• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <asm/kvm_mmu.h>
11 
12 #include "vgic.h"
13 
vgic_v2_write_lr(int lr,u32 val)14 static inline void vgic_v2_write_lr(int lr, u32 val)
15 {
16 	void __iomem *base = kvm_vgic_global_state.vctrl_base;
17 
18 	writel_relaxed(val, base + GICH_LR0 + (lr * 4));
19 }
20 
vgic_v2_init_lrs(void)21 void vgic_v2_init_lrs(void)
22 {
23 	int i;
24 
25 	for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
26 		vgic_v2_write_lr(i, 0);
27 }
28 
vgic_v2_set_underflow(struct kvm_vcpu * vcpu)29 void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
30 {
31 	struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
32 
33 	cpuif->vgic_hcr |= GICH_HCR_UIE;
34 }
35 
lr_signals_eoi_mi(u32 lr_val)36 static bool lr_signals_eoi_mi(u32 lr_val)
37 {
38 	return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
39 	       !(lr_val & GICH_LR_HW);
40 }
41 
42 /*
43  * transfer the content of the LRs back into the corresponding ap_list:
44  * - active bit is transferred as is
45  * - pending bit is
46  *   - transferred as is in case of edge sensitive IRQs
47  *   - set to the line-level (resample time) for level sensitive IRQs
48  */
vgic_v2_fold_lr_state(struct kvm_vcpu * vcpu)49 void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
50 {
51 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
52 	struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
53 	int lr;
54 
55 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
56 
57 	cpuif->vgic_hcr &= ~GICH_HCR_UIE;
58 
59 	for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) {
60 		u32 val = cpuif->vgic_lr[lr];
61 		u32 cpuid, intid = val & GICH_LR_VIRTUALID;
62 		struct vgic_irq *irq;
63 
64 		/* Extract the source vCPU id from the LR */
65 		cpuid = val & GICH_LR_PHYSID_CPUID;
66 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
67 		cpuid &= 7;
68 
69 		/* Notify fds when the guest EOI'ed a level-triggered SPI */
70 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
71 			kvm_notify_acked_irq(vcpu->kvm, 0,
72 					     intid - VGIC_NR_PRIVATE_IRQS);
73 
74 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
75 
76 		raw_spin_lock(&irq->irq_lock);
77 
78 		/* Always preserve the active bit */
79 		irq->active = !!(val & GICH_LR_ACTIVE_BIT);
80 
81 		if (irq->active && vgic_irq_is_sgi(intid))
82 			irq->active_source = cpuid;
83 
84 		/* Edge is the only case where we preserve the pending bit */
85 		if (irq->config == VGIC_CONFIG_EDGE &&
86 		    (val & GICH_LR_PENDING_BIT)) {
87 			irq->pending_latch = true;
88 
89 			if (vgic_irq_is_sgi(intid))
90 				irq->source |= (1 << cpuid);
91 		}
92 
93 		/*
94 		 * Clear soft pending state when level irqs have been acked.
95 		 */
96 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
97 			irq->pending_latch = false;
98 
99 		/*
100 		 * Level-triggered mapped IRQs are special because we only
101 		 * observe rising edges as input to the VGIC.
102 		 *
103 		 * If the guest never acked the interrupt we have to sample
104 		 * the physical line and set the line level, because the
105 		 * device state could have changed or we simply need to
106 		 * process the still pending interrupt later.
107 		 *
108 		 * If this causes us to lower the level, we have to also clear
109 		 * the physical active state, since we will otherwise never be
110 		 * told when the interrupt becomes asserted again.
111 		 */
112 		if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
113 			irq->line_level = vgic_get_phys_line_level(irq);
114 
115 			if (!irq->line_level)
116 				vgic_irq_set_phys_active(irq, false);
117 		}
118 
119 		raw_spin_unlock(&irq->irq_lock);
120 		vgic_put_irq(vcpu->kvm, irq);
121 	}
122 
123 	cpuif->used_lrs = 0;
124 }
125 
126 /*
127  * Populates the particular LR with the state of a given IRQ:
128  * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
129  * - for a level sensitive IRQ the pending state value is unchanged;
130  *   it is dictated directly by the input level
131  *
132  * If @irq describes an SGI with multiple sources, we choose the
133  * lowest-numbered source VCPU and clear that bit in the source bitmap.
134  *
135  * The irq_lock must be held by the caller.
136  */
vgic_v2_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)137 void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
138 {
139 	u32 val = irq->intid;
140 	bool allow_pending = true;
141 
142 	if (irq->active) {
143 		val |= GICH_LR_ACTIVE_BIT;
144 		if (vgic_irq_is_sgi(irq->intid))
145 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
146 		if (vgic_irq_is_multi_sgi(irq)) {
147 			allow_pending = false;
148 			val |= GICH_LR_EOI;
149 		}
150 	}
151 
152 	if (irq->group)
153 		val |= GICH_LR_GROUP1;
154 
155 	if (irq->hw) {
156 		val |= GICH_LR_HW;
157 		val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
158 		/*
159 		 * Never set pending+active on a HW interrupt, as the
160 		 * pending state is kept at the physical distributor
161 		 * level.
162 		 */
163 		if (irq->active)
164 			allow_pending = false;
165 	} else {
166 		if (irq->config == VGIC_CONFIG_LEVEL) {
167 			val |= GICH_LR_EOI;
168 
169 			/*
170 			 * Software resampling doesn't work very well
171 			 * if we allow P+A, so let's not do that.
172 			 */
173 			if (irq->active)
174 				allow_pending = false;
175 		}
176 	}
177 
178 	if (allow_pending && irq_is_pending(irq)) {
179 		val |= GICH_LR_PENDING_BIT;
180 
181 		if (irq->config == VGIC_CONFIG_EDGE)
182 			irq->pending_latch = false;
183 
184 		if (vgic_irq_is_sgi(irq->intid)) {
185 			u32 src = ffs(irq->source);
186 
187 			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
188 					   irq->intid))
189 				return;
190 
191 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
192 			irq->source &= ~(1 << (src - 1));
193 			if (irq->source) {
194 				irq->pending_latch = true;
195 				val |= GICH_LR_EOI;
196 			}
197 		}
198 	}
199 
200 	/*
201 	 * Level-triggered mapped IRQs are special because we only observe
202 	 * rising edges as input to the VGIC.  We therefore lower the line
203 	 * level here, so that we can take new virtual IRQs.  See
204 	 * vgic_v2_fold_lr_state for more info.
205 	 */
206 	if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
207 		irq->line_level = false;
208 
209 	/* The GICv2 LR only holds five bits of priority. */
210 	val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
211 
212 	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
213 }
214 
vgic_v2_clear_lr(struct kvm_vcpu * vcpu,int lr)215 void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
216 {
217 	vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
218 }
219 
vgic_v2_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)220 void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
221 {
222 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
223 	u32 vmcr;
224 
225 	vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
226 		GICH_VMCR_ENABLE_GRP0_MASK;
227 	vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
228 		GICH_VMCR_ENABLE_GRP1_MASK;
229 	vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
230 		GICH_VMCR_ACK_CTL_MASK;
231 	vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
232 		GICH_VMCR_FIQ_EN_MASK;
233 	vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
234 		GICH_VMCR_CBPR_MASK;
235 	vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
236 		GICH_VMCR_EOI_MODE_MASK;
237 	vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
238 		GICH_VMCR_ALIAS_BINPOINT_MASK;
239 	vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
240 		GICH_VMCR_BINPOINT_MASK;
241 	vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
242 		 GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
243 
244 	cpu_if->vgic_vmcr = vmcr;
245 }
246 
vgic_v2_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)247 void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
248 {
249 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
250 	u32 vmcr;
251 
252 	vmcr = cpu_if->vgic_vmcr;
253 
254 	vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
255 		GICH_VMCR_ENABLE_GRP0_SHIFT;
256 	vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
257 		GICH_VMCR_ENABLE_GRP1_SHIFT;
258 	vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
259 		GICH_VMCR_ACK_CTL_SHIFT;
260 	vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
261 		GICH_VMCR_FIQ_EN_SHIFT;
262 	vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
263 		GICH_VMCR_CBPR_SHIFT;
264 	vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
265 		GICH_VMCR_EOI_MODE_SHIFT;
266 
267 	vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
268 			GICH_VMCR_ALIAS_BINPOINT_SHIFT;
269 	vmcrp->bpr  = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
270 			GICH_VMCR_BINPOINT_SHIFT;
271 	vmcrp->pmr  = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
272 			GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
273 }
274 
vgic_v2_enable(struct kvm_vcpu * vcpu)275 void vgic_v2_enable(struct kvm_vcpu *vcpu)
276 {
277 	/*
278 	 * By forcing VMCR to zero, the GIC will restore the binary
279 	 * points to their reset values. Anything else resets to zero
280 	 * anyway.
281 	 */
282 	vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
283 
284 	/* Get the show on the road... */
285 	vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
286 }
287 
288 /* check for overlapping regions and for regions crossing the end of memory */
vgic_v2_check_base(gpa_t dist_base,gpa_t cpu_base)289 static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
290 {
291 	if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
292 		return false;
293 	if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
294 		return false;
295 
296 	if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
297 		return true;
298 	if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
299 		return true;
300 
301 	return false;
302 }
303 
vgic_v2_map_resources(struct kvm * kvm)304 int vgic_v2_map_resources(struct kvm *kvm)
305 {
306 	struct vgic_dist *dist = &kvm->arch.vgic;
307 	int ret = 0;
308 
309 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
310 	    IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
311 		kvm_err("Need to set vgic cpu and dist addresses first\n");
312 		return -ENXIO;
313 	}
314 
315 	if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
316 		kvm_err("VGIC CPU and dist frames overlap\n");
317 		return -EINVAL;
318 	}
319 
320 	/*
321 	 * Initialize the vgic if this hasn't already been done on demand by
322 	 * accessing the vgic state from userspace.
323 	 */
324 	ret = vgic_init(kvm);
325 	if (ret) {
326 		kvm_err("Unable to initialize VGIC dynamic data structures\n");
327 		return ret;
328 	}
329 
330 	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
331 	if (ret) {
332 		kvm_err("Unable to register VGIC MMIO regions\n");
333 		return ret;
334 	}
335 
336 	if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
337 		ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
338 					    kvm_vgic_global_state.vcpu_base,
339 					    KVM_VGIC_V2_CPU_SIZE, true);
340 		if (ret) {
341 			kvm_err("Unable to remap VGIC CPU to VCPU\n");
342 			return ret;
343 		}
344 	}
345 
346 	return 0;
347 }
348 
349 DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
350 
351 /**
352  * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller
353  * @info:	pointer to the GIC description
354  *
355  * Returns 0 if the VGICv2 has been probed successfully, returns an error code
356  * otherwise
357  */
vgic_v2_probe(const struct gic_kvm_info * info)358 int vgic_v2_probe(const struct gic_kvm_info *info)
359 {
360 	int ret;
361 	u32 vtr;
362 
363 	if (!info->vctrl.start) {
364 		kvm_err("GICH not present in the firmware table\n");
365 		return -ENXIO;
366 	}
367 
368 	if (!PAGE_ALIGNED(info->vcpu.start) ||
369 	    !PAGE_ALIGNED(resource_size(&info->vcpu))) {
370 		kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
371 
372 		ret = create_hyp_io_mappings(info->vcpu.start,
373 					     resource_size(&info->vcpu),
374 					     &kvm_vgic_global_state.vcpu_base_va,
375 					     &kvm_vgic_global_state.vcpu_hyp_va);
376 		if (ret) {
377 			kvm_err("Cannot map GICV into hyp\n");
378 			goto out;
379 		}
380 
381 		static_branch_enable(&vgic_v2_cpuif_trap);
382 	}
383 
384 	ret = create_hyp_io_mappings(info->vctrl.start,
385 				     resource_size(&info->vctrl),
386 				     &kvm_vgic_global_state.vctrl_base,
387 				     &kvm_vgic_global_state.vctrl_hyp);
388 	if (ret) {
389 		kvm_err("Cannot map VCTRL into hyp\n");
390 		goto out;
391 	}
392 
393 	vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
394 	kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
395 
396 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
397 	if (ret) {
398 		kvm_err("Cannot register GICv2 KVM device\n");
399 		goto out;
400 	}
401 
402 	kvm_vgic_global_state.can_emulate_gicv2 = true;
403 	kvm_vgic_global_state.vcpu_base = info->vcpu.start;
404 	kvm_vgic_global_state.type = VGIC_V2;
405 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
406 
407 	kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
408 
409 	return 0;
410 out:
411 	if (kvm_vgic_global_state.vctrl_base)
412 		iounmap(kvm_vgic_global_state.vctrl_base);
413 	if (kvm_vgic_global_state.vcpu_base_va)
414 		iounmap(kvm_vgic_global_state.vcpu_base_va);
415 
416 	return ret;
417 }
418 
save_lrs(struct kvm_vcpu * vcpu,void __iomem * base)419 static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
420 {
421 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
422 	u64 used_lrs = cpu_if->used_lrs;
423 	u64 elrsr;
424 	int i;
425 
426 	elrsr = readl_relaxed(base + GICH_ELRSR0);
427 	if (unlikely(used_lrs > 32))
428 		elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
429 
430 	for (i = 0; i < used_lrs; i++) {
431 		if (elrsr & (1UL << i))
432 			cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
433 		else
434 			cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
435 
436 		writel_relaxed(0, base + GICH_LR0 + (i * 4));
437 	}
438 }
439 
vgic_v2_save_state(struct kvm_vcpu * vcpu)440 void vgic_v2_save_state(struct kvm_vcpu *vcpu)
441 {
442 	void __iomem *base = kvm_vgic_global_state.vctrl_base;
443 	u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
444 
445 	if (!base)
446 		return;
447 
448 	if (used_lrs) {
449 		save_lrs(vcpu, base);
450 		writel_relaxed(0, base + GICH_HCR);
451 	}
452 }
453 
vgic_v2_restore_state(struct kvm_vcpu * vcpu)454 void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
455 {
456 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
457 	void __iomem *base = kvm_vgic_global_state.vctrl_base;
458 	u64 used_lrs = cpu_if->used_lrs;
459 	int i;
460 
461 	if (!base)
462 		return;
463 
464 	if (used_lrs) {
465 		writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
466 		for (i = 0; i < used_lrs; i++) {
467 			writel_relaxed(cpu_if->vgic_lr[i],
468 				       base + GICH_LR0 + (i * 4));
469 		}
470 	}
471 }
472 
vgic_v2_load(struct kvm_vcpu * vcpu)473 void vgic_v2_load(struct kvm_vcpu *vcpu)
474 {
475 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
476 
477 	writel_relaxed(cpu_if->vgic_vmcr,
478 		       kvm_vgic_global_state.vctrl_base + GICH_VMCR);
479 	writel_relaxed(cpu_if->vgic_apr,
480 		       kvm_vgic_global_state.vctrl_base + GICH_APR);
481 }
482 
vgic_v2_vmcr_sync(struct kvm_vcpu * vcpu)483 void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu)
484 {
485 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
486 
487 	cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
488 }
489 
vgic_v2_put(struct kvm_vcpu * vcpu)490 void vgic_v2_put(struct kvm_vcpu *vcpu)
491 {
492 	struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
493 
494 	vgic_v2_vmcr_sync(vcpu);
495 	cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
496 }
497