, newname);
4141 }
4142
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4143 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4144 {
4145 return do_symlinkat(oldname, AT_FDCWD, newname);
4146 }
4147
4148 /**
4149 * vfs_link - create a new link
4150 * @old_dentry: object to be linked
4151 * @dir: new parent
4152 * @new_dentry: where to create the new link
4153 * @delegated_inode: returns inode needing a delegation break
4154 *
4155 * The caller must hold dir->i_mutex
4156 *
4157 * If vfs_link discovers a delegation on the to-be-linked file in need
4158 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4159 * inode in delegated_inode. The caller should then break the delegation
4160 * and retry. Because breaking a delegation may take a long time, the
4161 * caller should drop the i_mutex before doing so.
4162 *
4163 * Alternatively, a caller may pass NULL for delegated_inode. This may
4164 * be appropriate for callers that expect the underlying filesystem not
4165 * to be NFS exported.
4166 */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4167 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4168 {
4169 struct inode *inode = old_dentry->d_inode;
4170 unsigned max_links = dir->i_sb->s_max_links;
4171 int error;
4172
4173 if (!inode)
4174 return -ENOENT;
4175
4176 error = may_create(dir, new_dentry);
4177 if (error)
4178 return error;
4179
4180 if (dir->i_sb != inode->i_sb)
4181 return -EXDEV;
4182
4183 /*
4184 * A link to an append-only or immutable file cannot be created.
4185 */
4186 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4187 return -EPERM;
4188 /*
4189 * Updating the link count will likely cause i_uid and i_gid to
4190 * be writen back improperly if their true value is unknown to
4191 * the vfs.
4192 */
4193 if (HAS_UNMAPPED_ID(inode))
4194 return -EPERM;
4195 if (!dir->i_op->link)
4196 return -EPERM;
4197 if (S_ISDIR(inode->i_mode))
4198 return -EPERM;
4199
4200 error = security_inode_link(old_dentry, dir, new_dentry);
4201 if (error)
4202 return error;
4203
4204 inode_lock(inode);
4205 /* Make sure we don't allow creating hardlink to an unlinked file */
4206 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4207 error = -ENOENT;
4208 else if (max_links && inode->i_nlink >= max_links)
4209 error = -EMLINK;
4210 else {
4211 error = try_break_deleg(inode, delegated_inode);
4212 if (!error)
4213 error = dir->i_op->link(old_dentry, dir, new_dentry);
4214 }
4215
4216 if (!error && (inode->i_state & I_LINKABLE)) {
4217 spin_lock(&inode->i_lock);
4218 inode->i_state &= ~I_LINKABLE;
4219 spin_unlock(&inode->i_lock);
4220 }
4221 inode_unlock(inode);
4222 if (!error)
4223 fsnotify_link(dir, inode, new_dentry);
4224 return error;
4225 }
4226 EXPORT_SYMBOL_NS(vfs_link, ANDROID_GKI_VFS_EXPORT_ONLY);
4227
4228 /*
4229 * Hardlinks are often used in delicate situations. We avoid
4230 * security-related surprises by not following symlinks on the
4231 * newname. --KAB
4232 *
4233 * We don't follow them on the oldname either to be compatible
4234 * with linux 2.0, and to avoid hard-linking to directories
4235 * and other special files. --ADM
4236 */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4237 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4238 const char __user *newname, int flags)
4239 {
4240 struct dentry *new_dentry;
4241 struct path old_path, new_path;
4242 struct inode *delegated_inode = NULL;
4243 int how = 0;
4244 int error;
4245
4246 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4247 return -EINVAL;
4248 /*
4249 * To use null names we require CAP_DAC_READ_SEARCH
4250 * This ensures that not everyone will be able to create
4251 * handlink using the passed filedescriptor.
4252 */
4253 if (flags & AT_EMPTY_PATH) {
4254 if (!capable(CAP_DAC_READ_SEARCH))
4255 return -ENOENT;
4256 how = LOOKUP_EMPTY;
4257 }
4258
4259 if (flags & AT_SYMLINK_FOLLOW)
4260 how |= LOOKUP_FOLLOW;
4261 retry:
4262 error = user_path_at(olddfd, oldname, how, &old_path);
4263 if (error)
4264 return error;
4265
4266 new_dentry = user_path_create(newdfd, newname, &new_path,
4267 (how & LOOKUP_REVAL));
4268 error = PTR_ERR(new_dentry);
4269 if (IS_ERR(new_dentry))
4270 goto out;
4271
4272 error = -EXDEV;
4273 if (old_path.mnt != new_path.mnt)
4274 goto out_dput;
4275 error = may_linkat(&old_path);
4276 if (unlikely(error))
4277 goto out_dput;
4278 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4279 if (error)
4280 goto out_dput;
4281 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4282 out_dput:
4283 done_path_create(&new_path, new_dentry);
4284 if (delegated_inode) {
4285 error = break_deleg_wait(&delegated_inode);
4286 if (!error) {
4287 path_put(&old_path);
4288 goto retry;
4289 }
4290 }
4291 if (retry_estale(error, how)) {
4292 path_put(&old_path);
4293 how |= LOOKUP_REVAL;
4294 goto retry;
4295 }
4296 out:
4297 path_put(&old_path);
4298
4299 return error;
4300 }
4301
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4302 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4303 int, newdfd, const char __user *, newname, int, flags)
4304 {
4305 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4306 }
4307
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4308 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4309 {
4310 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4311 }
4312
4313 /**
4314 * vfs_rename - rename a filesystem object
4315 * @old_dir: parent of source
4316 * @old_dentry: source
4317 * @new_dir: parent of destination
4318 * @new_dentry: destination
4319 * @delegated_inode: returns an inode needing a delegation break
4320 * @flags: rename flags
4321 *
4322 * The caller must hold multiple mutexes--see lock_rename()).
4323 *
4324 * If vfs_rename discovers a delegation in need of breaking at either
4325 * the source or destination, it will return -EWOULDBLOCK and return a
4326 * reference to the inode in delegated_inode. The caller should then
4327 * break the delegation and retry. Because breaking a delegation may
4328 * take a long time, the caller should drop all locks before doing
4329 * so.
4330 *
4331 * Alternatively, a caller may pass NULL for delegated_inode. This may
4332 * be appropriate for callers that expect the underlying filesystem not
4333 * to be NFS exported.
4334 *
4335 * The worst of all namespace operations - renaming directory. "Perverted"
4336 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4337 * Problems:
4338 *
4339 * a) we can get into loop creation.
4340 * b) race potential - two innocent renames can create a loop together.
4341 * That's where 4.4BSD screws up. Current fix: serialization on
4342 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4343 * story.
4344 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4345 * and source (if it's a non-directory or a subdirectory that moves to
4346 * different parent).
4347 * And that - after we got ->i_mutex on parents (until then we don't know
4348 * whether the target exists). Solution: try to be smart with locking
4349 * order for inodes. We rely on the fact that tree topology may change
4350 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4351 * move will be locked. Thus we can rank directories by the tree
4352 * (ancestors first) and rank all non-directories after them.
4353 * That works since everybody except rename does "lock parent, lookup,
4354 * lock child" and rename is under ->s_vfs_rename_mutex.
4355 * HOWEVER, it relies on the assumption that any object with ->lookup()
4356 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4357 * we'd better make sure that there's no link(2) for them.
4358 * d) conversion from fhandle to dentry may come in the wrong moment - when
4359 * we are removing the target. Solution: we will have to grab ->i_mutex
4360 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4361 * ->i_mutex on parents, which works but leads to some truly excessive
4362 * locking].
4363 */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4364 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4365 struct inode *new_dir, struct dentry *new_dentry,
4366 struct inode **delegated_inode, unsigned int flags)
4367 {
4368 int error;
4369 bool is_dir = d_is_dir(old_dentry);
4370 struct inode *source = old_dentry->d_inode;
4371 struct inode *target = new_dentry->d_inode;
4372 bool new_is_dir = false;
4373 unsigned max_links = new_dir->i_sb->s_max_links;
4374 struct name_snapshot old_name;
4375 bool lock_old_subdir, lock_new_subdir;
4376
4377 if (source == target)
4378 return 0;
4379
4380 error = may_delete(old_dir, old_dentry, is_dir);
4381 if (error)
4382 return error;
4383
4384 if (!target) {
4385 error = may_create(new_dir, new_dentry);
4386 } else {
4387 new_is_dir = d_is_dir(new_dentry);
4388
4389 if (!(flags & RENAME_EXCHANGE))
4390 error = may_delete(new_dir, new_dentry, is_dir);
4391 else
4392 error = may_delete(new_dir, new_dentry, new_is_dir);
4393 }
4394 if (error)
4395 return error;
4396
4397 if (!old_dir->i_op->rename)
4398 return -EPERM;
4399
4400 /*
4401 * If we are going to change the parent - check write permissions,
4402 * we'll need to flip '..'.
4403 */
4404 if (new_dir != old_dir) {
4405 if (is_dir) {
4406 error = inode_permission(source, MAY_WRITE);
4407 if (error)
4408 return error;
4409 }
4410 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4411 error = inode_permission(target, MAY_WRITE);
4412 if (error)
4413 return error;
4414 }
4415 }
4416
4417 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4418 flags);
4419 if (error)
4420 return error;
4421
4422 take_dentry_name_snapshot(&old_name, old_dentry);
4423 dget(new_dentry);
4424 /*
4425 * Lock children.
4426 * The source subdirectory needs to be locked on cross-directory
4427 * rename or cross-directory exchange since its parent changes.
4428 * The target subdirectory needs to be locked on cross-directory
4429 * exchange due to parent change and on any rename due to becoming
4430 * a victim.
4431 * Non-directories need locking in all cases (for NFS reasons);
4432 * they get locked after any subdirectories (in inode address order).
4433 *
4434 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4435 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4436 */
4437 lock_old_subdir = new_dir != old_dir;
4438 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4439 if (is_dir) {
4440 if (lock_old_subdir)
4441 inode_lock_nested(source, I_MUTEX_CHILD);
4442 if (target && (!new_is_dir || lock_new_subdir))
4443 inode_lock(target);
4444 } else if (new_is_dir) {
4445 if (lock_new_subdir)
4446 inode_lock_nested(target, I_MUTEX_CHILD);
4447 inode_lock(source);
4448 } else {
4449 lock_two_nondirectories(source, target);
4450 }
4451
4452 error = -EBUSY;
4453 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4454 goto out;
4455
4456 if (max_links && new_dir != old_dir) {
4457 error = -EMLINK;
4458 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4459 goto out;
4460 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4461 old_dir->i_nlink >= max_links)
4462 goto out;
4463 }
4464 if (!is_dir) {
4465 error = try_break_deleg(source, delegated_inode);
4466 if (error)
4467 goto out;
4468 }
4469 if (target && !new_is_dir) {
4470 error = try_break_deleg(target, delegated_inode);
4471 if (error)
4472 goto out;
4473 }
4474 error = old_dir->i_op->rename(old_dir, old_dentry,
4475 new_dir, new_dentry, flags);
4476 if (error)
4477 goto out;
4478
4479 if (!(flags & RENAME_EXCHANGE) && target) {
4480 if (is_dir) {
4481 shrink_dcache_parent(new_dentry);
4482 target->i_flags |= S_DEAD;
4483 }
4484 dont_mount(new_dentry);
4485 detach_mounts(new_dentry);
4486 }
4487 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4488 if (!(flags & RENAME_EXCHANGE))
4489 d_move(old_dentry, new_dentry);
4490 else
4491 d_exchange(old_dentry, new_dentry);
4492 }
4493 out:
4494 if (!is_dir || lock_old_subdir)
4495 inode_unlock(source);
4496 if (target && (!new_is_dir || lock_new_subdir))
4497 inode_unlock(target);
4498 dput(new_dentry);
4499 if (!error) {
4500 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4501 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4502 if (flags & RENAME_EXCHANGE) {
4503 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4504 new_is_dir, NULL, new_dentry);
4505 }
4506 }
4507 release_dentry_name_snapshot(&old_name);
4508
4509 return error;
4510 }
4511 EXPORT_SYMBOL_NS(vfs_rename, ANDROID_GKI_VFS_EXPORT_ONLY);
4512
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)4513 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4514 struct filename *to, unsigned int flags)
4515 {
4516 struct dentry *old_dentry, *new_dentry;
4517 struct dentry *trap;
4518 struct path old_path, new_path;
4519 struct qstr old_last, new_last;
4520 int old_type, new_type;
4521 struct inode *delegated_inode = NULL;
4522 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4523 bool should_retry = false;
4524 int error = -EINVAL;
4525
4526 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4527 goto put_both;
4528
4529 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4530 (flags & RENAME_EXCHANGE))
4531 goto put_both;
4532
4533 if (flags & RENAME_EXCHANGE)
4534 target_flags = 0;
4535
4536 retry:
4537 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4538 &old_last, &old_type);
4539 if (IS_ERR(from)) {
4540 error = PTR_ERR(from);
4541 goto put_new;
4542 }
4543
4544 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4545 &new_type);
4546 if (IS_ERR(to)) {
4547 error = PTR_ERR(to);
4548 goto exit1;
4549 }
4550
4551 error = -EXDEV;
4552 if (old_path.mnt != new_path.mnt)
4553 goto exit2;
4554
4555 error = -EBUSY;
4556 if (old_type != LAST_NORM)
4557 goto exit2;
4558
4559 if (flags & RENAME_NOREPLACE)
4560 error = -EEXIST;
4561 if (new_type != LAST_NORM)
4562 goto exit2;
4563
4564 error = mnt_want_write(old_path.mnt);
4565 if (error)
4566 goto exit2;
4567
4568 retry_deleg:
4569 trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572 error = PTR_ERR(old_dentry);
4573 if (IS_ERR(old_dentry))
4574 goto exit3;
4575 /* source must exist */
4576 error = -ENOENT;
4577 if (d_is_negative(old_dentry))
4578 goto exit4;
4579 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580 error = PTR_ERR(new_dentry);
4581 if (IS_ERR(new_dentry))
4582 goto exit4;
4583 error = -EEXIST;
4584 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585 goto exit5;
4586 if (flags & RENAME_EXCHANGE) {
4587 error = -ENOENT;
4588 if (d_is_negative(new_dentry))
4589 goto exit5;
4590
4591 if (!d_is_dir(new_dentry)) {
4592 error = -ENOTDIR;
4593 if (new_last.name[new_last.len])
4594 goto exit5;
4595 }
4596 }
4597 /* unless the source is a directory trailing slashes give -ENOTDIR */
4598 if (!d_is_dir(old_dentry)) {
4599 error = -ENOTDIR;
4600 if (old_last.name[old_last.len])
4601 goto exit5;
4602 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603 goto exit5;
4604 }
4605 /* source should not be ancestor of target */
4606 error = -EINVAL;
4607 if (old_dentry == trap)
4608 goto exit5;
4609 /* target should not be an ancestor of source */
4610 if (!(flags & RENAME_EXCHANGE))
4611 error = -ENOTEMPTY;
4612 if (new_dentry == trap)
4613 goto exit5;
4614
4615 error = security_path_rename(&old_path, old_dentry,
4616 &new_path, new_dentry, flags);
4617 if (error)
4618 goto exit5;
4619 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620 new_path.dentry->d_inode, new_dentry,
4621 &delegated_inode, flags);
4622 exit5:
4623 dput(new_dentry);
4624 exit4:
4625 dput(old_dentry);
4626 exit3:
4627 unlock_rename(new_path.dentry, old_path.dentry);
4628 if (delegated_inode) {
4629 error = break_deleg_wait(&delegated_inode);
4630 if (!error)
4631 goto retry_deleg;
4632 }
4633 mnt_drop_write(old_path.mnt);
4634 exit2:
4635 if (retry_estale(error, lookup_flags))
4636 should_retry = true;
4637 path_put(&new_path);
4638 exit1:
4639 path_put(&old_path);
4640 if (should_retry) {
4641 should_retry = false;
4642 lookup_flags |= LOOKUP_REVAL;
4643 goto retry;
4644 }
4645 put_both:
4646 if (!IS_ERR(from))
4647 putname(from);
4648 put_new:
4649 if (!IS_ERR(to))
4650 putname(to);
4651 return error;
4652 }
4653
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4654 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4655 int, newdfd, const char __user *, newname, unsigned int, flags)
4656 {
4657 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4658 flags);
4659 }
4660
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4661 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4662 int, newdfd, const char __user *, newname)
4663 {
4664 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4665 0);
4666 }
4667
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4668 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4669 {
4670 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4671 getname(newname), 0);
4672 }
4673
readlink_copy(char __user * buffer,int buflen,const char * link)4674 int readlink_copy(char __user *buffer, int buflen, const char *link)
4675 {
4676 int len = PTR_ERR(link);
4677 if (IS_ERR(link))
4678 goto out;
4679
4680 len = strlen(link);
4681 if (len > (unsigned) buflen)
4682 len = buflen;
4683 if (copy_to_user(buffer, link, len))
4684 len = -EFAULT;
4685 out:
4686 return len;
4687 }
4688
4689 /**
4690 * vfs_readlink - copy symlink body into userspace buffer
4691 * @dentry: dentry on which to get symbolic link
4692 * @buffer: user memory pointer
4693 * @buflen: size of buffer
4694 *
4695 * Does not touch atime. That's up to the caller if necessary
4696 *
4697 * Does not call security hook.
4698 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4699 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4700 {
4701 struct inode *inode = d_inode(dentry);
4702 DEFINE_DELAYED_CALL(done);
4703 const char *link;
4704 int res;
4705
4706 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4707 if (unlikely(inode->i_op->readlink))
4708 return inode->i_op->readlink(dentry, buffer, buflen);
4709
4710 if (!d_is_symlink(dentry))
4711 return -EINVAL;
4712
4713 spin_lock(&inode->i_lock);
4714 inode->i_opflags |= IOP_DEFAULT_READLINK;
4715 spin_unlock(&inode->i_lock);
4716 }
4717
4718 link = READ_ONCE(inode->i_link);
4719 if (!link) {
4720 link = inode->i_op->get_link(dentry, inode, &done);
4721 if (IS_ERR(link))
4722 return PTR_ERR(link);
4723 }
4724 res = readlink_copy(buffer, buflen, link);
4725 do_delayed_call(&done);
4726 return res;
4727 }
4728 EXPORT_SYMBOL(vfs_readlink);
4729
4730 /**
4731 * vfs_get_link - get symlink body
4732 * @dentry: dentry on which to get symbolic link
4733 * @done: caller needs to free returned data with this
4734 *
4735 * Calls security hook and i_op->get_link() on the supplied inode.
4736 *
4737 * It does not touch atime. That's up to the caller if necessary.
4738 *
4739 * Does not work on "special" symlinks like /proc/$$/fd/N
4740 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4741 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4742 {
4743 const char *res = ERR_PTR(-EINVAL);
4744 struct inode *inode = d_inode(dentry);
4745
4746 if (d_is_symlink(dentry)) {
4747 res = ERR_PTR(security_inode_readlink(dentry));
4748 if (!res)
4749 res = inode->i_op->get_link(dentry, inode, done);
4750 }
4751 return res;
4752 }
4753 EXPORT_SYMBOL(vfs_get_link);
4754
4755 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4756 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4757 struct delayed_call *callback)
4758 {
4759 char *kaddr;
4760 struct page *page;
4761 struct address_space *mapping = inode->i_mapping;
4762
4763 if (!dentry) {
4764 page = find_get_page(mapping, 0);
4765 if (!page)
4766 return ERR_PTR(-ECHILD);
4767 if (!PageUptodate(page)) {
4768 put_page(page);
4769 return ERR_PTR(-ECHILD);
4770 }
4771 } else {
4772 page = read_mapping_page(mapping, 0, NULL);
4773 if (IS_ERR(page))
4774 return (char*)page;
4775 }
4776 set_delayed_call(callback, page_put_link, page);
4777 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4778 kaddr = page_address(page);
4779 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4780 return kaddr;
4781 }
4782
4783 EXPORT_SYMBOL(page_get_link);
4784
page_put_link(void * arg)4785 void page_put_link(void *arg)
4786 {
4787 put_page(arg);
4788 }
4789 EXPORT_SYMBOL(page_put_link);
4790
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4791 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4792 {
4793 DEFINE_DELAYED_CALL(done);
4794 int res = readlink_copy(buffer, buflen,
4795 page_get_link(dentry, d_inode(dentry),
4796 &done));
4797 do_delayed_call(&done);
4798 return res;
4799 }
4800 EXPORT_SYMBOL(page_readlink);
4801
4802 /*
4803 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4804 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4805 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4806 {
4807 struct address_space *mapping = inode->i_mapping;
4808 struct page *page;
4809 void *fsdata = NULL;
4810 int err;
4811 unsigned int flags = 0;
4812 if (nofs)
4813 flags |= AOP_FLAG_NOFS;
4814
4815 retry:
4816 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4817 flags, &page, &fsdata);
4818 if (err)
4819 goto fail;
4820
4821 memcpy(page_address(page), symname, len-1);
4822
4823 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4824 page, fsdata);
4825 if (err < 0)
4826 goto fail;
4827 if (err < len-1)
4828 goto retry;
4829
4830 mark_inode_dirty(inode);
4831 return 0;
4832 fail:
4833 return err;
4834 }
4835 EXPORT_SYMBOL(__page_symlink);
4836
page_symlink(struct inode * inode,const char * symname,int len)4837 int page_symlink(struct inode *inode, const char *symname, int len)
4838 {
4839 return __page_symlink(inode, symname, len,
4840 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4841 }
4842 EXPORT_SYMBOL(page_symlink);
4843
4844 const struct inode_operations page_symlink_inode_operations = {
4845 .get_link = page_get_link,
4846 };
4847 EXPORT_SYMBOL(page_symlink_inode_operations);
4848