• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (!ite->collection || coll != ite->collection)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		if (!irq)
466 			continue;
467 
468 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
469 		irq->pending_latch = pendmask & (1U << bit_nr);
470 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
471 		vgic_put_irq(vcpu->kvm, irq);
472 	}
473 
474 	kfree(intids);
475 
476 	return ret;
477 }
478 
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)479 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
480 					      struct vgic_its *its,
481 					      gpa_t addr, unsigned int len)
482 {
483 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
484 	u64 reg = GITS_TYPER_PLPIS;
485 
486 	/*
487 	 * We use linear CPU numbers for redistributor addressing,
488 	 * so GITS_TYPER.PTA is 0.
489 	 * Also we force all PROPBASER registers to be the same, so
490 	 * CommonLPIAff is 0 as well.
491 	 * To avoid memory waste in the guest, we keep the number of IDBits and
492 	 * DevBits low - as least for the time being.
493 	 */
494 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
495 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
496 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
497 
498 	return extract_bytes(reg, addr & 7, len);
499 }
500 
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)501 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
502 					     struct vgic_its *its,
503 					     gpa_t addr, unsigned int len)
504 {
505 	u32 val;
506 
507 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
508 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
509 	return val;
510 }
511 
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)512 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
513 					    struct vgic_its *its,
514 					    gpa_t addr, unsigned int len,
515 					    unsigned long val)
516 {
517 	u32 rev = GITS_IIDR_REV(val);
518 
519 	if (rev >= NR_ITS_ABIS)
520 		return -EINVAL;
521 	return vgic_its_set_abi(its, rev);
522 }
523 
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)524 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
525 					       struct vgic_its *its,
526 					       gpa_t addr, unsigned int len)
527 {
528 	switch (addr & 0xffff) {
529 	case GITS_PIDR0:
530 		return 0x92;	/* part number, bits[7:0] */
531 	case GITS_PIDR1:
532 		return 0xb4;	/* part number, bits[11:8] */
533 	case GITS_PIDR2:
534 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
535 	case GITS_PIDR4:
536 		return 0x40;	/* This is a 64K software visible page */
537 	/* The following are the ID registers for (any) GIC. */
538 	case GITS_CIDR0:
539 		return 0x0d;
540 	case GITS_CIDR1:
541 		return 0xf0;
542 	case GITS_CIDR2:
543 		return 0x05;
544 	case GITS_CIDR3:
545 		return 0xb1;
546 	}
547 
548 	return 0;
549 }
550 
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)551 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
552 					       phys_addr_t db,
553 					       u32 devid, u32 eventid)
554 {
555 	struct vgic_translation_cache_entry *cte;
556 
557 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
558 		/*
559 		 * If we hit a NULL entry, there is nothing after this
560 		 * point.
561 		 */
562 		if (!cte->irq)
563 			break;
564 
565 		if (cte->db != db || cte->devid != devid ||
566 		    cte->eventid != eventid)
567 			continue;
568 
569 		/*
570 		 * Move this entry to the head, as it is the most
571 		 * recently used.
572 		 */
573 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
574 			list_move(&cte->entry, &dist->lpi_translation_cache);
575 
576 		return cte->irq;
577 	}
578 
579 	return NULL;
580 }
581 
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)582 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
583 					     u32 devid, u32 eventid)
584 {
585 	struct vgic_dist *dist = &kvm->arch.vgic;
586 	struct vgic_irq *irq;
587 	unsigned long flags;
588 
589 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
590 
591 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
592 	if (irq)
593 		vgic_get_irq_kref(irq);
594 
595 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
596 
597 	return irq;
598 }
599 
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)600 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
601 				       u32 devid, u32 eventid,
602 				       struct vgic_irq *irq)
603 {
604 	struct vgic_dist *dist = &kvm->arch.vgic;
605 	struct vgic_translation_cache_entry *cte;
606 	unsigned long flags;
607 	phys_addr_t db;
608 
609 	/* Do not cache a directly injected interrupt */
610 	if (irq->hw)
611 		return;
612 
613 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
614 
615 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
616 		goto out;
617 
618 	/*
619 	 * We could have raced with another CPU caching the same
620 	 * translation behind our back, so let's check it is not in
621 	 * already
622 	 */
623 	db = its->vgic_its_base + GITS_TRANSLATER;
624 	if (__vgic_its_check_cache(dist, db, devid, eventid))
625 		goto out;
626 
627 	/* Always reuse the last entry (LRU policy) */
628 	cte = list_last_entry(&dist->lpi_translation_cache,
629 			      typeof(*cte), entry);
630 
631 	/*
632 	 * Caching the translation implies having an extra reference
633 	 * to the interrupt, so drop the potential reference on what
634 	 * was in the cache, and increment it on the new interrupt.
635 	 */
636 	if (cte->irq)
637 		__vgic_put_lpi_locked(kvm, cte->irq);
638 
639 	vgic_get_irq_kref(irq);
640 
641 	cte->db		= db;
642 	cte->devid	= devid;
643 	cte->eventid	= eventid;
644 	cte->irq	= irq;
645 
646 	/* Move the new translation to the head of the list */
647 	list_move(&cte->entry, &dist->lpi_translation_cache);
648 
649 out:
650 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
651 }
652 
vgic_its_invalidate_cache(struct kvm * kvm)653 void vgic_its_invalidate_cache(struct kvm *kvm)
654 {
655 	struct vgic_dist *dist = &kvm->arch.vgic;
656 	struct vgic_translation_cache_entry *cte;
657 	unsigned long flags;
658 
659 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
660 
661 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
662 		/*
663 		 * If we hit a NULL entry, there is nothing after this
664 		 * point.
665 		 */
666 		if (!cte->irq)
667 			break;
668 
669 		__vgic_put_lpi_locked(kvm, cte->irq);
670 		cte->irq = NULL;
671 	}
672 
673 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674 }
675 
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)676 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
677 			 u32 devid, u32 eventid, struct vgic_irq **irq)
678 {
679 	struct kvm_vcpu *vcpu;
680 	struct its_ite *ite;
681 
682 	if (!its->enabled)
683 		return -EBUSY;
684 
685 	ite = find_ite(its, devid, eventid);
686 	if (!ite || !its_is_collection_mapped(ite->collection))
687 		return E_ITS_INT_UNMAPPED_INTERRUPT;
688 
689 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
690 	if (!vcpu)
691 		return E_ITS_INT_UNMAPPED_INTERRUPT;
692 
693 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
694 		return -EBUSY;
695 
696 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
697 
698 	*irq = ite->irq;
699 	return 0;
700 }
701 
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)702 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
703 {
704 	u64 address;
705 	struct kvm_io_device *kvm_io_dev;
706 	struct vgic_io_device *iodev;
707 
708 	if (!vgic_has_its(kvm))
709 		return ERR_PTR(-ENODEV);
710 
711 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
712 		return ERR_PTR(-EINVAL);
713 
714 	address = (u64)msi->address_hi << 32 | msi->address_lo;
715 
716 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
717 	if (!kvm_io_dev)
718 		return ERR_PTR(-EINVAL);
719 
720 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
721 		return ERR_PTR(-EINVAL);
722 
723 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
724 	if (iodev->iodev_type != IODEV_ITS)
725 		return ERR_PTR(-EINVAL);
726 
727 	return iodev->its;
728 }
729 
730 /*
731  * Find the target VCPU and the LPI number for a given devid/eventid pair
732  * and make this IRQ pending, possibly injecting it.
733  * Must be called with the its_lock mutex held.
734  * Returns 0 on success, a positive error value for any ITS mapping
735  * related errors and negative error values for generic errors.
736  */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)737 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
738 				u32 devid, u32 eventid)
739 {
740 	struct vgic_irq *irq = NULL;
741 	unsigned long flags;
742 	int err;
743 
744 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
745 	if (err)
746 		return err;
747 
748 	if (irq->hw)
749 		return irq_set_irqchip_state(irq->host_irq,
750 					     IRQCHIP_STATE_PENDING, true);
751 
752 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
753 	irq->pending_latch = true;
754 	vgic_queue_irq_unlock(kvm, irq, flags);
755 
756 	return 0;
757 }
758 
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)759 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
760 {
761 	struct vgic_irq *irq;
762 	unsigned long flags;
763 	phys_addr_t db;
764 
765 	db = (u64)msi->address_hi << 32 | msi->address_lo;
766 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
767 	if (!irq)
768 		return -EWOULDBLOCK;
769 
770 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
771 	irq->pending_latch = true;
772 	vgic_queue_irq_unlock(kvm, irq, flags);
773 	vgic_put_irq(kvm, irq);
774 
775 	return 0;
776 }
777 
778 /*
779  * Queries the KVM IO bus framework to get the ITS pointer from the given
780  * doorbell address.
781  * We then call vgic_its_trigger_msi() with the decoded data.
782  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
783  */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)784 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
785 {
786 	struct vgic_its *its;
787 	int ret;
788 
789 	if (!vgic_its_inject_cached_translation(kvm, msi))
790 		return 1;
791 
792 	its = vgic_msi_to_its(kvm, msi);
793 	if (IS_ERR(its))
794 		return PTR_ERR(its);
795 
796 	mutex_lock(&its->its_lock);
797 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
798 	mutex_unlock(&its->its_lock);
799 
800 	if (ret < 0)
801 		return ret;
802 
803 	/*
804 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
805 	 * if the guest has blocked the MSI. So we map any LPI mapping
806 	 * related error to that.
807 	 */
808 	if (ret)
809 		return 0;
810 	else
811 		return 1;
812 }
813 
814 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)815 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
816 {
817 	list_del(&ite->ite_list);
818 
819 	/* This put matches the get in vgic_add_lpi. */
820 	if (ite->irq) {
821 		if (ite->irq->hw)
822 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
823 
824 		vgic_put_irq(kvm, ite->irq);
825 	}
826 
827 	kfree(ite);
828 }
829 
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)830 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
831 {
832 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
833 }
834 
835 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
836 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
837 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
838 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
839 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
840 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
841 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
842 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
843 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
844 
845 /*
846  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
847  * Must be called with the its_lock mutex held.
848  */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)849 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
850 				       u64 *its_cmd)
851 {
852 	u32 device_id = its_cmd_get_deviceid(its_cmd);
853 	u32 event_id = its_cmd_get_id(its_cmd);
854 	struct its_ite *ite;
855 
856 	ite = find_ite(its, device_id, event_id);
857 	if (ite && its_is_collection_mapped(ite->collection)) {
858 		/*
859 		 * Though the spec talks about removing the pending state, we
860 		 * don't bother here since we clear the ITTE anyway and the
861 		 * pending state is a property of the ITTE struct.
862 		 */
863 		vgic_its_invalidate_cache(kvm);
864 
865 		its_free_ite(kvm, ite);
866 		return 0;
867 	}
868 
869 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
870 }
871 
872 /*
873  * The MOVI command moves an ITTE to a different collection.
874  * Must be called with the its_lock mutex held.
875  */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)876 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
877 				    u64 *its_cmd)
878 {
879 	u32 device_id = its_cmd_get_deviceid(its_cmd);
880 	u32 event_id = its_cmd_get_id(its_cmd);
881 	u32 coll_id = its_cmd_get_collection(its_cmd);
882 	struct kvm_vcpu *vcpu;
883 	struct its_ite *ite;
884 	struct its_collection *collection;
885 
886 	ite = find_ite(its, device_id, event_id);
887 	if (!ite)
888 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
889 
890 	if (!its_is_collection_mapped(ite->collection))
891 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
892 
893 	collection = find_collection(its, coll_id);
894 	if (!its_is_collection_mapped(collection))
895 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
896 
897 	ite->collection = collection;
898 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
899 
900 	vgic_its_invalidate_cache(kvm);
901 
902 	return update_affinity(ite->irq, vcpu);
903 }
904 
905 /*
906  * Check whether an ID can be stored into the corresponding guest table.
907  * For a direct table this is pretty easy, but gets a bit nasty for
908  * indirect tables. We check whether the resulting guest physical address
909  * is actually valid (covered by a memslot and guest accessible).
910  * For this we have to read the respective first level entry.
911  */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)912 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
913 			      gpa_t *eaddr)
914 {
915 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
916 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
917 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
918 	int esz = GITS_BASER_ENTRY_SIZE(baser);
919 	int index, idx;
920 	gfn_t gfn;
921 	bool ret;
922 
923 	switch (type) {
924 	case GITS_BASER_TYPE_DEVICE:
925 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
926 			return false;
927 		break;
928 	case GITS_BASER_TYPE_COLLECTION:
929 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
930 		if (id >= BIT_ULL(16))
931 			return false;
932 		break;
933 	default:
934 		return false;
935 	}
936 
937 	if (!(baser & GITS_BASER_INDIRECT)) {
938 		phys_addr_t addr;
939 
940 		if (id >= (l1_tbl_size / esz))
941 			return false;
942 
943 		addr = base + id * esz;
944 		gfn = addr >> PAGE_SHIFT;
945 
946 		if (eaddr)
947 			*eaddr = addr;
948 
949 		goto out;
950 	}
951 
952 	/* calculate and check the index into the 1st level */
953 	index = id / (SZ_64K / esz);
954 	if (index >= (l1_tbl_size / sizeof(u64)))
955 		return false;
956 
957 	/* Each 1st level entry is represented by a 64-bit value. */
958 	if (kvm_read_guest_lock(its->dev->kvm,
959 			   base + index * sizeof(indirect_ptr),
960 			   &indirect_ptr, sizeof(indirect_ptr)))
961 		return false;
962 
963 	indirect_ptr = le64_to_cpu(indirect_ptr);
964 
965 	/* check the valid bit of the first level entry */
966 	if (!(indirect_ptr & BIT_ULL(63)))
967 		return false;
968 
969 	/* Mask the guest physical address and calculate the frame number. */
970 	indirect_ptr &= GENMASK_ULL(51, 16);
971 
972 	/* Find the address of the actual entry */
973 	index = id % (SZ_64K / esz);
974 	indirect_ptr += index * esz;
975 	gfn = indirect_ptr >> PAGE_SHIFT;
976 
977 	if (eaddr)
978 		*eaddr = indirect_ptr;
979 
980 out:
981 	idx = srcu_read_lock(&its->dev->kvm->srcu);
982 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
983 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
984 	return ret;
985 }
986 
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)987 static int vgic_its_alloc_collection(struct vgic_its *its,
988 				     struct its_collection **colp,
989 				     u32 coll_id)
990 {
991 	struct its_collection *collection;
992 
993 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
994 		return E_ITS_MAPC_COLLECTION_OOR;
995 
996 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
997 	if (!collection)
998 		return -ENOMEM;
999 
1000 	collection->collection_id = coll_id;
1001 	collection->target_addr = COLLECTION_NOT_MAPPED;
1002 
1003 	list_add_tail(&collection->coll_list, &its->collection_list);
1004 	*colp = collection;
1005 
1006 	return 0;
1007 }
1008 
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)1009 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1010 {
1011 	struct its_collection *collection;
1012 	struct its_device *device;
1013 	struct its_ite *ite;
1014 
1015 	/*
1016 	 * Clearing the mapping for that collection ID removes the
1017 	 * entry from the list. If there wasn't any before, we can
1018 	 * go home early.
1019 	 */
1020 	collection = find_collection(its, coll_id);
1021 	if (!collection)
1022 		return;
1023 
1024 	for_each_lpi_its(device, ite, its)
1025 		if (ite->collection &&
1026 		    ite->collection->collection_id == coll_id)
1027 			ite->collection = NULL;
1028 
1029 	list_del(&collection->coll_list);
1030 	kfree(collection);
1031 }
1032 
1033 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1034 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1035 					  struct its_collection *collection,
1036 					  u32 event_id)
1037 {
1038 	struct its_ite *ite;
1039 
1040 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1041 	if (!ite)
1042 		return ERR_PTR(-ENOMEM);
1043 
1044 	ite->event_id	= event_id;
1045 	ite->collection = collection;
1046 
1047 	list_add_tail(&ite->ite_list, &device->itt_head);
1048 	return ite;
1049 }
1050 
1051 /*
1052  * The MAPTI and MAPI commands map LPIs to ITTEs.
1053  * Must be called with its_lock mutex held.
1054  */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1055 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1056 				    u64 *its_cmd)
1057 {
1058 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1059 	u32 event_id = its_cmd_get_id(its_cmd);
1060 	u32 coll_id = its_cmd_get_collection(its_cmd);
1061 	struct its_ite *ite;
1062 	struct kvm_vcpu *vcpu = NULL;
1063 	struct its_device *device;
1064 	struct its_collection *collection, *new_coll = NULL;
1065 	struct vgic_irq *irq;
1066 	int lpi_nr;
1067 
1068 	device = find_its_device(its, device_id);
1069 	if (!device)
1070 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1071 
1072 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1073 		return E_ITS_MAPTI_ID_OOR;
1074 
1075 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1076 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1077 	else
1078 		lpi_nr = event_id;
1079 	if (lpi_nr < GIC_LPI_OFFSET ||
1080 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1081 		return E_ITS_MAPTI_PHYSICALID_OOR;
1082 
1083 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1084 	if (find_ite(its, device_id, event_id))
1085 		return 0;
1086 
1087 	collection = find_collection(its, coll_id);
1088 	if (!collection) {
1089 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1090 		if (ret)
1091 			return ret;
1092 		new_coll = collection;
1093 	}
1094 
1095 	ite = vgic_its_alloc_ite(device, collection, event_id);
1096 	if (IS_ERR(ite)) {
1097 		if (new_coll)
1098 			vgic_its_free_collection(its, coll_id);
1099 		return PTR_ERR(ite);
1100 	}
1101 
1102 	if (its_is_collection_mapped(collection))
1103 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1104 
1105 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1106 	if (IS_ERR(irq)) {
1107 		if (new_coll)
1108 			vgic_its_free_collection(its, coll_id);
1109 		its_free_ite(kvm, ite);
1110 		return PTR_ERR(irq);
1111 	}
1112 	ite->irq = irq;
1113 
1114 	return 0;
1115 }
1116 
1117 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1118 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1119 {
1120 	struct its_ite *ite, *temp;
1121 
1122 	/*
1123 	 * The spec says that unmapping a device with still valid
1124 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1125 	 * since we cannot leave the memory unreferenced.
1126 	 */
1127 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1128 		its_free_ite(kvm, ite);
1129 
1130 	vgic_its_invalidate_cache(kvm);
1131 
1132 	list_del(&device->dev_list);
1133 	kfree(device);
1134 }
1135 
1136 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1137 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1138 {
1139 	struct its_device *cur, *temp;
1140 
1141 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1142 		vgic_its_free_device(kvm, cur);
1143 }
1144 
1145 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1146 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1147 {
1148 	struct its_collection *cur, *temp;
1149 
1150 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1151 		vgic_its_free_collection(its, cur->collection_id);
1152 }
1153 
1154 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1155 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1156 						u32 device_id, gpa_t itt_addr,
1157 						u8 num_eventid_bits)
1158 {
1159 	struct its_device *device;
1160 
1161 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1162 	if (!device)
1163 		return ERR_PTR(-ENOMEM);
1164 
1165 	device->device_id = device_id;
1166 	device->itt_addr = itt_addr;
1167 	device->num_eventid_bits = num_eventid_bits;
1168 	INIT_LIST_HEAD(&device->itt_head);
1169 
1170 	list_add_tail(&device->dev_list, &its->device_list);
1171 	return device;
1172 }
1173 
1174 /*
1175  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1176  * Must be called with the its_lock mutex held.
1177  */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1178 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1179 				    u64 *its_cmd)
1180 {
1181 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1182 	bool valid = its_cmd_get_validbit(its_cmd);
1183 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1184 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1185 	struct its_device *device;
1186 
1187 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1188 		return E_ITS_MAPD_DEVICE_OOR;
1189 
1190 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1191 		return E_ITS_MAPD_ITTSIZE_OOR;
1192 
1193 	device = find_its_device(its, device_id);
1194 
1195 	/*
1196 	 * The spec says that calling MAPD on an already mapped device
1197 	 * invalidates all cached data for this device. We implement this
1198 	 * by removing the mapping and re-establishing it.
1199 	 */
1200 	if (device)
1201 		vgic_its_free_device(kvm, device);
1202 
1203 	/*
1204 	 * The spec does not say whether unmapping a not-mapped device
1205 	 * is an error, so we are done in any case.
1206 	 */
1207 	if (!valid)
1208 		return 0;
1209 
1210 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1211 				       num_eventid_bits);
1212 
1213 	return PTR_ERR_OR_ZERO(device);
1214 }
1215 
1216 /*
1217  * The MAPC command maps collection IDs to redistributors.
1218  * Must be called with the its_lock mutex held.
1219  */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1220 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1221 				    u64 *its_cmd)
1222 {
1223 	u16 coll_id;
1224 	u32 target_addr;
1225 	struct its_collection *collection;
1226 	bool valid;
1227 
1228 	valid = its_cmd_get_validbit(its_cmd);
1229 	coll_id = its_cmd_get_collection(its_cmd);
1230 	target_addr = its_cmd_get_target_addr(its_cmd);
1231 
1232 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1233 		return E_ITS_MAPC_PROCNUM_OOR;
1234 
1235 	if (!valid) {
1236 		vgic_its_free_collection(its, coll_id);
1237 		vgic_its_invalidate_cache(kvm);
1238 	} else {
1239 		collection = find_collection(its, coll_id);
1240 
1241 		if (!collection) {
1242 			int ret;
1243 
1244 			ret = vgic_its_alloc_collection(its, &collection,
1245 							coll_id);
1246 			if (ret)
1247 				return ret;
1248 			collection->target_addr = target_addr;
1249 		} else {
1250 			collection->target_addr = target_addr;
1251 			update_affinity_collection(kvm, its, collection);
1252 		}
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /*
1259  * The CLEAR command removes the pending state for a particular LPI.
1260  * Must be called with the its_lock mutex held.
1261  */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1262 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1263 				     u64 *its_cmd)
1264 {
1265 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1266 	u32 event_id = its_cmd_get_id(its_cmd);
1267 	struct its_ite *ite;
1268 
1269 
1270 	ite = find_ite(its, device_id, event_id);
1271 	if (!ite)
1272 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1273 
1274 	ite->irq->pending_latch = false;
1275 
1276 	if (ite->irq->hw)
1277 		return irq_set_irqchip_state(ite->irq->host_irq,
1278 					     IRQCHIP_STATE_PENDING, false);
1279 
1280 	return 0;
1281 }
1282 
1283 /*
1284  * The INV command syncs the configuration bits from the memory table.
1285  * Must be called with the its_lock mutex held.
1286  */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1287 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1288 				   u64 *its_cmd)
1289 {
1290 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1291 	u32 event_id = its_cmd_get_id(its_cmd);
1292 	struct its_ite *ite;
1293 
1294 
1295 	ite = find_ite(its, device_id, event_id);
1296 	if (!ite)
1297 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1298 
1299 	return update_lpi_config(kvm, ite->irq, NULL, true);
1300 }
1301 
1302 /*
1303  * The INVALL command requests flushing of all IRQ data in this collection.
1304  * Find the VCPU mapped to that collection, then iterate over the VM's list
1305  * of mapped LPIs and update the configuration for each IRQ which targets
1306  * the specified vcpu. The configuration will be read from the in-memory
1307  * configuration table.
1308  * Must be called with the its_lock mutex held.
1309  */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1310 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1311 				      u64 *its_cmd)
1312 {
1313 	u32 coll_id = its_cmd_get_collection(its_cmd);
1314 	struct its_collection *collection;
1315 	struct kvm_vcpu *vcpu;
1316 	struct vgic_irq *irq;
1317 	u32 *intids;
1318 	int irq_count, i;
1319 
1320 	collection = find_collection(its, coll_id);
1321 	if (!its_is_collection_mapped(collection))
1322 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1323 
1324 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1325 
1326 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1327 	if (irq_count < 0)
1328 		return irq_count;
1329 
1330 	for (i = 0; i < irq_count; i++) {
1331 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1332 		if (!irq)
1333 			continue;
1334 		update_lpi_config(kvm, irq, vcpu, false);
1335 		vgic_put_irq(kvm, irq);
1336 	}
1337 
1338 	kfree(intids);
1339 
1340 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1341 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * The MOVALL command moves the pending state of all IRQs targeting one
1348  * redistributor to another. We don't hold the pending state in the VCPUs,
1349  * but in the IRQs instead, so there is really not much to do for us here.
1350  * However the spec says that no IRQ must target the old redistributor
1351  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1352  * This command affects all LPIs in the system that target that redistributor.
1353  */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1354 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1355 				      u64 *its_cmd)
1356 {
1357 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1358 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1359 	struct kvm_vcpu *vcpu1, *vcpu2;
1360 	struct vgic_irq *irq;
1361 	u32 *intids;
1362 	int irq_count, i;
1363 
1364 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1365 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1366 		return E_ITS_MOVALL_PROCNUM_OOR;
1367 
1368 	if (target1_addr == target2_addr)
1369 		return 0;
1370 
1371 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1372 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1373 
1374 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1375 	if (irq_count < 0)
1376 		return irq_count;
1377 
1378 	for (i = 0; i < irq_count; i++) {
1379 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1380 		if (!irq)
1381 			continue;
1382 
1383 		update_affinity(irq, vcpu2);
1384 
1385 		vgic_put_irq(kvm, irq);
1386 	}
1387 
1388 	vgic_its_invalidate_cache(kvm);
1389 
1390 	kfree(intids);
1391 	return 0;
1392 }
1393 
1394 /*
1395  * The INT command injects the LPI associated with that DevID/EvID pair.
1396  * Must be called with the its_lock mutex held.
1397  */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1398 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1399 				   u64 *its_cmd)
1400 {
1401 	u32 msi_data = its_cmd_get_id(its_cmd);
1402 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1403 
1404 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1405 }
1406 
1407 /*
1408  * This function is called with the its_cmd lock held, but the ITS data
1409  * structure lock dropped.
1410  */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1411 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1412 				   u64 *its_cmd)
1413 {
1414 	int ret = -ENODEV;
1415 
1416 	mutex_lock(&its->its_lock);
1417 	switch (its_cmd_get_command(its_cmd)) {
1418 	case GITS_CMD_MAPD:
1419 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1420 		break;
1421 	case GITS_CMD_MAPC:
1422 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1423 		break;
1424 	case GITS_CMD_MAPI:
1425 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1426 		break;
1427 	case GITS_CMD_MAPTI:
1428 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1429 		break;
1430 	case GITS_CMD_MOVI:
1431 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1432 		break;
1433 	case GITS_CMD_DISCARD:
1434 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1435 		break;
1436 	case GITS_CMD_CLEAR:
1437 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1438 		break;
1439 	case GITS_CMD_MOVALL:
1440 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1441 		break;
1442 	case GITS_CMD_INT:
1443 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1444 		break;
1445 	case GITS_CMD_INV:
1446 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1447 		break;
1448 	case GITS_CMD_INVALL:
1449 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1450 		break;
1451 	case GITS_CMD_SYNC:
1452 		/* we ignore this command: we are in sync all of the time */
1453 		ret = 0;
1454 		break;
1455 	}
1456 	mutex_unlock(&its->its_lock);
1457 
1458 	return ret;
1459 }
1460 
vgic_sanitise_its_baser(u64 reg)1461 static u64 vgic_sanitise_its_baser(u64 reg)
1462 {
1463 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1464 				  GITS_BASER_SHAREABILITY_SHIFT,
1465 				  vgic_sanitise_shareability);
1466 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1467 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1468 				  vgic_sanitise_inner_cacheability);
1469 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1470 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1471 				  vgic_sanitise_outer_cacheability);
1472 
1473 	/* We support only one (ITS) page size: 64K */
1474 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1475 
1476 	return reg;
1477 }
1478 
vgic_sanitise_its_cbaser(u64 reg)1479 static u64 vgic_sanitise_its_cbaser(u64 reg)
1480 {
1481 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1482 				  GITS_CBASER_SHAREABILITY_SHIFT,
1483 				  vgic_sanitise_shareability);
1484 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1485 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1486 				  vgic_sanitise_inner_cacheability);
1487 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1488 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1489 				  vgic_sanitise_outer_cacheability);
1490 
1491 	/* Sanitise the physical address to be 64k aligned. */
1492 	reg &= ~GENMASK_ULL(15, 12);
1493 
1494 	return reg;
1495 }
1496 
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1497 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1498 					       struct vgic_its *its,
1499 					       gpa_t addr, unsigned int len)
1500 {
1501 	return extract_bytes(its->cbaser, addr & 7, len);
1502 }
1503 
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1504 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1505 				       gpa_t addr, unsigned int len,
1506 				       unsigned long val)
1507 {
1508 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1509 	if (its->enabled)
1510 		return;
1511 
1512 	mutex_lock(&its->cmd_lock);
1513 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1514 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1515 	its->creadr = 0;
1516 	/*
1517 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1518 	 * it to CREADR to make sure we start with an empty command buffer.
1519 	 */
1520 	its->cwriter = its->creadr;
1521 	mutex_unlock(&its->cmd_lock);
1522 }
1523 
1524 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1525 #define ITS_CMD_SIZE			32
1526 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1527 
1528 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1529 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1530 {
1531 	gpa_t cbaser;
1532 	u64 cmd_buf[4];
1533 
1534 	/* Commands are only processed when the ITS is enabled. */
1535 	if (!its->enabled)
1536 		return;
1537 
1538 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1539 
1540 	while (its->cwriter != its->creadr) {
1541 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1542 					      cmd_buf, ITS_CMD_SIZE);
1543 		/*
1544 		 * If kvm_read_guest() fails, this could be due to the guest
1545 		 * programming a bogus value in CBASER or something else going
1546 		 * wrong from which we cannot easily recover.
1547 		 * According to section 6.3.2 in the GICv3 spec we can just
1548 		 * ignore that command then.
1549 		 */
1550 		if (!ret)
1551 			vgic_its_handle_command(kvm, its, cmd_buf);
1552 
1553 		its->creadr += ITS_CMD_SIZE;
1554 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1555 			its->creadr = 0;
1556 	}
1557 }
1558 
1559 /*
1560  * By writing to CWRITER the guest announces new commands to be processed.
1561  * To avoid any races in the first place, we take the its_cmd lock, which
1562  * protects our ring buffer variables, so that there is only one user
1563  * per ITS handling commands at a given time.
1564  */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1565 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1566 					gpa_t addr, unsigned int len,
1567 					unsigned long val)
1568 {
1569 	u64 reg;
1570 
1571 	if (!its)
1572 		return;
1573 
1574 	mutex_lock(&its->cmd_lock);
1575 
1576 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1577 	reg = ITS_CMD_OFFSET(reg);
1578 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1579 		mutex_unlock(&its->cmd_lock);
1580 		return;
1581 	}
1582 	its->cwriter = reg;
1583 
1584 	vgic_its_process_commands(kvm, its);
1585 
1586 	mutex_unlock(&its->cmd_lock);
1587 }
1588 
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1589 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1590 						struct vgic_its *its,
1591 						gpa_t addr, unsigned int len)
1592 {
1593 	return extract_bytes(its->cwriter, addr & 0x7, len);
1594 }
1595 
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1596 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1597 					       struct vgic_its *its,
1598 					       gpa_t addr, unsigned int len)
1599 {
1600 	return extract_bytes(its->creadr, addr & 0x7, len);
1601 }
1602 
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1603 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1604 					      struct vgic_its *its,
1605 					      gpa_t addr, unsigned int len,
1606 					      unsigned long val)
1607 {
1608 	u32 cmd_offset;
1609 	int ret = 0;
1610 
1611 	mutex_lock(&its->cmd_lock);
1612 
1613 	if (its->enabled) {
1614 		ret = -EBUSY;
1615 		goto out;
1616 	}
1617 
1618 	cmd_offset = ITS_CMD_OFFSET(val);
1619 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1620 		ret = -EINVAL;
1621 		goto out;
1622 	}
1623 
1624 	its->creadr = cmd_offset;
1625 out:
1626 	mutex_unlock(&its->cmd_lock);
1627 	return ret;
1628 }
1629 
1630 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1631 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1632 					      struct vgic_its *its,
1633 					      gpa_t addr, unsigned int len)
1634 {
1635 	u64 reg;
1636 
1637 	switch (BASER_INDEX(addr)) {
1638 	case 0:
1639 		reg = its->baser_device_table;
1640 		break;
1641 	case 1:
1642 		reg = its->baser_coll_table;
1643 		break;
1644 	default:
1645 		reg = 0;
1646 		break;
1647 	}
1648 
1649 	return extract_bytes(reg, addr & 7, len);
1650 }
1651 
1652 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1653 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1654 				      struct vgic_its *its,
1655 				      gpa_t addr, unsigned int len,
1656 				      unsigned long val)
1657 {
1658 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1659 	u64 entry_size, table_type;
1660 	u64 reg, *regptr, clearbits = 0;
1661 
1662 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1663 	if (its->enabled)
1664 		return;
1665 
1666 	switch (BASER_INDEX(addr)) {
1667 	case 0:
1668 		regptr = &its->baser_device_table;
1669 		entry_size = abi->dte_esz;
1670 		table_type = GITS_BASER_TYPE_DEVICE;
1671 		break;
1672 	case 1:
1673 		regptr = &its->baser_coll_table;
1674 		entry_size = abi->cte_esz;
1675 		table_type = GITS_BASER_TYPE_COLLECTION;
1676 		clearbits = GITS_BASER_INDIRECT;
1677 		break;
1678 	default:
1679 		return;
1680 	}
1681 
1682 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1683 	reg &= ~GITS_BASER_RO_MASK;
1684 	reg &= ~clearbits;
1685 
1686 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1687 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1688 	reg = vgic_sanitise_its_baser(reg);
1689 
1690 	*regptr = reg;
1691 
1692 	if (!(reg & GITS_BASER_VALID)) {
1693 		/* Take the its_lock to prevent a race with a save/restore */
1694 		mutex_lock(&its->its_lock);
1695 		switch (table_type) {
1696 		case GITS_BASER_TYPE_DEVICE:
1697 			vgic_its_free_device_list(kvm, its);
1698 			break;
1699 		case GITS_BASER_TYPE_COLLECTION:
1700 			vgic_its_free_collection_list(kvm, its);
1701 			break;
1702 		}
1703 		mutex_unlock(&its->its_lock);
1704 	}
1705 }
1706 
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1707 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1708 					     struct vgic_its *its,
1709 					     gpa_t addr, unsigned int len)
1710 {
1711 	u32 reg = 0;
1712 
1713 	mutex_lock(&its->cmd_lock);
1714 	if (its->creadr == its->cwriter)
1715 		reg |= GITS_CTLR_QUIESCENT;
1716 	if (its->enabled)
1717 		reg |= GITS_CTLR_ENABLE;
1718 	mutex_unlock(&its->cmd_lock);
1719 
1720 	return reg;
1721 }
1722 
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1723 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1724 				     gpa_t addr, unsigned int len,
1725 				     unsigned long val)
1726 {
1727 	mutex_lock(&its->cmd_lock);
1728 
1729 	/*
1730 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1731 	 * device/collection BASER are invalid
1732 	 */
1733 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1734 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1735 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1736 		 !(its->cbaser & GITS_CBASER_VALID)))
1737 		goto out;
1738 
1739 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1740 	if (!its->enabled)
1741 		vgic_its_invalidate_cache(kvm);
1742 
1743 	/*
1744 	 * Try to process any pending commands. This function bails out early
1745 	 * if the ITS is disabled or no commands have been queued.
1746 	 */
1747 	vgic_its_process_commands(kvm, its);
1748 
1749 out:
1750 	mutex_unlock(&its->cmd_lock);
1751 }
1752 
1753 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1754 {								\
1755 	.reg_offset = off,					\
1756 	.len = length,						\
1757 	.access_flags = acc,					\
1758 	.its_read = rd,						\
1759 	.its_write = wr,					\
1760 }
1761 
1762 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1763 {								\
1764 	.reg_offset = off,					\
1765 	.len = length,						\
1766 	.access_flags = acc,					\
1767 	.its_read = rd,						\
1768 	.its_write = wr,					\
1769 	.uaccess_its_write = uwr,				\
1770 }
1771 
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1772 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1773 			      gpa_t addr, unsigned int len, unsigned long val)
1774 {
1775 	/* Ignore */
1776 }
1777 
1778 static struct vgic_register_region its_registers[] = {
1779 	REGISTER_ITS_DESC(GITS_CTLR,
1780 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1781 		VGIC_ACCESS_32bit),
1782 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1783 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1784 		vgic_mmio_uaccess_write_its_iidr, 4,
1785 		VGIC_ACCESS_32bit),
1786 	REGISTER_ITS_DESC(GITS_TYPER,
1787 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1788 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1789 	REGISTER_ITS_DESC(GITS_CBASER,
1790 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1791 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1792 	REGISTER_ITS_DESC(GITS_CWRITER,
1793 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1794 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1795 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1796 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1797 		vgic_mmio_uaccess_write_its_creadr, 8,
1798 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1799 	REGISTER_ITS_DESC(GITS_BASER,
1800 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1801 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1802 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1803 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1804 		VGIC_ACCESS_32bit),
1805 };
1806 
1807 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1808 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1809 {
1810 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1811 		its_sync_lpi_pending_table(vcpu);
1812 }
1813 
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1814 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1815 				   u64 addr)
1816 {
1817 	struct vgic_io_device *iodev = &its->iodev;
1818 	int ret;
1819 
1820 	mutex_lock(&kvm->slots_lock);
1821 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1822 		ret = -EBUSY;
1823 		goto out;
1824 	}
1825 
1826 	its->vgic_its_base = addr;
1827 	iodev->regions = its_registers;
1828 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1829 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1830 
1831 	iodev->base_addr = its->vgic_its_base;
1832 	iodev->iodev_type = IODEV_ITS;
1833 	iodev->its = its;
1834 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1835 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1836 out:
1837 	mutex_unlock(&kvm->slots_lock);
1838 
1839 	return ret;
1840 }
1841 
1842 /* Default is 16 cached LPIs per vcpu */
1843 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1844 
vgic_lpi_translation_cache_init(struct kvm * kvm)1845 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1846 {
1847 	struct vgic_dist *dist = &kvm->arch.vgic;
1848 	unsigned int sz;
1849 	int i;
1850 
1851 	if (!list_empty(&dist->lpi_translation_cache))
1852 		return;
1853 
1854 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1855 
1856 	for (i = 0; i < sz; i++) {
1857 		struct vgic_translation_cache_entry *cte;
1858 
1859 		/* An allocation failure is not fatal */
1860 		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1861 		if (WARN_ON(!cte))
1862 			break;
1863 
1864 		INIT_LIST_HEAD(&cte->entry);
1865 		list_add(&cte->entry, &dist->lpi_translation_cache);
1866 	}
1867 }
1868 
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1869 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1870 {
1871 	struct vgic_dist *dist = &kvm->arch.vgic;
1872 	struct vgic_translation_cache_entry *cte, *tmp;
1873 
1874 	vgic_its_invalidate_cache(kvm);
1875 
1876 	list_for_each_entry_safe(cte, tmp,
1877 				 &dist->lpi_translation_cache, entry) {
1878 		list_del(&cte->entry);
1879 		kfree(cte);
1880 	}
1881 }
1882 
1883 #define INITIAL_BASER_VALUE						  \
1884 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1885 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1886 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1887 	 GITS_BASER_PAGE_SIZE_64K)
1888 
1889 #define INITIAL_PROPBASER_VALUE						  \
1890 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1891 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1892 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1893 
vgic_its_create(struct kvm_device * dev,u32 type)1894 static int vgic_its_create(struct kvm_device *dev, u32 type)
1895 {
1896 	struct vgic_its *its;
1897 
1898 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1899 		return -ENODEV;
1900 
1901 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1902 	if (!its)
1903 		return -ENOMEM;
1904 
1905 	if (vgic_initialized(dev->kvm)) {
1906 		int ret = vgic_v4_init(dev->kvm);
1907 		if (ret < 0) {
1908 			kfree(its);
1909 			return ret;
1910 		}
1911 
1912 		vgic_lpi_translation_cache_init(dev->kvm);
1913 	}
1914 
1915 	mutex_init(&its->its_lock);
1916 	mutex_init(&its->cmd_lock);
1917 
1918 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1919 
1920 	INIT_LIST_HEAD(&its->device_list);
1921 	INIT_LIST_HEAD(&its->collection_list);
1922 
1923 	dev->kvm->arch.vgic.msis_require_devid = true;
1924 	dev->kvm->arch.vgic.has_its = true;
1925 	its->enabled = false;
1926 	its->dev = dev;
1927 
1928 	its->baser_device_table = INITIAL_BASER_VALUE			|
1929 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1930 	its->baser_coll_table = INITIAL_BASER_VALUE |
1931 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1932 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1933 
1934 	dev->private = its;
1935 
1936 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1937 }
1938 
vgic_its_destroy(struct kvm_device * kvm_dev)1939 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1940 {
1941 	struct kvm *kvm = kvm_dev->kvm;
1942 	struct vgic_its *its = kvm_dev->private;
1943 
1944 	mutex_lock(&its->its_lock);
1945 
1946 	vgic_its_free_device_list(kvm, its);
1947 	vgic_its_free_collection_list(kvm, its);
1948 
1949 	mutex_unlock(&its->its_lock);
1950 	kfree(its);
1951 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1952 }
1953 
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1954 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1955 				  struct kvm_device_attr *attr)
1956 {
1957 	const struct vgic_register_region *region;
1958 	gpa_t offset = attr->attr;
1959 	int align;
1960 
1961 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1962 
1963 	if (offset & align)
1964 		return -EINVAL;
1965 
1966 	region = vgic_find_mmio_region(its_registers,
1967 				       ARRAY_SIZE(its_registers),
1968 				       offset);
1969 	if (!region)
1970 		return -ENXIO;
1971 
1972 	return 0;
1973 }
1974 
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1975 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1976 				     struct kvm_device_attr *attr,
1977 				     u64 *reg, bool is_write)
1978 {
1979 	const struct vgic_register_region *region;
1980 	struct vgic_its *its;
1981 	gpa_t addr, offset;
1982 	unsigned int len;
1983 	int align, ret = 0;
1984 
1985 	its = dev->private;
1986 	offset = attr->attr;
1987 
1988 	/*
1989 	 * Although the spec supports upper/lower 32-bit accesses to
1990 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1991 	 * accesses to all 64-bit wide registers. We therefore only
1992 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1993 	 * registers
1994 	 */
1995 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1996 		align = 0x3;
1997 	else
1998 		align = 0x7;
1999 
2000 	if (offset & align)
2001 		return -EINVAL;
2002 
2003 	mutex_lock(&dev->kvm->lock);
2004 
2005 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2006 		ret = -ENXIO;
2007 		goto out;
2008 	}
2009 
2010 	region = vgic_find_mmio_region(its_registers,
2011 				       ARRAY_SIZE(its_registers),
2012 				       offset);
2013 	if (!region) {
2014 		ret = -ENXIO;
2015 		goto out;
2016 	}
2017 
2018 	if (!lock_all_vcpus(dev->kvm)) {
2019 		ret = -EBUSY;
2020 		goto out;
2021 	}
2022 
2023 	addr = its->vgic_its_base + offset;
2024 
2025 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2026 
2027 	if (is_write) {
2028 		if (region->uaccess_its_write)
2029 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2030 							len, *reg);
2031 		else
2032 			region->its_write(dev->kvm, its, addr, len, *reg);
2033 	} else {
2034 		*reg = region->its_read(dev->kvm, its, addr, len);
2035 	}
2036 	unlock_all_vcpus(dev->kvm);
2037 out:
2038 	mutex_unlock(&dev->kvm->lock);
2039 	return ret;
2040 }
2041 
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2042 static u32 compute_next_devid_offset(struct list_head *h,
2043 				     struct its_device *dev)
2044 {
2045 	struct its_device *next;
2046 	u32 next_offset;
2047 
2048 	if (list_is_last(&dev->dev_list, h))
2049 		return 0;
2050 	next = list_next_entry(dev, dev_list);
2051 	next_offset = next->device_id - dev->device_id;
2052 
2053 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2054 }
2055 
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2056 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2057 {
2058 	struct its_ite *next;
2059 	u32 next_offset;
2060 
2061 	if (list_is_last(&ite->ite_list, h))
2062 		return 0;
2063 	next = list_next_entry(ite, ite_list);
2064 	next_offset = next->event_id - ite->event_id;
2065 
2066 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2067 }
2068 
2069 /**
2070  * entry_fn_t - Callback called on a table entry restore path
2071  * @its: its handle
2072  * @id: id of the entry
2073  * @entry: pointer to the entry
2074  * @opaque: pointer to an opaque data
2075  *
2076  * Return: < 0 on error, 0 if last element was identified, id offset to next
2077  * element otherwise
2078  */
2079 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2080 			  void *opaque);
2081 
2082 /**
2083  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2084  * to each entry
2085  *
2086  * @its: its handle
2087  * @base: base gpa of the table
2088  * @size: size of the table in bytes
2089  * @esz: entry size in bytes
2090  * @start_id: the ID of the first entry in the table
2091  * (non zero for 2d level tables)
2092  * @fn: function to apply on each entry
2093  *
2094  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2095  * (the last element may not be found on second level tables)
2096  */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2097 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2098 			  int start_id, entry_fn_t fn, void *opaque)
2099 {
2100 	struct kvm *kvm = its->dev->kvm;
2101 	unsigned long len = size;
2102 	int id = start_id;
2103 	gpa_t gpa = base;
2104 	char entry[ESZ_MAX];
2105 	int ret;
2106 
2107 	memset(entry, 0, esz);
2108 
2109 	while (true) {
2110 		int next_offset;
2111 		size_t byte_offset;
2112 
2113 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2114 		if (ret)
2115 			return ret;
2116 
2117 		next_offset = fn(its, id, entry, opaque);
2118 		if (next_offset <= 0)
2119 			return next_offset;
2120 
2121 		byte_offset = next_offset * esz;
2122 		if (byte_offset >= len)
2123 			break;
2124 
2125 		id += next_offset;
2126 		gpa += byte_offset;
2127 		len -= byte_offset;
2128 	}
2129 	return 1;
2130 }
2131 
2132 /**
2133  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2134  */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2135 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2136 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2137 {
2138 	struct kvm *kvm = its->dev->kvm;
2139 	u32 next_offset;
2140 	u64 val;
2141 
2142 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2143 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2144 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2145 		ite->collection->collection_id;
2146 	val = cpu_to_le64(val);
2147 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2148 }
2149 
2150 /**
2151  * vgic_its_restore_ite - restore an interrupt translation entry
2152  * @event_id: id used for indexing
2153  * @ptr: pointer to the ITE entry
2154  * @opaque: pointer to the its_device
2155  */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2156 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2157 				void *ptr, void *opaque)
2158 {
2159 	struct its_device *dev = (struct its_device *)opaque;
2160 	struct its_collection *collection;
2161 	struct kvm *kvm = its->dev->kvm;
2162 	struct kvm_vcpu *vcpu = NULL;
2163 	u64 val;
2164 	u64 *p = (u64 *)ptr;
2165 	struct vgic_irq *irq;
2166 	u32 coll_id, lpi_id;
2167 	struct its_ite *ite;
2168 	u32 offset;
2169 
2170 	val = *p;
2171 
2172 	val = le64_to_cpu(val);
2173 
2174 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2175 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2176 
2177 	if (!lpi_id)
2178 		return 1; /* invalid entry, no choice but to scan next entry */
2179 
2180 	if (lpi_id < VGIC_MIN_LPI)
2181 		return -EINVAL;
2182 
2183 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2184 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2185 		return -EINVAL;
2186 
2187 	collection = find_collection(its, coll_id);
2188 	if (!collection)
2189 		return -EINVAL;
2190 
2191 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2192 	if (IS_ERR(ite))
2193 		return PTR_ERR(ite);
2194 
2195 	if (its_is_collection_mapped(collection))
2196 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2197 
2198 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2199 	if (IS_ERR(irq))
2200 		return PTR_ERR(irq);
2201 	ite->irq = irq;
2202 
2203 	return offset;
2204 }
2205 
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)2206 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2207 			    struct list_head *b)
2208 {
2209 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2210 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2211 
2212 	if (itea->event_id < iteb->event_id)
2213 		return -1;
2214 	else
2215 		return 1;
2216 }
2217 
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2218 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2219 {
2220 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2221 	gpa_t base = device->itt_addr;
2222 	struct its_ite *ite;
2223 	int ret;
2224 	int ite_esz = abi->ite_esz;
2225 
2226 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2227 
2228 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2229 		gpa_t gpa = base + ite->event_id * ite_esz;
2230 
2231 		/*
2232 		 * If an LPI carries the HW bit, this means that this
2233 		 * interrupt is controlled by GICv4, and we do not
2234 		 * have direct access to that state. Let's simply fail
2235 		 * the save operation...
2236 		 */
2237 		if (ite->irq->hw)
2238 			return -EACCES;
2239 
2240 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2241 		if (ret)
2242 			return ret;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /**
2248  * vgic_its_restore_itt - restore the ITT of a device
2249  *
2250  * @its: its handle
2251  * @dev: device handle
2252  *
2253  * Return 0 on success, < 0 on error
2254  */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2255 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2256 {
2257 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2258 	gpa_t base = dev->itt_addr;
2259 	int ret;
2260 	int ite_esz = abi->ite_esz;
2261 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2262 
2263 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2264 			     vgic_its_restore_ite, dev);
2265 
2266 	/* scan_its_table returns +1 if all ITEs are invalid */
2267 	if (ret > 0)
2268 		ret = 0;
2269 
2270 	return ret;
2271 }
2272 
2273 /**
2274  * vgic_its_save_dte - Save a device table entry at a given GPA
2275  *
2276  * @its: ITS handle
2277  * @dev: ITS device
2278  * @ptr: GPA
2279  */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2280 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2281 			     gpa_t ptr, int dte_esz)
2282 {
2283 	struct kvm *kvm = its->dev->kvm;
2284 	u64 val, itt_addr_field;
2285 	u32 next_offset;
2286 
2287 	itt_addr_field = dev->itt_addr >> 8;
2288 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2289 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2290 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2291 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2292 		(dev->num_eventid_bits - 1));
2293 	val = cpu_to_le64(val);
2294 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2295 }
2296 
2297 /**
2298  * vgic_its_restore_dte - restore a device table entry
2299  *
2300  * @its: its handle
2301  * @id: device id the DTE corresponds to
2302  * @ptr: kernel VA where the 8 byte DTE is located
2303  * @opaque: unused
2304  *
2305  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2306  * next dte otherwise
2307  */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2308 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2309 				void *ptr, void *opaque)
2310 {
2311 	struct its_device *dev;
2312 	gpa_t itt_addr;
2313 	u8 num_eventid_bits;
2314 	u64 entry = *(u64 *)ptr;
2315 	bool valid;
2316 	u32 offset;
2317 	int ret;
2318 
2319 	entry = le64_to_cpu(entry);
2320 
2321 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2322 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2323 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2324 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2325 
2326 	if (!valid)
2327 		return 1;
2328 
2329 	/* dte entry is valid */
2330 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2331 
2332 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2333 	if (IS_ERR(dev))
2334 		return PTR_ERR(dev);
2335 
2336 	ret = vgic_its_restore_itt(its, dev);
2337 	if (ret) {
2338 		vgic_its_free_device(its->dev->kvm, dev);
2339 		return ret;
2340 	}
2341 
2342 	return offset;
2343 }
2344 
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2345 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2346 			       struct list_head *b)
2347 {
2348 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2349 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2350 
2351 	if (deva->device_id < devb->device_id)
2352 		return -1;
2353 	else
2354 		return 1;
2355 }
2356 
2357 /**
2358  * vgic_its_save_device_tables - Save the device table and all ITT
2359  * into guest RAM
2360  *
2361  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2362  * returns the GPA of the device entry
2363  */
vgic_its_save_device_tables(struct vgic_its * its)2364 static int vgic_its_save_device_tables(struct vgic_its *its)
2365 {
2366 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2367 	u64 baser = its->baser_device_table;
2368 	struct its_device *dev;
2369 	int dte_esz = abi->dte_esz;
2370 
2371 	if (!(baser & GITS_BASER_VALID))
2372 		return 0;
2373 
2374 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2375 
2376 	list_for_each_entry(dev, &its->device_list, dev_list) {
2377 		int ret;
2378 		gpa_t eaddr;
2379 
2380 		if (!vgic_its_check_id(its, baser,
2381 				       dev->device_id, &eaddr))
2382 			return -EINVAL;
2383 
2384 		ret = vgic_its_save_itt(its, dev);
2385 		if (ret)
2386 			return ret;
2387 
2388 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2389 		if (ret)
2390 			return ret;
2391 	}
2392 	return 0;
2393 }
2394 
2395 /**
2396  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2397  *
2398  * @its: its handle
2399  * @id: index of the entry in the L1 table
2400  * @addr: kernel VA
2401  * @opaque: unused
2402  *
2403  * L1 table entries are scanned by steps of 1 entry
2404  * Return < 0 if error, 0 if last dte was found when scanning the L2
2405  * table, +1 otherwise (meaning next L1 entry must be scanned)
2406  */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2407 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2408 			 void *opaque)
2409 {
2410 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2411 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2412 	u64 entry = *(u64 *)addr;
2413 	int dte_esz = abi->dte_esz;
2414 	gpa_t gpa;
2415 	int ret;
2416 
2417 	entry = le64_to_cpu(entry);
2418 
2419 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2420 		return 1;
2421 
2422 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2423 
2424 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2425 			     l2_start_id, vgic_its_restore_dte, NULL);
2426 
2427 	return ret;
2428 }
2429 
2430 /**
2431  * vgic_its_restore_device_tables - Restore the device table and all ITT
2432  * from guest RAM to internal data structs
2433  */
vgic_its_restore_device_tables(struct vgic_its * its)2434 static int vgic_its_restore_device_tables(struct vgic_its *its)
2435 {
2436 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2437 	u64 baser = its->baser_device_table;
2438 	int l1_esz, ret;
2439 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2440 	gpa_t l1_gpa;
2441 
2442 	if (!(baser & GITS_BASER_VALID))
2443 		return 0;
2444 
2445 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2446 
2447 	if (baser & GITS_BASER_INDIRECT) {
2448 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2449 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2450 				     handle_l1_dte, NULL);
2451 	} else {
2452 		l1_esz = abi->dte_esz;
2453 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2454 				     vgic_its_restore_dte, NULL);
2455 	}
2456 
2457 	/* scan_its_table returns +1 if all entries are invalid */
2458 	if (ret > 0)
2459 		ret = 0;
2460 
2461 	return ret;
2462 }
2463 
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2464 static int vgic_its_save_cte(struct vgic_its *its,
2465 			     struct its_collection *collection,
2466 			     gpa_t gpa, int esz)
2467 {
2468 	u64 val;
2469 
2470 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2471 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2472 	       collection->collection_id);
2473 	val = cpu_to_le64(val);
2474 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2475 }
2476 
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2477 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2478 {
2479 	struct its_collection *collection;
2480 	struct kvm *kvm = its->dev->kvm;
2481 	u32 target_addr, coll_id;
2482 	u64 val;
2483 	int ret;
2484 
2485 	BUG_ON(esz > sizeof(val));
2486 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2487 	if (ret)
2488 		return ret;
2489 	val = le64_to_cpu(val);
2490 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2491 		return 0;
2492 
2493 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2494 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2495 
2496 	if (target_addr != COLLECTION_NOT_MAPPED &&
2497 	    target_addr >= atomic_read(&kvm->online_vcpus))
2498 		return -EINVAL;
2499 
2500 	collection = find_collection(its, coll_id);
2501 	if (collection)
2502 		return -EEXIST;
2503 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2504 	if (ret)
2505 		return ret;
2506 	collection->target_addr = target_addr;
2507 	return 1;
2508 }
2509 
2510 /**
2511  * vgic_its_save_collection_table - Save the collection table into
2512  * guest RAM
2513  */
vgic_its_save_collection_table(struct vgic_its * its)2514 static int vgic_its_save_collection_table(struct vgic_its *its)
2515 {
2516 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2517 	u64 baser = its->baser_coll_table;
2518 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2519 	struct its_collection *collection;
2520 	u64 val;
2521 	size_t max_size, filled = 0;
2522 	int ret, cte_esz = abi->cte_esz;
2523 
2524 	if (!(baser & GITS_BASER_VALID))
2525 		return 0;
2526 
2527 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2528 
2529 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2530 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2531 		if (ret)
2532 			return ret;
2533 		gpa += cte_esz;
2534 		filled += cte_esz;
2535 	}
2536 
2537 	if (filled == max_size)
2538 		return 0;
2539 
2540 	/*
2541 	 * table is not fully filled, add a last dummy element
2542 	 * with valid bit unset
2543 	 */
2544 	val = 0;
2545 	BUG_ON(cte_esz > sizeof(val));
2546 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2547 	return ret;
2548 }
2549 
2550 /**
2551  * vgic_its_restore_collection_table - reads the collection table
2552  * in guest memory and restores the ITS internal state. Requires the
2553  * BASER registers to be restored before.
2554  */
vgic_its_restore_collection_table(struct vgic_its * its)2555 static int vgic_its_restore_collection_table(struct vgic_its *its)
2556 {
2557 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2558 	u64 baser = its->baser_coll_table;
2559 	int cte_esz = abi->cte_esz;
2560 	size_t max_size, read = 0;
2561 	gpa_t gpa;
2562 	int ret;
2563 
2564 	if (!(baser & GITS_BASER_VALID))
2565 		return 0;
2566 
2567 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2568 
2569 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2570 
2571 	while (read < max_size) {
2572 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2573 		if (ret <= 0)
2574 			break;
2575 		gpa += cte_esz;
2576 		read += cte_esz;
2577 	}
2578 
2579 	if (ret > 0)
2580 		return 0;
2581 
2582 	return ret;
2583 }
2584 
2585 /**
2586  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2587  * according to v0 ABI
2588  */
vgic_its_save_tables_v0(struct vgic_its * its)2589 static int vgic_its_save_tables_v0(struct vgic_its *its)
2590 {
2591 	int ret;
2592 
2593 	ret = vgic_its_save_device_tables(its);
2594 	if (ret)
2595 		return ret;
2596 
2597 	return vgic_its_save_collection_table(its);
2598 }
2599 
2600 /**
2601  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2602  * to internal data structs according to V0 ABI
2603  *
2604  */
vgic_its_restore_tables_v0(struct vgic_its * its)2605 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2606 {
2607 	int ret;
2608 
2609 	ret = vgic_its_restore_collection_table(its);
2610 	if (ret)
2611 		return ret;
2612 
2613 	return vgic_its_restore_device_tables(its);
2614 }
2615 
vgic_its_commit_v0(struct vgic_its * its)2616 static int vgic_its_commit_v0(struct vgic_its *its)
2617 {
2618 	const struct vgic_its_abi *abi;
2619 
2620 	abi = vgic_its_get_abi(its);
2621 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2622 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2623 
2624 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2625 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2626 
2627 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2628 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2629 	return 0;
2630 }
2631 
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2632 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2633 {
2634 	/* We need to keep the ABI specific field values */
2635 	its->baser_coll_table &= ~GITS_BASER_VALID;
2636 	its->baser_device_table &= ~GITS_BASER_VALID;
2637 	its->cbaser = 0;
2638 	its->creadr = 0;
2639 	its->cwriter = 0;
2640 	its->enabled = 0;
2641 	vgic_its_free_device_list(kvm, its);
2642 	vgic_its_free_collection_list(kvm, its);
2643 }
2644 
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2645 static int vgic_its_has_attr(struct kvm_device *dev,
2646 			     struct kvm_device_attr *attr)
2647 {
2648 	switch (attr->group) {
2649 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2650 		switch (attr->attr) {
2651 		case KVM_VGIC_ITS_ADDR_TYPE:
2652 			return 0;
2653 		}
2654 		break;
2655 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2656 		switch (attr->attr) {
2657 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2658 			return 0;
2659 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2660 			return 0;
2661 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2662 			return 0;
2663 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2664 			return 0;
2665 		}
2666 		break;
2667 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2668 		return vgic_its_has_attr_regs(dev, attr);
2669 	}
2670 	return -ENXIO;
2671 }
2672 
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2673 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2674 {
2675 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2676 	int ret = 0;
2677 
2678 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2679 		return 0;
2680 
2681 	mutex_lock(&kvm->lock);
2682 	mutex_lock(&its->its_lock);
2683 
2684 	if (!lock_all_vcpus(kvm)) {
2685 		mutex_unlock(&its->its_lock);
2686 		mutex_unlock(&kvm->lock);
2687 		return -EBUSY;
2688 	}
2689 
2690 	switch (attr) {
2691 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2692 		vgic_its_reset(kvm, its);
2693 		break;
2694 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2695 		ret = abi->save_tables(its);
2696 		break;
2697 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2698 		ret = abi->restore_tables(its);
2699 		break;
2700 	}
2701 
2702 	unlock_all_vcpus(kvm);
2703 	mutex_unlock(&its->its_lock);
2704 	mutex_unlock(&kvm->lock);
2705 	return ret;
2706 }
2707 
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2708 static int vgic_its_set_attr(struct kvm_device *dev,
2709 			     struct kvm_device_attr *attr)
2710 {
2711 	struct vgic_its *its = dev->private;
2712 	int ret;
2713 
2714 	switch (attr->group) {
2715 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2716 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2717 		unsigned long type = (unsigned long)attr->attr;
2718 		u64 addr;
2719 
2720 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2721 			return -ENODEV;
2722 
2723 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2724 			return -EFAULT;
2725 
2726 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2727 					addr, SZ_64K);
2728 		if (ret)
2729 			return ret;
2730 
2731 		return vgic_register_its_iodev(dev->kvm, its, addr);
2732 	}
2733 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2734 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2735 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2736 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2737 		u64 reg;
2738 
2739 		if (get_user(reg, uaddr))
2740 			return -EFAULT;
2741 
2742 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2743 	}
2744 	}
2745 	return -ENXIO;
2746 }
2747 
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2748 static int vgic_its_get_attr(struct kvm_device *dev,
2749 			     struct kvm_device_attr *attr)
2750 {
2751 	switch (attr->group) {
2752 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2753 		struct vgic_its *its = dev->private;
2754 		u64 addr = its->vgic_its_base;
2755 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2756 		unsigned long type = (unsigned long)attr->attr;
2757 
2758 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2759 			return -ENODEV;
2760 
2761 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2762 			return -EFAULT;
2763 		break;
2764 	}
2765 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2766 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2767 		u64 reg;
2768 		int ret;
2769 
2770 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2771 		if (ret)
2772 			return ret;
2773 		return put_user(reg, uaddr);
2774 	}
2775 	default:
2776 		return -ENXIO;
2777 	}
2778 
2779 	return 0;
2780 }
2781 
2782 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2783 	.name = "kvm-arm-vgic-its",
2784 	.create = vgic_its_create,
2785 	.destroy = vgic_its_destroy,
2786 	.set_attr = vgic_its_set_attr,
2787 	.get_attr = vgic_its_get_attr,
2788 	.has_attr = vgic_its_has_attr,
2789 };
2790 
kvm_vgic_register_its_device(void)2791 int kvm_vgic_register_its_device(void)
2792 {
2793 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2794 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2795 }
2796