• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23 
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {				\
25 	status = __vxge_hw_vpath_stats_access(vpath,			\
26 					      VXGE_HW_STATS_OP_READ,	\
27 					      offset,			\
28 					      &val64);			\
29 	if (status != VXGE_HW_OK)					\
30 		return status;						\
31 }
32 
33 static void
vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem * vp_reg)34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36 	u64 val64;
37 
38 	val64 = readq(&vp_reg->rxmac_vcfg0);
39 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 	writeq(val64, &vp_reg->rxmac_vcfg0);
41 	val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43 
44 /*
45  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46  */
vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device * hldev,u32 vp_id)47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49 	struct vxge_hw_vpath_reg __iomem *vp_reg;
50 	struct __vxge_hw_virtualpath *vpath;
51 	u64 val64, rxd_count, rxd_spat;
52 	int count = 0, total_count = 0;
53 
54 	vpath = &hldev->virtual_paths[vp_id];
55 	vp_reg = vpath->vp_reg;
56 
57 	vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58 
59 	/* Check that the ring controller for this vpath has enough free RxDs
60 	 * to send frames to the host.  This is done by reading the
61 	 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 	 * RXD_SPAT value for the vpath.
63 	 */
64 	val64 = readq(&vp_reg->prc_cfg6);
65 	rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 	/* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 	 * leg room.
68 	 */
69 	rxd_spat *= 2;
70 
71 	do {
72 		mdelay(1);
73 
74 		rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75 
76 		/* Check that the ring controller for this vpath does
77 		 * not have any frame in its pipeline.
78 		 */
79 		val64 = readq(&vp_reg->frm_in_progress_cnt);
80 		if ((rxd_count <= rxd_spat) || (val64 > 0))
81 			count = 0;
82 		else
83 			count++;
84 		total_count++;
85 	} while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 			(total_count < VXGE_HW_MAX_POLLING_COUNT));
87 
88 	if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 		printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 			__func__);
91 
92 	return total_count;
93 }
94 
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96  * stored in the frame buffer for each vpath assigned to the given
97  * function (hldev) have been sent to the host.
98  */
vxge_hw_device_wait_receive_idle(struct __vxge_hw_device * hldev)99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101 	int i, total_count = 0;
102 
103 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 			continue;
106 
107 		total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 		if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 			break;
110 	}
111 }
112 
113 /*
114  * __vxge_hw_device_register_poll
115  * Will poll certain register for specified amount of time.
116  * Will poll until masked bit is not cleared.
117  */
118 static enum vxge_hw_status
__vxge_hw_device_register_poll(void __iomem * reg,u64 mask,u32 max_millis)119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121 	u64 val64;
122 	u32 i = 0;
123 
124 	udelay(10);
125 
126 	do {
127 		val64 = readq(reg);
128 		if (!(val64 & mask))
129 			return VXGE_HW_OK;
130 		udelay(100);
131 	} while (++i <= 9);
132 
133 	i = 0;
134 	do {
135 		val64 = readq(reg);
136 		if (!(val64 & mask))
137 			return VXGE_HW_OK;
138 		mdelay(1);
139 	} while (++i <= max_millis);
140 
141 	return VXGE_HW_FAIL;
142 }
143 
144 static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64,void __iomem * addr,u64 mask,u32 max_millis)145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 			  u64 mask, u32 max_millis)
147 {
148 	__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 	wmb();
150 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 	wmb();
152 
153 	return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155 
156 static enum vxge_hw_status
vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath * vpath,u32 action,u32 fw_memo,u32 offset,u64 * data0,u64 * data1,u64 * steer_ctrl)157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 		     u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 		     u64 *steer_ctrl)
160 {
161 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 	enum vxge_hw_status status;
163 	u64 val64;
164 	u32 retry = 0, max_retry = 3;
165 
166 	spin_lock(&vpath->lock);
167 	if (!vpath->vp_open) {
168 		spin_unlock(&vpath->lock);
169 		max_retry = 100;
170 	}
171 
172 	writeq(*data0, &vp_reg->rts_access_steer_data0);
173 	writeq(*data1, &vp_reg->rts_access_steer_data1);
174 	wmb();
175 
176 	val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 		VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 		VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 		*steer_ctrl;
181 
182 	status = __vxge_hw_pio_mem_write64(val64,
183 					   &vp_reg->rts_access_steer_ctrl,
184 					   VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 					   VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186 
187 	/* The __vxge_hw_device_register_poll can udelay for a significant
188 	 * amount of time, blocking other process from the CPU.  If it delays
189 	 * for ~5secs, a NMI error can occur.  A way around this is to give up
190 	 * the processor via msleep, but this is not allowed is under lock.
191 	 * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
192 	 * 1sec and sleep for 10ms until the firmware operation has completed
193 	 * or timed-out.
194 	 */
195 	while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 		if (!vpath->vp_open)
197 			msleep(20);
198 		status = __vxge_hw_device_register_poll(
199 					&vp_reg->rts_access_steer_ctrl,
200 					VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 					VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202 	}
203 
204 	if (status != VXGE_HW_OK)
205 		goto out;
206 
207 	val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 	if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 		*data0 = readq(&vp_reg->rts_access_steer_data0);
210 		*data1 = readq(&vp_reg->rts_access_steer_data1);
211 		*steer_ctrl = val64;
212 	} else
213 		status = VXGE_HW_FAIL;
214 
215 out:
216 	if (vpath->vp_open)
217 		spin_unlock(&vpath->lock);
218 	return status;
219 }
220 
221 enum vxge_hw_status
vxge_hw_upgrade_read_version(struct __vxge_hw_device * hldev,u32 * major,u32 * minor,u32 * build)222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 			     u32 *minor, u32 *build)
224 {
225 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 	struct __vxge_hw_virtualpath *vpath;
227 	enum vxge_hw_status status;
228 
229 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
230 
231 	status = vxge_hw_vpath_fw_api(vpath,
232 				      VXGE_HW_FW_UPGRADE_ACTION,
233 				      VXGE_HW_FW_UPGRADE_MEMO,
234 				      VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 				      &data0, &data1, &steer_ctrl);
236 	if (status != VXGE_HW_OK)
237 		return status;
238 
239 	*major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 	*minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 	*build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242 
243 	return status;
244 }
245 
vxge_hw_flash_fw(struct __vxge_hw_device * hldev)246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 	struct __vxge_hw_virtualpath *vpath;
250 	enum vxge_hw_status status;
251 	u32 ret;
252 
253 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
254 
255 	status = vxge_hw_vpath_fw_api(vpath,
256 				      VXGE_HW_FW_UPGRADE_ACTION,
257 				      VXGE_HW_FW_UPGRADE_MEMO,
258 				      VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 				      &data0, &data1, &steer_ctrl);
260 	if (status != VXGE_HW_OK) {
261 		vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 		goto exit;
263 	}
264 
265 	ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 	if (ret != 1) {
267 		vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 				__func__, ret);
269 		status = VXGE_HW_FAIL;
270 	}
271 
272 exit:
273 	return status;
274 }
275 
276 enum vxge_hw_status
vxge_update_fw_image(struct __vxge_hw_device * hldev,const u8 * fwdata,int size)277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 	struct __vxge_hw_virtualpath *vpath;
281 	enum vxge_hw_status status;
282 	int ret_code, sec_code;
283 
284 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
285 
286 	/* send upgrade start command */
287 	status = vxge_hw_vpath_fw_api(vpath,
288 				      VXGE_HW_FW_UPGRADE_ACTION,
289 				      VXGE_HW_FW_UPGRADE_MEMO,
290 				      VXGE_HW_FW_UPGRADE_OFFSET_START,
291 				      &data0, &data1, &steer_ctrl);
292 	if (status != VXGE_HW_OK) {
293 		vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 				__func__);
295 		return status;
296 	}
297 
298 	/* Transfer fw image to adapter 16 bytes at a time */
299 	for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 		steer_ctrl = 0;
301 
302 		/* The next 128bits of fwdata to be loaded onto the adapter */
303 		data0 = *((u64 *)fwdata);
304 		data1 = *((u64 *)fwdata + 1);
305 
306 		status = vxge_hw_vpath_fw_api(vpath,
307 					      VXGE_HW_FW_UPGRADE_ACTION,
308 					      VXGE_HW_FW_UPGRADE_MEMO,
309 					      VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 					      &data0, &data1, &steer_ctrl);
311 		if (status != VXGE_HW_OK) {
312 			vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 					__func__);
314 			goto out;
315 		}
316 
317 		ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 		switch (ret_code) {
319 		case VXGE_HW_FW_UPGRADE_OK:
320 			/* All OK, send next 16 bytes. */
321 			break;
322 		case VXGE_FW_UPGRADE_BYTES2SKIP:
323 			/* skip bytes in the stream */
324 			fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 			break;
326 		case VXGE_HW_FW_UPGRADE_DONE:
327 			goto out;
328 		case VXGE_HW_FW_UPGRADE_ERR:
329 			sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 			switch (sec_code) {
331 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 				printk(KERN_ERR
334 				       "corrupted data from .ncf file\n");
335 				break;
336 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 				printk(KERN_ERR "invalid .ncf file\n");
342 				break;
343 			case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 				printk(KERN_ERR "buffer overflow\n");
345 				break;
346 			case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 				printk(KERN_ERR "failed to flash the image\n");
348 				break;
349 			case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 				printk(KERN_ERR
351 				       "generic error. Unknown error type\n");
352 				break;
353 			default:
354 				printk(KERN_ERR "Unknown error of type %d\n",
355 				       sec_code);
356 				break;
357 			}
358 			status = VXGE_HW_FAIL;
359 			goto out;
360 		default:
361 			printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 			status = VXGE_HW_FAIL;
363 			goto out;
364 		}
365 		/* point to next 16 bytes */
366 		fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367 	}
368 out:
369 	return status;
370 }
371 
372 enum vxge_hw_status
vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device * hldev,struct eprom_image * img)373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 				struct eprom_image *img)
375 {
376 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 	struct __vxge_hw_virtualpath *vpath;
378 	enum vxge_hw_status status;
379 	int i;
380 
381 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
382 
383 	for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 		data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 		data1 = steer_ctrl = 0;
386 
387 		status = vxge_hw_vpath_fw_api(vpath,
388 			VXGE_HW_FW_API_GET_EPROM_REV,
389 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 			0, &data0, &data1, &steer_ctrl);
391 		if (status != VXGE_HW_OK)
392 			break;
393 
394 		img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 		img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 		img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 		img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398 	}
399 
400 	return status;
401 }
402 
403 /*
404  * __vxge_hw_channel_free - Free memory allocated for channel
405  * This function deallocates memory from the channel and various arrays
406  * in the channel
407  */
__vxge_hw_channel_free(struct __vxge_hw_channel * channel)408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410 	kfree(channel->work_arr);
411 	kfree(channel->free_arr);
412 	kfree(channel->reserve_arr);
413 	kfree(channel->orig_arr);
414 	kfree(channel);
415 }
416 
417 /*
418  * __vxge_hw_channel_initialize - Initialize a channel
419  * This function initializes a channel by properly setting the
420  * various references
421  */
422 static enum vxge_hw_status
__vxge_hw_channel_initialize(struct __vxge_hw_channel * channel)423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425 	u32 i;
426 	struct __vxge_hw_virtualpath *vpath;
427 
428 	vpath = channel->vph->vpath;
429 
430 	if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 		for (i = 0; i < channel->length; i++)
432 			channel->orig_arr[i] = channel->reserve_arr[i];
433 	}
434 
435 	switch (channel->type) {
436 	case VXGE_HW_CHANNEL_TYPE_FIFO:
437 		vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 		channel->stats = &((struct __vxge_hw_fifo *)
439 				channel)->stats->common_stats;
440 		break;
441 	case VXGE_HW_CHANNEL_TYPE_RING:
442 		vpath->ringh = (struct __vxge_hw_ring *)channel;
443 		channel->stats = &((struct __vxge_hw_ring *)
444 				channel)->stats->common_stats;
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	return VXGE_HW_OK;
451 }
452 
453 /*
454  * __vxge_hw_channel_reset - Resets a channel
455  * This function resets a channel by properly setting the various references
456  */
457 static enum vxge_hw_status
__vxge_hw_channel_reset(struct __vxge_hw_channel * channel)458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460 	u32 i;
461 
462 	for (i = 0; i < channel->length; i++) {
463 		if (channel->reserve_arr != NULL)
464 			channel->reserve_arr[i] = channel->orig_arr[i];
465 		if (channel->free_arr != NULL)
466 			channel->free_arr[i] = NULL;
467 		if (channel->work_arr != NULL)
468 			channel->work_arr[i] = NULL;
469 	}
470 	channel->free_ptr = channel->length;
471 	channel->reserve_ptr = channel->length;
472 	channel->reserve_top = 0;
473 	channel->post_index = 0;
474 	channel->compl_index = 0;
475 
476 	return VXGE_HW_OK;
477 }
478 
479 /*
480  * __vxge_hw_device_pci_e_init
481  * Initialize certain PCI/PCI-X configuration registers
482  * with recommended values. Save config space for future hw resets.
483  */
__vxge_hw_device_pci_e_init(struct __vxge_hw_device * hldev)484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486 	u16 cmd = 0;
487 
488 	/* Set the PErr Repconse bit and SERR in PCI command register. */
489 	pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 	cmd |= 0x140;
491 	pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492 
493 	pci_save_state(hldev->pdev);
494 }
495 
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497  * in progress
498  * This routine checks the vpath reset in progress register is turned zero
499  */
500 static enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem * vpath_rst_in_prog)501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503 	enum vxge_hw_status status;
504 	status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 			VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 	return status;
508 }
509 
510 /*
511  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512  * Set the swapper bits appropriately for the lagacy section.
513  */
514 static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg)515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517 	u64 val64;
518 	enum vxge_hw_status status = VXGE_HW_OK;
519 
520 	val64 = readq(&legacy_reg->toc_swapper_fb);
521 
522 	wmb();
523 
524 	switch (val64) {
525 	case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 		return status;
527 
528 	case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 			&legacy_reg->pifm_rd_swap_en);
531 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 			&legacy_reg->pifm_rd_flip_en);
533 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 			&legacy_reg->pifm_wr_swap_en);
535 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 			&legacy_reg->pifm_wr_flip_en);
537 		break;
538 
539 	case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 			&legacy_reg->pifm_rd_swap_en);
542 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 			&legacy_reg->pifm_wr_swap_en);
544 		break;
545 
546 	case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 			&legacy_reg->pifm_rd_flip_en);
549 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 			&legacy_reg->pifm_wr_flip_en);
551 		break;
552 	}
553 
554 	wmb();
555 
556 	val64 = readq(&legacy_reg->toc_swapper_fb);
557 
558 	if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 		status = VXGE_HW_ERR_SWAPPER_CTRL;
560 
561 	return status;
562 }
563 
564 /*
565  * __vxge_hw_device_toc_get
566  * This routine sets the swapper and reads the toc pointer and returns the
567  * memory mapped address of the toc
568  */
569 static struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem * bar0)570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572 	u64 val64;
573 	struct vxge_hw_toc_reg __iomem *toc = NULL;
574 	enum vxge_hw_status status;
575 
576 	struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 		(struct vxge_hw_legacy_reg __iomem *)bar0;
578 
579 	status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 	if (status != VXGE_HW_OK)
581 		goto exit;
582 
583 	val64 =	readq(&legacy_reg->toc_first_pointer);
584 	toc = bar0 + val64;
585 exit:
586 	return toc;
587 }
588 
589 /*
590  * __vxge_hw_device_reg_addr_get
591  * This routine sets the swapper and reads the toc pointer and initializes the
592  * register location pointers in the device object. It waits until the ric is
593  * completed initializing registers.
594  */
595 static enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device * hldev)596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598 	u64 val64;
599 	u32 i;
600 	enum vxge_hw_status status = VXGE_HW_OK;
601 
602 	hldev->legacy_reg = hldev->bar0;
603 
604 	hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 	if (hldev->toc_reg  == NULL) {
606 		status = VXGE_HW_FAIL;
607 		goto exit;
608 	}
609 
610 	val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 	hldev->common_reg = hldev->bar0 + val64;
612 
613 	val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 	hldev->mrpcim_reg = hldev->bar0 + val64;
615 
616 	for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 		val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 		hldev->srpcim_reg[i] = hldev->bar0 + val64;
619 	}
620 
621 	for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 		val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 		hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624 	}
625 
626 	for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 		val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 		hldev->vpath_reg[i] = hldev->bar0 + val64;
629 	}
630 
631 	val64 = readq(&hldev->toc_reg->toc_kdfc);
632 
633 	switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 	case 0:
635 		hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	status = __vxge_hw_device_vpath_reset_in_prog_check(
642 			(u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 	return status;
645 }
646 
647 /*
648  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649  * This routine returns the Access Rights of the driver
650  */
651 static u32
__vxge_hw_device_access_rights_get(u32 host_type,u32 func_id)652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654 	u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655 
656 	switch (host_type) {
657 	case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 		if (func_id == 0) {
659 			access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 					VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661 		}
662 		break;
663 	case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 		break;
667 	case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 		break;
671 	case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 	case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 	case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 		break;
675 	case VXGE_HW_SR_VH_FUNCTION0:
676 	case VXGE_HW_VH_NORMAL_FUNCTION:
677 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 		break;
679 	}
680 
681 	return access_rights;
682 }
683 /*
684  * __vxge_hw_device_is_privilaged
685  * This routine checks if the device function is privilaged or not
686  */
687 
688 enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type,u32 func_id)689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691 	if (__vxge_hw_device_access_rights_get(host_type,
692 		func_id) &
693 		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 		return VXGE_HW_OK;
695 	else
696 		return VXGE_HW_ERR_PRIVILEGED_OPERATION;
697 }
698 
699 /*
700  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701  * Returns the function number of the vpath.
702  */
703 static u32
__vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem * vpmgmt_reg)704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706 	u64 val64;
707 
708 	val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709 
710 	return
711 	 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713 
714 /*
715  * __vxge_hw_device_host_info_get
716  * This routine returns the host type assignments
717  */
__vxge_hw_device_host_info_get(struct __vxge_hw_device * hldev)718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720 	u64 val64;
721 	u32 i;
722 
723 	val64 = readq(&hldev->common_reg->host_type_assignments);
724 
725 	hldev->host_type =
726 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727 
728 	hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729 
730 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 			continue;
733 
734 		hldev->func_id =
735 			__vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736 
737 		hldev->access_rights = __vxge_hw_device_access_rights_get(
738 			hldev->host_type, hldev->func_id);
739 
740 		hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 		hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742 
743 		hldev->first_vp_id = i;
744 		break;
745 	}
746 }
747 
748 /*
749  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750  * link width and signalling rate.
751  */
752 static enum vxge_hw_status
__vxge_hw_verify_pci_e_info(struct __vxge_hw_device * hldev)753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755 	struct pci_dev *dev = hldev->pdev;
756 	u16 lnk;
757 
758 	/* Get the negotiated link width and speed from PCI config space */
759 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760 
761 	if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 		return VXGE_HW_ERR_INVALID_PCI_INFO;
763 
764 	switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 	case PCIE_LNK_WIDTH_RESRV:
766 	case PCIE_LNK_X1:
767 	case PCIE_LNK_X2:
768 	case PCIE_LNK_X4:
769 	case PCIE_LNK_X8:
770 		break;
771 	default:
772 		return VXGE_HW_ERR_INVALID_PCI_INFO;
773 	}
774 
775 	return VXGE_HW_OK;
776 }
777 
778 /*
779  * __vxge_hw_device_initialize
780  * Initialize Titan-V hardware.
781  */
782 static enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device * hldev)783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785 	enum vxge_hw_status status = VXGE_HW_OK;
786 
787 	if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 				hldev->func_id)) {
789 		/* Validate the pci-e link width and speed */
790 		status = __vxge_hw_verify_pci_e_info(hldev);
791 		if (status != VXGE_HW_OK)
792 			goto exit;
793 	}
794 
795 exit:
796 	return status;
797 }
798 
799 /*
800  * __vxge_hw_vpath_fw_ver_get - Get the fw version
801  * Returns FW Version
802  */
803 static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 			   struct vxge_hw_device_hw_info *hw_info)
806 {
807 	struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 	struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 	struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 	struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812 	enum vxge_hw_status status;
813 
814 	status = vxge_hw_vpath_fw_api(vpath,
815 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 			0, &data0, &data1, &steer_ctrl);
818 	if (status != VXGE_HW_OK)
819 		goto exit;
820 
821 	fw_date->day =
822 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 	fw_date->month =
824 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 	fw_date->year =
826 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827 
828 	snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 		 fw_date->month, fw_date->day, fw_date->year);
830 
831 	fw_version->major =
832 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 	fw_version->minor =
834 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 	fw_version->build =
836 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837 
838 	snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 		 fw_version->major, fw_version->minor, fw_version->build);
840 
841 	flash_date->day =
842 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 	flash_date->month =
844 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 	flash_date->year =
846 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847 
848 	snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 		 flash_date->month, flash_date->day, flash_date->year);
850 
851 	flash_version->major =
852 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 	flash_version->minor =
854 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 	flash_version->build =
856 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857 
858 	snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 		 flash_version->major, flash_version->minor,
860 		 flash_version->build);
861 
862 exit:
863 	return status;
864 }
865 
866 /*
867  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868  * part number and product description.
869  */
870 static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 			      struct vxge_hw_device_hw_info *hw_info)
873 {
874 	enum vxge_hw_status status;
875 	u64 data0, data1 = 0, steer_ctrl = 0;
876 	u8 *serial_number = hw_info->serial_number;
877 	u8 *part_number = hw_info->part_number;
878 	u8 *product_desc = hw_info->product_desc;
879 	u32 i, j = 0;
880 
881 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882 
883 	status = vxge_hw_vpath_fw_api(vpath,
884 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 			0, &data0, &data1, &steer_ctrl);
887 	if (status != VXGE_HW_OK)
888 		return status;
889 
890 	((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 	((u64 *)serial_number)[1] = be64_to_cpu(data1);
892 
893 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 	data1 = steer_ctrl = 0;
895 
896 	status = vxge_hw_vpath_fw_api(vpath,
897 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 			0, &data0, &data1, &steer_ctrl);
900 	if (status != VXGE_HW_OK)
901 		return status;
902 
903 	((u64 *)part_number)[0] = be64_to_cpu(data0);
904 	((u64 *)part_number)[1] = be64_to_cpu(data1);
905 
906 	for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 	     i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 		data0 = i;
909 		data1 = steer_ctrl = 0;
910 
911 		status = vxge_hw_vpath_fw_api(vpath,
912 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 			0, &data0, &data1, &steer_ctrl);
915 		if (status != VXGE_HW_OK)
916 			return status;
917 
918 		((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 		((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920 	}
921 
922 	return status;
923 }
924 
925 /*
926  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927  * Returns pci function mode
928  */
929 static enum vxge_hw_status
__vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 				  struct vxge_hw_device_hw_info *hw_info)
932 {
933 	u64 data0, data1 = 0, steer_ctrl = 0;
934 	enum vxge_hw_status status;
935 
936 	data0 = 0;
937 
938 	status = vxge_hw_vpath_fw_api(vpath,
939 			VXGE_HW_FW_API_GET_FUNC_MODE,
940 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 			0, &data0, &data1, &steer_ctrl);
942 	if (status != VXGE_HW_OK)
943 		return status;
944 
945 	hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 	return status;
947 }
948 
949 /*
950  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951  *               from MAC address table.
952  */
953 static enum vxge_hw_status
__vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath * vpath,u8 * macaddr,u8 * macaddr_mask)954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 			 u8 *macaddr, u8 *macaddr_mask)
956 {
957 	u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 	    data0 = 0, data1 = 0, steer_ctrl = 0;
959 	enum vxge_hw_status status;
960 	int i;
961 
962 	do {
963 		status = vxge_hw_vpath_fw_api(vpath, action,
964 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 			0, &data0, &data1, &steer_ctrl);
966 		if (status != VXGE_HW_OK)
967 			goto exit;
968 
969 		data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 		data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 									data1);
972 
973 		for (i = ETH_ALEN; i > 0; i--) {
974 			macaddr[i - 1] = (u8) (data0 & 0xFF);
975 			data0 >>= 8;
976 
977 			macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 			data1 >>= 8;
979 		}
980 
981 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 		data0 = 0, data1 = 0, steer_ctrl = 0;
983 
984 	} while (!is_valid_ether_addr(macaddr));
985 exit:
986 	return status;
987 }
988 
989 /**
990  * vxge_hw_device_hw_info_get - Get the hw information
991  * @bar0: the bar
992  * @hw_info: the hw_info struct
993  *
994  * Returns the vpath mask that has the bits set for each vpath allocated
995  * for the driver, FW version information, and the first mac address for
996  * each vpath
997  */
998 enum vxge_hw_status
vxge_hw_device_hw_info_get(void __iomem * bar0,struct vxge_hw_device_hw_info * hw_info)999 vxge_hw_device_hw_info_get(void __iomem *bar0,
1000 			   struct vxge_hw_device_hw_info *hw_info)
1001 {
1002 	u32 i;
1003 	u64 val64;
1004 	struct vxge_hw_toc_reg __iomem *toc;
1005 	struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1006 	struct vxge_hw_common_reg __iomem *common_reg;
1007 	struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1008 	enum vxge_hw_status status;
1009 	struct __vxge_hw_virtualpath vpath;
1010 
1011 	memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1012 
1013 	toc = __vxge_hw_device_toc_get(bar0);
1014 	if (toc == NULL) {
1015 		status = VXGE_HW_ERR_CRITICAL;
1016 		goto exit;
1017 	}
1018 
1019 	val64 = readq(&toc->toc_common_pointer);
1020 	common_reg = bar0 + val64;
1021 
1022 	status = __vxge_hw_device_vpath_reset_in_prog_check(
1023 		(u64 __iomem *)&common_reg->vpath_rst_in_prog);
1024 	if (status != VXGE_HW_OK)
1025 		goto exit;
1026 
1027 	hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1028 
1029 	val64 = readq(&common_reg->host_type_assignments);
1030 
1031 	hw_info->host_type =
1032 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1033 
1034 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1035 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1036 			continue;
1037 
1038 		val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1039 
1040 		vpmgmt_reg = bar0 + val64;
1041 
1042 		hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1043 		if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1044 			hw_info->func_id) &
1045 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1046 
1047 			val64 = readq(&toc->toc_mrpcim_pointer);
1048 
1049 			mrpcim_reg = bar0 + val64;
1050 
1051 			writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1052 			wmb();
1053 		}
1054 
1055 		val64 = readq(&toc->toc_vpath_pointer[i]);
1056 
1057 		spin_lock_init(&vpath.lock);
1058 		vpath.vp_reg = bar0 + val64;
1059 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1060 
1061 		status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1062 		if (status != VXGE_HW_OK)
1063 			goto exit;
1064 
1065 		status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1066 		if (status != VXGE_HW_OK)
1067 			goto exit;
1068 
1069 		status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1070 		if (status != VXGE_HW_OK)
1071 			goto exit;
1072 
1073 		break;
1074 	}
1075 
1076 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1077 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1078 			continue;
1079 
1080 		val64 = readq(&toc->toc_vpath_pointer[i]);
1081 		vpath.vp_reg = bar0 + val64;
1082 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1083 
1084 		status =  __vxge_hw_vpath_addr_get(&vpath,
1085 				hw_info->mac_addrs[i],
1086 				hw_info->mac_addr_masks[i]);
1087 		if (status != VXGE_HW_OK)
1088 			goto exit;
1089 	}
1090 exit:
1091 	return status;
1092 }
1093 
1094 /*
1095  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1096  */
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool * blockpool)1097 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1098 {
1099 	struct __vxge_hw_device *hldev;
1100 	struct list_head *p, *n;
1101 
1102 	if (!blockpool)
1103 		return;
1104 
1105 	hldev = blockpool->hldev;
1106 
1107 	list_for_each_safe(p, n, &blockpool->free_block_list) {
1108 		dma_unmap_single(&hldev->pdev->dev,
1109 				 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1110 				 ((struct __vxge_hw_blockpool_entry *)p)->length,
1111 				 DMA_BIDIRECTIONAL);
1112 
1113 		vxge_os_dma_free(hldev->pdev,
1114 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
1115 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1116 
1117 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1118 		kfree(p);
1119 		blockpool->pool_size--;
1120 	}
1121 
1122 	list_for_each_safe(p, n, &blockpool->free_entry_list) {
1123 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1124 		kfree((void *)p);
1125 	}
1126 
1127 	return;
1128 }
1129 
1130 /*
1131  * __vxge_hw_blockpool_create - Create block pool
1132  */
1133 static enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device * hldev,struct __vxge_hw_blockpool * blockpool,u32 pool_size,u32 pool_max)1134 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1135 			   struct __vxge_hw_blockpool *blockpool,
1136 			   u32 pool_size,
1137 			   u32 pool_max)
1138 {
1139 	u32 i;
1140 	struct __vxge_hw_blockpool_entry *entry = NULL;
1141 	void *memblock;
1142 	dma_addr_t dma_addr;
1143 	struct pci_dev *dma_handle;
1144 	struct pci_dev *acc_handle;
1145 	enum vxge_hw_status status = VXGE_HW_OK;
1146 
1147 	if (blockpool == NULL) {
1148 		status = VXGE_HW_FAIL;
1149 		goto blockpool_create_exit;
1150 	}
1151 
1152 	blockpool->hldev = hldev;
1153 	blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1154 	blockpool->pool_size = 0;
1155 	blockpool->pool_max = pool_max;
1156 	blockpool->req_out = 0;
1157 
1158 	INIT_LIST_HEAD(&blockpool->free_block_list);
1159 	INIT_LIST_HEAD(&blockpool->free_entry_list);
1160 
1161 	for (i = 0; i < pool_size + pool_max; i++) {
1162 		entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1163 				GFP_KERNEL);
1164 		if (entry == NULL) {
1165 			__vxge_hw_blockpool_destroy(blockpool);
1166 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1167 			goto blockpool_create_exit;
1168 		}
1169 		list_add(&entry->item, &blockpool->free_entry_list);
1170 	}
1171 
1172 	for (i = 0; i < pool_size; i++) {
1173 		memblock = vxge_os_dma_malloc(
1174 				hldev->pdev,
1175 				VXGE_HW_BLOCK_SIZE,
1176 				&dma_handle,
1177 				&acc_handle);
1178 		if (memblock == NULL) {
1179 			__vxge_hw_blockpool_destroy(blockpool);
1180 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1181 			goto blockpool_create_exit;
1182 		}
1183 
1184 		dma_addr = dma_map_single(&hldev->pdev->dev, memblock,
1185 					  VXGE_HW_BLOCK_SIZE,
1186 					  DMA_BIDIRECTIONAL);
1187 		if (unlikely(dma_mapping_error(&hldev->pdev->dev, dma_addr))) {
1188 			vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1189 			__vxge_hw_blockpool_destroy(blockpool);
1190 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1191 			goto blockpool_create_exit;
1192 		}
1193 
1194 		if (!list_empty(&blockpool->free_entry_list))
1195 			entry = (struct __vxge_hw_blockpool_entry *)
1196 				list_first_entry(&blockpool->free_entry_list,
1197 					struct __vxge_hw_blockpool_entry,
1198 					item);
1199 
1200 		if (entry == NULL)
1201 			entry =
1202 			    kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1203 					GFP_KERNEL);
1204 		if (entry != NULL) {
1205 			list_del(&entry->item);
1206 			entry->length = VXGE_HW_BLOCK_SIZE;
1207 			entry->memblock = memblock;
1208 			entry->dma_addr = dma_addr;
1209 			entry->acc_handle = acc_handle;
1210 			entry->dma_handle = dma_handle;
1211 			list_add(&entry->item,
1212 					  &blockpool->free_block_list);
1213 			blockpool->pool_size++;
1214 		} else {
1215 			__vxge_hw_blockpool_destroy(blockpool);
1216 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1217 			goto blockpool_create_exit;
1218 		}
1219 	}
1220 
1221 blockpool_create_exit:
1222 	return status;
1223 }
1224 
1225 /*
1226  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1227  * Check the fifo configuration
1228  */
1229 static enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config * fifo_config)1230 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1231 {
1232 	if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1233 	    (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1234 		return VXGE_HW_BADCFG_FIFO_BLOCKS;
1235 
1236 	return VXGE_HW_OK;
1237 }
1238 
1239 /*
1240  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1241  * Check the vpath configuration
1242  */
1243 static enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config * vp_config)1244 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1245 {
1246 	enum vxge_hw_status status;
1247 
1248 	if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1249 	    (vp_config->min_bandwidth >	VXGE_HW_VPATH_BANDWIDTH_MAX))
1250 		return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1251 
1252 	status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1253 	if (status != VXGE_HW_OK)
1254 		return status;
1255 
1256 	if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1257 		((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1258 		(vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1259 		return VXGE_HW_BADCFG_VPATH_MTU;
1260 
1261 	if ((vp_config->rpa_strip_vlan_tag !=
1262 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1263 		(vp_config->rpa_strip_vlan_tag !=
1264 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1265 		(vp_config->rpa_strip_vlan_tag !=
1266 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1267 		return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1268 
1269 	return VXGE_HW_OK;
1270 }
1271 
1272 /*
1273  * __vxge_hw_device_config_check - Check device configuration.
1274  * Check the device configuration
1275  */
1276 static enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config * new_config)1277 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1278 {
1279 	u32 i;
1280 	enum vxge_hw_status status;
1281 
1282 	if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1283 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1284 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1285 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1286 		return VXGE_HW_BADCFG_INTR_MODE;
1287 
1288 	if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1289 	    (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1290 		return VXGE_HW_BADCFG_RTS_MAC_EN;
1291 
1292 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1293 		status = __vxge_hw_device_vpath_config_check(
1294 				&new_config->vp_config[i]);
1295 		if (status != VXGE_HW_OK)
1296 			return status;
1297 	}
1298 
1299 	return VXGE_HW_OK;
1300 }
1301 
1302 /*
1303  * vxge_hw_device_initialize - Initialize Titan device.
1304  * Initialize Titan device. Note that all the arguments of this public API
1305  * are 'IN', including @hldev. Driver cooperates with
1306  * OS to find new Titan device, locate its PCI and memory spaces.
1307  *
1308  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1309  * to enable the latter to perform Titan hardware initialization.
1310  */
1311 enum vxge_hw_status
vxge_hw_device_initialize(struct __vxge_hw_device ** devh,struct vxge_hw_device_attr * attr,struct vxge_hw_device_config * device_config)1312 vxge_hw_device_initialize(
1313 	struct __vxge_hw_device **devh,
1314 	struct vxge_hw_device_attr *attr,
1315 	struct vxge_hw_device_config *device_config)
1316 {
1317 	u32 i;
1318 	u32 nblocks = 0;
1319 	struct __vxge_hw_device *hldev = NULL;
1320 	enum vxge_hw_status status = VXGE_HW_OK;
1321 
1322 	status = __vxge_hw_device_config_check(device_config);
1323 	if (status != VXGE_HW_OK)
1324 		goto exit;
1325 
1326 	hldev = vzalloc(sizeof(struct __vxge_hw_device));
1327 	if (hldev == NULL) {
1328 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1329 		goto exit;
1330 	}
1331 
1332 	hldev->magic = VXGE_HW_DEVICE_MAGIC;
1333 
1334 	vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1335 
1336 	/* apply config */
1337 	memcpy(&hldev->config, device_config,
1338 		sizeof(struct vxge_hw_device_config));
1339 
1340 	hldev->bar0 = attr->bar0;
1341 	hldev->pdev = attr->pdev;
1342 
1343 	hldev->uld_callbacks = attr->uld_callbacks;
1344 
1345 	__vxge_hw_device_pci_e_init(hldev);
1346 
1347 	status = __vxge_hw_device_reg_addr_get(hldev);
1348 	if (status != VXGE_HW_OK) {
1349 		vfree(hldev);
1350 		goto exit;
1351 	}
1352 
1353 	__vxge_hw_device_host_info_get(hldev);
1354 
1355 	/* Incrementing for stats blocks */
1356 	nblocks++;
1357 
1358 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1359 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1360 			continue;
1361 
1362 		if (device_config->vp_config[i].ring.enable ==
1363 			VXGE_HW_RING_ENABLE)
1364 			nblocks += device_config->vp_config[i].ring.ring_blocks;
1365 
1366 		if (device_config->vp_config[i].fifo.enable ==
1367 			VXGE_HW_FIFO_ENABLE)
1368 			nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1369 		nblocks++;
1370 	}
1371 
1372 	if (__vxge_hw_blockpool_create(hldev,
1373 		&hldev->block_pool,
1374 		device_config->dma_blockpool_initial + nblocks,
1375 		device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1376 
1377 		vxge_hw_device_terminate(hldev);
1378 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1379 		goto exit;
1380 	}
1381 
1382 	status = __vxge_hw_device_initialize(hldev);
1383 	if (status != VXGE_HW_OK) {
1384 		vxge_hw_device_terminate(hldev);
1385 		goto exit;
1386 	}
1387 
1388 	*devh = hldev;
1389 exit:
1390 	return status;
1391 }
1392 
1393 /*
1394  * vxge_hw_device_terminate - Terminate Titan device.
1395  * Terminate HW device.
1396  */
1397 void
vxge_hw_device_terminate(struct __vxge_hw_device * hldev)1398 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1399 {
1400 	vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1401 
1402 	hldev->magic = VXGE_HW_DEVICE_DEAD;
1403 	__vxge_hw_blockpool_destroy(&hldev->block_pool);
1404 	vfree(hldev);
1405 }
1406 
1407 /*
1408  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1409  *                           and offset and perform an operation
1410  */
1411 static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath * vpath,u32 operation,u32 offset,u64 * stat)1412 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1413 			     u32 operation, u32 offset, u64 *stat)
1414 {
1415 	u64 val64;
1416 	enum vxge_hw_status status = VXGE_HW_OK;
1417 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1418 
1419 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1420 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1421 		goto vpath_stats_access_exit;
1422 	}
1423 
1424 	vp_reg = vpath->vp_reg;
1425 
1426 	val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1427 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1428 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1429 
1430 	status = __vxge_hw_pio_mem_write64(val64,
1431 				&vp_reg->xmac_stats_access_cmd,
1432 				VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1433 				vpath->hldev->config.device_poll_millis);
1434 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1435 		*stat = readq(&vp_reg->xmac_stats_access_data);
1436 	else
1437 		*stat = 0;
1438 
1439 vpath_stats_access_exit:
1440 	return status;
1441 }
1442 
1443 /*
1444  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1445  */
1446 static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_tx_stats * vpath_tx_stats)1447 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1448 			struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1449 {
1450 	u64 *val64;
1451 	int i;
1452 	u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1453 	enum vxge_hw_status status = VXGE_HW_OK;
1454 
1455 	val64 = (u64 *)vpath_tx_stats;
1456 
1457 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1458 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1459 		goto exit;
1460 	}
1461 
1462 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1463 		status = __vxge_hw_vpath_stats_access(vpath,
1464 					VXGE_HW_STATS_OP_READ,
1465 					offset, val64);
1466 		if (status != VXGE_HW_OK)
1467 			goto exit;
1468 		offset++;
1469 		val64++;
1470 	}
1471 exit:
1472 	return status;
1473 }
1474 
1475 /*
1476  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1477  */
1478 static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_rx_stats * vpath_rx_stats)1479 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1480 			struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1481 {
1482 	u64 *val64;
1483 	enum vxge_hw_status status = VXGE_HW_OK;
1484 	int i;
1485 	u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1486 	val64 = (u64 *) vpath_rx_stats;
1487 
1488 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1489 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1490 		goto exit;
1491 	}
1492 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1493 		status = __vxge_hw_vpath_stats_access(vpath,
1494 					VXGE_HW_STATS_OP_READ,
1495 					offset >> 3, val64);
1496 		if (status != VXGE_HW_OK)
1497 			goto exit;
1498 
1499 		offset += 8;
1500 		val64++;
1501 	}
1502 exit:
1503 	return status;
1504 }
1505 
1506 /*
1507  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1508  */
1509 static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_vpath_stats_hw_info * hw_stats)1510 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1511 			  struct vxge_hw_vpath_stats_hw_info *hw_stats)
1512 {
1513 	u64 val64;
1514 	enum vxge_hw_status status = VXGE_HW_OK;
1515 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1516 
1517 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1518 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1519 		goto exit;
1520 	}
1521 	vp_reg = vpath->vp_reg;
1522 
1523 	val64 = readq(&vp_reg->vpath_debug_stats0);
1524 	hw_stats->ini_num_mwr_sent =
1525 		(u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1526 
1527 	val64 = readq(&vp_reg->vpath_debug_stats1);
1528 	hw_stats->ini_num_mrd_sent =
1529 		(u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1530 
1531 	val64 = readq(&vp_reg->vpath_debug_stats2);
1532 	hw_stats->ini_num_cpl_rcvd =
1533 		(u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1534 
1535 	val64 = readq(&vp_reg->vpath_debug_stats3);
1536 	hw_stats->ini_num_mwr_byte_sent =
1537 		VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1538 
1539 	val64 = readq(&vp_reg->vpath_debug_stats4);
1540 	hw_stats->ini_num_cpl_byte_rcvd =
1541 		VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1542 
1543 	val64 = readq(&vp_reg->vpath_debug_stats5);
1544 	hw_stats->wrcrdtarb_xoff =
1545 		(u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1546 
1547 	val64 = readq(&vp_reg->vpath_debug_stats6);
1548 	hw_stats->rdcrdtarb_xoff =
1549 		(u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1550 
1551 	val64 = readq(&vp_reg->vpath_genstats_count01);
1552 	hw_stats->vpath_genstats_count0 =
1553 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1554 		val64);
1555 
1556 	val64 = readq(&vp_reg->vpath_genstats_count01);
1557 	hw_stats->vpath_genstats_count1 =
1558 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1559 		val64);
1560 
1561 	val64 = readq(&vp_reg->vpath_genstats_count23);
1562 	hw_stats->vpath_genstats_count2 =
1563 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1564 		val64);
1565 
1566 	val64 = readq(&vp_reg->vpath_genstats_count01);
1567 	hw_stats->vpath_genstats_count3 =
1568 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1569 		val64);
1570 
1571 	val64 = readq(&vp_reg->vpath_genstats_count4);
1572 	hw_stats->vpath_genstats_count4 =
1573 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1574 		val64);
1575 
1576 	val64 = readq(&vp_reg->vpath_genstats_count5);
1577 	hw_stats->vpath_genstats_count5 =
1578 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1579 		val64);
1580 
1581 	status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1582 	if (status != VXGE_HW_OK)
1583 		goto exit;
1584 
1585 	status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1586 	if (status != VXGE_HW_OK)
1587 		goto exit;
1588 
1589 	VXGE_HW_VPATH_STATS_PIO_READ(
1590 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1591 
1592 	hw_stats->prog_event_vnum0 =
1593 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1594 
1595 	hw_stats->prog_event_vnum1 =
1596 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1597 
1598 	VXGE_HW_VPATH_STATS_PIO_READ(
1599 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1600 
1601 	hw_stats->prog_event_vnum2 =
1602 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1603 
1604 	hw_stats->prog_event_vnum3 =
1605 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1606 
1607 	val64 = readq(&vp_reg->rx_multi_cast_stats);
1608 	hw_stats->rx_multi_cast_frame_discard =
1609 		(u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1610 
1611 	val64 = readq(&vp_reg->rx_frm_transferred);
1612 	hw_stats->rx_frm_transferred =
1613 		(u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1614 
1615 	val64 = readq(&vp_reg->rxd_returned);
1616 	hw_stats->rxd_returned =
1617 		(u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1618 
1619 	val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1620 	hw_stats->rx_mpa_len_fail_frms =
1621 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1622 	hw_stats->rx_mpa_mrk_fail_frms =
1623 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1624 	hw_stats->rx_mpa_crc_fail_frms =
1625 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1626 
1627 	val64 = readq(&vp_reg->dbg_stats_rx_fau);
1628 	hw_stats->rx_permitted_frms =
1629 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1630 	hw_stats->rx_vp_reset_discarded_frms =
1631 	(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1632 	hw_stats->rx_wol_frms =
1633 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1634 
1635 	val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1636 	hw_stats->tx_vp_reset_discarded_frms =
1637 	(u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1638 		val64);
1639 exit:
1640 	return status;
1641 }
1642 
1643 /*
1644  * vxge_hw_device_stats_get - Get the device hw statistics.
1645  * Returns the vpath h/w stats for the device.
1646  */
1647 enum vxge_hw_status
vxge_hw_device_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_hw_info * hw_stats)1648 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1649 			struct vxge_hw_device_stats_hw_info *hw_stats)
1650 {
1651 	u32 i;
1652 	enum vxge_hw_status status = VXGE_HW_OK;
1653 
1654 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1655 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1656 			(hldev->virtual_paths[i].vp_open ==
1657 				VXGE_HW_VP_NOT_OPEN))
1658 			continue;
1659 
1660 		memcpy(hldev->virtual_paths[i].hw_stats_sav,
1661 				hldev->virtual_paths[i].hw_stats,
1662 				sizeof(struct vxge_hw_vpath_stats_hw_info));
1663 
1664 		status = __vxge_hw_vpath_stats_get(
1665 			&hldev->virtual_paths[i],
1666 			hldev->virtual_paths[i].hw_stats);
1667 	}
1668 
1669 	memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1670 			sizeof(struct vxge_hw_device_stats_hw_info));
1671 
1672 	return status;
1673 }
1674 
1675 /*
1676  * vxge_hw_driver_stats_get - Get the device sw statistics.
1677  * Returns the vpath s/w stats for the device.
1678  */
vxge_hw_driver_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_sw_info * sw_stats)1679 enum vxge_hw_status vxge_hw_driver_stats_get(
1680 			struct __vxge_hw_device *hldev,
1681 			struct vxge_hw_device_stats_sw_info *sw_stats)
1682 {
1683 	memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1684 		sizeof(struct vxge_hw_device_stats_sw_info));
1685 
1686 	return VXGE_HW_OK;
1687 }
1688 
1689 /*
1690  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1691  *                           and offset and perform an operation
1692  * Get the statistics from the given location and offset.
1693  */
1694 enum vxge_hw_status
vxge_hw_mrpcim_stats_access(struct __vxge_hw_device * hldev,u32 operation,u32 location,u32 offset,u64 * stat)1695 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1696 			    u32 operation, u32 location, u32 offset, u64 *stat)
1697 {
1698 	u64 val64;
1699 	enum vxge_hw_status status = VXGE_HW_OK;
1700 
1701 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1702 			hldev->func_id);
1703 	if (status != VXGE_HW_OK)
1704 		goto exit;
1705 
1706 	val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1707 		VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1708 		VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1709 		VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1710 
1711 	status = __vxge_hw_pio_mem_write64(val64,
1712 				&hldev->mrpcim_reg->xmac_stats_sys_cmd,
1713 				VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1714 				hldev->config.device_poll_millis);
1715 
1716 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1717 		*stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1718 	else
1719 		*stat = 0;
1720 exit:
1721 	return status;
1722 }
1723 
1724 /*
1725  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1726  * Get the Statistics on aggregate port
1727  */
1728 static enum vxge_hw_status
vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_aggr_stats * aggr_stats)1729 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1730 				   struct vxge_hw_xmac_aggr_stats *aggr_stats)
1731 {
1732 	u64 *val64;
1733 	int i;
1734 	u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1735 	enum vxge_hw_status status = VXGE_HW_OK;
1736 
1737 	val64 = (u64 *)aggr_stats;
1738 
1739 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1740 			hldev->func_id);
1741 	if (status != VXGE_HW_OK)
1742 		goto exit;
1743 
1744 	for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1745 		status = vxge_hw_mrpcim_stats_access(hldev,
1746 					VXGE_HW_STATS_OP_READ,
1747 					VXGE_HW_STATS_LOC_AGGR,
1748 					((offset + (104 * port)) >> 3), val64);
1749 		if (status != VXGE_HW_OK)
1750 			goto exit;
1751 
1752 		offset += 8;
1753 		val64++;
1754 	}
1755 exit:
1756 	return status;
1757 }
1758 
1759 /*
1760  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1761  * Get the Statistics on port
1762  */
1763 static enum vxge_hw_status
vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_port_stats * port_stats)1764 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1765 				   struct vxge_hw_xmac_port_stats *port_stats)
1766 {
1767 	u64 *val64;
1768 	enum vxge_hw_status status = VXGE_HW_OK;
1769 	int i;
1770 	u32 offset = 0x0;
1771 	val64 = (u64 *) port_stats;
1772 
1773 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1774 			hldev->func_id);
1775 	if (status != VXGE_HW_OK)
1776 		goto exit;
1777 
1778 	for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1779 		status = vxge_hw_mrpcim_stats_access(hldev,
1780 					VXGE_HW_STATS_OP_READ,
1781 					VXGE_HW_STATS_LOC_AGGR,
1782 					((offset + (608 * port)) >> 3), val64);
1783 		if (status != VXGE_HW_OK)
1784 			goto exit;
1785 
1786 		offset += 8;
1787 		val64++;
1788 	}
1789 
1790 exit:
1791 	return status;
1792 }
1793 
1794 /*
1795  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1796  * Get the XMAC Statistics
1797  */
1798 enum vxge_hw_status
vxge_hw_device_xmac_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_xmac_stats * xmac_stats)1799 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1800 			      struct vxge_hw_xmac_stats *xmac_stats)
1801 {
1802 	enum vxge_hw_status status = VXGE_HW_OK;
1803 	u32 i;
1804 
1805 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1806 					0, &xmac_stats->aggr_stats[0]);
1807 	if (status != VXGE_HW_OK)
1808 		goto exit;
1809 
1810 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1811 				1, &xmac_stats->aggr_stats[1]);
1812 	if (status != VXGE_HW_OK)
1813 		goto exit;
1814 
1815 	for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1816 
1817 		status = vxge_hw_device_xmac_port_stats_get(hldev,
1818 					i, &xmac_stats->port_stats[i]);
1819 		if (status != VXGE_HW_OK)
1820 			goto exit;
1821 	}
1822 
1823 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1824 
1825 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1826 			continue;
1827 
1828 		status = __vxge_hw_vpath_xmac_tx_stats_get(
1829 					&hldev->virtual_paths[i],
1830 					&xmac_stats->vpath_tx_stats[i]);
1831 		if (status != VXGE_HW_OK)
1832 			goto exit;
1833 
1834 		status = __vxge_hw_vpath_xmac_rx_stats_get(
1835 					&hldev->virtual_paths[i],
1836 					&xmac_stats->vpath_rx_stats[i]);
1837 		if (status != VXGE_HW_OK)
1838 			goto exit;
1839 	}
1840 exit:
1841 	return status;
1842 }
1843 
1844 /*
1845  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1846  * This routine is used to dynamically change the debug output
1847  */
vxge_hw_device_debug_set(struct __vxge_hw_device * hldev,enum vxge_debug_level level,u32 mask)1848 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1849 			      enum vxge_debug_level level, u32 mask)
1850 {
1851 	if (hldev == NULL)
1852 		return;
1853 
1854 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1855 	defined(VXGE_DEBUG_ERR_MASK)
1856 	hldev->debug_module_mask = mask;
1857 	hldev->debug_level = level;
1858 #endif
1859 
1860 #if defined(VXGE_DEBUG_ERR_MASK)
1861 	hldev->level_err = level & VXGE_ERR;
1862 #endif
1863 
1864 #if defined(VXGE_DEBUG_TRACE_MASK)
1865 	hldev->level_trace = level & VXGE_TRACE;
1866 #endif
1867 }
1868 
1869 /*
1870  * vxge_hw_device_error_level_get - Get the error level
1871  * This routine returns the current error level set
1872  */
vxge_hw_device_error_level_get(struct __vxge_hw_device * hldev)1873 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1874 {
1875 #if defined(VXGE_DEBUG_ERR_MASK)
1876 	if (hldev == NULL)
1877 		return VXGE_ERR;
1878 	else
1879 		return hldev->level_err;
1880 #else
1881 	return 0;
1882 #endif
1883 }
1884 
1885 /*
1886  * vxge_hw_device_trace_level_get - Get the trace level
1887  * This routine returns the current trace level set
1888  */
vxge_hw_device_trace_level_get(struct __vxge_hw_device * hldev)1889 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1890 {
1891 #if defined(VXGE_DEBUG_TRACE_MASK)
1892 	if (hldev == NULL)
1893 		return VXGE_TRACE;
1894 	else
1895 		return hldev->level_trace;
1896 #else
1897 	return 0;
1898 #endif
1899 }
1900 
1901 /*
1902  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1903  * Returns the Pause frame generation and reception capability of the NIC.
1904  */
vxge_hw_device_getpause_data(struct __vxge_hw_device * hldev,u32 port,u32 * tx,u32 * rx)1905 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1906 						 u32 port, u32 *tx, u32 *rx)
1907 {
1908 	u64 val64;
1909 	enum vxge_hw_status status = VXGE_HW_OK;
1910 
1911 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1912 		status = VXGE_HW_ERR_INVALID_DEVICE;
1913 		goto exit;
1914 	}
1915 
1916 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1917 		status = VXGE_HW_ERR_INVALID_PORT;
1918 		goto exit;
1919 	}
1920 
1921 	if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1922 		status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1923 		goto exit;
1924 	}
1925 
1926 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1927 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1928 		*tx = 1;
1929 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1930 		*rx = 1;
1931 exit:
1932 	return status;
1933 }
1934 
1935 /*
1936  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1937  * It can be used to set or reset Pause frame generation or reception
1938  * support of the NIC.
1939  */
vxge_hw_device_setpause_data(struct __vxge_hw_device * hldev,u32 port,u32 tx,u32 rx)1940 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1941 						 u32 port, u32 tx, u32 rx)
1942 {
1943 	u64 val64;
1944 	enum vxge_hw_status status = VXGE_HW_OK;
1945 
1946 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1947 		status = VXGE_HW_ERR_INVALID_DEVICE;
1948 		goto exit;
1949 	}
1950 
1951 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1952 		status = VXGE_HW_ERR_INVALID_PORT;
1953 		goto exit;
1954 	}
1955 
1956 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1957 			hldev->func_id);
1958 	if (status != VXGE_HW_OK)
1959 		goto exit;
1960 
1961 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1962 	if (tx)
1963 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1964 	else
1965 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1966 	if (rx)
1967 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1968 	else
1969 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1970 
1971 	writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1972 exit:
1973 	return status;
1974 }
1975 
vxge_hw_device_link_width_get(struct __vxge_hw_device * hldev)1976 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1977 {
1978 	struct pci_dev *dev = hldev->pdev;
1979 	u16 lnk;
1980 
1981 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1982 	return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1983 }
1984 
1985 /*
1986  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1987  * This function returns the index of memory block
1988  */
1989 static inline u32
__vxge_hw_ring_block_memblock_idx(u8 * block)1990 __vxge_hw_ring_block_memblock_idx(u8 *block)
1991 {
1992 	return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1993 }
1994 
1995 /*
1996  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1997  * This function sets index to a memory block
1998  */
1999 static inline void
__vxge_hw_ring_block_memblock_idx_set(u8 * block,u32 memblock_idx)2000 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2001 {
2002 	*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2003 }
2004 
2005 /*
2006  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2007  * in RxD block
2008  * Sets the next block pointer in RxD block
2009  */
2010 static inline void
__vxge_hw_ring_block_next_pointer_set(u8 * block,dma_addr_t dma_next)2011 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2012 {
2013 	*((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2014 }
2015 
2016 /*
2017  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2018  *             first block
2019  * Returns the dma address of the first RxD block
2020  */
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring * ring)2021 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2022 {
2023 	struct vxge_hw_mempool_dma *dma_object;
2024 
2025 	dma_object = ring->mempool->memblocks_dma_arr;
2026 	vxge_assert(dma_object != NULL);
2027 
2028 	return dma_object->addr;
2029 }
2030 
2031 /*
2032  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2033  * This function returns the dma address of a given item
2034  */
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool * mempoolh,void * item)2035 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2036 					       void *item)
2037 {
2038 	u32 memblock_idx;
2039 	void *memblock;
2040 	struct vxge_hw_mempool_dma *memblock_dma_object;
2041 	ptrdiff_t dma_item_offset;
2042 
2043 	/* get owner memblock index */
2044 	memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2045 
2046 	/* get owner memblock by memblock index */
2047 	memblock = mempoolh->memblocks_arr[memblock_idx];
2048 
2049 	/* get memblock DMA object by memblock index */
2050 	memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2051 
2052 	/* calculate offset in the memblock of this item */
2053 	dma_item_offset = (u8 *)item - (u8 *)memblock;
2054 
2055 	return memblock_dma_object->addr + dma_item_offset;
2056 }
2057 
2058 /*
2059  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2060  * This function returns the dma address of a given item
2061  */
__vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool * mempoolh,struct __vxge_hw_ring * ring,u32 from,u32 to)2062 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2063 					 struct __vxge_hw_ring *ring, u32 from,
2064 					 u32 to)
2065 {
2066 	u8 *to_item , *from_item;
2067 	dma_addr_t to_dma;
2068 
2069 	/* get "from" RxD block */
2070 	from_item = mempoolh->items_arr[from];
2071 	vxge_assert(from_item);
2072 
2073 	/* get "to" RxD block */
2074 	to_item = mempoolh->items_arr[to];
2075 	vxge_assert(to_item);
2076 
2077 	/* return address of the beginning of previous RxD block */
2078 	to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2079 
2080 	/* set next pointer for this RxD block to point on
2081 	 * previous item's DMA start address */
2082 	__vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2083 }
2084 
2085 /*
2086  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2087  * block callback
2088  * This function is callback passed to __vxge_hw_mempool_create to create memory
2089  * pool for RxD block
2090  */
2091 static void
__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)2092 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2093 				  u32 memblock_index,
2094 				  struct vxge_hw_mempool_dma *dma_object,
2095 				  u32 index, u32 is_last)
2096 {
2097 	u32 i;
2098 	void *item = mempoolh->items_arr[index];
2099 	struct __vxge_hw_ring *ring =
2100 		(struct __vxge_hw_ring *)mempoolh->userdata;
2101 
2102 	/* format rxds array */
2103 	for (i = 0; i < ring->rxds_per_block; i++) {
2104 		void *rxdblock_priv;
2105 		void *uld_priv;
2106 		struct vxge_hw_ring_rxd_1 *rxdp;
2107 
2108 		u32 reserve_index = ring->channel.reserve_ptr -
2109 				(index * ring->rxds_per_block + i + 1);
2110 		u32 memblock_item_idx;
2111 
2112 		ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2113 						i * ring->rxd_size;
2114 
2115 		/* Note: memblock_item_idx is index of the item within
2116 		 *       the memblock. For instance, in case of three RxD-blocks
2117 		 *       per memblock this value can be 0, 1 or 2. */
2118 		rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2119 					memblock_index, item,
2120 					&memblock_item_idx);
2121 
2122 		rxdp = ring->channel.reserve_arr[reserve_index];
2123 
2124 		uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2125 
2126 		/* pre-format Host_Control */
2127 		rxdp->host_control = (u64)(size_t)uld_priv;
2128 	}
2129 
2130 	__vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2131 
2132 	if (is_last) {
2133 		/* link last one with first one */
2134 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2135 	}
2136 
2137 	if (index > 0) {
2138 		/* link this RxD block with previous one */
2139 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2140 	}
2141 }
2142 
2143 /*
2144  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2145  * This function replenishes the RxDs from reserve array to work array
2146  */
2147 static enum vxge_hw_status
vxge_hw_ring_replenish(struct __vxge_hw_ring * ring)2148 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2149 {
2150 	void *rxd;
2151 	struct __vxge_hw_channel *channel;
2152 	enum vxge_hw_status status = VXGE_HW_OK;
2153 
2154 	channel = &ring->channel;
2155 
2156 	while (vxge_hw_channel_dtr_count(channel) > 0) {
2157 
2158 		status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2159 
2160 		vxge_assert(status == VXGE_HW_OK);
2161 
2162 		if (ring->rxd_init) {
2163 			status = ring->rxd_init(rxd, channel->userdata);
2164 			if (status != VXGE_HW_OK) {
2165 				vxge_hw_ring_rxd_free(ring, rxd);
2166 				goto exit;
2167 			}
2168 		}
2169 
2170 		vxge_hw_ring_rxd_post(ring, rxd);
2171 	}
2172 	status = VXGE_HW_OK;
2173 exit:
2174 	return status;
2175 }
2176 
2177 /*
2178  * __vxge_hw_channel_allocate - Allocate memory for channel
2179  * This function allocates required memory for the channel and various arrays
2180  * in the channel
2181  */
2182 static struct __vxge_hw_channel *
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle * vph,enum __vxge_hw_channel_type type,u32 length,u32 per_dtr_space,void * userdata)2183 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2184 			   enum __vxge_hw_channel_type type,
2185 			   u32 length, u32 per_dtr_space,
2186 			   void *userdata)
2187 {
2188 	struct __vxge_hw_channel *channel;
2189 	struct __vxge_hw_device *hldev;
2190 	int size = 0;
2191 	u32 vp_id;
2192 
2193 	hldev = vph->vpath->hldev;
2194 	vp_id = vph->vpath->vp_id;
2195 
2196 	switch (type) {
2197 	case VXGE_HW_CHANNEL_TYPE_FIFO:
2198 		size = sizeof(struct __vxge_hw_fifo);
2199 		break;
2200 	case VXGE_HW_CHANNEL_TYPE_RING:
2201 		size = sizeof(struct __vxge_hw_ring);
2202 		break;
2203 	default:
2204 		break;
2205 	}
2206 
2207 	channel = kzalloc(size, GFP_KERNEL);
2208 	if (channel == NULL)
2209 		goto exit0;
2210 	INIT_LIST_HEAD(&channel->item);
2211 
2212 	channel->common_reg = hldev->common_reg;
2213 	channel->first_vp_id = hldev->first_vp_id;
2214 	channel->type = type;
2215 	channel->devh = hldev;
2216 	channel->vph = vph;
2217 	channel->userdata = userdata;
2218 	channel->per_dtr_space = per_dtr_space;
2219 	channel->length = length;
2220 	channel->vp_id = vp_id;
2221 
2222 	channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2223 	if (channel->work_arr == NULL)
2224 		goto exit1;
2225 
2226 	channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2227 	if (channel->free_arr == NULL)
2228 		goto exit1;
2229 	channel->free_ptr = length;
2230 
2231 	channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2232 	if (channel->reserve_arr == NULL)
2233 		goto exit1;
2234 	channel->reserve_ptr = length;
2235 	channel->reserve_top = 0;
2236 
2237 	channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2238 	if (channel->orig_arr == NULL)
2239 		goto exit1;
2240 
2241 	return channel;
2242 exit1:
2243 	__vxge_hw_channel_free(channel);
2244 
2245 exit0:
2246 	return NULL;
2247 }
2248 
2249 /*
2250  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2251  * Adds a block to block pool
2252  */
vxge_hw_blockpool_block_add(struct __vxge_hw_device * devh,void * block_addr,u32 length,struct pci_dev * dma_h,struct pci_dev * acc_handle)2253 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2254 					void *block_addr,
2255 					u32 length,
2256 					struct pci_dev *dma_h,
2257 					struct pci_dev *acc_handle)
2258 {
2259 	struct __vxge_hw_blockpool *blockpool;
2260 	struct __vxge_hw_blockpool_entry *entry = NULL;
2261 	dma_addr_t dma_addr;
2262 
2263 	blockpool = &devh->block_pool;
2264 
2265 	if (block_addr == NULL) {
2266 		blockpool->req_out--;
2267 		goto exit;
2268 	}
2269 
2270 	dma_addr = dma_map_single(&devh->pdev->dev, block_addr, length,
2271 				  DMA_BIDIRECTIONAL);
2272 
2273 	if (unlikely(dma_mapping_error(&devh->pdev->dev, dma_addr))) {
2274 		vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2275 		blockpool->req_out--;
2276 		goto exit;
2277 	}
2278 
2279 	if (!list_empty(&blockpool->free_entry_list))
2280 		entry = (struct __vxge_hw_blockpool_entry *)
2281 			list_first_entry(&blockpool->free_entry_list,
2282 				struct __vxge_hw_blockpool_entry,
2283 				item);
2284 
2285 	if (entry == NULL)
2286 		entry =	vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2287 	else
2288 		list_del(&entry->item);
2289 
2290 	if (entry) {
2291 		entry->length = length;
2292 		entry->memblock = block_addr;
2293 		entry->dma_addr = dma_addr;
2294 		entry->acc_handle = acc_handle;
2295 		entry->dma_handle = dma_h;
2296 		list_add(&entry->item, &blockpool->free_block_list);
2297 		blockpool->pool_size++;
2298 	}
2299 
2300 	blockpool->req_out--;
2301 
2302 exit:
2303 	return;
2304 }
2305 
2306 static inline void
vxge_os_dma_malloc_async(struct pci_dev * pdev,void * devh,unsigned long size)2307 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2308 {
2309 	void *vaddr;
2310 
2311 	vaddr = kmalloc(size, GFP_KERNEL | GFP_DMA);
2312 	vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2313 }
2314 
2315 /*
2316  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2317  */
2318 static
__vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool * blockpool)2319 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2320 {
2321 	u32 nreq = 0, i;
2322 
2323 	if ((blockpool->pool_size  +  blockpool->req_out) <
2324 		VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2325 		nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2326 		blockpool->req_out += nreq;
2327 	}
2328 
2329 	for (i = 0; i < nreq; i++)
2330 		vxge_os_dma_malloc_async(
2331 			(blockpool->hldev)->pdev,
2332 			blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2333 }
2334 
2335 /*
2336  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2337  * Allocates a block of memory of given size, either from block pool
2338  * or by calling vxge_os_dma_malloc()
2339  */
__vxge_hw_blockpool_malloc(struct __vxge_hw_device * devh,u32 size,struct vxge_hw_mempool_dma * dma_object)2340 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2341 					struct vxge_hw_mempool_dma *dma_object)
2342 {
2343 	struct __vxge_hw_blockpool_entry *entry = NULL;
2344 	struct __vxge_hw_blockpool  *blockpool;
2345 	void *memblock = NULL;
2346 
2347 	blockpool = &devh->block_pool;
2348 
2349 	if (size != blockpool->block_size) {
2350 
2351 		memblock = vxge_os_dma_malloc(devh->pdev, size,
2352 						&dma_object->handle,
2353 						&dma_object->acc_handle);
2354 
2355 		if (!memblock)
2356 			goto exit;
2357 
2358 		dma_object->addr = dma_map_single(&devh->pdev->dev, memblock,
2359 						  size, DMA_BIDIRECTIONAL);
2360 
2361 		if (unlikely(dma_mapping_error(&devh->pdev->dev, dma_object->addr))) {
2362 			vxge_os_dma_free(devh->pdev, memblock,
2363 				&dma_object->acc_handle);
2364 			memblock = NULL;
2365 			goto exit;
2366 		}
2367 
2368 	} else {
2369 
2370 		if (!list_empty(&blockpool->free_block_list))
2371 			entry = (struct __vxge_hw_blockpool_entry *)
2372 				list_first_entry(&blockpool->free_block_list,
2373 					struct __vxge_hw_blockpool_entry,
2374 					item);
2375 
2376 		if (entry != NULL) {
2377 			list_del(&entry->item);
2378 			dma_object->addr = entry->dma_addr;
2379 			dma_object->handle = entry->dma_handle;
2380 			dma_object->acc_handle = entry->acc_handle;
2381 			memblock = entry->memblock;
2382 
2383 			list_add(&entry->item,
2384 				&blockpool->free_entry_list);
2385 			blockpool->pool_size--;
2386 		}
2387 
2388 		if (memblock != NULL)
2389 			__vxge_hw_blockpool_blocks_add(blockpool);
2390 	}
2391 exit:
2392 	return memblock;
2393 }
2394 
2395 /*
2396  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2397  */
2398 static void
__vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool * blockpool)2399 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2400 {
2401 	struct list_head *p, *n;
2402 
2403 	list_for_each_safe(p, n, &blockpool->free_block_list) {
2404 
2405 		if (blockpool->pool_size < blockpool->pool_max)
2406 			break;
2407 
2408 		dma_unmap_single(&(blockpool->hldev)->pdev->dev,
2409 				 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2410 				 ((struct __vxge_hw_blockpool_entry *)p)->length,
2411 				 DMA_BIDIRECTIONAL);
2412 
2413 		vxge_os_dma_free(
2414 			(blockpool->hldev)->pdev,
2415 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
2416 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2417 
2418 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2419 
2420 		list_add(p, &blockpool->free_entry_list);
2421 
2422 		blockpool->pool_size--;
2423 
2424 	}
2425 }
2426 
2427 /*
2428  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2429  *				__vxge_hw_blockpool_malloc
2430  */
__vxge_hw_blockpool_free(struct __vxge_hw_device * devh,void * memblock,u32 size,struct vxge_hw_mempool_dma * dma_object)2431 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2432 				     void *memblock, u32 size,
2433 				     struct vxge_hw_mempool_dma *dma_object)
2434 {
2435 	struct __vxge_hw_blockpool_entry *entry = NULL;
2436 	struct __vxge_hw_blockpool  *blockpool;
2437 	enum vxge_hw_status status = VXGE_HW_OK;
2438 
2439 	blockpool = &devh->block_pool;
2440 
2441 	if (size != blockpool->block_size) {
2442 		dma_unmap_single(&devh->pdev->dev, dma_object->addr, size,
2443 				 DMA_BIDIRECTIONAL);
2444 		vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2445 	} else {
2446 
2447 		if (!list_empty(&blockpool->free_entry_list))
2448 			entry = (struct __vxge_hw_blockpool_entry *)
2449 				list_first_entry(&blockpool->free_entry_list,
2450 					struct __vxge_hw_blockpool_entry,
2451 					item);
2452 
2453 		if (entry == NULL)
2454 			entry =	vmalloc(sizeof(
2455 					struct __vxge_hw_blockpool_entry));
2456 		else
2457 			list_del(&entry->item);
2458 
2459 		if (entry != NULL) {
2460 			entry->length = size;
2461 			entry->memblock = memblock;
2462 			entry->dma_addr = dma_object->addr;
2463 			entry->acc_handle = dma_object->acc_handle;
2464 			entry->dma_handle = dma_object->handle;
2465 			list_add(&entry->item,
2466 					&blockpool->free_block_list);
2467 			blockpool->pool_size++;
2468 			status = VXGE_HW_OK;
2469 		} else
2470 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2471 
2472 		if (status == VXGE_HW_OK)
2473 			__vxge_hw_blockpool_blocks_remove(blockpool);
2474 	}
2475 }
2476 
2477 /*
2478  * vxge_hw_mempool_destroy
2479  */
__vxge_hw_mempool_destroy(struct vxge_hw_mempool * mempool)2480 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2481 {
2482 	u32 i, j;
2483 	struct __vxge_hw_device *devh = mempool->devh;
2484 
2485 	for (i = 0; i < mempool->memblocks_allocated; i++) {
2486 		struct vxge_hw_mempool_dma *dma_object;
2487 
2488 		vxge_assert(mempool->memblocks_arr[i]);
2489 		vxge_assert(mempool->memblocks_dma_arr + i);
2490 
2491 		dma_object = mempool->memblocks_dma_arr + i;
2492 
2493 		for (j = 0; j < mempool->items_per_memblock; j++) {
2494 			u32 index = i * mempool->items_per_memblock + j;
2495 
2496 			/* to skip last partially filled(if any) memblock */
2497 			if (index >= mempool->items_current)
2498 				break;
2499 		}
2500 
2501 		vfree(mempool->memblocks_priv_arr[i]);
2502 
2503 		__vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2504 				mempool->memblock_size, dma_object);
2505 	}
2506 
2507 	vfree(mempool->items_arr);
2508 	vfree(mempool->memblocks_dma_arr);
2509 	vfree(mempool->memblocks_priv_arr);
2510 	vfree(mempool->memblocks_arr);
2511 	vfree(mempool);
2512 }
2513 
2514 /*
2515  * __vxge_hw_mempool_grow
2516  * Will resize mempool up to %num_allocate value.
2517  */
2518 static enum vxge_hw_status
__vxge_hw_mempool_grow(struct vxge_hw_mempool * mempool,u32 num_allocate,u32 * num_allocated)2519 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2520 		       u32 *num_allocated)
2521 {
2522 	u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2523 	u32 n_items = mempool->items_per_memblock;
2524 	u32 start_block_idx = mempool->memblocks_allocated;
2525 	u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2526 	enum vxge_hw_status status = VXGE_HW_OK;
2527 
2528 	*num_allocated = 0;
2529 
2530 	if (end_block_idx > mempool->memblocks_max) {
2531 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2532 		goto exit;
2533 	}
2534 
2535 	for (i = start_block_idx; i < end_block_idx; i++) {
2536 		u32 j;
2537 		u32 is_last = ((end_block_idx - 1) == i);
2538 		struct vxge_hw_mempool_dma *dma_object =
2539 			mempool->memblocks_dma_arr + i;
2540 		void *the_memblock;
2541 
2542 		/* allocate memblock's private part. Each DMA memblock
2543 		 * has a space allocated for item's private usage upon
2544 		 * mempool's user request. Each time mempool grows, it will
2545 		 * allocate new memblock and its private part at once.
2546 		 * This helps to minimize memory usage a lot. */
2547 		mempool->memblocks_priv_arr[i] =
2548 			vzalloc(array_size(mempool->items_priv_size, n_items));
2549 		if (mempool->memblocks_priv_arr[i] == NULL) {
2550 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2551 			goto exit;
2552 		}
2553 
2554 		/* allocate DMA-capable memblock */
2555 		mempool->memblocks_arr[i] =
2556 			__vxge_hw_blockpool_malloc(mempool->devh,
2557 				mempool->memblock_size, dma_object);
2558 		if (mempool->memblocks_arr[i] == NULL) {
2559 			vfree(mempool->memblocks_priv_arr[i]);
2560 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2561 			goto exit;
2562 		}
2563 
2564 		(*num_allocated)++;
2565 		mempool->memblocks_allocated++;
2566 
2567 		memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2568 
2569 		the_memblock = mempool->memblocks_arr[i];
2570 
2571 		/* fill the items hash array */
2572 		for (j = 0; j < n_items; j++) {
2573 			u32 index = i * n_items + j;
2574 
2575 			if (first_time && index >= mempool->items_initial)
2576 				break;
2577 
2578 			mempool->items_arr[index] =
2579 				((char *)the_memblock + j*mempool->item_size);
2580 
2581 			/* let caller to do more job on each item */
2582 			if (mempool->item_func_alloc != NULL)
2583 				mempool->item_func_alloc(mempool, i,
2584 					dma_object, index, is_last);
2585 
2586 			mempool->items_current = index + 1;
2587 		}
2588 
2589 		if (first_time && mempool->items_current ==
2590 					mempool->items_initial)
2591 			break;
2592 	}
2593 exit:
2594 	return status;
2595 }
2596 
2597 /*
2598  * vxge_hw_mempool_create
2599  * This function will create memory pool object. Pool may grow but will
2600  * never shrink. Pool consists of number of dynamically allocated blocks
2601  * with size enough to hold %items_initial number of items. Memory is
2602  * DMA-able but client must map/unmap before interoperating with the device.
2603  */
2604 static struct vxge_hw_mempool *
__vxge_hw_mempool_create(struct __vxge_hw_device * devh,u32 memblock_size,u32 item_size,u32 items_priv_size,u32 items_initial,u32 items_max,const struct vxge_hw_mempool_cbs * mp_callback,void * userdata)2605 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2606 			 u32 memblock_size,
2607 			 u32 item_size,
2608 			 u32 items_priv_size,
2609 			 u32 items_initial,
2610 			 u32 items_max,
2611 			 const struct vxge_hw_mempool_cbs *mp_callback,
2612 			 void *userdata)
2613 {
2614 	enum vxge_hw_status status = VXGE_HW_OK;
2615 	u32 memblocks_to_allocate;
2616 	struct vxge_hw_mempool *mempool = NULL;
2617 	u32 allocated;
2618 
2619 	if (memblock_size < item_size) {
2620 		status = VXGE_HW_FAIL;
2621 		goto exit;
2622 	}
2623 
2624 	mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2625 	if (mempool == NULL) {
2626 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2627 		goto exit;
2628 	}
2629 
2630 	mempool->devh			= devh;
2631 	mempool->memblock_size		= memblock_size;
2632 	mempool->items_max		= items_max;
2633 	mempool->items_initial		= items_initial;
2634 	mempool->item_size		= item_size;
2635 	mempool->items_priv_size	= items_priv_size;
2636 	mempool->item_func_alloc	= mp_callback->item_func_alloc;
2637 	mempool->userdata		= userdata;
2638 
2639 	mempool->memblocks_allocated = 0;
2640 
2641 	mempool->items_per_memblock = memblock_size / item_size;
2642 
2643 	mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2644 					mempool->items_per_memblock;
2645 
2646 	/* allocate array of memblocks */
2647 	mempool->memblocks_arr =
2648 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2649 	if (mempool->memblocks_arr == NULL) {
2650 		__vxge_hw_mempool_destroy(mempool);
2651 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2652 		mempool = NULL;
2653 		goto exit;
2654 	}
2655 
2656 	/* allocate array of private parts of items per memblocks */
2657 	mempool->memblocks_priv_arr =
2658 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2659 	if (mempool->memblocks_priv_arr == NULL) {
2660 		__vxge_hw_mempool_destroy(mempool);
2661 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2662 		mempool = NULL;
2663 		goto exit;
2664 	}
2665 
2666 	/* allocate array of memblocks DMA objects */
2667 	mempool->memblocks_dma_arr =
2668 		vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2669 				   mempool->memblocks_max));
2670 	if (mempool->memblocks_dma_arr == NULL) {
2671 		__vxge_hw_mempool_destroy(mempool);
2672 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2673 		mempool = NULL;
2674 		goto exit;
2675 	}
2676 
2677 	/* allocate hash array of items */
2678 	mempool->items_arr = vzalloc(array_size(sizeof(void *),
2679 						mempool->items_max));
2680 	if (mempool->items_arr == NULL) {
2681 		__vxge_hw_mempool_destroy(mempool);
2682 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2683 		mempool = NULL;
2684 		goto exit;
2685 	}
2686 
2687 	/* calculate initial number of memblocks */
2688 	memblocks_to_allocate = (mempool->items_initial +
2689 				 mempool->items_per_memblock - 1) /
2690 						mempool->items_per_memblock;
2691 
2692 	/* pre-allocate the mempool */
2693 	status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2694 					&allocated);
2695 	if (status != VXGE_HW_OK) {
2696 		__vxge_hw_mempool_destroy(mempool);
2697 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2698 		mempool = NULL;
2699 		goto exit;
2700 	}
2701 
2702 exit:
2703 	return mempool;
2704 }
2705 
2706 /*
2707  * __vxge_hw_ring_abort - Returns the RxD
2708  * This function terminates the RxDs of ring
2709  */
__vxge_hw_ring_abort(struct __vxge_hw_ring * ring)2710 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2711 {
2712 	void *rxdh;
2713 	struct __vxge_hw_channel *channel;
2714 
2715 	channel = &ring->channel;
2716 
2717 	for (;;) {
2718 		vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2719 
2720 		if (rxdh == NULL)
2721 			break;
2722 
2723 		vxge_hw_channel_dtr_complete(channel);
2724 
2725 		if (ring->rxd_term)
2726 			ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2727 				channel->userdata);
2728 
2729 		vxge_hw_channel_dtr_free(channel, rxdh);
2730 	}
2731 
2732 	return VXGE_HW_OK;
2733 }
2734 
2735 /*
2736  * __vxge_hw_ring_reset - Resets the ring
2737  * This function resets the ring during vpath reset operation
2738  */
__vxge_hw_ring_reset(struct __vxge_hw_ring * ring)2739 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2740 {
2741 	enum vxge_hw_status status = VXGE_HW_OK;
2742 	struct __vxge_hw_channel *channel;
2743 
2744 	channel = &ring->channel;
2745 
2746 	__vxge_hw_ring_abort(ring);
2747 
2748 	status = __vxge_hw_channel_reset(channel);
2749 
2750 	if (status != VXGE_HW_OK)
2751 		goto exit;
2752 
2753 	if (ring->rxd_init) {
2754 		status = vxge_hw_ring_replenish(ring);
2755 		if (status != VXGE_HW_OK)
2756 			goto exit;
2757 	}
2758 exit:
2759 	return status;
2760 }
2761 
2762 /*
2763  * __vxge_hw_ring_delete - Removes the ring
2764  * This function freeup the memory pool and removes the ring
2765  */
2766 static enum vxge_hw_status
__vxge_hw_ring_delete(struct __vxge_hw_vpath_handle * vp)2767 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2768 {
2769 	struct __vxge_hw_ring *ring = vp->vpath->ringh;
2770 
2771 	__vxge_hw_ring_abort(ring);
2772 
2773 	if (ring->mempool)
2774 		__vxge_hw_mempool_destroy(ring->mempool);
2775 
2776 	vp->vpath->ringh = NULL;
2777 	__vxge_hw_channel_free(&ring->channel);
2778 
2779 	return VXGE_HW_OK;
2780 }
2781 
2782 /*
2783  * __vxge_hw_ring_create - Create a Ring
2784  * This function creates Ring and initializes it.
2785  */
2786 static enum vxge_hw_status
__vxge_hw_ring_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_ring_attr * attr)2787 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2788 		      struct vxge_hw_ring_attr *attr)
2789 {
2790 	enum vxge_hw_status status = VXGE_HW_OK;
2791 	struct __vxge_hw_ring *ring;
2792 	u32 ring_length;
2793 	struct vxge_hw_ring_config *config;
2794 	struct __vxge_hw_device *hldev;
2795 	u32 vp_id;
2796 	static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2797 		.item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2798 	};
2799 
2800 	if ((vp == NULL) || (attr == NULL)) {
2801 		status = VXGE_HW_FAIL;
2802 		goto exit;
2803 	}
2804 
2805 	hldev = vp->vpath->hldev;
2806 	vp_id = vp->vpath->vp_id;
2807 
2808 	config = &hldev->config.vp_config[vp_id].ring;
2809 
2810 	ring_length = config->ring_blocks *
2811 			vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2812 
2813 	ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2814 						VXGE_HW_CHANNEL_TYPE_RING,
2815 						ring_length,
2816 						attr->per_rxd_space,
2817 						attr->userdata);
2818 	if (ring == NULL) {
2819 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2820 		goto exit;
2821 	}
2822 
2823 	vp->vpath->ringh = ring;
2824 	ring->vp_id = vp_id;
2825 	ring->vp_reg = vp->vpath->vp_reg;
2826 	ring->common_reg = hldev->common_reg;
2827 	ring->stats = &vp->vpath->sw_stats->ring_stats;
2828 	ring->config = config;
2829 	ring->callback = attr->callback;
2830 	ring->rxd_init = attr->rxd_init;
2831 	ring->rxd_term = attr->rxd_term;
2832 	ring->buffer_mode = config->buffer_mode;
2833 	ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2834 	ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2835 	ring->rxds_limit = config->rxds_limit;
2836 
2837 	ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2838 	ring->rxd_priv_size =
2839 		sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2840 	ring->per_rxd_space = attr->per_rxd_space;
2841 
2842 	ring->rxd_priv_size =
2843 		((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2844 		VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2845 
2846 	/* how many RxDs can fit into one block. Depends on configured
2847 	 * buffer_mode. */
2848 	ring->rxds_per_block =
2849 		vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2850 
2851 	/* calculate actual RxD block private size */
2852 	ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2853 	ring->mempool = __vxge_hw_mempool_create(hldev,
2854 				VXGE_HW_BLOCK_SIZE,
2855 				VXGE_HW_BLOCK_SIZE,
2856 				ring->rxdblock_priv_size,
2857 				ring->config->ring_blocks,
2858 				ring->config->ring_blocks,
2859 				&ring_mp_callback,
2860 				ring);
2861 	if (ring->mempool == NULL) {
2862 		__vxge_hw_ring_delete(vp);
2863 		return VXGE_HW_ERR_OUT_OF_MEMORY;
2864 	}
2865 
2866 	status = __vxge_hw_channel_initialize(&ring->channel);
2867 	if (status != VXGE_HW_OK) {
2868 		__vxge_hw_ring_delete(vp);
2869 		goto exit;
2870 	}
2871 
2872 	/* Note:
2873 	 * Specifying rxd_init callback means two things:
2874 	 * 1) rxds need to be initialized by driver at channel-open time;
2875 	 * 2) rxds need to be posted at channel-open time
2876 	 *    (that's what the initial_replenish() below does)
2877 	 * Currently we don't have a case when the 1) is done without the 2).
2878 	 */
2879 	if (ring->rxd_init) {
2880 		status = vxge_hw_ring_replenish(ring);
2881 		if (status != VXGE_HW_OK) {
2882 			__vxge_hw_ring_delete(vp);
2883 			goto exit;
2884 		}
2885 	}
2886 
2887 	/* initial replenish will increment the counter in its post() routine,
2888 	 * we have to reset it */
2889 	ring->stats->common_stats.usage_cnt = 0;
2890 exit:
2891 	return status;
2892 }
2893 
2894 /*
2895  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2896  * Initialize Titan device config with default values.
2897  */
2898 enum vxge_hw_status
vxge_hw_device_config_default_get(struct vxge_hw_device_config * device_config)2899 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2900 {
2901 	u32 i;
2902 
2903 	device_config->dma_blockpool_initial =
2904 					VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2905 	device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2906 	device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2907 	device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2908 	device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2909 	device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2910 	device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2911 
2912 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2913 		device_config->vp_config[i].vp_id = i;
2914 
2915 		device_config->vp_config[i].min_bandwidth =
2916 				VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2917 
2918 		device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2919 
2920 		device_config->vp_config[i].ring.ring_blocks =
2921 				VXGE_HW_DEF_RING_BLOCKS;
2922 
2923 		device_config->vp_config[i].ring.buffer_mode =
2924 				VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2925 
2926 		device_config->vp_config[i].ring.scatter_mode =
2927 				VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2928 
2929 		device_config->vp_config[i].ring.rxds_limit =
2930 				VXGE_HW_DEF_RING_RXDS_LIMIT;
2931 
2932 		device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2933 
2934 		device_config->vp_config[i].fifo.fifo_blocks =
2935 				VXGE_HW_MIN_FIFO_BLOCKS;
2936 
2937 		device_config->vp_config[i].fifo.max_frags =
2938 				VXGE_HW_MAX_FIFO_FRAGS;
2939 
2940 		device_config->vp_config[i].fifo.memblock_size =
2941 				VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2942 
2943 		device_config->vp_config[i].fifo.alignment_size =
2944 				VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2945 
2946 		device_config->vp_config[i].fifo.intr =
2947 				VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2948 
2949 		device_config->vp_config[i].fifo.no_snoop_bits =
2950 				VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2951 		device_config->vp_config[i].tti.intr_enable =
2952 				VXGE_HW_TIM_INTR_DEFAULT;
2953 
2954 		device_config->vp_config[i].tti.btimer_val =
2955 				VXGE_HW_USE_FLASH_DEFAULT;
2956 
2957 		device_config->vp_config[i].tti.timer_ac_en =
2958 				VXGE_HW_USE_FLASH_DEFAULT;
2959 
2960 		device_config->vp_config[i].tti.timer_ci_en =
2961 				VXGE_HW_USE_FLASH_DEFAULT;
2962 
2963 		device_config->vp_config[i].tti.timer_ri_en =
2964 				VXGE_HW_USE_FLASH_DEFAULT;
2965 
2966 		device_config->vp_config[i].tti.rtimer_val =
2967 				VXGE_HW_USE_FLASH_DEFAULT;
2968 
2969 		device_config->vp_config[i].tti.util_sel =
2970 				VXGE_HW_USE_FLASH_DEFAULT;
2971 
2972 		device_config->vp_config[i].tti.ltimer_val =
2973 				VXGE_HW_USE_FLASH_DEFAULT;
2974 
2975 		device_config->vp_config[i].tti.urange_a =
2976 				VXGE_HW_USE_FLASH_DEFAULT;
2977 
2978 		device_config->vp_config[i].tti.uec_a =
2979 				VXGE_HW_USE_FLASH_DEFAULT;
2980 
2981 		device_config->vp_config[i].tti.urange_b =
2982 				VXGE_HW_USE_FLASH_DEFAULT;
2983 
2984 		device_config->vp_config[i].tti.uec_b =
2985 				VXGE_HW_USE_FLASH_DEFAULT;
2986 
2987 		device_config->vp_config[i].tti.urange_c =
2988 				VXGE_HW_USE_FLASH_DEFAULT;
2989 
2990 		device_config->vp_config[i].tti.uec_c =
2991 				VXGE_HW_USE_FLASH_DEFAULT;
2992 
2993 		device_config->vp_config[i].tti.uec_d =
2994 				VXGE_HW_USE_FLASH_DEFAULT;
2995 
2996 		device_config->vp_config[i].rti.intr_enable =
2997 				VXGE_HW_TIM_INTR_DEFAULT;
2998 
2999 		device_config->vp_config[i].rti.btimer_val =
3000 				VXGE_HW_USE_FLASH_DEFAULT;
3001 
3002 		device_config->vp_config[i].rti.timer_ac_en =
3003 				VXGE_HW_USE_FLASH_DEFAULT;
3004 
3005 		device_config->vp_config[i].rti.timer_ci_en =
3006 				VXGE_HW_USE_FLASH_DEFAULT;
3007 
3008 		device_config->vp_config[i].rti.timer_ri_en =
3009 				VXGE_HW_USE_FLASH_DEFAULT;
3010 
3011 		device_config->vp_config[i].rti.rtimer_val =
3012 				VXGE_HW_USE_FLASH_DEFAULT;
3013 
3014 		device_config->vp_config[i].rti.util_sel =
3015 				VXGE_HW_USE_FLASH_DEFAULT;
3016 
3017 		device_config->vp_config[i].rti.ltimer_val =
3018 				VXGE_HW_USE_FLASH_DEFAULT;
3019 
3020 		device_config->vp_config[i].rti.urange_a =
3021 				VXGE_HW_USE_FLASH_DEFAULT;
3022 
3023 		device_config->vp_config[i].rti.uec_a =
3024 				VXGE_HW_USE_FLASH_DEFAULT;
3025 
3026 		device_config->vp_config[i].rti.urange_b =
3027 				VXGE_HW_USE_FLASH_DEFAULT;
3028 
3029 		device_config->vp_config[i].rti.uec_b =
3030 				VXGE_HW_USE_FLASH_DEFAULT;
3031 
3032 		device_config->vp_config[i].rti.urange_c =
3033 				VXGE_HW_USE_FLASH_DEFAULT;
3034 
3035 		device_config->vp_config[i].rti.uec_c =
3036 				VXGE_HW_USE_FLASH_DEFAULT;
3037 
3038 		device_config->vp_config[i].rti.uec_d =
3039 				VXGE_HW_USE_FLASH_DEFAULT;
3040 
3041 		device_config->vp_config[i].mtu =
3042 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3043 
3044 		device_config->vp_config[i].rpa_strip_vlan_tag =
3045 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3046 	}
3047 
3048 	return VXGE_HW_OK;
3049 }
3050 
3051 /*
3052  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3053  * Set the swapper bits appropriately for the vpath.
3054  */
3055 static enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem * vpath_reg)3056 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3057 {
3058 #ifndef __BIG_ENDIAN
3059 	u64 val64;
3060 
3061 	val64 = readq(&vpath_reg->vpath_general_cfg1);
3062 	wmb();
3063 	val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3064 	writeq(val64, &vpath_reg->vpath_general_cfg1);
3065 	wmb();
3066 #endif
3067 	return VXGE_HW_OK;
3068 }
3069 
3070 /*
3071  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3072  * Set the swapper bits appropriately for the vpath.
3073  */
3074 static enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg,struct vxge_hw_vpath_reg __iomem * vpath_reg)3075 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3076 			   struct vxge_hw_vpath_reg __iomem *vpath_reg)
3077 {
3078 	u64 val64;
3079 
3080 	val64 = readq(&legacy_reg->pifm_wr_swap_en);
3081 
3082 	if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3083 		val64 = readq(&vpath_reg->kdfcctl_cfg0);
3084 		wmb();
3085 
3086 		val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0	|
3087 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1	|
3088 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3089 
3090 		writeq(val64, &vpath_reg->kdfcctl_cfg0);
3091 		wmb();
3092 	}
3093 
3094 	return VXGE_HW_OK;
3095 }
3096 
3097 /*
3098  * vxge_hw_mgmt_reg_read - Read Titan register.
3099  */
3100 enum vxge_hw_status
vxge_hw_mgmt_reg_read(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 * value)3101 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3102 		      enum vxge_hw_mgmt_reg_type type,
3103 		      u32 index, u32 offset, u64 *value)
3104 {
3105 	enum vxge_hw_status status = VXGE_HW_OK;
3106 
3107 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3108 		status = VXGE_HW_ERR_INVALID_DEVICE;
3109 		goto exit;
3110 	}
3111 
3112 	switch (type) {
3113 	case vxge_hw_mgmt_reg_type_legacy:
3114 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3115 			status = VXGE_HW_ERR_INVALID_OFFSET;
3116 			break;
3117 		}
3118 		*value = readq((void __iomem *)hldev->legacy_reg + offset);
3119 		break;
3120 	case vxge_hw_mgmt_reg_type_toc:
3121 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3122 			status = VXGE_HW_ERR_INVALID_OFFSET;
3123 			break;
3124 		}
3125 		*value = readq((void __iomem *)hldev->toc_reg + offset);
3126 		break;
3127 	case vxge_hw_mgmt_reg_type_common:
3128 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3129 			status = VXGE_HW_ERR_INVALID_OFFSET;
3130 			break;
3131 		}
3132 		*value = readq((void __iomem *)hldev->common_reg + offset);
3133 		break;
3134 	case vxge_hw_mgmt_reg_type_mrpcim:
3135 		if (!(hldev->access_rights &
3136 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3137 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3138 			break;
3139 		}
3140 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3141 			status = VXGE_HW_ERR_INVALID_OFFSET;
3142 			break;
3143 		}
3144 		*value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3145 		break;
3146 	case vxge_hw_mgmt_reg_type_srpcim:
3147 		if (!(hldev->access_rights &
3148 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3149 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3150 			break;
3151 		}
3152 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3153 			status = VXGE_HW_ERR_INVALID_INDEX;
3154 			break;
3155 		}
3156 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3157 			status = VXGE_HW_ERR_INVALID_OFFSET;
3158 			break;
3159 		}
3160 		*value = readq((void __iomem *)hldev->srpcim_reg[index] +
3161 				offset);
3162 		break;
3163 	case vxge_hw_mgmt_reg_type_vpmgmt:
3164 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3165 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3166 			status = VXGE_HW_ERR_INVALID_INDEX;
3167 			break;
3168 		}
3169 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3170 			status = VXGE_HW_ERR_INVALID_OFFSET;
3171 			break;
3172 		}
3173 		*value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3174 				offset);
3175 		break;
3176 	case vxge_hw_mgmt_reg_type_vpath:
3177 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3178 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3179 			status = VXGE_HW_ERR_INVALID_INDEX;
3180 			break;
3181 		}
3182 		if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3183 			status = VXGE_HW_ERR_INVALID_INDEX;
3184 			break;
3185 		}
3186 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3187 			status = VXGE_HW_ERR_INVALID_OFFSET;
3188 			break;
3189 		}
3190 		*value = readq((void __iomem *)hldev->vpath_reg[index] +
3191 				offset);
3192 		break;
3193 	default:
3194 		status = VXGE_HW_ERR_INVALID_TYPE;
3195 		break;
3196 	}
3197 
3198 exit:
3199 	return status;
3200 }
3201 
3202 /*
3203  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3204  */
3205 enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device * hldev,u64 vpath_mask)3206 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3207 {
3208 	struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3209 	int i = 0, j = 0;
3210 
3211 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3212 		if (!((vpath_mask) & vxge_mBIT(i)))
3213 			continue;
3214 		vpmgmt_reg = hldev->vpmgmt_reg[i];
3215 		for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3216 			if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3217 			& VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3218 				return VXGE_HW_FAIL;
3219 		}
3220 	}
3221 	return VXGE_HW_OK;
3222 }
3223 /*
3224  * vxge_hw_mgmt_reg_Write - Write Titan register.
3225  */
3226 enum vxge_hw_status
vxge_hw_mgmt_reg_write(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 value)3227 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3228 		      enum vxge_hw_mgmt_reg_type type,
3229 		      u32 index, u32 offset, u64 value)
3230 {
3231 	enum vxge_hw_status status = VXGE_HW_OK;
3232 
3233 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3234 		status = VXGE_HW_ERR_INVALID_DEVICE;
3235 		goto exit;
3236 	}
3237 
3238 	switch (type) {
3239 	case vxge_hw_mgmt_reg_type_legacy:
3240 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3241 			status = VXGE_HW_ERR_INVALID_OFFSET;
3242 			break;
3243 		}
3244 		writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3245 		break;
3246 	case vxge_hw_mgmt_reg_type_toc:
3247 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3248 			status = VXGE_HW_ERR_INVALID_OFFSET;
3249 			break;
3250 		}
3251 		writeq(value, (void __iomem *)hldev->toc_reg + offset);
3252 		break;
3253 	case vxge_hw_mgmt_reg_type_common:
3254 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3255 			status = VXGE_HW_ERR_INVALID_OFFSET;
3256 			break;
3257 		}
3258 		writeq(value, (void __iomem *)hldev->common_reg + offset);
3259 		break;
3260 	case vxge_hw_mgmt_reg_type_mrpcim:
3261 		if (!(hldev->access_rights &
3262 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3263 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3264 			break;
3265 		}
3266 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3267 			status = VXGE_HW_ERR_INVALID_OFFSET;
3268 			break;
3269 		}
3270 		writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3271 		break;
3272 	case vxge_hw_mgmt_reg_type_srpcim:
3273 		if (!(hldev->access_rights &
3274 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3275 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3276 			break;
3277 		}
3278 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3279 			status = VXGE_HW_ERR_INVALID_INDEX;
3280 			break;
3281 		}
3282 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3283 			status = VXGE_HW_ERR_INVALID_OFFSET;
3284 			break;
3285 		}
3286 		writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3287 			offset);
3288 
3289 		break;
3290 	case vxge_hw_mgmt_reg_type_vpmgmt:
3291 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3292 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3293 			status = VXGE_HW_ERR_INVALID_INDEX;
3294 			break;
3295 		}
3296 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3297 			status = VXGE_HW_ERR_INVALID_OFFSET;
3298 			break;
3299 		}
3300 		writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3301 			offset);
3302 		break;
3303 	case vxge_hw_mgmt_reg_type_vpath:
3304 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3305 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3306 			status = VXGE_HW_ERR_INVALID_INDEX;
3307 			break;
3308 		}
3309 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3310 			status = VXGE_HW_ERR_INVALID_OFFSET;
3311 			break;
3312 		}
3313 		writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3314 			offset);
3315 		break;
3316 	default:
3317 		status = VXGE_HW_ERR_INVALID_TYPE;
3318 		break;
3319 	}
3320 exit:
3321 	return status;
3322 }
3323 
3324 /*
3325  * __vxge_hw_fifo_abort - Returns the TxD
3326  * This function terminates the TxDs of fifo
3327  */
__vxge_hw_fifo_abort(struct __vxge_hw_fifo * fifo)3328 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3329 {
3330 	void *txdlh;
3331 
3332 	for (;;) {
3333 		vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3334 
3335 		if (txdlh == NULL)
3336 			break;
3337 
3338 		vxge_hw_channel_dtr_complete(&fifo->channel);
3339 
3340 		if (fifo->txdl_term) {
3341 			fifo->txdl_term(txdlh,
3342 			VXGE_HW_TXDL_STATE_POSTED,
3343 			fifo->channel.userdata);
3344 		}
3345 
3346 		vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3347 	}
3348 
3349 	return VXGE_HW_OK;
3350 }
3351 
3352 /*
3353  * __vxge_hw_fifo_reset - Resets the fifo
3354  * This function resets the fifo during vpath reset operation
3355  */
__vxge_hw_fifo_reset(struct __vxge_hw_fifo * fifo)3356 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3357 {
3358 	enum vxge_hw_status status = VXGE_HW_OK;
3359 
3360 	__vxge_hw_fifo_abort(fifo);
3361 	status = __vxge_hw_channel_reset(&fifo->channel);
3362 
3363 	return status;
3364 }
3365 
3366 /*
3367  * __vxge_hw_fifo_delete - Removes the FIFO
3368  * This function freeup the memory pool and removes the FIFO
3369  */
3370 static enum vxge_hw_status
__vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle * vp)3371 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3372 {
3373 	struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3374 
3375 	__vxge_hw_fifo_abort(fifo);
3376 
3377 	if (fifo->mempool)
3378 		__vxge_hw_mempool_destroy(fifo->mempool);
3379 
3380 	vp->vpath->fifoh = NULL;
3381 
3382 	__vxge_hw_channel_free(&fifo->channel);
3383 
3384 	return VXGE_HW_OK;
3385 }
3386 
3387 /*
3388  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3389  * list callback
3390  * This function is callback passed to __vxge_hw_mempool_create to create memory
3391  * pool for TxD list
3392  */
3393 static void
__vxge_hw_fifo_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)3394 __vxge_hw_fifo_mempool_item_alloc(
3395 	struct vxge_hw_mempool *mempoolh,
3396 	u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3397 	u32 index, u32 is_last)
3398 {
3399 	u32 memblock_item_idx;
3400 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3401 	struct vxge_hw_fifo_txd *txdp =
3402 		(struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3403 	struct __vxge_hw_fifo *fifo =
3404 			(struct __vxge_hw_fifo *)mempoolh->userdata;
3405 	void *memblock = mempoolh->memblocks_arr[memblock_index];
3406 
3407 	vxge_assert(txdp);
3408 
3409 	txdp->host_control = (u64) (size_t)
3410 	__vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3411 					&memblock_item_idx);
3412 
3413 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3414 
3415 	vxge_assert(txdl_priv);
3416 
3417 	fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3418 
3419 	/* pre-format HW's TxDL's private */
3420 	txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3421 	txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3422 	txdl_priv->dma_handle = dma_object->handle;
3423 	txdl_priv->memblock   = memblock;
3424 	txdl_priv->first_txdp = txdp;
3425 	txdl_priv->next_txdl_priv = NULL;
3426 	txdl_priv->alloc_frags = 0;
3427 }
3428 
3429 /*
3430  * __vxge_hw_fifo_create - Create a FIFO
3431  * This function creates FIFO and initializes it.
3432  */
3433 static enum vxge_hw_status
__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_fifo_attr * attr)3434 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3435 		      struct vxge_hw_fifo_attr *attr)
3436 {
3437 	enum vxge_hw_status status = VXGE_HW_OK;
3438 	struct __vxge_hw_fifo *fifo;
3439 	struct vxge_hw_fifo_config *config;
3440 	u32 txdl_size, txdl_per_memblock;
3441 	struct vxge_hw_mempool_cbs fifo_mp_callback;
3442 	struct __vxge_hw_virtualpath *vpath;
3443 
3444 	if ((vp == NULL) || (attr == NULL)) {
3445 		status = VXGE_HW_ERR_INVALID_HANDLE;
3446 		goto exit;
3447 	}
3448 	vpath = vp->vpath;
3449 	config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3450 
3451 	txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3452 
3453 	txdl_per_memblock = config->memblock_size / txdl_size;
3454 
3455 	fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3456 					VXGE_HW_CHANNEL_TYPE_FIFO,
3457 					config->fifo_blocks * txdl_per_memblock,
3458 					attr->per_txdl_space, attr->userdata);
3459 
3460 	if (fifo == NULL) {
3461 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3462 		goto exit;
3463 	}
3464 
3465 	vpath->fifoh = fifo;
3466 	fifo->nofl_db = vpath->nofl_db;
3467 
3468 	fifo->vp_id = vpath->vp_id;
3469 	fifo->vp_reg = vpath->vp_reg;
3470 	fifo->stats = &vpath->sw_stats->fifo_stats;
3471 
3472 	fifo->config = config;
3473 
3474 	/* apply "interrupts per txdl" attribute */
3475 	fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3476 	fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3477 	fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3478 
3479 	if (fifo->config->intr)
3480 		fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3481 
3482 	fifo->no_snoop_bits = config->no_snoop_bits;
3483 
3484 	/*
3485 	 * FIFO memory management strategy:
3486 	 *
3487 	 * TxDL split into three independent parts:
3488 	 *	- set of TxD's
3489 	 *	- TxD HW private part
3490 	 *	- driver private part
3491 	 *
3492 	 * Adaptative memory allocation used. i.e. Memory allocated on
3493 	 * demand with the size which will fit into one memory block.
3494 	 * One memory block may contain more than one TxDL.
3495 	 *
3496 	 * During "reserve" operations more memory can be allocated on demand
3497 	 * for example due to FIFO full condition.
3498 	 *
3499 	 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3500 	 * routine which will essentially stop the channel and free resources.
3501 	 */
3502 
3503 	/* TxDL common private size == TxDL private  +  driver private */
3504 	fifo->priv_size =
3505 		sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3506 	fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3507 			VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3508 
3509 	fifo->per_txdl_space = attr->per_txdl_space;
3510 
3511 	/* recompute txdl size to be cacheline aligned */
3512 	fifo->txdl_size = txdl_size;
3513 	fifo->txdl_per_memblock = txdl_per_memblock;
3514 
3515 	fifo->txdl_term = attr->txdl_term;
3516 	fifo->callback = attr->callback;
3517 
3518 	if (fifo->txdl_per_memblock == 0) {
3519 		__vxge_hw_fifo_delete(vp);
3520 		status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3521 		goto exit;
3522 	}
3523 
3524 	fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3525 
3526 	fifo->mempool =
3527 		__vxge_hw_mempool_create(vpath->hldev,
3528 			fifo->config->memblock_size,
3529 			fifo->txdl_size,
3530 			fifo->priv_size,
3531 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3532 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3533 			&fifo_mp_callback,
3534 			fifo);
3535 
3536 	if (fifo->mempool == NULL) {
3537 		__vxge_hw_fifo_delete(vp);
3538 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3539 		goto exit;
3540 	}
3541 
3542 	status = __vxge_hw_channel_initialize(&fifo->channel);
3543 	if (status != VXGE_HW_OK) {
3544 		__vxge_hw_fifo_delete(vp);
3545 		goto exit;
3546 	}
3547 
3548 	vxge_assert(fifo->channel.reserve_ptr);
3549 exit:
3550 	return status;
3551 }
3552 
3553 /*
3554  * __vxge_hw_vpath_pci_read - Read the content of given address
3555  *                          in pci config space.
3556  * Read from the vpath pci config space.
3557  */
3558 static enum vxge_hw_status
__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath * vpath,u32 phy_func_0,u32 offset,u32 * val)3559 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3560 			 u32 phy_func_0, u32 offset, u32 *val)
3561 {
3562 	u64 val64;
3563 	enum vxge_hw_status status = VXGE_HW_OK;
3564 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3565 
3566 	val64 =	VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3567 
3568 	if (phy_func_0)
3569 		val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3570 
3571 	writeq(val64, &vp_reg->pci_config_access_cfg1);
3572 	wmb();
3573 	writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3574 			&vp_reg->pci_config_access_cfg2);
3575 	wmb();
3576 
3577 	status = __vxge_hw_device_register_poll(
3578 			&vp_reg->pci_config_access_cfg2,
3579 			VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3580 
3581 	if (status != VXGE_HW_OK)
3582 		goto exit;
3583 
3584 	val64 = readq(&vp_reg->pci_config_access_status);
3585 
3586 	if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3587 		status = VXGE_HW_FAIL;
3588 		*val = 0;
3589 	} else
3590 		*val = (u32)vxge_bVALn(val64, 32, 32);
3591 exit:
3592 	return status;
3593 }
3594 
3595 /**
3596  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3597  * @hldev: HW device.
3598  * @on_off: TRUE if flickering to be on, FALSE to be off
3599  *
3600  * Flicker the link LED.
3601  */
3602 enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device * hldev,u64 on_off)3603 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3604 {
3605 	struct __vxge_hw_virtualpath *vpath;
3606 	u64 data0, data1 = 0, steer_ctrl = 0;
3607 	enum vxge_hw_status status;
3608 
3609 	if (hldev == NULL) {
3610 		status = VXGE_HW_ERR_INVALID_DEVICE;
3611 		goto exit;
3612 	}
3613 
3614 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
3615 
3616 	data0 = on_off;
3617 	status = vxge_hw_vpath_fw_api(vpath,
3618 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3619 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3620 			0, &data0, &data1, &steer_ctrl);
3621 exit:
3622 	return status;
3623 }
3624 
3625 /*
3626  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3627  */
3628 enum vxge_hw_status
__vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 * data0,u64 * data1)3629 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3630 			      u32 action, u32 rts_table, u32 offset,
3631 			      u64 *data0, u64 *data1)
3632 {
3633 	enum vxge_hw_status status;
3634 	u64 steer_ctrl = 0;
3635 
3636 	if (vp == NULL) {
3637 		status = VXGE_HW_ERR_INVALID_HANDLE;
3638 		goto exit;
3639 	}
3640 
3641 	if ((rts_table ==
3642 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3643 	    (rts_table ==
3644 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3645 	    (rts_table ==
3646 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3647 	    (rts_table ==
3648 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3649 		steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3650 	}
3651 
3652 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3653 				      data0, data1, &steer_ctrl);
3654 	if (status != VXGE_HW_OK)
3655 		goto exit;
3656 
3657 	if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3658 	    (rts_table !=
3659 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3660 		*data1 = 0;
3661 exit:
3662 	return status;
3663 }
3664 
3665 /*
3666  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3667  */
3668 enum vxge_hw_status
__vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 steer_data0,u64 steer_data1)3669 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3670 			      u32 rts_table, u32 offset, u64 steer_data0,
3671 			      u64 steer_data1)
3672 {
3673 	u64 data0, data1 = 0, steer_ctrl = 0;
3674 	enum vxge_hw_status status;
3675 
3676 	if (vp == NULL) {
3677 		status = VXGE_HW_ERR_INVALID_HANDLE;
3678 		goto exit;
3679 	}
3680 
3681 	data0 = steer_data0;
3682 
3683 	if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3684 	    (rts_table ==
3685 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3686 		data1 = steer_data1;
3687 
3688 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3689 				      &data0, &data1, &steer_ctrl);
3690 exit:
3691 	return status;
3692 }
3693 
3694 /*
3695  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3696  */
vxge_hw_vpath_rts_rth_set(struct __vxge_hw_vpath_handle * vp,enum vxge_hw_rth_algoritms algorithm,struct vxge_hw_rth_hash_types * hash_type,u16 bucket_size)3697 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3698 			struct __vxge_hw_vpath_handle *vp,
3699 			enum vxge_hw_rth_algoritms algorithm,
3700 			struct vxge_hw_rth_hash_types *hash_type,
3701 			u16 bucket_size)
3702 {
3703 	u64 data0, data1;
3704 	enum vxge_hw_status status = VXGE_HW_OK;
3705 
3706 	if (vp == NULL) {
3707 		status = VXGE_HW_ERR_INVALID_HANDLE;
3708 		goto exit;
3709 	}
3710 
3711 	status = __vxge_hw_vpath_rts_table_get(vp,
3712 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3713 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3714 			0, &data0, &data1);
3715 	if (status != VXGE_HW_OK)
3716 		goto exit;
3717 
3718 	data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3719 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3720 
3721 	data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3722 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3723 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3724 
3725 	if (hash_type->hash_type_tcpipv4_en)
3726 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3727 
3728 	if (hash_type->hash_type_ipv4_en)
3729 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3730 
3731 	if (hash_type->hash_type_tcpipv6_en)
3732 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3733 
3734 	if (hash_type->hash_type_ipv6_en)
3735 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3736 
3737 	if (hash_type->hash_type_tcpipv6ex_en)
3738 		data0 |=
3739 		VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3740 
3741 	if (hash_type->hash_type_ipv6ex_en)
3742 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3743 
3744 	if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3745 		data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3746 	else
3747 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3748 
3749 	status = __vxge_hw_vpath_rts_table_set(vp,
3750 		VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3751 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3752 		0, data0, 0);
3753 exit:
3754 	return status;
3755 }
3756 
3757 static void
vxge_hw_rts_rth_data0_data1_get(u32 j,u64 * data0,u64 * data1,u16 flag,u8 * itable)3758 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3759 				u16 flag, u8 *itable)
3760 {
3761 	switch (flag) {
3762 	case 1:
3763 		*data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3764 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3765 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3766 			itable[j]);
3767 		fallthrough;
3768 	case 2:
3769 		*data0 |=
3770 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3771 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3772 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3773 			itable[j]);
3774 		fallthrough;
3775 	case 3:
3776 		*data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3777 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3778 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3779 			itable[j]);
3780 		fallthrough;
3781 	case 4:
3782 		*data1 |=
3783 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3784 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3785 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3786 			itable[j]);
3787 	default:
3788 		return;
3789 	}
3790 }
3791 /*
3792  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3793  */
vxge_hw_vpath_rts_rth_itable_set(struct __vxge_hw_vpath_handle ** vpath_handles,u32 vpath_count,u8 * mtable,u8 * itable,u32 itable_size)3794 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3795 			struct __vxge_hw_vpath_handle **vpath_handles,
3796 			u32 vpath_count,
3797 			u8 *mtable,
3798 			u8 *itable,
3799 			u32 itable_size)
3800 {
3801 	u32 i, j, action, rts_table;
3802 	u64 data0;
3803 	u64 data1;
3804 	u32 max_entries;
3805 	enum vxge_hw_status status = VXGE_HW_OK;
3806 	struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3807 
3808 	if (vp == NULL) {
3809 		status = VXGE_HW_ERR_INVALID_HANDLE;
3810 		goto exit;
3811 	}
3812 
3813 	max_entries = (((u32)1) << itable_size);
3814 
3815 	if (vp->vpath->hldev->config.rth_it_type
3816 				== VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3817 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3818 		rts_table =
3819 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3820 
3821 		for (j = 0; j < max_entries; j++) {
3822 
3823 			data1 = 0;
3824 
3825 			data0 =
3826 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3827 				itable[j]);
3828 
3829 			status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3830 				action, rts_table, j, data0, data1);
3831 
3832 			if (status != VXGE_HW_OK)
3833 				goto exit;
3834 		}
3835 
3836 		for (j = 0; j < max_entries; j++) {
3837 
3838 			data1 = 0;
3839 
3840 			data0 =
3841 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3842 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3843 				itable[j]);
3844 
3845 			status = __vxge_hw_vpath_rts_table_set(
3846 				vpath_handles[mtable[itable[j]]], action,
3847 				rts_table, j, data0, data1);
3848 
3849 			if (status != VXGE_HW_OK)
3850 				goto exit;
3851 		}
3852 	} else {
3853 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3854 		rts_table =
3855 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3856 		for (i = 0; i < vpath_count; i++) {
3857 
3858 			for (j = 0; j < max_entries;) {
3859 
3860 				data0 = 0;
3861 				data1 = 0;
3862 
3863 				while (j < max_entries) {
3864 					if (mtable[itable[j]] != i) {
3865 						j++;
3866 						continue;
3867 					}
3868 					vxge_hw_rts_rth_data0_data1_get(j,
3869 						&data0, &data1, 1, itable);
3870 					j++;
3871 					break;
3872 				}
3873 
3874 				while (j < max_entries) {
3875 					if (mtable[itable[j]] != i) {
3876 						j++;
3877 						continue;
3878 					}
3879 					vxge_hw_rts_rth_data0_data1_get(j,
3880 						&data0, &data1, 2, itable);
3881 					j++;
3882 					break;
3883 				}
3884 
3885 				while (j < max_entries) {
3886 					if (mtable[itable[j]] != i) {
3887 						j++;
3888 						continue;
3889 					}
3890 					vxge_hw_rts_rth_data0_data1_get(j,
3891 						&data0, &data1, 3, itable);
3892 					j++;
3893 					break;
3894 				}
3895 
3896 				while (j < max_entries) {
3897 					if (mtable[itable[j]] != i) {
3898 						j++;
3899 						continue;
3900 					}
3901 					vxge_hw_rts_rth_data0_data1_get(j,
3902 						&data0, &data1, 4, itable);
3903 					j++;
3904 					break;
3905 				}
3906 
3907 				if (data0 != 0) {
3908 					status = __vxge_hw_vpath_rts_table_set(
3909 							vpath_handles[i],
3910 							action, rts_table,
3911 							0, data0, data1);
3912 
3913 					if (status != VXGE_HW_OK)
3914 						goto exit;
3915 				}
3916 			}
3917 		}
3918 	}
3919 exit:
3920 	return status;
3921 }
3922 
3923 /**
3924  * vxge_hw_vpath_check_leak - Check for memory leak
3925  * @ring: Handle to the ring object used for receive
3926  *
3927  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3928  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3929  * Returns: VXGE_HW_FAIL, if leak has occurred.
3930  *
3931  */
3932 enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring * ring)3933 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3934 {
3935 	enum vxge_hw_status status = VXGE_HW_OK;
3936 	u64 rxd_new_count, rxd_spat;
3937 
3938 	if (ring == NULL)
3939 		return status;
3940 
3941 	rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3942 	rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3943 	rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3944 
3945 	if (rxd_new_count >= rxd_spat)
3946 		status = VXGE_HW_FAIL;
3947 
3948 	return status;
3949 }
3950 
3951 /*
3952  * __vxge_hw_vpath_mgmt_read
3953  * This routine reads the vpath_mgmt registers
3954  */
3955 static enum vxge_hw_status
__vxge_hw_vpath_mgmt_read(struct __vxge_hw_device * hldev,struct __vxge_hw_virtualpath * vpath)3956 __vxge_hw_vpath_mgmt_read(
3957 	struct __vxge_hw_device *hldev,
3958 	struct __vxge_hw_virtualpath *vpath)
3959 {
3960 	u32 i, mtu = 0, max_pyld = 0;
3961 	u64 val64;
3962 
3963 	for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3964 
3965 		val64 = readq(&vpath->vpmgmt_reg->
3966 				rxmac_cfg0_port_vpmgmt_clone[i]);
3967 		max_pyld =
3968 			(u32)
3969 			VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3970 			(val64);
3971 		if (mtu < max_pyld)
3972 			mtu = max_pyld;
3973 	}
3974 
3975 	vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3976 
3977 	val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3978 
3979 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3980 		if (val64 & vxge_mBIT(i))
3981 			vpath->vsport_number = i;
3982 	}
3983 
3984 	val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3985 
3986 	if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3987 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3988 	else
3989 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3990 
3991 	return VXGE_HW_OK;
3992 }
3993 
3994 /*
3995  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3996  * This routine checks the vpath_rst_in_prog register to see if
3997  * adapter completed the reset process for the vpath
3998  */
3999 static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath * vpath)4000 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4001 {
4002 	enum vxge_hw_status status;
4003 
4004 	status = __vxge_hw_device_register_poll(
4005 			&vpath->hldev->common_reg->vpath_rst_in_prog,
4006 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4007 				1 << (16 - vpath->vp_id)),
4008 			vpath->hldev->config.device_poll_millis);
4009 
4010 	return status;
4011 }
4012 
4013 /*
4014  * __vxge_hw_vpath_reset
4015  * This routine resets the vpath on the device
4016  */
4017 static enum vxge_hw_status
__vxge_hw_vpath_reset(struct __vxge_hw_device * hldev,u32 vp_id)4018 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4019 {
4020 	u64 val64;
4021 
4022 	val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4023 
4024 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4025 				&hldev->common_reg->cmn_rsthdlr_cfg0);
4026 
4027 	return VXGE_HW_OK;
4028 }
4029 
4030 /*
4031  * __vxge_hw_vpath_sw_reset
4032  * This routine resets the vpath structures
4033  */
4034 static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device * hldev,u32 vp_id)4035 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4036 {
4037 	enum vxge_hw_status status = VXGE_HW_OK;
4038 	struct __vxge_hw_virtualpath *vpath;
4039 
4040 	vpath = &hldev->virtual_paths[vp_id];
4041 
4042 	if (vpath->ringh) {
4043 		status = __vxge_hw_ring_reset(vpath->ringh);
4044 		if (status != VXGE_HW_OK)
4045 			goto exit;
4046 	}
4047 
4048 	if (vpath->fifoh)
4049 		status = __vxge_hw_fifo_reset(vpath->fifoh);
4050 exit:
4051 	return status;
4052 }
4053 
4054 /*
4055  * __vxge_hw_vpath_prc_configure
4056  * This routine configures the prc registers of virtual path using the config
4057  * passed
4058  */
4059 static void
__vxge_hw_vpath_prc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4060 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4061 {
4062 	u64 val64;
4063 	struct __vxge_hw_virtualpath *vpath;
4064 	struct vxge_hw_vp_config *vp_config;
4065 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4066 
4067 	vpath = &hldev->virtual_paths[vp_id];
4068 	vp_reg = vpath->vp_reg;
4069 	vp_config = vpath->vp_config;
4070 
4071 	if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4072 		return;
4073 
4074 	val64 = readq(&vp_reg->prc_cfg1);
4075 	val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4076 	writeq(val64, &vp_reg->prc_cfg1);
4077 
4078 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4079 	val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4080 	writeq(val64, &vpath->vp_reg->prc_cfg6);
4081 
4082 	val64 = readq(&vp_reg->prc_cfg7);
4083 
4084 	if (vpath->vp_config->ring.scatter_mode !=
4085 		VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4086 
4087 		val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4088 
4089 		switch (vpath->vp_config->ring.scatter_mode) {
4090 		case VXGE_HW_RING_SCATTER_MODE_A:
4091 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4092 					VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4093 			break;
4094 		case VXGE_HW_RING_SCATTER_MODE_B:
4095 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4096 					VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4097 			break;
4098 		case VXGE_HW_RING_SCATTER_MODE_C:
4099 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4100 					VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4101 			break;
4102 		}
4103 	}
4104 
4105 	writeq(val64, &vp_reg->prc_cfg7);
4106 
4107 	writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4108 				__vxge_hw_ring_first_block_address_get(
4109 					vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4110 
4111 	val64 = readq(&vp_reg->prc_cfg4);
4112 	val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4113 	val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4114 
4115 	val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4116 			VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4117 
4118 	if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4119 		val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4120 	else
4121 		val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4122 
4123 	writeq(val64, &vp_reg->prc_cfg4);
4124 }
4125 
4126 /*
4127  * __vxge_hw_vpath_kdfc_configure
4128  * This routine configures the kdfc registers of virtual path using the
4129  * config passed
4130  */
4131 static enum vxge_hw_status
__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4132 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4133 {
4134 	u64 val64;
4135 	u64 vpath_stride;
4136 	enum vxge_hw_status status = VXGE_HW_OK;
4137 	struct __vxge_hw_virtualpath *vpath;
4138 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4139 
4140 	vpath = &hldev->virtual_paths[vp_id];
4141 	vp_reg = vpath->vp_reg;
4142 	status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4143 
4144 	if (status != VXGE_HW_OK)
4145 		goto exit;
4146 
4147 	val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4148 
4149 	vpath->max_kdfc_db =
4150 		(u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4151 			val64+1)/2;
4152 
4153 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4154 
4155 		vpath->max_nofl_db = vpath->max_kdfc_db;
4156 
4157 		if (vpath->max_nofl_db <
4158 			((vpath->vp_config->fifo.memblock_size /
4159 			(vpath->vp_config->fifo.max_frags *
4160 			sizeof(struct vxge_hw_fifo_txd))) *
4161 			vpath->vp_config->fifo.fifo_blocks)) {
4162 
4163 			return VXGE_HW_BADCFG_FIFO_BLOCKS;
4164 		}
4165 		val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4166 				(vpath->max_nofl_db*2)-1);
4167 	}
4168 
4169 	writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4170 
4171 	writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4172 		&vp_reg->kdfc_fifo_trpl_ctrl);
4173 
4174 	val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4175 
4176 	val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4177 		   VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4178 
4179 	val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4180 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4181 #ifndef __BIG_ENDIAN
4182 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4183 #endif
4184 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4185 
4186 	writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4187 	writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4188 	wmb();
4189 	vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4190 
4191 	vpath->nofl_db =
4192 		(struct __vxge_hw_non_offload_db_wrapper __iomem *)
4193 		(hldev->kdfc + (vp_id *
4194 		VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4195 					vpath_stride)));
4196 exit:
4197 	return status;
4198 }
4199 
4200 /*
4201  * __vxge_hw_vpath_mac_configure
4202  * This routine configures the mac of virtual path using the config passed
4203  */
4204 static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device * hldev,u32 vp_id)4205 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4206 {
4207 	u64 val64;
4208 	struct __vxge_hw_virtualpath *vpath;
4209 	struct vxge_hw_vp_config *vp_config;
4210 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4211 
4212 	vpath = &hldev->virtual_paths[vp_id];
4213 	vp_reg = vpath->vp_reg;
4214 	vp_config = vpath->vp_config;
4215 
4216 	writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4217 			vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4218 
4219 	if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4220 
4221 		val64 = readq(&vp_reg->xmac_rpa_vcfg);
4222 
4223 		if (vp_config->rpa_strip_vlan_tag !=
4224 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4225 			if (vp_config->rpa_strip_vlan_tag)
4226 				val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4227 			else
4228 				val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4229 		}
4230 
4231 		writeq(val64, &vp_reg->xmac_rpa_vcfg);
4232 		val64 = readq(&vp_reg->rxmac_vcfg0);
4233 
4234 		if (vp_config->mtu !=
4235 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4236 			val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4237 			if ((vp_config->mtu  +
4238 				VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4239 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4240 					vp_config->mtu  +
4241 					VXGE_HW_MAC_HEADER_MAX_SIZE);
4242 			else
4243 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4244 					vpath->max_mtu);
4245 		}
4246 
4247 		writeq(val64, &vp_reg->rxmac_vcfg0);
4248 
4249 		val64 = readq(&vp_reg->rxmac_vcfg1);
4250 
4251 		val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4252 			VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4253 
4254 		if (hldev->config.rth_it_type ==
4255 				VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4256 			val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4257 				0x2) |
4258 				VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4259 		}
4260 
4261 		writeq(val64, &vp_reg->rxmac_vcfg1);
4262 	}
4263 	return VXGE_HW_OK;
4264 }
4265 
4266 /*
4267  * __vxge_hw_vpath_tim_configure
4268  * This routine configures the tim registers of virtual path using the config
4269  * passed
4270  */
4271 static enum vxge_hw_status
__vxge_hw_vpath_tim_configure(struct __vxge_hw_device * hldev,u32 vp_id)4272 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4273 {
4274 	u64 val64;
4275 	struct __vxge_hw_virtualpath *vpath;
4276 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4277 	struct vxge_hw_vp_config *config;
4278 
4279 	vpath = &hldev->virtual_paths[vp_id];
4280 	vp_reg = vpath->vp_reg;
4281 	config = vpath->vp_config;
4282 
4283 	writeq(0, &vp_reg->tim_dest_addr);
4284 	writeq(0, &vp_reg->tim_vpath_map);
4285 	writeq(0, &vp_reg->tim_bitmap);
4286 	writeq(0, &vp_reg->tim_remap);
4287 
4288 	if (config->ring.enable == VXGE_HW_RING_ENABLE)
4289 		writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4290 			(vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4291 			VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4292 
4293 	val64 = readq(&vp_reg->tim_pci_cfg);
4294 	val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4295 	writeq(val64, &vp_reg->tim_pci_cfg);
4296 
4297 	if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4298 
4299 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4300 
4301 		if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4302 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4303 				0x3ffffff);
4304 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4305 					config->tti.btimer_val);
4306 		}
4307 
4308 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4309 
4310 		if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4311 			if (config->tti.timer_ac_en)
4312 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4313 			else
4314 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4315 		}
4316 
4317 		if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4318 			if (config->tti.timer_ci_en)
4319 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4320 			else
4321 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4322 		}
4323 
4324 		if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4325 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4326 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4327 					config->tti.urange_a);
4328 		}
4329 
4330 		if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4331 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4332 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4333 					config->tti.urange_b);
4334 		}
4335 
4336 		if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4337 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4338 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4339 					config->tti.urange_c);
4340 		}
4341 
4342 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4343 		vpath->tim_tti_cfg1_saved = val64;
4344 
4345 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4346 
4347 		if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4348 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4349 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4350 						config->tti.uec_a);
4351 		}
4352 
4353 		if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4354 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4355 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4356 						config->tti.uec_b);
4357 		}
4358 
4359 		if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4360 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4361 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4362 						config->tti.uec_c);
4363 		}
4364 
4365 		if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4366 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4367 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4368 						config->tti.uec_d);
4369 		}
4370 
4371 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4372 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4373 
4374 		if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4375 			if (config->tti.timer_ri_en)
4376 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4377 			else
4378 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4379 		}
4380 
4381 		if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4382 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4383 					0x3ffffff);
4384 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4385 					config->tti.rtimer_val);
4386 		}
4387 
4388 		if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4389 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4390 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4391 		}
4392 
4393 		if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4394 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4395 					0x3ffffff);
4396 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4397 					config->tti.ltimer_val);
4398 		}
4399 
4400 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4401 		vpath->tim_tti_cfg3_saved = val64;
4402 	}
4403 
4404 	if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4405 
4406 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4407 
4408 		if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4409 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4410 					0x3ffffff);
4411 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4412 					config->rti.btimer_val);
4413 		}
4414 
4415 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4416 
4417 		if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4418 			if (config->rti.timer_ac_en)
4419 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4420 			else
4421 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4422 		}
4423 
4424 		if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4425 			if (config->rti.timer_ci_en)
4426 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4427 			else
4428 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4429 		}
4430 
4431 		if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4432 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4433 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4434 					config->rti.urange_a);
4435 		}
4436 
4437 		if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4438 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4439 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4440 					config->rti.urange_b);
4441 		}
4442 
4443 		if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4444 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4445 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4446 					config->rti.urange_c);
4447 		}
4448 
4449 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4450 		vpath->tim_rti_cfg1_saved = val64;
4451 
4452 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4453 
4454 		if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4455 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4456 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4457 						config->rti.uec_a);
4458 		}
4459 
4460 		if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4461 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4462 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4463 						config->rti.uec_b);
4464 		}
4465 
4466 		if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4467 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4468 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4469 						config->rti.uec_c);
4470 		}
4471 
4472 		if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4473 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4474 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4475 						config->rti.uec_d);
4476 		}
4477 
4478 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4479 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4480 
4481 		if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4482 			if (config->rti.timer_ri_en)
4483 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4484 			else
4485 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4486 		}
4487 
4488 		if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4489 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4490 					0x3ffffff);
4491 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4492 					config->rti.rtimer_val);
4493 		}
4494 
4495 		if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4496 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4497 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4498 		}
4499 
4500 		if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4501 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4502 					0x3ffffff);
4503 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4504 					config->rti.ltimer_val);
4505 		}
4506 
4507 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4508 		vpath->tim_rti_cfg3_saved = val64;
4509 	}
4510 
4511 	val64 = 0;
4512 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4513 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4514 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4515 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4516 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4517 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4518 
4519 	val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4520 	val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4521 	val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4522 	writeq(val64, &vp_reg->tim_wrkld_clc);
4523 
4524 	return VXGE_HW_OK;
4525 }
4526 
4527 /*
4528  * __vxge_hw_vpath_initialize
4529  * This routine is the final phase of init which initializes the
4530  * registers of the vpath using the configuration passed.
4531  */
4532 static enum vxge_hw_status
__vxge_hw_vpath_initialize(struct __vxge_hw_device * hldev,u32 vp_id)4533 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4534 {
4535 	u64 val64;
4536 	u32 val32;
4537 	enum vxge_hw_status status = VXGE_HW_OK;
4538 	struct __vxge_hw_virtualpath *vpath;
4539 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4540 
4541 	vpath = &hldev->virtual_paths[vp_id];
4542 
4543 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4544 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4545 		goto exit;
4546 	}
4547 	vp_reg = vpath->vp_reg;
4548 
4549 	status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4550 	if (status != VXGE_HW_OK)
4551 		goto exit;
4552 
4553 	status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4554 	if (status != VXGE_HW_OK)
4555 		goto exit;
4556 
4557 	status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4558 	if (status != VXGE_HW_OK)
4559 		goto exit;
4560 
4561 	status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4562 	if (status != VXGE_HW_OK)
4563 		goto exit;
4564 
4565 	val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4566 
4567 	/* Get MRRS value from device control */
4568 	status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4569 	if (status == VXGE_HW_OK) {
4570 		val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4571 		val64 &=
4572 		    ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4573 		val64 |=
4574 		    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4575 
4576 		val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4577 	}
4578 
4579 	val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4580 	val64 |=
4581 	    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4582 		    VXGE_HW_MAX_PAYLOAD_SIZE_512);
4583 
4584 	val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4585 	writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4586 
4587 exit:
4588 	return status;
4589 }
4590 
4591 /*
4592  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4593  * This routine closes all channels it opened and freeup memory
4594  */
__vxge_hw_vp_terminate(struct __vxge_hw_device * hldev,u32 vp_id)4595 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4596 {
4597 	struct __vxge_hw_virtualpath *vpath;
4598 
4599 	vpath = &hldev->virtual_paths[vp_id];
4600 
4601 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4602 		goto exit;
4603 
4604 	VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4605 		vpath->hldev->tim_int_mask1, vpath->vp_id);
4606 	hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4607 
4608 	/* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4609 	 * work after the interface is brought down.
4610 	 */
4611 	spin_lock(&vpath->lock);
4612 	vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4613 	spin_unlock(&vpath->lock);
4614 
4615 	vpath->vpmgmt_reg = NULL;
4616 	vpath->nofl_db = NULL;
4617 	vpath->max_mtu = 0;
4618 	vpath->vsport_number = 0;
4619 	vpath->max_kdfc_db = 0;
4620 	vpath->max_nofl_db = 0;
4621 	vpath->ringh = NULL;
4622 	vpath->fifoh = NULL;
4623 	memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4624 	vpath->stats_block = NULL;
4625 	vpath->hw_stats = NULL;
4626 	vpath->hw_stats_sav = NULL;
4627 	vpath->sw_stats = NULL;
4628 
4629 exit:
4630 	return;
4631 }
4632 
4633 /*
4634  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4635  * This routine is the initial phase of init which resets the vpath and
4636  * initializes the software support structures.
4637  */
4638 static enum vxge_hw_status
__vxge_hw_vp_initialize(struct __vxge_hw_device * hldev,u32 vp_id,struct vxge_hw_vp_config * config)4639 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4640 			struct vxge_hw_vp_config *config)
4641 {
4642 	struct __vxge_hw_virtualpath *vpath;
4643 	enum vxge_hw_status status = VXGE_HW_OK;
4644 
4645 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4646 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4647 		goto exit;
4648 	}
4649 
4650 	vpath = &hldev->virtual_paths[vp_id];
4651 
4652 	spin_lock_init(&vpath->lock);
4653 	vpath->vp_id = vp_id;
4654 	vpath->vp_open = VXGE_HW_VP_OPEN;
4655 	vpath->hldev = hldev;
4656 	vpath->vp_config = config;
4657 	vpath->vp_reg = hldev->vpath_reg[vp_id];
4658 	vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4659 
4660 	__vxge_hw_vpath_reset(hldev, vp_id);
4661 
4662 	status = __vxge_hw_vpath_reset_check(vpath);
4663 	if (status != VXGE_HW_OK) {
4664 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4665 		goto exit;
4666 	}
4667 
4668 	status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4669 	if (status != VXGE_HW_OK) {
4670 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4671 		goto exit;
4672 	}
4673 
4674 	INIT_LIST_HEAD(&vpath->vpath_handles);
4675 
4676 	vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4677 
4678 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4679 		hldev->tim_int_mask1, vp_id);
4680 
4681 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
4682 	if (status != VXGE_HW_OK)
4683 		__vxge_hw_vp_terminate(hldev, vp_id);
4684 exit:
4685 	return status;
4686 }
4687 
4688 /*
4689  * vxge_hw_vpath_mtu_set - Set MTU.
4690  * Set new MTU value. Example, to use jumbo frames:
4691  * vxge_hw_vpath_mtu_set(my_device, 9600);
4692  */
4693 enum vxge_hw_status
vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle * vp,u32 new_mtu)4694 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4695 {
4696 	u64 val64;
4697 	enum vxge_hw_status status = VXGE_HW_OK;
4698 	struct __vxge_hw_virtualpath *vpath;
4699 
4700 	if (vp == NULL) {
4701 		status = VXGE_HW_ERR_INVALID_HANDLE;
4702 		goto exit;
4703 	}
4704 	vpath = vp->vpath;
4705 
4706 	new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4707 
4708 	if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4709 		status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4710 
4711 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4712 
4713 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4714 	val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4715 
4716 	writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4717 
4718 	vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4719 
4720 exit:
4721 	return status;
4722 }
4723 
4724 /*
4725  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4726  * Enable the DMA vpath statistics. The function is to be called to re-enable
4727  * the adapter to update stats into the host memory
4728  */
4729 static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle * vp)4730 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4731 {
4732 	enum vxge_hw_status status = VXGE_HW_OK;
4733 	struct __vxge_hw_virtualpath *vpath;
4734 
4735 	vpath = vp->vpath;
4736 
4737 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4738 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4739 		goto exit;
4740 	}
4741 
4742 	memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4743 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4744 
4745 	status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4746 exit:
4747 	return status;
4748 }
4749 
4750 /*
4751  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4752  * This function allocates a block from block pool or from the system
4753  */
4754 static struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device * devh,u32 size)4755 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4756 {
4757 	struct __vxge_hw_blockpool_entry *entry = NULL;
4758 	struct __vxge_hw_blockpool  *blockpool;
4759 
4760 	blockpool = &devh->block_pool;
4761 
4762 	if (size == blockpool->block_size) {
4763 
4764 		if (!list_empty(&blockpool->free_block_list))
4765 			entry = (struct __vxge_hw_blockpool_entry *)
4766 				list_first_entry(&blockpool->free_block_list,
4767 					struct __vxge_hw_blockpool_entry,
4768 					item);
4769 
4770 		if (entry != NULL) {
4771 			list_del(&entry->item);
4772 			blockpool->pool_size--;
4773 		}
4774 	}
4775 
4776 	if (entry != NULL)
4777 		__vxge_hw_blockpool_blocks_add(blockpool);
4778 
4779 	return entry;
4780 }
4781 
4782 /*
4783  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4784  * This function is used to open access to virtual path of an
4785  * adapter for offload, GRO operations. This function returns
4786  * synchronously.
4787  */
4788 enum vxge_hw_status
vxge_hw_vpath_open(struct __vxge_hw_device * hldev,struct vxge_hw_vpath_attr * attr,struct __vxge_hw_vpath_handle ** vpath_handle)4789 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4790 		   struct vxge_hw_vpath_attr *attr,
4791 		   struct __vxge_hw_vpath_handle **vpath_handle)
4792 {
4793 	struct __vxge_hw_virtualpath *vpath;
4794 	struct __vxge_hw_vpath_handle *vp;
4795 	enum vxge_hw_status status;
4796 
4797 	vpath = &hldev->virtual_paths[attr->vp_id];
4798 
4799 	if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4800 		status = VXGE_HW_ERR_INVALID_STATE;
4801 		goto vpath_open_exit1;
4802 	}
4803 
4804 	status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4805 			&hldev->config.vp_config[attr->vp_id]);
4806 	if (status != VXGE_HW_OK)
4807 		goto vpath_open_exit1;
4808 
4809 	vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4810 	if (vp == NULL) {
4811 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4812 		goto vpath_open_exit2;
4813 	}
4814 
4815 	vp->vpath = vpath;
4816 
4817 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4818 		status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4819 		if (status != VXGE_HW_OK)
4820 			goto vpath_open_exit6;
4821 	}
4822 
4823 	if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4824 		status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4825 		if (status != VXGE_HW_OK)
4826 			goto vpath_open_exit7;
4827 
4828 		__vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4829 	}
4830 
4831 	vpath->fifoh->tx_intr_num =
4832 		(attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4833 			VXGE_HW_VPATH_INTR_TX;
4834 
4835 	vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4836 				VXGE_HW_BLOCK_SIZE);
4837 	if (vpath->stats_block == NULL) {
4838 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4839 		goto vpath_open_exit8;
4840 	}
4841 
4842 	vpath->hw_stats = vpath->stats_block->memblock;
4843 	memset(vpath->hw_stats, 0,
4844 		sizeof(struct vxge_hw_vpath_stats_hw_info));
4845 
4846 	hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4847 						vpath->hw_stats;
4848 
4849 	vpath->hw_stats_sav =
4850 		&hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4851 	memset(vpath->hw_stats_sav, 0,
4852 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4853 
4854 	writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4855 
4856 	status = vxge_hw_vpath_stats_enable(vp);
4857 	if (status != VXGE_HW_OK)
4858 		goto vpath_open_exit8;
4859 
4860 	list_add(&vp->item, &vpath->vpath_handles);
4861 
4862 	hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4863 
4864 	*vpath_handle = vp;
4865 
4866 	attr->fifo_attr.userdata = vpath->fifoh;
4867 	attr->ring_attr.userdata = vpath->ringh;
4868 
4869 	return VXGE_HW_OK;
4870 
4871 vpath_open_exit8:
4872 	if (vpath->ringh != NULL)
4873 		__vxge_hw_ring_delete(vp);
4874 vpath_open_exit7:
4875 	if (vpath->fifoh != NULL)
4876 		__vxge_hw_fifo_delete(vp);
4877 vpath_open_exit6:
4878 	vfree(vp);
4879 vpath_open_exit2:
4880 	__vxge_hw_vp_terminate(hldev, attr->vp_id);
4881 vpath_open_exit1:
4882 
4883 	return status;
4884 }
4885 
4886 /**
4887  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4888  * (vpath) open
4889  * @vp: Handle got from previous vpath open
4890  *
4891  * This function is used to close access to virtual path opened
4892  * earlier.
4893  */
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle * vp)4894 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4895 {
4896 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
4897 	struct __vxge_hw_ring *ring = vpath->ringh;
4898 	struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4899 	u64 new_count, val64, val164;
4900 
4901 	if (vdev->titan1) {
4902 		new_count = readq(&vpath->vp_reg->rxdmem_size);
4903 		new_count &= 0x1fff;
4904 	} else
4905 		new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4906 
4907 	val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4908 
4909 	writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4910 		&vpath->vp_reg->prc_rxd_doorbell);
4911 	readl(&vpath->vp_reg->prc_rxd_doorbell);
4912 
4913 	val164 /= 2;
4914 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4915 	val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4916 	val64 &= 0x1ff;
4917 
4918 	/*
4919 	 * Each RxD is of 4 qwords
4920 	 */
4921 	new_count -= (val64 + 1);
4922 	val64 = min(val164, new_count) / 4;
4923 
4924 	ring->rxds_limit = min(ring->rxds_limit, val64);
4925 	if (ring->rxds_limit < 4)
4926 		ring->rxds_limit = 4;
4927 }
4928 
4929 /*
4930  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4931  * @devh: Hal device
4932  * @entry: Entry of block to be freed
4933  *
4934  * This function frees a block from block pool
4935  */
4936 static void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device * devh,struct __vxge_hw_blockpool_entry * entry)4937 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4938 			       struct __vxge_hw_blockpool_entry *entry)
4939 {
4940 	struct __vxge_hw_blockpool  *blockpool;
4941 
4942 	blockpool = &devh->block_pool;
4943 
4944 	if (entry->length == blockpool->block_size) {
4945 		list_add(&entry->item, &blockpool->free_block_list);
4946 		blockpool->pool_size++;
4947 	}
4948 
4949 	__vxge_hw_blockpool_blocks_remove(blockpool);
4950 }
4951 
4952 /*
4953  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4954  * This function is used to close access to virtual path opened
4955  * earlier.
4956  */
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle * vp)4957 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4958 {
4959 	struct __vxge_hw_virtualpath *vpath = NULL;
4960 	struct __vxge_hw_device *devh = NULL;
4961 	u32 vp_id = vp->vpath->vp_id;
4962 	u32 is_empty = TRUE;
4963 	enum vxge_hw_status status = VXGE_HW_OK;
4964 
4965 	vpath = vp->vpath;
4966 	devh = vpath->hldev;
4967 
4968 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4969 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4970 		goto vpath_close_exit;
4971 	}
4972 
4973 	list_del(&vp->item);
4974 
4975 	if (!list_empty(&vpath->vpath_handles)) {
4976 		list_add(&vp->item, &vpath->vpath_handles);
4977 		is_empty = FALSE;
4978 	}
4979 
4980 	if (!is_empty) {
4981 		status = VXGE_HW_FAIL;
4982 		goto vpath_close_exit;
4983 	}
4984 
4985 	devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4986 
4987 	if (vpath->ringh != NULL)
4988 		__vxge_hw_ring_delete(vp);
4989 
4990 	if (vpath->fifoh != NULL)
4991 		__vxge_hw_fifo_delete(vp);
4992 
4993 	if (vpath->stats_block != NULL)
4994 		__vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4995 
4996 	vfree(vp);
4997 
4998 	__vxge_hw_vp_terminate(devh, vp_id);
4999 
5000 vpath_close_exit:
5001 	return status;
5002 }
5003 
5004 /*
5005  * vxge_hw_vpath_reset - Resets vpath
5006  * This function is used to request a reset of vpath
5007  */
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle * vp)5008 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5009 {
5010 	enum vxge_hw_status status;
5011 	u32 vp_id;
5012 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
5013 
5014 	vp_id = vpath->vp_id;
5015 
5016 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5017 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5018 		goto exit;
5019 	}
5020 
5021 	status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5022 	if (status == VXGE_HW_OK)
5023 		vpath->sw_stats->soft_reset_cnt++;
5024 exit:
5025 	return status;
5026 }
5027 
5028 /*
5029  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5030  * This function poll's for the vpath reset completion and re initializes
5031  * the vpath.
5032  */
5033 enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle * vp)5034 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5035 {
5036 	struct __vxge_hw_virtualpath *vpath = NULL;
5037 	enum vxge_hw_status status;
5038 	struct __vxge_hw_device *hldev;
5039 	u32 vp_id;
5040 
5041 	vp_id = vp->vpath->vp_id;
5042 	vpath = vp->vpath;
5043 	hldev = vpath->hldev;
5044 
5045 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5046 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5047 		goto exit;
5048 	}
5049 
5050 	status = __vxge_hw_vpath_reset_check(vpath);
5051 	if (status != VXGE_HW_OK)
5052 		goto exit;
5053 
5054 	status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5055 	if (status != VXGE_HW_OK)
5056 		goto exit;
5057 
5058 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
5059 	if (status != VXGE_HW_OK)
5060 		goto exit;
5061 
5062 	if (vpath->ringh != NULL)
5063 		__vxge_hw_vpath_prc_configure(hldev, vp_id);
5064 
5065 	memset(vpath->hw_stats, 0,
5066 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5067 
5068 	memset(vpath->hw_stats_sav, 0,
5069 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5070 
5071 	writeq(vpath->stats_block->dma_addr,
5072 		&vpath->vp_reg->stats_cfg);
5073 
5074 	status = vxge_hw_vpath_stats_enable(vp);
5075 
5076 exit:
5077 	return status;
5078 }
5079 
5080 /*
5081  * vxge_hw_vpath_enable - Enable vpath.
5082  * This routine clears the vpath reset thereby enabling a vpath
5083  * to start forwarding frames and generating interrupts.
5084  */
5085 void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle * vp)5086 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5087 {
5088 	struct __vxge_hw_device *hldev;
5089 	u64 val64;
5090 
5091 	hldev = vp->vpath->hldev;
5092 
5093 	val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5094 		1 << (16 - vp->vpath->vp_id));
5095 
5096 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5097 		&hldev->common_reg->cmn_rsthdlr_cfg1);
5098 }
5099