• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60 
61 enum {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 */
78 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
79 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
80 
81 	/* worker flags */
82 	WORKER_DIE		= 1 << 1,	/* die die die */
83 	WORKER_IDLE		= 1 << 2,	/* is idle */
84 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
85 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
86 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
87 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
88 
89 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
90 				  WORKER_UNBOUND | WORKER_REBOUND,
91 
92 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
93 
94 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
95 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
96 
97 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
98 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
99 
100 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
101 						/* call for help after 10ms
102 						   (min two ticks) */
103 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
104 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
105 
106 	/*
107 	 * Rescue workers are used only on emergencies and shared by
108 	 * all cpus.  Give MIN_NICE.
109 	 */
110 	RESCUER_NICE_LEVEL	= MIN_NICE,
111 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
112 
113 	WQ_NAME_LEN		= 24,
114 };
115 
116 /*
117  * Structure fields follow one of the following exclusion rules.
118  *
119  * I: Modifiable by initialization/destruction paths and read-only for
120  *    everyone else.
121  *
122  * P: Preemption protected.  Disabling preemption is enough and should
123  *    only be modified and accessed from the local cpu.
124  *
125  * L: pool->lock protected.  Access with pool->lock held.
126  *
127  * X: During normal operation, modification requires pool->lock and should
128  *    be done only from local cpu.  Either disabling preemption on local
129  *    cpu or grabbing pool->lock is enough for read access.  If
130  *    POOL_DISASSOCIATED is set, it's identical to L.
131  *
132  * A: wq_pool_attach_mutex protected.
133  *
134  * PL: wq_pool_mutex protected.
135  *
136  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
137  *
138  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
139  *
140  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
141  *      RCU for reads.
142  *
143  * WQ: wq->mutex protected.
144  *
145  * WR: wq->mutex protected for writes.  RCU protected for reads.
146  *
147  * MD: wq_mayday_lock protected.
148  */
149 
150 /* struct worker is defined in workqueue_internal.h */
151 
152 struct worker_pool {
153 	raw_spinlock_t		lock;		/* the pool lock */
154 	int			cpu;		/* I: the associated cpu */
155 	int			node;		/* I: the associated node ID */
156 	int			id;		/* I: pool ID */
157 	unsigned int		flags;		/* X: flags */
158 
159 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
160 
161 	struct list_head	worklist;	/* L: list of pending works */
162 
163 	int			nr_workers;	/* L: total number of workers */
164 	int			nr_idle;	/* L: currently idle workers */
165 
166 	struct list_head	idle_list;	/* X: list of idle workers */
167 	struct timer_list	idle_timer;	/* L: worker idle timeout */
168 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
169 
170 	/* a workers is either on busy_hash or idle_list, or the manager */
171 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 						/* L: hash of busy workers */
173 
174 	struct worker		*manager;	/* L: purely informational */
175 	struct list_head	workers;	/* A: attached workers */
176 	struct completion	*detach_completion; /* all workers detached */
177 
178 	struct ida		worker_ida;	/* worker IDs for task name */
179 
180 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
181 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
182 	int			refcnt;		/* PL: refcnt for unbound pools */
183 
184 	/*
185 	 * The current concurrency level.  As it's likely to be accessed
186 	 * from other CPUs during try_to_wake_up(), put it in a separate
187 	 * cacheline.
188 	 */
189 	atomic_t		nr_running ____cacheline_aligned_in_smp;
190 
191 	/*
192 	 * Destruction of pool is RCU protected to allow dereferences
193 	 * from get_work_pool().
194 	 */
195 	struct rcu_head		rcu;
196 } ____cacheline_aligned_in_smp;
197 
198 /*
199  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
200  * of work_struct->data are used for flags and the remaining high bits
201  * point to the pwq; thus, pwqs need to be aligned at two's power of the
202  * number of flag bits.
203  */
204 struct pool_workqueue {
205 	struct worker_pool	*pool;		/* I: the associated pool */
206 	struct workqueue_struct *wq;		/* I: the owning workqueue */
207 	int			work_color;	/* L: current color */
208 	int			flush_color;	/* L: flushing color */
209 	int			refcnt;		/* L: reference count */
210 	int			nr_in_flight[WORK_NR_COLORS];
211 						/* L: nr of in_flight works */
212 	int			nr_active;	/* L: nr of active works */
213 	int			max_active;	/* L: max active works */
214 	struct list_head	delayed_works;	/* L: delayed works */
215 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
216 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
217 
218 	/*
219 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
220 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
221 	 * itself is also RCU protected so that the first pwq can be
222 	 * determined without grabbing wq->mutex.
223 	 */
224 	struct work_struct	unbound_release_work;
225 	struct rcu_head		rcu;
226 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
227 
228 /*
229  * Structure used to wait for workqueue flush.
230  */
231 struct wq_flusher {
232 	struct list_head	list;		/* WQ: list of flushers */
233 	int			flush_color;	/* WQ: flush color waiting for */
234 	struct completion	done;		/* flush completion */
235 };
236 
237 struct wq_device;
238 
239 /*
240  * The externally visible workqueue.  It relays the issued work items to
241  * the appropriate worker_pool through its pool_workqueues.
242  */
243 struct workqueue_struct {
244 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
245 	struct list_head	list;		/* PR: list of all workqueues */
246 
247 	struct mutex		mutex;		/* protects this wq */
248 	int			work_color;	/* WQ: current work color */
249 	int			flush_color;	/* WQ: current flush color */
250 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
251 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
252 	struct list_head	flusher_queue;	/* WQ: flush waiters */
253 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
254 
255 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
256 	struct worker		*rescuer;	/* MD: rescue worker */
257 
258 	int			nr_drainers;	/* WQ: drain in progress */
259 	int			saved_max_active; /* WQ: saved pwq max_active */
260 
261 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
262 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
263 
264 #ifdef CONFIG_SYSFS
265 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
266 #endif
267 #ifdef CONFIG_LOCKDEP
268 	char			*lock_name;
269 	struct lock_class_key	key;
270 	struct lockdep_map	lockdep_map;
271 #endif
272 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
273 
274 	/*
275 	 * Destruction of workqueue_struct is RCU protected to allow walking
276 	 * the workqueues list without grabbing wq_pool_mutex.
277 	 * This is used to dump all workqueues from sysrq.
278 	 */
279 	struct rcu_head		rcu;
280 
281 	/* hot fields used during command issue, aligned to cacheline */
282 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
283 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
284 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
285 };
286 
287 static struct kmem_cache *pwq_cache;
288 
289 static cpumask_var_t *wq_numa_possible_cpumask;
290 					/* possible CPUs of each node */
291 
292 static bool wq_disable_numa;
293 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
294 
295 /* see the comment above the definition of WQ_POWER_EFFICIENT */
296 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
297 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
298 
299 static bool wq_online;			/* can kworkers be created yet? */
300 
301 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
302 
303 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
304 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
305 
306 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
307 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
308 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
309 /* wait for manager to go away */
310 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
311 
312 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
313 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
314 
315 /* PL: allowable cpus for unbound wqs and work items */
316 static cpumask_var_t wq_unbound_cpumask;
317 
318 /* CPU where unbound work was last round robin scheduled from this CPU */
319 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
320 
321 /*
322  * Local execution of unbound work items is no longer guaranteed.  The
323  * following always forces round-robin CPU selection on unbound work items
324  * to uncover usages which depend on it.
325  */
326 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
327 static bool wq_debug_force_rr_cpu = true;
328 #else
329 static bool wq_debug_force_rr_cpu = false;
330 #endif
331 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
332 
333 /* the per-cpu worker pools */
334 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
335 
336 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
337 
338 /* PL: hash of all unbound pools keyed by pool->attrs */
339 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
340 
341 /* I: attributes used when instantiating standard unbound pools on demand */
342 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
343 
344 /* I: attributes used when instantiating ordered pools on demand */
345 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
346 
347 struct workqueue_struct *system_wq __read_mostly;
348 EXPORT_SYMBOL(system_wq);
349 struct workqueue_struct *system_highpri_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_highpri_wq);
351 struct workqueue_struct *system_long_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_long_wq);
353 struct workqueue_struct *system_unbound_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_unbound_wq);
355 struct workqueue_struct *system_freezable_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_wq);
357 struct workqueue_struct *system_power_efficient_wq __read_mostly;
358 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
359 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
360 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
361 
362 static int worker_thread(void *__worker);
363 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
364 static void show_pwq(struct pool_workqueue *pwq);
365 
366 #define CREATE_TRACE_POINTS
367 #include <trace/events/workqueue.h>
368 
369 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
370 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
371 
372 #define assert_rcu_or_pool_mutex()					\
373 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "RCU or wq_pool_mutex should be held")
376 
377 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
378 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
379 			 !lockdep_is_held(&wq->mutex) &&		\
380 			 !lockdep_is_held(&wq_pool_mutex),		\
381 			 "RCU, wq->mutex or wq_pool_mutex should be held")
382 
383 #define for_each_cpu_worker_pool(pool, cpu)				\
384 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
385 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
386 	     (pool)++)
387 
388 /**
389  * for_each_pool - iterate through all worker_pools in the system
390  * @pool: iteration cursor
391  * @pi: integer used for iteration
392  *
393  * This must be called either with wq_pool_mutex held or RCU read
394  * locked.  If the pool needs to be used beyond the locking in effect, the
395  * caller is responsible for guaranteeing that the pool stays online.
396  *
397  * The if/else clause exists only for the lockdep assertion and can be
398  * ignored.
399  */
400 #define for_each_pool(pool, pi)						\
401 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
402 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
403 		else
404 
405 /**
406  * for_each_pool_worker - iterate through all workers of a worker_pool
407  * @worker: iteration cursor
408  * @pool: worker_pool to iterate workers of
409  *
410  * This must be called with wq_pool_attach_mutex.
411  *
412  * The if/else clause exists only for the lockdep assertion and can be
413  * ignored.
414  */
415 #define for_each_pool_worker(worker, pool)				\
416 	list_for_each_entry((worker), &(pool)->workers, node)		\
417 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
418 		else
419 
420 /**
421  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
422  * @pwq: iteration cursor
423  * @wq: the target workqueue
424  *
425  * This must be called either with wq->mutex held or RCU read locked.
426  * If the pwq needs to be used beyond the locking in effect, the caller is
427  * responsible for guaranteeing that the pwq stays online.
428  *
429  * The if/else clause exists only for the lockdep assertion and can be
430  * ignored.
431  */
432 #define for_each_pwq(pwq, wq)						\
433 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
434 				 lockdep_is_held(&(wq->mutex)))
435 
436 #ifdef CONFIG_DEBUG_OBJECTS_WORK
437 
438 static const struct debug_obj_descr work_debug_descr;
439 
work_debug_hint(void * addr)440 static void *work_debug_hint(void *addr)
441 {
442 	return ((struct work_struct *) addr)->func;
443 }
444 
work_is_static_object(void * addr)445 static bool work_is_static_object(void *addr)
446 {
447 	struct work_struct *work = addr;
448 
449 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
450 }
451 
452 /*
453  * fixup_init is called when:
454  * - an active object is initialized
455  */
work_fixup_init(void * addr,enum debug_obj_state state)456 static bool work_fixup_init(void *addr, enum debug_obj_state state)
457 {
458 	struct work_struct *work = addr;
459 
460 	switch (state) {
461 	case ODEBUG_STATE_ACTIVE:
462 		cancel_work_sync(work);
463 		debug_object_init(work, &work_debug_descr);
464 		return true;
465 	default:
466 		return false;
467 	}
468 }
469 
470 /*
471  * fixup_free is called when:
472  * - an active object is freed
473  */
work_fixup_free(void * addr,enum debug_obj_state state)474 static bool work_fixup_free(void *addr, enum debug_obj_state state)
475 {
476 	struct work_struct *work = addr;
477 
478 	switch (state) {
479 	case ODEBUG_STATE_ACTIVE:
480 		cancel_work_sync(work);
481 		debug_object_free(work, &work_debug_descr);
482 		return true;
483 	default:
484 		return false;
485 	}
486 }
487 
488 static const struct debug_obj_descr work_debug_descr = {
489 	.name		= "work_struct",
490 	.debug_hint	= work_debug_hint,
491 	.is_static_object = work_is_static_object,
492 	.fixup_init	= work_fixup_init,
493 	.fixup_free	= work_fixup_free,
494 };
495 
debug_work_activate(struct work_struct * work)496 static inline void debug_work_activate(struct work_struct *work)
497 {
498 	debug_object_activate(work, &work_debug_descr);
499 }
500 
debug_work_deactivate(struct work_struct * work)501 static inline void debug_work_deactivate(struct work_struct *work)
502 {
503 	debug_object_deactivate(work, &work_debug_descr);
504 }
505 
__init_work(struct work_struct * work,int onstack)506 void __init_work(struct work_struct *work, int onstack)
507 {
508 	if (onstack)
509 		debug_object_init_on_stack(work, &work_debug_descr);
510 	else
511 		debug_object_init(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(__init_work);
514 
destroy_work_on_stack(struct work_struct * work)515 void destroy_work_on_stack(struct work_struct *work)
516 {
517 	debug_object_free(work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
520 
destroy_delayed_work_on_stack(struct delayed_work * work)521 void destroy_delayed_work_on_stack(struct delayed_work *work)
522 {
523 	destroy_timer_on_stack(&work->timer);
524 	debug_object_free(&work->work, &work_debug_descr);
525 }
526 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
527 
528 #else
debug_work_activate(struct work_struct * work)529 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)530 static inline void debug_work_deactivate(struct work_struct *work) { }
531 #endif
532 
533 /**
534  * worker_pool_assign_id - allocate ID and assing it to @pool
535  * @pool: the pool pointer of interest
536  *
537  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
538  * successfully, -errno on failure.
539  */
worker_pool_assign_id(struct worker_pool * pool)540 static int worker_pool_assign_id(struct worker_pool *pool)
541 {
542 	int ret;
543 
544 	lockdep_assert_held(&wq_pool_mutex);
545 
546 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
547 			GFP_KERNEL);
548 	if (ret >= 0) {
549 		pool->id = ret;
550 		return 0;
551 	}
552 	return ret;
553 }
554 
555 /**
556  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
557  * @wq: the target workqueue
558  * @node: the node ID
559  *
560  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
561  * read locked.
562  * If the pwq needs to be used beyond the locking in effect, the caller is
563  * responsible for guaranteeing that the pwq stays online.
564  *
565  * Return: The unbound pool_workqueue for @node.
566  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)567 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
568 						  int node)
569 {
570 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
571 
572 	/*
573 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
574 	 * delayed item is pending.  The plan is to keep CPU -> NODE
575 	 * mapping valid and stable across CPU on/offlines.  Once that
576 	 * happens, this workaround can be removed.
577 	 */
578 	if (unlikely(node == NUMA_NO_NODE))
579 		return wq->dfl_pwq;
580 
581 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
582 }
583 
work_color_to_flags(int color)584 static unsigned int work_color_to_flags(int color)
585 {
586 	return color << WORK_STRUCT_COLOR_SHIFT;
587 }
588 
get_work_color(struct work_struct * work)589 static int get_work_color(struct work_struct *work)
590 {
591 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
592 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
593 }
594 
work_next_color(int color)595 static int work_next_color(int color)
596 {
597 	return (color + 1) % WORK_NR_COLORS;
598 }
599 
600 /*
601  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
602  * contain the pointer to the queued pwq.  Once execution starts, the flag
603  * is cleared and the high bits contain OFFQ flags and pool ID.
604  *
605  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
606  * and clear_work_data() can be used to set the pwq, pool or clear
607  * work->data.  These functions should only be called while the work is
608  * owned - ie. while the PENDING bit is set.
609  *
610  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
611  * corresponding to a work.  Pool is available once the work has been
612  * queued anywhere after initialization until it is sync canceled.  pwq is
613  * available only while the work item is queued.
614  *
615  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
616  * canceled.  While being canceled, a work item may have its PENDING set
617  * but stay off timer and worklist for arbitrarily long and nobody should
618  * try to steal the PENDING bit.
619  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)620 static inline void set_work_data(struct work_struct *work, unsigned long data,
621 				 unsigned long flags)
622 {
623 	WARN_ON_ONCE(!work_pending(work));
624 	atomic_long_set(&work->data, data | flags | work_static(work));
625 }
626 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)627 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
628 			 unsigned long extra_flags)
629 {
630 	set_work_data(work, (unsigned long)pwq,
631 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
632 }
633 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_keep_pending(struct work_struct *work,
635 					   int pool_id)
636 {
637 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
638 		      WORK_STRUCT_PENDING);
639 }
640 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)641 static void set_work_pool_and_clear_pending(struct work_struct *work,
642 					    int pool_id)
643 {
644 	/*
645 	 * The following wmb is paired with the implied mb in
646 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
647 	 * here are visible to and precede any updates by the next PENDING
648 	 * owner.
649 	 */
650 	smp_wmb();
651 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
652 	/*
653 	 * The following mb guarantees that previous clear of a PENDING bit
654 	 * will not be reordered with any speculative LOADS or STORES from
655 	 * work->current_func, which is executed afterwards.  This possible
656 	 * reordering can lead to a missed execution on attempt to queue
657 	 * the same @work.  E.g. consider this case:
658 	 *
659 	 *   CPU#0                         CPU#1
660 	 *   ----------------------------  --------------------------------
661 	 *
662 	 * 1  STORE event_indicated
663 	 * 2  queue_work_on() {
664 	 * 3    test_and_set_bit(PENDING)
665 	 * 4 }                             set_..._and_clear_pending() {
666 	 * 5                                 set_work_data() # clear bit
667 	 * 6                                 smp_mb()
668 	 * 7                               work->current_func() {
669 	 * 8				      LOAD event_indicated
670 	 *				   }
671 	 *
672 	 * Without an explicit full barrier speculative LOAD on line 8 can
673 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
674 	 * CPU#0 observes the PENDING bit is still set and new execution of
675 	 * a @work is not queued in a hope, that CPU#1 will eventually
676 	 * finish the queued @work.  Meanwhile CPU#1 does not see
677 	 * event_indicated is set, because speculative LOAD was executed
678 	 * before actual STORE.
679 	 */
680 	smp_mb();
681 }
682 
clear_work_data(struct work_struct * work)683 static void clear_work_data(struct work_struct *work)
684 {
685 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
686 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
687 }
688 
work_struct_pwq(unsigned long data)689 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
690 {
691 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
692 }
693 
get_work_pwq(struct work_struct * work)694 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
695 {
696 	unsigned long data = atomic_long_read(&work->data);
697 
698 	if (data & WORK_STRUCT_PWQ)
699 		return work_struct_pwq(data);
700 	else
701 		return NULL;
702 }
703 
704 /**
705  * get_work_pool - return the worker_pool a given work was associated with
706  * @work: the work item of interest
707  *
708  * Pools are created and destroyed under wq_pool_mutex, and allows read
709  * access under RCU read lock.  As such, this function should be
710  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
711  *
712  * All fields of the returned pool are accessible as long as the above
713  * mentioned locking is in effect.  If the returned pool needs to be used
714  * beyond the critical section, the caller is responsible for ensuring the
715  * returned pool is and stays online.
716  *
717  * Return: The worker_pool @work was last associated with.  %NULL if none.
718  */
get_work_pool(struct work_struct * work)719 static struct worker_pool *get_work_pool(struct work_struct *work)
720 {
721 	unsigned long data = atomic_long_read(&work->data);
722 	int pool_id;
723 
724 	assert_rcu_or_pool_mutex();
725 
726 	if (data & WORK_STRUCT_PWQ)
727 		return work_struct_pwq(data)->pool;
728 
729 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
730 	if (pool_id == WORK_OFFQ_POOL_NONE)
731 		return NULL;
732 
733 	return idr_find(&worker_pool_idr, pool_id);
734 }
735 
736 /**
737  * get_work_pool_id - return the worker pool ID a given work is associated with
738  * @work: the work item of interest
739  *
740  * Return: The worker_pool ID @work was last associated with.
741  * %WORK_OFFQ_POOL_NONE if none.
742  */
get_work_pool_id(struct work_struct * work)743 static int get_work_pool_id(struct work_struct *work)
744 {
745 	unsigned long data = atomic_long_read(&work->data);
746 
747 	if (data & WORK_STRUCT_PWQ)
748 		return work_struct_pwq(data)->pool->id;
749 
750 	return data >> WORK_OFFQ_POOL_SHIFT;
751 }
752 
mark_work_canceling(struct work_struct * work)753 static void mark_work_canceling(struct work_struct *work)
754 {
755 	unsigned long pool_id = get_work_pool_id(work);
756 
757 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
758 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
759 }
760 
work_is_canceling(struct work_struct * work)761 static bool work_is_canceling(struct work_struct *work)
762 {
763 	unsigned long data = atomic_long_read(&work->data);
764 
765 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
766 }
767 
768 /*
769  * Policy functions.  These define the policies on how the global worker
770  * pools are managed.  Unless noted otherwise, these functions assume that
771  * they're being called with pool->lock held.
772  */
773 
__need_more_worker(struct worker_pool * pool)774 static bool __need_more_worker(struct worker_pool *pool)
775 {
776 	return !atomic_read(&pool->nr_running);
777 }
778 
779 /*
780  * Need to wake up a worker?  Called from anything but currently
781  * running workers.
782  *
783  * Note that, because unbound workers never contribute to nr_running, this
784  * function will always return %true for unbound pools as long as the
785  * worklist isn't empty.
786  */
need_more_worker(struct worker_pool * pool)787 static bool need_more_worker(struct worker_pool *pool)
788 {
789 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
790 }
791 
792 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)793 static bool may_start_working(struct worker_pool *pool)
794 {
795 	return pool->nr_idle;
796 }
797 
798 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)799 static bool keep_working(struct worker_pool *pool)
800 {
801 	return !list_empty(&pool->worklist) &&
802 		atomic_read(&pool->nr_running) <= 1;
803 }
804 
805 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)806 static bool need_to_create_worker(struct worker_pool *pool)
807 {
808 	return need_more_worker(pool) && !may_start_working(pool);
809 }
810 
811 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)812 static bool too_many_workers(struct worker_pool *pool)
813 {
814 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
815 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
816 	int nr_busy = pool->nr_workers - nr_idle;
817 
818 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
819 }
820 
821 /*
822  * Wake up functions.
823  */
824 
825 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)826 static struct worker *first_idle_worker(struct worker_pool *pool)
827 {
828 	if (unlikely(list_empty(&pool->idle_list)))
829 		return NULL;
830 
831 	return list_first_entry(&pool->idle_list, struct worker, entry);
832 }
833 
834 /**
835  * wake_up_worker - wake up an idle worker
836  * @pool: worker pool to wake worker from
837  *
838  * Wake up the first idle worker of @pool.
839  *
840  * CONTEXT:
841  * raw_spin_lock_irq(pool->lock).
842  */
wake_up_worker(struct worker_pool * pool)843 static void wake_up_worker(struct worker_pool *pool)
844 {
845 	struct worker *worker = first_idle_worker(pool);
846 
847 	if (likely(worker))
848 		wake_up_process(worker->task);
849 }
850 
851 /**
852  * wq_worker_running - a worker is running again
853  * @task: task waking up
854  *
855  * This function is called when a worker returns from schedule()
856  */
wq_worker_running(struct task_struct * task)857 void wq_worker_running(struct task_struct *task)
858 {
859 	struct worker *worker = kthread_data(task);
860 
861 	if (!worker->sleeping)
862 		return;
863 
864 	/*
865 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
866 	 * and the nr_running increment below, we may ruin the nr_running reset
867 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
868 	 * pool. Protect against such race.
869 	 */
870 	preempt_disable();
871 	if (!(worker->flags & WORKER_NOT_RUNNING))
872 		atomic_inc(&worker->pool->nr_running);
873 	preempt_enable();
874 	worker->sleeping = 0;
875 }
876 
877 /**
878  * wq_worker_sleeping - a worker is going to sleep
879  * @task: task going to sleep
880  *
881  * This function is called from schedule() when a busy worker is
882  * going to sleep. Preemption needs to be disabled to protect ->sleeping
883  * assignment.
884  */
wq_worker_sleeping(struct task_struct * task)885 void wq_worker_sleeping(struct task_struct *task)
886 {
887 	struct worker *next, *worker = kthread_data(task);
888 	struct worker_pool *pool;
889 
890 	/*
891 	 * Rescuers, which may not have all the fields set up like normal
892 	 * workers, also reach here, let's not access anything before
893 	 * checking NOT_RUNNING.
894 	 */
895 	if (worker->flags & WORKER_NOT_RUNNING)
896 		return;
897 
898 	pool = worker->pool;
899 
900 	/* Return if preempted before wq_worker_running() was reached */
901 	if (worker->sleeping)
902 		return;
903 
904 	worker->sleeping = 1;
905 	raw_spin_lock_irq(&pool->lock);
906 
907 	/*
908 	 * The counterpart of the following dec_and_test, implied mb,
909 	 * worklist not empty test sequence is in insert_work().
910 	 * Please read comment there.
911 	 *
912 	 * NOT_RUNNING is clear.  This means that we're bound to and
913 	 * running on the local cpu w/ rq lock held and preemption
914 	 * disabled, which in turn means that none else could be
915 	 * manipulating idle_list, so dereferencing idle_list without pool
916 	 * lock is safe.
917 	 */
918 	if (atomic_dec_and_test(&pool->nr_running) &&
919 	    !list_empty(&pool->worklist)) {
920 		next = first_idle_worker(pool);
921 		if (next)
922 			wake_up_process(next->task);
923 	}
924 	raw_spin_unlock_irq(&pool->lock);
925 }
926 
927 /**
928  * wq_worker_last_func - retrieve worker's last work function
929  * @task: Task to retrieve last work function of.
930  *
931  * Determine the last function a worker executed. This is called from
932  * the scheduler to get a worker's last known identity.
933  *
934  * CONTEXT:
935  * raw_spin_lock_irq(rq->lock)
936  *
937  * This function is called during schedule() when a kworker is going
938  * to sleep. It's used by psi to identify aggregation workers during
939  * dequeuing, to allow periodic aggregation to shut-off when that
940  * worker is the last task in the system or cgroup to go to sleep.
941  *
942  * As this function doesn't involve any workqueue-related locking, it
943  * only returns stable values when called from inside the scheduler's
944  * queuing and dequeuing paths, when @task, which must be a kworker,
945  * is guaranteed to not be processing any works.
946  *
947  * Return:
948  * The last work function %current executed as a worker, NULL if it
949  * hasn't executed any work yet.
950  */
wq_worker_last_func(struct task_struct * task)951 work_func_t wq_worker_last_func(struct task_struct *task)
952 {
953 	struct worker *worker = kthread_data(task);
954 
955 	return worker->last_func;
956 }
957 
958 /**
959  * worker_set_flags - set worker flags and adjust nr_running accordingly
960  * @worker: self
961  * @flags: flags to set
962  *
963  * Set @flags in @worker->flags and adjust nr_running accordingly.
964  *
965  * CONTEXT:
966  * raw_spin_lock_irq(pool->lock)
967  */
worker_set_flags(struct worker * worker,unsigned int flags)968 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
969 {
970 	struct worker_pool *pool = worker->pool;
971 
972 	WARN_ON_ONCE(worker->task != current);
973 
974 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
975 	if ((flags & WORKER_NOT_RUNNING) &&
976 	    !(worker->flags & WORKER_NOT_RUNNING)) {
977 		atomic_dec(&pool->nr_running);
978 	}
979 
980 	worker->flags |= flags;
981 }
982 
983 /**
984  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
985  * @worker: self
986  * @flags: flags to clear
987  *
988  * Clear @flags in @worker->flags and adjust nr_running accordingly.
989  *
990  * CONTEXT:
991  * raw_spin_lock_irq(pool->lock)
992  */
worker_clr_flags(struct worker * worker,unsigned int flags)993 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
994 {
995 	struct worker_pool *pool = worker->pool;
996 	unsigned int oflags = worker->flags;
997 
998 	WARN_ON_ONCE(worker->task != current);
999 
1000 	worker->flags &= ~flags;
1001 
1002 	/*
1003 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1004 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1005 	 * of multiple flags, not a single flag.
1006 	 */
1007 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1008 		if (!(worker->flags & WORKER_NOT_RUNNING))
1009 			atomic_inc(&pool->nr_running);
1010 }
1011 
1012 /**
1013  * find_worker_executing_work - find worker which is executing a work
1014  * @pool: pool of interest
1015  * @work: work to find worker for
1016  *
1017  * Find a worker which is executing @work on @pool by searching
1018  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1019  * to match, its current execution should match the address of @work and
1020  * its work function.  This is to avoid unwanted dependency between
1021  * unrelated work executions through a work item being recycled while still
1022  * being executed.
1023  *
1024  * This is a bit tricky.  A work item may be freed once its execution
1025  * starts and nothing prevents the freed area from being recycled for
1026  * another work item.  If the same work item address ends up being reused
1027  * before the original execution finishes, workqueue will identify the
1028  * recycled work item as currently executing and make it wait until the
1029  * current execution finishes, introducing an unwanted dependency.
1030  *
1031  * This function checks the work item address and work function to avoid
1032  * false positives.  Note that this isn't complete as one may construct a
1033  * work function which can introduce dependency onto itself through a
1034  * recycled work item.  Well, if somebody wants to shoot oneself in the
1035  * foot that badly, there's only so much we can do, and if such deadlock
1036  * actually occurs, it should be easy to locate the culprit work function.
1037  *
1038  * CONTEXT:
1039  * raw_spin_lock_irq(pool->lock).
1040  *
1041  * Return:
1042  * Pointer to worker which is executing @work if found, %NULL
1043  * otherwise.
1044  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1045 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1046 						 struct work_struct *work)
1047 {
1048 	struct worker *worker;
1049 
1050 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1051 			       (unsigned long)work)
1052 		if (worker->current_work == work &&
1053 		    worker->current_func == work->func)
1054 			return worker;
1055 
1056 	return NULL;
1057 }
1058 
1059 /**
1060  * move_linked_works - move linked works to a list
1061  * @work: start of series of works to be scheduled
1062  * @head: target list to append @work to
1063  * @nextp: out parameter for nested worklist walking
1064  *
1065  * Schedule linked works starting from @work to @head.  Work series to
1066  * be scheduled starts at @work and includes any consecutive work with
1067  * WORK_STRUCT_LINKED set in its predecessor.
1068  *
1069  * If @nextp is not NULL, it's updated to point to the next work of
1070  * the last scheduled work.  This allows move_linked_works() to be
1071  * nested inside outer list_for_each_entry_safe().
1072  *
1073  * CONTEXT:
1074  * raw_spin_lock_irq(pool->lock).
1075  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1076 static void move_linked_works(struct work_struct *work, struct list_head *head,
1077 			      struct work_struct **nextp)
1078 {
1079 	struct work_struct *n;
1080 
1081 	/*
1082 	 * Linked worklist will always end before the end of the list,
1083 	 * use NULL for list head.
1084 	 */
1085 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1086 		list_move_tail(&work->entry, head);
1087 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1088 			break;
1089 	}
1090 
1091 	/*
1092 	 * If we're already inside safe list traversal and have moved
1093 	 * multiple works to the scheduled queue, the next position
1094 	 * needs to be updated.
1095 	 */
1096 	if (nextp)
1097 		*nextp = n;
1098 }
1099 
1100 /**
1101  * get_pwq - get an extra reference on the specified pool_workqueue
1102  * @pwq: pool_workqueue to get
1103  *
1104  * Obtain an extra reference on @pwq.  The caller should guarantee that
1105  * @pwq has positive refcnt and be holding the matching pool->lock.
1106  */
get_pwq(struct pool_workqueue * pwq)1107 static void get_pwq(struct pool_workqueue *pwq)
1108 {
1109 	lockdep_assert_held(&pwq->pool->lock);
1110 	WARN_ON_ONCE(pwq->refcnt <= 0);
1111 	pwq->refcnt++;
1112 }
1113 
1114 /**
1115  * put_pwq - put a pool_workqueue reference
1116  * @pwq: pool_workqueue to put
1117  *
1118  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1119  * destruction.  The caller should be holding the matching pool->lock.
1120  */
put_pwq(struct pool_workqueue * pwq)1121 static void put_pwq(struct pool_workqueue *pwq)
1122 {
1123 	lockdep_assert_held(&pwq->pool->lock);
1124 	if (likely(--pwq->refcnt))
1125 		return;
1126 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1127 		return;
1128 	/*
1129 	 * @pwq can't be released under pool->lock, bounce to
1130 	 * pwq_unbound_release_workfn().  This never recurses on the same
1131 	 * pool->lock as this path is taken only for unbound workqueues and
1132 	 * the release work item is scheduled on a per-cpu workqueue.  To
1133 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1134 	 * subclass of 1 in get_unbound_pool().
1135 	 */
1136 	schedule_work(&pwq->unbound_release_work);
1137 }
1138 
1139 /**
1140  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1141  * @pwq: pool_workqueue to put (can be %NULL)
1142  *
1143  * put_pwq() with locking.  This function also allows %NULL @pwq.
1144  */
put_pwq_unlocked(struct pool_workqueue * pwq)1145 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1146 {
1147 	if (pwq) {
1148 		/*
1149 		 * As both pwqs and pools are RCU protected, the
1150 		 * following lock operations are safe.
1151 		 */
1152 		raw_spin_lock_irq(&pwq->pool->lock);
1153 		put_pwq(pwq);
1154 		raw_spin_unlock_irq(&pwq->pool->lock);
1155 	}
1156 }
1157 
pwq_activate_delayed_work(struct work_struct * work)1158 static void pwq_activate_delayed_work(struct work_struct *work)
1159 {
1160 	struct pool_workqueue *pwq = get_work_pwq(work);
1161 
1162 	trace_workqueue_activate_work(work);
1163 	if (list_empty(&pwq->pool->worklist))
1164 		pwq->pool->watchdog_ts = jiffies;
1165 	move_linked_works(work, &pwq->pool->worklist, NULL);
1166 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1167 	pwq->nr_active++;
1168 }
1169 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1170 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1171 {
1172 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1173 						    struct work_struct, entry);
1174 
1175 	pwq_activate_delayed_work(work);
1176 }
1177 
1178 /**
1179  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1180  * @pwq: pwq of interest
1181  * @color: color of work which left the queue
1182  *
1183  * A work either has completed or is removed from pending queue,
1184  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1185  *
1186  * CONTEXT:
1187  * raw_spin_lock_irq(pool->lock).
1188  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1189 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1190 {
1191 	/* uncolored work items don't participate in flushing or nr_active */
1192 	if (color == WORK_NO_COLOR)
1193 		goto out_put;
1194 
1195 	pwq->nr_in_flight[color]--;
1196 
1197 	pwq->nr_active--;
1198 	if (!list_empty(&pwq->delayed_works)) {
1199 		/* one down, submit a delayed one */
1200 		if (pwq->nr_active < pwq->max_active)
1201 			pwq_activate_first_delayed(pwq);
1202 	}
1203 
1204 	/* is flush in progress and are we at the flushing tip? */
1205 	if (likely(pwq->flush_color != color))
1206 		goto out_put;
1207 
1208 	/* are there still in-flight works? */
1209 	if (pwq->nr_in_flight[color])
1210 		goto out_put;
1211 
1212 	/* this pwq is done, clear flush_color */
1213 	pwq->flush_color = -1;
1214 
1215 	/*
1216 	 * If this was the last pwq, wake up the first flusher.  It
1217 	 * will handle the rest.
1218 	 */
1219 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1220 		complete(&pwq->wq->first_flusher->done);
1221 out_put:
1222 	put_pwq(pwq);
1223 }
1224 
1225 /**
1226  * try_to_grab_pending - steal work item from worklist and disable irq
1227  * @work: work item to steal
1228  * @is_dwork: @work is a delayed_work
1229  * @flags: place to store irq state
1230  *
1231  * Try to grab PENDING bit of @work.  This function can handle @work in any
1232  * stable state - idle, on timer or on worklist.
1233  *
1234  * Return:
1235  *
1236  *  ========	================================================================
1237  *  1		if @work was pending and we successfully stole PENDING
1238  *  0		if @work was idle and we claimed PENDING
1239  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1240  *  -ENOENT	if someone else is canceling @work, this state may persist
1241  *		for arbitrarily long
1242  *  ========	================================================================
1243  *
1244  * Note:
1245  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1246  * interrupted while holding PENDING and @work off queue, irq must be
1247  * disabled on entry.  This, combined with delayed_work->timer being
1248  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1249  *
1250  * On successful return, >= 0, irq is disabled and the caller is
1251  * responsible for releasing it using local_irq_restore(*@flags).
1252  *
1253  * This function is safe to call from any context including IRQ handler.
1254  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1255 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1256 			       unsigned long *flags)
1257 {
1258 	struct worker_pool *pool;
1259 	struct pool_workqueue *pwq;
1260 
1261 	local_irq_save(*flags);
1262 
1263 	/* try to steal the timer if it exists */
1264 	if (is_dwork) {
1265 		struct delayed_work *dwork = to_delayed_work(work);
1266 
1267 		/*
1268 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1269 		 * guaranteed that the timer is not queued anywhere and not
1270 		 * running on the local CPU.
1271 		 */
1272 		if (likely(del_timer(&dwork->timer)))
1273 			return 1;
1274 	}
1275 
1276 	/* try to claim PENDING the normal way */
1277 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1278 		return 0;
1279 
1280 	rcu_read_lock();
1281 	/*
1282 	 * The queueing is in progress, or it is already queued. Try to
1283 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1284 	 */
1285 	pool = get_work_pool(work);
1286 	if (!pool)
1287 		goto fail;
1288 
1289 	raw_spin_lock(&pool->lock);
1290 	/*
1291 	 * work->data is guaranteed to point to pwq only while the work
1292 	 * item is queued on pwq->wq, and both updating work->data to point
1293 	 * to pwq on queueing and to pool on dequeueing are done under
1294 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1295 	 * points to pwq which is associated with a locked pool, the work
1296 	 * item is currently queued on that pool.
1297 	 */
1298 	pwq = get_work_pwq(work);
1299 	if (pwq && pwq->pool == pool) {
1300 		debug_work_deactivate(work);
1301 
1302 		/*
1303 		 * A delayed work item cannot be grabbed directly because
1304 		 * it might have linked NO_COLOR work items which, if left
1305 		 * on the delayed_list, will confuse pwq->nr_active
1306 		 * management later on and cause stall.  Make sure the work
1307 		 * item is activated before grabbing.
1308 		 */
1309 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1310 			pwq_activate_delayed_work(work);
1311 
1312 		list_del_init(&work->entry);
1313 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1314 
1315 		/* work->data points to pwq iff queued, point to pool */
1316 		set_work_pool_and_keep_pending(work, pool->id);
1317 
1318 		raw_spin_unlock(&pool->lock);
1319 		rcu_read_unlock();
1320 		return 1;
1321 	}
1322 	raw_spin_unlock(&pool->lock);
1323 fail:
1324 	rcu_read_unlock();
1325 	local_irq_restore(*flags);
1326 	if (work_is_canceling(work))
1327 		return -ENOENT;
1328 	cpu_relax();
1329 	return -EAGAIN;
1330 }
1331 
1332 /**
1333  * insert_work - insert a work into a pool
1334  * @pwq: pwq @work belongs to
1335  * @work: work to insert
1336  * @head: insertion point
1337  * @extra_flags: extra WORK_STRUCT_* flags to set
1338  *
1339  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1340  * work_struct flags.
1341  *
1342  * CONTEXT:
1343  * raw_spin_lock_irq(pool->lock).
1344  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1345 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1346 			struct list_head *head, unsigned int extra_flags)
1347 {
1348 	struct worker_pool *pool = pwq->pool;
1349 
1350 	/* record the work call stack in order to print it in KASAN reports */
1351 	kasan_record_aux_stack(work);
1352 
1353 	/* we own @work, set data and link */
1354 	set_work_pwq(work, pwq, extra_flags);
1355 	list_add_tail(&work->entry, head);
1356 	get_pwq(pwq);
1357 
1358 	/*
1359 	 * Ensure either wq_worker_sleeping() sees the above
1360 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1361 	 * around lazily while there are works to be processed.
1362 	 */
1363 	smp_mb();
1364 
1365 	if (__need_more_worker(pool))
1366 		wake_up_worker(pool);
1367 }
1368 
1369 /*
1370  * Test whether @work is being queued from another work executing on the
1371  * same workqueue.
1372  */
is_chained_work(struct workqueue_struct * wq)1373 static bool is_chained_work(struct workqueue_struct *wq)
1374 {
1375 	struct worker *worker;
1376 
1377 	worker = current_wq_worker();
1378 	/*
1379 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1380 	 * I'm @worker, it's safe to dereference it without locking.
1381 	 */
1382 	return worker && worker->current_pwq->wq == wq;
1383 }
1384 
1385 /*
1386  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1387  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1388  * avoid perturbing sensitive tasks.
1389  */
wq_select_unbound_cpu(int cpu)1390 static int wq_select_unbound_cpu(int cpu)
1391 {
1392 	static bool printed_dbg_warning;
1393 	int new_cpu;
1394 
1395 	if (likely(!wq_debug_force_rr_cpu)) {
1396 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1397 			return cpu;
1398 	} else if (!printed_dbg_warning) {
1399 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1400 		printed_dbg_warning = true;
1401 	}
1402 
1403 	if (cpumask_empty(wq_unbound_cpumask))
1404 		return cpu;
1405 
1406 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1407 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1408 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1409 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1410 		if (unlikely(new_cpu >= nr_cpu_ids))
1411 			return cpu;
1412 	}
1413 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1414 
1415 	return new_cpu;
1416 }
1417 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1418 static void __queue_work(int cpu, struct workqueue_struct *wq,
1419 			 struct work_struct *work)
1420 {
1421 	struct pool_workqueue *pwq;
1422 	struct worker_pool *last_pool;
1423 	struct list_head *worklist;
1424 	unsigned int work_flags;
1425 	unsigned int req_cpu = cpu;
1426 
1427 	/*
1428 	 * While a work item is PENDING && off queue, a task trying to
1429 	 * steal the PENDING will busy-loop waiting for it to either get
1430 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1431 	 * happen with IRQ disabled.
1432 	 */
1433 	lockdep_assert_irqs_disabled();
1434 
1435 
1436 	/* if draining, only works from the same workqueue are allowed */
1437 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1438 	    WARN_ON_ONCE(!is_chained_work(wq)))
1439 		return;
1440 	rcu_read_lock();
1441 retry:
1442 	/* pwq which will be used unless @work is executing elsewhere */
1443 	if (wq->flags & WQ_UNBOUND) {
1444 		if (req_cpu == WORK_CPU_UNBOUND)
1445 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1446 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1447 	} else {
1448 		if (req_cpu == WORK_CPU_UNBOUND)
1449 			cpu = raw_smp_processor_id();
1450 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1451 	}
1452 
1453 	/*
1454 	 * If @work was previously on a different pool, it might still be
1455 	 * running there, in which case the work needs to be queued on that
1456 	 * pool to guarantee non-reentrancy.
1457 	 */
1458 	last_pool = get_work_pool(work);
1459 	if (last_pool && last_pool != pwq->pool) {
1460 		struct worker *worker;
1461 
1462 		raw_spin_lock(&last_pool->lock);
1463 
1464 		worker = find_worker_executing_work(last_pool, work);
1465 
1466 		if (worker && worker->current_pwq->wq == wq) {
1467 			pwq = worker->current_pwq;
1468 		} else {
1469 			/* meh... not running there, queue here */
1470 			raw_spin_unlock(&last_pool->lock);
1471 			raw_spin_lock(&pwq->pool->lock);
1472 		}
1473 	} else {
1474 		raw_spin_lock(&pwq->pool->lock);
1475 	}
1476 
1477 	/*
1478 	 * pwq is determined and locked.  For unbound pools, we could have
1479 	 * raced with pwq release and it could already be dead.  If its
1480 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1481 	 * without another pwq replacing it in the numa_pwq_tbl or while
1482 	 * work items are executing on it, so the retrying is guaranteed to
1483 	 * make forward-progress.
1484 	 */
1485 	if (unlikely(!pwq->refcnt)) {
1486 		if (wq->flags & WQ_UNBOUND) {
1487 			raw_spin_unlock(&pwq->pool->lock);
1488 			cpu_relax();
1489 			goto retry;
1490 		}
1491 		/* oops */
1492 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1493 			  wq->name, cpu);
1494 	}
1495 
1496 	/* pwq determined, queue */
1497 	trace_workqueue_queue_work(req_cpu, pwq, work);
1498 
1499 	if (WARN_ON(!list_empty(&work->entry)))
1500 		goto out;
1501 
1502 	pwq->nr_in_flight[pwq->work_color]++;
1503 	work_flags = work_color_to_flags(pwq->work_color);
1504 
1505 	if (likely(pwq->nr_active < pwq->max_active)) {
1506 		trace_workqueue_activate_work(work);
1507 		pwq->nr_active++;
1508 		worklist = &pwq->pool->worklist;
1509 		if (list_empty(worklist))
1510 			pwq->pool->watchdog_ts = jiffies;
1511 	} else {
1512 		work_flags |= WORK_STRUCT_DELAYED;
1513 		worklist = &pwq->delayed_works;
1514 	}
1515 
1516 	debug_work_activate(work);
1517 	insert_work(pwq, work, worklist, work_flags);
1518 
1519 out:
1520 	raw_spin_unlock(&pwq->pool->lock);
1521 	rcu_read_unlock();
1522 }
1523 
1524 /**
1525  * queue_work_on - queue work on specific cpu
1526  * @cpu: CPU number to execute work on
1527  * @wq: workqueue to use
1528  * @work: work to queue
1529  *
1530  * We queue the work to a specific CPU, the caller must ensure it
1531  * can't go away.
1532  *
1533  * Return: %false if @work was already on a queue, %true otherwise.
1534  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1535 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1536 		   struct work_struct *work)
1537 {
1538 	bool ret = false;
1539 	unsigned long flags;
1540 
1541 	local_irq_save(flags);
1542 
1543 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1544 		__queue_work(cpu, wq, work);
1545 		ret = true;
1546 	}
1547 
1548 	local_irq_restore(flags);
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(queue_work_on);
1552 
1553 /**
1554  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1555  * @node: NUMA node ID that we want to select a CPU from
1556  *
1557  * This function will attempt to find a "random" cpu available on a given
1558  * node. If there are no CPUs available on the given node it will return
1559  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1560  * available CPU if we need to schedule this work.
1561  */
workqueue_select_cpu_near(int node)1562 static int workqueue_select_cpu_near(int node)
1563 {
1564 	int cpu;
1565 
1566 	/* No point in doing this if NUMA isn't enabled for workqueues */
1567 	if (!wq_numa_enabled)
1568 		return WORK_CPU_UNBOUND;
1569 
1570 	/* Delay binding to CPU if node is not valid or online */
1571 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1572 		return WORK_CPU_UNBOUND;
1573 
1574 	/* Use local node/cpu if we are already there */
1575 	cpu = raw_smp_processor_id();
1576 	if (node == cpu_to_node(cpu))
1577 		return cpu;
1578 
1579 	/* Use "random" otherwise know as "first" online CPU of node */
1580 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1581 
1582 	/* If CPU is valid return that, otherwise just defer */
1583 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1584 }
1585 
1586 /**
1587  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1588  * @node: NUMA node that we are targeting the work for
1589  * @wq: workqueue to use
1590  * @work: work to queue
1591  *
1592  * We queue the work to a "random" CPU within a given NUMA node. The basic
1593  * idea here is to provide a way to somehow associate work with a given
1594  * NUMA node.
1595  *
1596  * This function will only make a best effort attempt at getting this onto
1597  * the right NUMA node. If no node is requested or the requested node is
1598  * offline then we just fall back to standard queue_work behavior.
1599  *
1600  * Currently the "random" CPU ends up being the first available CPU in the
1601  * intersection of cpu_online_mask and the cpumask of the node, unless we
1602  * are running on the node. In that case we just use the current CPU.
1603  *
1604  * Return: %false if @work was already on a queue, %true otherwise.
1605  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1606 bool queue_work_node(int node, struct workqueue_struct *wq,
1607 		     struct work_struct *work)
1608 {
1609 	unsigned long flags;
1610 	bool ret = false;
1611 
1612 	/*
1613 	 * This current implementation is specific to unbound workqueues.
1614 	 * Specifically we only return the first available CPU for a given
1615 	 * node instead of cycling through individual CPUs within the node.
1616 	 *
1617 	 * If this is used with a per-cpu workqueue then the logic in
1618 	 * workqueue_select_cpu_near would need to be updated to allow for
1619 	 * some round robin type logic.
1620 	 */
1621 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1622 
1623 	local_irq_save(flags);
1624 
1625 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1626 		int cpu = workqueue_select_cpu_near(node);
1627 
1628 		__queue_work(cpu, wq, work);
1629 		ret = true;
1630 	}
1631 
1632 	local_irq_restore(flags);
1633 	return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(queue_work_node);
1636 
delayed_work_timer_fn(struct timer_list * t)1637 void delayed_work_timer_fn(struct timer_list *t)
1638 {
1639 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1640 
1641 	/* should have been called from irqsafe timer with irq already off */
1642 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1643 }
1644 EXPORT_SYMBOL(delayed_work_timer_fn);
1645 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1646 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1647 				struct delayed_work *dwork, unsigned long delay)
1648 {
1649 	struct timer_list *timer = &dwork->timer;
1650 	struct work_struct *work = &dwork->work;
1651 
1652 	WARN_ON_ONCE(!wq);
1653 	/*
1654 	 * With CFI, timer->function can point to a jump table entry in a module,
1655 	 * which fails the comparison. Disable the warning if CFI and modules are
1656 	 * both enabled.
1657 	 */
1658 	if (!IS_ENABLED(CONFIG_CFI_CLANG) || !IS_ENABLED(CONFIG_MODULES))
1659 		WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1660 
1661 	WARN_ON_ONCE(timer_pending(timer));
1662 	WARN_ON_ONCE(!list_empty(&work->entry));
1663 
1664 	/*
1665 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1666 	 * both optimization and correctness.  The earliest @timer can
1667 	 * expire is on the closest next tick and delayed_work users depend
1668 	 * on that there's no such delay when @delay is 0.
1669 	 */
1670 	if (!delay) {
1671 		__queue_work(cpu, wq, &dwork->work);
1672 		return;
1673 	}
1674 
1675 	dwork->wq = wq;
1676 	dwork->cpu = cpu;
1677 	timer->expires = jiffies + delay;
1678 
1679 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1680 		add_timer_on(timer, cpu);
1681 	else
1682 		add_timer(timer);
1683 }
1684 
1685 /**
1686  * queue_delayed_work_on - queue work on specific CPU after delay
1687  * @cpu: CPU number to execute work on
1688  * @wq: workqueue to use
1689  * @dwork: work to queue
1690  * @delay: number of jiffies to wait before queueing
1691  *
1692  * Return: %false if @work was already on a queue, %true otherwise.  If
1693  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1694  * execution.
1695  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1696 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1697 			   struct delayed_work *dwork, unsigned long delay)
1698 {
1699 	struct work_struct *work = &dwork->work;
1700 	bool ret = false;
1701 	unsigned long flags;
1702 
1703 	/* read the comment in __queue_work() */
1704 	local_irq_save(flags);
1705 
1706 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1707 		__queue_delayed_work(cpu, wq, dwork, delay);
1708 		ret = true;
1709 	}
1710 
1711 	local_irq_restore(flags);
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL(queue_delayed_work_on);
1715 
1716 /**
1717  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1718  * @cpu: CPU number to execute work on
1719  * @wq: workqueue to use
1720  * @dwork: work to queue
1721  * @delay: number of jiffies to wait before queueing
1722  *
1723  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1724  * modify @dwork's timer so that it expires after @delay.  If @delay is
1725  * zero, @work is guaranteed to be scheduled immediately regardless of its
1726  * current state.
1727  *
1728  * Return: %false if @dwork was idle and queued, %true if @dwork was
1729  * pending and its timer was modified.
1730  *
1731  * This function is safe to call from any context including IRQ handler.
1732  * See try_to_grab_pending() for details.
1733  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1734 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1735 			 struct delayed_work *dwork, unsigned long delay)
1736 {
1737 	unsigned long flags;
1738 	int ret;
1739 
1740 	do {
1741 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1742 	} while (unlikely(ret == -EAGAIN));
1743 
1744 	if (likely(ret >= 0)) {
1745 		__queue_delayed_work(cpu, wq, dwork, delay);
1746 		local_irq_restore(flags);
1747 	}
1748 
1749 	/* -ENOENT from try_to_grab_pending() becomes %true */
1750 	return ret;
1751 }
1752 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1753 
rcu_work_rcufn(struct rcu_head * rcu)1754 static void rcu_work_rcufn(struct rcu_head *rcu)
1755 {
1756 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1757 
1758 	/* read the comment in __queue_work() */
1759 	local_irq_disable();
1760 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1761 	local_irq_enable();
1762 }
1763 
1764 /**
1765  * queue_rcu_work - queue work after a RCU grace period
1766  * @wq: workqueue to use
1767  * @rwork: work to queue
1768  *
1769  * Return: %false if @rwork was already pending, %true otherwise.  Note
1770  * that a full RCU grace period is guaranteed only after a %true return.
1771  * While @rwork is guaranteed to be executed after a %false return, the
1772  * execution may happen before a full RCU grace period has passed.
1773  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1774 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1775 {
1776 	struct work_struct *work = &rwork->work;
1777 
1778 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1779 		rwork->wq = wq;
1780 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1781 		return true;
1782 	}
1783 
1784 	return false;
1785 }
1786 EXPORT_SYMBOL(queue_rcu_work);
1787 
1788 /**
1789  * worker_enter_idle - enter idle state
1790  * @worker: worker which is entering idle state
1791  *
1792  * @worker is entering idle state.  Update stats and idle timer if
1793  * necessary.
1794  *
1795  * LOCKING:
1796  * raw_spin_lock_irq(pool->lock).
1797  */
worker_enter_idle(struct worker * worker)1798 static void worker_enter_idle(struct worker *worker)
1799 {
1800 	struct worker_pool *pool = worker->pool;
1801 
1802 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1803 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1804 			 (worker->hentry.next || worker->hentry.pprev)))
1805 		return;
1806 
1807 	/* can't use worker_set_flags(), also called from create_worker() */
1808 	worker->flags |= WORKER_IDLE;
1809 	pool->nr_idle++;
1810 	worker->last_active = jiffies;
1811 
1812 	/* idle_list is LIFO */
1813 	list_add(&worker->entry, &pool->idle_list);
1814 
1815 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1816 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1817 
1818 	/*
1819 	 * Sanity check nr_running.  Because unbind_workers() releases
1820 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1821 	 * nr_running, the warning may trigger spuriously.  Check iff
1822 	 * unbind is not in progress.
1823 	 */
1824 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1825 		     pool->nr_workers == pool->nr_idle &&
1826 		     atomic_read(&pool->nr_running));
1827 }
1828 
1829 /**
1830  * worker_leave_idle - leave idle state
1831  * @worker: worker which is leaving idle state
1832  *
1833  * @worker is leaving idle state.  Update stats.
1834  *
1835  * LOCKING:
1836  * raw_spin_lock_irq(pool->lock).
1837  */
worker_leave_idle(struct worker * worker)1838 static void worker_leave_idle(struct worker *worker)
1839 {
1840 	struct worker_pool *pool = worker->pool;
1841 
1842 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1843 		return;
1844 	worker_clr_flags(worker, WORKER_IDLE);
1845 	pool->nr_idle--;
1846 	list_del_init(&worker->entry);
1847 }
1848 
alloc_worker(int node)1849 static struct worker *alloc_worker(int node)
1850 {
1851 	struct worker *worker;
1852 
1853 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1854 	if (worker) {
1855 		INIT_LIST_HEAD(&worker->entry);
1856 		INIT_LIST_HEAD(&worker->scheduled);
1857 		INIT_LIST_HEAD(&worker->node);
1858 		/* on creation a worker is in !idle && prep state */
1859 		worker->flags = WORKER_PREP;
1860 	}
1861 	return worker;
1862 }
1863 
1864 /**
1865  * worker_attach_to_pool() - attach a worker to a pool
1866  * @worker: worker to be attached
1867  * @pool: the target pool
1868  *
1869  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1870  * cpu-binding of @worker are kept coordinated with the pool across
1871  * cpu-[un]hotplugs.
1872  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1873 static void worker_attach_to_pool(struct worker *worker,
1874 				   struct worker_pool *pool)
1875 {
1876 	mutex_lock(&wq_pool_attach_mutex);
1877 
1878 	/*
1879 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1880 	 * stable across this function.  See the comments above the flag
1881 	 * definition for details.
1882 	 */
1883 	if (pool->flags & POOL_DISASSOCIATED)
1884 		worker->flags |= WORKER_UNBOUND;
1885 
1886 	if (worker->rescue_wq)
1887 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1888 
1889 	list_add_tail(&worker->node, &pool->workers);
1890 	worker->pool = pool;
1891 
1892 	mutex_unlock(&wq_pool_attach_mutex);
1893 }
1894 
1895 /**
1896  * worker_detach_from_pool() - detach a worker from its pool
1897  * @worker: worker which is attached to its pool
1898  *
1899  * Undo the attaching which had been done in worker_attach_to_pool().  The
1900  * caller worker shouldn't access to the pool after detached except it has
1901  * other reference to the pool.
1902  */
worker_detach_from_pool(struct worker * worker)1903 static void worker_detach_from_pool(struct worker *worker)
1904 {
1905 	struct worker_pool *pool = worker->pool;
1906 	struct completion *detach_completion = NULL;
1907 
1908 	mutex_lock(&wq_pool_attach_mutex);
1909 
1910 	list_del(&worker->node);
1911 	worker->pool = NULL;
1912 
1913 	if (list_empty(&pool->workers))
1914 		detach_completion = pool->detach_completion;
1915 	mutex_unlock(&wq_pool_attach_mutex);
1916 
1917 	/* clear leftover flags without pool->lock after it is detached */
1918 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1919 
1920 	if (detach_completion)
1921 		complete(detach_completion);
1922 }
1923 
1924 /**
1925  * create_worker - create a new workqueue worker
1926  * @pool: pool the new worker will belong to
1927  *
1928  * Create and start a new worker which is attached to @pool.
1929  *
1930  * CONTEXT:
1931  * Might sleep.  Does GFP_KERNEL allocations.
1932  *
1933  * Return:
1934  * Pointer to the newly created worker.
1935  */
create_worker(struct worker_pool * pool)1936 static struct worker *create_worker(struct worker_pool *pool)
1937 {
1938 	struct worker *worker = NULL;
1939 	int id = -1;
1940 	char id_buf[16];
1941 
1942 	/* ID is needed to determine kthread name */
1943 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1944 	if (id < 0)
1945 		goto fail;
1946 
1947 	worker = alloc_worker(pool->node);
1948 	if (!worker)
1949 		goto fail;
1950 
1951 	worker->id = id;
1952 
1953 	if (pool->cpu >= 0)
1954 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1955 			 pool->attrs->nice < 0  ? "H" : "");
1956 	else
1957 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1958 
1959 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1960 					      "kworker/%s", id_buf);
1961 	if (IS_ERR(worker->task))
1962 		goto fail;
1963 
1964 	set_user_nice(worker->task, pool->attrs->nice);
1965 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1966 
1967 	/* successful, attach the worker to the pool */
1968 	worker_attach_to_pool(worker, pool);
1969 
1970 	/* start the newly created worker */
1971 	raw_spin_lock_irq(&pool->lock);
1972 	worker->pool->nr_workers++;
1973 	worker_enter_idle(worker);
1974 	wake_up_process(worker->task);
1975 	raw_spin_unlock_irq(&pool->lock);
1976 
1977 	return worker;
1978 
1979 fail:
1980 	if (id >= 0)
1981 		ida_simple_remove(&pool->worker_ida, id);
1982 	kfree(worker);
1983 	return NULL;
1984 }
1985 
1986 /**
1987  * destroy_worker - destroy a workqueue worker
1988  * @worker: worker to be destroyed
1989  *
1990  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1991  * be idle.
1992  *
1993  * CONTEXT:
1994  * raw_spin_lock_irq(pool->lock).
1995  */
destroy_worker(struct worker * worker)1996 static void destroy_worker(struct worker *worker)
1997 {
1998 	struct worker_pool *pool = worker->pool;
1999 
2000 	lockdep_assert_held(&pool->lock);
2001 
2002 	/* sanity check frenzy */
2003 	if (WARN_ON(worker->current_work) ||
2004 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2005 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2006 		return;
2007 
2008 	pool->nr_workers--;
2009 	pool->nr_idle--;
2010 
2011 	list_del_init(&worker->entry);
2012 	worker->flags |= WORKER_DIE;
2013 	wake_up_process(worker->task);
2014 }
2015 
idle_worker_timeout(struct timer_list * t)2016 static void idle_worker_timeout(struct timer_list *t)
2017 {
2018 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2019 
2020 	raw_spin_lock_irq(&pool->lock);
2021 
2022 	while (too_many_workers(pool)) {
2023 		struct worker *worker;
2024 		unsigned long expires;
2025 
2026 		/* idle_list is kept in LIFO order, check the last one */
2027 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2028 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2029 
2030 		if (time_before(jiffies, expires)) {
2031 			mod_timer(&pool->idle_timer, expires);
2032 			break;
2033 		}
2034 
2035 		destroy_worker(worker);
2036 	}
2037 
2038 	raw_spin_unlock_irq(&pool->lock);
2039 }
2040 
send_mayday(struct work_struct * work)2041 static void send_mayday(struct work_struct *work)
2042 {
2043 	struct pool_workqueue *pwq = get_work_pwq(work);
2044 	struct workqueue_struct *wq = pwq->wq;
2045 
2046 	lockdep_assert_held(&wq_mayday_lock);
2047 
2048 	if (!wq->rescuer)
2049 		return;
2050 
2051 	/* mayday mayday mayday */
2052 	if (list_empty(&pwq->mayday_node)) {
2053 		/*
2054 		 * If @pwq is for an unbound wq, its base ref may be put at
2055 		 * any time due to an attribute change.  Pin @pwq until the
2056 		 * rescuer is done with it.
2057 		 */
2058 		get_pwq(pwq);
2059 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2060 		wake_up_process(wq->rescuer->task);
2061 	}
2062 }
2063 
pool_mayday_timeout(struct timer_list * t)2064 static void pool_mayday_timeout(struct timer_list *t)
2065 {
2066 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2067 	struct work_struct *work;
2068 
2069 	raw_spin_lock_irq(&pool->lock);
2070 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2071 
2072 	if (need_to_create_worker(pool)) {
2073 		/*
2074 		 * We've been trying to create a new worker but
2075 		 * haven't been successful.  We might be hitting an
2076 		 * allocation deadlock.  Send distress signals to
2077 		 * rescuers.
2078 		 */
2079 		list_for_each_entry(work, &pool->worklist, entry)
2080 			send_mayday(work);
2081 	}
2082 
2083 	raw_spin_unlock(&wq_mayday_lock);
2084 	raw_spin_unlock_irq(&pool->lock);
2085 
2086 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2087 }
2088 
2089 /**
2090  * maybe_create_worker - create a new worker if necessary
2091  * @pool: pool to create a new worker for
2092  *
2093  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2094  * have at least one idle worker on return from this function.  If
2095  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2096  * sent to all rescuers with works scheduled on @pool to resolve
2097  * possible allocation deadlock.
2098  *
2099  * On return, need_to_create_worker() is guaranteed to be %false and
2100  * may_start_working() %true.
2101  *
2102  * LOCKING:
2103  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2104  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2105  * manager.
2106  */
maybe_create_worker(struct worker_pool * pool)2107 static void maybe_create_worker(struct worker_pool *pool)
2108 __releases(&pool->lock)
2109 __acquires(&pool->lock)
2110 {
2111 restart:
2112 	raw_spin_unlock_irq(&pool->lock);
2113 
2114 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2115 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2116 
2117 	while (true) {
2118 		if (create_worker(pool) || !need_to_create_worker(pool))
2119 			break;
2120 
2121 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2122 
2123 		if (!need_to_create_worker(pool))
2124 			break;
2125 	}
2126 
2127 	del_timer_sync(&pool->mayday_timer);
2128 	raw_spin_lock_irq(&pool->lock);
2129 	/*
2130 	 * This is necessary even after a new worker was just successfully
2131 	 * created as @pool->lock was dropped and the new worker might have
2132 	 * already become busy.
2133 	 */
2134 	if (need_to_create_worker(pool))
2135 		goto restart;
2136 }
2137 
2138 /**
2139  * manage_workers - manage worker pool
2140  * @worker: self
2141  *
2142  * Assume the manager role and manage the worker pool @worker belongs
2143  * to.  At any given time, there can be only zero or one manager per
2144  * pool.  The exclusion is handled automatically by this function.
2145  *
2146  * The caller can safely start processing works on false return.  On
2147  * true return, it's guaranteed that need_to_create_worker() is false
2148  * and may_start_working() is true.
2149  *
2150  * CONTEXT:
2151  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2152  * multiple times.  Does GFP_KERNEL allocations.
2153  *
2154  * Return:
2155  * %false if the pool doesn't need management and the caller can safely
2156  * start processing works, %true if management function was performed and
2157  * the conditions that the caller verified before calling the function may
2158  * no longer be true.
2159  */
manage_workers(struct worker * worker)2160 static bool manage_workers(struct worker *worker)
2161 {
2162 	struct worker_pool *pool = worker->pool;
2163 
2164 	if (pool->flags & POOL_MANAGER_ACTIVE)
2165 		return false;
2166 
2167 	pool->flags |= POOL_MANAGER_ACTIVE;
2168 	pool->manager = worker;
2169 
2170 	maybe_create_worker(pool);
2171 
2172 	pool->manager = NULL;
2173 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2174 	rcuwait_wake_up(&manager_wait);
2175 	return true;
2176 }
2177 
2178 /**
2179  * process_one_work - process single work
2180  * @worker: self
2181  * @work: work to process
2182  *
2183  * Process @work.  This function contains all the logics necessary to
2184  * process a single work including synchronization against and
2185  * interaction with other workers on the same cpu, queueing and
2186  * flushing.  As long as context requirement is met, any worker can
2187  * call this function to process a work.
2188  *
2189  * CONTEXT:
2190  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2191  */
process_one_work(struct worker * worker,struct work_struct * work)2192 static void process_one_work(struct worker *worker, struct work_struct *work)
2193 __releases(&pool->lock)
2194 __acquires(&pool->lock)
2195 {
2196 	struct pool_workqueue *pwq = get_work_pwq(work);
2197 	struct worker_pool *pool = worker->pool;
2198 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2199 	int work_color;
2200 	struct worker *collision;
2201 #ifdef CONFIG_LOCKDEP
2202 	/*
2203 	 * It is permissible to free the struct work_struct from
2204 	 * inside the function that is called from it, this we need to
2205 	 * take into account for lockdep too.  To avoid bogus "held
2206 	 * lock freed" warnings as well as problems when looking into
2207 	 * work->lockdep_map, make a copy and use that here.
2208 	 */
2209 	struct lockdep_map lockdep_map;
2210 
2211 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2212 #endif
2213 	/* ensure we're on the correct CPU */
2214 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2215 		     raw_smp_processor_id() != pool->cpu);
2216 
2217 	/*
2218 	 * A single work shouldn't be executed concurrently by
2219 	 * multiple workers on a single cpu.  Check whether anyone is
2220 	 * already processing the work.  If so, defer the work to the
2221 	 * currently executing one.
2222 	 */
2223 	collision = find_worker_executing_work(pool, work);
2224 	if (unlikely(collision)) {
2225 		move_linked_works(work, &collision->scheduled, NULL);
2226 		return;
2227 	}
2228 
2229 	/* claim and dequeue */
2230 	debug_work_deactivate(work);
2231 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2232 	worker->current_work = work;
2233 	worker->current_func = work->func;
2234 	worker->current_pwq = pwq;
2235 	work_color = get_work_color(work);
2236 
2237 	/*
2238 	 * Record wq name for cmdline and debug reporting, may get
2239 	 * overridden through set_worker_desc().
2240 	 */
2241 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2242 
2243 	list_del_init(&work->entry);
2244 
2245 	/*
2246 	 * CPU intensive works don't participate in concurrency management.
2247 	 * They're the scheduler's responsibility.  This takes @worker out
2248 	 * of concurrency management and the next code block will chain
2249 	 * execution of the pending work items.
2250 	 */
2251 	if (unlikely(cpu_intensive))
2252 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2253 
2254 	/*
2255 	 * Wake up another worker if necessary.  The condition is always
2256 	 * false for normal per-cpu workers since nr_running would always
2257 	 * be >= 1 at this point.  This is used to chain execution of the
2258 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2259 	 * UNBOUND and CPU_INTENSIVE ones.
2260 	 */
2261 	if (need_more_worker(pool))
2262 		wake_up_worker(pool);
2263 
2264 	/*
2265 	 * Record the last pool and clear PENDING which should be the last
2266 	 * update to @work.  Also, do this inside @pool->lock so that
2267 	 * PENDING and queued state changes happen together while IRQ is
2268 	 * disabled.
2269 	 */
2270 	set_work_pool_and_clear_pending(work, pool->id);
2271 
2272 	raw_spin_unlock_irq(&pool->lock);
2273 
2274 	lock_map_acquire(&pwq->wq->lockdep_map);
2275 	lock_map_acquire(&lockdep_map);
2276 	/*
2277 	 * Strictly speaking we should mark the invariant state without holding
2278 	 * any locks, that is, before these two lock_map_acquire()'s.
2279 	 *
2280 	 * However, that would result in:
2281 	 *
2282 	 *   A(W1)
2283 	 *   WFC(C)
2284 	 *		A(W1)
2285 	 *		C(C)
2286 	 *
2287 	 * Which would create W1->C->W1 dependencies, even though there is no
2288 	 * actual deadlock possible. There are two solutions, using a
2289 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2290 	 * hit the lockdep limitation on recursive locks, or simply discard
2291 	 * these locks.
2292 	 *
2293 	 * AFAICT there is no possible deadlock scenario between the
2294 	 * flush_work() and complete() primitives (except for single-threaded
2295 	 * workqueues), so hiding them isn't a problem.
2296 	 */
2297 	lockdep_invariant_state(true);
2298 	trace_workqueue_execute_start(work);
2299 	worker->current_func(work);
2300 	/*
2301 	 * While we must be careful to not use "work" after this, the trace
2302 	 * point will only record its address.
2303 	 */
2304 	trace_workqueue_execute_end(work, worker->current_func);
2305 	lock_map_release(&lockdep_map);
2306 	lock_map_release(&pwq->wq->lockdep_map);
2307 
2308 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2309 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2310 		       "     last function: %ps\n",
2311 		       current->comm, preempt_count(), task_pid_nr(current),
2312 		       worker->current_func);
2313 		debug_show_held_locks(current);
2314 		dump_stack();
2315 	}
2316 
2317 	/*
2318 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2319 	 * kernels, where a requeueing work item waiting for something to
2320 	 * happen could deadlock with stop_machine as such work item could
2321 	 * indefinitely requeue itself while all other CPUs are trapped in
2322 	 * stop_machine. At the same time, report a quiescent RCU state so
2323 	 * the same condition doesn't freeze RCU.
2324 	 */
2325 	cond_resched();
2326 
2327 	raw_spin_lock_irq(&pool->lock);
2328 
2329 	/* clear cpu intensive status */
2330 	if (unlikely(cpu_intensive))
2331 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2332 
2333 	/* tag the worker for identification in schedule() */
2334 	worker->last_func = worker->current_func;
2335 
2336 	/* we're done with it, release */
2337 	hash_del(&worker->hentry);
2338 	worker->current_work = NULL;
2339 	worker->current_func = NULL;
2340 	worker->current_pwq = NULL;
2341 	pwq_dec_nr_in_flight(pwq, work_color);
2342 }
2343 
2344 /**
2345  * process_scheduled_works - process scheduled works
2346  * @worker: self
2347  *
2348  * Process all scheduled works.  Please note that the scheduled list
2349  * may change while processing a work, so this function repeatedly
2350  * fetches a work from the top and executes it.
2351  *
2352  * CONTEXT:
2353  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2354  * multiple times.
2355  */
process_scheduled_works(struct worker * worker)2356 static void process_scheduled_works(struct worker *worker)
2357 {
2358 	while (!list_empty(&worker->scheduled)) {
2359 		struct work_struct *work = list_first_entry(&worker->scheduled,
2360 						struct work_struct, entry);
2361 		process_one_work(worker, work);
2362 	}
2363 }
2364 
set_pf_worker(bool val)2365 static void set_pf_worker(bool val)
2366 {
2367 	mutex_lock(&wq_pool_attach_mutex);
2368 	if (val)
2369 		current->flags |= PF_WQ_WORKER;
2370 	else
2371 		current->flags &= ~PF_WQ_WORKER;
2372 	mutex_unlock(&wq_pool_attach_mutex);
2373 }
2374 
2375 /**
2376  * worker_thread - the worker thread function
2377  * @__worker: self
2378  *
2379  * The worker thread function.  All workers belong to a worker_pool -
2380  * either a per-cpu one or dynamic unbound one.  These workers process all
2381  * work items regardless of their specific target workqueue.  The only
2382  * exception is work items which belong to workqueues with a rescuer which
2383  * will be explained in rescuer_thread().
2384  *
2385  * Return: 0
2386  */
worker_thread(void * __worker)2387 static int worker_thread(void *__worker)
2388 {
2389 	struct worker *worker = __worker;
2390 	struct worker_pool *pool = worker->pool;
2391 
2392 	/* tell the scheduler that this is a workqueue worker */
2393 	set_pf_worker(true);
2394 woke_up:
2395 	raw_spin_lock_irq(&pool->lock);
2396 
2397 	/* am I supposed to die? */
2398 	if (unlikely(worker->flags & WORKER_DIE)) {
2399 		raw_spin_unlock_irq(&pool->lock);
2400 		WARN_ON_ONCE(!list_empty(&worker->entry));
2401 		set_pf_worker(false);
2402 
2403 		set_task_comm(worker->task, "kworker/dying");
2404 		ida_simple_remove(&pool->worker_ida, worker->id);
2405 		worker_detach_from_pool(worker);
2406 		kfree(worker);
2407 		return 0;
2408 	}
2409 
2410 	worker_leave_idle(worker);
2411 recheck:
2412 	/* no more worker necessary? */
2413 	if (!need_more_worker(pool))
2414 		goto sleep;
2415 
2416 	/* do we need to manage? */
2417 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2418 		goto recheck;
2419 
2420 	/*
2421 	 * ->scheduled list can only be filled while a worker is
2422 	 * preparing to process a work or actually processing it.
2423 	 * Make sure nobody diddled with it while I was sleeping.
2424 	 */
2425 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2426 
2427 	/*
2428 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2429 	 * worker or that someone else has already assumed the manager
2430 	 * role.  This is where @worker starts participating in concurrency
2431 	 * management if applicable and concurrency management is restored
2432 	 * after being rebound.  See rebind_workers() for details.
2433 	 */
2434 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2435 
2436 	do {
2437 		struct work_struct *work =
2438 			list_first_entry(&pool->worklist,
2439 					 struct work_struct, entry);
2440 
2441 		pool->watchdog_ts = jiffies;
2442 
2443 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2444 			/* optimization path, not strictly necessary */
2445 			process_one_work(worker, work);
2446 			if (unlikely(!list_empty(&worker->scheduled)))
2447 				process_scheduled_works(worker);
2448 		} else {
2449 			move_linked_works(work, &worker->scheduled, NULL);
2450 			process_scheduled_works(worker);
2451 		}
2452 	} while (keep_working(pool));
2453 
2454 	worker_set_flags(worker, WORKER_PREP);
2455 sleep:
2456 	/*
2457 	 * pool->lock is held and there's no work to process and no need to
2458 	 * manage, sleep.  Workers are woken up only while holding
2459 	 * pool->lock or from local cpu, so setting the current state
2460 	 * before releasing pool->lock is enough to prevent losing any
2461 	 * event.
2462 	 */
2463 	worker_enter_idle(worker);
2464 	__set_current_state(TASK_IDLE);
2465 	raw_spin_unlock_irq(&pool->lock);
2466 	schedule();
2467 	goto woke_up;
2468 }
2469 
2470 /**
2471  * rescuer_thread - the rescuer thread function
2472  * @__rescuer: self
2473  *
2474  * Workqueue rescuer thread function.  There's one rescuer for each
2475  * workqueue which has WQ_MEM_RECLAIM set.
2476  *
2477  * Regular work processing on a pool may block trying to create a new
2478  * worker which uses GFP_KERNEL allocation which has slight chance of
2479  * developing into deadlock if some works currently on the same queue
2480  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2481  * the problem rescuer solves.
2482  *
2483  * When such condition is possible, the pool summons rescuers of all
2484  * workqueues which have works queued on the pool and let them process
2485  * those works so that forward progress can be guaranteed.
2486  *
2487  * This should happen rarely.
2488  *
2489  * Return: 0
2490  */
rescuer_thread(void * __rescuer)2491 static int rescuer_thread(void *__rescuer)
2492 {
2493 	struct worker *rescuer = __rescuer;
2494 	struct workqueue_struct *wq = rescuer->rescue_wq;
2495 	struct list_head *scheduled = &rescuer->scheduled;
2496 	bool should_stop;
2497 
2498 	set_user_nice(current, RESCUER_NICE_LEVEL);
2499 
2500 	/*
2501 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2502 	 * doesn't participate in concurrency management.
2503 	 */
2504 	set_pf_worker(true);
2505 repeat:
2506 	set_current_state(TASK_IDLE);
2507 
2508 	/*
2509 	 * By the time the rescuer is requested to stop, the workqueue
2510 	 * shouldn't have any work pending, but @wq->maydays may still have
2511 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2512 	 * all the work items before the rescuer got to them.  Go through
2513 	 * @wq->maydays processing before acting on should_stop so that the
2514 	 * list is always empty on exit.
2515 	 */
2516 	should_stop = kthread_should_stop();
2517 
2518 	/* see whether any pwq is asking for help */
2519 	raw_spin_lock_irq(&wq_mayday_lock);
2520 
2521 	while (!list_empty(&wq->maydays)) {
2522 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2523 					struct pool_workqueue, mayday_node);
2524 		struct worker_pool *pool = pwq->pool;
2525 		struct work_struct *work, *n;
2526 		bool first = true;
2527 
2528 		__set_current_state(TASK_RUNNING);
2529 		list_del_init(&pwq->mayday_node);
2530 
2531 		raw_spin_unlock_irq(&wq_mayday_lock);
2532 
2533 		worker_attach_to_pool(rescuer, pool);
2534 
2535 		raw_spin_lock_irq(&pool->lock);
2536 
2537 		/*
2538 		 * Slurp in all works issued via this workqueue and
2539 		 * process'em.
2540 		 */
2541 		WARN_ON_ONCE(!list_empty(scheduled));
2542 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2543 			if (get_work_pwq(work) == pwq) {
2544 				if (first)
2545 					pool->watchdog_ts = jiffies;
2546 				move_linked_works(work, scheduled, &n);
2547 			}
2548 			first = false;
2549 		}
2550 
2551 		if (!list_empty(scheduled)) {
2552 			process_scheduled_works(rescuer);
2553 
2554 			/*
2555 			 * The above execution of rescued work items could
2556 			 * have created more to rescue through
2557 			 * pwq_activate_first_delayed() or chained
2558 			 * queueing.  Let's put @pwq back on mayday list so
2559 			 * that such back-to-back work items, which may be
2560 			 * being used to relieve memory pressure, don't
2561 			 * incur MAYDAY_INTERVAL delay inbetween.
2562 			 */
2563 			if (pwq->nr_active && need_to_create_worker(pool)) {
2564 				raw_spin_lock(&wq_mayday_lock);
2565 				/*
2566 				 * Queue iff we aren't racing destruction
2567 				 * and somebody else hasn't queued it already.
2568 				 */
2569 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2570 					get_pwq(pwq);
2571 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2572 				}
2573 				raw_spin_unlock(&wq_mayday_lock);
2574 			}
2575 		}
2576 
2577 		/*
2578 		 * Put the reference grabbed by send_mayday().  @pool won't
2579 		 * go away while we're still attached to it.
2580 		 */
2581 		put_pwq(pwq);
2582 
2583 		/*
2584 		 * Leave this pool.  If need_more_worker() is %true, notify a
2585 		 * regular worker; otherwise, we end up with 0 concurrency
2586 		 * and stalling the execution.
2587 		 */
2588 		if (need_more_worker(pool))
2589 			wake_up_worker(pool);
2590 
2591 		raw_spin_unlock_irq(&pool->lock);
2592 
2593 		worker_detach_from_pool(rescuer);
2594 
2595 		raw_spin_lock_irq(&wq_mayday_lock);
2596 	}
2597 
2598 	raw_spin_unlock_irq(&wq_mayday_lock);
2599 
2600 	if (should_stop) {
2601 		__set_current_state(TASK_RUNNING);
2602 		set_pf_worker(false);
2603 		return 0;
2604 	}
2605 
2606 	/* rescuers should never participate in concurrency management */
2607 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2608 	schedule();
2609 	goto repeat;
2610 }
2611 
2612 /**
2613  * check_flush_dependency - check for flush dependency sanity
2614  * @target_wq: workqueue being flushed
2615  * @target_work: work item being flushed (NULL for workqueue flushes)
2616  *
2617  * %current is trying to flush the whole @target_wq or @target_work on it.
2618  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2619  * reclaiming memory or running on a workqueue which doesn't have
2620  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2621  * a deadlock.
2622  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2623 static void check_flush_dependency(struct workqueue_struct *target_wq,
2624 				   struct work_struct *target_work)
2625 {
2626 	work_func_t target_func = target_work ? target_work->func : NULL;
2627 	struct worker *worker;
2628 
2629 	if (target_wq->flags & WQ_MEM_RECLAIM)
2630 		return;
2631 
2632 	worker = current_wq_worker();
2633 
2634 	WARN_ONCE(current->flags & PF_MEMALLOC,
2635 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2636 		  current->pid, current->comm, target_wq->name, target_func);
2637 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2638 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2639 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2640 		  worker->current_pwq->wq->name, worker->current_func,
2641 		  target_wq->name, target_func);
2642 }
2643 
2644 struct wq_barrier {
2645 	struct work_struct	work;
2646 	struct completion	done;
2647 	struct task_struct	*task;	/* purely informational */
2648 };
2649 
wq_barrier_func(struct work_struct * work)2650 static void wq_barrier_func(struct work_struct *work)
2651 {
2652 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2653 	complete(&barr->done);
2654 }
2655 
2656 /**
2657  * insert_wq_barrier - insert a barrier work
2658  * @pwq: pwq to insert barrier into
2659  * @barr: wq_barrier to insert
2660  * @target: target work to attach @barr to
2661  * @worker: worker currently executing @target, NULL if @target is not executing
2662  *
2663  * @barr is linked to @target such that @barr is completed only after
2664  * @target finishes execution.  Please note that the ordering
2665  * guarantee is observed only with respect to @target and on the local
2666  * cpu.
2667  *
2668  * Currently, a queued barrier can't be canceled.  This is because
2669  * try_to_grab_pending() can't determine whether the work to be
2670  * grabbed is at the head of the queue and thus can't clear LINKED
2671  * flag of the previous work while there must be a valid next work
2672  * after a work with LINKED flag set.
2673  *
2674  * Note that when @worker is non-NULL, @target may be modified
2675  * underneath us, so we can't reliably determine pwq from @target.
2676  *
2677  * CONTEXT:
2678  * raw_spin_lock_irq(pool->lock).
2679  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2680 static void insert_wq_barrier(struct pool_workqueue *pwq,
2681 			      struct wq_barrier *barr,
2682 			      struct work_struct *target, struct worker *worker)
2683 {
2684 	struct list_head *head;
2685 	unsigned int linked = 0;
2686 
2687 	/*
2688 	 * debugobject calls are safe here even with pool->lock locked
2689 	 * as we know for sure that this will not trigger any of the
2690 	 * checks and call back into the fixup functions where we
2691 	 * might deadlock.
2692 	 */
2693 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2694 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2695 
2696 	init_completion_map(&barr->done, &target->lockdep_map);
2697 
2698 	barr->task = current;
2699 
2700 	/*
2701 	 * If @target is currently being executed, schedule the
2702 	 * barrier to the worker; otherwise, put it after @target.
2703 	 */
2704 	if (worker)
2705 		head = worker->scheduled.next;
2706 	else {
2707 		unsigned long *bits = work_data_bits(target);
2708 
2709 		head = target->entry.next;
2710 		/* there can already be other linked works, inherit and set */
2711 		linked = *bits & WORK_STRUCT_LINKED;
2712 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2713 	}
2714 
2715 	debug_work_activate(&barr->work);
2716 	insert_work(pwq, &barr->work, head,
2717 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2718 }
2719 
2720 /**
2721  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2722  * @wq: workqueue being flushed
2723  * @flush_color: new flush color, < 0 for no-op
2724  * @work_color: new work color, < 0 for no-op
2725  *
2726  * Prepare pwqs for workqueue flushing.
2727  *
2728  * If @flush_color is non-negative, flush_color on all pwqs should be
2729  * -1.  If no pwq has in-flight commands at the specified color, all
2730  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2731  * has in flight commands, its pwq->flush_color is set to
2732  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2733  * wakeup logic is armed and %true is returned.
2734  *
2735  * The caller should have initialized @wq->first_flusher prior to
2736  * calling this function with non-negative @flush_color.  If
2737  * @flush_color is negative, no flush color update is done and %false
2738  * is returned.
2739  *
2740  * If @work_color is non-negative, all pwqs should have the same
2741  * work_color which is previous to @work_color and all will be
2742  * advanced to @work_color.
2743  *
2744  * CONTEXT:
2745  * mutex_lock(wq->mutex).
2746  *
2747  * Return:
2748  * %true if @flush_color >= 0 and there's something to flush.  %false
2749  * otherwise.
2750  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2751 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2752 				      int flush_color, int work_color)
2753 {
2754 	bool wait = false;
2755 	struct pool_workqueue *pwq;
2756 
2757 	if (flush_color >= 0) {
2758 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2759 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2760 	}
2761 
2762 	for_each_pwq(pwq, wq) {
2763 		struct worker_pool *pool = pwq->pool;
2764 
2765 		raw_spin_lock_irq(&pool->lock);
2766 
2767 		if (flush_color >= 0) {
2768 			WARN_ON_ONCE(pwq->flush_color != -1);
2769 
2770 			if (pwq->nr_in_flight[flush_color]) {
2771 				pwq->flush_color = flush_color;
2772 				atomic_inc(&wq->nr_pwqs_to_flush);
2773 				wait = true;
2774 			}
2775 		}
2776 
2777 		if (work_color >= 0) {
2778 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2779 			pwq->work_color = work_color;
2780 		}
2781 
2782 		raw_spin_unlock_irq(&pool->lock);
2783 	}
2784 
2785 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2786 		complete(&wq->first_flusher->done);
2787 
2788 	return wait;
2789 }
2790 
2791 /**
2792  * flush_workqueue - ensure that any scheduled work has run to completion.
2793  * @wq: workqueue to flush
2794  *
2795  * This function sleeps until all work items which were queued on entry
2796  * have finished execution, but it is not livelocked by new incoming ones.
2797  */
flush_workqueue(struct workqueue_struct * wq)2798 void flush_workqueue(struct workqueue_struct *wq)
2799 {
2800 	struct wq_flusher this_flusher = {
2801 		.list = LIST_HEAD_INIT(this_flusher.list),
2802 		.flush_color = -1,
2803 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2804 	};
2805 	int next_color;
2806 
2807 	if (WARN_ON(!wq_online))
2808 		return;
2809 
2810 	lock_map_acquire(&wq->lockdep_map);
2811 	lock_map_release(&wq->lockdep_map);
2812 
2813 	mutex_lock(&wq->mutex);
2814 
2815 	/*
2816 	 * Start-to-wait phase
2817 	 */
2818 	next_color = work_next_color(wq->work_color);
2819 
2820 	if (next_color != wq->flush_color) {
2821 		/*
2822 		 * Color space is not full.  The current work_color
2823 		 * becomes our flush_color and work_color is advanced
2824 		 * by one.
2825 		 */
2826 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2827 		this_flusher.flush_color = wq->work_color;
2828 		wq->work_color = next_color;
2829 
2830 		if (!wq->first_flusher) {
2831 			/* no flush in progress, become the first flusher */
2832 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2833 
2834 			wq->first_flusher = &this_flusher;
2835 
2836 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2837 						       wq->work_color)) {
2838 				/* nothing to flush, done */
2839 				wq->flush_color = next_color;
2840 				wq->first_flusher = NULL;
2841 				goto out_unlock;
2842 			}
2843 		} else {
2844 			/* wait in queue */
2845 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2846 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2847 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2848 		}
2849 	} else {
2850 		/*
2851 		 * Oops, color space is full, wait on overflow queue.
2852 		 * The next flush completion will assign us
2853 		 * flush_color and transfer to flusher_queue.
2854 		 */
2855 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2856 	}
2857 
2858 	check_flush_dependency(wq, NULL);
2859 
2860 	mutex_unlock(&wq->mutex);
2861 
2862 	wait_for_completion(&this_flusher.done);
2863 
2864 	/*
2865 	 * Wake-up-and-cascade phase
2866 	 *
2867 	 * First flushers are responsible for cascading flushes and
2868 	 * handling overflow.  Non-first flushers can simply return.
2869 	 */
2870 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2871 		return;
2872 
2873 	mutex_lock(&wq->mutex);
2874 
2875 	/* we might have raced, check again with mutex held */
2876 	if (wq->first_flusher != &this_flusher)
2877 		goto out_unlock;
2878 
2879 	WRITE_ONCE(wq->first_flusher, NULL);
2880 
2881 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2882 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2883 
2884 	while (true) {
2885 		struct wq_flusher *next, *tmp;
2886 
2887 		/* complete all the flushers sharing the current flush color */
2888 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2889 			if (next->flush_color != wq->flush_color)
2890 				break;
2891 			list_del_init(&next->list);
2892 			complete(&next->done);
2893 		}
2894 
2895 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2896 			     wq->flush_color != work_next_color(wq->work_color));
2897 
2898 		/* this flush_color is finished, advance by one */
2899 		wq->flush_color = work_next_color(wq->flush_color);
2900 
2901 		/* one color has been freed, handle overflow queue */
2902 		if (!list_empty(&wq->flusher_overflow)) {
2903 			/*
2904 			 * Assign the same color to all overflowed
2905 			 * flushers, advance work_color and append to
2906 			 * flusher_queue.  This is the start-to-wait
2907 			 * phase for these overflowed flushers.
2908 			 */
2909 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2910 				tmp->flush_color = wq->work_color;
2911 
2912 			wq->work_color = work_next_color(wq->work_color);
2913 
2914 			list_splice_tail_init(&wq->flusher_overflow,
2915 					      &wq->flusher_queue);
2916 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2917 		}
2918 
2919 		if (list_empty(&wq->flusher_queue)) {
2920 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2921 			break;
2922 		}
2923 
2924 		/*
2925 		 * Need to flush more colors.  Make the next flusher
2926 		 * the new first flusher and arm pwqs.
2927 		 */
2928 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2929 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2930 
2931 		list_del_init(&next->list);
2932 		wq->first_flusher = next;
2933 
2934 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2935 			break;
2936 
2937 		/*
2938 		 * Meh... this color is already done, clear first
2939 		 * flusher and repeat cascading.
2940 		 */
2941 		wq->first_flusher = NULL;
2942 	}
2943 
2944 out_unlock:
2945 	mutex_unlock(&wq->mutex);
2946 }
2947 EXPORT_SYMBOL(flush_workqueue);
2948 
2949 /**
2950  * drain_workqueue - drain a workqueue
2951  * @wq: workqueue to drain
2952  *
2953  * Wait until the workqueue becomes empty.  While draining is in progress,
2954  * only chain queueing is allowed.  IOW, only currently pending or running
2955  * work items on @wq can queue further work items on it.  @wq is flushed
2956  * repeatedly until it becomes empty.  The number of flushing is determined
2957  * by the depth of chaining and should be relatively short.  Whine if it
2958  * takes too long.
2959  */
drain_workqueue(struct workqueue_struct * wq)2960 void drain_workqueue(struct workqueue_struct *wq)
2961 {
2962 	unsigned int flush_cnt = 0;
2963 	struct pool_workqueue *pwq;
2964 
2965 	/*
2966 	 * __queue_work() needs to test whether there are drainers, is much
2967 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2968 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2969 	 */
2970 	mutex_lock(&wq->mutex);
2971 	if (!wq->nr_drainers++)
2972 		wq->flags |= __WQ_DRAINING;
2973 	mutex_unlock(&wq->mutex);
2974 reflush:
2975 	flush_workqueue(wq);
2976 
2977 	mutex_lock(&wq->mutex);
2978 
2979 	for_each_pwq(pwq, wq) {
2980 		bool drained;
2981 
2982 		raw_spin_lock_irq(&pwq->pool->lock);
2983 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2984 		raw_spin_unlock_irq(&pwq->pool->lock);
2985 
2986 		if (drained)
2987 			continue;
2988 
2989 		if (++flush_cnt == 10 ||
2990 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2991 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2992 				wq->name, flush_cnt);
2993 
2994 		mutex_unlock(&wq->mutex);
2995 		goto reflush;
2996 	}
2997 
2998 	if (!--wq->nr_drainers)
2999 		wq->flags &= ~__WQ_DRAINING;
3000 	mutex_unlock(&wq->mutex);
3001 }
3002 EXPORT_SYMBOL_GPL(drain_workqueue);
3003 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3004 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3005 			     bool from_cancel)
3006 {
3007 	struct worker *worker = NULL;
3008 	struct worker_pool *pool;
3009 	struct pool_workqueue *pwq;
3010 
3011 	might_sleep();
3012 
3013 	rcu_read_lock();
3014 	pool = get_work_pool(work);
3015 	if (!pool) {
3016 		rcu_read_unlock();
3017 		return false;
3018 	}
3019 
3020 	raw_spin_lock_irq(&pool->lock);
3021 	/* see the comment in try_to_grab_pending() with the same code */
3022 	pwq = get_work_pwq(work);
3023 	if (pwq) {
3024 		if (unlikely(pwq->pool != pool))
3025 			goto already_gone;
3026 	} else {
3027 		worker = find_worker_executing_work(pool, work);
3028 		if (!worker)
3029 			goto already_gone;
3030 		pwq = worker->current_pwq;
3031 	}
3032 
3033 	check_flush_dependency(pwq->wq, work);
3034 
3035 	insert_wq_barrier(pwq, barr, work, worker);
3036 	raw_spin_unlock_irq(&pool->lock);
3037 
3038 	/*
3039 	 * Force a lock recursion deadlock when using flush_work() inside a
3040 	 * single-threaded or rescuer equipped workqueue.
3041 	 *
3042 	 * For single threaded workqueues the deadlock happens when the work
3043 	 * is after the work issuing the flush_work(). For rescuer equipped
3044 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3045 	 * forward progress.
3046 	 */
3047 	if (!from_cancel &&
3048 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3049 		lock_map_acquire(&pwq->wq->lockdep_map);
3050 		lock_map_release(&pwq->wq->lockdep_map);
3051 	}
3052 	rcu_read_unlock();
3053 	return true;
3054 already_gone:
3055 	raw_spin_unlock_irq(&pool->lock);
3056 	rcu_read_unlock();
3057 	return false;
3058 }
3059 
__flush_work(struct work_struct * work,bool from_cancel)3060 static bool __flush_work(struct work_struct *work, bool from_cancel)
3061 {
3062 	struct wq_barrier barr;
3063 
3064 	if (WARN_ON(!wq_online))
3065 		return false;
3066 
3067 	if (WARN_ON(!work->func))
3068 		return false;
3069 
3070 	lock_map_acquire(&work->lockdep_map);
3071 	lock_map_release(&work->lockdep_map);
3072 
3073 	if (start_flush_work(work, &barr, from_cancel)) {
3074 		wait_for_completion(&barr.done);
3075 		destroy_work_on_stack(&barr.work);
3076 		return true;
3077 	} else {
3078 		return false;
3079 	}
3080 }
3081 
3082 /**
3083  * flush_work - wait for a work to finish executing the last queueing instance
3084  * @work: the work to flush
3085  *
3086  * Wait until @work has finished execution.  @work is guaranteed to be idle
3087  * on return if it hasn't been requeued since flush started.
3088  *
3089  * Return:
3090  * %true if flush_work() waited for the work to finish execution,
3091  * %false if it was already idle.
3092  */
flush_work(struct work_struct * work)3093 bool flush_work(struct work_struct *work)
3094 {
3095 	return __flush_work(work, false);
3096 }
3097 EXPORT_SYMBOL_GPL(flush_work);
3098 
3099 struct cwt_wait {
3100 	wait_queue_entry_t		wait;
3101 	struct work_struct	*work;
3102 };
3103 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3104 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3105 {
3106 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3107 
3108 	if (cwait->work != key)
3109 		return 0;
3110 	return autoremove_wake_function(wait, mode, sync, key);
3111 }
3112 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3113 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3114 {
3115 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3116 	unsigned long flags;
3117 	int ret;
3118 
3119 	do {
3120 		ret = try_to_grab_pending(work, is_dwork, &flags);
3121 		/*
3122 		 * If someone else is already canceling, wait for it to
3123 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3124 		 * because we may get scheduled between @work's completion
3125 		 * and the other canceling task resuming and clearing
3126 		 * CANCELING - flush_work() will return false immediately
3127 		 * as @work is no longer busy, try_to_grab_pending() will
3128 		 * return -ENOENT as @work is still being canceled and the
3129 		 * other canceling task won't be able to clear CANCELING as
3130 		 * we're hogging the CPU.
3131 		 *
3132 		 * Let's wait for completion using a waitqueue.  As this
3133 		 * may lead to the thundering herd problem, use a custom
3134 		 * wake function which matches @work along with exclusive
3135 		 * wait and wakeup.
3136 		 */
3137 		if (unlikely(ret == -ENOENT)) {
3138 			struct cwt_wait cwait;
3139 
3140 			init_wait(&cwait.wait);
3141 			cwait.wait.func = cwt_wakefn;
3142 			cwait.work = work;
3143 
3144 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3145 						  TASK_UNINTERRUPTIBLE);
3146 			if (work_is_canceling(work))
3147 				schedule();
3148 			finish_wait(&cancel_waitq, &cwait.wait);
3149 		}
3150 	} while (unlikely(ret < 0));
3151 
3152 	/* tell other tasks trying to grab @work to back off */
3153 	mark_work_canceling(work);
3154 	local_irq_restore(flags);
3155 
3156 	/*
3157 	 * This allows canceling during early boot.  We know that @work
3158 	 * isn't executing.
3159 	 */
3160 	if (wq_online)
3161 		__flush_work(work, true);
3162 
3163 	clear_work_data(work);
3164 
3165 	/*
3166 	 * Paired with prepare_to_wait() above so that either
3167 	 * waitqueue_active() is visible here or !work_is_canceling() is
3168 	 * visible there.
3169 	 */
3170 	smp_mb();
3171 	if (waitqueue_active(&cancel_waitq))
3172 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3173 
3174 	return ret;
3175 }
3176 
3177 /**
3178  * cancel_work_sync - cancel a work and wait for it to finish
3179  * @work: the work to cancel
3180  *
3181  * Cancel @work and wait for its execution to finish.  This function
3182  * can be used even if the work re-queues itself or migrates to
3183  * another workqueue.  On return from this function, @work is
3184  * guaranteed to be not pending or executing on any CPU.
3185  *
3186  * cancel_work_sync(&delayed_work->work) must not be used for
3187  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3188  *
3189  * The caller must ensure that the workqueue on which @work was last
3190  * queued can't be destroyed before this function returns.
3191  *
3192  * Return:
3193  * %true if @work was pending, %false otherwise.
3194  */
cancel_work_sync(struct work_struct * work)3195 bool cancel_work_sync(struct work_struct *work)
3196 {
3197 	return __cancel_work_timer(work, false);
3198 }
3199 EXPORT_SYMBOL_GPL(cancel_work_sync);
3200 
3201 /**
3202  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3203  * @dwork: the delayed work to flush
3204  *
3205  * Delayed timer is cancelled and the pending work is queued for
3206  * immediate execution.  Like flush_work(), this function only
3207  * considers the last queueing instance of @dwork.
3208  *
3209  * Return:
3210  * %true if flush_work() waited for the work to finish execution,
3211  * %false if it was already idle.
3212  */
flush_delayed_work(struct delayed_work * dwork)3213 bool flush_delayed_work(struct delayed_work *dwork)
3214 {
3215 	local_irq_disable();
3216 	if (del_timer_sync(&dwork->timer))
3217 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3218 	local_irq_enable();
3219 	return flush_work(&dwork->work);
3220 }
3221 EXPORT_SYMBOL(flush_delayed_work);
3222 
3223 /**
3224  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3225  * @rwork: the rcu work to flush
3226  *
3227  * Return:
3228  * %true if flush_rcu_work() waited for the work to finish execution,
3229  * %false if it was already idle.
3230  */
flush_rcu_work(struct rcu_work * rwork)3231 bool flush_rcu_work(struct rcu_work *rwork)
3232 {
3233 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3234 		rcu_barrier();
3235 		flush_work(&rwork->work);
3236 		return true;
3237 	} else {
3238 		return flush_work(&rwork->work);
3239 	}
3240 }
3241 EXPORT_SYMBOL(flush_rcu_work);
3242 
__cancel_work(struct work_struct * work,bool is_dwork)3243 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3244 {
3245 	unsigned long flags;
3246 	int ret;
3247 
3248 	do {
3249 		ret = try_to_grab_pending(work, is_dwork, &flags);
3250 	} while (unlikely(ret == -EAGAIN));
3251 
3252 	if (unlikely(ret < 0))
3253 		return false;
3254 
3255 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3256 	local_irq_restore(flags);
3257 	return ret;
3258 }
3259 
3260 /*
3261  * See cancel_delayed_work()
3262  */
cancel_work(struct work_struct * work)3263 bool cancel_work(struct work_struct *work)
3264 {
3265 	return __cancel_work(work, false);
3266 }
3267 EXPORT_SYMBOL(cancel_work);
3268 
3269 /**
3270  * cancel_delayed_work - cancel a delayed work
3271  * @dwork: delayed_work to cancel
3272  *
3273  * Kill off a pending delayed_work.
3274  *
3275  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3276  * pending.
3277  *
3278  * Note:
3279  * The work callback function may still be running on return, unless
3280  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3281  * use cancel_delayed_work_sync() to wait on it.
3282  *
3283  * This function is safe to call from any context including IRQ handler.
3284  */
cancel_delayed_work(struct delayed_work * dwork)3285 bool cancel_delayed_work(struct delayed_work *dwork)
3286 {
3287 	return __cancel_work(&dwork->work, true);
3288 }
3289 EXPORT_SYMBOL(cancel_delayed_work);
3290 
3291 /**
3292  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3293  * @dwork: the delayed work cancel
3294  *
3295  * This is cancel_work_sync() for delayed works.
3296  *
3297  * Return:
3298  * %true if @dwork was pending, %false otherwise.
3299  */
cancel_delayed_work_sync(struct delayed_work * dwork)3300 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3301 {
3302 	return __cancel_work_timer(&dwork->work, true);
3303 }
3304 EXPORT_SYMBOL(cancel_delayed_work_sync);
3305 
3306 /**
3307  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3308  * @func: the function to call
3309  *
3310  * schedule_on_each_cpu() executes @func on each online CPU using the
3311  * system workqueue and blocks until all CPUs have completed.
3312  * schedule_on_each_cpu() is very slow.
3313  *
3314  * Return:
3315  * 0 on success, -errno on failure.
3316  */
schedule_on_each_cpu(work_func_t func)3317 int schedule_on_each_cpu(work_func_t func)
3318 {
3319 	int cpu;
3320 	struct work_struct __percpu *works;
3321 
3322 	works = alloc_percpu(struct work_struct);
3323 	if (!works)
3324 		return -ENOMEM;
3325 
3326 	get_online_cpus();
3327 
3328 	for_each_online_cpu(cpu) {
3329 		struct work_struct *work = per_cpu_ptr(works, cpu);
3330 
3331 		INIT_WORK(work, func);
3332 		schedule_work_on(cpu, work);
3333 	}
3334 
3335 	for_each_online_cpu(cpu)
3336 		flush_work(per_cpu_ptr(works, cpu));
3337 
3338 	put_online_cpus();
3339 	free_percpu(works);
3340 	return 0;
3341 }
3342 
3343 /**
3344  * execute_in_process_context - reliably execute the routine with user context
3345  * @fn:		the function to execute
3346  * @ew:		guaranteed storage for the execute work structure (must
3347  *		be available when the work executes)
3348  *
3349  * Executes the function immediately if process context is available,
3350  * otherwise schedules the function for delayed execution.
3351  *
3352  * Return:	0 - function was executed
3353  *		1 - function was scheduled for execution
3354  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3355 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3356 {
3357 	if (!in_interrupt()) {
3358 		fn(&ew->work);
3359 		return 0;
3360 	}
3361 
3362 	INIT_WORK(&ew->work, fn);
3363 	schedule_work(&ew->work);
3364 
3365 	return 1;
3366 }
3367 EXPORT_SYMBOL_GPL(execute_in_process_context);
3368 
3369 /**
3370  * free_workqueue_attrs - free a workqueue_attrs
3371  * @attrs: workqueue_attrs to free
3372  *
3373  * Undo alloc_workqueue_attrs().
3374  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3375 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3376 {
3377 	if (attrs) {
3378 		free_cpumask_var(attrs->cpumask);
3379 		kfree(attrs);
3380 	}
3381 }
3382 
3383 /**
3384  * alloc_workqueue_attrs - allocate a workqueue_attrs
3385  *
3386  * Allocate a new workqueue_attrs, initialize with default settings and
3387  * return it.
3388  *
3389  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3390  */
alloc_workqueue_attrs(void)3391 struct workqueue_attrs *alloc_workqueue_attrs(void)
3392 {
3393 	struct workqueue_attrs *attrs;
3394 
3395 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3396 	if (!attrs)
3397 		goto fail;
3398 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3399 		goto fail;
3400 
3401 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3402 	return attrs;
3403 fail:
3404 	free_workqueue_attrs(attrs);
3405 	return NULL;
3406 }
3407 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3408 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3409 				 const struct workqueue_attrs *from)
3410 {
3411 	to->nice = from->nice;
3412 	cpumask_copy(to->cpumask, from->cpumask);
3413 	/*
3414 	 * Unlike hash and equality test, this function doesn't ignore
3415 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3416 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3417 	 */
3418 	to->no_numa = from->no_numa;
3419 }
3420 
3421 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3422 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3423 {
3424 	u32 hash = 0;
3425 
3426 	hash = jhash_1word(attrs->nice, hash);
3427 	hash = jhash(cpumask_bits(attrs->cpumask),
3428 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3429 	return hash;
3430 }
3431 
3432 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3433 static bool wqattrs_equal(const struct workqueue_attrs *a,
3434 			  const struct workqueue_attrs *b)
3435 {
3436 	if (a->nice != b->nice)
3437 		return false;
3438 	if (!cpumask_equal(a->cpumask, b->cpumask))
3439 		return false;
3440 	return true;
3441 }
3442 
3443 /**
3444  * init_worker_pool - initialize a newly zalloc'd worker_pool
3445  * @pool: worker_pool to initialize
3446  *
3447  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3448  *
3449  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3450  * inside @pool proper are initialized and put_unbound_pool() can be called
3451  * on @pool safely to release it.
3452  */
init_worker_pool(struct worker_pool * pool)3453 static int init_worker_pool(struct worker_pool *pool)
3454 {
3455 	raw_spin_lock_init(&pool->lock);
3456 	pool->id = -1;
3457 	pool->cpu = -1;
3458 	pool->node = NUMA_NO_NODE;
3459 	pool->flags |= POOL_DISASSOCIATED;
3460 	pool->watchdog_ts = jiffies;
3461 	INIT_LIST_HEAD(&pool->worklist);
3462 	INIT_LIST_HEAD(&pool->idle_list);
3463 	hash_init(pool->busy_hash);
3464 
3465 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3466 
3467 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3468 
3469 	INIT_LIST_HEAD(&pool->workers);
3470 
3471 	ida_init(&pool->worker_ida);
3472 	INIT_HLIST_NODE(&pool->hash_node);
3473 	pool->refcnt = 1;
3474 
3475 	/* shouldn't fail above this point */
3476 	pool->attrs = alloc_workqueue_attrs();
3477 	if (!pool->attrs)
3478 		return -ENOMEM;
3479 	return 0;
3480 }
3481 
3482 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3483 static void wq_init_lockdep(struct workqueue_struct *wq)
3484 {
3485 	char *lock_name;
3486 
3487 	lockdep_register_key(&wq->key);
3488 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3489 	if (!lock_name)
3490 		lock_name = wq->name;
3491 
3492 	wq->lock_name = lock_name;
3493 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3494 }
3495 
wq_unregister_lockdep(struct workqueue_struct * wq)3496 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3497 {
3498 	lockdep_unregister_key(&wq->key);
3499 }
3500 
wq_free_lockdep(struct workqueue_struct * wq)3501 static void wq_free_lockdep(struct workqueue_struct *wq)
3502 {
3503 	if (wq->lock_name != wq->name)
3504 		kfree(wq->lock_name);
3505 }
3506 #else
wq_init_lockdep(struct workqueue_struct * wq)3507 static void wq_init_lockdep(struct workqueue_struct *wq)
3508 {
3509 }
3510 
wq_unregister_lockdep(struct workqueue_struct * wq)3511 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3512 {
3513 }
3514 
wq_free_lockdep(struct workqueue_struct * wq)3515 static void wq_free_lockdep(struct workqueue_struct *wq)
3516 {
3517 }
3518 #endif
3519 
rcu_free_wq(struct rcu_head * rcu)3520 static void rcu_free_wq(struct rcu_head *rcu)
3521 {
3522 	struct workqueue_struct *wq =
3523 		container_of(rcu, struct workqueue_struct, rcu);
3524 
3525 	wq_free_lockdep(wq);
3526 
3527 	if (!(wq->flags & WQ_UNBOUND))
3528 		free_percpu(wq->cpu_pwqs);
3529 	else
3530 		free_workqueue_attrs(wq->unbound_attrs);
3531 
3532 	kfree(wq);
3533 }
3534 
rcu_free_pool(struct rcu_head * rcu)3535 static void rcu_free_pool(struct rcu_head *rcu)
3536 {
3537 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3538 
3539 	ida_destroy(&pool->worker_ida);
3540 	free_workqueue_attrs(pool->attrs);
3541 	kfree(pool);
3542 }
3543 
3544 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3545 static bool wq_manager_inactive(struct worker_pool *pool)
3546 {
3547 	raw_spin_lock_irq(&pool->lock);
3548 
3549 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3550 		raw_spin_unlock_irq(&pool->lock);
3551 		return false;
3552 	}
3553 	return true;
3554 }
3555 
3556 /**
3557  * put_unbound_pool - put a worker_pool
3558  * @pool: worker_pool to put
3559  *
3560  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3561  * safe manner.  get_unbound_pool() calls this function on its failure path
3562  * and this function should be able to release pools which went through,
3563  * successfully or not, init_worker_pool().
3564  *
3565  * Should be called with wq_pool_mutex held.
3566  */
put_unbound_pool(struct worker_pool * pool)3567 static void put_unbound_pool(struct worker_pool *pool)
3568 {
3569 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3570 	struct worker *worker;
3571 
3572 	lockdep_assert_held(&wq_pool_mutex);
3573 
3574 	if (--pool->refcnt)
3575 		return;
3576 
3577 	/* sanity checks */
3578 	if (WARN_ON(!(pool->cpu < 0)) ||
3579 	    WARN_ON(!list_empty(&pool->worklist)))
3580 		return;
3581 
3582 	/* release id and unhash */
3583 	if (pool->id >= 0)
3584 		idr_remove(&worker_pool_idr, pool->id);
3585 	hash_del(&pool->hash_node);
3586 
3587 	/*
3588 	 * Become the manager and destroy all workers.  This prevents
3589 	 * @pool's workers from blocking on attach_mutex.  We're the last
3590 	 * manager and @pool gets freed with the flag set.
3591 	 * Because of how wq_manager_inactive() works, we will hold the
3592 	 * spinlock after a successful wait.
3593 	 */
3594 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3595 			   TASK_UNINTERRUPTIBLE);
3596 	pool->flags |= POOL_MANAGER_ACTIVE;
3597 
3598 	while ((worker = first_idle_worker(pool)))
3599 		destroy_worker(worker);
3600 	WARN_ON(pool->nr_workers || pool->nr_idle);
3601 	raw_spin_unlock_irq(&pool->lock);
3602 
3603 	mutex_lock(&wq_pool_attach_mutex);
3604 	if (!list_empty(&pool->workers))
3605 		pool->detach_completion = &detach_completion;
3606 	mutex_unlock(&wq_pool_attach_mutex);
3607 
3608 	if (pool->detach_completion)
3609 		wait_for_completion(pool->detach_completion);
3610 
3611 	/* shut down the timers */
3612 	del_timer_sync(&pool->idle_timer);
3613 	del_timer_sync(&pool->mayday_timer);
3614 
3615 	/* RCU protected to allow dereferences from get_work_pool() */
3616 	call_rcu(&pool->rcu, rcu_free_pool);
3617 }
3618 
3619 /**
3620  * get_unbound_pool - get a worker_pool with the specified attributes
3621  * @attrs: the attributes of the worker_pool to get
3622  *
3623  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3624  * reference count and return it.  If there already is a matching
3625  * worker_pool, it will be used; otherwise, this function attempts to
3626  * create a new one.
3627  *
3628  * Should be called with wq_pool_mutex held.
3629  *
3630  * Return: On success, a worker_pool with the same attributes as @attrs.
3631  * On failure, %NULL.
3632  */
get_unbound_pool(const struct workqueue_attrs * attrs)3633 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3634 {
3635 	u32 hash = wqattrs_hash(attrs);
3636 	struct worker_pool *pool;
3637 	int node;
3638 	int target_node = NUMA_NO_NODE;
3639 
3640 	lockdep_assert_held(&wq_pool_mutex);
3641 
3642 	/* do we already have a matching pool? */
3643 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3644 		if (wqattrs_equal(pool->attrs, attrs)) {
3645 			pool->refcnt++;
3646 			return pool;
3647 		}
3648 	}
3649 
3650 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3651 	if (wq_numa_enabled) {
3652 		for_each_node(node) {
3653 			if (cpumask_subset(attrs->cpumask,
3654 					   wq_numa_possible_cpumask[node])) {
3655 				target_node = node;
3656 				break;
3657 			}
3658 		}
3659 	}
3660 
3661 	/* nope, create a new one */
3662 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3663 	if (!pool || init_worker_pool(pool) < 0)
3664 		goto fail;
3665 
3666 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3667 	copy_workqueue_attrs(pool->attrs, attrs);
3668 	pool->node = target_node;
3669 
3670 	/*
3671 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3672 	 * 'struct workqueue_attrs' comments for detail.
3673 	 */
3674 	pool->attrs->no_numa = false;
3675 
3676 	if (worker_pool_assign_id(pool) < 0)
3677 		goto fail;
3678 
3679 	/* create and start the initial worker */
3680 	if (wq_online && !create_worker(pool))
3681 		goto fail;
3682 
3683 	/* install */
3684 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3685 
3686 	return pool;
3687 fail:
3688 	if (pool)
3689 		put_unbound_pool(pool);
3690 	return NULL;
3691 }
3692 
rcu_free_pwq(struct rcu_head * rcu)3693 static void rcu_free_pwq(struct rcu_head *rcu)
3694 {
3695 	kmem_cache_free(pwq_cache,
3696 			container_of(rcu, struct pool_workqueue, rcu));
3697 }
3698 
3699 /*
3700  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3701  * and needs to be destroyed.
3702  */
pwq_unbound_release_workfn(struct work_struct * work)3703 static void pwq_unbound_release_workfn(struct work_struct *work)
3704 {
3705 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3706 						  unbound_release_work);
3707 	struct workqueue_struct *wq = pwq->wq;
3708 	struct worker_pool *pool = pwq->pool;
3709 	bool is_last = false;
3710 
3711 	/*
3712 	 * when @pwq is not linked, it doesn't hold any reference to the
3713 	 * @wq, and @wq is invalid to access.
3714 	 */
3715 	if (!list_empty(&pwq->pwqs_node)) {
3716 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3717 			return;
3718 
3719 		mutex_lock(&wq->mutex);
3720 		list_del_rcu(&pwq->pwqs_node);
3721 		is_last = list_empty(&wq->pwqs);
3722 		mutex_unlock(&wq->mutex);
3723 	}
3724 
3725 	mutex_lock(&wq_pool_mutex);
3726 	put_unbound_pool(pool);
3727 	mutex_unlock(&wq_pool_mutex);
3728 
3729 	call_rcu(&pwq->rcu, rcu_free_pwq);
3730 
3731 	/*
3732 	 * If we're the last pwq going away, @wq is already dead and no one
3733 	 * is gonna access it anymore.  Schedule RCU free.
3734 	 */
3735 	if (is_last) {
3736 		wq_unregister_lockdep(wq);
3737 		call_rcu(&wq->rcu, rcu_free_wq);
3738 	}
3739 }
3740 
3741 /**
3742  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3743  * @pwq: target pool_workqueue
3744  *
3745  * If @pwq isn't freezing, set @pwq->max_active to the associated
3746  * workqueue's saved_max_active and activate delayed work items
3747  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3748  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3749 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3750 {
3751 	struct workqueue_struct *wq = pwq->wq;
3752 	bool freezable = wq->flags & WQ_FREEZABLE;
3753 	unsigned long flags;
3754 
3755 	/* for @wq->saved_max_active */
3756 	lockdep_assert_held(&wq->mutex);
3757 
3758 	/* fast exit for non-freezable wqs */
3759 	if (!freezable && pwq->max_active == wq->saved_max_active)
3760 		return;
3761 
3762 	/* this function can be called during early boot w/ irq disabled */
3763 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3764 
3765 	/*
3766 	 * During [un]freezing, the caller is responsible for ensuring that
3767 	 * this function is called at least once after @workqueue_freezing
3768 	 * is updated and visible.
3769 	 */
3770 	if (!freezable || !workqueue_freezing) {
3771 		bool kick = false;
3772 
3773 		pwq->max_active = wq->saved_max_active;
3774 
3775 		while (!list_empty(&pwq->delayed_works) &&
3776 		       pwq->nr_active < pwq->max_active) {
3777 			pwq_activate_first_delayed(pwq);
3778 			kick = true;
3779 		}
3780 
3781 		/*
3782 		 * Need to kick a worker after thawed or an unbound wq's
3783 		 * max_active is bumped. In realtime scenarios, always kicking a
3784 		 * worker will cause interference on the isolated cpu cores, so
3785 		 * let's kick iff work items were activated.
3786 		 */
3787 		if (kick)
3788 			wake_up_worker(pwq->pool);
3789 	} else {
3790 		pwq->max_active = 0;
3791 	}
3792 
3793 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3794 }
3795 
3796 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3797 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3798 		     struct worker_pool *pool)
3799 {
3800 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3801 
3802 	memset(pwq, 0, sizeof(*pwq));
3803 
3804 	pwq->pool = pool;
3805 	pwq->wq = wq;
3806 	pwq->flush_color = -1;
3807 	pwq->refcnt = 1;
3808 	INIT_LIST_HEAD(&pwq->delayed_works);
3809 	INIT_LIST_HEAD(&pwq->pwqs_node);
3810 	INIT_LIST_HEAD(&pwq->mayday_node);
3811 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3812 }
3813 
3814 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3815 static void link_pwq(struct pool_workqueue *pwq)
3816 {
3817 	struct workqueue_struct *wq = pwq->wq;
3818 
3819 	lockdep_assert_held(&wq->mutex);
3820 
3821 	/* may be called multiple times, ignore if already linked */
3822 	if (!list_empty(&pwq->pwqs_node))
3823 		return;
3824 
3825 	/* set the matching work_color */
3826 	pwq->work_color = wq->work_color;
3827 
3828 	/* sync max_active to the current setting */
3829 	pwq_adjust_max_active(pwq);
3830 
3831 	/* link in @pwq */
3832 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833 }
3834 
3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 					const struct workqueue_attrs *attrs)
3838 {
3839 	struct worker_pool *pool;
3840 	struct pool_workqueue *pwq;
3841 
3842 	lockdep_assert_held(&wq_pool_mutex);
3843 
3844 	pool = get_unbound_pool(attrs);
3845 	if (!pool)
3846 		return NULL;
3847 
3848 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 	if (!pwq) {
3850 		put_unbound_pool(pool);
3851 		return NULL;
3852 	}
3853 
3854 	init_pwq(pwq, wq, pool);
3855 	return pwq;
3856 }
3857 
3858 /**
3859  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3860  * @attrs: the wq_attrs of the default pwq of the target workqueue
3861  * @node: the target NUMA node
3862  * @cpu_going_down: if >= 0, the CPU to consider as offline
3863  * @cpumask: outarg, the resulting cpumask
3864  *
3865  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3866  * @cpu_going_down is >= 0, that cpu is considered offline during
3867  * calculation.  The result is stored in @cpumask.
3868  *
3869  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3870  * enabled and @node has online CPUs requested by @attrs, the returned
3871  * cpumask is the intersection of the possible CPUs of @node and
3872  * @attrs->cpumask.
3873  *
3874  * The caller is responsible for ensuring that the cpumask of @node stays
3875  * stable.
3876  *
3877  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3878  * %false if equal.
3879  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3880 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3881 				 int cpu_going_down, cpumask_t *cpumask)
3882 {
3883 	if (!wq_numa_enabled || attrs->no_numa)
3884 		goto use_dfl;
3885 
3886 	/* does @node have any online CPUs @attrs wants? */
3887 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3888 	if (cpu_going_down >= 0)
3889 		cpumask_clear_cpu(cpu_going_down, cpumask);
3890 
3891 	if (cpumask_empty(cpumask))
3892 		goto use_dfl;
3893 
3894 	/* yeap, return possible CPUs in @node that @attrs wants */
3895 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3896 
3897 	if (cpumask_empty(cpumask)) {
3898 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3899 				"possible intersect\n");
3900 		return false;
3901 	}
3902 
3903 	return !cpumask_equal(cpumask, attrs->cpumask);
3904 
3905 use_dfl:
3906 	cpumask_copy(cpumask, attrs->cpumask);
3907 	return false;
3908 }
3909 
3910 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3911 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3912 						   int node,
3913 						   struct pool_workqueue *pwq)
3914 {
3915 	struct pool_workqueue *old_pwq;
3916 
3917 	lockdep_assert_held(&wq_pool_mutex);
3918 	lockdep_assert_held(&wq->mutex);
3919 
3920 	/* link_pwq() can handle duplicate calls */
3921 	link_pwq(pwq);
3922 
3923 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3924 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3925 	return old_pwq;
3926 }
3927 
3928 /* context to store the prepared attrs & pwqs before applying */
3929 struct apply_wqattrs_ctx {
3930 	struct workqueue_struct	*wq;		/* target workqueue */
3931 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3932 	struct list_head	list;		/* queued for batching commit */
3933 	struct pool_workqueue	*dfl_pwq;
3934 	struct pool_workqueue	*pwq_tbl[];
3935 };
3936 
3937 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3938 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3939 {
3940 	if (ctx) {
3941 		int node;
3942 
3943 		for_each_node(node)
3944 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3945 		put_pwq_unlocked(ctx->dfl_pwq);
3946 
3947 		free_workqueue_attrs(ctx->attrs);
3948 
3949 		kfree(ctx);
3950 	}
3951 }
3952 
3953 /* allocate the attrs and pwqs for later installation */
3954 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3955 apply_wqattrs_prepare(struct workqueue_struct *wq,
3956 		      const struct workqueue_attrs *attrs)
3957 {
3958 	struct apply_wqattrs_ctx *ctx;
3959 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3960 	int node;
3961 
3962 	lockdep_assert_held(&wq_pool_mutex);
3963 
3964 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3965 
3966 	new_attrs = alloc_workqueue_attrs();
3967 	tmp_attrs = alloc_workqueue_attrs();
3968 	if (!ctx || !new_attrs || !tmp_attrs)
3969 		goto out_free;
3970 
3971 	/*
3972 	 * Calculate the attrs of the default pwq.
3973 	 * If the user configured cpumask doesn't overlap with the
3974 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3975 	 */
3976 	copy_workqueue_attrs(new_attrs, attrs);
3977 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3978 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3979 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3980 
3981 	/*
3982 	 * We may create multiple pwqs with differing cpumasks.  Make a
3983 	 * copy of @new_attrs which will be modified and used to obtain
3984 	 * pools.
3985 	 */
3986 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3987 
3988 	/*
3989 	 * If something goes wrong during CPU up/down, we'll fall back to
3990 	 * the default pwq covering whole @attrs->cpumask.  Always create
3991 	 * it even if we don't use it immediately.
3992 	 */
3993 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 	if (!ctx->dfl_pwq)
3995 		goto out_free;
3996 
3997 	for_each_node(node) {
3998 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3999 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 			if (!ctx->pwq_tbl[node])
4001 				goto out_free;
4002 		} else {
4003 			ctx->dfl_pwq->refcnt++;
4004 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4005 		}
4006 	}
4007 
4008 	/* save the user configured attrs and sanitize it. */
4009 	copy_workqueue_attrs(new_attrs, attrs);
4010 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4011 	ctx->attrs = new_attrs;
4012 
4013 	ctx->wq = wq;
4014 	free_workqueue_attrs(tmp_attrs);
4015 	return ctx;
4016 
4017 out_free:
4018 	free_workqueue_attrs(tmp_attrs);
4019 	free_workqueue_attrs(new_attrs);
4020 	apply_wqattrs_cleanup(ctx);
4021 	return NULL;
4022 }
4023 
4024 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4025 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4026 {
4027 	int node;
4028 
4029 	/* all pwqs have been created successfully, let's install'em */
4030 	mutex_lock(&ctx->wq->mutex);
4031 
4032 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4033 
4034 	/* save the previous pwq and install the new one */
4035 	for_each_node(node)
4036 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4037 							  ctx->pwq_tbl[node]);
4038 
4039 	/* @dfl_pwq might not have been used, ensure it's linked */
4040 	link_pwq(ctx->dfl_pwq);
4041 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4042 
4043 	mutex_unlock(&ctx->wq->mutex);
4044 }
4045 
apply_wqattrs_lock(void)4046 static void apply_wqattrs_lock(void)
4047 {
4048 	/* CPUs should stay stable across pwq creations and installations */
4049 	get_online_cpus();
4050 	mutex_lock(&wq_pool_mutex);
4051 }
4052 
apply_wqattrs_unlock(void)4053 static void apply_wqattrs_unlock(void)
4054 {
4055 	mutex_unlock(&wq_pool_mutex);
4056 	put_online_cpus();
4057 }
4058 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4059 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4060 					const struct workqueue_attrs *attrs)
4061 {
4062 	struct apply_wqattrs_ctx *ctx;
4063 
4064 	/* only unbound workqueues can change attributes */
4065 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4066 		return -EINVAL;
4067 
4068 	/* creating multiple pwqs breaks ordering guarantee */
4069 	if (!list_empty(&wq->pwqs)) {
4070 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4071 			return -EINVAL;
4072 
4073 		wq->flags &= ~__WQ_ORDERED;
4074 	}
4075 
4076 	ctx = apply_wqattrs_prepare(wq, attrs);
4077 	if (!ctx)
4078 		return -ENOMEM;
4079 
4080 	/* the ctx has been prepared successfully, let's commit it */
4081 	apply_wqattrs_commit(ctx);
4082 	apply_wqattrs_cleanup(ctx);
4083 
4084 	return 0;
4085 }
4086 
4087 /**
4088  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4089  * @wq: the target workqueue
4090  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4091  *
4092  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4093  * machines, this function maps a separate pwq to each NUMA node with
4094  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4095  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4096  * items finish.  Note that a work item which repeatedly requeues itself
4097  * back-to-back will stay on its current pwq.
4098  *
4099  * Performs GFP_KERNEL allocations.
4100  *
4101  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4102  *
4103  * Return: 0 on success and -errno on failure.
4104  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4105 int apply_workqueue_attrs(struct workqueue_struct *wq,
4106 			  const struct workqueue_attrs *attrs)
4107 {
4108 	int ret;
4109 
4110 	lockdep_assert_cpus_held();
4111 
4112 	mutex_lock(&wq_pool_mutex);
4113 	ret = apply_workqueue_attrs_locked(wq, attrs);
4114 	mutex_unlock(&wq_pool_mutex);
4115 
4116 	return ret;
4117 }
4118 
4119 /**
4120  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4121  * @wq: the target workqueue
4122  * @cpu: the CPU coming up or going down
4123  * @online: whether @cpu is coming up or going down
4124  *
4125  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4126  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4127  * @wq accordingly.
4128  *
4129  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4130  * falls back to @wq->dfl_pwq which may not be optimal but is always
4131  * correct.
4132  *
4133  * Note that when the last allowed CPU of a NUMA node goes offline for a
4134  * workqueue with a cpumask spanning multiple nodes, the workers which were
4135  * already executing the work items for the workqueue will lose their CPU
4136  * affinity and may execute on any CPU.  This is similar to how per-cpu
4137  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4138  * affinity, it's the user's responsibility to flush the work item from
4139  * CPU_DOWN_PREPARE.
4140  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4141 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4142 				   bool online)
4143 {
4144 	int node = cpu_to_node(cpu);
4145 	int cpu_off = online ? -1 : cpu;
4146 	struct pool_workqueue *old_pwq = NULL, *pwq;
4147 	struct workqueue_attrs *target_attrs;
4148 	cpumask_t *cpumask;
4149 
4150 	lockdep_assert_held(&wq_pool_mutex);
4151 
4152 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4153 	    wq->unbound_attrs->no_numa)
4154 		return;
4155 
4156 	/*
4157 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4158 	 * Let's use a preallocated one.  The following buf is protected by
4159 	 * CPU hotplug exclusion.
4160 	 */
4161 	target_attrs = wq_update_unbound_numa_attrs_buf;
4162 	cpumask = target_attrs->cpumask;
4163 
4164 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4165 	pwq = unbound_pwq_by_node(wq, node);
4166 
4167 	/*
4168 	 * Let's determine what needs to be done.  If the target cpumask is
4169 	 * different from the default pwq's, we need to compare it to @pwq's
4170 	 * and create a new one if they don't match.  If the target cpumask
4171 	 * equals the default pwq's, the default pwq should be used.
4172 	 */
4173 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4174 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4175 			return;
4176 	} else {
4177 		goto use_dfl_pwq;
4178 	}
4179 
4180 	/* create a new pwq */
4181 	pwq = alloc_unbound_pwq(wq, target_attrs);
4182 	if (!pwq) {
4183 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4184 			wq->name);
4185 		goto use_dfl_pwq;
4186 	}
4187 
4188 	/* Install the new pwq. */
4189 	mutex_lock(&wq->mutex);
4190 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4191 	goto out_unlock;
4192 
4193 use_dfl_pwq:
4194 	mutex_lock(&wq->mutex);
4195 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4196 	get_pwq(wq->dfl_pwq);
4197 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4198 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4199 out_unlock:
4200 	mutex_unlock(&wq->mutex);
4201 	put_pwq_unlocked(old_pwq);
4202 }
4203 
alloc_and_link_pwqs(struct workqueue_struct * wq)4204 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4205 {
4206 	bool highpri = wq->flags & WQ_HIGHPRI;
4207 	int cpu, ret;
4208 
4209 	if (!(wq->flags & WQ_UNBOUND)) {
4210 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4211 		if (!wq->cpu_pwqs)
4212 			return -ENOMEM;
4213 
4214 		for_each_possible_cpu(cpu) {
4215 			struct pool_workqueue *pwq =
4216 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4217 			struct worker_pool *cpu_pools =
4218 				per_cpu(cpu_worker_pools, cpu);
4219 
4220 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4221 
4222 			mutex_lock(&wq->mutex);
4223 			link_pwq(pwq);
4224 			mutex_unlock(&wq->mutex);
4225 		}
4226 		return 0;
4227 	}
4228 
4229 	get_online_cpus();
4230 	if (wq->flags & __WQ_ORDERED) {
4231 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4232 		/* there should only be single pwq for ordering guarantee */
4233 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4234 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4235 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4236 	} else {
4237 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4238 	}
4239 	put_online_cpus();
4240 
4241 	return ret;
4242 }
4243 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4244 static int wq_clamp_max_active(int max_active, unsigned int flags,
4245 			       const char *name)
4246 {
4247 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4248 
4249 	if (max_active < 1 || max_active > lim)
4250 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4251 			max_active, name, 1, lim);
4252 
4253 	return clamp_val(max_active, 1, lim);
4254 }
4255 
4256 /*
4257  * Workqueues which may be used during memory reclaim should have a rescuer
4258  * to guarantee forward progress.
4259  */
init_rescuer(struct workqueue_struct * wq)4260 static int init_rescuer(struct workqueue_struct *wq)
4261 {
4262 	struct worker *rescuer;
4263 	int ret;
4264 
4265 	if (!(wq->flags & WQ_MEM_RECLAIM))
4266 		return 0;
4267 
4268 	rescuer = alloc_worker(NUMA_NO_NODE);
4269 	if (!rescuer)
4270 		return -ENOMEM;
4271 
4272 	rescuer->rescue_wq = wq;
4273 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4274 	if (IS_ERR(rescuer->task)) {
4275 		ret = PTR_ERR(rescuer->task);
4276 		kfree(rescuer);
4277 		return ret;
4278 	}
4279 
4280 	wq->rescuer = rescuer;
4281 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4282 	wake_up_process(rescuer->task);
4283 
4284 	return 0;
4285 }
4286 
4287 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4288 struct workqueue_struct *alloc_workqueue(const char *fmt,
4289 					 unsigned int flags,
4290 					 int max_active, ...)
4291 {
4292 	size_t tbl_size = 0;
4293 	va_list args;
4294 	struct workqueue_struct *wq;
4295 	struct pool_workqueue *pwq;
4296 
4297 	/*
4298 	 * Unbound && max_active == 1 used to imply ordered, which is no
4299 	 * longer the case on NUMA machines due to per-node pools.  While
4300 	 * alloc_ordered_workqueue() is the right way to create an ordered
4301 	 * workqueue, keep the previous behavior to avoid subtle breakages
4302 	 * on NUMA.
4303 	 */
4304 	if ((flags & WQ_UNBOUND) && max_active == 1)
4305 		flags |= __WQ_ORDERED;
4306 
4307 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4308 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4309 		flags |= WQ_UNBOUND;
4310 
4311 	/* allocate wq and format name */
4312 	if (flags & WQ_UNBOUND)
4313 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4314 
4315 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4316 	if (!wq)
4317 		return NULL;
4318 
4319 	if (flags & WQ_UNBOUND) {
4320 		wq->unbound_attrs = alloc_workqueue_attrs();
4321 		if (!wq->unbound_attrs)
4322 			goto err_free_wq;
4323 	}
4324 
4325 	va_start(args, max_active);
4326 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4327 	va_end(args);
4328 
4329 	max_active = max_active ?: WQ_DFL_ACTIVE;
4330 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4331 
4332 	/* init wq */
4333 	wq->flags = flags;
4334 	wq->saved_max_active = max_active;
4335 	mutex_init(&wq->mutex);
4336 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4337 	INIT_LIST_HEAD(&wq->pwqs);
4338 	INIT_LIST_HEAD(&wq->flusher_queue);
4339 	INIT_LIST_HEAD(&wq->flusher_overflow);
4340 	INIT_LIST_HEAD(&wq->maydays);
4341 
4342 	wq_init_lockdep(wq);
4343 	INIT_LIST_HEAD(&wq->list);
4344 
4345 	if (alloc_and_link_pwqs(wq) < 0)
4346 		goto err_unreg_lockdep;
4347 
4348 	if (wq_online && init_rescuer(wq) < 0)
4349 		goto err_destroy;
4350 
4351 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4352 		goto err_destroy;
4353 
4354 	/*
4355 	 * wq_pool_mutex protects global freeze state and workqueues list.
4356 	 * Grab it, adjust max_active and add the new @wq to workqueues
4357 	 * list.
4358 	 */
4359 	mutex_lock(&wq_pool_mutex);
4360 
4361 	mutex_lock(&wq->mutex);
4362 	for_each_pwq(pwq, wq)
4363 		pwq_adjust_max_active(pwq);
4364 	mutex_unlock(&wq->mutex);
4365 
4366 	list_add_tail_rcu(&wq->list, &workqueues);
4367 
4368 	mutex_unlock(&wq_pool_mutex);
4369 
4370 	return wq;
4371 
4372 err_unreg_lockdep:
4373 	wq_unregister_lockdep(wq);
4374 	wq_free_lockdep(wq);
4375 err_free_wq:
4376 	free_workqueue_attrs(wq->unbound_attrs);
4377 	kfree(wq);
4378 	return NULL;
4379 err_destroy:
4380 	destroy_workqueue(wq);
4381 	return NULL;
4382 }
4383 EXPORT_SYMBOL_GPL(alloc_workqueue);
4384 
pwq_busy(struct pool_workqueue * pwq)4385 static bool pwq_busy(struct pool_workqueue *pwq)
4386 {
4387 	int i;
4388 
4389 	for (i = 0; i < WORK_NR_COLORS; i++)
4390 		if (pwq->nr_in_flight[i])
4391 			return true;
4392 
4393 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4394 		return true;
4395 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4396 		return true;
4397 
4398 	return false;
4399 }
4400 
4401 /**
4402  * destroy_workqueue - safely terminate a workqueue
4403  * @wq: target workqueue
4404  *
4405  * Safely destroy a workqueue. All work currently pending will be done first.
4406  */
destroy_workqueue(struct workqueue_struct * wq)4407 void destroy_workqueue(struct workqueue_struct *wq)
4408 {
4409 	struct pool_workqueue *pwq;
4410 	int node;
4411 
4412 	/*
4413 	 * Remove it from sysfs first so that sanity check failure doesn't
4414 	 * lead to sysfs name conflicts.
4415 	 */
4416 	workqueue_sysfs_unregister(wq);
4417 
4418 	/* drain it before proceeding with destruction */
4419 	drain_workqueue(wq);
4420 
4421 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4422 	if (wq->rescuer) {
4423 		struct worker *rescuer = wq->rescuer;
4424 
4425 		/* this prevents new queueing */
4426 		raw_spin_lock_irq(&wq_mayday_lock);
4427 		wq->rescuer = NULL;
4428 		raw_spin_unlock_irq(&wq_mayday_lock);
4429 
4430 		/* rescuer will empty maydays list before exiting */
4431 		kthread_stop(rescuer->task);
4432 		kfree(rescuer);
4433 	}
4434 
4435 	/*
4436 	 * Sanity checks - grab all the locks so that we wait for all
4437 	 * in-flight operations which may do put_pwq().
4438 	 */
4439 	mutex_lock(&wq_pool_mutex);
4440 	mutex_lock(&wq->mutex);
4441 	for_each_pwq(pwq, wq) {
4442 		raw_spin_lock_irq(&pwq->pool->lock);
4443 		if (WARN_ON(pwq_busy(pwq))) {
4444 			pr_warn("%s: %s has the following busy pwq\n",
4445 				__func__, wq->name);
4446 			show_pwq(pwq);
4447 			raw_spin_unlock_irq(&pwq->pool->lock);
4448 			mutex_unlock(&wq->mutex);
4449 			mutex_unlock(&wq_pool_mutex);
4450 			show_workqueue_state();
4451 			return;
4452 		}
4453 		raw_spin_unlock_irq(&pwq->pool->lock);
4454 	}
4455 	mutex_unlock(&wq->mutex);
4456 
4457 	/*
4458 	 * wq list is used to freeze wq, remove from list after
4459 	 * flushing is complete in case freeze races us.
4460 	 */
4461 	list_del_rcu(&wq->list);
4462 	mutex_unlock(&wq_pool_mutex);
4463 
4464 	if (!(wq->flags & WQ_UNBOUND)) {
4465 		wq_unregister_lockdep(wq);
4466 		/*
4467 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4468 		 * schedule RCU free.
4469 		 */
4470 		call_rcu(&wq->rcu, rcu_free_wq);
4471 	} else {
4472 		/*
4473 		 * We're the sole accessor of @wq at this point.  Directly
4474 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4475 		 * @wq will be freed when the last pwq is released.
4476 		 */
4477 		for_each_node(node) {
4478 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4479 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4480 			put_pwq_unlocked(pwq);
4481 		}
4482 
4483 		/*
4484 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4485 		 * put.  Don't access it afterwards.
4486 		 */
4487 		pwq = wq->dfl_pwq;
4488 		wq->dfl_pwq = NULL;
4489 		put_pwq_unlocked(pwq);
4490 	}
4491 }
4492 EXPORT_SYMBOL_GPL(destroy_workqueue);
4493 
4494 /**
4495  * workqueue_set_max_active - adjust max_active of a workqueue
4496  * @wq: target workqueue
4497  * @max_active: new max_active value.
4498  *
4499  * Set max_active of @wq to @max_active.
4500  *
4501  * CONTEXT:
4502  * Don't call from IRQ context.
4503  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4504 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4505 {
4506 	struct pool_workqueue *pwq;
4507 
4508 	/* disallow meddling with max_active for ordered workqueues */
4509 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4510 		return;
4511 
4512 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4513 
4514 	mutex_lock(&wq->mutex);
4515 
4516 	wq->flags &= ~__WQ_ORDERED;
4517 	wq->saved_max_active = max_active;
4518 
4519 	for_each_pwq(pwq, wq)
4520 		pwq_adjust_max_active(pwq);
4521 
4522 	mutex_unlock(&wq->mutex);
4523 }
4524 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4525 
4526 /**
4527  * current_work - retrieve %current task's work struct
4528  *
4529  * Determine if %current task is a workqueue worker and what it's working on.
4530  * Useful to find out the context that the %current task is running in.
4531  *
4532  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4533  */
current_work(void)4534 struct work_struct *current_work(void)
4535 {
4536 	struct worker *worker = current_wq_worker();
4537 
4538 	return worker ? worker->current_work : NULL;
4539 }
4540 EXPORT_SYMBOL(current_work);
4541 
4542 /**
4543  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4544  *
4545  * Determine whether %current is a workqueue rescuer.  Can be used from
4546  * work functions to determine whether it's being run off the rescuer task.
4547  *
4548  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4549  */
current_is_workqueue_rescuer(void)4550 bool current_is_workqueue_rescuer(void)
4551 {
4552 	struct worker *worker = current_wq_worker();
4553 
4554 	return worker && worker->rescue_wq;
4555 }
4556 
4557 /**
4558  * workqueue_congested - test whether a workqueue is congested
4559  * @cpu: CPU in question
4560  * @wq: target workqueue
4561  *
4562  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4563  * no synchronization around this function and the test result is
4564  * unreliable and only useful as advisory hints or for debugging.
4565  *
4566  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4567  * Note that both per-cpu and unbound workqueues may be associated with
4568  * multiple pool_workqueues which have separate congested states.  A
4569  * workqueue being congested on one CPU doesn't mean the workqueue is also
4570  * contested on other CPUs / NUMA nodes.
4571  *
4572  * Return:
4573  * %true if congested, %false otherwise.
4574  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4575 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4576 {
4577 	struct pool_workqueue *pwq;
4578 	bool ret;
4579 
4580 	rcu_read_lock();
4581 	preempt_disable();
4582 
4583 	if (cpu == WORK_CPU_UNBOUND)
4584 		cpu = smp_processor_id();
4585 
4586 	if (!(wq->flags & WQ_UNBOUND))
4587 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4588 	else
4589 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4590 
4591 	ret = !list_empty(&pwq->delayed_works);
4592 	preempt_enable();
4593 	rcu_read_unlock();
4594 
4595 	return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(workqueue_congested);
4598 
4599 /**
4600  * work_busy - test whether a work is currently pending or running
4601  * @work: the work to be tested
4602  *
4603  * Test whether @work is currently pending or running.  There is no
4604  * synchronization around this function and the test result is
4605  * unreliable and only useful as advisory hints or for debugging.
4606  *
4607  * Return:
4608  * OR'd bitmask of WORK_BUSY_* bits.
4609  */
work_busy(struct work_struct * work)4610 unsigned int work_busy(struct work_struct *work)
4611 {
4612 	struct worker_pool *pool;
4613 	unsigned long flags;
4614 	unsigned int ret = 0;
4615 
4616 	if (work_pending(work))
4617 		ret |= WORK_BUSY_PENDING;
4618 
4619 	rcu_read_lock();
4620 	pool = get_work_pool(work);
4621 	if (pool) {
4622 		raw_spin_lock_irqsave(&pool->lock, flags);
4623 		if (find_worker_executing_work(pool, work))
4624 			ret |= WORK_BUSY_RUNNING;
4625 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4626 	}
4627 	rcu_read_unlock();
4628 
4629 	return ret;
4630 }
4631 EXPORT_SYMBOL_GPL(work_busy);
4632 
4633 /**
4634  * set_worker_desc - set description for the current work item
4635  * @fmt: printf-style format string
4636  * @...: arguments for the format string
4637  *
4638  * This function can be called by a running work function to describe what
4639  * the work item is about.  If the worker task gets dumped, this
4640  * information will be printed out together to help debugging.  The
4641  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4642  */
set_worker_desc(const char * fmt,...)4643 void set_worker_desc(const char *fmt, ...)
4644 {
4645 	struct worker *worker = current_wq_worker();
4646 	va_list args;
4647 
4648 	if (worker) {
4649 		va_start(args, fmt);
4650 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4651 		va_end(args);
4652 	}
4653 }
4654 EXPORT_SYMBOL_GPL(set_worker_desc);
4655 
4656 /**
4657  * print_worker_info - print out worker information and description
4658  * @log_lvl: the log level to use when printing
4659  * @task: target task
4660  *
4661  * If @task is a worker and currently executing a work item, print out the
4662  * name of the workqueue being serviced and worker description set with
4663  * set_worker_desc() by the currently executing work item.
4664  *
4665  * This function can be safely called on any task as long as the
4666  * task_struct itself is accessible.  While safe, this function isn't
4667  * synchronized and may print out mixups or garbages of limited length.
4668  */
print_worker_info(const char * log_lvl,struct task_struct * task)4669 void print_worker_info(const char *log_lvl, struct task_struct *task)
4670 {
4671 	work_func_t *fn = NULL;
4672 	char name[WQ_NAME_LEN] = { };
4673 	char desc[WORKER_DESC_LEN] = { };
4674 	struct pool_workqueue *pwq = NULL;
4675 	struct workqueue_struct *wq = NULL;
4676 	struct worker *worker;
4677 
4678 	if (!(task->flags & PF_WQ_WORKER))
4679 		return;
4680 
4681 	/*
4682 	 * This function is called without any synchronization and @task
4683 	 * could be in any state.  Be careful with dereferences.
4684 	 */
4685 	worker = kthread_probe_data(task);
4686 
4687 	/*
4688 	 * Carefully copy the associated workqueue's workfn, name and desc.
4689 	 * Keep the original last '\0' in case the original is garbage.
4690 	 */
4691 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4692 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4693 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4694 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4695 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4696 
4697 	if (fn || name[0] || desc[0]) {
4698 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4699 		if (strcmp(name, desc))
4700 			pr_cont(" (%s)", desc);
4701 		pr_cont("\n");
4702 	}
4703 }
4704 
pr_cont_pool_info(struct worker_pool * pool)4705 static void pr_cont_pool_info(struct worker_pool *pool)
4706 {
4707 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4708 	if (pool->node != NUMA_NO_NODE)
4709 		pr_cont(" node=%d", pool->node);
4710 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4711 }
4712 
pr_cont_work(bool comma,struct work_struct * work)4713 static void pr_cont_work(bool comma, struct work_struct *work)
4714 {
4715 	if (work->func == wq_barrier_func) {
4716 		struct wq_barrier *barr;
4717 
4718 		barr = container_of(work, struct wq_barrier, work);
4719 
4720 		pr_cont("%s BAR(%d)", comma ? "," : "",
4721 			task_pid_nr(barr->task));
4722 	} else {
4723 		pr_cont("%s %ps", comma ? "," : "", work->func);
4724 	}
4725 }
4726 
show_pwq(struct pool_workqueue * pwq)4727 static void show_pwq(struct pool_workqueue *pwq)
4728 {
4729 	struct worker_pool *pool = pwq->pool;
4730 	struct work_struct *work;
4731 	struct worker *worker;
4732 	bool has_in_flight = false, has_pending = false;
4733 	int bkt;
4734 
4735 	pr_info("  pwq %d:", pool->id);
4736 	pr_cont_pool_info(pool);
4737 
4738 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4739 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4740 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4741 
4742 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4743 		if (worker->current_pwq == pwq) {
4744 			has_in_flight = true;
4745 			break;
4746 		}
4747 	}
4748 	if (has_in_flight) {
4749 		bool comma = false;
4750 
4751 		pr_info("    in-flight:");
4752 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753 			if (worker->current_pwq != pwq)
4754 				continue;
4755 
4756 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4757 				task_pid_nr(worker->task),
4758 				worker->rescue_wq ? "(RESCUER)" : "",
4759 				worker->current_func);
4760 			list_for_each_entry(work, &worker->scheduled, entry)
4761 				pr_cont_work(false, work);
4762 			comma = true;
4763 		}
4764 		pr_cont("\n");
4765 	}
4766 
4767 	list_for_each_entry(work, &pool->worklist, entry) {
4768 		if (get_work_pwq(work) == pwq) {
4769 			has_pending = true;
4770 			break;
4771 		}
4772 	}
4773 	if (has_pending) {
4774 		bool comma = false;
4775 
4776 		pr_info("    pending:");
4777 		list_for_each_entry(work, &pool->worklist, entry) {
4778 			if (get_work_pwq(work) != pwq)
4779 				continue;
4780 
4781 			pr_cont_work(comma, work);
4782 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4783 		}
4784 		pr_cont("\n");
4785 	}
4786 
4787 	if (!list_empty(&pwq->delayed_works)) {
4788 		bool comma = false;
4789 
4790 		pr_info("    delayed:");
4791 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4792 			pr_cont_work(comma, work);
4793 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 		}
4795 		pr_cont("\n");
4796 	}
4797 }
4798 
4799 /**
4800  * show_workqueue_state - dump workqueue state
4801  *
4802  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4803  * all busy workqueues and pools.
4804  */
show_workqueue_state(void)4805 void show_workqueue_state(void)
4806 {
4807 	struct workqueue_struct *wq;
4808 	struct worker_pool *pool;
4809 	unsigned long flags;
4810 	int pi;
4811 
4812 	rcu_read_lock();
4813 
4814 	pr_info("Showing busy workqueues and worker pools:\n");
4815 
4816 	list_for_each_entry_rcu(wq, &workqueues, list) {
4817 		struct pool_workqueue *pwq;
4818 		bool idle = true;
4819 
4820 		for_each_pwq(pwq, wq) {
4821 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4822 				idle = false;
4823 				break;
4824 			}
4825 		}
4826 		if (idle)
4827 			continue;
4828 
4829 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830 
4831 		for_each_pwq(pwq, wq) {
4832 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4833 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4834 				show_pwq(pwq);
4835 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4836 			/*
4837 			 * We could be printing a lot from atomic context, e.g.
4838 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4839 			 * hard lockup.
4840 			 */
4841 			touch_nmi_watchdog();
4842 		}
4843 	}
4844 
4845 	for_each_pool(pool, pi) {
4846 		struct worker *worker;
4847 		bool first = true;
4848 
4849 		raw_spin_lock_irqsave(&pool->lock, flags);
4850 		if (pool->nr_workers == pool->nr_idle)
4851 			goto next_pool;
4852 
4853 		pr_info("pool %d:", pool->id);
4854 		pr_cont_pool_info(pool);
4855 		pr_cont(" hung=%us workers=%d",
4856 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4857 			pool->nr_workers);
4858 		if (pool->manager)
4859 			pr_cont(" manager: %d",
4860 				task_pid_nr(pool->manager->task));
4861 		list_for_each_entry(worker, &pool->idle_list, entry) {
4862 			pr_cont(" %s%d", first ? "idle: " : "",
4863 				task_pid_nr(worker->task));
4864 			first = false;
4865 		}
4866 		pr_cont("\n");
4867 	next_pool:
4868 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4869 		/*
4870 		 * We could be printing a lot from atomic context, e.g.
4871 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4872 		 * hard lockup.
4873 		 */
4874 		touch_nmi_watchdog();
4875 	}
4876 
4877 	rcu_read_unlock();
4878 }
4879 
4880 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4881 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4882 {
4883 	int off;
4884 
4885 	/* always show the actual comm */
4886 	off = strscpy(buf, task->comm, size);
4887 	if (off < 0)
4888 		return;
4889 
4890 	/* stabilize PF_WQ_WORKER and worker pool association */
4891 	mutex_lock(&wq_pool_attach_mutex);
4892 
4893 	if (task->flags & PF_WQ_WORKER) {
4894 		struct worker *worker = kthread_data(task);
4895 		struct worker_pool *pool = worker->pool;
4896 
4897 		if (pool) {
4898 			raw_spin_lock_irq(&pool->lock);
4899 			/*
4900 			 * ->desc tracks information (wq name or
4901 			 * set_worker_desc()) for the latest execution.  If
4902 			 * current, prepend '+', otherwise '-'.
4903 			 */
4904 			if (worker->desc[0] != '\0') {
4905 				if (worker->current_work)
4906 					scnprintf(buf + off, size - off, "+%s",
4907 						  worker->desc);
4908 				else
4909 					scnprintf(buf + off, size - off, "-%s",
4910 						  worker->desc);
4911 			}
4912 			raw_spin_unlock_irq(&pool->lock);
4913 		}
4914 	}
4915 
4916 	mutex_unlock(&wq_pool_attach_mutex);
4917 }
4918 EXPORT_SYMBOL_GPL(wq_worker_comm);
4919 
4920 #ifdef CONFIG_SMP
4921 
4922 /*
4923  * CPU hotplug.
4924  *
4925  * There are two challenges in supporting CPU hotplug.  Firstly, there
4926  * are a lot of assumptions on strong associations among work, pwq and
4927  * pool which make migrating pending and scheduled works very
4928  * difficult to implement without impacting hot paths.  Secondly,
4929  * worker pools serve mix of short, long and very long running works making
4930  * blocked draining impractical.
4931  *
4932  * This is solved by allowing the pools to be disassociated from the CPU
4933  * running as an unbound one and allowing it to be reattached later if the
4934  * cpu comes back online.
4935  */
4936 
unbind_workers(int cpu)4937 static void unbind_workers(int cpu)
4938 {
4939 	struct worker_pool *pool;
4940 	struct worker *worker;
4941 
4942 	for_each_cpu_worker_pool(pool, cpu) {
4943 		mutex_lock(&wq_pool_attach_mutex);
4944 		raw_spin_lock_irq(&pool->lock);
4945 
4946 		/*
4947 		 * We've blocked all attach/detach operations. Make all workers
4948 		 * unbound and set DISASSOCIATED.  Before this, all workers
4949 		 * except for the ones which are still executing works from
4950 		 * before the last CPU down must be on the cpu.  After
4951 		 * this, they may become diasporas.
4952 		 */
4953 		for_each_pool_worker(worker, pool)
4954 			worker->flags |= WORKER_UNBOUND;
4955 
4956 		pool->flags |= POOL_DISASSOCIATED;
4957 
4958 		raw_spin_unlock_irq(&pool->lock);
4959 		mutex_unlock(&wq_pool_attach_mutex);
4960 
4961 		/*
4962 		 * Call schedule() so that we cross rq->lock and thus can
4963 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4964 		 * This is necessary as scheduler callbacks may be invoked
4965 		 * from other cpus.
4966 		 */
4967 		schedule();
4968 
4969 		/*
4970 		 * Sched callbacks are disabled now.  Zap nr_running.
4971 		 * After this, nr_running stays zero and need_more_worker()
4972 		 * and keep_working() are always true as long as the
4973 		 * worklist is not empty.  This pool now behaves as an
4974 		 * unbound (in terms of concurrency management) pool which
4975 		 * are served by workers tied to the pool.
4976 		 */
4977 		atomic_set(&pool->nr_running, 0);
4978 
4979 		/*
4980 		 * With concurrency management just turned off, a busy
4981 		 * worker blocking could lead to lengthy stalls.  Kick off
4982 		 * unbound chain execution of currently pending work items.
4983 		 */
4984 		raw_spin_lock_irq(&pool->lock);
4985 		wake_up_worker(pool);
4986 		raw_spin_unlock_irq(&pool->lock);
4987 	}
4988 }
4989 
4990 /**
4991  * rebind_workers - rebind all workers of a pool to the associated CPU
4992  * @pool: pool of interest
4993  *
4994  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4995  */
rebind_workers(struct worker_pool * pool)4996 static void rebind_workers(struct worker_pool *pool)
4997 {
4998 	struct worker *worker;
4999 
5000 	lockdep_assert_held(&wq_pool_attach_mutex);
5001 
5002 	/*
5003 	 * Restore CPU affinity of all workers.  As all idle workers should
5004 	 * be on the run-queue of the associated CPU before any local
5005 	 * wake-ups for concurrency management happen, restore CPU affinity
5006 	 * of all workers first and then clear UNBOUND.  As we're called
5007 	 * from CPU_ONLINE, the following shouldn't fail.
5008 	 */
5009 	for_each_pool_worker(worker, pool)
5010 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5011 						  pool->attrs->cpumask) < 0);
5012 
5013 	raw_spin_lock_irq(&pool->lock);
5014 
5015 	pool->flags &= ~POOL_DISASSOCIATED;
5016 
5017 	for_each_pool_worker(worker, pool) {
5018 		unsigned int worker_flags = worker->flags;
5019 
5020 		/*
5021 		 * A bound idle worker should actually be on the runqueue
5022 		 * of the associated CPU for local wake-ups targeting it to
5023 		 * work.  Kick all idle workers so that they migrate to the
5024 		 * associated CPU.  Doing this in the same loop as
5025 		 * replacing UNBOUND with REBOUND is safe as no worker will
5026 		 * be bound before @pool->lock is released.
5027 		 */
5028 		if (worker_flags & WORKER_IDLE)
5029 			wake_up_process(worker->task);
5030 
5031 		/*
5032 		 * We want to clear UNBOUND but can't directly call
5033 		 * worker_clr_flags() or adjust nr_running.  Atomically
5034 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5035 		 * @worker will clear REBOUND using worker_clr_flags() when
5036 		 * it initiates the next execution cycle thus restoring
5037 		 * concurrency management.  Note that when or whether
5038 		 * @worker clears REBOUND doesn't affect correctness.
5039 		 *
5040 		 * WRITE_ONCE() is necessary because @worker->flags may be
5041 		 * tested without holding any lock in
5042 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5043 		 * fail incorrectly leading to premature concurrency
5044 		 * management operations.
5045 		 */
5046 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5047 		worker_flags |= WORKER_REBOUND;
5048 		worker_flags &= ~WORKER_UNBOUND;
5049 		WRITE_ONCE(worker->flags, worker_flags);
5050 	}
5051 
5052 	raw_spin_unlock_irq(&pool->lock);
5053 }
5054 
5055 /**
5056  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5057  * @pool: unbound pool of interest
5058  * @cpu: the CPU which is coming up
5059  *
5060  * An unbound pool may end up with a cpumask which doesn't have any online
5061  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5062  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5063  * online CPU before, cpus_allowed of all its workers should be restored.
5064  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5065 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5066 {
5067 	static cpumask_t cpumask;
5068 	struct worker *worker;
5069 
5070 	lockdep_assert_held(&wq_pool_attach_mutex);
5071 
5072 	/* is @cpu allowed for @pool? */
5073 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5074 		return;
5075 
5076 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5077 
5078 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5079 	for_each_pool_worker(worker, pool)
5080 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5081 }
5082 
workqueue_prepare_cpu(unsigned int cpu)5083 int workqueue_prepare_cpu(unsigned int cpu)
5084 {
5085 	struct worker_pool *pool;
5086 
5087 	for_each_cpu_worker_pool(pool, cpu) {
5088 		if (pool->nr_workers)
5089 			continue;
5090 		if (!create_worker(pool))
5091 			return -ENOMEM;
5092 	}
5093 	return 0;
5094 }
5095 
workqueue_online_cpu(unsigned int cpu)5096 int workqueue_online_cpu(unsigned int cpu)
5097 {
5098 	struct worker_pool *pool;
5099 	struct workqueue_struct *wq;
5100 	int pi;
5101 
5102 	mutex_lock(&wq_pool_mutex);
5103 
5104 	for_each_pool(pool, pi) {
5105 		mutex_lock(&wq_pool_attach_mutex);
5106 
5107 		if (pool->cpu == cpu)
5108 			rebind_workers(pool);
5109 		else if (pool->cpu < 0)
5110 			restore_unbound_workers_cpumask(pool, cpu);
5111 
5112 		mutex_unlock(&wq_pool_attach_mutex);
5113 	}
5114 
5115 	/* update NUMA affinity of unbound workqueues */
5116 	list_for_each_entry(wq, &workqueues, list)
5117 		wq_update_unbound_numa(wq, cpu, true);
5118 
5119 	mutex_unlock(&wq_pool_mutex);
5120 	return 0;
5121 }
5122 
workqueue_offline_cpu(unsigned int cpu)5123 int workqueue_offline_cpu(unsigned int cpu)
5124 {
5125 	struct workqueue_struct *wq;
5126 
5127 	/* unbinding per-cpu workers should happen on the local CPU */
5128 	if (WARN_ON(cpu != smp_processor_id()))
5129 		return -1;
5130 
5131 	unbind_workers(cpu);
5132 
5133 	/* update NUMA affinity of unbound workqueues */
5134 	mutex_lock(&wq_pool_mutex);
5135 	list_for_each_entry(wq, &workqueues, list)
5136 		wq_update_unbound_numa(wq, cpu, false);
5137 	mutex_unlock(&wq_pool_mutex);
5138 
5139 	return 0;
5140 }
5141 
5142 struct work_for_cpu {
5143 	struct work_struct work;
5144 	long (*fn)(void *);
5145 	void *arg;
5146 	long ret;
5147 };
5148 
work_for_cpu_fn(struct work_struct * work)5149 static void work_for_cpu_fn(struct work_struct *work)
5150 {
5151 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5152 
5153 	wfc->ret = wfc->fn(wfc->arg);
5154 }
5155 
5156 /**
5157  * work_on_cpu - run a function in thread context on a particular cpu
5158  * @cpu: the cpu to run on
5159  * @fn: the function to run
5160  * @arg: the function arg
5161  *
5162  * It is up to the caller to ensure that the cpu doesn't go offline.
5163  * The caller must not hold any locks which would prevent @fn from completing.
5164  *
5165  * Return: The value @fn returns.
5166  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5167 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5168 {
5169 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5170 
5171 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5172 	schedule_work_on(cpu, &wfc.work);
5173 	flush_work(&wfc.work);
5174 	destroy_work_on_stack(&wfc.work);
5175 	return wfc.ret;
5176 }
5177 EXPORT_SYMBOL_GPL(work_on_cpu);
5178 
5179 /**
5180  * work_on_cpu_safe - run a function in thread context on a particular cpu
5181  * @cpu: the cpu to run on
5182  * @fn:  the function to run
5183  * @arg: the function argument
5184  *
5185  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5186  * any locks which would prevent @fn from completing.
5187  *
5188  * Return: The value @fn returns.
5189  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5190 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5191 {
5192 	long ret = -ENODEV;
5193 
5194 	get_online_cpus();
5195 	if (cpu_online(cpu))
5196 		ret = work_on_cpu(cpu, fn, arg);
5197 	put_online_cpus();
5198 	return ret;
5199 }
5200 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5201 #endif /* CONFIG_SMP */
5202 
5203 #ifdef CONFIG_FREEZER
5204 
5205 /**
5206  * freeze_workqueues_begin - begin freezing workqueues
5207  *
5208  * Start freezing workqueues.  After this function returns, all freezable
5209  * workqueues will queue new works to their delayed_works list instead of
5210  * pool->worklist.
5211  *
5212  * CONTEXT:
5213  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5214  */
freeze_workqueues_begin(void)5215 void freeze_workqueues_begin(void)
5216 {
5217 	struct workqueue_struct *wq;
5218 	struct pool_workqueue *pwq;
5219 
5220 	mutex_lock(&wq_pool_mutex);
5221 
5222 	WARN_ON_ONCE(workqueue_freezing);
5223 	workqueue_freezing = true;
5224 
5225 	list_for_each_entry(wq, &workqueues, list) {
5226 		mutex_lock(&wq->mutex);
5227 		for_each_pwq(pwq, wq)
5228 			pwq_adjust_max_active(pwq);
5229 		mutex_unlock(&wq->mutex);
5230 	}
5231 
5232 	mutex_unlock(&wq_pool_mutex);
5233 }
5234 
5235 /**
5236  * freeze_workqueues_busy - are freezable workqueues still busy?
5237  *
5238  * Check whether freezing is complete.  This function must be called
5239  * between freeze_workqueues_begin() and thaw_workqueues().
5240  *
5241  * CONTEXT:
5242  * Grabs and releases wq_pool_mutex.
5243  *
5244  * Return:
5245  * %true if some freezable workqueues are still busy.  %false if freezing
5246  * is complete.
5247  */
freeze_workqueues_busy(void)5248 bool freeze_workqueues_busy(void)
5249 {
5250 	bool busy = false;
5251 	struct workqueue_struct *wq;
5252 	struct pool_workqueue *pwq;
5253 
5254 	mutex_lock(&wq_pool_mutex);
5255 
5256 	WARN_ON_ONCE(!workqueue_freezing);
5257 
5258 	list_for_each_entry(wq, &workqueues, list) {
5259 		if (!(wq->flags & WQ_FREEZABLE))
5260 			continue;
5261 		/*
5262 		 * nr_active is monotonically decreasing.  It's safe
5263 		 * to peek without lock.
5264 		 */
5265 		rcu_read_lock();
5266 		for_each_pwq(pwq, wq) {
5267 			WARN_ON_ONCE(pwq->nr_active < 0);
5268 			if (pwq->nr_active) {
5269 				busy = true;
5270 				rcu_read_unlock();
5271 				goto out_unlock;
5272 			}
5273 		}
5274 		rcu_read_unlock();
5275 	}
5276 out_unlock:
5277 	mutex_unlock(&wq_pool_mutex);
5278 	return busy;
5279 }
5280 
5281 /**
5282  * thaw_workqueues - thaw workqueues
5283  *
5284  * Thaw workqueues.  Normal queueing is restored and all collected
5285  * frozen works are transferred to their respective pool worklists.
5286  *
5287  * CONTEXT:
5288  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5289  */
thaw_workqueues(void)5290 void thaw_workqueues(void)
5291 {
5292 	struct workqueue_struct *wq;
5293 	struct pool_workqueue *pwq;
5294 
5295 	mutex_lock(&wq_pool_mutex);
5296 
5297 	if (!workqueue_freezing)
5298 		goto out_unlock;
5299 
5300 	workqueue_freezing = false;
5301 
5302 	/* restore max_active and repopulate worklist */
5303 	list_for_each_entry(wq, &workqueues, list) {
5304 		mutex_lock(&wq->mutex);
5305 		for_each_pwq(pwq, wq)
5306 			pwq_adjust_max_active(pwq);
5307 		mutex_unlock(&wq->mutex);
5308 	}
5309 
5310 out_unlock:
5311 	mutex_unlock(&wq_pool_mutex);
5312 }
5313 #endif /* CONFIG_FREEZER */
5314 
workqueue_apply_unbound_cpumask(void)5315 static int workqueue_apply_unbound_cpumask(void)
5316 {
5317 	LIST_HEAD(ctxs);
5318 	int ret = 0;
5319 	struct workqueue_struct *wq;
5320 	struct apply_wqattrs_ctx *ctx, *n;
5321 
5322 	lockdep_assert_held(&wq_pool_mutex);
5323 
5324 	list_for_each_entry(wq, &workqueues, list) {
5325 		if (!(wq->flags & WQ_UNBOUND))
5326 			continue;
5327 
5328 		/* creating multiple pwqs breaks ordering guarantee */
5329 		if (!list_empty(&wq->pwqs)) {
5330 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5331 				continue;
5332 			wq->flags &= ~__WQ_ORDERED;
5333 		}
5334 
5335 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5336 		if (!ctx) {
5337 			ret = -ENOMEM;
5338 			break;
5339 		}
5340 
5341 		list_add_tail(&ctx->list, &ctxs);
5342 	}
5343 
5344 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5345 		if (!ret)
5346 			apply_wqattrs_commit(ctx);
5347 		apply_wqattrs_cleanup(ctx);
5348 	}
5349 
5350 	return ret;
5351 }
5352 
5353 /**
5354  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5355  *  @cpumask: the cpumask to set
5356  *
5357  *  The low-level workqueues cpumask is a global cpumask that limits
5358  *  the affinity of all unbound workqueues.  This function check the @cpumask
5359  *  and apply it to all unbound workqueues and updates all pwqs of them.
5360  *
5361  *  Retun:	0	- Success
5362  *  		-EINVAL	- Invalid @cpumask
5363  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5364  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5365 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5366 {
5367 	int ret = -EINVAL;
5368 	cpumask_var_t saved_cpumask;
5369 
5370 	/*
5371 	 * Not excluding isolated cpus on purpose.
5372 	 * If the user wishes to include them, we allow that.
5373 	 */
5374 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5375 	if (!cpumask_empty(cpumask)) {
5376 		apply_wqattrs_lock();
5377 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5378 			ret = 0;
5379 			goto out_unlock;
5380 		}
5381 
5382 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5383 			ret = -ENOMEM;
5384 			goto out_unlock;
5385 		}
5386 
5387 		/* save the old wq_unbound_cpumask. */
5388 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5389 
5390 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5391 		cpumask_copy(wq_unbound_cpumask, cpumask);
5392 		ret = workqueue_apply_unbound_cpumask();
5393 
5394 		/* restore the wq_unbound_cpumask when failed. */
5395 		if (ret < 0)
5396 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5397 
5398 		free_cpumask_var(saved_cpumask);
5399 out_unlock:
5400 		apply_wqattrs_unlock();
5401 	}
5402 
5403 	return ret;
5404 }
5405 
5406 #ifdef CONFIG_SYSFS
5407 /*
5408  * Workqueues with WQ_SYSFS flag set is visible to userland via
5409  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5410  * following attributes.
5411  *
5412  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5413  *  max_active	RW int	: maximum number of in-flight work items
5414  *
5415  * Unbound workqueues have the following extra attributes.
5416  *
5417  *  pool_ids	RO int	: the associated pool IDs for each node
5418  *  nice	RW int	: nice value of the workers
5419  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5420  *  numa	RW bool	: whether enable NUMA affinity
5421  */
5422 struct wq_device {
5423 	struct workqueue_struct		*wq;
5424 	struct device			dev;
5425 };
5426 
dev_to_wq(struct device * dev)5427 static struct workqueue_struct *dev_to_wq(struct device *dev)
5428 {
5429 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5430 
5431 	return wq_dev->wq;
5432 }
5433 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5434 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5435 			    char *buf)
5436 {
5437 	struct workqueue_struct *wq = dev_to_wq(dev);
5438 
5439 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5440 }
5441 static DEVICE_ATTR_RO(per_cpu);
5442 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5443 static ssize_t max_active_show(struct device *dev,
5444 			       struct device_attribute *attr, char *buf)
5445 {
5446 	struct workqueue_struct *wq = dev_to_wq(dev);
5447 
5448 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5449 }
5450 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5451 static ssize_t max_active_store(struct device *dev,
5452 				struct device_attribute *attr, const char *buf,
5453 				size_t count)
5454 {
5455 	struct workqueue_struct *wq = dev_to_wq(dev);
5456 	int val;
5457 
5458 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5459 		return -EINVAL;
5460 
5461 	workqueue_set_max_active(wq, val);
5462 	return count;
5463 }
5464 static DEVICE_ATTR_RW(max_active);
5465 
5466 static struct attribute *wq_sysfs_attrs[] = {
5467 	&dev_attr_per_cpu.attr,
5468 	&dev_attr_max_active.attr,
5469 	NULL,
5470 };
5471 ATTRIBUTE_GROUPS(wq_sysfs);
5472 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5473 static ssize_t wq_pool_ids_show(struct device *dev,
5474 				struct device_attribute *attr, char *buf)
5475 {
5476 	struct workqueue_struct *wq = dev_to_wq(dev);
5477 	const char *delim = "";
5478 	int node, written = 0;
5479 
5480 	get_online_cpus();
5481 	rcu_read_lock();
5482 	for_each_node(node) {
5483 		written += scnprintf(buf + written, PAGE_SIZE - written,
5484 				     "%s%d:%d", delim, node,
5485 				     unbound_pwq_by_node(wq, node)->pool->id);
5486 		delim = " ";
5487 	}
5488 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5489 	rcu_read_unlock();
5490 	put_online_cpus();
5491 
5492 	return written;
5493 }
5494 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5495 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5496 			    char *buf)
5497 {
5498 	struct workqueue_struct *wq = dev_to_wq(dev);
5499 	int written;
5500 
5501 	mutex_lock(&wq->mutex);
5502 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5503 	mutex_unlock(&wq->mutex);
5504 
5505 	return written;
5506 }
5507 
5508 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5509 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5510 {
5511 	struct workqueue_attrs *attrs;
5512 
5513 	lockdep_assert_held(&wq_pool_mutex);
5514 
5515 	attrs = alloc_workqueue_attrs();
5516 	if (!attrs)
5517 		return NULL;
5518 
5519 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5520 	return attrs;
5521 }
5522 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5523 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5524 			     const char *buf, size_t count)
5525 {
5526 	struct workqueue_struct *wq = dev_to_wq(dev);
5527 	struct workqueue_attrs *attrs;
5528 	int ret = -ENOMEM;
5529 
5530 	apply_wqattrs_lock();
5531 
5532 	attrs = wq_sysfs_prep_attrs(wq);
5533 	if (!attrs)
5534 		goto out_unlock;
5535 
5536 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5537 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5538 		ret = apply_workqueue_attrs_locked(wq, attrs);
5539 	else
5540 		ret = -EINVAL;
5541 
5542 out_unlock:
5543 	apply_wqattrs_unlock();
5544 	free_workqueue_attrs(attrs);
5545 	return ret ?: count;
5546 }
5547 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5548 static ssize_t wq_cpumask_show(struct device *dev,
5549 			       struct device_attribute *attr, char *buf)
5550 {
5551 	struct workqueue_struct *wq = dev_to_wq(dev);
5552 	int written;
5553 
5554 	mutex_lock(&wq->mutex);
5555 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5556 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5557 	mutex_unlock(&wq->mutex);
5558 	return written;
5559 }
5560 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5561 static ssize_t wq_cpumask_store(struct device *dev,
5562 				struct device_attribute *attr,
5563 				const char *buf, size_t count)
5564 {
5565 	struct workqueue_struct *wq = dev_to_wq(dev);
5566 	struct workqueue_attrs *attrs;
5567 	int ret = -ENOMEM;
5568 
5569 	apply_wqattrs_lock();
5570 
5571 	attrs = wq_sysfs_prep_attrs(wq);
5572 	if (!attrs)
5573 		goto out_unlock;
5574 
5575 	ret = cpumask_parse(buf, attrs->cpumask);
5576 	if (!ret)
5577 		ret = apply_workqueue_attrs_locked(wq, attrs);
5578 
5579 out_unlock:
5580 	apply_wqattrs_unlock();
5581 	free_workqueue_attrs(attrs);
5582 	return ret ?: count;
5583 }
5584 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5585 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5586 			    char *buf)
5587 {
5588 	struct workqueue_struct *wq = dev_to_wq(dev);
5589 	int written;
5590 
5591 	mutex_lock(&wq->mutex);
5592 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5593 			    !wq->unbound_attrs->no_numa);
5594 	mutex_unlock(&wq->mutex);
5595 
5596 	return written;
5597 }
5598 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5599 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5600 			     const char *buf, size_t count)
5601 {
5602 	struct workqueue_struct *wq = dev_to_wq(dev);
5603 	struct workqueue_attrs *attrs;
5604 	int v, ret = -ENOMEM;
5605 
5606 	apply_wqattrs_lock();
5607 
5608 	attrs = wq_sysfs_prep_attrs(wq);
5609 	if (!attrs)
5610 		goto out_unlock;
5611 
5612 	ret = -EINVAL;
5613 	if (sscanf(buf, "%d", &v) == 1) {
5614 		attrs->no_numa = !v;
5615 		ret = apply_workqueue_attrs_locked(wq, attrs);
5616 	}
5617 
5618 out_unlock:
5619 	apply_wqattrs_unlock();
5620 	free_workqueue_attrs(attrs);
5621 	return ret ?: count;
5622 }
5623 
5624 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5625 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5626 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5627 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5628 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5629 	__ATTR_NULL,
5630 };
5631 
5632 static struct bus_type wq_subsys = {
5633 	.name				= "workqueue",
5634 	.dev_groups			= wq_sysfs_groups,
5635 };
5636 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5637 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5638 		struct device_attribute *attr, char *buf)
5639 {
5640 	int written;
5641 
5642 	mutex_lock(&wq_pool_mutex);
5643 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5644 			    cpumask_pr_args(wq_unbound_cpumask));
5645 	mutex_unlock(&wq_pool_mutex);
5646 
5647 	return written;
5648 }
5649 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5650 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5651 		struct device_attribute *attr, const char *buf, size_t count)
5652 {
5653 	cpumask_var_t cpumask;
5654 	int ret;
5655 
5656 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5657 		return -ENOMEM;
5658 
5659 	ret = cpumask_parse(buf, cpumask);
5660 	if (!ret)
5661 		ret = workqueue_set_unbound_cpumask(cpumask);
5662 
5663 	free_cpumask_var(cpumask);
5664 	return ret ? ret : count;
5665 }
5666 
5667 static struct device_attribute wq_sysfs_cpumask_attr =
5668 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5669 	       wq_unbound_cpumask_store);
5670 
wq_sysfs_init(void)5671 static int __init wq_sysfs_init(void)
5672 {
5673 	int err;
5674 
5675 	err = subsys_virtual_register(&wq_subsys, NULL);
5676 	if (err)
5677 		return err;
5678 
5679 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5680 }
5681 core_initcall(wq_sysfs_init);
5682 
wq_device_release(struct device * dev)5683 static void wq_device_release(struct device *dev)
5684 {
5685 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5686 
5687 	kfree(wq_dev);
5688 }
5689 
5690 /**
5691  * workqueue_sysfs_register - make a workqueue visible in sysfs
5692  * @wq: the workqueue to register
5693  *
5694  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5695  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5696  * which is the preferred method.
5697  *
5698  * Workqueue user should use this function directly iff it wants to apply
5699  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5700  * apply_workqueue_attrs() may race against userland updating the
5701  * attributes.
5702  *
5703  * Return: 0 on success, -errno on failure.
5704  */
workqueue_sysfs_register(struct workqueue_struct * wq)5705 int workqueue_sysfs_register(struct workqueue_struct *wq)
5706 {
5707 	struct wq_device *wq_dev;
5708 	int ret;
5709 
5710 	/*
5711 	 * Adjusting max_active or creating new pwqs by applying
5712 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5713 	 * workqueues.
5714 	 */
5715 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5716 		return -EINVAL;
5717 
5718 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5719 	if (!wq_dev)
5720 		return -ENOMEM;
5721 
5722 	wq_dev->wq = wq;
5723 	wq_dev->dev.bus = &wq_subsys;
5724 	wq_dev->dev.release = wq_device_release;
5725 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5726 
5727 	/*
5728 	 * unbound_attrs are created separately.  Suppress uevent until
5729 	 * everything is ready.
5730 	 */
5731 	dev_set_uevent_suppress(&wq_dev->dev, true);
5732 
5733 	ret = device_register(&wq_dev->dev);
5734 	if (ret) {
5735 		put_device(&wq_dev->dev);
5736 		wq->wq_dev = NULL;
5737 		return ret;
5738 	}
5739 
5740 	if (wq->flags & WQ_UNBOUND) {
5741 		struct device_attribute *attr;
5742 
5743 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5744 			ret = device_create_file(&wq_dev->dev, attr);
5745 			if (ret) {
5746 				device_unregister(&wq_dev->dev);
5747 				wq->wq_dev = NULL;
5748 				return ret;
5749 			}
5750 		}
5751 	}
5752 
5753 	dev_set_uevent_suppress(&wq_dev->dev, false);
5754 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5755 	return 0;
5756 }
5757 
5758 /**
5759  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5760  * @wq: the workqueue to unregister
5761  *
5762  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5763  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5764 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5765 {
5766 	struct wq_device *wq_dev = wq->wq_dev;
5767 
5768 	if (!wq->wq_dev)
5769 		return;
5770 
5771 	wq->wq_dev = NULL;
5772 	device_unregister(&wq_dev->dev);
5773 }
5774 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5775 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5776 #endif	/* CONFIG_SYSFS */
5777 
5778 /*
5779  * Workqueue watchdog.
5780  *
5781  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5782  * flush dependency, a concurrency managed work item which stays RUNNING
5783  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5784  * usual warning mechanisms don't trigger and internal workqueue state is
5785  * largely opaque.
5786  *
5787  * Workqueue watchdog monitors all worker pools periodically and dumps
5788  * state if some pools failed to make forward progress for a while where
5789  * forward progress is defined as the first item on ->worklist changing.
5790  *
5791  * This mechanism is controlled through the kernel parameter
5792  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5793  * corresponding sysfs parameter file.
5794  */
5795 #ifdef CONFIG_WQ_WATCHDOG
5796 
5797 static unsigned long wq_watchdog_thresh = 30;
5798 static struct timer_list wq_watchdog_timer;
5799 
5800 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5801 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5802 
wq_watchdog_reset_touched(void)5803 static void wq_watchdog_reset_touched(void)
5804 {
5805 	int cpu;
5806 
5807 	wq_watchdog_touched = jiffies;
5808 	for_each_possible_cpu(cpu)
5809 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5810 }
5811 
wq_watchdog_timer_fn(struct timer_list * unused)5812 static void wq_watchdog_timer_fn(struct timer_list *unused)
5813 {
5814 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5815 	bool lockup_detected = false;
5816 	unsigned long now = jiffies;
5817 	struct worker_pool *pool;
5818 	int pi;
5819 
5820 	if (!thresh)
5821 		return;
5822 
5823 	rcu_read_lock();
5824 
5825 	for_each_pool(pool, pi) {
5826 		unsigned long pool_ts, touched, ts;
5827 
5828 		if (list_empty(&pool->worklist))
5829 			continue;
5830 
5831 		/*
5832 		 * If a virtual machine is stopped by the host it can look to
5833 		 * the watchdog like a stall.
5834 		 */
5835 		kvm_check_and_clear_guest_paused();
5836 
5837 		/* get the latest of pool and touched timestamps */
5838 		pool_ts = READ_ONCE(pool->watchdog_ts);
5839 		touched = READ_ONCE(wq_watchdog_touched);
5840 
5841 		if (time_after(pool_ts, touched))
5842 			ts = pool_ts;
5843 		else
5844 			ts = touched;
5845 
5846 		if (pool->cpu >= 0) {
5847 			unsigned long cpu_touched =
5848 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5849 						  pool->cpu));
5850 			if (time_after(cpu_touched, ts))
5851 				ts = cpu_touched;
5852 		}
5853 
5854 		/* did we stall? */
5855 		if (time_after(now, ts + thresh)) {
5856 			lockup_detected = true;
5857 			pr_emerg("BUG: workqueue lockup - pool");
5858 			pr_cont_pool_info(pool);
5859 			pr_cont(" stuck for %us!\n",
5860 				jiffies_to_msecs(now - pool_ts) / 1000);
5861 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5862 		}
5863 	}
5864 
5865 	rcu_read_unlock();
5866 
5867 	if (lockup_detected)
5868 		show_workqueue_state();
5869 
5870 	wq_watchdog_reset_touched();
5871 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5872 }
5873 
wq_watchdog_touch(int cpu)5874 notrace void wq_watchdog_touch(int cpu)
5875 {
5876 	if (cpu >= 0)
5877 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5878 	else
5879 		wq_watchdog_touched = jiffies;
5880 }
5881 
wq_watchdog_set_thresh(unsigned long thresh)5882 static void wq_watchdog_set_thresh(unsigned long thresh)
5883 {
5884 	wq_watchdog_thresh = 0;
5885 	del_timer_sync(&wq_watchdog_timer);
5886 
5887 	if (thresh) {
5888 		wq_watchdog_thresh = thresh;
5889 		wq_watchdog_reset_touched();
5890 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5891 	}
5892 }
5893 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5894 static int wq_watchdog_param_set_thresh(const char *val,
5895 					const struct kernel_param *kp)
5896 {
5897 	unsigned long thresh;
5898 	int ret;
5899 
5900 	ret = kstrtoul(val, 0, &thresh);
5901 	if (ret)
5902 		return ret;
5903 
5904 	if (system_wq)
5905 		wq_watchdog_set_thresh(thresh);
5906 	else
5907 		wq_watchdog_thresh = thresh;
5908 
5909 	return 0;
5910 }
5911 
5912 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5913 	.set	= wq_watchdog_param_set_thresh,
5914 	.get	= param_get_ulong,
5915 };
5916 
5917 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5918 		0644);
5919 
wq_watchdog_init(void)5920 static void wq_watchdog_init(void)
5921 {
5922 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5923 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5924 }
5925 
5926 #else	/* CONFIG_WQ_WATCHDOG */
5927 
wq_watchdog_init(void)5928 static inline void wq_watchdog_init(void) { }
5929 
5930 #endif	/* CONFIG_WQ_WATCHDOG */
5931 
wq_numa_init(void)5932 static void __init wq_numa_init(void)
5933 {
5934 	cpumask_var_t *tbl;
5935 	int node, cpu;
5936 
5937 	if (num_possible_nodes() <= 1)
5938 		return;
5939 
5940 	if (wq_disable_numa) {
5941 		pr_info("workqueue: NUMA affinity support disabled\n");
5942 		return;
5943 	}
5944 
5945 	for_each_possible_cpu(cpu) {
5946 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5947 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5948 			return;
5949 		}
5950 	}
5951 
5952 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5953 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5954 
5955 	/*
5956 	 * We want masks of possible CPUs of each node which isn't readily
5957 	 * available.  Build one from cpu_to_node() which should have been
5958 	 * fully initialized by now.
5959 	 */
5960 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5961 	BUG_ON(!tbl);
5962 
5963 	for_each_node(node)
5964 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5965 				node_online(node) ? node : NUMA_NO_NODE));
5966 
5967 	for_each_possible_cpu(cpu) {
5968 		node = cpu_to_node(cpu);
5969 		cpumask_set_cpu(cpu, tbl[node]);
5970 	}
5971 
5972 	wq_numa_possible_cpumask = tbl;
5973 	wq_numa_enabled = true;
5974 }
5975 
5976 /**
5977  * workqueue_init_early - early init for workqueue subsystem
5978  *
5979  * This is the first half of two-staged workqueue subsystem initialization
5980  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5981  * idr are up.  It sets up all the data structures and system workqueues
5982  * and allows early boot code to create workqueues and queue/cancel work
5983  * items.  Actual work item execution starts only after kthreads can be
5984  * created and scheduled right before early initcalls.
5985  */
workqueue_init_early(void)5986 void __init workqueue_init_early(void)
5987 {
5988 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5989 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5990 	int i, cpu;
5991 
5992 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5993 
5994 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5995 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5996 
5997 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5998 
5999 	/* initialize CPU pools */
6000 	for_each_possible_cpu(cpu) {
6001 		struct worker_pool *pool;
6002 
6003 		i = 0;
6004 		for_each_cpu_worker_pool(pool, cpu) {
6005 			BUG_ON(init_worker_pool(pool));
6006 			pool->cpu = cpu;
6007 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6008 			pool->attrs->nice = std_nice[i++];
6009 			pool->node = cpu_to_node(cpu);
6010 
6011 			/* alloc pool ID */
6012 			mutex_lock(&wq_pool_mutex);
6013 			BUG_ON(worker_pool_assign_id(pool));
6014 			mutex_unlock(&wq_pool_mutex);
6015 		}
6016 	}
6017 
6018 	/* create default unbound and ordered wq attrs */
6019 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6020 		struct workqueue_attrs *attrs;
6021 
6022 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6023 		attrs->nice = std_nice[i];
6024 		unbound_std_wq_attrs[i] = attrs;
6025 
6026 		/*
6027 		 * An ordered wq should have only one pwq as ordering is
6028 		 * guaranteed by max_active which is enforced by pwqs.
6029 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6030 		 */
6031 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6032 		attrs->nice = std_nice[i];
6033 		attrs->no_numa = true;
6034 		ordered_wq_attrs[i] = attrs;
6035 	}
6036 
6037 	system_wq = alloc_workqueue("events", 0, 0);
6038 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6039 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6040 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6041 					    WQ_UNBOUND_MAX_ACTIVE);
6042 	system_freezable_wq = alloc_workqueue("events_freezable",
6043 					      WQ_FREEZABLE, 0);
6044 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6045 					      WQ_POWER_EFFICIENT, 0);
6046 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6047 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6048 					      0);
6049 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6050 	       !system_unbound_wq || !system_freezable_wq ||
6051 	       !system_power_efficient_wq ||
6052 	       !system_freezable_power_efficient_wq);
6053 }
6054 
6055 /**
6056  * workqueue_init - bring workqueue subsystem fully online
6057  *
6058  * This is the latter half of two-staged workqueue subsystem initialization
6059  * and invoked as soon as kthreads can be created and scheduled.
6060  * Workqueues have been created and work items queued on them, but there
6061  * are no kworkers executing the work items yet.  Populate the worker pools
6062  * with the initial workers and enable future kworker creations.
6063  */
workqueue_init(void)6064 void __init workqueue_init(void)
6065 {
6066 	struct workqueue_struct *wq;
6067 	struct worker_pool *pool;
6068 	int cpu, bkt;
6069 
6070 	/*
6071 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6072 	 * CPU to node mapping may not be available that early on some
6073 	 * archs such as power and arm64.  As per-cpu pools created
6074 	 * previously could be missing node hint and unbound pools NUMA
6075 	 * affinity, fix them up.
6076 	 *
6077 	 * Also, while iterating workqueues, create rescuers if requested.
6078 	 */
6079 	wq_numa_init();
6080 
6081 	mutex_lock(&wq_pool_mutex);
6082 
6083 	for_each_possible_cpu(cpu) {
6084 		for_each_cpu_worker_pool(pool, cpu) {
6085 			pool->node = cpu_to_node(cpu);
6086 		}
6087 	}
6088 
6089 	list_for_each_entry(wq, &workqueues, list) {
6090 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6091 		WARN(init_rescuer(wq),
6092 		     "workqueue: failed to create early rescuer for %s",
6093 		     wq->name);
6094 	}
6095 
6096 	mutex_unlock(&wq_pool_mutex);
6097 
6098 	/* create the initial workers */
6099 	for_each_online_cpu(cpu) {
6100 		for_each_cpu_worker_pool(pool, cpu) {
6101 			pool->flags &= ~POOL_DISASSOCIATED;
6102 			BUG_ON(!create_worker(pool));
6103 		}
6104 	}
6105 
6106 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6107 		BUG_ON(!create_worker(pool));
6108 
6109 	wq_online = true;
6110 	wq_watchdog_init();
6111 }
6112