1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159 #define MAX_PORT_RETRIES 24
160
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
185
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
190 }
191
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 int i;
195
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205 {
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208 }
209
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215 }
216
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221 }
222
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227 }
228
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
236
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
241 }
242
243 return NULL;
244 }
245
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
248 {
249 struct vsock_sock *vsk;
250
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
256 }
257 }
258
259 return NULL;
260 }
261
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267 }
268
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
273
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315 {
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 int i;
339
340 spin_lock_bh(&vsock_table_lock);
341
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
347 }
348
349 spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
vsock_add_pending(struct sock * listener,struct sock * pending)353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
357
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
360
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
vsock_remove_pending(struct sock * listener,struct sock * pending)367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 struct vsock_sock *vpending = vsock_sk(pending);
370
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
vsock_enqueue_accept(struct sock * listener,struct sock * connected)377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
381
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
384
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
vsock_use_local_transport(unsigned int remote_cid)391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 if (!transport_local)
394 return false;
395
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
398
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
403 }
404 }
405
vsock_deassign_transport(struct vsock_sock * vsk)406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 if (!vsk->transport)
409 return;
410
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417 *
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
426 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 const struct vsock_transport *new_transport;
430 struct sock *sk = sk_vsock(vsk);
431 unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 int ret;
433
434 switch (sk->sk_type) {
435 case SOCK_DGRAM:
436 new_transport = transport_dgram;
437 break;
438 case SOCK_STREAM:
439 if (vsock_use_local_transport(remote_cid))
440 new_transport = transport_local;
441 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
442 new_transport = transport_g2h;
443 else
444 new_transport = transport_h2g;
445 break;
446 default:
447 return -ESOCKTNOSUPPORT;
448 }
449
450 if (vsk->transport) {
451 if (vsk->transport == new_transport)
452 return 0;
453
454 /* transport->release() must be called with sock lock acquired.
455 * This path can only be taken during vsock_stream_connect(),
456 * where we have already held the sock lock.
457 * In the other cases, this function is called on a new socket
458 * which is not assigned to any transport.
459 */
460 vsk->transport->release(vsk);
461 vsock_deassign_transport(vsk);
462 }
463
464 /* We increase the module refcnt to prevent the transport unloading
465 * while there are open sockets assigned to it.
466 */
467 if (!new_transport || !try_module_get(new_transport->module))
468 return -ENODEV;
469
470 ret = new_transport->init(vsk, psk);
471 if (ret) {
472 module_put(new_transport->module);
473 return ret;
474 }
475
476 vsk->transport = new_transport;
477
478 return 0;
479 }
480 EXPORT_SYMBOL_GPL(vsock_assign_transport);
481
vsock_find_cid(unsigned int cid)482 bool vsock_find_cid(unsigned int cid)
483 {
484 if (transport_g2h && cid == transport_g2h->get_local_cid())
485 return true;
486
487 if (transport_h2g && cid == VMADDR_CID_HOST)
488 return true;
489
490 if (transport_local && cid == VMADDR_CID_LOCAL)
491 return true;
492
493 return false;
494 }
495 EXPORT_SYMBOL_GPL(vsock_find_cid);
496
vsock_dequeue_accept(struct sock * listener)497 static struct sock *vsock_dequeue_accept(struct sock *listener)
498 {
499 struct vsock_sock *vlistener;
500 struct vsock_sock *vconnected;
501
502 vlistener = vsock_sk(listener);
503
504 if (list_empty(&vlistener->accept_queue))
505 return NULL;
506
507 vconnected = list_entry(vlistener->accept_queue.next,
508 struct vsock_sock, accept_queue);
509
510 list_del_init(&vconnected->accept_queue);
511 sock_put(listener);
512 /* The caller will need a reference on the connected socket so we let
513 * it call sock_put().
514 */
515
516 return sk_vsock(vconnected);
517 }
518
vsock_is_accept_queue_empty(struct sock * sk)519 static bool vsock_is_accept_queue_empty(struct sock *sk)
520 {
521 struct vsock_sock *vsk = vsock_sk(sk);
522 return list_empty(&vsk->accept_queue);
523 }
524
vsock_is_pending(struct sock * sk)525 static bool vsock_is_pending(struct sock *sk)
526 {
527 struct vsock_sock *vsk = vsock_sk(sk);
528 return !list_empty(&vsk->pending_links);
529 }
530
vsock_send_shutdown(struct sock * sk,int mode)531 static int vsock_send_shutdown(struct sock *sk, int mode)
532 {
533 struct vsock_sock *vsk = vsock_sk(sk);
534
535 if (!vsk->transport)
536 return -ENODEV;
537
538 return vsk->transport->shutdown(vsk, mode);
539 }
540
vsock_pending_work(struct work_struct * work)541 static void vsock_pending_work(struct work_struct *work)
542 {
543 struct sock *sk;
544 struct sock *listener;
545 struct vsock_sock *vsk;
546 bool cleanup;
547
548 vsk = container_of(work, struct vsock_sock, pending_work.work);
549 sk = sk_vsock(vsk);
550 listener = vsk->listener;
551 cleanup = true;
552
553 lock_sock(listener);
554 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
555
556 if (vsock_is_pending(sk)) {
557 vsock_remove_pending(listener, sk);
558
559 sk_acceptq_removed(listener);
560 } else if (!vsk->rejected) {
561 /* We are not on the pending list and accept() did not reject
562 * us, so we must have been accepted by our user process. We
563 * just need to drop our references to the sockets and be on
564 * our way.
565 */
566 cleanup = false;
567 goto out;
568 }
569
570 /* We need to remove ourself from the global connected sockets list so
571 * incoming packets can't find this socket, and to reduce the reference
572 * count.
573 */
574 vsock_remove_connected(vsk);
575
576 sk->sk_state = TCP_CLOSE;
577
578 out:
579 release_sock(sk);
580 release_sock(listener);
581 if (cleanup)
582 sock_put(sk);
583
584 sock_put(sk);
585 sock_put(listener);
586 }
587
588 /**** SOCKET OPERATIONS ****/
589
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)590 static int __vsock_bind_stream(struct vsock_sock *vsk,
591 struct sockaddr_vm *addr)
592 {
593 static u32 port;
594 struct sockaddr_vm new_addr;
595
596 if (!port)
597 port = LAST_RESERVED_PORT + 1 +
598 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
599
600 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
601
602 if (addr->svm_port == VMADDR_PORT_ANY) {
603 bool found = false;
604 unsigned int i;
605
606 for (i = 0; i < MAX_PORT_RETRIES; i++) {
607 if (port <= LAST_RESERVED_PORT)
608 port = LAST_RESERVED_PORT + 1;
609
610 new_addr.svm_port = port++;
611
612 if (!__vsock_find_bound_socket(&new_addr)) {
613 found = true;
614 break;
615 }
616 }
617
618 if (!found)
619 return -EADDRNOTAVAIL;
620 } else {
621 /* If port is in reserved range, ensure caller
622 * has necessary privileges.
623 */
624 if (addr->svm_port <= LAST_RESERVED_PORT &&
625 !capable(CAP_NET_BIND_SERVICE)) {
626 return -EACCES;
627 }
628
629 if (__vsock_find_bound_socket(&new_addr))
630 return -EADDRINUSE;
631 }
632
633 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
634
635 /* Remove stream sockets from the unbound list and add them to the hash
636 * table for easy lookup by its address. The unbound list is simply an
637 * extra entry at the end of the hash table, a trick used by AF_UNIX.
638 */
639 __vsock_remove_bound(vsk);
640 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
641
642 return 0;
643 }
644
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)645 static int __vsock_bind_dgram(struct vsock_sock *vsk,
646 struct sockaddr_vm *addr)
647 {
648 return vsk->transport->dgram_bind(vsk, addr);
649 }
650
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)651 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
652 {
653 struct vsock_sock *vsk = vsock_sk(sk);
654 int retval;
655
656 /* First ensure this socket isn't already bound. */
657 if (vsock_addr_bound(&vsk->local_addr))
658 return -EINVAL;
659
660 /* Now bind to the provided address or select appropriate values if
661 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
662 * like AF_INET prevents binding to a non-local IP address (in most
663 * cases), we only allow binding to a local CID.
664 */
665 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
666 return -EADDRNOTAVAIL;
667
668 switch (sk->sk_socket->type) {
669 case SOCK_STREAM:
670 spin_lock_bh(&vsock_table_lock);
671 retval = __vsock_bind_stream(vsk, addr);
672 spin_unlock_bh(&vsock_table_lock);
673 break;
674
675 case SOCK_DGRAM:
676 retval = __vsock_bind_dgram(vsk, addr);
677 break;
678
679 default:
680 retval = -EINVAL;
681 break;
682 }
683
684 return retval;
685 }
686
687 static void vsock_connect_timeout(struct work_struct *work);
688
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)689 static struct sock *__vsock_create(struct net *net,
690 struct socket *sock,
691 struct sock *parent,
692 gfp_t priority,
693 unsigned short type,
694 int kern)
695 {
696 struct sock *sk;
697 struct vsock_sock *psk;
698 struct vsock_sock *vsk;
699
700 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
701 if (!sk)
702 return NULL;
703
704 sock_init_data(sock, sk);
705
706 /* sk->sk_type is normally set in sock_init_data, but only if sock is
707 * non-NULL. We make sure that our sockets always have a type by
708 * setting it here if needed.
709 */
710 if (!sock)
711 sk->sk_type = type;
712
713 vsk = vsock_sk(sk);
714 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
716
717 sk->sk_destruct = vsock_sk_destruct;
718 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
719 sock_reset_flag(sk, SOCK_DONE);
720
721 INIT_LIST_HEAD(&vsk->bound_table);
722 INIT_LIST_HEAD(&vsk->connected_table);
723 vsk->listener = NULL;
724 INIT_LIST_HEAD(&vsk->pending_links);
725 INIT_LIST_HEAD(&vsk->accept_queue);
726 vsk->rejected = false;
727 vsk->sent_request = false;
728 vsk->ignore_connecting_rst = false;
729 vsk->peer_shutdown = 0;
730 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
731 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
732
733 psk = parent ? vsock_sk(parent) : NULL;
734 if (parent) {
735 vsk->trusted = psk->trusted;
736 vsk->owner = get_cred(psk->owner);
737 vsk->connect_timeout = psk->connect_timeout;
738 vsk->buffer_size = psk->buffer_size;
739 vsk->buffer_min_size = psk->buffer_min_size;
740 vsk->buffer_max_size = psk->buffer_max_size;
741 security_sk_clone(parent, sk);
742 } else {
743 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
744 vsk->owner = get_current_cred();
745 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
746 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
747 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
748 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
749 }
750
751 return sk;
752 }
753
__vsock_release(struct sock * sk,int level)754 static void __vsock_release(struct sock *sk, int level)
755 {
756 if (sk) {
757 struct sock *pending;
758 struct vsock_sock *vsk;
759
760 vsk = vsock_sk(sk);
761 pending = NULL; /* Compiler warning. */
762
763 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
764 * version to avoid the warning "possible recursive locking
765 * detected". When "level" is 0, lock_sock_nested(sk, level)
766 * is the same as lock_sock(sk).
767 */
768 lock_sock_nested(sk, level);
769
770 if (vsk->transport)
771 vsk->transport->release(vsk);
772 else if (sk->sk_type == SOCK_STREAM)
773 vsock_remove_sock(vsk);
774
775 sock_orphan(sk);
776 sk->sk_shutdown = SHUTDOWN_MASK;
777
778 skb_queue_purge(&sk->sk_receive_queue);
779
780 /* Clean up any sockets that never were accepted. */
781 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
782 __vsock_release(pending, SINGLE_DEPTH_NESTING);
783 sock_put(pending);
784 }
785
786 release_sock(sk);
787 sock_put(sk);
788 }
789 }
790
vsock_sk_destruct(struct sock * sk)791 static void vsock_sk_destruct(struct sock *sk)
792 {
793 struct vsock_sock *vsk = vsock_sk(sk);
794
795 vsock_deassign_transport(vsk);
796
797 /* When clearing these addresses, there's no need to set the family and
798 * possibly register the address family with the kernel.
799 */
800 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802
803 put_cred(vsk->owner);
804 }
805
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)806 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
807 {
808 int err;
809
810 err = sock_queue_rcv_skb(sk, skb);
811 if (err)
812 kfree_skb(skb);
813
814 return err;
815 }
816
vsock_create_connected(struct sock * parent)817 struct sock *vsock_create_connected(struct sock *parent)
818 {
819 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
820 parent->sk_type, 0);
821 }
822 EXPORT_SYMBOL_GPL(vsock_create_connected);
823
vsock_stream_has_data(struct vsock_sock * vsk)824 s64 vsock_stream_has_data(struct vsock_sock *vsk)
825 {
826 return vsk->transport->stream_has_data(vsk);
827 }
828 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
829
vsock_stream_has_space(struct vsock_sock * vsk)830 s64 vsock_stream_has_space(struct vsock_sock *vsk)
831 {
832 return vsk->transport->stream_has_space(vsk);
833 }
834 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
835
vsock_release(struct socket * sock)836 static int vsock_release(struct socket *sock)
837 {
838 __vsock_release(sock->sk, 0);
839 sock->sk = NULL;
840 sock->state = SS_FREE;
841
842 return 0;
843 }
844
845 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)846 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
847 {
848 int err;
849 struct sock *sk;
850 struct sockaddr_vm *vm_addr;
851
852 sk = sock->sk;
853
854 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
855 return -EINVAL;
856
857 lock_sock(sk);
858 err = __vsock_bind(sk, vm_addr);
859 release_sock(sk);
860
861 return err;
862 }
863
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)864 static int vsock_getname(struct socket *sock,
865 struct sockaddr *addr, int peer)
866 {
867 int err;
868 struct sock *sk;
869 struct vsock_sock *vsk;
870 struct sockaddr_vm *vm_addr;
871
872 sk = sock->sk;
873 vsk = vsock_sk(sk);
874 err = 0;
875
876 lock_sock(sk);
877
878 if (peer) {
879 if (sock->state != SS_CONNECTED) {
880 err = -ENOTCONN;
881 goto out;
882 }
883 vm_addr = &vsk->remote_addr;
884 } else {
885 vm_addr = &vsk->local_addr;
886 }
887
888 if (!vm_addr) {
889 err = -EINVAL;
890 goto out;
891 }
892
893 /* sys_getsockname() and sys_getpeername() pass us a
894 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
895 * that macro is defined in socket.c instead of .h, so we hardcode its
896 * value here.
897 */
898 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
899 memcpy(addr, vm_addr, sizeof(*vm_addr));
900 err = sizeof(*vm_addr);
901
902 out:
903 release_sock(sk);
904 return err;
905 }
906
vsock_shutdown(struct socket * sock,int mode)907 static int vsock_shutdown(struct socket *sock, int mode)
908 {
909 int err;
910 struct sock *sk;
911
912 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
913 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
914 * here like the other address families do. Note also that the
915 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
916 * which is what we want.
917 */
918 mode++;
919
920 if ((mode & ~SHUTDOWN_MASK) || !mode)
921 return -EINVAL;
922
923 /* If this is a STREAM socket and it is not connected then bail out
924 * immediately. If it is a DGRAM socket then we must first kick the
925 * socket so that it wakes up from any sleeping calls, for example
926 * recv(), and then afterwards return the error.
927 */
928
929 sk = sock->sk;
930
931 lock_sock(sk);
932 if (sock->state == SS_UNCONNECTED) {
933 err = -ENOTCONN;
934 if (sk->sk_type == SOCK_STREAM)
935 goto out;
936 } else {
937 sock->state = SS_DISCONNECTING;
938 err = 0;
939 }
940
941 /* Receive and send shutdowns are treated alike. */
942 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
943 if (mode) {
944 sk->sk_shutdown |= mode;
945 sk->sk_state_change(sk);
946
947 if (sk->sk_type == SOCK_STREAM) {
948 sock_reset_flag(sk, SOCK_DONE);
949 vsock_send_shutdown(sk, mode);
950 }
951 }
952
953 out:
954 release_sock(sk);
955 return err;
956 }
957
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)958 static __poll_t vsock_poll(struct file *file, struct socket *sock,
959 poll_table *wait)
960 {
961 struct sock *sk;
962 __poll_t mask;
963 struct vsock_sock *vsk;
964
965 sk = sock->sk;
966 vsk = vsock_sk(sk);
967
968 poll_wait(file, sk_sleep(sk), wait);
969 mask = 0;
970
971 if (sk->sk_err)
972 /* Signify that there has been an error on this socket. */
973 mask |= EPOLLERR;
974
975 /* INET sockets treat local write shutdown and peer write shutdown as a
976 * case of EPOLLHUP set.
977 */
978 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
979 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
980 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
981 mask |= EPOLLHUP;
982 }
983
984 if (sk->sk_shutdown & RCV_SHUTDOWN ||
985 vsk->peer_shutdown & SEND_SHUTDOWN) {
986 mask |= EPOLLRDHUP;
987 }
988
989 if (sock->type == SOCK_DGRAM) {
990 /* For datagram sockets we can read if there is something in
991 * the queue and write as long as the socket isn't shutdown for
992 * sending.
993 */
994 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
995 (sk->sk_shutdown & RCV_SHUTDOWN)) {
996 mask |= EPOLLIN | EPOLLRDNORM;
997 }
998
999 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1000 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1001
1002 } else if (sock->type == SOCK_STREAM) {
1003 const struct vsock_transport *transport;
1004
1005 lock_sock(sk);
1006
1007 transport = vsk->transport;
1008
1009 /* Listening sockets that have connections in their accept
1010 * queue can be read.
1011 */
1012 if (sk->sk_state == TCP_LISTEN
1013 && !vsock_is_accept_queue_empty(sk))
1014 mask |= EPOLLIN | EPOLLRDNORM;
1015
1016 /* If there is something in the queue then we can read. */
1017 if (transport && transport->stream_is_active(vsk) &&
1018 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1019 bool data_ready_now = false;
1020 int ret = transport->notify_poll_in(
1021 vsk, 1, &data_ready_now);
1022 if (ret < 0) {
1023 mask |= EPOLLERR;
1024 } else {
1025 if (data_ready_now)
1026 mask |= EPOLLIN | EPOLLRDNORM;
1027
1028 }
1029 }
1030
1031 /* Sockets whose connections have been closed, reset, or
1032 * terminated should also be considered read, and we check the
1033 * shutdown flag for that.
1034 */
1035 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1036 vsk->peer_shutdown & SEND_SHUTDOWN) {
1037 mask |= EPOLLIN | EPOLLRDNORM;
1038 }
1039
1040 /* Connected sockets that can produce data can be written. */
1041 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1043 bool space_avail_now = false;
1044 int ret = transport->notify_poll_out(
1045 vsk, 1, &space_avail_now);
1046 if (ret < 0) {
1047 mask |= EPOLLERR;
1048 } else {
1049 if (space_avail_now)
1050 /* Remove EPOLLWRBAND since INET
1051 * sockets are not setting it.
1052 */
1053 mask |= EPOLLOUT | EPOLLWRNORM;
1054
1055 }
1056 }
1057 }
1058
1059 /* Simulate INET socket poll behaviors, which sets
1060 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1061 * but local send is not shutdown.
1062 */
1063 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1064 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1065 mask |= EPOLLOUT | EPOLLWRNORM;
1066
1067 }
1068
1069 release_sock(sk);
1070 }
1071
1072 return mask;
1073 }
1074
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1075 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1076 size_t len)
1077 {
1078 int err;
1079 struct sock *sk;
1080 struct vsock_sock *vsk;
1081 struct sockaddr_vm *remote_addr;
1082 const struct vsock_transport *transport;
1083
1084 if (msg->msg_flags & MSG_OOB)
1085 return -EOPNOTSUPP;
1086
1087 /* For now, MSG_DONTWAIT is always assumed... */
1088 err = 0;
1089 sk = sock->sk;
1090 vsk = vsock_sk(sk);
1091
1092 lock_sock(sk);
1093
1094 transport = vsk->transport;
1095
1096 err = vsock_auto_bind(vsk);
1097 if (err)
1098 goto out;
1099
1100
1101 /* If the provided message contains an address, use that. Otherwise
1102 * fall back on the socket's remote handle (if it has been connected).
1103 */
1104 if (msg->msg_name &&
1105 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1106 &remote_addr) == 0) {
1107 /* Ensure this address is of the right type and is a valid
1108 * destination.
1109 */
1110
1111 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1112 remote_addr->svm_cid = transport->get_local_cid();
1113
1114 if (!vsock_addr_bound(remote_addr)) {
1115 err = -EINVAL;
1116 goto out;
1117 }
1118 } else if (sock->state == SS_CONNECTED) {
1119 remote_addr = &vsk->remote_addr;
1120
1121 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1122 remote_addr->svm_cid = transport->get_local_cid();
1123
1124 /* XXX Should connect() or this function ensure remote_addr is
1125 * bound?
1126 */
1127 if (!vsock_addr_bound(&vsk->remote_addr)) {
1128 err = -EINVAL;
1129 goto out;
1130 }
1131 } else {
1132 err = -EINVAL;
1133 goto out;
1134 }
1135
1136 if (!transport->dgram_allow(remote_addr->svm_cid,
1137 remote_addr->svm_port)) {
1138 err = -EINVAL;
1139 goto out;
1140 }
1141
1142 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1143
1144 out:
1145 release_sock(sk);
1146 return err;
1147 }
1148
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1149 static int vsock_dgram_connect(struct socket *sock,
1150 struct sockaddr *addr, int addr_len, int flags)
1151 {
1152 int err;
1153 struct sock *sk;
1154 struct vsock_sock *vsk;
1155 struct sockaddr_vm *remote_addr;
1156
1157 sk = sock->sk;
1158 vsk = vsock_sk(sk);
1159
1160 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1161 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1162 lock_sock(sk);
1163 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1164 VMADDR_PORT_ANY);
1165 sock->state = SS_UNCONNECTED;
1166 release_sock(sk);
1167 return 0;
1168 } else if (err != 0)
1169 return -EINVAL;
1170
1171 lock_sock(sk);
1172
1173 err = vsock_auto_bind(vsk);
1174 if (err)
1175 goto out;
1176
1177 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1178 remote_addr->svm_port)) {
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1184 sock->state = SS_CONNECTED;
1185
1186 out:
1187 release_sock(sk);
1188 return err;
1189 }
1190
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1191 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1192 size_t len, int flags)
1193 {
1194 struct vsock_sock *vsk = vsock_sk(sock->sk);
1195
1196 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1197 }
1198
1199 static const struct proto_ops vsock_dgram_ops = {
1200 .family = PF_VSOCK,
1201 .owner = THIS_MODULE,
1202 .release = vsock_release,
1203 .bind = vsock_bind,
1204 .connect = vsock_dgram_connect,
1205 .socketpair = sock_no_socketpair,
1206 .accept = sock_no_accept,
1207 .getname = vsock_getname,
1208 .poll = vsock_poll,
1209 .ioctl = sock_no_ioctl,
1210 .listen = sock_no_listen,
1211 .shutdown = vsock_shutdown,
1212 .sendmsg = vsock_dgram_sendmsg,
1213 .recvmsg = vsock_dgram_recvmsg,
1214 .mmap = sock_no_mmap,
1215 .sendpage = sock_no_sendpage,
1216 };
1217
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1218 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1219 {
1220 const struct vsock_transport *transport = vsk->transport;
1221
1222 if (!transport || !transport->cancel_pkt)
1223 return -EOPNOTSUPP;
1224
1225 return transport->cancel_pkt(vsk);
1226 }
1227
vsock_connect_timeout(struct work_struct * work)1228 static void vsock_connect_timeout(struct work_struct *work)
1229 {
1230 struct sock *sk;
1231 struct vsock_sock *vsk;
1232
1233 vsk = container_of(work, struct vsock_sock, connect_work.work);
1234 sk = sk_vsock(vsk);
1235
1236 lock_sock(sk);
1237 if (sk->sk_state == TCP_SYN_SENT &&
1238 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1239 sk->sk_state = TCP_CLOSE;
1240 sk->sk_socket->state = SS_UNCONNECTED;
1241 sk->sk_err = ETIMEDOUT;
1242 sk->sk_error_report(sk);
1243 vsock_transport_cancel_pkt(vsk);
1244 }
1245 release_sock(sk);
1246
1247 sock_put(sk);
1248 }
1249
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1250 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1251 int addr_len, int flags)
1252 {
1253 int err;
1254 struct sock *sk;
1255 struct vsock_sock *vsk;
1256 const struct vsock_transport *transport;
1257 struct sockaddr_vm *remote_addr;
1258 long timeout;
1259 DEFINE_WAIT(wait);
1260
1261 err = 0;
1262 sk = sock->sk;
1263 vsk = vsock_sk(sk);
1264
1265 lock_sock(sk);
1266
1267 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1268 switch (sock->state) {
1269 case SS_CONNECTED:
1270 err = -EISCONN;
1271 goto out;
1272 case SS_DISCONNECTING:
1273 err = -EINVAL;
1274 goto out;
1275 case SS_CONNECTING:
1276 /* This continues on so we can move sock into the SS_CONNECTED
1277 * state once the connection has completed (at which point err
1278 * will be set to zero also). Otherwise, we will either wait
1279 * for the connection or return -EALREADY should this be a
1280 * non-blocking call.
1281 */
1282 err = -EALREADY;
1283 if (flags & O_NONBLOCK)
1284 goto out;
1285 break;
1286 default:
1287 if ((sk->sk_state == TCP_LISTEN) ||
1288 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1289 err = -EINVAL;
1290 goto out;
1291 }
1292
1293 /* Set the remote address that we are connecting to. */
1294 memcpy(&vsk->remote_addr, remote_addr,
1295 sizeof(vsk->remote_addr));
1296
1297 err = vsock_assign_transport(vsk, NULL);
1298 if (err)
1299 goto out;
1300
1301 transport = vsk->transport;
1302
1303 /* The hypervisor and well-known contexts do not have socket
1304 * endpoints.
1305 */
1306 if (!transport ||
1307 !transport->stream_allow(remote_addr->svm_cid,
1308 remote_addr->svm_port)) {
1309 err = -ENETUNREACH;
1310 goto out;
1311 }
1312
1313 err = vsock_auto_bind(vsk);
1314 if (err)
1315 goto out;
1316
1317 sk->sk_state = TCP_SYN_SENT;
1318
1319 err = transport->connect(vsk);
1320 if (err < 0)
1321 goto out;
1322
1323 /* Mark sock as connecting and set the error code to in
1324 * progress in case this is a non-blocking connect.
1325 */
1326 sock->state = SS_CONNECTING;
1327 err = -EINPROGRESS;
1328 }
1329
1330 /* The receive path will handle all communication until we are able to
1331 * enter the connected state. Here we wait for the connection to be
1332 * completed or a notification of an error.
1333 */
1334 timeout = vsk->connect_timeout;
1335 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1336
1337 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1338 if (flags & O_NONBLOCK) {
1339 /* If we're not going to block, we schedule a timeout
1340 * function to generate a timeout on the connection
1341 * attempt, in case the peer doesn't respond in a
1342 * timely manner. We hold on to the socket until the
1343 * timeout fires.
1344 */
1345 sock_hold(sk);
1346
1347 /* If the timeout function is already scheduled,
1348 * reschedule it, then ungrab the socket refcount to
1349 * keep it balanced.
1350 */
1351 if (mod_delayed_work(system_wq, &vsk->connect_work,
1352 timeout))
1353 sock_put(sk);
1354
1355 /* Skip ahead to preserve error code set above. */
1356 goto out_wait;
1357 }
1358
1359 release_sock(sk);
1360 timeout = schedule_timeout(timeout);
1361 lock_sock(sk);
1362
1363 if (signal_pending(current)) {
1364 err = sock_intr_errno(timeout);
1365 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1366 sock->state = SS_UNCONNECTED;
1367 vsock_transport_cancel_pkt(vsk);
1368 vsock_remove_connected(vsk);
1369 goto out_wait;
1370 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1371 err = -ETIMEDOUT;
1372 sk->sk_state = TCP_CLOSE;
1373 sock->state = SS_UNCONNECTED;
1374 vsock_transport_cancel_pkt(vsk);
1375 goto out_wait;
1376 }
1377
1378 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1379 }
1380
1381 if (sk->sk_err) {
1382 err = -sk->sk_err;
1383 sk->sk_state = TCP_CLOSE;
1384 sock->state = SS_UNCONNECTED;
1385 } else {
1386 err = 0;
1387 }
1388
1389 out_wait:
1390 finish_wait(sk_sleep(sk), &wait);
1391 out:
1392 release_sock(sk);
1393 return err;
1394 }
1395
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1396 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1397 bool kern)
1398 {
1399 struct sock *listener;
1400 int err;
1401 struct sock *connected;
1402 struct vsock_sock *vconnected;
1403 long timeout;
1404 DEFINE_WAIT(wait);
1405
1406 err = 0;
1407 listener = sock->sk;
1408
1409 lock_sock(listener);
1410
1411 if (sock->type != SOCK_STREAM) {
1412 err = -EOPNOTSUPP;
1413 goto out;
1414 }
1415
1416 if (listener->sk_state != TCP_LISTEN) {
1417 err = -EINVAL;
1418 goto out;
1419 }
1420
1421 /* Wait for children sockets to appear; these are the new sockets
1422 * created upon connection establishment.
1423 */
1424 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1425 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1426
1427 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1428 listener->sk_err == 0) {
1429 release_sock(listener);
1430 timeout = schedule_timeout(timeout);
1431 finish_wait(sk_sleep(listener), &wait);
1432 lock_sock(listener);
1433
1434 if (signal_pending(current)) {
1435 err = sock_intr_errno(timeout);
1436 goto out;
1437 } else if (timeout == 0) {
1438 err = -EAGAIN;
1439 goto out;
1440 }
1441
1442 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1443 }
1444 finish_wait(sk_sleep(listener), &wait);
1445
1446 if (listener->sk_err)
1447 err = -listener->sk_err;
1448
1449 if (connected) {
1450 sk_acceptq_removed(listener);
1451
1452 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1453 vconnected = vsock_sk(connected);
1454
1455 /* If the listener socket has received an error, then we should
1456 * reject this socket and return. Note that we simply mark the
1457 * socket rejected, drop our reference, and let the cleanup
1458 * function handle the cleanup; the fact that we found it in
1459 * the listener's accept queue guarantees that the cleanup
1460 * function hasn't run yet.
1461 */
1462 if (err) {
1463 vconnected->rejected = true;
1464 } else {
1465 newsock->state = SS_CONNECTED;
1466 sock_graft(connected, newsock);
1467 }
1468
1469 release_sock(connected);
1470 sock_put(connected);
1471 }
1472
1473 out:
1474 release_sock(listener);
1475 return err;
1476 }
1477
vsock_listen(struct socket * sock,int backlog)1478 static int vsock_listen(struct socket *sock, int backlog)
1479 {
1480 int err;
1481 struct sock *sk;
1482 struct vsock_sock *vsk;
1483
1484 sk = sock->sk;
1485
1486 lock_sock(sk);
1487
1488 if (sock->type != SOCK_STREAM) {
1489 err = -EOPNOTSUPP;
1490 goto out;
1491 }
1492
1493 if (sock->state != SS_UNCONNECTED) {
1494 err = -EINVAL;
1495 goto out;
1496 }
1497
1498 vsk = vsock_sk(sk);
1499
1500 if (!vsock_addr_bound(&vsk->local_addr)) {
1501 err = -EINVAL;
1502 goto out;
1503 }
1504
1505 sk->sk_max_ack_backlog = backlog;
1506 sk->sk_state = TCP_LISTEN;
1507
1508 err = 0;
1509
1510 out:
1511 release_sock(sk);
1512 return err;
1513 }
1514
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1515 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1516 const struct vsock_transport *transport,
1517 u64 val)
1518 {
1519 if (val > vsk->buffer_max_size)
1520 val = vsk->buffer_max_size;
1521
1522 if (val < vsk->buffer_min_size)
1523 val = vsk->buffer_min_size;
1524
1525 if (val != vsk->buffer_size &&
1526 transport && transport->notify_buffer_size)
1527 transport->notify_buffer_size(vsk, &val);
1528
1529 vsk->buffer_size = val;
1530 }
1531
vsock_stream_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1532 static int vsock_stream_setsockopt(struct socket *sock,
1533 int level,
1534 int optname,
1535 sockptr_t optval,
1536 unsigned int optlen)
1537 {
1538 int err;
1539 struct sock *sk;
1540 struct vsock_sock *vsk;
1541 const struct vsock_transport *transport;
1542 u64 val;
1543
1544 if (level != AF_VSOCK)
1545 return -ENOPROTOOPT;
1546
1547 #define COPY_IN(_v) \
1548 do { \
1549 if (optlen < sizeof(_v)) { \
1550 err = -EINVAL; \
1551 goto exit; \
1552 } \
1553 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1554 err = -EFAULT; \
1555 goto exit; \
1556 } \
1557 } while (0)
1558
1559 err = 0;
1560 sk = sock->sk;
1561 vsk = vsock_sk(sk);
1562
1563 lock_sock(sk);
1564
1565 transport = vsk->transport;
1566
1567 switch (optname) {
1568 case SO_VM_SOCKETS_BUFFER_SIZE:
1569 COPY_IN(val);
1570 vsock_update_buffer_size(vsk, transport, val);
1571 break;
1572
1573 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1574 COPY_IN(val);
1575 vsk->buffer_max_size = val;
1576 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1577 break;
1578
1579 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1580 COPY_IN(val);
1581 vsk->buffer_min_size = val;
1582 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1583 break;
1584
1585 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1586 struct __kernel_old_timeval tv;
1587 COPY_IN(tv);
1588 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1589 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1590 vsk->connect_timeout = tv.tv_sec * HZ +
1591 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1592 if (vsk->connect_timeout == 0)
1593 vsk->connect_timeout =
1594 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1595
1596 } else {
1597 err = -ERANGE;
1598 }
1599 break;
1600 }
1601
1602 default:
1603 err = -ENOPROTOOPT;
1604 break;
1605 }
1606
1607 #undef COPY_IN
1608
1609 exit:
1610 release_sock(sk);
1611 return err;
1612 }
1613
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1614 static int vsock_stream_getsockopt(struct socket *sock,
1615 int level, int optname,
1616 char __user *optval,
1617 int __user *optlen)
1618 {
1619 int err;
1620 int len;
1621 struct sock *sk;
1622 struct vsock_sock *vsk;
1623 u64 val;
1624
1625 if (level != AF_VSOCK)
1626 return -ENOPROTOOPT;
1627
1628 err = get_user(len, optlen);
1629 if (err != 0)
1630 return err;
1631
1632 #define COPY_OUT(_v) \
1633 do { \
1634 if (len < sizeof(_v)) \
1635 return -EINVAL; \
1636 \
1637 len = sizeof(_v); \
1638 if (copy_to_user(optval, &_v, len) != 0) \
1639 return -EFAULT; \
1640 \
1641 } while (0)
1642
1643 err = 0;
1644 sk = sock->sk;
1645 vsk = vsock_sk(sk);
1646
1647 switch (optname) {
1648 case SO_VM_SOCKETS_BUFFER_SIZE:
1649 val = vsk->buffer_size;
1650 COPY_OUT(val);
1651 break;
1652
1653 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1654 val = vsk->buffer_max_size;
1655 COPY_OUT(val);
1656 break;
1657
1658 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1659 val = vsk->buffer_min_size;
1660 COPY_OUT(val);
1661 break;
1662
1663 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1664 struct __kernel_old_timeval tv;
1665 tv.tv_sec = vsk->connect_timeout / HZ;
1666 tv.tv_usec =
1667 (vsk->connect_timeout -
1668 tv.tv_sec * HZ) * (1000000 / HZ);
1669 COPY_OUT(tv);
1670 break;
1671 }
1672 default:
1673 return -ENOPROTOOPT;
1674 }
1675
1676 err = put_user(len, optlen);
1677 if (err != 0)
1678 return -EFAULT;
1679
1680 #undef COPY_OUT
1681
1682 return 0;
1683 }
1684
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1685 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1686 size_t len)
1687 {
1688 struct sock *sk;
1689 struct vsock_sock *vsk;
1690 const struct vsock_transport *transport;
1691 ssize_t total_written;
1692 long timeout;
1693 int err;
1694 struct vsock_transport_send_notify_data send_data;
1695 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1696
1697 sk = sock->sk;
1698 vsk = vsock_sk(sk);
1699 total_written = 0;
1700 err = 0;
1701
1702 if (msg->msg_flags & MSG_OOB)
1703 return -EOPNOTSUPP;
1704
1705 lock_sock(sk);
1706
1707 transport = vsk->transport;
1708
1709 /* Callers should not provide a destination with stream sockets. */
1710 if (msg->msg_namelen) {
1711 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1712 goto out;
1713 }
1714
1715 /* Send data only if both sides are not shutdown in the direction. */
1716 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1717 vsk->peer_shutdown & RCV_SHUTDOWN) {
1718 err = -EPIPE;
1719 goto out;
1720 }
1721
1722 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1723 !vsock_addr_bound(&vsk->local_addr)) {
1724 err = -ENOTCONN;
1725 goto out;
1726 }
1727
1728 if (!vsock_addr_bound(&vsk->remote_addr)) {
1729 err = -EDESTADDRREQ;
1730 goto out;
1731 }
1732
1733 /* Wait for room in the produce queue to enqueue our user's data. */
1734 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1735
1736 err = transport->notify_send_init(vsk, &send_data);
1737 if (err < 0)
1738 goto out;
1739
1740 while (total_written < len) {
1741 ssize_t written;
1742
1743 add_wait_queue(sk_sleep(sk), &wait);
1744 while (vsock_stream_has_space(vsk) == 0 &&
1745 sk->sk_err == 0 &&
1746 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1747 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1748
1749 /* Don't wait for non-blocking sockets. */
1750 if (timeout == 0) {
1751 err = -EAGAIN;
1752 remove_wait_queue(sk_sleep(sk), &wait);
1753 goto out_err;
1754 }
1755
1756 err = transport->notify_send_pre_block(vsk, &send_data);
1757 if (err < 0) {
1758 remove_wait_queue(sk_sleep(sk), &wait);
1759 goto out_err;
1760 }
1761
1762 release_sock(sk);
1763 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1764 lock_sock(sk);
1765 if (signal_pending(current)) {
1766 err = sock_intr_errno(timeout);
1767 remove_wait_queue(sk_sleep(sk), &wait);
1768 goto out_err;
1769 } else if (timeout == 0) {
1770 err = -EAGAIN;
1771 remove_wait_queue(sk_sleep(sk), &wait);
1772 goto out_err;
1773 }
1774 }
1775 remove_wait_queue(sk_sleep(sk), &wait);
1776
1777 /* These checks occur both as part of and after the loop
1778 * conditional since we need to check before and after
1779 * sleeping.
1780 */
1781 if (sk->sk_err) {
1782 err = -sk->sk_err;
1783 goto out_err;
1784 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1785 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1786 err = -EPIPE;
1787 goto out_err;
1788 }
1789
1790 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1791 if (err < 0)
1792 goto out_err;
1793
1794 /* Note that enqueue will only write as many bytes as are free
1795 * in the produce queue, so we don't need to ensure len is
1796 * smaller than the queue size. It is the caller's
1797 * responsibility to check how many bytes we were able to send.
1798 */
1799
1800 written = transport->stream_enqueue(
1801 vsk, msg,
1802 len - total_written);
1803 if (written < 0) {
1804 err = -ENOMEM;
1805 goto out_err;
1806 }
1807
1808 total_written += written;
1809
1810 err = transport->notify_send_post_enqueue(
1811 vsk, written, &send_data);
1812 if (err < 0)
1813 goto out_err;
1814
1815 }
1816
1817 out_err:
1818 if (total_written > 0)
1819 err = total_written;
1820 out:
1821 release_sock(sk);
1822 return err;
1823 }
1824
1825
1826 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1827 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1828 int flags)
1829 {
1830 struct sock *sk;
1831 struct vsock_sock *vsk;
1832 const struct vsock_transport *transport;
1833 int err;
1834 size_t target;
1835 ssize_t copied;
1836 long timeout;
1837 struct vsock_transport_recv_notify_data recv_data;
1838
1839 DEFINE_WAIT(wait);
1840
1841 sk = sock->sk;
1842 vsk = vsock_sk(sk);
1843 err = 0;
1844
1845 lock_sock(sk);
1846
1847 transport = vsk->transport;
1848
1849 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1850 /* Recvmsg is supposed to return 0 if a peer performs an
1851 * orderly shutdown. Differentiate between that case and when a
1852 * peer has not connected or a local shutdown occured with the
1853 * SOCK_DONE flag.
1854 */
1855 if (sock_flag(sk, SOCK_DONE))
1856 err = 0;
1857 else
1858 err = -ENOTCONN;
1859
1860 goto out;
1861 }
1862
1863 if (flags & MSG_OOB) {
1864 err = -EOPNOTSUPP;
1865 goto out;
1866 }
1867
1868 /* We don't check peer_shutdown flag here since peer may actually shut
1869 * down, but there can be data in the queue that a local socket can
1870 * receive.
1871 */
1872 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1873 err = 0;
1874 goto out;
1875 }
1876
1877 /* It is valid on Linux to pass in a zero-length receive buffer. This
1878 * is not an error. We may as well bail out now.
1879 */
1880 if (!len) {
1881 err = 0;
1882 goto out;
1883 }
1884
1885 /* We must not copy less than target bytes into the user's buffer
1886 * before returning successfully, so we wait for the consume queue to
1887 * have that much data to consume before dequeueing. Note that this
1888 * makes it impossible to handle cases where target is greater than the
1889 * queue size.
1890 */
1891 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1892 if (target >= transport->stream_rcvhiwat(vsk)) {
1893 err = -ENOMEM;
1894 goto out;
1895 }
1896 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1897 copied = 0;
1898
1899 err = transport->notify_recv_init(vsk, target, &recv_data);
1900 if (err < 0)
1901 goto out;
1902
1903
1904 while (1) {
1905 s64 ready;
1906
1907 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1908 ready = vsock_stream_has_data(vsk);
1909
1910 if (ready == 0) {
1911 if (sk->sk_err != 0 ||
1912 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1913 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1914 finish_wait(sk_sleep(sk), &wait);
1915 break;
1916 }
1917 /* Don't wait for non-blocking sockets. */
1918 if (timeout == 0) {
1919 err = -EAGAIN;
1920 finish_wait(sk_sleep(sk), &wait);
1921 break;
1922 }
1923
1924 err = transport->notify_recv_pre_block(
1925 vsk, target, &recv_data);
1926 if (err < 0) {
1927 finish_wait(sk_sleep(sk), &wait);
1928 break;
1929 }
1930 release_sock(sk);
1931 timeout = schedule_timeout(timeout);
1932 lock_sock(sk);
1933
1934 if (signal_pending(current)) {
1935 err = sock_intr_errno(timeout);
1936 finish_wait(sk_sleep(sk), &wait);
1937 break;
1938 } else if (timeout == 0) {
1939 err = -EAGAIN;
1940 finish_wait(sk_sleep(sk), &wait);
1941 break;
1942 }
1943 } else {
1944 ssize_t read;
1945
1946 finish_wait(sk_sleep(sk), &wait);
1947
1948 if (ready < 0) {
1949 /* Invalid queue pair content. XXX This should
1950 * be changed to a connection reset in a later
1951 * change.
1952 */
1953
1954 err = -ENOMEM;
1955 goto out;
1956 }
1957
1958 err = transport->notify_recv_pre_dequeue(
1959 vsk, target, &recv_data);
1960 if (err < 0)
1961 break;
1962
1963 read = transport->stream_dequeue(
1964 vsk, msg,
1965 len - copied, flags);
1966 if (read < 0) {
1967 err = -ENOMEM;
1968 break;
1969 }
1970
1971 copied += read;
1972
1973 err = transport->notify_recv_post_dequeue(
1974 vsk, target, read,
1975 !(flags & MSG_PEEK), &recv_data);
1976 if (err < 0)
1977 goto out;
1978
1979 if (read >= target || flags & MSG_PEEK)
1980 break;
1981
1982 target -= read;
1983 }
1984 }
1985
1986 if (sk->sk_err)
1987 err = -sk->sk_err;
1988 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1989 err = 0;
1990
1991 if (copied > 0)
1992 err = copied;
1993
1994 out:
1995 release_sock(sk);
1996 return err;
1997 }
1998
1999 static const struct proto_ops vsock_stream_ops = {
2000 .family = PF_VSOCK,
2001 .owner = THIS_MODULE,
2002 .release = vsock_release,
2003 .bind = vsock_bind,
2004 .connect = vsock_stream_connect,
2005 .socketpair = sock_no_socketpair,
2006 .accept = vsock_accept,
2007 .getname = vsock_getname,
2008 .poll = vsock_poll,
2009 .ioctl = sock_no_ioctl,
2010 .listen = vsock_listen,
2011 .shutdown = vsock_shutdown,
2012 .setsockopt = vsock_stream_setsockopt,
2013 .getsockopt = vsock_stream_getsockopt,
2014 .sendmsg = vsock_stream_sendmsg,
2015 .recvmsg = vsock_stream_recvmsg,
2016 .mmap = sock_no_mmap,
2017 .sendpage = sock_no_sendpage,
2018 };
2019
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2020 static int vsock_create(struct net *net, struct socket *sock,
2021 int protocol, int kern)
2022 {
2023 struct vsock_sock *vsk;
2024 struct sock *sk;
2025 int ret;
2026
2027 if (!sock)
2028 return -EINVAL;
2029
2030 if (protocol && protocol != PF_VSOCK)
2031 return -EPROTONOSUPPORT;
2032
2033 switch (sock->type) {
2034 case SOCK_DGRAM:
2035 sock->ops = &vsock_dgram_ops;
2036 break;
2037 case SOCK_STREAM:
2038 sock->ops = &vsock_stream_ops;
2039 break;
2040 default:
2041 return -ESOCKTNOSUPPORT;
2042 }
2043
2044 sock->state = SS_UNCONNECTED;
2045
2046 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2047 if (!sk)
2048 return -ENOMEM;
2049
2050 vsk = vsock_sk(sk);
2051
2052 if (sock->type == SOCK_DGRAM) {
2053 ret = vsock_assign_transport(vsk, NULL);
2054 if (ret < 0) {
2055 sock_put(sk);
2056 return ret;
2057 }
2058 }
2059
2060 vsock_insert_unbound(vsk);
2061
2062 return 0;
2063 }
2064
2065 static const struct net_proto_family vsock_family_ops = {
2066 .family = AF_VSOCK,
2067 .create = vsock_create,
2068 .owner = THIS_MODULE,
2069 };
2070
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2071 static long vsock_dev_do_ioctl(struct file *filp,
2072 unsigned int cmd, void __user *ptr)
2073 {
2074 u32 __user *p = ptr;
2075 u32 cid = VMADDR_CID_ANY;
2076 int retval = 0;
2077
2078 switch (cmd) {
2079 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2080 /* To be compatible with the VMCI behavior, we prioritize the
2081 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2082 */
2083 if (transport_g2h)
2084 cid = transport_g2h->get_local_cid();
2085 else if (transport_h2g)
2086 cid = transport_h2g->get_local_cid();
2087
2088 if (put_user(cid, p) != 0)
2089 retval = -EFAULT;
2090 break;
2091
2092 default:
2093 pr_err("Unknown ioctl %d\n", cmd);
2094 retval = -EINVAL;
2095 }
2096
2097 return retval;
2098 }
2099
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2100 static long vsock_dev_ioctl(struct file *filp,
2101 unsigned int cmd, unsigned long arg)
2102 {
2103 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2104 }
2105
2106 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2107 static long vsock_dev_compat_ioctl(struct file *filp,
2108 unsigned int cmd, unsigned long arg)
2109 {
2110 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2111 }
2112 #endif
2113
2114 static const struct file_operations vsock_device_ops = {
2115 .owner = THIS_MODULE,
2116 .unlocked_ioctl = vsock_dev_ioctl,
2117 #ifdef CONFIG_COMPAT
2118 .compat_ioctl = vsock_dev_compat_ioctl,
2119 #endif
2120 .open = nonseekable_open,
2121 };
2122
2123 static struct miscdevice vsock_device = {
2124 .name = "vsock",
2125 .fops = &vsock_device_ops,
2126 };
2127
vsock_init(void)2128 static int __init vsock_init(void)
2129 {
2130 int err = 0;
2131
2132 vsock_init_tables();
2133
2134 vsock_proto.owner = THIS_MODULE;
2135 vsock_device.minor = MISC_DYNAMIC_MINOR;
2136 err = misc_register(&vsock_device);
2137 if (err) {
2138 pr_err("Failed to register misc device\n");
2139 goto err_reset_transport;
2140 }
2141
2142 err = proto_register(&vsock_proto, 1); /* we want our slab */
2143 if (err) {
2144 pr_err("Cannot register vsock protocol\n");
2145 goto err_deregister_misc;
2146 }
2147
2148 err = sock_register(&vsock_family_ops);
2149 if (err) {
2150 pr_err("could not register af_vsock (%d) address family: %d\n",
2151 AF_VSOCK, err);
2152 goto err_unregister_proto;
2153 }
2154
2155 return 0;
2156
2157 err_unregister_proto:
2158 proto_unregister(&vsock_proto);
2159 err_deregister_misc:
2160 misc_deregister(&vsock_device);
2161 err_reset_transport:
2162 return err;
2163 }
2164
vsock_exit(void)2165 static void __exit vsock_exit(void)
2166 {
2167 misc_deregister(&vsock_device);
2168 sock_unregister(AF_VSOCK);
2169 proto_unregister(&vsock_proto);
2170 }
2171
vsock_core_get_transport(struct vsock_sock * vsk)2172 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2173 {
2174 return vsk->transport;
2175 }
2176 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2177
vsock_core_register(const struct vsock_transport * t,int features)2178 int vsock_core_register(const struct vsock_transport *t, int features)
2179 {
2180 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2181 int err = mutex_lock_interruptible(&vsock_register_mutex);
2182
2183 if (err)
2184 return err;
2185
2186 t_h2g = transport_h2g;
2187 t_g2h = transport_g2h;
2188 t_dgram = transport_dgram;
2189 t_local = transport_local;
2190
2191 if (features & VSOCK_TRANSPORT_F_H2G) {
2192 if (t_h2g) {
2193 err = -EBUSY;
2194 goto err_busy;
2195 }
2196 t_h2g = t;
2197 }
2198
2199 if (features & VSOCK_TRANSPORT_F_G2H) {
2200 if (t_g2h) {
2201 err = -EBUSY;
2202 goto err_busy;
2203 }
2204 t_g2h = t;
2205 }
2206
2207 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2208 if (t_dgram) {
2209 err = -EBUSY;
2210 goto err_busy;
2211 }
2212 t_dgram = t;
2213 }
2214
2215 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2216 if (t_local) {
2217 err = -EBUSY;
2218 goto err_busy;
2219 }
2220 t_local = t;
2221 }
2222
2223 transport_h2g = t_h2g;
2224 transport_g2h = t_g2h;
2225 transport_dgram = t_dgram;
2226 transport_local = t_local;
2227
2228 err_busy:
2229 mutex_unlock(&vsock_register_mutex);
2230 return err;
2231 }
2232 EXPORT_SYMBOL_GPL(vsock_core_register);
2233
vsock_core_unregister(const struct vsock_transport * t)2234 void vsock_core_unregister(const struct vsock_transport *t)
2235 {
2236 mutex_lock(&vsock_register_mutex);
2237
2238 if (transport_h2g == t)
2239 transport_h2g = NULL;
2240
2241 if (transport_g2h == t)
2242 transport_g2h = NULL;
2243
2244 if (transport_dgram == t)
2245 transport_dgram = NULL;
2246
2247 if (transport_local == t)
2248 transport_local = NULL;
2249
2250 mutex_unlock(&vsock_register_mutex);
2251 }
2252 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2253
2254 module_init(vsock_init);
2255 module_exit(vsock_exit);
2256
2257 MODULE_AUTHOR("VMware, Inc.");
2258 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2259 MODULE_VERSION("1.0.2.0-k");
2260 MODULE_LICENSE("GPL v2");
2261