• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 	<http://rt2x00.serialmonkey.com>
7 
8  */
9 
10 /*
11 	Module: rt2x00
12 	Abstract: rt2x00 global information.
13  */
14 
15 #ifndef RT2X00_H
16 #define RT2X00_H
17 
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/skbuff.h>
21 #include <linux/workqueue.h>
22 #include <linux/firmware.h>
23 #include <linux/leds.h>
24 #include <linux/mutex.h>
25 #include <linux/etherdevice.h>
26 #include <linux/kfifo.h>
27 #include <linux/hrtimer.h>
28 #include <linux/average.h>
29 #include <linux/usb.h>
30 #include <linux/clk.h>
31 
32 #include <net/mac80211.h>
33 
34 #include "rt2x00debug.h"
35 #include "rt2x00dump.h"
36 #include "rt2x00leds.h"
37 #include "rt2x00reg.h"
38 #include "rt2x00queue.h"
39 
40 /*
41  * Module information.
42  */
43 #define DRV_VERSION	"2.3.0"
44 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
45 
46 /* Debug definitions.
47  * Debug output has to be enabled during compile time.
48  */
49 #ifdef CONFIG_RT2X00_DEBUG
50 #define DEBUG
51 #endif /* CONFIG_RT2X00_DEBUG */
52 
53 /* Utility printing macros
54  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55  */
56 #define rt2x00_probe_err(fmt, ...)					\
57 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
58 	       __func__, ##__VA_ARGS__)
59 #define rt2x00_err(dev, fmt, ...)					\
60 	wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt,	\
61 		  __func__, ##__VA_ARGS__)
62 #define rt2x00_warn(dev, fmt, ...)					\
63 	wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt,	\
64 		   __func__, ##__VA_ARGS__)
65 #define rt2x00_info(dev, fmt, ...)					\
66 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
67 		   __func__, ##__VA_ARGS__)
68 
69 /* Various debug levels */
70 #define rt2x00_dbg(dev, fmt, ...)					\
71 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
72 		  __func__, ##__VA_ARGS__)
73 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
74 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
75 		  __func__, ##__VA_ARGS__)
76 
77 /*
78  * Duration calculations
79  * The rate variable passed is: 100kbs.
80  * To convert from bytes to bits we multiply size with 8,
81  * then the size is multiplied with 10 to make the
82  * real rate -> rate argument correction.
83  */
84 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86 
87 /*
88  * Determine the number of L2 padding bytes required between the header and
89  * the payload.
90  */
91 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
92 
93 /*
94  * Determine the alignment requirement,
95  * to make sure the 802.11 payload is padded to a 4-byte boundrary
96  * we must determine the address of the payload and calculate the
97  * amount of bytes needed to move the data.
98  */
99 #define ALIGN_SIZE(__skb, __header) \
100 	(((unsigned long)((__skb)->data + (__header))) & 3)
101 
102 /*
103  * Constants for extra TX headroom for alignment purposes.
104  */
105 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
106 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
107 
108 /*
109  * Standard timing and size defines.
110  * These values should follow the ieee80211 specifications.
111  */
112 #define ACK_SIZE		14
113 #define IEEE80211_HEADER	24
114 #define PLCP			48
115 #define BEACON			100
116 #define PREAMBLE		144
117 #define SHORT_PREAMBLE		72
118 #define SLOT_TIME		20
119 #define SHORT_SLOT_TIME		9
120 #define SIFS			10
121 #define PIFS			(SIFS + SLOT_TIME)
122 #define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
123 #define DIFS			(PIFS + SLOT_TIME)
124 #define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
125 #define EIFS			(SIFS + DIFS + \
126 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127 #define SHORT_EIFS		(SIFS + SHORT_DIFS + \
128 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129 
130 enum rt2x00_chip_intf {
131 	RT2X00_CHIP_INTF_PCI,
132 	RT2X00_CHIP_INTF_PCIE,
133 	RT2X00_CHIP_INTF_USB,
134 	RT2X00_CHIP_INTF_SOC,
135 };
136 
137 /*
138  * Chipset identification
139  * The chipset on the device is composed of a RT and RF chip.
140  * The chipset combination is important for determining device capabilities.
141  */
142 struct rt2x00_chip {
143 	u16 rt;
144 #define RT2460		0x2460
145 #define RT2560		0x2560
146 #define RT2570		0x2570
147 #define RT2661		0x2661
148 #define RT2573		0x2573
149 #define RT2860		0x2860	/* 2.4GHz */
150 #define RT2872		0x2872	/* WSOC */
151 #define RT2883		0x2883	/* WSOC */
152 #define RT3070		0x3070
153 #define RT3071		0x3071
154 #define RT3090		0x3090	/* 2.4GHz PCIe */
155 #define RT3290		0x3290
156 #define RT3352		0x3352  /* WSOC */
157 #define RT3390		0x3390
158 #define RT3572		0x3572
159 #define RT3593		0x3593
160 #define RT3883		0x3883	/* WSOC */
161 #define RT5350		0x5350  /* WSOC 2.4GHz */
162 #define RT5390		0x5390  /* 2.4GHz */
163 #define RT5392		0x5392  /* 2.4GHz */
164 #define RT5592		0x5592
165 #define RT6352		0x6352  /* WSOC 2.4GHz */
166 
167 	u16 rf;
168 	u16 rev;
169 
170 	enum rt2x00_chip_intf intf;
171 };
172 
173 /*
174  * RF register values that belong to a particular channel.
175  */
176 struct rf_channel {
177 	int channel;
178 	u32 rf1;
179 	u32 rf2;
180 	u32 rf3;
181 	u32 rf4;
182 };
183 
184 /*
185  * Channel information structure
186  */
187 struct channel_info {
188 	unsigned int flags;
189 #define GEOGRAPHY_ALLOWED	0x00000001
190 
191 	short max_power;
192 	short default_power1;
193 	short default_power2;
194 	short default_power3;
195 };
196 
197 /*
198  * Antenna setup values.
199  */
200 struct antenna_setup {
201 	enum antenna rx;
202 	enum antenna tx;
203 	u8 rx_chain_num;
204 	u8 tx_chain_num;
205 };
206 
207 /*
208  * Quality statistics about the currently active link.
209  */
210 struct link_qual {
211 	/*
212 	 * Statistics required for Link tuning by driver
213 	 * The rssi value is provided by rt2x00lib during the
214 	 * link_tuner() callback function.
215 	 * The false_cca field is filled during the link_stats()
216 	 * callback function and could be used during the
217 	 * link_tuner() callback function.
218 	 */
219 	int rssi;
220 	int false_cca;
221 
222 	/*
223 	 * VGC levels
224 	 * Hardware driver will tune the VGC level during each call
225 	 * to the link_tuner() callback function. This vgc_level is
226 	 * is determined based on the link quality statistics like
227 	 * average RSSI and the false CCA count.
228 	 *
229 	 * In some cases the drivers need to differentiate between
230 	 * the currently "desired" VGC level and the level configured
231 	 * in the hardware. The latter is important to reduce the
232 	 * number of BBP register reads to reduce register access
233 	 * overhead. For this reason we store both values here.
234 	 */
235 	u8 vgc_level;
236 	u8 vgc_level_reg;
237 
238 	/*
239 	 * Statistics required for Signal quality calculation.
240 	 * These fields might be changed during the link_stats()
241 	 * callback function.
242 	 */
243 	int rx_success;
244 	int rx_failed;
245 	int tx_success;
246 	int tx_failed;
247 };
248 
249 DECLARE_EWMA(rssi, 10, 8)
250 
251 /*
252  * Antenna settings about the currently active link.
253  */
254 struct link_ant {
255 	/*
256 	 * Antenna flags
257 	 */
258 	unsigned int flags;
259 #define ANTENNA_RX_DIVERSITY	0x00000001
260 #define ANTENNA_TX_DIVERSITY	0x00000002
261 #define ANTENNA_MODE_SAMPLE	0x00000004
262 
263 	/*
264 	 * Currently active TX/RX antenna setup.
265 	 * When software diversity is used, this will indicate
266 	 * which antenna is actually used at this time.
267 	 */
268 	struct antenna_setup active;
269 
270 	/*
271 	 * RSSI history information for the antenna.
272 	 * Used to determine when to switch antenna
273 	 * when using software diversity.
274 	 */
275 	int rssi_history;
276 
277 	/*
278 	 * Current RSSI average of the currently active antenna.
279 	 * Similar to the avg_rssi in the link_qual structure
280 	 * this value is updated by using the walking average.
281 	 */
282 	struct ewma_rssi rssi_ant;
283 };
284 
285 /*
286  * To optimize the quality of the link we need to store
287  * the quality of received frames and periodically
288  * optimize the link.
289  */
290 struct link {
291 	/*
292 	 * Link tuner counter
293 	 * The number of times the link has been tuned
294 	 * since the radio has been switched on.
295 	 */
296 	u32 count;
297 
298 	/*
299 	 * Quality measurement values.
300 	 */
301 	struct link_qual qual;
302 
303 	/*
304 	 * TX/RX antenna setup.
305 	 */
306 	struct link_ant ant;
307 
308 	/*
309 	 * Currently active average RSSI value
310 	 */
311 	struct ewma_rssi avg_rssi;
312 
313 	/*
314 	 * Work structure for scheduling periodic link tuning.
315 	 */
316 	struct delayed_work work;
317 
318 	/*
319 	 * Work structure for scheduling periodic watchdog monitoring.
320 	 * This work must be scheduled on the kernel workqueue, while
321 	 * all other work structures must be queued on the mac80211
322 	 * workqueue. This guarantees that the watchdog can schedule
323 	 * other work structures and wait for their completion in order
324 	 * to bring the device/driver back into the desired state.
325 	 */
326 	struct delayed_work watchdog_work;
327 	unsigned int watchdog_interval;
328 	bool watchdog_disabled;
329 
330 	/*
331 	 * Work structure for scheduling periodic AGC adjustments.
332 	 */
333 	struct delayed_work agc_work;
334 
335 	/*
336 	 * Work structure for scheduling periodic VCO calibration.
337 	 */
338 	struct delayed_work vco_work;
339 };
340 
341 enum rt2x00_delayed_flags {
342 	DELAYED_UPDATE_BEACON,
343 };
344 
345 /*
346  * Interface structure
347  * Per interface configuration details, this structure
348  * is allocated as the private data for ieee80211_vif.
349  */
350 struct rt2x00_intf {
351 	/*
352 	 * beacon->skb must be protected with the mutex.
353 	 */
354 	struct mutex beacon_skb_mutex;
355 
356 	/*
357 	 * Entry in the beacon queue which belongs to
358 	 * this interface. Each interface has its own
359 	 * dedicated beacon entry.
360 	 */
361 	struct queue_entry *beacon;
362 	bool enable_beacon;
363 
364 	/*
365 	 * Actions that needed rescheduling.
366 	 */
367 	unsigned long delayed_flags;
368 
369 	/*
370 	 * Software sequence counter, this is only required
371 	 * for hardware which doesn't support hardware
372 	 * sequence counting.
373 	 */
374 	atomic_t seqno;
375 };
376 
vif_to_intf(struct ieee80211_vif * vif)377 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
378 {
379 	return (struct rt2x00_intf *)vif->drv_priv;
380 }
381 
382 /**
383  * struct hw_mode_spec: Hardware specifications structure
384  *
385  * Details about the supported modes, rates and channels
386  * of a particular chipset. This is used by rt2x00lib
387  * to build the ieee80211_hw_mode array for mac80211.
388  *
389  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
390  * @supported_rates: Rate types which are supported (CCK, OFDM).
391  * @num_channels: Number of supported channels. This is used as array size
392  *	for @tx_power_a, @tx_power_bg and @channels.
393  * @channels: Device/chipset specific channel values (See &struct rf_channel).
394  * @channels_info: Additional information for channels (See &struct channel_info).
395  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
396  */
397 struct hw_mode_spec {
398 	unsigned int supported_bands;
399 #define SUPPORT_BAND_2GHZ	0x00000001
400 #define SUPPORT_BAND_5GHZ	0x00000002
401 
402 	unsigned int supported_rates;
403 #define SUPPORT_RATE_CCK	0x00000001
404 #define SUPPORT_RATE_OFDM	0x00000002
405 
406 	unsigned int num_channels;
407 	const struct rf_channel *channels;
408 	const struct channel_info *channels_info;
409 
410 	struct ieee80211_sta_ht_cap ht;
411 };
412 
413 /*
414  * Configuration structure wrapper around the
415  * mac80211 configuration structure.
416  * When mac80211 configures the driver, rt2x00lib
417  * can precalculate values which are equal for all
418  * rt2x00 drivers. Those values can be stored in here.
419  */
420 struct rt2x00lib_conf {
421 	struct ieee80211_conf *conf;
422 
423 	struct rf_channel rf;
424 	struct channel_info channel;
425 };
426 
427 /*
428  * Configuration structure for erp settings.
429  */
430 struct rt2x00lib_erp {
431 	int short_preamble;
432 	int cts_protection;
433 
434 	u32 basic_rates;
435 
436 	int slot_time;
437 
438 	short sifs;
439 	short pifs;
440 	short difs;
441 	short eifs;
442 
443 	u16 beacon_int;
444 	u16 ht_opmode;
445 };
446 
447 /*
448  * Configuration structure for hardware encryption.
449  */
450 struct rt2x00lib_crypto {
451 	enum cipher cipher;
452 
453 	enum set_key_cmd cmd;
454 	const u8 *address;
455 
456 	u32 bssidx;
457 
458 	u8 key[16];
459 	u8 tx_mic[8];
460 	u8 rx_mic[8];
461 
462 	int wcid;
463 };
464 
465 /*
466  * Configuration structure wrapper around the
467  * rt2x00 interface configuration handler.
468  */
469 struct rt2x00intf_conf {
470 	/*
471 	 * Interface type
472 	 */
473 	enum nl80211_iftype type;
474 
475 	/*
476 	 * TSF sync value, this is dependent on the operation type.
477 	 */
478 	enum tsf_sync sync;
479 
480 	/*
481 	 * The MAC and BSSID addresses are simple array of bytes,
482 	 * these arrays are little endian, so when sending the addresses
483 	 * to the drivers, copy the it into a endian-signed variable.
484 	 *
485 	 * Note that all devices (except rt2500usb) have 32 bits
486 	 * register word sizes. This means that whatever variable we
487 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
488 	 * might not accept what we are sending to it.
489 	 * This will also make it easier for the driver to write
490 	 * the data to the device.
491 	 */
492 	__le32 mac[2];
493 	__le32 bssid[2];
494 };
495 
496 /*
497  * Private structure for storing STA details
498  * wcid: Wireless Client ID
499  */
500 struct rt2x00_sta {
501 	int wcid;
502 };
503 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)504 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
505 {
506 	return (struct rt2x00_sta *)sta->drv_priv;
507 }
508 
509 /*
510  * rt2x00lib callback functions.
511  */
512 struct rt2x00lib_ops {
513 	/*
514 	 * Interrupt handlers.
515 	 */
516 	irq_handler_t irq_handler;
517 
518 	/*
519 	 * TX status tasklet handler.
520 	 */
521 	void (*txstatus_tasklet) (struct tasklet_struct *t);
522 	void (*pretbtt_tasklet) (struct tasklet_struct *t);
523 	void (*tbtt_tasklet) (struct tasklet_struct *t);
524 	void (*rxdone_tasklet) (struct tasklet_struct *t);
525 	void (*autowake_tasklet) (struct tasklet_struct *t);
526 
527 	/*
528 	 * Device init handlers.
529 	 */
530 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
531 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
532 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
533 			       const u8 *data, const size_t len);
534 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
535 			      const u8 *data, const size_t len);
536 
537 	/*
538 	 * Device initialization/deinitialization handlers.
539 	 */
540 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
541 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
542 
543 	/*
544 	 * queue initialization handlers
545 	 */
546 	bool (*get_entry_state) (struct queue_entry *entry);
547 	void (*clear_entry) (struct queue_entry *entry);
548 
549 	/*
550 	 * Radio control handlers.
551 	 */
552 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
553 				 enum dev_state state);
554 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
555 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
556 			    struct link_qual *qual);
557 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
558 			     struct link_qual *qual);
559 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
560 			    struct link_qual *qual, const u32 count);
561 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
562 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
563 
564 	/*
565 	 * Data queue handlers.
566 	 */
567 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
568 	void (*start_queue) (struct data_queue *queue);
569 	void (*kick_queue) (struct data_queue *queue);
570 	void (*stop_queue) (struct data_queue *queue);
571 	void (*flush_queue) (struct data_queue *queue, bool drop);
572 	void (*tx_dma_done) (struct queue_entry *entry);
573 
574 	/*
575 	 * TX control handlers
576 	 */
577 	void (*write_tx_desc) (struct queue_entry *entry,
578 			       struct txentry_desc *txdesc);
579 	void (*write_tx_data) (struct queue_entry *entry,
580 			       struct txentry_desc *txdesc);
581 	void (*write_beacon) (struct queue_entry *entry,
582 			      struct txentry_desc *txdesc);
583 	void (*clear_beacon) (struct queue_entry *entry);
584 	int (*get_tx_data_len) (struct queue_entry *entry);
585 
586 	/*
587 	 * RX control handlers
588 	 */
589 	void (*fill_rxdone) (struct queue_entry *entry,
590 			     struct rxdone_entry_desc *rxdesc);
591 
592 	/*
593 	 * Configuration handlers.
594 	 */
595 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
596 				  struct rt2x00lib_crypto *crypto,
597 				  struct ieee80211_key_conf *key);
598 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
599 				    struct rt2x00lib_crypto *crypto,
600 				    struct ieee80211_key_conf *key);
601 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
602 			       const unsigned int filter_flags);
603 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
604 			     struct rt2x00_intf *intf,
605 			     struct rt2x00intf_conf *conf,
606 			     const unsigned int flags);
607 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
608 #define CONFIG_UPDATE_MAC		( 1 << 2 )
609 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
610 
611 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
612 			    struct rt2x00lib_erp *erp,
613 			    u32 changed);
614 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
615 			    struct antenna_setup *ant);
616 	void (*config) (struct rt2x00_dev *rt2x00dev,
617 			struct rt2x00lib_conf *libconf,
618 			const unsigned int changed_flags);
619 	void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
620 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
621 			struct ieee80211_vif *vif,
622 			struct ieee80211_sta *sta);
623 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
624 			   struct ieee80211_sta *sta);
625 };
626 
627 /*
628  * rt2x00 driver callback operation structure.
629  */
630 struct rt2x00_ops {
631 	const char *name;
632 	const unsigned int drv_data_size;
633 	const unsigned int max_ap_intf;
634 	const unsigned int eeprom_size;
635 	const unsigned int rf_size;
636 	const unsigned int tx_queues;
637 	void (*queue_init)(struct data_queue *queue);
638 	const struct rt2x00lib_ops *lib;
639 	const void *drv;
640 	const struct ieee80211_ops *hw;
641 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
642 	const struct rt2x00debug *debugfs;
643 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
644 };
645 
646 /*
647  * rt2x00 state flags
648  */
649 enum rt2x00_state_flags {
650 	/*
651 	 * Device flags
652 	 */
653 	DEVICE_STATE_PRESENT,
654 	DEVICE_STATE_REGISTERED_HW,
655 	DEVICE_STATE_INITIALIZED,
656 	DEVICE_STATE_STARTED,
657 	DEVICE_STATE_ENABLED_RADIO,
658 	DEVICE_STATE_SCANNING,
659 	DEVICE_STATE_FLUSHING,
660 	DEVICE_STATE_RESET,
661 
662 	/*
663 	 * Driver configuration
664 	 */
665 	CONFIG_CHANNEL_HT40,
666 	CONFIG_POWERSAVING,
667 	CONFIG_HT_DISABLED,
668 	CONFIG_MONITORING,
669 
670 	/*
671 	 * Mark we currently are sequentially reading TX_STA_FIFO register
672 	 * FIXME: this is for only rt2800usb, should go to private data
673 	 */
674 	TX_STATUS_READING,
675 };
676 
677 /*
678  * rt2x00 capability flags
679  */
680 enum rt2x00_capability_flags {
681 	/*
682 	 * Requirements
683 	 */
684 	REQUIRE_FIRMWARE,
685 	REQUIRE_BEACON_GUARD,
686 	REQUIRE_ATIM_QUEUE,
687 	REQUIRE_DMA,
688 	REQUIRE_COPY_IV,
689 	REQUIRE_L2PAD,
690 	REQUIRE_TXSTATUS_FIFO,
691 	REQUIRE_TASKLET_CONTEXT,
692 	REQUIRE_SW_SEQNO,
693 	REQUIRE_HT_TX_DESC,
694 	REQUIRE_PS_AUTOWAKE,
695 	REQUIRE_DELAYED_RFKILL,
696 
697 	/*
698 	 * Capabilities
699 	 */
700 	CAPABILITY_HW_BUTTON,
701 	CAPABILITY_HW_CRYPTO,
702 	CAPABILITY_POWER_LIMIT,
703 	CAPABILITY_CONTROL_FILTERS,
704 	CAPABILITY_CONTROL_FILTER_PSPOLL,
705 	CAPABILITY_PRE_TBTT_INTERRUPT,
706 	CAPABILITY_LINK_TUNING,
707 	CAPABILITY_FRAME_TYPE,
708 	CAPABILITY_RF_SEQUENCE,
709 	CAPABILITY_EXTERNAL_LNA_A,
710 	CAPABILITY_EXTERNAL_LNA_BG,
711 	CAPABILITY_DOUBLE_ANTENNA,
712 	CAPABILITY_BT_COEXIST,
713 	CAPABILITY_VCO_RECALIBRATION,
714 	CAPABILITY_EXTERNAL_PA_TX0,
715 	CAPABILITY_EXTERNAL_PA_TX1,
716 	CAPABILITY_RESTART_HW,
717 };
718 
719 /*
720  * Interface combinations
721  */
722 enum {
723 	IF_COMB_AP = 0,
724 	NUM_IF_COMB,
725 };
726 
727 /*
728  * rt2x00 device structure.
729  */
730 struct rt2x00_dev {
731 	/*
732 	 * Device structure.
733 	 * The structure stored in here depends on the
734 	 * system bus (PCI or USB).
735 	 * When accessing this variable, the rt2x00dev_{pci,usb}
736 	 * macros should be used for correct typecasting.
737 	 */
738 	struct device *dev;
739 
740 	/*
741 	 * Callback functions.
742 	 */
743 	const struct rt2x00_ops *ops;
744 
745 	/*
746 	 * Driver data.
747 	 */
748 	void *drv_data;
749 
750 	/*
751 	 * IEEE80211 control structure.
752 	 */
753 	struct ieee80211_hw *hw;
754 	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
755 	enum nl80211_band curr_band;
756 	int curr_freq;
757 
758 	/*
759 	 * If enabled, the debugfs interface structures
760 	 * required for deregistration of debugfs.
761 	 */
762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
763 	struct rt2x00debug_intf *debugfs_intf;
764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765 
766 	/*
767 	 * LED structure for changing the LED status
768 	 * by mac8011 or the kernel.
769 	 */
770 #ifdef CONFIG_RT2X00_LIB_LEDS
771 	struct rt2x00_led led_radio;
772 	struct rt2x00_led led_assoc;
773 	struct rt2x00_led led_qual;
774 	u16 led_mcu_reg;
775 #endif /* CONFIG_RT2X00_LIB_LEDS */
776 
777 	/*
778 	 * Device state flags.
779 	 * In these flags the current status is stored.
780 	 * Access to these flags should occur atomically.
781 	 */
782 	unsigned long flags;
783 
784 	/*
785 	 * Device capabiltiy flags.
786 	 * In these flags the device/driver capabilities are stored.
787 	 * Access to these flags should occur non-atomically.
788 	 */
789 	unsigned long cap_flags;
790 
791 	/*
792 	 * Device information, Bus IRQ and name (PCI, SoC)
793 	 */
794 	int irq;
795 	const char *name;
796 
797 	/*
798 	 * Chipset identification.
799 	 */
800 	struct rt2x00_chip chip;
801 
802 	/*
803 	 * hw capability specifications.
804 	 */
805 	struct hw_mode_spec spec;
806 
807 	/*
808 	 * This is the default TX/RX antenna setup as indicated
809 	 * by the device's EEPROM.
810 	 */
811 	struct antenna_setup default_ant;
812 
813 	/*
814 	 * Register pointers
815 	 * csr.base: CSR base register address. (PCI)
816 	 * csr.cache: CSR cache for usb_control_msg. (USB)
817 	 */
818 	union csr {
819 		void __iomem *base;
820 		void *cache;
821 	} csr;
822 
823 	/*
824 	 * Mutex to protect register accesses.
825 	 * For PCI and USB devices it protects against concurrent indirect
826 	 * register access (BBP, RF, MCU) since accessing those
827 	 * registers require multiple calls to the CSR registers.
828 	 * For USB devices it also protects the csr_cache since that
829 	 * field is used for normal CSR access and it cannot support
830 	 * multiple callers simultaneously.
831 	 */
832 	struct mutex csr_mutex;
833 
834 	/*
835 	 * Mutex to synchronize config and link tuner.
836 	 */
837 	struct mutex conf_mutex;
838 	/*
839 	 * Current packet filter configuration for the device.
840 	 * This contains all currently active FIF_* flags send
841 	 * to us by mac80211 during configure_filter().
842 	 */
843 	unsigned int packet_filter;
844 
845 	/*
846 	 * Interface details:
847 	 *  - Open ap interface count.
848 	 *  - Open sta interface count.
849 	 *  - Association count.
850 	 *  - Beaconing enabled count.
851 	 */
852 	unsigned int intf_ap_count;
853 	unsigned int intf_sta_count;
854 	unsigned int intf_associated;
855 	unsigned int intf_beaconing;
856 
857 	/*
858 	 * Interface combinations
859 	 */
860 	struct ieee80211_iface_limit if_limits_ap;
861 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
862 
863 	/*
864 	 * Link quality
865 	 */
866 	struct link link;
867 
868 	/*
869 	 * EEPROM data.
870 	 */
871 	__le16 *eeprom;
872 
873 	/*
874 	 * Active RF register values.
875 	 * These are stored here so we don't need
876 	 * to read the rf registers and can directly
877 	 * use this value instead.
878 	 * This field should be accessed by using
879 	 * rt2x00_rf_read() and rt2x00_rf_write().
880 	 */
881 	u32 *rf;
882 
883 	/*
884 	 * LNA gain
885 	 */
886 	short lna_gain;
887 
888 	/*
889 	 * Current TX power value.
890 	 */
891 	u16 tx_power;
892 
893 	/*
894 	 * Current retry values.
895 	 */
896 	u8 short_retry;
897 	u8 long_retry;
898 
899 	/*
900 	 * Rssi <-> Dbm offset
901 	 */
902 	u8 rssi_offset;
903 
904 	/*
905 	 * Frequency offset.
906 	 */
907 	u8 freq_offset;
908 
909 	/*
910 	 * Association id.
911 	 */
912 	u16 aid;
913 
914 	/*
915 	 * Beacon interval.
916 	 */
917 	u16 beacon_int;
918 
919 	/**
920 	 * Timestamp of last received beacon
921 	 */
922 	unsigned long last_beacon;
923 
924 	/*
925 	 * Low level statistics which will have
926 	 * to be kept up to date while device is running.
927 	 */
928 	struct ieee80211_low_level_stats low_level_stats;
929 
930 	/**
931 	 * Work queue for all work which should not be placed
932 	 * on the mac80211 workqueue (because of dependencies
933 	 * between various work structures).
934 	 */
935 	struct workqueue_struct *workqueue;
936 
937 	/*
938 	 * Scheduled work.
939 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
940 	 * which means it cannot be placed on the hw->workqueue
941 	 * due to RTNL locking requirements.
942 	 */
943 	struct work_struct intf_work;
944 
945 	/**
946 	 * Scheduled work for TX/RX done handling (USB devices)
947 	 */
948 	struct work_struct rxdone_work;
949 	struct work_struct txdone_work;
950 
951 	/*
952 	 * Powersaving work
953 	 */
954 	struct delayed_work autowakeup_work;
955 	struct work_struct sleep_work;
956 
957 	/*
958 	 * Data queue arrays for RX, TX, Beacon and ATIM.
959 	 */
960 	unsigned int data_queues;
961 	struct data_queue *rx;
962 	struct data_queue *tx;
963 	struct data_queue *bcn;
964 	struct data_queue *atim;
965 
966 	/*
967 	 * Firmware image.
968 	 */
969 	const struct firmware *fw;
970 
971 	/*
972 	 * FIFO for storing tx status reports between isr and tasklet.
973 	 */
974 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
975 
976 	/*
977 	 * Timer to ensure tx status reports are read (rt2800usb).
978 	 */
979 	struct hrtimer txstatus_timer;
980 
981 	/*
982 	 * Tasklet for processing tx status reports (rt2800pci).
983 	 */
984 	struct tasklet_struct txstatus_tasklet;
985 	struct tasklet_struct pretbtt_tasklet;
986 	struct tasklet_struct tbtt_tasklet;
987 	struct tasklet_struct rxdone_tasklet;
988 	struct tasklet_struct autowake_tasklet;
989 
990 	/*
991 	 * Used for VCO periodic calibration.
992 	 */
993 	int rf_channel;
994 
995 	/*
996 	 * Protect the interrupt mask register.
997 	 */
998 	spinlock_t irqmask_lock;
999 
1000 	/*
1001 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
1002 	 */
1003 	struct list_head bar_list;
1004 	spinlock_t bar_list_lock;
1005 
1006 	/* Extra TX headroom required for alignment purposes. */
1007 	unsigned int extra_tx_headroom;
1008 
1009 	struct usb_anchor *anchor;
1010 	unsigned int num_proto_errs;
1011 
1012 	/* Clock for System On Chip devices. */
1013 	struct clk *clk;
1014 };
1015 
1016 struct rt2x00_bar_list_entry {
1017 	struct list_head list;
1018 	struct rcu_head head;
1019 
1020 	struct queue_entry *entry;
1021 	int block_acked;
1022 
1023 	/* Relevant parts of the IEEE80211 BAR header */
1024 	__u8 ra[6];
1025 	__u8 ta[6];
1026 	__le16 control;
1027 	__le16 start_seq_num;
1028 };
1029 
1030 /*
1031  * Register defines.
1032  * Some registers require multiple attempts before success,
1033  * in those cases REGISTER_BUSY_COUNT attempts should be
1034  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1035  * bus delays, we do not have to loop so many times to wait
1036  * for valid register value on that bus.
1037  */
1038 #define REGISTER_BUSY_COUNT	100
1039 #define REGISTER_USB_BUSY_COUNT 20
1040 #define REGISTER_BUSY_DELAY	100
1041 
1042 /*
1043  * Generic RF access.
1044  * The RF is being accessed by word index.
1045  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1046 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1047 				 const unsigned int word)
1048 {
1049 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1050 	return rt2x00dev->rf[word - 1];
1051 }
1052 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1053 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1054 				   const unsigned int word, u32 data)
1055 {
1056 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1057 	rt2x00dev->rf[word - 1] = data;
1058 }
1059 
1060 /*
1061  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1062  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1063 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1064 				       const unsigned int word)
1065 {
1066 	return (void *)&rt2x00dev->eeprom[word];
1067 }
1068 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1069 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1070 				     const unsigned int word)
1071 {
1072 	return le16_to_cpu(rt2x00dev->eeprom[word]);
1073 }
1074 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1075 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1076 				       const unsigned int word, u16 data)
1077 {
1078 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1079 }
1080 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1081 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1082 				    const unsigned int byte)
1083 {
1084 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1085 }
1086 
1087 /*
1088  * Chipset handlers
1089  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1090 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1091 				   const u16 rt, const u16 rf, const u16 rev)
1092 {
1093 	rt2x00dev->chip.rt = rt;
1094 	rt2x00dev->chip.rf = rf;
1095 	rt2x00dev->chip.rev = rev;
1096 
1097 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1098 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1099 		    rt2x00dev->chip.rev);
1100 }
1101 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1102 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1103 				 const u16 rt, const u16 rev)
1104 {
1105 	rt2x00dev->chip.rt = rt;
1106 	rt2x00dev->chip.rev = rev;
1107 
1108 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1109 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1110 }
1111 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1112 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1113 {
1114 	rt2x00dev->chip.rf = rf;
1115 
1116 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1117 		    rt2x00dev->chip.rf);
1118 }
1119 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1120 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1121 {
1122 	return (rt2x00dev->chip.rt == rt);
1123 }
1124 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1125 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1126 {
1127 	return (rt2x00dev->chip.rf == rf);
1128 }
1129 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1130 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1131 {
1132 	return rt2x00dev->chip.rev;
1133 }
1134 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1135 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1136 				 const u16 rt, const u16 rev)
1137 {
1138 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1139 }
1140 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1141 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1142 				    const u16 rt, const u16 rev)
1143 {
1144 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1145 }
1146 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1147 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1148 				     const u16 rt, const u16 rev)
1149 {
1150 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1151 }
1152 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1153 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1154 					enum rt2x00_chip_intf intf)
1155 {
1156 	rt2x00dev->chip.intf = intf;
1157 }
1158 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1159 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1160 			       enum rt2x00_chip_intf intf)
1161 {
1162 	return (rt2x00dev->chip.intf == intf);
1163 }
1164 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1165 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1166 {
1167 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1168 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1169 }
1170 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1171 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1172 {
1173 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1174 }
1175 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1176 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1177 {
1178 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1179 }
1180 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1181 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1182 {
1183 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1184 }
1185 
1186 /* Helpers for capability flags */
1187 
1188 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1189 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1190 		    enum rt2x00_capability_flags cap_flag)
1191 {
1192 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1193 }
1194 
1195 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1196 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1197 {
1198 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1199 }
1200 
1201 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1203 {
1204 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1205 }
1206 
1207 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1209 {
1210 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1211 }
1212 
1213 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1215 {
1216 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1217 }
1218 
1219 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1221 {
1222 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1223 }
1224 
1225 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1227 {
1228 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1229 }
1230 
1231 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1233 {
1234 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1235 }
1236 
1237 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1239 {
1240 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1241 }
1242 
1243 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1245 {
1246 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1247 }
1248 
1249 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1251 {
1252 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1253 }
1254 
1255 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1257 {
1258 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1259 }
1260 
1261 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1262 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1263 {
1264 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1265 }
1266 
1267 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1268 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1269 {
1270 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1271 }
1272 
1273 static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1274 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1275 {
1276 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1277 }
1278 
1279 /**
1280  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1281  * @entry: Pointer to &struct queue_entry
1282  *
1283  * Returns -ENOMEM if mapping fail, 0 otherwise.
1284  */
1285 int rt2x00queue_map_txskb(struct queue_entry *entry);
1286 
1287 /**
1288  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1289  * @entry: Pointer to &struct queue_entry
1290  */
1291 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1292 
1293 /**
1294  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1295  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1296  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1297  *
1298  * Returns NULL for non tx queues.
1299  */
1300 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1301 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1302 			 const enum data_queue_qid queue)
1303 {
1304 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1305 		return &rt2x00dev->tx[queue];
1306 
1307 	if (queue == QID_ATIM)
1308 		return rt2x00dev->atim;
1309 
1310 	return NULL;
1311 }
1312 
1313 /**
1314  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1315  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1316  * @index: Index identifier for obtaining the correct index.
1317  */
1318 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1319 					  enum queue_index index);
1320 
1321 /**
1322  * rt2x00queue_pause_queue - Pause a data queue
1323  * @queue: Pointer to &struct data_queue.
1324  *
1325  * This function will pause the data queue locally, preventing
1326  * new frames to be added to the queue (while the hardware is
1327  * still allowed to run).
1328  */
1329 void rt2x00queue_pause_queue(struct data_queue *queue);
1330 
1331 /**
1332  * rt2x00queue_unpause_queue - unpause a data queue
1333  * @queue: Pointer to &struct data_queue.
1334  *
1335  * This function will unpause the data queue locally, allowing
1336  * new frames to be added to the queue again.
1337  */
1338 void rt2x00queue_unpause_queue(struct data_queue *queue);
1339 
1340 /**
1341  * rt2x00queue_start_queue - Start a data queue
1342  * @queue: Pointer to &struct data_queue.
1343  *
1344  * This function will start handling all pending frames in the queue.
1345  */
1346 void rt2x00queue_start_queue(struct data_queue *queue);
1347 
1348 /**
1349  * rt2x00queue_stop_queue - Halt a data queue
1350  * @queue: Pointer to &struct data_queue.
1351  *
1352  * This function will stop all pending frames in the queue.
1353  */
1354 void rt2x00queue_stop_queue(struct data_queue *queue);
1355 
1356 /**
1357  * rt2x00queue_flush_queue - Flush a data queue
1358  * @queue: Pointer to &struct data_queue.
1359  * @drop: True to drop all pending frames.
1360  *
1361  * This function will flush the queue. After this call
1362  * the queue is guaranteed to be empty.
1363  */
1364 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1365 
1366 /**
1367  * rt2x00queue_start_queues - Start all data queues
1368  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1369  *
1370  * This function will loop through all available queues to start them
1371  */
1372 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1373 
1374 /**
1375  * rt2x00queue_stop_queues - Halt all data queues
1376  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1377  *
1378  * This function will loop through all available queues to stop
1379  * any pending frames.
1380  */
1381 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1382 
1383 /**
1384  * rt2x00queue_flush_queues - Flush all data queues
1385  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1386  * @drop: True to drop all pending frames.
1387  *
1388  * This function will loop through all available queues to flush
1389  * any pending frames.
1390  */
1391 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1392 
1393 /*
1394  * Debugfs handlers.
1395  */
1396 /**
1397  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1398  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399  * @type: The type of frame that is being dumped.
1400  * @entry: The queue entry containing the frame to be dumped.
1401  */
1402 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1403 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1404 			    enum rt2x00_dump_type type, struct queue_entry *entry);
1405 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1406 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1407 					  enum rt2x00_dump_type type,
1408 					  struct queue_entry *entry)
1409 {
1410 }
1411 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1412 
1413 /*
1414  * Utility functions.
1415  */
1416 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1417 			 struct ieee80211_vif *vif);
1418 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1419 
1420 /*
1421  * Interrupt context handlers.
1422  */
1423 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1424 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1425 void rt2x00lib_dmastart(struct queue_entry *entry);
1426 void rt2x00lib_dmadone(struct queue_entry *entry);
1427 void rt2x00lib_txdone(struct queue_entry *entry,
1428 		      struct txdone_entry_desc *txdesc);
1429 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1430 			      struct txdone_entry_desc *txdesc);
1431 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1432 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1433 
1434 /*
1435  * mac80211 handlers.
1436  */
1437 void rt2x00mac_tx(struct ieee80211_hw *hw,
1438 		  struct ieee80211_tx_control *control,
1439 		  struct sk_buff *skb);
1440 int rt2x00mac_start(struct ieee80211_hw *hw);
1441 void rt2x00mac_stop(struct ieee80211_hw *hw);
1442 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1443 				 enum ieee80211_reconfig_type reconfig_type);
1444 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1445 			    struct ieee80211_vif *vif);
1446 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1447 				struct ieee80211_vif *vif);
1448 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1449 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1450 				unsigned int changed_flags,
1451 				unsigned int *total_flags,
1452 				u64 multicast);
1453 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1454 		      bool set);
1455 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1456 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1457 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1458 		      struct ieee80211_key_conf *key);
1459 #else
1460 #define rt2x00mac_set_key	NULL
1461 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1462 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1463 			     struct ieee80211_vif *vif,
1464 			     const u8 *mac_addr);
1465 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1466 				struct ieee80211_vif *vif);
1467 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1468 			struct ieee80211_low_level_stats *stats);
1469 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1470 				struct ieee80211_vif *vif,
1471 				struct ieee80211_bss_conf *bss_conf,
1472 				u32 changes);
1473 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1474 		      struct ieee80211_vif *vif, u16 queue,
1475 		      const struct ieee80211_tx_queue_params *params);
1476 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1477 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1478 		     u32 queues, bool drop);
1479 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1480 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1481 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1482 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1483 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1484 
1485 /*
1486  * Driver allocation handlers.
1487  */
1488 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1489 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1490 
1491 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1492 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1493 
1494 #endif /* RT2X00_H */
1495