1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv3 MMIO handling functions
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 unsigned int num)
24 {
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
31 {
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39 }
40
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
48 return dist->has_its;
49 }
50
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 return (kvm_vgic_global_state.has_gicv4_1 ||
54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * their configured groups.
62 */
63
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len)
66 {
67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 u32 value = 0;
69
70 switch (addr & 0x0c) {
71 case GICD_CTLR:
72 if (vgic->enabled)
73 value |= GICD_CTLR_ENABLE_SS_G1;
74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 if (vgic->nassgireq)
76 value |= GICD_CTLR_nASSGIreq;
77 break;
78 case GICD_TYPER:
79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 value = (value >> 5) - 1;
81 if (vgic_has_its(vcpu->kvm)) {
82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 value |= GICD_TYPER_LPIS;
84 } else {
85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 }
87 break;
88 case GICD_TYPER2:
89 if (kvm_vgic_global_state.has_gicv4_1)
90 value = GICD_TYPER2_nASSGIcap;
91 break;
92 case GICD_IIDR:
93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 break;
97 default:
98 return 0;
99 }
100
101 return value;
102 }
103
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110 switch (addr & 0x0c) {
111 case GICD_CTLR: {
112 bool was_enabled, is_hwsgi;
113
114 mutex_lock(&vcpu->kvm->lock);
115
116 was_enabled = dist->enabled;
117 is_hwsgi = dist->nassgireq;
118
119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121 /* Not a GICv4.1? No HW SGIs */
122 if (!kvm_vgic_global_state.has_gicv4_1)
123 val &= ~GICD_CTLR_nASSGIreq;
124
125 /* Dist stays enabled? nASSGIreq is RO */
126 if (was_enabled && dist->enabled) {
127 val &= ~GICD_CTLR_nASSGIreq;
128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 }
130
131 /* Switching HW SGIs? */
132 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 if (is_hwsgi != dist->nassgireq)
134 vgic_v4_configure_vsgis(vcpu->kvm);
135
136 if (kvm_vgic_global_state.has_gicv4_1 &&
137 was_enabled != dist->enabled)
138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 else if (!was_enabled && dist->enabled)
140 vgic_kick_vcpus(vcpu->kvm);
141
142 mutex_unlock(&vcpu->kvm->lock);
143 break;
144 }
145 case GICD_TYPER:
146 case GICD_TYPER2:
147 case GICD_IIDR:
148 /* This is at best for documentation purposes... */
149 return;
150 }
151 }
152
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 gpa_t addr, unsigned int len,
155 unsigned long val)
156 {
157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158
159 switch (addr & 0x0c) {
160 case GICD_TYPER2:
161 case GICD_IIDR:
162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 return -EINVAL;
164 return 0;
165 case GICD_CTLR:
166 /* Not a GICv4.1? No HW SGIs */
167 if (!kvm_vgic_global_state.has_gicv4_1)
168 val &= ~GICD_CTLR_nASSGIreq;
169
170 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
171 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
172 return 0;
173 }
174
175 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
176 return 0;
177 }
178
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)179 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
180 gpa_t addr, unsigned int len)
181 {
182 int intid = VGIC_ADDR_TO_INTID(addr, 64);
183 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
184 unsigned long ret = 0;
185
186 if (!irq)
187 return 0;
188
189 /* The upper word is RAZ for us. */
190 if (!(addr & 4))
191 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
192
193 vgic_put_irq(vcpu->kvm, irq);
194 return ret;
195 }
196
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)197 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
198 gpa_t addr, unsigned int len,
199 unsigned long val)
200 {
201 int intid = VGIC_ADDR_TO_INTID(addr, 64);
202 struct vgic_irq *irq;
203 unsigned long flags;
204
205 /* The upper word is WI for us since we don't implement Aff3. */
206 if (addr & 4)
207 return;
208
209 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
210
211 if (!irq)
212 return;
213
214 raw_spin_lock_irqsave(&irq->irq_lock, flags);
215
216 /* We only care about and preserve Aff0, Aff1 and Aff2. */
217 irq->mpidr = val & GENMASK(23, 0);
218 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
219
220 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
221 vgic_put_irq(vcpu->kvm, irq);
222 }
223
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)224 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
225 gpa_t addr, unsigned int len)
226 {
227 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
228
229 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
230 }
231
232
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)233 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
234 gpa_t addr, unsigned int len,
235 unsigned long val)
236 {
237 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
238 bool was_enabled = vgic_cpu->lpis_enabled;
239
240 if (!vgic_has_its(vcpu->kvm))
241 return;
242
243 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
244
245 if (was_enabled && !vgic_cpu->lpis_enabled) {
246 vgic_flush_pending_lpis(vcpu);
247 vgic_its_invalidate_cache(vcpu->kvm);
248 }
249
250 if (!was_enabled && vgic_cpu->lpis_enabled)
251 vgic_enable_lpis(vcpu);
252 }
253
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)254 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
255 gpa_t addr, unsigned int len)
256 {
257 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
258 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
259 struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
260 int target_vcpu_id = vcpu->vcpu_id;
261 gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
262 (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
263 u64 value;
264
265 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
266 value |= ((target_vcpu_id & 0xffff) << 8);
267
268 if (addr == last_rdist_typer)
269 value |= GICR_TYPER_LAST;
270 if (vgic_has_its(vcpu->kvm))
271 value |= GICR_TYPER_PLPIS;
272
273 return extract_bytes(value, addr & 7, len);
274 }
275
vgic_uaccess_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)276 static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
277 gpa_t addr, unsigned int len)
278 {
279 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
280 int target_vcpu_id = vcpu->vcpu_id;
281 u64 value;
282
283 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
284 value |= ((target_vcpu_id & 0xffff) << 8);
285
286 if (vgic_has_its(vcpu->kvm))
287 value |= GICR_TYPER_PLPIS;
288
289 /* reporting of the Last bit is not supported for userspace */
290 return extract_bytes(value, addr & 7, len);
291 }
292
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)293 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
294 gpa_t addr, unsigned int len)
295 {
296 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
297 }
298
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)299 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
300 gpa_t addr, unsigned int len)
301 {
302 switch (addr & 0xffff) {
303 case GICD_PIDR2:
304 /* report a GICv3 compliant implementation */
305 return 0x3b;
306 }
307
308 return 0;
309 }
310
vgic_v3_uaccess_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)311 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
312 gpa_t addr, unsigned int len)
313 {
314 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
315 u32 value = 0;
316 int i;
317
318 /*
319 * pending state of interrupt is latched in pending_latch variable.
320 * Userspace will save and restore pending state and line_level
321 * separately.
322 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
323 * for handling of ISPENDR and ICPENDR.
324 */
325 for (i = 0; i < len * 8; i++) {
326 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
327 bool state = irq->pending_latch;
328
329 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
330 int err;
331
332 err = irq_get_irqchip_state(irq->host_irq,
333 IRQCHIP_STATE_PENDING,
334 &state);
335 WARN_ON(err);
336 }
337
338 if (state)
339 value |= (1U << i);
340
341 vgic_put_irq(vcpu->kvm, irq);
342 }
343
344 return value;
345 }
346
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)347 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
348 gpa_t addr, unsigned int len,
349 unsigned long val)
350 {
351 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
352 int i;
353 unsigned long flags;
354
355 for (i = 0; i < len * 8; i++) {
356 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
357
358 raw_spin_lock_irqsave(&irq->irq_lock, flags);
359
360 /*
361 * pending_latch is set irrespective of irq type
362 * (level or edge) to avoid dependency that VM should
363 * restore irq config before pending info.
364 */
365 irq->pending_latch = test_bit(i, &val);
366
367 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
368 irq_set_irqchip_state(irq->host_irq,
369 IRQCHIP_STATE_PENDING,
370 irq->pending_latch);
371 irq->pending_latch = false;
372 }
373
374 if (irq->pending_latch)
375 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
376 else
377 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
378
379 vgic_put_irq(vcpu->kvm, irq);
380 }
381
382 return 0;
383 }
384
385 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)386 u64 vgic_sanitise_shareability(u64 field)
387 {
388 switch (field) {
389 case GIC_BASER_OuterShareable:
390 return GIC_BASER_InnerShareable;
391 default:
392 return field;
393 }
394 }
395
396 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)397 u64 vgic_sanitise_inner_cacheability(u64 field)
398 {
399 switch (field) {
400 case GIC_BASER_CACHE_nCnB:
401 case GIC_BASER_CACHE_nC:
402 return GIC_BASER_CACHE_RaWb;
403 default:
404 return field;
405 }
406 }
407
408 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)409 u64 vgic_sanitise_outer_cacheability(u64 field)
410 {
411 switch (field) {
412 case GIC_BASER_CACHE_SameAsInner:
413 case GIC_BASER_CACHE_nC:
414 return field;
415 default:
416 return GIC_BASER_CACHE_SameAsInner;
417 }
418 }
419
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))420 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
421 u64 (*sanitise_fn)(u64))
422 {
423 u64 field = (reg & field_mask) >> field_shift;
424
425 field = sanitise_fn(field) << field_shift;
426 return (reg & ~field_mask) | field;
427 }
428
429 #define PROPBASER_RES0_MASK \
430 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
431 #define PENDBASER_RES0_MASK \
432 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
433 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
434
vgic_sanitise_pendbaser(u64 reg)435 static u64 vgic_sanitise_pendbaser(u64 reg)
436 {
437 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
438 GICR_PENDBASER_SHAREABILITY_SHIFT,
439 vgic_sanitise_shareability);
440 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
441 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
442 vgic_sanitise_inner_cacheability);
443 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
444 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
445 vgic_sanitise_outer_cacheability);
446
447 reg &= ~PENDBASER_RES0_MASK;
448
449 return reg;
450 }
451
vgic_sanitise_propbaser(u64 reg)452 static u64 vgic_sanitise_propbaser(u64 reg)
453 {
454 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
455 GICR_PROPBASER_SHAREABILITY_SHIFT,
456 vgic_sanitise_shareability);
457 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
458 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
459 vgic_sanitise_inner_cacheability);
460 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
461 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
462 vgic_sanitise_outer_cacheability);
463
464 reg &= ~PROPBASER_RES0_MASK;
465 return reg;
466 }
467
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)468 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
469 gpa_t addr, unsigned int len)
470 {
471 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
472
473 return extract_bytes(dist->propbaser, addr & 7, len);
474 }
475
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)476 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
477 gpa_t addr, unsigned int len,
478 unsigned long val)
479 {
480 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
482 u64 old_propbaser, propbaser;
483
484 /* Storing a value with LPIs already enabled is undefined */
485 if (vgic_cpu->lpis_enabled)
486 return;
487
488 do {
489 old_propbaser = READ_ONCE(dist->propbaser);
490 propbaser = old_propbaser;
491 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
492 propbaser = vgic_sanitise_propbaser(propbaser);
493 } while (cmpxchg64(&dist->propbaser, old_propbaser,
494 propbaser) != old_propbaser);
495 }
496
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)497 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
498 gpa_t addr, unsigned int len)
499 {
500 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
501 u64 value = vgic_cpu->pendbaser;
502
503 value &= ~GICR_PENDBASER_PTZ;
504
505 return extract_bytes(value, addr & 7, len);
506 }
507
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)508 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
509 gpa_t addr, unsigned int len,
510 unsigned long val)
511 {
512 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
513 u64 old_pendbaser, pendbaser;
514
515 /* Storing a value with LPIs already enabled is undefined */
516 if (vgic_cpu->lpis_enabled)
517 return;
518
519 do {
520 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
521 pendbaser = old_pendbaser;
522 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
523 pendbaser = vgic_sanitise_pendbaser(pendbaser);
524 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
525 pendbaser) != old_pendbaser);
526 }
527
528 /*
529 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
530 * redistributors, while SPIs are covered by registers in the distributor
531 * block. Trying to set private IRQs in this block gets ignored.
532 * We take some special care here to fix the calculation of the register
533 * offset.
534 */
535 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
536 { \
537 .reg_offset = off, \
538 .bits_per_irq = bpi, \
539 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
540 .access_flags = acc, \
541 .read = vgic_mmio_read_raz, \
542 .write = vgic_mmio_write_wi, \
543 }, { \
544 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
545 .bits_per_irq = bpi, \
546 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
547 .access_flags = acc, \
548 .read = rd, \
549 .write = wr, \
550 .uaccess_read = ur, \
551 .uaccess_write = uw, \
552 }
553
554 static const struct vgic_register_region vgic_v3_dist_registers[] = {
555 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
556 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
557 NULL, vgic_mmio_uaccess_write_v3_misc,
558 16, VGIC_ACCESS_32bit),
559 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
560 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
561 VGIC_ACCESS_32bit),
562 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
563 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
564 VGIC_ACCESS_32bit),
565 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
566 vgic_mmio_read_enable, vgic_mmio_write_senable,
567 NULL, vgic_uaccess_write_senable, 1,
568 VGIC_ACCESS_32bit),
569 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
570 vgic_mmio_read_enable, vgic_mmio_write_cenable,
571 NULL, vgic_uaccess_write_cenable, 1,
572 VGIC_ACCESS_32bit),
573 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
574 vgic_mmio_read_pending, vgic_mmio_write_spending,
575 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
576 VGIC_ACCESS_32bit),
577 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
578 vgic_mmio_read_pending, vgic_mmio_write_cpending,
579 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
580 VGIC_ACCESS_32bit),
581 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
582 vgic_mmio_read_active, vgic_mmio_write_sactive,
583 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
584 VGIC_ACCESS_32bit),
585 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
586 vgic_mmio_read_active, vgic_mmio_write_cactive,
587 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
588 1, VGIC_ACCESS_32bit),
589 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
590 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
591 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
592 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
593 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
594 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
595 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
596 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
597 VGIC_ACCESS_32bit),
598 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
599 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
600 VGIC_ACCESS_32bit),
601 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
602 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
603 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
604 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
605 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
606 VGIC_ACCESS_32bit),
607 };
608
609 static const struct vgic_register_region vgic_v3_rd_registers[] = {
610 /* RD_base registers */
611 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
612 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
613 VGIC_ACCESS_32bit),
614 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
615 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
616 VGIC_ACCESS_32bit),
617 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
618 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
619 VGIC_ACCESS_32bit),
620 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
621 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
622 vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
623 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
624 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
625 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
626 VGIC_ACCESS_32bit),
627 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
628 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
629 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
630 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
631 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
632 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
633 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
634 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
635 VGIC_ACCESS_32bit),
636 /* SGI_base registers */
637 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
638 vgic_mmio_read_group, vgic_mmio_write_group, 4,
639 VGIC_ACCESS_32bit),
640 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
641 vgic_mmio_read_enable, vgic_mmio_write_senable,
642 NULL, vgic_uaccess_write_senable, 4,
643 VGIC_ACCESS_32bit),
644 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
645 vgic_mmio_read_enable, vgic_mmio_write_cenable,
646 NULL, vgic_uaccess_write_cenable, 4,
647 VGIC_ACCESS_32bit),
648 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
649 vgic_mmio_read_pending, vgic_mmio_write_spending,
650 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
651 VGIC_ACCESS_32bit),
652 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
653 vgic_mmio_read_pending, vgic_mmio_write_cpending,
654 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
655 VGIC_ACCESS_32bit),
656 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
657 vgic_mmio_read_active, vgic_mmio_write_sactive,
658 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
659 VGIC_ACCESS_32bit),
660 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
661 vgic_mmio_read_active, vgic_mmio_write_cactive,
662 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
663 VGIC_ACCESS_32bit),
664 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
665 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
666 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
667 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
668 vgic_mmio_read_config, vgic_mmio_write_config, 8,
669 VGIC_ACCESS_32bit),
670 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
671 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
672 VGIC_ACCESS_32bit),
673 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
674 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
675 VGIC_ACCESS_32bit),
676 };
677
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)678 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
679 {
680 dev->regions = vgic_v3_dist_registers;
681 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
682
683 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
684
685 return SZ_64K;
686 }
687
688 /**
689 * vgic_register_redist_iodev - register a single redist iodev
690 * @vcpu: The VCPU to which the redistributor belongs
691 *
692 * Register a KVM iodev for this VCPU's redistributor using the address
693 * provided.
694 *
695 * Return 0 on success, -ERRNO otherwise.
696 */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)697 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
698 {
699 struct kvm *kvm = vcpu->kvm;
700 struct vgic_dist *vgic = &kvm->arch.vgic;
701 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
702 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
703 struct vgic_redist_region *rdreg;
704 gpa_t rd_base;
705 int ret;
706
707 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
708 return 0;
709
710 /*
711 * We may be creating VCPUs before having set the base address for the
712 * redistributor region, in which case we will come back to this
713 * function for all VCPUs when the base address is set. Just return
714 * without doing any work for now.
715 */
716 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
717 if (!rdreg)
718 return 0;
719
720 if (!vgic_v3_check_base(kvm))
721 return -EINVAL;
722
723 vgic_cpu->rdreg = rdreg;
724
725 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
726
727 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
728 rd_dev->base_addr = rd_base;
729 rd_dev->iodev_type = IODEV_REDIST;
730 rd_dev->regions = vgic_v3_rd_registers;
731 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
732 rd_dev->redist_vcpu = vcpu;
733
734 mutex_lock(&kvm->slots_lock);
735 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
736 2 * SZ_64K, &rd_dev->dev);
737 mutex_unlock(&kvm->slots_lock);
738
739 if (ret)
740 return ret;
741
742 rdreg->free_index++;
743 return 0;
744 }
745
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)746 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
747 {
748 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
749
750 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
751 }
752
vgic_register_all_redist_iodevs(struct kvm * kvm)753 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
754 {
755 struct kvm_vcpu *vcpu;
756 int c, ret = 0;
757
758 kvm_for_each_vcpu(c, vcpu, kvm) {
759 ret = vgic_register_redist_iodev(vcpu);
760 if (ret)
761 break;
762 }
763
764 if (ret) {
765 /* The current c failed, so we start with the previous one. */
766 mutex_lock(&kvm->slots_lock);
767 for (c--; c >= 0; c--) {
768 vcpu = kvm_get_vcpu(kvm, c);
769 vgic_unregister_redist_iodev(vcpu);
770 }
771 mutex_unlock(&kvm->slots_lock);
772 }
773
774 return ret;
775 }
776
777 /**
778 * vgic_v3_insert_redist_region - Insert a new redistributor region
779 *
780 * Performs various checks before inserting the rdist region in the list.
781 * Those tests depend on whether the size of the rdist region is known
782 * (ie. count != 0). The list is sorted by rdist region index.
783 *
784 * @kvm: kvm handle
785 * @index: redist region index
786 * @base: base of the new rdist region
787 * @count: number of redistributors the region is made of (0 in the old style
788 * single region, whose size is induced from the number of vcpus)
789 *
790 * Return 0 on success, < 0 otherwise
791 */
vgic_v3_insert_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)792 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
793 gpa_t base, uint32_t count)
794 {
795 struct vgic_dist *d = &kvm->arch.vgic;
796 struct vgic_redist_region *rdreg;
797 struct list_head *rd_regions = &d->rd_regions;
798 size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
799 int ret;
800
801 /* single rdist region already set ?*/
802 if (!count && !list_empty(rd_regions))
803 return -EINVAL;
804
805 /* cross the end of memory ? */
806 if (base + size < base)
807 return -EINVAL;
808
809 if (list_empty(rd_regions)) {
810 if (index != 0)
811 return -EINVAL;
812 } else {
813 rdreg = list_last_entry(rd_regions,
814 struct vgic_redist_region, list);
815 if (index != rdreg->index + 1)
816 return -EINVAL;
817
818 /* Cannot add an explicitly sized regions after legacy region */
819 if (!rdreg->count)
820 return -EINVAL;
821 }
822
823 /*
824 * For legacy single-region redistributor regions (!count),
825 * check that the redistributor region does not overlap with the
826 * distributor's address space.
827 */
828 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
829 vgic_dist_overlap(kvm, base, size))
830 return -EINVAL;
831
832 /* collision with any other rdist region? */
833 if (vgic_v3_rdist_overlap(kvm, base, size))
834 return -EINVAL;
835
836 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
837 if (!rdreg)
838 return -ENOMEM;
839
840 rdreg->base = VGIC_ADDR_UNDEF;
841
842 ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
843 if (ret)
844 goto free;
845
846 rdreg->base = base;
847 rdreg->count = count;
848 rdreg->free_index = 0;
849 rdreg->index = index;
850
851 list_add_tail(&rdreg->list, rd_regions);
852 return 0;
853 free:
854 kfree(rdreg);
855 return ret;
856 }
857
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)858 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
859 {
860 int ret;
861
862 ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
863 if (ret)
864 return ret;
865
866 /*
867 * Register iodevs for each existing VCPU. Adding more VCPUs
868 * afterwards will register the iodevs when needed.
869 */
870 ret = vgic_register_all_redist_iodevs(kvm);
871 if (ret)
872 return ret;
873
874 return 0;
875 }
876
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)877 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
878 {
879 const struct vgic_register_region *region;
880 struct vgic_io_device iodev;
881 struct vgic_reg_attr reg_attr;
882 struct kvm_vcpu *vcpu;
883 gpa_t addr;
884 int ret;
885
886 ret = vgic_v3_parse_attr(dev, attr, ®_attr);
887 if (ret)
888 return ret;
889
890 vcpu = reg_attr.vcpu;
891 addr = reg_attr.addr;
892
893 switch (attr->group) {
894 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
895 iodev.regions = vgic_v3_dist_registers;
896 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
897 iodev.base_addr = 0;
898 break;
899 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
900 iodev.regions = vgic_v3_rd_registers;
901 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
902 iodev.base_addr = 0;
903 break;
904 }
905 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
906 u64 reg, id;
907
908 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
909 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, ®);
910 }
911 default:
912 return -ENXIO;
913 }
914
915 /* We only support aligned 32-bit accesses. */
916 if (addr & 3)
917 return -ENXIO;
918
919 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
920 if (!region)
921 return -ENXIO;
922
923 return 0;
924 }
925 /*
926 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
927 * generation register ICC_SGI1R_EL1) with a given VCPU.
928 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
929 * return -1.
930 */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)931 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
932 {
933 unsigned long affinity;
934 int level0;
935
936 /*
937 * Split the current VCPU's MPIDR into affinity level 0 and the
938 * rest as this is what we have to compare against.
939 */
940 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
941 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
942 affinity &= ~MPIDR_LEVEL_MASK;
943
944 /* bail out if the upper three levels don't match */
945 if (sgi_aff != affinity)
946 return -1;
947
948 /* Is this VCPU's bit set in the mask ? */
949 if (!(sgi_cpu_mask & BIT(level0)))
950 return -1;
951
952 return level0;
953 }
954
955 /*
956 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
957 * so provide a wrapper to use the existing defines to isolate a certain
958 * affinity level.
959 */
960 #define SGI_AFFINITY_LEVEL(reg, level) \
961 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
962 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
963
964 /**
965 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
966 * @vcpu: The VCPU requesting a SGI
967 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
968 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
969 *
970 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
971 * This will trap in sys_regs.c and call this function.
972 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
973 * target processors as well as a bitmask of 16 Aff0 CPUs.
974 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
975 * check for matching ones. If this bit is set, we signal all, but not the
976 * calling VCPU.
977 */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)978 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
979 {
980 struct kvm *kvm = vcpu->kvm;
981 struct kvm_vcpu *c_vcpu;
982 u16 target_cpus;
983 u64 mpidr;
984 int sgi, c;
985 int vcpu_id = vcpu->vcpu_id;
986 bool broadcast;
987 unsigned long flags;
988
989 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
990 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
991 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
992 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
993 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
994 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
995
996 /*
997 * We iterate over all VCPUs to find the MPIDRs matching the request.
998 * If we have handled one CPU, we clear its bit to detect early
999 * if we are already finished. This avoids iterating through all
1000 * VCPUs when most of the times we just signal a single VCPU.
1001 */
1002 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1003 struct vgic_irq *irq;
1004
1005 /* Exit early if we have dealt with all requested CPUs */
1006 if (!broadcast && target_cpus == 0)
1007 break;
1008
1009 /* Don't signal the calling VCPU */
1010 if (broadcast && c == vcpu_id)
1011 continue;
1012
1013 if (!broadcast) {
1014 int level0;
1015
1016 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1017 if (level0 == -1)
1018 continue;
1019
1020 /* remove this matching VCPU from the mask */
1021 target_cpus &= ~BIT(level0);
1022 }
1023
1024 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1025
1026 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1027
1028 /*
1029 * An access targeting Group0 SGIs can only generate
1030 * those, while an access targeting Group1 SGIs can
1031 * generate interrupts of either group.
1032 */
1033 if (!irq->group || allow_group1) {
1034 if (!irq->hw) {
1035 irq->pending_latch = true;
1036 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1037 } else {
1038 /* HW SGI? Ask the GIC to inject it */
1039 int err;
1040 err = irq_set_irqchip_state(irq->host_irq,
1041 IRQCHIP_STATE_PENDING,
1042 true);
1043 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1044 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1045 }
1046 } else {
1047 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1048 }
1049
1050 vgic_put_irq(vcpu->kvm, irq);
1051 }
1052 }
1053
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1054 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1055 int offset, u32 *val)
1056 {
1057 struct vgic_io_device dev = {
1058 .regions = vgic_v3_dist_registers,
1059 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1060 };
1061
1062 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1063 }
1064
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1065 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1066 int offset, u32 *val)
1067 {
1068 struct vgic_io_device rd_dev = {
1069 .regions = vgic_v3_rd_registers,
1070 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1071 };
1072
1073 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1074 }
1075
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u64 * val)1076 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1077 u32 intid, u64 *val)
1078 {
1079 if (intid % 32)
1080 return -EINVAL;
1081
1082 if (is_write)
1083 vgic_write_irq_line_level_info(vcpu, intid, *val);
1084 else
1085 *val = vgic_read_irq_line_level_info(vcpu, intid);
1086
1087 return 0;
1088 }
1089