• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 	if (!alpha2_x || !alpha2_y)
394 		return false;
395 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397 
regdom_changes(const char * alpha2)398 static bool regdom_changes(const char *alpha2)
399 {
400 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401 
402 	if (!r)
403 		return true;
404 	return !alpha2_equal(r->alpha2, alpha2);
405 }
406 
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
is_user_regdom_saved(void)412 static bool is_user_regdom_saved(void)
413 {
414 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 		return false;
416 
417 	/* This would indicate a mistake on the design */
418 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 		 "Unexpected user alpha2: %c%c\n",
420 		 user_alpha2[0], user_alpha2[1]))
421 		return false;
422 
423 	return true;
424 }
425 
426 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 	struct ieee80211_regdomain *regd;
430 	unsigned int i;
431 
432 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 		       GFP_KERNEL);
434 	if (!regd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438 
439 	for (i = 0; i < src_regd->n_reg_rules; i++)
440 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 		       sizeof(struct ieee80211_reg_rule));
442 
443 	return regd;
444 }
445 
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 	ASSERT_RTNL();
449 
450 	if (!IS_ERR(cfg80211_user_regdom))
451 		kfree(cfg80211_user_regdom);
452 	cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454 
455 struct reg_regdb_apply_request {
456 	struct list_head list;
457 	const struct ieee80211_regdomain *regdom;
458 };
459 
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462 
reg_regdb_apply(struct work_struct * work)463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 	struct reg_regdb_apply_request *request;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_apply_mutex);
470 	while (!list_empty(&reg_regdb_apply_list)) {
471 		request = list_first_entry(&reg_regdb_apply_list,
472 					   struct reg_regdb_apply_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 		kfree(request);
478 	}
479 	mutex_unlock(&reg_regdb_apply_mutex);
480 
481 	rtnl_unlock();
482 }
483 
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485 
reg_schedule_apply(const struct ieee80211_regdomain * regdom)486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 	if (!request) {
492 		kfree(regdom);
493 		return -ENOMEM;
494 	}
495 
496 	request->regdom = regdom;
497 
498 	mutex_lock(&reg_regdb_apply_mutex);
499 	list_add_tail(&request->list, &reg_regdb_apply_list);
500 	mutex_unlock(&reg_regdb_apply_mutex);
501 
502 	schedule_work(&reg_regdb_work);
503 	return 0;
504 }
505 
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509 
510 static u32 reg_crda_timeouts;
511 
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514 
crda_timeout_work(struct work_struct * work)515 static void crda_timeout_work(struct work_struct *work)
516 {
517 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 	rtnl_lock();
519 	reg_crda_timeouts++;
520 	restore_regulatory_settings(true, false);
521 	rtnl_unlock();
522 }
523 
cancel_crda_timeout(void)524 static void cancel_crda_timeout(void)
525 {
526 	cancel_delayed_work(&crda_timeout);
527 }
528 
cancel_crda_timeout_sync(void)529 static void cancel_crda_timeout_sync(void)
530 {
531 	cancel_delayed_work_sync(&crda_timeout);
532 }
533 
reset_crda_timeouts(void)534 static void reset_crda_timeouts(void)
535 {
536 	reg_crda_timeouts = 0;
537 }
538 
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
call_crda(const char * alpha2)543 static int call_crda(const char *alpha2)
544 {
545 	char country[12];
546 	char *env[] = { country, NULL };
547 	int ret;
548 
549 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 		 alpha2[0], alpha2[1]);
551 
552 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 		return -EINVAL;
555 	}
556 
557 	if (!is_world_regdom((char *) alpha2))
558 		pr_debug("Calling CRDA for country: %c%c\n",
559 			 alpha2[0], alpha2[1]);
560 	else
561 		pr_debug("Calling CRDA to update world regulatory domain\n");
562 
563 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 	if (ret)
565 		return ret;
566 
567 	queue_delayed_work(system_power_efficient_wq,
568 			   &crda_timeout, msecs_to_jiffies(3142));
569 	return 0;
570 }
571 #else
cancel_crda_timeout(void)572 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)573 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)574 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)575 static inline int call_crda(const char *alpha2)
576 {
577 	return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580 
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583 
584 struct fwdb_country {
585 	u8 alpha2[2];
586 	__be16 coll_ptr;
587 	/* this struct cannot be extended */
588 } __packed __aligned(4);
589 
590 struct fwdb_collection {
591 	u8 len;
592 	u8 n_rules;
593 	u8 dfs_region;
594 	/* no optional data yet */
595 	/* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597 
598 enum fwdb_flags {
599 	FWDB_FLAG_NO_OFDM	= BIT(0),
600 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
601 	FWDB_FLAG_DFS		= BIT(2),
602 	FWDB_FLAG_NO_IR		= BIT(3),
603 	FWDB_FLAG_AUTO_BW	= BIT(4),
604 };
605 
606 struct fwdb_wmm_ac {
607 	u8 ecw;
608 	u8 aifsn;
609 	__be16 cot;
610 } __packed;
611 
612 struct fwdb_wmm_rule {
613 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616 
617 struct fwdb_rule {
618 	u8 len;
619 	u8 flags;
620 	__be16 max_eirp;
621 	__be32 start, end, max_bw;
622 	/* start of optional data */
623 	__be16 cac_timeout;
624 	__be16 wmm_ptr;
625 } __packed __aligned(4);
626 
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629 
630 struct fwdb_header {
631 	__be32 magic;
632 	__be32 version;
633 	struct fwdb_country country[];
634 } __packed __aligned(4);
635 
ecw2cw(int ecw)636 static int ecw2cw(int ecw)
637 {
638 	return (1 << ecw) - 1;
639 }
640 
valid_wmm(struct fwdb_wmm_rule * rule)641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 	int i;
645 
646 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 		u8 aifsn = ac[i].aifsn;
650 
651 		if (cw_min >= cw_max)
652 			return false;
653 
654 		if (aifsn < 1)
655 			return false;
656 	}
657 
658 	return true;
659 }
660 
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664 
665 	if ((u8 *)rule + sizeof(rule->len) > data + size)
666 		return false;
667 
668 	/* mandatory fields */
669 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 		return false;
671 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 		struct fwdb_wmm_rule *wmm;
674 
675 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 			return false;
677 
678 		wmm = (void *)(data + wmm_ptr);
679 
680 		if (!valid_wmm(wmm))
681 			return false;
682 	}
683 	return true;
684 }
685 
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)686 static bool valid_country(const u8 *data, unsigned int size,
687 			  const struct fwdb_country *country)
688 {
689 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 	struct fwdb_collection *coll = (void *)(data + ptr);
691 	__be16 *rules_ptr;
692 	unsigned int i;
693 
694 	/* make sure we can read len/n_rules */
695 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 		return false;
697 
698 	/* make sure base struct and all rules fit */
699 	if ((u8 *)coll + ALIGN(coll->len, 2) +
700 	    (coll->n_rules * 2) > data + size)
701 		return false;
702 
703 	/* mandatory fields must exist */
704 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 		return false;
706 
707 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708 
709 	for (i = 0; i < coll->n_rules; i++) {
710 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711 
712 		if (!valid_rule(data, size, rule_ptr))
713 			return false;
714 	}
715 
716 	return true;
717 }
718 
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721 
load_keys_from_buffer(const u8 * p,unsigned int buflen)722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 	const u8 *end = p + buflen;
725 	size_t plen;
726 	key_ref_t key;
727 
728 	while (p < end) {
729 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 		 * than 256 bytes in size.
731 		 */
732 		if (end - p < 4)
733 			goto dodgy_cert;
734 		if (p[0] != 0x30 &&
735 		    p[1] != 0x82)
736 			goto dodgy_cert;
737 		plen = (p[2] << 8) | p[3];
738 		plen += 4;
739 		if (plen > end - p)
740 			goto dodgy_cert;
741 
742 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 					   "asymmetric", NULL, p, plen,
744 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 					    KEY_USR_VIEW | KEY_USR_READ),
746 					   KEY_ALLOC_NOT_IN_QUOTA |
747 					   KEY_ALLOC_BUILT_IN |
748 					   KEY_ALLOC_BYPASS_RESTRICTION);
749 		if (IS_ERR(key)) {
750 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 			       PTR_ERR(key));
752 		} else {
753 			pr_notice("Loaded X.509 cert '%s'\n",
754 				  key_ref_to_ptr(key)->description);
755 			key_ref_put(key);
756 		}
757 		p += plen;
758 	}
759 
760 	return;
761 
762 dodgy_cert:
763 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765 
load_builtin_regdb_keys(void)766 static int __init load_builtin_regdb_keys(void)
767 {
768 	builtin_regdb_keys =
769 		keyring_alloc(".builtin_regdb_keys",
770 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 	if (IS_ERR(builtin_regdb_keys))
775 		return PTR_ERR(builtin_regdb_keys);
776 
777 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778 
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786 
787 	return 0;
788 }
789 
790 MODULE_FIRMWARE("regulatory.db.p7s");
791 
regdb_has_valid_signature(const u8 * data,unsigned int size)792 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
793 {
794 	const struct firmware *sig;
795 	bool result;
796 
797 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
798 		return false;
799 
800 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
801 					builtin_regdb_keys,
802 					VERIFYING_UNSPECIFIED_SIGNATURE,
803 					NULL, NULL) == 0;
804 
805 	release_firmware(sig);
806 
807 	return result;
808 }
809 
free_regdb_keyring(void)810 static void free_regdb_keyring(void)
811 {
812 	key_put(builtin_regdb_keys);
813 }
814 #else
load_builtin_regdb_keys(void)815 static int load_builtin_regdb_keys(void)
816 {
817 	return 0;
818 }
819 
regdb_has_valid_signature(const u8 * data,unsigned int size)820 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
821 {
822 	return true;
823 }
824 
free_regdb_keyring(void)825 static void free_regdb_keyring(void)
826 {
827 }
828 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
829 
valid_regdb(const u8 * data,unsigned int size)830 static bool valid_regdb(const u8 *data, unsigned int size)
831 {
832 	const struct fwdb_header *hdr = (void *)data;
833 	const struct fwdb_country *country;
834 
835 	if (size < sizeof(*hdr))
836 		return false;
837 
838 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
839 		return false;
840 
841 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
842 		return false;
843 
844 	if (!regdb_has_valid_signature(data, size))
845 		return false;
846 
847 	country = &hdr->country[0];
848 	while ((u8 *)(country + 1) <= data + size) {
849 		if (!country->coll_ptr)
850 			break;
851 		if (!valid_country(data, size, country))
852 			return false;
853 		country++;
854 	}
855 
856 	return true;
857 }
858 
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)859 static void set_wmm_rule(const struct fwdb_header *db,
860 			 const struct fwdb_country *country,
861 			 const struct fwdb_rule *rule,
862 			 struct ieee80211_reg_rule *rrule)
863 {
864 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
865 	struct fwdb_wmm_rule *wmm;
866 	unsigned int i, wmm_ptr;
867 
868 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
869 	wmm = (void *)((u8 *)db + wmm_ptr);
870 
871 	if (!valid_wmm(wmm)) {
872 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
873 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
874 		       country->alpha2[0], country->alpha2[1]);
875 		return;
876 	}
877 
878 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
879 		wmm_rule->client[i].cw_min =
880 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
881 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
882 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
883 		wmm_rule->client[i].cot =
884 			1000 * be16_to_cpu(wmm->client[i].cot);
885 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
886 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
887 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
888 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
889 	}
890 
891 	rrule->has_wmm = true;
892 }
893 
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)894 static int __regdb_query_wmm(const struct fwdb_header *db,
895 			     const struct fwdb_country *country, int freq,
896 			     struct ieee80211_reg_rule *rrule)
897 {
898 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
899 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
900 	int i;
901 
902 	for (i = 0; i < coll->n_rules; i++) {
903 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
904 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
905 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
906 
907 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
908 			continue;
909 
910 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
911 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
912 			set_wmm_rule(db, country, rule, rrule);
913 			return 0;
914 		}
915 	}
916 
917 	return -ENODATA;
918 }
919 
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)920 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
921 {
922 	const struct fwdb_header *hdr = regdb;
923 	const struct fwdb_country *country;
924 
925 	if (!regdb)
926 		return -ENODATA;
927 
928 	if (IS_ERR(regdb))
929 		return PTR_ERR(regdb);
930 
931 	country = &hdr->country[0];
932 	while (country->coll_ptr) {
933 		if (alpha2_equal(alpha2, country->alpha2))
934 			return __regdb_query_wmm(regdb, country, freq, rule);
935 
936 		country++;
937 	}
938 
939 	return -ENODATA;
940 }
941 EXPORT_SYMBOL(reg_query_regdb_wmm);
942 
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)943 static int regdb_query_country(const struct fwdb_header *db,
944 			       const struct fwdb_country *country)
945 {
946 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
947 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
948 	struct ieee80211_regdomain *regdom;
949 	unsigned int i;
950 
951 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
952 			 GFP_KERNEL);
953 	if (!regdom)
954 		return -ENOMEM;
955 
956 	regdom->n_reg_rules = coll->n_rules;
957 	regdom->alpha2[0] = country->alpha2[0];
958 	regdom->alpha2[1] = country->alpha2[1];
959 	regdom->dfs_region = coll->dfs_region;
960 
961 	for (i = 0; i < regdom->n_reg_rules; i++) {
962 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
963 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
964 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
965 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
966 
967 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
968 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
969 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
970 
971 		rrule->power_rule.max_antenna_gain = 0;
972 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
973 
974 		rrule->flags = 0;
975 		if (rule->flags & FWDB_FLAG_NO_OFDM)
976 			rrule->flags |= NL80211_RRF_NO_OFDM;
977 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
978 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
979 		if (rule->flags & FWDB_FLAG_DFS)
980 			rrule->flags |= NL80211_RRF_DFS;
981 		if (rule->flags & FWDB_FLAG_NO_IR)
982 			rrule->flags |= NL80211_RRF_NO_IR;
983 		if (rule->flags & FWDB_FLAG_AUTO_BW)
984 			rrule->flags |= NL80211_RRF_AUTO_BW;
985 
986 		rrule->dfs_cac_ms = 0;
987 
988 		/* handle optional data */
989 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
990 			rrule->dfs_cac_ms =
991 				1000 * be16_to_cpu(rule->cac_timeout);
992 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
993 			set_wmm_rule(db, country, rule, rrule);
994 	}
995 
996 	return reg_schedule_apply(regdom);
997 }
998 
query_regdb(const char * alpha2)999 static int query_regdb(const char *alpha2)
1000 {
1001 	const struct fwdb_header *hdr = regdb;
1002 	const struct fwdb_country *country;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	if (IS_ERR(regdb))
1007 		return PTR_ERR(regdb);
1008 
1009 	country = &hdr->country[0];
1010 	while (country->coll_ptr) {
1011 		if (alpha2_equal(alpha2, country->alpha2))
1012 			return regdb_query_country(regdb, country);
1013 		country++;
1014 	}
1015 
1016 	return -ENODATA;
1017 }
1018 
regdb_fw_cb(const struct firmware * fw,void * context)1019 static void regdb_fw_cb(const struct firmware *fw, void *context)
1020 {
1021 	int set_error = 0;
1022 	bool restore = true;
1023 	void *db;
1024 
1025 	if (!fw) {
1026 		pr_info("failed to load regulatory.db\n");
1027 		set_error = -ENODATA;
1028 	} else if (!valid_regdb(fw->data, fw->size)) {
1029 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1030 		set_error = -EINVAL;
1031 	}
1032 
1033 	rtnl_lock();
1034 	if (regdb && !IS_ERR(regdb)) {
1035 		/* negative case - a bug
1036 		 * positive case - can happen due to race in case of multiple cb's in
1037 		 * queue, due to usage of asynchronous callback
1038 		 *
1039 		 * Either case, just restore and free new db.
1040 		 */
1041 	} else if (set_error) {
1042 		regdb = ERR_PTR(set_error);
1043 	} else if (fw) {
1044 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1045 		if (db) {
1046 			regdb = db;
1047 			restore = context && query_regdb(context);
1048 		} else {
1049 			restore = true;
1050 		}
1051 	}
1052 
1053 	if (restore)
1054 		restore_regulatory_settings(true, false);
1055 
1056 	rtnl_unlock();
1057 
1058 	kfree(context);
1059 
1060 	release_firmware(fw);
1061 }
1062 
1063 MODULE_FIRMWARE("regulatory.db");
1064 
query_regdb_file(const char * alpha2)1065 static int query_regdb_file(const char *alpha2)
1066 {
1067 	int err;
1068 
1069 	ASSERT_RTNL();
1070 
1071 	if (regdb)
1072 		return query_regdb(alpha2);
1073 
1074 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075 	if (!alpha2)
1076 		return -ENOMEM;
1077 
1078 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079 				      &reg_pdev->dev, GFP_KERNEL,
1080 				      (void *)alpha2, regdb_fw_cb);
1081 	if (err)
1082 		kfree(alpha2);
1083 
1084 	return err;
1085 }
1086 
reg_reload_regdb(void)1087 int reg_reload_regdb(void)
1088 {
1089 	const struct firmware *fw;
1090 	void *db;
1091 	int err;
1092 
1093 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1094 	if (err)
1095 		return err;
1096 
1097 	if (!valid_regdb(fw->data, fw->size)) {
1098 		err = -ENODATA;
1099 		goto out;
1100 	}
1101 
1102 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1103 	if (!db) {
1104 		err = -ENOMEM;
1105 		goto out;
1106 	}
1107 
1108 	rtnl_lock();
1109 	if (!IS_ERR_OR_NULL(regdb))
1110 		kfree(regdb);
1111 	regdb = db;
1112 	rtnl_unlock();
1113 
1114  out:
1115 	release_firmware(fw);
1116 	return err;
1117 }
1118 
reg_query_database(struct regulatory_request * request)1119 static bool reg_query_database(struct regulatory_request *request)
1120 {
1121 	if (query_regdb_file(request->alpha2) == 0)
1122 		return true;
1123 
1124 	if (call_crda(request->alpha2) == 0)
1125 		return true;
1126 
1127 	return false;
1128 }
1129 
reg_is_valid_request(const char * alpha2)1130 bool reg_is_valid_request(const char *alpha2)
1131 {
1132 	struct regulatory_request *lr = get_last_request();
1133 
1134 	if (!lr || lr->processed)
1135 		return false;
1136 
1137 	return alpha2_equal(lr->alpha2, alpha2);
1138 }
1139 
reg_get_regdomain(struct wiphy * wiphy)1140 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1141 {
1142 	struct regulatory_request *lr = get_last_request();
1143 
1144 	/*
1145 	 * Follow the driver's regulatory domain, if present, unless a country
1146 	 * IE has been processed or a user wants to help complaince further
1147 	 */
1148 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1149 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1150 	    wiphy->regd)
1151 		return get_wiphy_regdom(wiphy);
1152 
1153 	return get_cfg80211_regdom();
1154 }
1155 
1156 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1157 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1158 				 const struct ieee80211_reg_rule *rule)
1159 {
1160 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1161 	const struct ieee80211_freq_range *freq_range_tmp;
1162 	const struct ieee80211_reg_rule *tmp;
1163 	u32 start_freq, end_freq, idx, no;
1164 
1165 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1166 		if (rule == &rd->reg_rules[idx])
1167 			break;
1168 
1169 	if (idx == rd->n_reg_rules)
1170 		return 0;
1171 
1172 	/* get start_freq */
1173 	no = idx;
1174 
1175 	while (no) {
1176 		tmp = &rd->reg_rules[--no];
1177 		freq_range_tmp = &tmp->freq_range;
1178 
1179 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1180 			break;
1181 
1182 		freq_range = freq_range_tmp;
1183 	}
1184 
1185 	start_freq = freq_range->start_freq_khz;
1186 
1187 	/* get end_freq */
1188 	freq_range = &rule->freq_range;
1189 	no = idx;
1190 
1191 	while (no < rd->n_reg_rules - 1) {
1192 		tmp = &rd->reg_rules[++no];
1193 		freq_range_tmp = &tmp->freq_range;
1194 
1195 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1196 			break;
1197 
1198 		freq_range = freq_range_tmp;
1199 	}
1200 
1201 	end_freq = freq_range->end_freq_khz;
1202 
1203 	return end_freq - start_freq;
1204 }
1205 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1206 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1207 				   const struct ieee80211_reg_rule *rule)
1208 {
1209 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1210 
1211 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1212 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1213 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1215 
1216 	/*
1217 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1218 	 * are not allowed.
1219 	 */
1220 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1221 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1222 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1223 
1224 	return bw;
1225 }
1226 
1227 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1228 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1229 {
1230 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1231 	u32 freq_diff;
1232 
1233 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1234 		return false;
1235 
1236 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1237 		return false;
1238 
1239 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1240 
1241 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1242 	    freq_range->max_bandwidth_khz > freq_diff)
1243 		return false;
1244 
1245 	return true;
1246 }
1247 
is_valid_rd(const struct ieee80211_regdomain * rd)1248 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1249 {
1250 	const struct ieee80211_reg_rule *reg_rule = NULL;
1251 	unsigned int i;
1252 
1253 	if (!rd->n_reg_rules)
1254 		return false;
1255 
1256 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1257 		return false;
1258 
1259 	for (i = 0; i < rd->n_reg_rules; i++) {
1260 		reg_rule = &rd->reg_rules[i];
1261 		if (!is_valid_reg_rule(reg_rule))
1262 			return false;
1263 	}
1264 
1265 	return true;
1266 }
1267 
1268 /**
1269  * freq_in_rule_band - tells us if a frequency is in a frequency band
1270  * @freq_range: frequency rule we want to query
1271  * @freq_khz: frequency we are inquiring about
1272  *
1273  * This lets us know if a specific frequency rule is or is not relevant to
1274  * a specific frequency's band. Bands are device specific and artificial
1275  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1276  * however it is safe for now to assume that a frequency rule should not be
1277  * part of a frequency's band if the start freq or end freq are off by more
1278  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1279  * 60 GHz band.
1280  * This resolution can be lowered and should be considered as we add
1281  * regulatory rule support for other "bands".
1282  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1283 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1284 			      u32 freq_khz)
1285 {
1286 #define ONE_GHZ_IN_KHZ	1000000
1287 	/*
1288 	 * From 802.11ad: directional multi-gigabit (DMG):
1289 	 * Pertaining to operation in a frequency band containing a channel
1290 	 * with the Channel starting frequency above 45 GHz.
1291 	 */
1292 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1293 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1294 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1295 		return true;
1296 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1297 		return true;
1298 	return false;
1299 #undef ONE_GHZ_IN_KHZ
1300 }
1301 
1302 /*
1303  * Later on we can perhaps use the more restrictive DFS
1304  * region but we don't have information for that yet so
1305  * for now simply disallow conflicts.
1306  */
1307 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1308 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1309 			 const enum nl80211_dfs_regions dfs_region2)
1310 {
1311 	if (dfs_region1 != dfs_region2)
1312 		return NL80211_DFS_UNSET;
1313 	return dfs_region1;
1314 }
1315 
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1316 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1317 				    const struct ieee80211_wmm_ac *wmm_ac2,
1318 				    struct ieee80211_wmm_ac *intersect)
1319 {
1320 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1321 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1322 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1323 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1324 }
1325 
1326 /*
1327  * Helper for regdom_intersect(), this does the real
1328  * mathematical intersection fun
1329  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1330 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1331 			       const struct ieee80211_regdomain *rd2,
1332 			       const struct ieee80211_reg_rule *rule1,
1333 			       const struct ieee80211_reg_rule *rule2,
1334 			       struct ieee80211_reg_rule *intersected_rule)
1335 {
1336 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1337 	struct ieee80211_freq_range *freq_range;
1338 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1339 	struct ieee80211_power_rule *power_rule;
1340 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1341 	struct ieee80211_wmm_rule *wmm_rule;
1342 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1343 
1344 	freq_range1 = &rule1->freq_range;
1345 	freq_range2 = &rule2->freq_range;
1346 	freq_range = &intersected_rule->freq_range;
1347 
1348 	power_rule1 = &rule1->power_rule;
1349 	power_rule2 = &rule2->power_rule;
1350 	power_rule = &intersected_rule->power_rule;
1351 
1352 	wmm_rule1 = &rule1->wmm_rule;
1353 	wmm_rule2 = &rule2->wmm_rule;
1354 	wmm_rule = &intersected_rule->wmm_rule;
1355 
1356 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1357 					 freq_range2->start_freq_khz);
1358 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1359 				       freq_range2->end_freq_khz);
1360 
1361 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1362 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1363 
1364 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1365 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1366 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1367 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1368 
1369 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1370 
1371 	intersected_rule->flags = rule1->flags | rule2->flags;
1372 
1373 	/*
1374 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1375 	 * set AUTO_BW in intersected rule also. Next we will
1376 	 * calculate BW correctly in handle_channel function.
1377 	 * In other case remove AUTO_BW flag while we calculate
1378 	 * maximum bandwidth correctly and auto calculation is
1379 	 * not required.
1380 	 */
1381 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1382 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1383 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1384 	else
1385 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1386 
1387 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1388 	if (freq_range->max_bandwidth_khz > freq_diff)
1389 		freq_range->max_bandwidth_khz = freq_diff;
1390 
1391 	power_rule->max_eirp = min(power_rule1->max_eirp,
1392 		power_rule2->max_eirp);
1393 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1394 		power_rule2->max_antenna_gain);
1395 
1396 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1397 					   rule2->dfs_cac_ms);
1398 
1399 	if (rule1->has_wmm && rule2->has_wmm) {
1400 		u8 ac;
1401 
1402 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1403 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1404 						&wmm_rule2->client[ac],
1405 						&wmm_rule->client[ac]);
1406 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1407 						&wmm_rule2->ap[ac],
1408 						&wmm_rule->ap[ac]);
1409 		}
1410 
1411 		intersected_rule->has_wmm = true;
1412 	} else if (rule1->has_wmm) {
1413 		*wmm_rule = *wmm_rule1;
1414 		intersected_rule->has_wmm = true;
1415 	} else if (rule2->has_wmm) {
1416 		*wmm_rule = *wmm_rule2;
1417 		intersected_rule->has_wmm = true;
1418 	} else {
1419 		intersected_rule->has_wmm = false;
1420 	}
1421 
1422 	if (!is_valid_reg_rule(intersected_rule))
1423 		return -EINVAL;
1424 
1425 	return 0;
1426 }
1427 
1428 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1429 static bool rule_contains(struct ieee80211_reg_rule *r1,
1430 			  struct ieee80211_reg_rule *r2)
1431 {
1432 	/* for simplicity, currently consider only same flags */
1433 	if (r1->flags != r2->flags)
1434 		return false;
1435 
1436 	/* verify r1 is more restrictive */
1437 	if ((r1->power_rule.max_antenna_gain >
1438 	     r2->power_rule.max_antenna_gain) ||
1439 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1440 		return false;
1441 
1442 	/* make sure r2's range is contained within r1 */
1443 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1444 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1445 		return false;
1446 
1447 	/* and finally verify that r1.max_bw >= r2.max_bw */
1448 	if (r1->freq_range.max_bandwidth_khz <
1449 	    r2->freq_range.max_bandwidth_khz)
1450 		return false;
1451 
1452 	return true;
1453 }
1454 
1455 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1456 static void add_rule(struct ieee80211_reg_rule *rule,
1457 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1458 {
1459 	struct ieee80211_reg_rule *tmp_rule;
1460 	int i;
1461 
1462 	for (i = 0; i < *n_rules; i++) {
1463 		tmp_rule = &reg_rules[i];
1464 		/* rule is already contained - do nothing */
1465 		if (rule_contains(tmp_rule, rule))
1466 			return;
1467 
1468 		/* extend rule if possible */
1469 		if (rule_contains(rule, tmp_rule)) {
1470 			memcpy(tmp_rule, rule, sizeof(*rule));
1471 			return;
1472 		}
1473 	}
1474 
1475 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1476 	(*n_rules)++;
1477 }
1478 
1479 /**
1480  * regdom_intersect - do the intersection between two regulatory domains
1481  * @rd1: first regulatory domain
1482  * @rd2: second regulatory domain
1483  *
1484  * Use this function to get the intersection between two regulatory domains.
1485  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1486  * as no one single alpha2 can represent this regulatory domain.
1487  *
1488  * Returns a pointer to the regulatory domain structure which will hold the
1489  * resulting intersection of rules between rd1 and rd2. We will
1490  * kzalloc() this structure for you.
1491  */
1492 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1493 regdom_intersect(const struct ieee80211_regdomain *rd1,
1494 		 const struct ieee80211_regdomain *rd2)
1495 {
1496 	int r;
1497 	unsigned int x, y;
1498 	unsigned int num_rules = 0;
1499 	const struct ieee80211_reg_rule *rule1, *rule2;
1500 	struct ieee80211_reg_rule intersected_rule;
1501 	struct ieee80211_regdomain *rd;
1502 
1503 	if (!rd1 || !rd2)
1504 		return NULL;
1505 
1506 	/*
1507 	 * First we get a count of the rules we'll need, then we actually
1508 	 * build them. This is to so we can malloc() and free() a
1509 	 * regdomain once. The reason we use reg_rules_intersect() here
1510 	 * is it will return -EINVAL if the rule computed makes no sense.
1511 	 * All rules that do check out OK are valid.
1512 	 */
1513 
1514 	for (x = 0; x < rd1->n_reg_rules; x++) {
1515 		rule1 = &rd1->reg_rules[x];
1516 		for (y = 0; y < rd2->n_reg_rules; y++) {
1517 			rule2 = &rd2->reg_rules[y];
1518 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1519 						 &intersected_rule))
1520 				num_rules++;
1521 		}
1522 	}
1523 
1524 	if (!num_rules)
1525 		return NULL;
1526 
1527 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1528 	if (!rd)
1529 		return NULL;
1530 
1531 	for (x = 0; x < rd1->n_reg_rules; x++) {
1532 		rule1 = &rd1->reg_rules[x];
1533 		for (y = 0; y < rd2->n_reg_rules; y++) {
1534 			rule2 = &rd2->reg_rules[y];
1535 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1536 						&intersected_rule);
1537 			/*
1538 			 * No need to memset here the intersected rule here as
1539 			 * we're not using the stack anymore
1540 			 */
1541 			if (r)
1542 				continue;
1543 
1544 			add_rule(&intersected_rule, rd->reg_rules,
1545 				 &rd->n_reg_rules);
1546 		}
1547 	}
1548 
1549 	rd->alpha2[0] = '9';
1550 	rd->alpha2[1] = '8';
1551 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1552 						  rd2->dfs_region);
1553 
1554 	return rd;
1555 }
1556 
1557 /*
1558  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1559  * want to just have the channel structure use these
1560  */
map_regdom_flags(u32 rd_flags)1561 static u32 map_regdom_flags(u32 rd_flags)
1562 {
1563 	u32 channel_flags = 0;
1564 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1565 		channel_flags |= IEEE80211_CHAN_NO_IR;
1566 	if (rd_flags & NL80211_RRF_DFS)
1567 		channel_flags |= IEEE80211_CHAN_RADAR;
1568 	if (rd_flags & NL80211_RRF_NO_OFDM)
1569 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1570 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1571 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1572 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1573 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1574 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1575 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1576 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1577 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1578 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1579 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1580 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1581 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1582 	if (rd_flags & NL80211_RRF_NO_HE)
1583 		channel_flags |= IEEE80211_CHAN_NO_HE;
1584 	return channel_flags;
1585 }
1586 
1587 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1588 freq_reg_info_regd(u32 center_freq,
1589 		   const struct ieee80211_regdomain *regd, u32 bw)
1590 {
1591 	int i;
1592 	bool band_rule_found = false;
1593 	bool bw_fits = false;
1594 
1595 	if (!regd)
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	for (i = 0; i < regd->n_reg_rules; i++) {
1599 		const struct ieee80211_reg_rule *rr;
1600 		const struct ieee80211_freq_range *fr = NULL;
1601 
1602 		rr = &regd->reg_rules[i];
1603 		fr = &rr->freq_range;
1604 
1605 		/*
1606 		 * We only need to know if one frequency rule was
1607 		 * in center_freq's band, that's enough, so let's
1608 		 * not overwrite it once found
1609 		 */
1610 		if (!band_rule_found)
1611 			band_rule_found = freq_in_rule_band(fr, center_freq);
1612 
1613 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1614 
1615 		if (band_rule_found && bw_fits)
1616 			return rr;
1617 	}
1618 
1619 	if (!band_rule_found)
1620 		return ERR_PTR(-ERANGE);
1621 
1622 	return ERR_PTR(-EINVAL);
1623 }
1624 
1625 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1626 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1627 {
1628 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1629 	const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1630 	const struct ieee80211_reg_rule *reg_rule;
1631 	int i = ARRAY_SIZE(bws) - 1;
1632 	u32 bw;
1633 
1634 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1635 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1636 		if (!IS_ERR(reg_rule))
1637 			return reg_rule;
1638 	}
1639 
1640 	return reg_rule;
1641 }
1642 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1643 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1644 					       u32 center_freq)
1645 {
1646 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1647 
1648 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1649 }
1650 EXPORT_SYMBOL(freq_reg_info);
1651 
reg_initiator_name(enum nl80211_reg_initiator initiator)1652 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1653 {
1654 	switch (initiator) {
1655 	case NL80211_REGDOM_SET_BY_CORE:
1656 		return "core";
1657 	case NL80211_REGDOM_SET_BY_USER:
1658 		return "user";
1659 	case NL80211_REGDOM_SET_BY_DRIVER:
1660 		return "driver";
1661 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1662 		return "country element";
1663 	default:
1664 		WARN_ON(1);
1665 		return "bug";
1666 	}
1667 }
1668 EXPORT_SYMBOL(reg_initiator_name);
1669 
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1670 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1671 					  const struct ieee80211_reg_rule *reg_rule,
1672 					  const struct ieee80211_channel *chan)
1673 {
1674 	const struct ieee80211_freq_range *freq_range = NULL;
1675 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1676 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1677 
1678 	freq_range = &reg_rule->freq_range;
1679 
1680 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1681 	center_freq_khz = ieee80211_channel_to_khz(chan);
1682 	/* Check if auto calculation requested */
1683 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1684 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1685 
1686 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1687 	if (!cfg80211_does_bw_fit_range(freq_range,
1688 					center_freq_khz,
1689 					MHZ_TO_KHZ(10)))
1690 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1691 	if (!cfg80211_does_bw_fit_range(freq_range,
1692 					center_freq_khz,
1693 					MHZ_TO_KHZ(20)))
1694 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1695 
1696 	if (is_s1g) {
1697 		/* S1G is strict about non overlapping channels. We can
1698 		 * calculate which bandwidth is allowed per channel by finding
1699 		 * the largest bandwidth which cleanly divides the freq_range.
1700 		 */
1701 		int edge_offset;
1702 		int ch_bw = max_bandwidth_khz;
1703 
1704 		while (ch_bw) {
1705 			edge_offset = (center_freq_khz - ch_bw / 2) -
1706 				      freq_range->start_freq_khz;
1707 			if (edge_offset % ch_bw == 0) {
1708 				switch (KHZ_TO_MHZ(ch_bw)) {
1709 				case 1:
1710 					bw_flags |= IEEE80211_CHAN_1MHZ;
1711 					break;
1712 				case 2:
1713 					bw_flags |= IEEE80211_CHAN_2MHZ;
1714 					break;
1715 				case 4:
1716 					bw_flags |= IEEE80211_CHAN_4MHZ;
1717 					break;
1718 				case 8:
1719 					bw_flags |= IEEE80211_CHAN_8MHZ;
1720 					break;
1721 				case 16:
1722 					bw_flags |= IEEE80211_CHAN_16MHZ;
1723 					break;
1724 				default:
1725 					/* If we got here, no bandwidths fit on
1726 					 * this frequency, ie. band edge.
1727 					 */
1728 					bw_flags |= IEEE80211_CHAN_DISABLED;
1729 					break;
1730 				}
1731 				break;
1732 			}
1733 			ch_bw /= 2;
1734 		}
1735 	} else {
1736 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1737 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1738 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1739 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1740 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1741 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1742 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1743 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1744 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1745 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1746 	}
1747 	return bw_flags;
1748 }
1749 
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1750 static void handle_channel_single_rule(struct wiphy *wiphy,
1751 				       enum nl80211_reg_initiator initiator,
1752 				       struct ieee80211_channel *chan,
1753 				       u32 flags,
1754 				       struct regulatory_request *lr,
1755 				       struct wiphy *request_wiphy,
1756 				       const struct ieee80211_reg_rule *reg_rule)
1757 {
1758 	u32 bw_flags = 0;
1759 	const struct ieee80211_power_rule *power_rule = NULL;
1760 	const struct ieee80211_regdomain *regd;
1761 
1762 	regd = reg_get_regdomain(wiphy);
1763 
1764 	power_rule = &reg_rule->power_rule;
1765 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1766 
1767 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1768 	    request_wiphy && request_wiphy == wiphy &&
1769 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1770 		/*
1771 		 * This guarantees the driver's requested regulatory domain
1772 		 * will always be used as a base for further regulatory
1773 		 * settings
1774 		 */
1775 		chan->flags = chan->orig_flags =
1776 			map_regdom_flags(reg_rule->flags) | bw_flags;
1777 		chan->max_antenna_gain = chan->orig_mag =
1778 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1779 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1780 			(int) MBM_TO_DBM(power_rule->max_eirp);
1781 
1782 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1783 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1784 			if (reg_rule->dfs_cac_ms)
1785 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1786 		}
1787 
1788 		return;
1789 	}
1790 
1791 	chan->dfs_state = NL80211_DFS_USABLE;
1792 	chan->dfs_state_entered = jiffies;
1793 
1794 	chan->beacon_found = false;
1795 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1796 	chan->max_antenna_gain =
1797 		min_t(int, chan->orig_mag,
1798 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1799 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1800 
1801 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1802 		if (reg_rule->dfs_cac_ms)
1803 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1804 		else
1805 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1806 	}
1807 
1808 	if (chan->orig_mpwr) {
1809 		/*
1810 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1811 		 * will always follow the passed country IE power settings.
1812 		 */
1813 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1814 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1815 			chan->max_power = chan->max_reg_power;
1816 		else
1817 			chan->max_power = min(chan->orig_mpwr,
1818 					      chan->max_reg_power);
1819 	} else
1820 		chan->max_power = chan->max_reg_power;
1821 }
1822 
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1823 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1824 					  enum nl80211_reg_initiator initiator,
1825 					  struct ieee80211_channel *chan,
1826 					  u32 flags,
1827 					  struct regulatory_request *lr,
1828 					  struct wiphy *request_wiphy,
1829 					  const struct ieee80211_reg_rule *rrule1,
1830 					  const struct ieee80211_reg_rule *rrule2,
1831 					  struct ieee80211_freq_range *comb_range)
1832 {
1833 	u32 bw_flags1 = 0;
1834 	u32 bw_flags2 = 0;
1835 	const struct ieee80211_power_rule *power_rule1 = NULL;
1836 	const struct ieee80211_power_rule *power_rule2 = NULL;
1837 	const struct ieee80211_regdomain *regd;
1838 
1839 	regd = reg_get_regdomain(wiphy);
1840 
1841 	power_rule1 = &rrule1->power_rule;
1842 	power_rule2 = &rrule2->power_rule;
1843 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1844 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1845 
1846 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1847 	    request_wiphy && request_wiphy == wiphy &&
1848 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1849 		/* This guarantees the driver's requested regulatory domain
1850 		 * will always be used as a base for further regulatory
1851 		 * settings
1852 		 */
1853 		chan->flags =
1854 			map_regdom_flags(rrule1->flags) |
1855 			map_regdom_flags(rrule2->flags) |
1856 			bw_flags1 |
1857 			bw_flags2;
1858 		chan->orig_flags = chan->flags;
1859 		chan->max_antenna_gain =
1860 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1861 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1862 		chan->orig_mag = chan->max_antenna_gain;
1863 		chan->max_reg_power =
1864 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1865 			      MBM_TO_DBM(power_rule2->max_eirp));
1866 		chan->max_power = chan->max_reg_power;
1867 		chan->orig_mpwr = chan->max_reg_power;
1868 
1869 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1870 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1871 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1872 				chan->dfs_cac_ms = max_t(unsigned int,
1873 							 rrule1->dfs_cac_ms,
1874 							 rrule2->dfs_cac_ms);
1875 		}
1876 
1877 		return;
1878 	}
1879 
1880 	chan->dfs_state = NL80211_DFS_USABLE;
1881 	chan->dfs_state_entered = jiffies;
1882 
1883 	chan->beacon_found = false;
1884 	chan->flags = flags | bw_flags1 | bw_flags2 |
1885 		      map_regdom_flags(rrule1->flags) |
1886 		      map_regdom_flags(rrule2->flags);
1887 
1888 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1889 	 * (otherwise no adj. rule case), recheck therefore
1890 	 */
1891 	if (cfg80211_does_bw_fit_range(comb_range,
1892 				       ieee80211_channel_to_khz(chan),
1893 				       MHZ_TO_KHZ(10)))
1894 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1895 	if (cfg80211_does_bw_fit_range(comb_range,
1896 				       ieee80211_channel_to_khz(chan),
1897 				       MHZ_TO_KHZ(20)))
1898 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1899 
1900 	chan->max_antenna_gain =
1901 		min_t(int, chan->orig_mag,
1902 		      min_t(int,
1903 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1904 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1905 	chan->max_reg_power = min_t(int,
1906 				    MBM_TO_DBM(power_rule1->max_eirp),
1907 				    MBM_TO_DBM(power_rule2->max_eirp));
1908 
1909 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1910 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1911 			chan->dfs_cac_ms = max_t(unsigned int,
1912 						 rrule1->dfs_cac_ms,
1913 						 rrule2->dfs_cac_ms);
1914 		else
1915 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1916 	}
1917 
1918 	if (chan->orig_mpwr) {
1919 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1920 		 * will always follow the passed country IE power settings.
1921 		 */
1922 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1923 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1924 			chan->max_power = chan->max_reg_power;
1925 		else
1926 			chan->max_power = min(chan->orig_mpwr,
1927 					      chan->max_reg_power);
1928 	} else {
1929 		chan->max_power = chan->max_reg_power;
1930 	}
1931 }
1932 
1933 /* Note that right now we assume the desired channel bandwidth
1934  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1935  * per channel, the primary and the extension channel).
1936  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1937 static void handle_channel(struct wiphy *wiphy,
1938 			   enum nl80211_reg_initiator initiator,
1939 			   struct ieee80211_channel *chan)
1940 {
1941 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1942 	struct regulatory_request *lr = get_last_request();
1943 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1944 	const struct ieee80211_reg_rule *rrule = NULL;
1945 	const struct ieee80211_reg_rule *rrule1 = NULL;
1946 	const struct ieee80211_reg_rule *rrule2 = NULL;
1947 
1948 	u32 flags = chan->orig_flags;
1949 
1950 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1951 	if (IS_ERR(rrule)) {
1952 		/* check for adjacent match, therefore get rules for
1953 		 * chan - 20 MHz and chan + 20 MHz and test
1954 		 * if reg rules are adjacent
1955 		 */
1956 		rrule1 = freq_reg_info(wiphy,
1957 				       orig_chan_freq - MHZ_TO_KHZ(20));
1958 		rrule2 = freq_reg_info(wiphy,
1959 				       orig_chan_freq + MHZ_TO_KHZ(20));
1960 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1961 			struct ieee80211_freq_range comb_range;
1962 
1963 			if (rrule1->freq_range.end_freq_khz !=
1964 			    rrule2->freq_range.start_freq_khz)
1965 				goto disable_chan;
1966 
1967 			comb_range.start_freq_khz =
1968 				rrule1->freq_range.start_freq_khz;
1969 			comb_range.end_freq_khz =
1970 				rrule2->freq_range.end_freq_khz;
1971 			comb_range.max_bandwidth_khz =
1972 				min_t(u32,
1973 				      rrule1->freq_range.max_bandwidth_khz,
1974 				      rrule2->freq_range.max_bandwidth_khz);
1975 
1976 			if (!cfg80211_does_bw_fit_range(&comb_range,
1977 							orig_chan_freq,
1978 							MHZ_TO_KHZ(20)))
1979 				goto disable_chan;
1980 
1981 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1982 						      flags, lr, request_wiphy,
1983 						      rrule1, rrule2,
1984 						      &comb_range);
1985 			return;
1986 		}
1987 
1988 disable_chan:
1989 		/* We will disable all channels that do not match our
1990 		 * received regulatory rule unless the hint is coming
1991 		 * from a Country IE and the Country IE had no information
1992 		 * about a band. The IEEE 802.11 spec allows for an AP
1993 		 * to send only a subset of the regulatory rules allowed,
1994 		 * so an AP in the US that only supports 2.4 GHz may only send
1995 		 * a country IE with information for the 2.4 GHz band
1996 		 * while 5 GHz is still supported.
1997 		 */
1998 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1999 		    PTR_ERR(rrule) == -ERANGE)
2000 			return;
2001 
2002 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2003 		    request_wiphy && request_wiphy == wiphy &&
2004 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2005 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2006 				 chan->center_freq, chan->freq_offset);
2007 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2008 			chan->flags = chan->orig_flags;
2009 		} else {
2010 			pr_debug("Disabling freq %d.%03d MHz\n",
2011 				 chan->center_freq, chan->freq_offset);
2012 			chan->flags |= IEEE80211_CHAN_DISABLED;
2013 		}
2014 		return;
2015 	}
2016 
2017 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2018 				   request_wiphy, rrule);
2019 }
2020 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2021 static void handle_band(struct wiphy *wiphy,
2022 			enum nl80211_reg_initiator initiator,
2023 			struct ieee80211_supported_band *sband)
2024 {
2025 	unsigned int i;
2026 
2027 	if (!sband)
2028 		return;
2029 
2030 	for (i = 0; i < sband->n_channels; i++)
2031 		handle_channel(wiphy, initiator, &sband->channels[i]);
2032 }
2033 
reg_request_cell_base(struct regulatory_request * request)2034 static bool reg_request_cell_base(struct regulatory_request *request)
2035 {
2036 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2037 		return false;
2038 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2039 }
2040 
reg_last_request_cell_base(void)2041 bool reg_last_request_cell_base(void)
2042 {
2043 	return reg_request_cell_base(get_last_request());
2044 }
2045 
2046 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2047 /* Core specific check */
2048 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2049 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2050 {
2051 	struct regulatory_request *lr = get_last_request();
2052 
2053 	if (!reg_num_devs_support_basehint)
2054 		return REG_REQ_IGNORE;
2055 
2056 	if (reg_request_cell_base(lr) &&
2057 	    !regdom_changes(pending_request->alpha2))
2058 		return REG_REQ_ALREADY_SET;
2059 
2060 	return REG_REQ_OK;
2061 }
2062 
2063 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2064 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2065 {
2066 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2067 }
2068 #else
2069 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2070 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2071 {
2072 	return REG_REQ_IGNORE;
2073 }
2074 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2075 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2076 {
2077 	return true;
2078 }
2079 #endif
2080 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2081 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2082 {
2083 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2084 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2085 		return true;
2086 	return false;
2087 }
2088 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2089 static bool ignore_reg_update(struct wiphy *wiphy,
2090 			      enum nl80211_reg_initiator initiator)
2091 {
2092 	struct regulatory_request *lr = get_last_request();
2093 
2094 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2095 		return true;
2096 
2097 	if (!lr) {
2098 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2099 			 reg_initiator_name(initiator));
2100 		return true;
2101 	}
2102 
2103 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2104 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2105 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2106 			 reg_initiator_name(initiator));
2107 		return true;
2108 	}
2109 
2110 	/*
2111 	 * wiphy->regd will be set once the device has its own
2112 	 * desired regulatory domain set
2113 	 */
2114 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2115 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2116 	    !is_world_regdom(lr->alpha2)) {
2117 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2118 			 reg_initiator_name(initiator));
2119 		return true;
2120 	}
2121 
2122 	if (reg_request_cell_base(lr))
2123 		return reg_dev_ignore_cell_hint(wiphy);
2124 
2125 	return false;
2126 }
2127 
reg_is_world_roaming(struct wiphy * wiphy)2128 static bool reg_is_world_roaming(struct wiphy *wiphy)
2129 {
2130 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2131 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2132 	struct regulatory_request *lr = get_last_request();
2133 
2134 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2135 		return true;
2136 
2137 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2138 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2139 		return true;
2140 
2141 	return false;
2142 }
2143 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2144 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2145 			      struct reg_beacon *reg_beacon)
2146 {
2147 	struct ieee80211_supported_band *sband;
2148 	struct ieee80211_channel *chan;
2149 	bool channel_changed = false;
2150 	struct ieee80211_channel chan_before;
2151 
2152 	sband = wiphy->bands[reg_beacon->chan.band];
2153 	chan = &sband->channels[chan_idx];
2154 
2155 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2156 		return;
2157 
2158 	if (chan->beacon_found)
2159 		return;
2160 
2161 	chan->beacon_found = true;
2162 
2163 	if (!reg_is_world_roaming(wiphy))
2164 		return;
2165 
2166 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2167 		return;
2168 
2169 	chan_before = *chan;
2170 
2171 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2172 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2173 		channel_changed = true;
2174 	}
2175 
2176 	if (channel_changed)
2177 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2178 }
2179 
2180 /*
2181  * Called when a scan on a wiphy finds a beacon on
2182  * new channel
2183  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2184 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2185 				    struct reg_beacon *reg_beacon)
2186 {
2187 	unsigned int i;
2188 	struct ieee80211_supported_band *sband;
2189 
2190 	if (!wiphy->bands[reg_beacon->chan.band])
2191 		return;
2192 
2193 	sband = wiphy->bands[reg_beacon->chan.band];
2194 
2195 	for (i = 0; i < sband->n_channels; i++)
2196 		handle_reg_beacon(wiphy, i, reg_beacon);
2197 }
2198 
2199 /*
2200  * Called upon reg changes or a new wiphy is added
2201  */
wiphy_update_beacon_reg(struct wiphy * wiphy)2202 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2203 {
2204 	unsigned int i;
2205 	struct ieee80211_supported_band *sband;
2206 	struct reg_beacon *reg_beacon;
2207 
2208 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2209 		if (!wiphy->bands[reg_beacon->chan.band])
2210 			continue;
2211 		sband = wiphy->bands[reg_beacon->chan.band];
2212 		for (i = 0; i < sband->n_channels; i++)
2213 			handle_reg_beacon(wiphy, i, reg_beacon);
2214 	}
2215 }
2216 
2217 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2218 static void reg_process_beacons(struct wiphy *wiphy)
2219 {
2220 	/*
2221 	 * Means we are just firing up cfg80211, so no beacons would
2222 	 * have been processed yet.
2223 	 */
2224 	if (!last_request)
2225 		return;
2226 	wiphy_update_beacon_reg(wiphy);
2227 }
2228 
is_ht40_allowed(struct ieee80211_channel * chan)2229 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2230 {
2231 	if (!chan)
2232 		return false;
2233 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2234 		return false;
2235 	/* This would happen when regulatory rules disallow HT40 completely */
2236 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2237 		return false;
2238 	return true;
2239 }
2240 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2241 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2242 					 struct ieee80211_channel *channel)
2243 {
2244 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2245 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2246 	const struct ieee80211_regdomain *regd;
2247 	unsigned int i;
2248 	u32 flags;
2249 
2250 	if (!is_ht40_allowed(channel)) {
2251 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2252 		return;
2253 	}
2254 
2255 	/*
2256 	 * We need to ensure the extension channels exist to
2257 	 * be able to use HT40- or HT40+, this finds them (or not)
2258 	 */
2259 	for (i = 0; i < sband->n_channels; i++) {
2260 		struct ieee80211_channel *c = &sband->channels[i];
2261 
2262 		if (c->center_freq == (channel->center_freq - 20))
2263 			channel_before = c;
2264 		if (c->center_freq == (channel->center_freq + 20))
2265 			channel_after = c;
2266 	}
2267 
2268 	flags = 0;
2269 	regd = get_wiphy_regdom(wiphy);
2270 	if (regd) {
2271 		const struct ieee80211_reg_rule *reg_rule =
2272 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2273 					   regd, MHZ_TO_KHZ(20));
2274 
2275 		if (!IS_ERR(reg_rule))
2276 			flags = reg_rule->flags;
2277 	}
2278 
2279 	/*
2280 	 * Please note that this assumes target bandwidth is 20 MHz,
2281 	 * if that ever changes we also need to change the below logic
2282 	 * to include that as well.
2283 	 */
2284 	if (!is_ht40_allowed(channel_before) ||
2285 	    flags & NL80211_RRF_NO_HT40MINUS)
2286 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2287 	else
2288 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2289 
2290 	if (!is_ht40_allowed(channel_after) ||
2291 	    flags & NL80211_RRF_NO_HT40PLUS)
2292 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2293 	else
2294 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2295 }
2296 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2297 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2298 				      struct ieee80211_supported_band *sband)
2299 {
2300 	unsigned int i;
2301 
2302 	if (!sband)
2303 		return;
2304 
2305 	for (i = 0; i < sband->n_channels; i++)
2306 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2307 }
2308 
reg_process_ht_flags(struct wiphy * wiphy)2309 static void reg_process_ht_flags(struct wiphy *wiphy)
2310 {
2311 	enum nl80211_band band;
2312 
2313 	if (!wiphy)
2314 		return;
2315 
2316 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2317 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2318 }
2319 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2320 static void reg_call_notifier(struct wiphy *wiphy,
2321 			      struct regulatory_request *request)
2322 {
2323 	if (wiphy->reg_notifier)
2324 		wiphy->reg_notifier(wiphy, request);
2325 }
2326 
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2327 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2328 {
2329 	struct cfg80211_chan_def chandef = {};
2330 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2331 	enum nl80211_iftype iftype;
2332 
2333 	wdev_lock(wdev);
2334 	iftype = wdev->iftype;
2335 
2336 	/* make sure the interface is active */
2337 	if (!wdev->netdev || !netif_running(wdev->netdev))
2338 		goto wdev_inactive_unlock;
2339 
2340 	switch (iftype) {
2341 	case NL80211_IFTYPE_AP:
2342 	case NL80211_IFTYPE_P2P_GO:
2343 		if (!wdev->beacon_interval)
2344 			goto wdev_inactive_unlock;
2345 		chandef = wdev->chandef;
2346 		break;
2347 	case NL80211_IFTYPE_ADHOC:
2348 		if (!wdev->ssid_len)
2349 			goto wdev_inactive_unlock;
2350 		chandef = wdev->chandef;
2351 		break;
2352 	case NL80211_IFTYPE_STATION:
2353 	case NL80211_IFTYPE_P2P_CLIENT:
2354 		if (!wdev->current_bss ||
2355 		    !wdev->current_bss->pub.channel)
2356 			goto wdev_inactive_unlock;
2357 
2358 		if (!rdev->ops->get_channel ||
2359 		    rdev_get_channel(rdev, wdev, &chandef))
2360 			cfg80211_chandef_create(&chandef,
2361 						wdev->current_bss->pub.channel,
2362 						NL80211_CHAN_NO_HT);
2363 		break;
2364 	case NL80211_IFTYPE_MONITOR:
2365 	case NL80211_IFTYPE_AP_VLAN:
2366 	case NL80211_IFTYPE_P2P_DEVICE:
2367 		/* no enforcement required */
2368 		break;
2369 	default:
2370 		/* others not implemented for now */
2371 		WARN_ON(1);
2372 		break;
2373 	}
2374 
2375 	wdev_unlock(wdev);
2376 
2377 	switch (iftype) {
2378 	case NL80211_IFTYPE_AP:
2379 	case NL80211_IFTYPE_P2P_GO:
2380 	case NL80211_IFTYPE_ADHOC:
2381 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2382 	case NL80211_IFTYPE_STATION:
2383 	case NL80211_IFTYPE_P2P_CLIENT:
2384 		return cfg80211_chandef_usable(wiphy, &chandef,
2385 					       IEEE80211_CHAN_DISABLED);
2386 	default:
2387 		break;
2388 	}
2389 
2390 	return true;
2391 
2392 wdev_inactive_unlock:
2393 	wdev_unlock(wdev);
2394 	return true;
2395 }
2396 
reg_leave_invalid_chans(struct wiphy * wiphy)2397 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2398 {
2399 	struct wireless_dev *wdev;
2400 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2401 
2402 	ASSERT_RTNL();
2403 
2404 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2405 		if (!reg_wdev_chan_valid(wiphy, wdev))
2406 			cfg80211_leave(rdev, wdev);
2407 }
2408 
reg_check_chans_work(struct work_struct * work)2409 static void reg_check_chans_work(struct work_struct *work)
2410 {
2411 	struct cfg80211_registered_device *rdev;
2412 
2413 	pr_debug("Verifying active interfaces after reg change\n");
2414 	rtnl_lock();
2415 
2416 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2417 		if (!(rdev->wiphy.regulatory_flags &
2418 		      REGULATORY_IGNORE_STALE_KICKOFF))
2419 			reg_leave_invalid_chans(&rdev->wiphy);
2420 
2421 	rtnl_unlock();
2422 }
2423 
reg_check_channels(void)2424 static void reg_check_channels(void)
2425 {
2426 	/*
2427 	 * Give usermode a chance to do something nicer (move to another
2428 	 * channel, orderly disconnection), before forcing a disconnection.
2429 	 */
2430 	mod_delayed_work(system_power_efficient_wq,
2431 			 &reg_check_chans,
2432 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2433 }
2434 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2435 static void wiphy_update_regulatory(struct wiphy *wiphy,
2436 				    enum nl80211_reg_initiator initiator)
2437 {
2438 	enum nl80211_band band;
2439 	struct regulatory_request *lr = get_last_request();
2440 
2441 	if (ignore_reg_update(wiphy, initiator)) {
2442 		/*
2443 		 * Regulatory updates set by CORE are ignored for custom
2444 		 * regulatory cards. Let us notify the changes to the driver,
2445 		 * as some drivers used this to restore its orig_* reg domain.
2446 		 */
2447 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2448 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2449 		    !(wiphy->regulatory_flags &
2450 		      REGULATORY_WIPHY_SELF_MANAGED))
2451 			reg_call_notifier(wiphy, lr);
2452 		return;
2453 	}
2454 
2455 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2456 
2457 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2458 		handle_band(wiphy, initiator, wiphy->bands[band]);
2459 
2460 	reg_process_beacons(wiphy);
2461 	reg_process_ht_flags(wiphy);
2462 	reg_call_notifier(wiphy, lr);
2463 }
2464 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2465 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2466 {
2467 	struct cfg80211_registered_device *rdev;
2468 	struct wiphy *wiphy;
2469 
2470 	ASSERT_RTNL();
2471 
2472 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2473 		wiphy = &rdev->wiphy;
2474 		wiphy_update_regulatory(wiphy, initiator);
2475 	}
2476 
2477 	reg_check_channels();
2478 }
2479 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2480 static void handle_channel_custom(struct wiphy *wiphy,
2481 				  struct ieee80211_channel *chan,
2482 				  const struct ieee80211_regdomain *regd,
2483 				  u32 min_bw)
2484 {
2485 	u32 bw_flags = 0;
2486 	const struct ieee80211_reg_rule *reg_rule = NULL;
2487 	const struct ieee80211_power_rule *power_rule = NULL;
2488 	u32 bw, center_freq_khz;
2489 
2490 	center_freq_khz = ieee80211_channel_to_khz(chan);
2491 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2492 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2493 		if (!IS_ERR(reg_rule))
2494 			break;
2495 	}
2496 
2497 	if (IS_ERR_OR_NULL(reg_rule)) {
2498 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2499 			 chan->center_freq, chan->freq_offset);
2500 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2501 			chan->flags |= IEEE80211_CHAN_DISABLED;
2502 		} else {
2503 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2504 			chan->flags = chan->orig_flags;
2505 		}
2506 		return;
2507 	}
2508 
2509 	power_rule = &reg_rule->power_rule;
2510 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2511 
2512 	chan->dfs_state_entered = jiffies;
2513 	chan->dfs_state = NL80211_DFS_USABLE;
2514 
2515 	chan->beacon_found = false;
2516 
2517 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2518 		chan->flags = chan->orig_flags | bw_flags |
2519 			      map_regdom_flags(reg_rule->flags);
2520 	else
2521 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2522 
2523 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2524 	chan->max_reg_power = chan->max_power =
2525 		(int) MBM_TO_DBM(power_rule->max_eirp);
2526 
2527 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2528 		if (reg_rule->dfs_cac_ms)
2529 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2530 		else
2531 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2532 	}
2533 
2534 	chan->max_power = chan->max_reg_power;
2535 }
2536 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2537 static void handle_band_custom(struct wiphy *wiphy,
2538 			       struct ieee80211_supported_band *sband,
2539 			       const struct ieee80211_regdomain *regd)
2540 {
2541 	unsigned int i;
2542 
2543 	if (!sband)
2544 		return;
2545 
2546 	/*
2547 	 * We currently assume that you always want at least 20 MHz,
2548 	 * otherwise channel 12 might get enabled if this rule is
2549 	 * compatible to US, which permits 2402 - 2472 MHz.
2550 	 */
2551 	for (i = 0; i < sband->n_channels; i++)
2552 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2553 				      MHZ_TO_KHZ(20));
2554 }
2555 
2556 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2557 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2558 				   const struct ieee80211_regdomain *regd)
2559 {
2560 	enum nl80211_band band;
2561 	unsigned int bands_set = 0;
2562 
2563 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2564 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2565 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2566 
2567 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2568 		if (!wiphy->bands[band])
2569 			continue;
2570 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2571 		bands_set++;
2572 	}
2573 
2574 	/*
2575 	 * no point in calling this if it won't have any effect
2576 	 * on your device's supported bands.
2577 	 */
2578 	WARN_ON(!bands_set);
2579 }
2580 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2581 
reg_set_request_processed(void)2582 static void reg_set_request_processed(void)
2583 {
2584 	bool need_more_processing = false;
2585 	struct regulatory_request *lr = get_last_request();
2586 
2587 	lr->processed = true;
2588 
2589 	spin_lock(&reg_requests_lock);
2590 	if (!list_empty(&reg_requests_list))
2591 		need_more_processing = true;
2592 	spin_unlock(&reg_requests_lock);
2593 
2594 	cancel_crda_timeout();
2595 
2596 	if (need_more_processing)
2597 		schedule_work(&reg_work);
2598 }
2599 
2600 /**
2601  * reg_process_hint_core - process core regulatory requests
2602  * @core_request: a pending core regulatory request
2603  *
2604  * The wireless subsystem can use this function to process
2605  * a regulatory request issued by the regulatory core.
2606  */
2607 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2608 reg_process_hint_core(struct regulatory_request *core_request)
2609 {
2610 	if (reg_query_database(core_request)) {
2611 		core_request->intersect = false;
2612 		core_request->processed = false;
2613 		reg_update_last_request(core_request);
2614 		return REG_REQ_OK;
2615 	}
2616 
2617 	return REG_REQ_IGNORE;
2618 }
2619 
2620 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2621 __reg_process_hint_user(struct regulatory_request *user_request)
2622 {
2623 	struct regulatory_request *lr = get_last_request();
2624 
2625 	if (reg_request_cell_base(user_request))
2626 		return reg_ignore_cell_hint(user_request);
2627 
2628 	if (reg_request_cell_base(lr))
2629 		return REG_REQ_IGNORE;
2630 
2631 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2632 		return REG_REQ_INTERSECT;
2633 	/*
2634 	 * If the user knows better the user should set the regdom
2635 	 * to their country before the IE is picked up
2636 	 */
2637 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2638 	    lr->intersect)
2639 		return REG_REQ_IGNORE;
2640 	/*
2641 	 * Process user requests only after previous user/driver/core
2642 	 * requests have been processed
2643 	 */
2644 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2645 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2646 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2647 	    regdom_changes(lr->alpha2))
2648 		return REG_REQ_IGNORE;
2649 
2650 	if (!regdom_changes(user_request->alpha2))
2651 		return REG_REQ_ALREADY_SET;
2652 
2653 	return REG_REQ_OK;
2654 }
2655 
2656 /**
2657  * reg_process_hint_user - process user regulatory requests
2658  * @user_request: a pending user regulatory request
2659  *
2660  * The wireless subsystem can use this function to process
2661  * a regulatory request initiated by userspace.
2662  */
2663 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2664 reg_process_hint_user(struct regulatory_request *user_request)
2665 {
2666 	enum reg_request_treatment treatment;
2667 
2668 	treatment = __reg_process_hint_user(user_request);
2669 	if (treatment == REG_REQ_IGNORE ||
2670 	    treatment == REG_REQ_ALREADY_SET)
2671 		return REG_REQ_IGNORE;
2672 
2673 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2674 	user_request->processed = false;
2675 
2676 	if (reg_query_database(user_request)) {
2677 		reg_update_last_request(user_request);
2678 		user_alpha2[0] = user_request->alpha2[0];
2679 		user_alpha2[1] = user_request->alpha2[1];
2680 		return REG_REQ_OK;
2681 	}
2682 
2683 	return REG_REQ_IGNORE;
2684 }
2685 
2686 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2687 __reg_process_hint_driver(struct regulatory_request *driver_request)
2688 {
2689 	struct regulatory_request *lr = get_last_request();
2690 
2691 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2692 		if (regdom_changes(driver_request->alpha2))
2693 			return REG_REQ_OK;
2694 		return REG_REQ_ALREADY_SET;
2695 	}
2696 
2697 	/*
2698 	 * This would happen if you unplug and plug your card
2699 	 * back in or if you add a new device for which the previously
2700 	 * loaded card also agrees on the regulatory domain.
2701 	 */
2702 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2703 	    !regdom_changes(driver_request->alpha2))
2704 		return REG_REQ_ALREADY_SET;
2705 
2706 	return REG_REQ_INTERSECT;
2707 }
2708 
2709 /**
2710  * reg_process_hint_driver - process driver regulatory requests
2711  * @wiphy: the wireless device for the regulatory request
2712  * @driver_request: a pending driver regulatory request
2713  *
2714  * The wireless subsystem can use this function to process
2715  * a regulatory request issued by an 802.11 driver.
2716  *
2717  * Returns one of the different reg request treatment values.
2718  */
2719 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2720 reg_process_hint_driver(struct wiphy *wiphy,
2721 			struct regulatory_request *driver_request)
2722 {
2723 	const struct ieee80211_regdomain *regd, *tmp;
2724 	enum reg_request_treatment treatment;
2725 
2726 	treatment = __reg_process_hint_driver(driver_request);
2727 
2728 	switch (treatment) {
2729 	case REG_REQ_OK:
2730 		break;
2731 	case REG_REQ_IGNORE:
2732 		return REG_REQ_IGNORE;
2733 	case REG_REQ_INTERSECT:
2734 	case REG_REQ_ALREADY_SET:
2735 		regd = reg_copy_regd(get_cfg80211_regdom());
2736 		if (IS_ERR(regd))
2737 			return REG_REQ_IGNORE;
2738 
2739 		tmp = get_wiphy_regdom(wiphy);
2740 		rcu_assign_pointer(wiphy->regd, regd);
2741 		rcu_free_regdom(tmp);
2742 	}
2743 
2744 
2745 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2746 	driver_request->processed = false;
2747 
2748 	/*
2749 	 * Since CRDA will not be called in this case as we already
2750 	 * have applied the requested regulatory domain before we just
2751 	 * inform userspace we have processed the request
2752 	 */
2753 	if (treatment == REG_REQ_ALREADY_SET) {
2754 		nl80211_send_reg_change_event(driver_request);
2755 		reg_update_last_request(driver_request);
2756 		reg_set_request_processed();
2757 		return REG_REQ_ALREADY_SET;
2758 	}
2759 
2760 	if (reg_query_database(driver_request)) {
2761 		reg_update_last_request(driver_request);
2762 		return REG_REQ_OK;
2763 	}
2764 
2765 	return REG_REQ_IGNORE;
2766 }
2767 
2768 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2769 __reg_process_hint_country_ie(struct wiphy *wiphy,
2770 			      struct regulatory_request *country_ie_request)
2771 {
2772 	struct wiphy *last_wiphy = NULL;
2773 	struct regulatory_request *lr = get_last_request();
2774 
2775 	if (reg_request_cell_base(lr)) {
2776 		/* Trust a Cell base station over the AP's country IE */
2777 		if (regdom_changes(country_ie_request->alpha2))
2778 			return REG_REQ_IGNORE;
2779 		return REG_REQ_ALREADY_SET;
2780 	} else {
2781 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2782 			return REG_REQ_IGNORE;
2783 	}
2784 
2785 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2786 		return -EINVAL;
2787 
2788 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2789 		return REG_REQ_OK;
2790 
2791 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2792 
2793 	if (last_wiphy != wiphy) {
2794 		/*
2795 		 * Two cards with two APs claiming different
2796 		 * Country IE alpha2s. We could
2797 		 * intersect them, but that seems unlikely
2798 		 * to be correct. Reject second one for now.
2799 		 */
2800 		if (regdom_changes(country_ie_request->alpha2))
2801 			return REG_REQ_IGNORE;
2802 		return REG_REQ_ALREADY_SET;
2803 	}
2804 
2805 	if (regdom_changes(country_ie_request->alpha2))
2806 		return REG_REQ_OK;
2807 	return REG_REQ_ALREADY_SET;
2808 }
2809 
2810 /**
2811  * reg_process_hint_country_ie - process regulatory requests from country IEs
2812  * @wiphy: the wireless device for the regulatory request
2813  * @country_ie_request: a regulatory request from a country IE
2814  *
2815  * The wireless subsystem can use this function to process
2816  * a regulatory request issued by a country Information Element.
2817  *
2818  * Returns one of the different reg request treatment values.
2819  */
2820 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2821 reg_process_hint_country_ie(struct wiphy *wiphy,
2822 			    struct regulatory_request *country_ie_request)
2823 {
2824 	enum reg_request_treatment treatment;
2825 
2826 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2827 
2828 	switch (treatment) {
2829 	case REG_REQ_OK:
2830 		break;
2831 	case REG_REQ_IGNORE:
2832 		return REG_REQ_IGNORE;
2833 	case REG_REQ_ALREADY_SET:
2834 		reg_free_request(country_ie_request);
2835 		return REG_REQ_ALREADY_SET;
2836 	case REG_REQ_INTERSECT:
2837 		/*
2838 		 * This doesn't happen yet, not sure we
2839 		 * ever want to support it for this case.
2840 		 */
2841 		WARN_ONCE(1, "Unexpected intersection for country elements");
2842 		return REG_REQ_IGNORE;
2843 	}
2844 
2845 	country_ie_request->intersect = false;
2846 	country_ie_request->processed = false;
2847 
2848 	if (reg_query_database(country_ie_request)) {
2849 		reg_update_last_request(country_ie_request);
2850 		return REG_REQ_OK;
2851 	}
2852 
2853 	return REG_REQ_IGNORE;
2854 }
2855 
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2856 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2857 {
2858 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2859 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2860 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2861 	bool dfs_domain_same;
2862 
2863 	rcu_read_lock();
2864 
2865 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2866 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2867 	if (!wiphy1_regd)
2868 		wiphy1_regd = cfg80211_regd;
2869 
2870 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2871 	if (!wiphy2_regd)
2872 		wiphy2_regd = cfg80211_regd;
2873 
2874 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2875 
2876 	rcu_read_unlock();
2877 
2878 	return dfs_domain_same;
2879 }
2880 
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2881 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2882 				    struct ieee80211_channel *src_chan)
2883 {
2884 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2885 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2886 		return;
2887 
2888 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2889 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2890 		return;
2891 
2892 	if (src_chan->center_freq == dst_chan->center_freq &&
2893 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2894 		dst_chan->dfs_state = src_chan->dfs_state;
2895 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2896 	}
2897 }
2898 
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2899 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2900 				       struct wiphy *src_wiphy)
2901 {
2902 	struct ieee80211_supported_band *src_sband, *dst_sband;
2903 	struct ieee80211_channel *src_chan, *dst_chan;
2904 	int i, j, band;
2905 
2906 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2907 		return;
2908 
2909 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2910 		dst_sband = dst_wiphy->bands[band];
2911 		src_sband = src_wiphy->bands[band];
2912 		if (!dst_sband || !src_sband)
2913 			continue;
2914 
2915 		for (i = 0; i < dst_sband->n_channels; i++) {
2916 			dst_chan = &dst_sband->channels[i];
2917 			for (j = 0; j < src_sband->n_channels; j++) {
2918 				src_chan = &src_sband->channels[j];
2919 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2920 			}
2921 		}
2922 	}
2923 }
2924 
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2925 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2926 {
2927 	struct cfg80211_registered_device *rdev;
2928 
2929 	ASSERT_RTNL();
2930 
2931 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2932 		if (wiphy == &rdev->wiphy)
2933 			continue;
2934 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2935 	}
2936 }
2937 
2938 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2939 static void reg_process_hint(struct regulatory_request *reg_request)
2940 {
2941 	struct wiphy *wiphy = NULL;
2942 	enum reg_request_treatment treatment;
2943 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2944 
2945 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2946 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2947 
2948 	switch (initiator) {
2949 	case NL80211_REGDOM_SET_BY_CORE:
2950 		treatment = reg_process_hint_core(reg_request);
2951 		break;
2952 	case NL80211_REGDOM_SET_BY_USER:
2953 		treatment = reg_process_hint_user(reg_request);
2954 		break;
2955 	case NL80211_REGDOM_SET_BY_DRIVER:
2956 		if (!wiphy)
2957 			goto out_free;
2958 		treatment = reg_process_hint_driver(wiphy, reg_request);
2959 		break;
2960 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961 		if (!wiphy)
2962 			goto out_free;
2963 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2964 		break;
2965 	default:
2966 		WARN(1, "invalid initiator %d\n", initiator);
2967 		goto out_free;
2968 	}
2969 
2970 	if (treatment == REG_REQ_IGNORE)
2971 		goto out_free;
2972 
2973 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2974 	     "unexpected treatment value %d\n", treatment);
2975 
2976 	/* This is required so that the orig_* parameters are saved.
2977 	 * NOTE: treatment must be set for any case that reaches here!
2978 	 */
2979 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2980 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2981 		wiphy_update_regulatory(wiphy, initiator);
2982 		wiphy_all_share_dfs_chan_state(wiphy);
2983 		reg_check_channels();
2984 	}
2985 
2986 	return;
2987 
2988 out_free:
2989 	reg_free_request(reg_request);
2990 }
2991 
notify_self_managed_wiphys(struct regulatory_request * request)2992 static void notify_self_managed_wiphys(struct regulatory_request *request)
2993 {
2994 	struct cfg80211_registered_device *rdev;
2995 	struct wiphy *wiphy;
2996 
2997 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2998 		wiphy = &rdev->wiphy;
2999 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3000 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3001 			reg_call_notifier(wiphy, request);
3002 	}
3003 }
3004 
3005 /*
3006  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3007  * Regulatory hints come on a first come first serve basis and we
3008  * must process each one atomically.
3009  */
reg_process_pending_hints(void)3010 static void reg_process_pending_hints(void)
3011 {
3012 	struct regulatory_request *reg_request, *lr;
3013 
3014 	lr = get_last_request();
3015 
3016 	/* When last_request->processed becomes true this will be rescheduled */
3017 	if (lr && !lr->processed) {
3018 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3019 		return;
3020 	}
3021 
3022 	spin_lock(&reg_requests_lock);
3023 
3024 	if (list_empty(&reg_requests_list)) {
3025 		spin_unlock(&reg_requests_lock);
3026 		return;
3027 	}
3028 
3029 	reg_request = list_first_entry(&reg_requests_list,
3030 				       struct regulatory_request,
3031 				       list);
3032 	list_del_init(&reg_request->list);
3033 
3034 	spin_unlock(&reg_requests_lock);
3035 
3036 	notify_self_managed_wiphys(reg_request);
3037 
3038 	reg_process_hint(reg_request);
3039 
3040 	lr = get_last_request();
3041 
3042 	spin_lock(&reg_requests_lock);
3043 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3044 		schedule_work(&reg_work);
3045 	spin_unlock(&reg_requests_lock);
3046 }
3047 
3048 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3049 static void reg_process_pending_beacon_hints(void)
3050 {
3051 	struct cfg80211_registered_device *rdev;
3052 	struct reg_beacon *pending_beacon, *tmp;
3053 
3054 	/* This goes through the _pending_ beacon list */
3055 	spin_lock_bh(&reg_pending_beacons_lock);
3056 
3057 	list_for_each_entry_safe(pending_beacon, tmp,
3058 				 &reg_pending_beacons, list) {
3059 		list_del_init(&pending_beacon->list);
3060 
3061 		/* Applies the beacon hint to current wiphys */
3062 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3063 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3064 
3065 		/* Remembers the beacon hint for new wiphys or reg changes */
3066 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3067 	}
3068 
3069 	spin_unlock_bh(&reg_pending_beacons_lock);
3070 }
3071 
reg_process_self_managed_hints(void)3072 static void reg_process_self_managed_hints(void)
3073 {
3074 	struct cfg80211_registered_device *rdev;
3075 	struct wiphy *wiphy;
3076 	const struct ieee80211_regdomain *tmp;
3077 	const struct ieee80211_regdomain *regd;
3078 	enum nl80211_band band;
3079 	struct regulatory_request request = {};
3080 
3081 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3082 		wiphy = &rdev->wiphy;
3083 
3084 		spin_lock(&reg_requests_lock);
3085 		regd = rdev->requested_regd;
3086 		rdev->requested_regd = NULL;
3087 		spin_unlock(&reg_requests_lock);
3088 
3089 		if (regd == NULL)
3090 			continue;
3091 
3092 		tmp = get_wiphy_regdom(wiphy);
3093 		rcu_assign_pointer(wiphy->regd, regd);
3094 		rcu_free_regdom(tmp);
3095 
3096 		for (band = 0; band < NUM_NL80211_BANDS; band++)
3097 			handle_band_custom(wiphy, wiphy->bands[band], regd);
3098 
3099 		reg_process_ht_flags(wiphy);
3100 
3101 		request.wiphy_idx = get_wiphy_idx(wiphy);
3102 		request.alpha2[0] = regd->alpha2[0];
3103 		request.alpha2[1] = regd->alpha2[1];
3104 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3105 
3106 		nl80211_send_wiphy_reg_change_event(&request);
3107 	}
3108 
3109 	reg_check_channels();
3110 }
3111 
reg_todo(struct work_struct * work)3112 static void reg_todo(struct work_struct *work)
3113 {
3114 	rtnl_lock();
3115 	reg_process_pending_hints();
3116 	reg_process_pending_beacon_hints();
3117 	reg_process_self_managed_hints();
3118 	rtnl_unlock();
3119 }
3120 
queue_regulatory_request(struct regulatory_request * request)3121 static void queue_regulatory_request(struct regulatory_request *request)
3122 {
3123 	request->alpha2[0] = toupper(request->alpha2[0]);
3124 	request->alpha2[1] = toupper(request->alpha2[1]);
3125 
3126 	spin_lock(&reg_requests_lock);
3127 	list_add_tail(&request->list, &reg_requests_list);
3128 	spin_unlock(&reg_requests_lock);
3129 
3130 	schedule_work(&reg_work);
3131 }
3132 
3133 /*
3134  * Core regulatory hint -- happens during cfg80211_init()
3135  * and when we restore regulatory settings.
3136  */
regulatory_hint_core(const char * alpha2)3137 static int regulatory_hint_core(const char *alpha2)
3138 {
3139 	struct regulatory_request *request;
3140 
3141 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3142 	if (!request)
3143 		return -ENOMEM;
3144 
3145 	request->alpha2[0] = alpha2[0];
3146 	request->alpha2[1] = alpha2[1];
3147 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3148 	request->wiphy_idx = WIPHY_IDX_INVALID;
3149 
3150 	queue_regulatory_request(request);
3151 
3152 	return 0;
3153 }
3154 
3155 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3156 int regulatory_hint_user(const char *alpha2,
3157 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3158 {
3159 	struct regulatory_request *request;
3160 
3161 	if (WARN_ON(!alpha2))
3162 		return -EINVAL;
3163 
3164 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3165 		return -EINVAL;
3166 
3167 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3168 	if (!request)
3169 		return -ENOMEM;
3170 
3171 	request->wiphy_idx = WIPHY_IDX_INVALID;
3172 	request->alpha2[0] = alpha2[0];
3173 	request->alpha2[1] = alpha2[1];
3174 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3175 	request->user_reg_hint_type = user_reg_hint_type;
3176 
3177 	/* Allow calling CRDA again */
3178 	reset_crda_timeouts();
3179 
3180 	queue_regulatory_request(request);
3181 
3182 	return 0;
3183 }
3184 
regulatory_hint_indoor(bool is_indoor,u32 portid)3185 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3186 {
3187 	spin_lock(&reg_indoor_lock);
3188 
3189 	/* It is possible that more than one user space process is trying to
3190 	 * configure the indoor setting. To handle such cases, clear the indoor
3191 	 * setting in case that some process does not think that the device
3192 	 * is operating in an indoor environment. In addition, if a user space
3193 	 * process indicates that it is controlling the indoor setting, save its
3194 	 * portid, i.e., make it the owner.
3195 	 */
3196 	reg_is_indoor = is_indoor;
3197 	if (reg_is_indoor) {
3198 		if (!reg_is_indoor_portid)
3199 			reg_is_indoor_portid = portid;
3200 	} else {
3201 		reg_is_indoor_portid = 0;
3202 	}
3203 
3204 	spin_unlock(&reg_indoor_lock);
3205 
3206 	if (!is_indoor)
3207 		reg_check_channels();
3208 
3209 	return 0;
3210 }
3211 
regulatory_netlink_notify(u32 portid)3212 void regulatory_netlink_notify(u32 portid)
3213 {
3214 	spin_lock(&reg_indoor_lock);
3215 
3216 	if (reg_is_indoor_portid != portid) {
3217 		spin_unlock(&reg_indoor_lock);
3218 		return;
3219 	}
3220 
3221 	reg_is_indoor = false;
3222 	reg_is_indoor_portid = 0;
3223 
3224 	spin_unlock(&reg_indoor_lock);
3225 
3226 	reg_check_channels();
3227 }
3228 
3229 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3230 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3231 {
3232 	struct regulatory_request *request;
3233 
3234 	if (WARN_ON(!alpha2 || !wiphy))
3235 		return -EINVAL;
3236 
3237 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3238 
3239 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3240 	if (!request)
3241 		return -ENOMEM;
3242 
3243 	request->wiphy_idx = get_wiphy_idx(wiphy);
3244 
3245 	request->alpha2[0] = alpha2[0];
3246 	request->alpha2[1] = alpha2[1];
3247 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3248 
3249 	/* Allow calling CRDA again */
3250 	reset_crda_timeouts();
3251 
3252 	queue_regulatory_request(request);
3253 
3254 	return 0;
3255 }
3256 EXPORT_SYMBOL(regulatory_hint);
3257 
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3258 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3259 				const u8 *country_ie, u8 country_ie_len)
3260 {
3261 	char alpha2[2];
3262 	enum environment_cap env = ENVIRON_ANY;
3263 	struct regulatory_request *request = NULL, *lr;
3264 
3265 	/* IE len must be evenly divisible by 2 */
3266 	if (country_ie_len & 0x01)
3267 		return;
3268 
3269 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3270 		return;
3271 
3272 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3273 	if (!request)
3274 		return;
3275 
3276 	alpha2[0] = country_ie[0];
3277 	alpha2[1] = country_ie[1];
3278 
3279 	if (country_ie[2] == 'I')
3280 		env = ENVIRON_INDOOR;
3281 	else if (country_ie[2] == 'O')
3282 		env = ENVIRON_OUTDOOR;
3283 
3284 	rcu_read_lock();
3285 	lr = get_last_request();
3286 
3287 	if (unlikely(!lr))
3288 		goto out;
3289 
3290 	/*
3291 	 * We will run this only upon a successful connection on cfg80211.
3292 	 * We leave conflict resolution to the workqueue, where can hold
3293 	 * the RTNL.
3294 	 */
3295 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3296 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3297 		goto out;
3298 
3299 	request->wiphy_idx = get_wiphy_idx(wiphy);
3300 	request->alpha2[0] = alpha2[0];
3301 	request->alpha2[1] = alpha2[1];
3302 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3303 	request->country_ie_env = env;
3304 
3305 	/* Allow calling CRDA again */
3306 	reset_crda_timeouts();
3307 
3308 	queue_regulatory_request(request);
3309 	request = NULL;
3310 out:
3311 	kfree(request);
3312 	rcu_read_unlock();
3313 }
3314 
restore_alpha2(char * alpha2,bool reset_user)3315 static void restore_alpha2(char *alpha2, bool reset_user)
3316 {
3317 	/* indicates there is no alpha2 to consider for restoration */
3318 	alpha2[0] = '9';
3319 	alpha2[1] = '7';
3320 
3321 	/* The user setting has precedence over the module parameter */
3322 	if (is_user_regdom_saved()) {
3323 		/* Unless we're asked to ignore it and reset it */
3324 		if (reset_user) {
3325 			pr_debug("Restoring regulatory settings including user preference\n");
3326 			user_alpha2[0] = '9';
3327 			user_alpha2[1] = '7';
3328 
3329 			/*
3330 			 * If we're ignoring user settings, we still need to
3331 			 * check the module parameter to ensure we put things
3332 			 * back as they were for a full restore.
3333 			 */
3334 			if (!is_world_regdom(ieee80211_regdom)) {
3335 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3336 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3337 				alpha2[0] = ieee80211_regdom[0];
3338 				alpha2[1] = ieee80211_regdom[1];
3339 			}
3340 		} else {
3341 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3342 				 user_alpha2[0], user_alpha2[1]);
3343 			alpha2[0] = user_alpha2[0];
3344 			alpha2[1] = user_alpha2[1];
3345 		}
3346 	} else if (!is_world_regdom(ieee80211_regdom)) {
3347 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3348 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3349 		alpha2[0] = ieee80211_regdom[0];
3350 		alpha2[1] = ieee80211_regdom[1];
3351 	} else
3352 		pr_debug("Restoring regulatory settings\n");
3353 }
3354 
restore_custom_reg_settings(struct wiphy * wiphy)3355 static void restore_custom_reg_settings(struct wiphy *wiphy)
3356 {
3357 	struct ieee80211_supported_band *sband;
3358 	enum nl80211_band band;
3359 	struct ieee80211_channel *chan;
3360 	int i;
3361 
3362 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3363 		sband = wiphy->bands[band];
3364 		if (!sband)
3365 			continue;
3366 		for (i = 0; i < sband->n_channels; i++) {
3367 			chan = &sband->channels[i];
3368 			chan->flags = chan->orig_flags;
3369 			chan->max_antenna_gain = chan->orig_mag;
3370 			chan->max_power = chan->orig_mpwr;
3371 			chan->beacon_found = false;
3372 		}
3373 	}
3374 }
3375 
3376 /*
3377  * Restoring regulatory settings involves ingoring any
3378  * possibly stale country IE information and user regulatory
3379  * settings if so desired, this includes any beacon hints
3380  * learned as we could have traveled outside to another country
3381  * after disconnection. To restore regulatory settings we do
3382  * exactly what we did at bootup:
3383  *
3384  *   - send a core regulatory hint
3385  *   - send a user regulatory hint if applicable
3386  *
3387  * Device drivers that send a regulatory hint for a specific country
3388  * keep their own regulatory domain on wiphy->regd so that does
3389  * not need to be remembered.
3390  */
restore_regulatory_settings(bool reset_user,bool cached)3391 static void restore_regulatory_settings(bool reset_user, bool cached)
3392 {
3393 	char alpha2[2];
3394 	char world_alpha2[2];
3395 	struct reg_beacon *reg_beacon, *btmp;
3396 	LIST_HEAD(tmp_reg_req_list);
3397 	struct cfg80211_registered_device *rdev;
3398 
3399 	ASSERT_RTNL();
3400 
3401 	/*
3402 	 * Clear the indoor setting in case that it is not controlled by user
3403 	 * space, as otherwise there is no guarantee that the device is still
3404 	 * operating in an indoor environment.
3405 	 */
3406 	spin_lock(&reg_indoor_lock);
3407 	if (reg_is_indoor && !reg_is_indoor_portid) {
3408 		reg_is_indoor = false;
3409 		reg_check_channels();
3410 	}
3411 	spin_unlock(&reg_indoor_lock);
3412 
3413 	reset_regdomains(true, &world_regdom);
3414 	restore_alpha2(alpha2, reset_user);
3415 
3416 	/*
3417 	 * If there's any pending requests we simply
3418 	 * stash them to a temporary pending queue and
3419 	 * add then after we've restored regulatory
3420 	 * settings.
3421 	 */
3422 	spin_lock(&reg_requests_lock);
3423 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3424 	spin_unlock(&reg_requests_lock);
3425 
3426 	/* Clear beacon hints */
3427 	spin_lock_bh(&reg_pending_beacons_lock);
3428 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3429 		list_del(&reg_beacon->list);
3430 		kfree(reg_beacon);
3431 	}
3432 	spin_unlock_bh(&reg_pending_beacons_lock);
3433 
3434 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3435 		list_del(&reg_beacon->list);
3436 		kfree(reg_beacon);
3437 	}
3438 
3439 	/* First restore to the basic regulatory settings */
3440 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3441 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3442 
3443 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3444 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3445 			continue;
3446 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3447 			restore_custom_reg_settings(&rdev->wiphy);
3448 	}
3449 
3450 	if (cached && (!is_an_alpha2(alpha2) ||
3451 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3452 		reset_regdomains(false, cfg80211_world_regdom);
3453 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3454 		print_regdomain(get_cfg80211_regdom());
3455 		nl80211_send_reg_change_event(&core_request_world);
3456 		reg_set_request_processed();
3457 
3458 		if (is_an_alpha2(alpha2) &&
3459 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3460 			struct regulatory_request *ureq;
3461 
3462 			spin_lock(&reg_requests_lock);
3463 			ureq = list_last_entry(&reg_requests_list,
3464 					       struct regulatory_request,
3465 					       list);
3466 			list_del(&ureq->list);
3467 			spin_unlock(&reg_requests_lock);
3468 
3469 			notify_self_managed_wiphys(ureq);
3470 			reg_update_last_request(ureq);
3471 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3472 				   REGD_SOURCE_CACHED);
3473 		}
3474 	} else {
3475 		regulatory_hint_core(world_alpha2);
3476 
3477 		/*
3478 		 * This restores the ieee80211_regdom module parameter
3479 		 * preference or the last user requested regulatory
3480 		 * settings, user regulatory settings takes precedence.
3481 		 */
3482 		if (is_an_alpha2(alpha2))
3483 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3484 	}
3485 
3486 	spin_lock(&reg_requests_lock);
3487 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3488 	spin_unlock(&reg_requests_lock);
3489 
3490 	pr_debug("Kicking the queue\n");
3491 
3492 	schedule_work(&reg_work);
3493 }
3494 
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3495 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3496 {
3497 	struct cfg80211_registered_device *rdev;
3498 	struct wireless_dev *wdev;
3499 
3500 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3501 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3502 			wdev_lock(wdev);
3503 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3504 				wdev_unlock(wdev);
3505 				return false;
3506 			}
3507 			wdev_unlock(wdev);
3508 		}
3509 	}
3510 
3511 	return true;
3512 }
3513 
regulatory_hint_disconnect(void)3514 void regulatory_hint_disconnect(void)
3515 {
3516 	/* Restore of regulatory settings is not required when wiphy(s)
3517 	 * ignore IE from connected access point but clearance of beacon hints
3518 	 * is required when wiphy(s) supports beacon hints.
3519 	 */
3520 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3521 		struct reg_beacon *reg_beacon, *btmp;
3522 
3523 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3524 			return;
3525 
3526 		spin_lock_bh(&reg_pending_beacons_lock);
3527 		list_for_each_entry_safe(reg_beacon, btmp,
3528 					 &reg_pending_beacons, list) {
3529 			list_del(&reg_beacon->list);
3530 			kfree(reg_beacon);
3531 		}
3532 		spin_unlock_bh(&reg_pending_beacons_lock);
3533 
3534 		list_for_each_entry_safe(reg_beacon, btmp,
3535 					 &reg_beacon_list, list) {
3536 			list_del(&reg_beacon->list);
3537 			kfree(reg_beacon);
3538 		}
3539 
3540 		return;
3541 	}
3542 
3543 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3544 	restore_regulatory_settings(false, true);
3545 }
3546 
freq_is_chan_12_13_14(u32 freq)3547 static bool freq_is_chan_12_13_14(u32 freq)
3548 {
3549 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3550 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3551 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3552 		return true;
3553 	return false;
3554 }
3555 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3556 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3557 {
3558 	struct reg_beacon *pending_beacon;
3559 
3560 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3561 		if (ieee80211_channel_equal(beacon_chan,
3562 					    &pending_beacon->chan))
3563 			return true;
3564 	return false;
3565 }
3566 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3567 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3568 				 struct ieee80211_channel *beacon_chan,
3569 				 gfp_t gfp)
3570 {
3571 	struct reg_beacon *reg_beacon;
3572 	bool processing;
3573 
3574 	if (beacon_chan->beacon_found ||
3575 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3576 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3577 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3578 		return 0;
3579 
3580 	spin_lock_bh(&reg_pending_beacons_lock);
3581 	processing = pending_reg_beacon(beacon_chan);
3582 	spin_unlock_bh(&reg_pending_beacons_lock);
3583 
3584 	if (processing)
3585 		return 0;
3586 
3587 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3588 	if (!reg_beacon)
3589 		return -ENOMEM;
3590 
3591 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3592 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3593 		 ieee80211_freq_khz_to_channel(
3594 			 ieee80211_channel_to_khz(beacon_chan)),
3595 		 wiphy_name(wiphy));
3596 
3597 	memcpy(&reg_beacon->chan, beacon_chan,
3598 	       sizeof(struct ieee80211_channel));
3599 
3600 	/*
3601 	 * Since we can be called from BH or and non-BH context
3602 	 * we must use spin_lock_bh()
3603 	 */
3604 	spin_lock_bh(&reg_pending_beacons_lock);
3605 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3606 	spin_unlock_bh(&reg_pending_beacons_lock);
3607 
3608 	schedule_work(&reg_work);
3609 
3610 	return 0;
3611 }
3612 
print_rd_rules(const struct ieee80211_regdomain * rd)3613 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3614 {
3615 	unsigned int i;
3616 	const struct ieee80211_reg_rule *reg_rule = NULL;
3617 	const struct ieee80211_freq_range *freq_range = NULL;
3618 	const struct ieee80211_power_rule *power_rule = NULL;
3619 	char bw[32], cac_time[32];
3620 
3621 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3622 
3623 	for (i = 0; i < rd->n_reg_rules; i++) {
3624 		reg_rule = &rd->reg_rules[i];
3625 		freq_range = &reg_rule->freq_range;
3626 		power_rule = &reg_rule->power_rule;
3627 
3628 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3629 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3630 				 freq_range->max_bandwidth_khz,
3631 				 reg_get_max_bandwidth(rd, reg_rule));
3632 		else
3633 			snprintf(bw, sizeof(bw), "%d KHz",
3634 				 freq_range->max_bandwidth_khz);
3635 
3636 		if (reg_rule->flags & NL80211_RRF_DFS)
3637 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3638 				  reg_rule->dfs_cac_ms/1000);
3639 		else
3640 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3641 
3642 
3643 		/*
3644 		 * There may not be documentation for max antenna gain
3645 		 * in certain regions
3646 		 */
3647 		if (power_rule->max_antenna_gain)
3648 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3649 				freq_range->start_freq_khz,
3650 				freq_range->end_freq_khz,
3651 				bw,
3652 				power_rule->max_antenna_gain,
3653 				power_rule->max_eirp,
3654 				cac_time);
3655 		else
3656 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3657 				freq_range->start_freq_khz,
3658 				freq_range->end_freq_khz,
3659 				bw,
3660 				power_rule->max_eirp,
3661 				cac_time);
3662 	}
3663 }
3664 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3665 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3666 {
3667 	switch (dfs_region) {
3668 	case NL80211_DFS_UNSET:
3669 	case NL80211_DFS_FCC:
3670 	case NL80211_DFS_ETSI:
3671 	case NL80211_DFS_JP:
3672 		return true;
3673 	default:
3674 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3675 		return false;
3676 	}
3677 }
3678 
print_regdomain(const struct ieee80211_regdomain * rd)3679 static void print_regdomain(const struct ieee80211_regdomain *rd)
3680 {
3681 	struct regulatory_request *lr = get_last_request();
3682 
3683 	if (is_intersected_alpha2(rd->alpha2)) {
3684 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3685 			struct cfg80211_registered_device *rdev;
3686 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3687 			if (rdev) {
3688 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3689 					rdev->country_ie_alpha2[0],
3690 					rdev->country_ie_alpha2[1]);
3691 			} else
3692 				pr_debug("Current regulatory domain intersected:\n");
3693 		} else
3694 			pr_debug("Current regulatory domain intersected:\n");
3695 	} else if (is_world_regdom(rd->alpha2)) {
3696 		pr_debug("World regulatory domain updated:\n");
3697 	} else {
3698 		if (is_unknown_alpha2(rd->alpha2))
3699 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3700 		else {
3701 			if (reg_request_cell_base(lr))
3702 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3703 					rd->alpha2[0], rd->alpha2[1]);
3704 			else
3705 				pr_debug("Regulatory domain changed to country: %c%c\n",
3706 					rd->alpha2[0], rd->alpha2[1]);
3707 		}
3708 	}
3709 
3710 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3711 	print_rd_rules(rd);
3712 }
3713 
print_regdomain_info(const struct ieee80211_regdomain * rd)3714 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3715 {
3716 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3717 	print_rd_rules(rd);
3718 }
3719 
reg_set_rd_core(const struct ieee80211_regdomain * rd)3720 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3721 {
3722 	if (!is_world_regdom(rd->alpha2))
3723 		return -EINVAL;
3724 	update_world_regdomain(rd);
3725 	return 0;
3726 }
3727 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3728 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3729 			   struct regulatory_request *user_request)
3730 {
3731 	const struct ieee80211_regdomain *intersected_rd = NULL;
3732 
3733 	if (!regdom_changes(rd->alpha2))
3734 		return -EALREADY;
3735 
3736 	if (!is_valid_rd(rd)) {
3737 		pr_err("Invalid regulatory domain detected: %c%c\n",
3738 		       rd->alpha2[0], rd->alpha2[1]);
3739 		print_regdomain_info(rd);
3740 		return -EINVAL;
3741 	}
3742 
3743 	if (!user_request->intersect) {
3744 		reset_regdomains(false, rd);
3745 		return 0;
3746 	}
3747 
3748 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3749 	if (!intersected_rd)
3750 		return -EINVAL;
3751 
3752 	kfree(rd);
3753 	rd = NULL;
3754 	reset_regdomains(false, intersected_rd);
3755 
3756 	return 0;
3757 }
3758 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3759 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3760 			     struct regulatory_request *driver_request)
3761 {
3762 	const struct ieee80211_regdomain *regd;
3763 	const struct ieee80211_regdomain *intersected_rd = NULL;
3764 	const struct ieee80211_regdomain *tmp;
3765 	struct wiphy *request_wiphy;
3766 
3767 	if (is_world_regdom(rd->alpha2))
3768 		return -EINVAL;
3769 
3770 	if (!regdom_changes(rd->alpha2))
3771 		return -EALREADY;
3772 
3773 	if (!is_valid_rd(rd)) {
3774 		pr_err("Invalid regulatory domain detected: %c%c\n",
3775 		       rd->alpha2[0], rd->alpha2[1]);
3776 		print_regdomain_info(rd);
3777 		return -EINVAL;
3778 	}
3779 
3780 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3781 	if (!request_wiphy)
3782 		return -ENODEV;
3783 
3784 	if (!driver_request->intersect) {
3785 		if (request_wiphy->regd)
3786 			return -EALREADY;
3787 
3788 		regd = reg_copy_regd(rd);
3789 		if (IS_ERR(regd))
3790 			return PTR_ERR(regd);
3791 
3792 		rcu_assign_pointer(request_wiphy->regd, regd);
3793 		reset_regdomains(false, rd);
3794 		return 0;
3795 	}
3796 
3797 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3798 	if (!intersected_rd)
3799 		return -EINVAL;
3800 
3801 	/*
3802 	 * We can trash what CRDA provided now.
3803 	 * However if a driver requested this specific regulatory
3804 	 * domain we keep it for its private use
3805 	 */
3806 	tmp = get_wiphy_regdom(request_wiphy);
3807 	rcu_assign_pointer(request_wiphy->regd, rd);
3808 	rcu_free_regdom(tmp);
3809 
3810 	rd = NULL;
3811 
3812 	reset_regdomains(false, intersected_rd);
3813 
3814 	return 0;
3815 }
3816 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3817 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3818 				 struct regulatory_request *country_ie_request)
3819 {
3820 	struct wiphy *request_wiphy;
3821 
3822 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3823 	    !is_unknown_alpha2(rd->alpha2))
3824 		return -EINVAL;
3825 
3826 	/*
3827 	 * Lets only bother proceeding on the same alpha2 if the current
3828 	 * rd is non static (it means CRDA was present and was used last)
3829 	 * and the pending request came in from a country IE
3830 	 */
3831 
3832 	if (!is_valid_rd(rd)) {
3833 		pr_err("Invalid regulatory domain detected: %c%c\n",
3834 		       rd->alpha2[0], rd->alpha2[1]);
3835 		print_regdomain_info(rd);
3836 		return -EINVAL;
3837 	}
3838 
3839 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3840 	if (!request_wiphy)
3841 		return -ENODEV;
3842 
3843 	if (country_ie_request->intersect)
3844 		return -EINVAL;
3845 
3846 	reset_regdomains(false, rd);
3847 	return 0;
3848 }
3849 
3850 /*
3851  * Use this call to set the current regulatory domain. Conflicts with
3852  * multiple drivers can be ironed out later. Caller must've already
3853  * kmalloc'd the rd structure.
3854  */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3855 int set_regdom(const struct ieee80211_regdomain *rd,
3856 	       enum ieee80211_regd_source regd_src)
3857 {
3858 	struct regulatory_request *lr;
3859 	bool user_reset = false;
3860 	int r;
3861 
3862 	if (IS_ERR_OR_NULL(rd))
3863 		return -ENODATA;
3864 
3865 	if (!reg_is_valid_request(rd->alpha2)) {
3866 		kfree(rd);
3867 		return -EINVAL;
3868 	}
3869 
3870 	if (regd_src == REGD_SOURCE_CRDA)
3871 		reset_crda_timeouts();
3872 
3873 	lr = get_last_request();
3874 
3875 	/* Note that this doesn't update the wiphys, this is done below */
3876 	switch (lr->initiator) {
3877 	case NL80211_REGDOM_SET_BY_CORE:
3878 		r = reg_set_rd_core(rd);
3879 		break;
3880 	case NL80211_REGDOM_SET_BY_USER:
3881 		cfg80211_save_user_regdom(rd);
3882 		r = reg_set_rd_user(rd, lr);
3883 		user_reset = true;
3884 		break;
3885 	case NL80211_REGDOM_SET_BY_DRIVER:
3886 		r = reg_set_rd_driver(rd, lr);
3887 		break;
3888 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3889 		r = reg_set_rd_country_ie(rd, lr);
3890 		break;
3891 	default:
3892 		WARN(1, "invalid initiator %d\n", lr->initiator);
3893 		kfree(rd);
3894 		return -EINVAL;
3895 	}
3896 
3897 	if (r) {
3898 		switch (r) {
3899 		case -EALREADY:
3900 			reg_set_request_processed();
3901 			break;
3902 		default:
3903 			/* Back to world regulatory in case of errors */
3904 			restore_regulatory_settings(user_reset, false);
3905 		}
3906 
3907 		kfree(rd);
3908 		return r;
3909 	}
3910 
3911 	/* This would make this whole thing pointless */
3912 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3913 		return -EINVAL;
3914 
3915 	/* update all wiphys now with the new established regulatory domain */
3916 	update_all_wiphy_regulatory(lr->initiator);
3917 
3918 	print_regdomain(get_cfg80211_regdom());
3919 
3920 	nl80211_send_reg_change_event(lr);
3921 
3922 	reg_set_request_processed();
3923 
3924 	return 0;
3925 }
3926 
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3927 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3928 				       struct ieee80211_regdomain *rd)
3929 {
3930 	const struct ieee80211_regdomain *regd;
3931 	const struct ieee80211_regdomain *prev_regd;
3932 	struct cfg80211_registered_device *rdev;
3933 
3934 	if (WARN_ON(!wiphy || !rd))
3935 		return -EINVAL;
3936 
3937 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3938 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3939 		return -EPERM;
3940 
3941 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3942 		print_regdomain_info(rd);
3943 		return -EINVAL;
3944 	}
3945 
3946 	regd = reg_copy_regd(rd);
3947 	if (IS_ERR(regd))
3948 		return PTR_ERR(regd);
3949 
3950 	rdev = wiphy_to_rdev(wiphy);
3951 
3952 	spin_lock(&reg_requests_lock);
3953 	prev_regd = rdev->requested_regd;
3954 	rdev->requested_regd = regd;
3955 	spin_unlock(&reg_requests_lock);
3956 
3957 	kfree(prev_regd);
3958 	return 0;
3959 }
3960 
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3961 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3962 			      struct ieee80211_regdomain *rd)
3963 {
3964 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3965 
3966 	if (ret)
3967 		return ret;
3968 
3969 	schedule_work(&reg_work);
3970 	return 0;
3971 }
3972 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3973 
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3974 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3975 					struct ieee80211_regdomain *rd)
3976 {
3977 	int ret;
3978 
3979 	ASSERT_RTNL();
3980 
3981 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3982 	if (ret)
3983 		return ret;
3984 
3985 	/* process the request immediately */
3986 	reg_process_self_managed_hints();
3987 	return 0;
3988 }
3989 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3990 
wiphy_regulatory_register(struct wiphy * wiphy)3991 void wiphy_regulatory_register(struct wiphy *wiphy)
3992 {
3993 	struct regulatory_request *lr = get_last_request();
3994 
3995 	/* self-managed devices ignore beacon hints and country IE */
3996 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3997 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3998 					   REGULATORY_COUNTRY_IE_IGNORE;
3999 
4000 		/*
4001 		 * The last request may have been received before this
4002 		 * registration call. Call the driver notifier if
4003 		 * initiator is USER.
4004 		 */
4005 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4006 			reg_call_notifier(wiphy, lr);
4007 	}
4008 
4009 	if (!reg_dev_ignore_cell_hint(wiphy))
4010 		reg_num_devs_support_basehint++;
4011 
4012 	wiphy_update_regulatory(wiphy, lr->initiator);
4013 	wiphy_all_share_dfs_chan_state(wiphy);
4014 	reg_process_self_managed_hints();
4015 }
4016 
wiphy_regulatory_deregister(struct wiphy * wiphy)4017 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4018 {
4019 	struct wiphy *request_wiphy = NULL;
4020 	struct regulatory_request *lr;
4021 
4022 	lr = get_last_request();
4023 
4024 	if (!reg_dev_ignore_cell_hint(wiphy))
4025 		reg_num_devs_support_basehint--;
4026 
4027 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4028 	RCU_INIT_POINTER(wiphy->regd, NULL);
4029 
4030 	if (lr)
4031 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4032 
4033 	if (!request_wiphy || request_wiphy != wiphy)
4034 		return;
4035 
4036 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4037 	lr->country_ie_env = ENVIRON_ANY;
4038 }
4039 
4040 /*
4041  * See FCC notices for UNII band definitions
4042  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4043  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4044  */
cfg80211_get_unii(int freq)4045 int cfg80211_get_unii(int freq)
4046 {
4047 	/* UNII-1 */
4048 	if (freq >= 5150 && freq <= 5250)
4049 		return 0;
4050 
4051 	/* UNII-2A */
4052 	if (freq > 5250 && freq <= 5350)
4053 		return 1;
4054 
4055 	/* UNII-2B */
4056 	if (freq > 5350 && freq <= 5470)
4057 		return 2;
4058 
4059 	/* UNII-2C */
4060 	if (freq > 5470 && freq <= 5725)
4061 		return 3;
4062 
4063 	/* UNII-3 */
4064 	if (freq > 5725 && freq <= 5825)
4065 		return 4;
4066 
4067 	/* UNII-5 */
4068 	if (freq > 5925 && freq <= 6425)
4069 		return 5;
4070 
4071 	/* UNII-6 */
4072 	if (freq > 6425 && freq <= 6525)
4073 		return 6;
4074 
4075 	/* UNII-7 */
4076 	if (freq > 6525 && freq <= 6875)
4077 		return 7;
4078 
4079 	/* UNII-8 */
4080 	if (freq > 6875 && freq <= 7125)
4081 		return 8;
4082 
4083 	return -EINVAL;
4084 }
4085 
regulatory_indoor_allowed(void)4086 bool regulatory_indoor_allowed(void)
4087 {
4088 	return reg_is_indoor;
4089 }
4090 
regulatory_pre_cac_allowed(struct wiphy * wiphy)4091 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4092 {
4093 	const struct ieee80211_regdomain *regd = NULL;
4094 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4095 	bool pre_cac_allowed = false;
4096 
4097 	rcu_read_lock();
4098 
4099 	regd = rcu_dereference(cfg80211_regdomain);
4100 	wiphy_regd = rcu_dereference(wiphy->regd);
4101 	if (!wiphy_regd) {
4102 		if (regd->dfs_region == NL80211_DFS_ETSI)
4103 			pre_cac_allowed = true;
4104 
4105 		rcu_read_unlock();
4106 
4107 		return pre_cac_allowed;
4108 	}
4109 
4110 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4111 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4112 		pre_cac_allowed = true;
4113 
4114 	rcu_read_unlock();
4115 
4116 	return pre_cac_allowed;
4117 }
4118 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4119 
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4120 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4121 {
4122 	struct wireless_dev *wdev;
4123 	/* If we finished CAC or received radar, we should end any
4124 	 * CAC running on the same channels.
4125 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4126 	 * either all channels are available - those the CAC_FINISHED
4127 	 * event has effected another wdev state, or there is a channel
4128 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4129 	 * event has effected another wdev state.
4130 	 * In both cases we should end the CAC on the wdev.
4131 	 */
4132 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4133 		if (wdev->cac_started &&
4134 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4135 			rdev_end_cac(rdev, wdev->netdev);
4136 	}
4137 }
4138 
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4139 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4140 				    struct cfg80211_chan_def *chandef,
4141 				    enum nl80211_dfs_state dfs_state,
4142 				    enum nl80211_radar_event event)
4143 {
4144 	struct cfg80211_registered_device *rdev;
4145 
4146 	ASSERT_RTNL();
4147 
4148 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4149 		return;
4150 
4151 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4152 		if (wiphy == &rdev->wiphy)
4153 			continue;
4154 
4155 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4156 			continue;
4157 
4158 		if (!ieee80211_get_channel(&rdev->wiphy,
4159 					   chandef->chan->center_freq))
4160 			continue;
4161 
4162 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4163 
4164 		if (event == NL80211_RADAR_DETECTED ||
4165 		    event == NL80211_RADAR_CAC_FINISHED) {
4166 			cfg80211_sched_dfs_chan_update(rdev);
4167 			cfg80211_check_and_end_cac(rdev);
4168 		}
4169 
4170 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4171 	}
4172 }
4173 
regulatory_init_db(void)4174 static int __init regulatory_init_db(void)
4175 {
4176 	int err;
4177 
4178 	/*
4179 	 * It's possible that - due to other bugs/issues - cfg80211
4180 	 * never called regulatory_init() below, or that it failed;
4181 	 * in that case, don't try to do any further work here as
4182 	 * it's doomed to lead to crashes.
4183 	 */
4184 	if (IS_ERR_OR_NULL(reg_pdev))
4185 		return -EINVAL;
4186 
4187 	err = load_builtin_regdb_keys();
4188 	if (err) {
4189 		platform_device_unregister(reg_pdev);
4190 		return err;
4191 	}
4192 
4193 	/* We always try to get an update for the static regdomain */
4194 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4195 	if (err) {
4196 		if (err == -ENOMEM) {
4197 			platform_device_unregister(reg_pdev);
4198 			return err;
4199 		}
4200 		/*
4201 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4202 		 * memory which is handled and propagated appropriately above
4203 		 * but it can also fail during a netlink_broadcast() or during
4204 		 * early boot for call_usermodehelper(). For now treat these
4205 		 * errors as non-fatal.
4206 		 */
4207 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4208 	}
4209 
4210 	/*
4211 	 * Finally, if the user set the module parameter treat it
4212 	 * as a user hint.
4213 	 */
4214 	if (!is_world_regdom(ieee80211_regdom))
4215 		regulatory_hint_user(ieee80211_regdom,
4216 				     NL80211_USER_REG_HINT_USER);
4217 
4218 	return 0;
4219 }
4220 #ifndef MODULE
4221 late_initcall(regulatory_init_db);
4222 #endif
4223 
regulatory_init(void)4224 int __init regulatory_init(void)
4225 {
4226 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4227 	if (IS_ERR(reg_pdev))
4228 		return PTR_ERR(reg_pdev);
4229 
4230 	spin_lock_init(&reg_requests_lock);
4231 	spin_lock_init(&reg_pending_beacons_lock);
4232 	spin_lock_init(&reg_indoor_lock);
4233 
4234 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4235 
4236 	user_alpha2[0] = '9';
4237 	user_alpha2[1] = '7';
4238 
4239 #ifdef MODULE
4240 	return regulatory_init_db();
4241 #else
4242 	return 0;
4243 #endif
4244 }
4245 
regulatory_exit(void)4246 void regulatory_exit(void)
4247 {
4248 	struct regulatory_request *reg_request, *tmp;
4249 	struct reg_beacon *reg_beacon, *btmp;
4250 
4251 	cancel_work_sync(&reg_work);
4252 	cancel_crda_timeout_sync();
4253 	cancel_delayed_work_sync(&reg_check_chans);
4254 
4255 	/* Lock to suppress warnings */
4256 	rtnl_lock();
4257 	reset_regdomains(true, NULL);
4258 	rtnl_unlock();
4259 
4260 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4261 
4262 	platform_device_unregister(reg_pdev);
4263 
4264 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4265 		list_del(&reg_beacon->list);
4266 		kfree(reg_beacon);
4267 	}
4268 
4269 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4270 		list_del(&reg_beacon->list);
4271 		kfree(reg_beacon);
4272 	}
4273 
4274 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4275 		list_del(&reg_request->list);
4276 		kfree(reg_request);
4277 	}
4278 
4279 	if (!IS_ERR_OR_NULL(regdb))
4280 		kfree(regdb);
4281 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4282 		kfree(cfg80211_user_regdom);
4283 
4284 	free_regdb_keyring();
4285 }
4286